Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 24

Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search
Benjamin Moseley, Joshua R. Wang; (1):1−36, 2023.
[abs][pdf][bib]

The Brier Score under Administrative Censoring: Problems and a Solution
Håvard Kvamme, Ørnulf Borgan; (2):1−26, 2023.
[abs][pdf][bib]

Bayesian Spiked Laplacian Graphs
Leo L Duan, George Michailidis, Mingzhou Ding; (3):1−35, 2023.
[abs][pdf][bib]      [code]

Efficient Structure-preserving Support Tensor Train Machine
Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner; (4):1−22, 2023.
[abs][pdf][bib]      [code]

Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy, Pierre Latouche, Benjamin Guedj, Servane Gey; (5):1−49, 2023.
[abs][pdf][bib]      [code]

AutoKeras: An AutoML Library for Deep Learning
Haifeng Jin, François Chollet, Qingquan Song, Xia Hu; (6):1−6, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

On Distance and Kernel Measures of Conditional Dependence
Tianhong Sheng, Bharath K. Sriperumbudur; (7):1−16, 2023.
[abs][pdf][bib]

A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
Radu I. Bot, Michael Sedlmayer, Phan Tu Vuong; (8):1−37, 2023.
[abs][pdf][bib]

Sampling random graph homomorphisms and applications to network data analysis
Hanbaek Lyu, Facundo Memoli, David Sivakoff; (9):1−79, 2023.
[abs][pdf][bib]      [code]

A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees
Michael J. O'Neill, Stephen J. Wright; (10):1−34, 2023.
[abs][pdf][bib]

Optimal Strategies for Reject Option Classifiers
Vojtech Franc, Daniel Prusa, Vaclav Voracek; (11):1−49, 2023.
[abs][pdf][bib]

Learning-augmented count-min sketches via Bayesian nonparametrics
Emanuele Dolera, Stefano Favaro, Stefano Peluchetti; (12):1−60, 2023.
[abs][pdf][bib]

Adaptation to the Range in K-Armed Bandits
Hédi Hadiji, Gilles Stoltz; (13):1−33, 2023.
[abs][pdf][bib]

Python package for causal discovery based on LiNGAM
Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu; (14):1−8, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions
Jon Vadillo, Roberto Santana, Jose A. Lozano; (15):1−42, 2023.
[abs][pdf][bib]      [code]

Globally-Consistent Rule-Based Summary-Explanations for Machine Learning Models: Application to Credit-Risk Evaluation
Cynthia Rudin, Yaron Shaposhnik; (16):1−44, 2023.
[abs][pdf][bib]      [code]

Learning Mean-Field Games with Discounted and Average Costs
Berkay Anahtarci, Can Deha Kariksiz, Naci Saldi; (17):1−59, 2023.
[abs][pdf][bib]

An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization
Le Thi Khanh Hien, Duy Nhat Phan, Nicolas Gillis; (18):1−41, 2023.
[abs][pdf][bib]      [code]

Regularized Joint Mixture Models
Konstantinos Perrakis, Thomas Lartigue, Frank Dondelinger, Sach Mukherjee; (19):1−47, 2023.
[abs][pdf][bib]      [code]

Interpolating Classifiers Make Few Mistakes
Tengyuan Liang, Benjamin Recht; (20):1−27, 2023.
[abs][pdf][bib]

Graph-Aided Online Multi-Kernel Learning
Pouya M. Ghari, Yanning Shen; (21):1−44, 2023.
[abs][pdf][bib]      [code]

Lower Bounds and Accelerated Algorithms for Bilevel Optimization
Kaiyi ji, Yingbin Liang; (22):1−56, 2023.
[abs][pdf][bib]

Bayesian Data Selection
Eli N. Weinstein, Jeffrey W. Miller; (23):1−72, 2023.
[abs][pdf][bib]      [code]

Calibrated Multiple-Output Quantile Regression with Representation Learning
Shai Feldman, Stephen Bates, Yaniv Romano; (24):1−48, 2023.
[abs][pdf][bib]      [code]

Discrete Variational Calculus for Accelerated Optimization
Cédric M. Campos, Alejandro Mahillo, David Martín de Diego; (25):1−33, 2023.
[abs][pdf][bib]      [code]

Generalization Bounds for Noisy Iterative Algorithms Using Properties of Additive Noise Channels
Hao Wang, Rui Gao, Flavio P. Calmon; (26):1−43, 2023.
[abs][pdf][bib]

The SKIM-FA Kernel: High-Dimensional Variable Selection and Nonlinear Interaction Discovery in Linear Time
Raj Agrawal, Tamara Broderick; (27):1−60, 2023.
[abs][pdf][bib]

Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
XuranMeng, JeffYao; (28):1−40, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

HiClass: a Python Library for Local Hierarchical Classification Compatible with Scikit-learn
Fábio M. Miranda, Niklas Köhnecke, Bernhard Y. Renard; (29):1−17, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Attacks against Federated Learning Defense Systems and their Mitigation
Cody Lewis, Vijay Varadharajan, Nasimul Noman; (30):1−50, 2023.
[abs][pdf][bib]      [code]

Labels, Information, and Computation: Efficient Learning Using Sufficient Labels
Shiyu Duan, Spencer Chang, Jose C. Principe; (31):1−35, 2023.
[abs][pdf][bib]

Sparse PCA: a Geometric Approach
Dimitris Bertsimas, Driss Lahlou Kitane; (32):1−33, 2023.
[abs][pdf][bib]

Gap Minimization for Knowledge Sharing and Transfer
Boyu Wang, Jorge A. Mendez, Changjian Shui, Fan Zhou, Di Wu, Gezheng Xu, Christian Gagné, Eric Eaton; (33):1−57, 2023.
[abs][pdf][bib]      [code]

Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne; (34):1−11, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopically Rational Followers?
Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan; (35):1−52, 2023.
[abs][pdf][bib]

Label Distribution Changing Learning with Sample Space Expanding
Chao Xu, Hong Tao, Jing Zhang, Dewen Hu, Chenping Hou; (36):1−48, 2023.
[abs][pdf][bib]

Ridges, Neural Networks, and the Radon Transform
Michael Unser; (37):1−33, 2023.
[abs][pdf][bib]

First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems
Michael I. Jordan, Tianyi Lin, Manolis Zampetakis; (38):1−46, 2023.
[abs][pdf][bib]

Sensing Theorems for Unsupervised Learning in Linear Inverse Problems
Julián Tachella, Dongdong Chen, Mike Davies; (39):1−45, 2023.
[abs][pdf][bib]

On Batch Teaching Without Collusion
Shaun Fallat, David Kirkpatrick, Hans U. Simon, Abolghasem Soltani, Sandra Zilles; (40):1−33, 2023.
[abs][pdf][bib]

Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data
Shaowu Pan, Steven L. Brunton, J. Nathan Kutz; (41):1−60, 2023.
[abs][pdf][bib]      [code]

A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zachary Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan; (42):1−63, 2023.
[abs][pdf][bib]      [code]

Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson; (43):1−48, 2023.
[abs][pdf][bib]      [code]

Robust Load Balancing with Machine Learned Advice
Sara Ahmadian, Hossein Esfandiari, Vahab Mirrokni, Binghui Peng; (44):1−46, 2023.
[abs][pdf][bib]

The multimarginal optimal transport formulation of adversarial multiclass classification
Nicolás García Trillos, Matt Jacobs, Jakwang Kim; (45):1−56, 2023.
[abs][pdf][bib]

The d-Separation Criterion in Categorical Probability
Tobias Fritz, Andreas Klingler; (46):1−49, 2023.
[abs][pdf][bib]

A Group-Theoretic Approach to Computational Abstraction: Symmetry-Driven Hierarchical Clustering
Haizi Yu, Igor Mineyev, Lav R. Varshney; (47):1−61, 2023.
[abs][pdf][bib]

On the Convergence of Stochastic Gradient Descent with Bandwidth-based Step Size
Xiaoyu Wang, Ya-xiang Yuan; (48):1−49, 2023.
[abs][pdf][bib]

Reinforcement Learning for Joint Optimization of Multiple Rewards
Mridul Agarwal, Vaneet Aggarwal; (49):1−41, 2023.
[abs][pdf][bib]

Convergence Rates of a Class of Multivariate Density Estimation Methods Based on Adaptive Partitioning
Linxi Liu, Dangna Li, Wing Hung Wong; (50):1−64, 2023.
[abs][pdf][bib]

Online Change-Point Detection in High-Dimensional Covariance Structure with Application to Dynamic Networks
Lingjun Li, Jun Li; (51):1−44, 2023.
[abs][pdf][bib]

Necessary and Sufficient Conditions for Inverse Reinforcement Learning of Bayesian Stopping Time Problems
Kunal Pattanayak, Vikram Krishnamurthy; (52):1−64, 2023.
[abs][pdf][bib]

VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit Feedback
Kirthevasan Kandasamy, Joseph E Gonzalez, Michael I Jordan, Ion Stoica; (53):1−45, 2023.
[abs][pdf][bib]

Contextual Stochastic Block Model: Sharp Thresholds and Contiguity
Chen Lu, Subhabrata Sen; (54):1−34, 2023.
[abs][pdf][bib]

Kernel-based estimation for partially functional linear model: Minimax rates and randomized sketches
Shaogao Lv, Xin He, Junhui Wang; (55):1−38, 2023.
[abs][pdf][bib]

On the geometry of Stein variational gradient descent
Andrew Duncan, Nikolas Nüsken, Lukasz Szpruch; (56):1−39, 2023.
[abs][pdf][bib]

Tree-AMP: Compositional Inference with Tree Approximate Message Passing
Antoine Baker, Florent Krzakala, Benjamin Aubin, Lenka Zdeborová; (57):1−89, 2023.
[abs][pdf][bib]      [code]

Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan, Roman Vershynin; (58):1−47, 2023.
[abs][pdf][bib]

Topological Convolutional Layers for Deep Learning
Ephy R. Love, Benjamin Filippenko, Vasileios Maroulas, Gunnar Carlsson; (59):1−35, 2023.
[abs][pdf][bib]

Provably Sample-Efficient Model-Free Algorithm for MDPs with Peak Constraints
Qinbo Bai, Vaneet Aggarwal, Ather Gattami; (60):1−25, 2023.
[abs][pdf][bib]

Density estimation on low-dimensional manifolds: an inflation-deflation approach
Christian Horvat, Jean-Pascal Pfister; (61):1−37, 2023.
[abs][pdf][bib]      [code]

Monotonic Alpha-divergence Minimisation for Variational Inference
Kamélia Daudel, Randal Douc, François Roueff; (62):1−76, 2023.
[abs][pdf][bib]

On the Complexity of SHAP-Score-Based Explanations: Tractability via Knowledge Compilation and Non-Approximability Results
Marcelo Arenas, Pablo Barcelo, Leopoldo Bertossi, Mikael Monet; (63):1−58, 2023.
[abs][pdf][bib]

Fundamental limits and algorithms for sparse linear regression with sublinear sparsity
Lan V. Truong; (64):1−49, 2023.
[abs][pdf][bib]      [code]

Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule
Nikhil Iyer, V. Thejas, Nipun Kwatra, Ramachandran Ramjee, Muthian Sivathanu; (65):1−37, 2023.
[abs][pdf][bib]      [code]

Posterior Contraction for Deep Gaussian Process Priors
Gianluca Finocchio, Johannes Schmidt-Hieber; (66):1−49, 2023.
[abs][pdf][bib]

Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
Eliezer de Souza da Silva, Tomasz Kuśmierczyk, Marcelo Hartmann, Arto Klami; (67):1−51, 2023.
[abs][pdf][bib]      [code]

Distributed Nonparametric Regression Imputation for Missing Response Problems with Large-scale Data
Ruoyu Wang, Miaomiao Su, Qihua Wang; (68):1−52, 2023.
[abs][pdf][bib]      [code]

When Locally Linear Embedding Hits Boundary
Hau-Tieng Wu, Nan Wu; (69):1−80, 2023.
[abs][pdf][bib]

Optimizing ROC Curves with a Sort-Based Surrogate Loss for Binary Classification and Changepoint Detection
Jonathan Hillman, Toby Dylan Hocking; (70):1−24, 2023.
[abs][pdf][bib]      [code]

Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
Simon Bartels, Wouter Boomsma, Jes Frellsen, Damien Garreau; (71):1−57, 2023.
[abs][pdf][bib]      [code]

How Do You Want Your Greedy: Simultaneous or Repeated?
Moran Feldman, Christopher Harshaw, Amin Karbasi; (72):1−87, 2023.
[abs][pdf][bib]      [code]

Inference for a Large Directed Acyclic Graph with Unspecified Interventions
Chunlin Li, Xiaotong Shen, Wei Pan; (73):1−48, 2023.
[abs][pdf][bib]      [code]

Privacy-Aware Rejection Sampling
Jordan Awan, Vinayak Rao; (74):1−32, 2023.
[abs][pdf][bib]

Intrinsic Persistent Homology via Density-based Metric Learning
Ximena Fernández, Eugenio Borghini, Gabriel Mindlin, Pablo Groisman; (75):1−42, 2023.
[abs][pdf][bib]      [code]

A Randomized Subspace-based Approach for Dimensionality Reduction and Important Variable Selection
Di Bo, Hoon Hwangbo, Vinit Sharma, Corey Arndt, Stephanie TerMaath; (76):1−31, 2023.
[abs][pdf][bib]

A Likelihood Approach to Nonparametric Estimation of a Singular Distribution Using Deep Generative Models
Minwoo Chae, Dongha Kim, Yongdai Kim, Lizhen Lin; (77):1−42, 2023.
[abs][pdf][bib]

Towards Learning to Imitate from a Single Video Demonstration
Glen Berseth, Florian Golemo, Christopher Pal; (78):1−26, 2023.
[abs][pdf][bib]

Approximate Post-Selective Inference for Regression with the Group LASSO
Snigdha Panigrahi, Peter W MacDonald, Daniel Kessler; (79):1−49, 2023.
[abs][pdf][bib]

Temporal Abstraction in Reinforcement Learning with the Successor Representation
Marlos C. Machado, Andre Barreto, Doina Precup, Michael Bowling; (80):1−69, 2023.
[abs][pdf][bib]

Fast Online Changepoint Detection via Functional Pruning CUSUM Statistics
Gaetano Romano, Idris A. Eckley, Paul Fearnhead, Guillem Rigaill; (81):1−36, 2023.
[abs][pdf][bib]      [code]

Iterated Block Particle Filter for High-dimensional Parameter Learning: Beating the Curse of Dimensionality
Ning Ning, Edward L. Ionides; (82):1−76, 2023.
[abs][pdf][bib]

Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson, Simo Särkkä, Arno Solin; (83):1−50, 2023.
[abs][pdf][bib]      [code]

Online Optimization over Riemannian Manifolds
Xi Wang, Zhipeng Tu, Yiguang Hong, Yingyi Wu, Guodong Shi; (84):1−67, 2023.
[abs][pdf][bib]      [code]

Doubly Robust Stein-Kernelized Monte Carlo Estimator: Simultaneous Bias-Variance Reduction and Supercanonical Convergence
Henry Lam, Haofeng Zhang; (85):1−58, 2023.
[abs][pdf][bib]

Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants; (86):1−72, 2023.
[abs][pdf][bib]      [code]

Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou, Debdeep Pati, Tianying Wang, Yun Yang, Raymond J. Carroll; (87):1−53, 2023.
[abs][pdf][bib]

Dimension-Grouped Mixed Membership Models for Multivariate Categorical Data
Yuqi Gu, Elena E. Erosheva, Gongjun Xu, David B. Dunson; (88):1−49, 2023.
[abs][pdf][bib]

Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs
Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar; (89):1−97, 2023.
[abs][pdf][bib]      [code]

Outlier-Robust Subsampling Techniques for Persistent Homology
Bernadette J. Stolz; (90):1−35, 2023.
[abs][pdf][bib]      [code]

Recursive Quantile Estimation: Non-Asymptotic Confidence Bounds
Likai Chen, Georg Keilbar, Wei Biao Wu; (91):1−25, 2023.
[abs][pdf][bib]

Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption
Lihu Xu, Fang Yao, Qiuran Yao, Huiming Zhang; (92):1−46, 2023.
[abs][pdf][bib]

Decentralized Learning: Theoretical Optimality and Practical Improvements
Yucheng Lu, Christopher De Sa; (93):1−62, 2023.
[abs][pdf][bib]

Faith-Shap: The Faithful Shapley Interaction Index
Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar; (94):1−42, 2023.
[abs][pdf][bib]

Statistical Inference for Noisy Incomplete Binary Matrix
Yunxiao Chen, Chengcheng Li, Jing Ouyang, Gongjun Xu; (95):1−66, 2023.
[abs][pdf][bib]

Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and Over-parameterization
Jianhao Ma, Salar Fattahi; (96):1−84, 2023.
[abs][pdf][bib]

Fitting Autoregressive Graph Generative Models through Maximum Likelihood Estimation
Xu Han, Xiaohui Chen, Francisco J. R. Ruiz, Li-Ping Liu; (97):1−30, 2023.
[abs][pdf][bib]      [code]

An Analysis of Robustness of Non-Lipschitz Networks
Maria-Florina Balcan, Avrim Blum, Dravyansh Sharma, Hongyang Zhang; (98):1−43, 2023.
[abs][pdf][bib]      [code]

Connectivity Matters: Neural Network Pruning Through the Lens of Effective Sparsity
Artem Vysogorets, Julia Kempe; (99):1−23, 2023.
[abs][pdf][bib]

FedLab: A Flexible Federated Learning Framework
Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, Zenglin Xu; (100):1−7, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Inference for Gaussian Processes with Matern Covariogram on Compact Riemannian Manifolds
Didong Li, Wenpin Tang, Sudipto Banerjee; (101):1−26, 2023.
[abs][pdf][bib]

Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments
Haixu Ma, Donglin Zeng, Yufeng Liu; (102):1−48, 2023.
[abs][pdf][bib]

Sparse Training with Lipschitz Continuous Loss Functions and a Weighted Group L0-norm Constraint
Michael R. Metel; (103):1−44, 2023.
[abs][pdf][bib]

Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
Mu Niu, Zhenwen Dai, Pokman Cheung, Yizhu Wang; (104):1−42, 2023.
[abs][pdf][bib]

Knowledge Hypergraph Embedding Meets Relational Algebra
Bahare Fatemi, Perouz Taslakian, David Vazquez, David Poole; (105):1−34, 2023.
[abs][pdf][bib]      [code]

Concentration analysis of multivariate elliptic diffusions
Lukas Trottner, Cathrine Aeckerle-Willems, Claudia Strauch; (106):1−38, 2023.
[abs][pdf][bib]

Risk Bounds for Positive-Unlabeled Learning Under the Selected At Random Assumption
Olivier Coudray, Christine Keribin, Pascal Massart, Patrick Pamphile; (107):1−31, 2023.
[abs][pdf][bib]

Bayesian Calibration of Imperfect Computer Models using Physics-Informed Priors
Michail Spitieris, Ingelin Steinsland; (108):1−39, 2023.
[abs][pdf][bib]      [code]

Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar, Weichi Yao, David W. Hogg, Ben Blum-Smith, Bianca Dumitrascu; (109):1−32, 2023.
[abs][pdf][bib]

A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi; (110):1−43, 2023.
[abs][pdf][bib]      [code]

FLIP: A Utility Preserving Privacy Mechanism for Time Series
Tucker McElroy, Anindya Roy, Gaurab Hore; (111):1−29, 2023.
[abs][pdf][bib]

The Hyperspherical Geometry of Community Detection: Modularity as a Distance
Martijn Gösgens, Remco van der Hofstad, Nelly Litvak; (112):1−36, 2023.
[abs][pdf][bib]      [code]

The Implicit Bias of Benign Overfitting
Ohad Shamir; (113):1−40, 2023.
[abs][pdf][bib]

Generalization Bounds for Adversarial Contrastive Learning
Xin Zou, Weiwei Liu; (114):1−54, 2023.
[abs][pdf][bib]

Learning Good State and Action Representations for Markov Decision Process via Tensor Decomposition
Chengzhuo Ni, Yaqi Duan, Munther Dahleh, Mengdi Wang, Anru R. Zhang; (115):1−53, 2023.
[abs][pdf][bib]

SQLFlow: An Extensible Toolkit Integrating DB and AI
Jun Zhou, Ke Zhang, Lin Wang, Hua Wu, Yi Wang, ChaoChao Chen; (116):1−9, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Deep linear networks can benignly overfit when shallow ones do
Niladri S. Chatterji, Philip M. Long; (117):1−39, 2023.
[abs][pdf][bib]      [code]

A Unified Framework for Optimization-Based Graph Coarsening
Manoj Kumar, Anurag Sharma, Sandeep Kumar; (118):1−50, 2023.
[abs][pdf][bib]      [code]

An Annotated Graph Model with Differential Degree Heterogeneity for Directed Networks
Stefan Stein, Chenlei Leng; (119):1−69, 2023.
[abs][pdf][bib]

Maximum likelihood estimation in Gaussian process regression is ill-posed
Toni Karvonen, Chris J. Oates; (120):1−47, 2023.
[abs][pdf][bib]

Minimal Width for Universal Property of Deep RNN
Chang hoon Song, Geonho Hwang, Jun ho Lee, Myungjoo Kang; (121):1−41, 2023.
[abs][pdf][bib]

Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian R. Bartoldson, Bhavya Kailkhura, Davis Blalock; (122):1−77, 2023.
[abs][pdf][bib]

Benign overfitting in ridge regression
Alexander Tsigler, Peter L. Bartlett; (123):1−76, 2023.
[abs][pdf][bib]

HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
Weijie J. Su, Yuancheng Zhu; (124):1−53, 2023.
[abs][pdf][bib]

Statistical Robustness of Empirical Risks in Machine Learning
Shaoyan Guo, Huifu Xu, Liwei Zhang; (125):1−38, 2023.
[abs][pdf][bib]

Euler-Lagrange Analysis of Generative Adversarial Networks
Siddarth Asokan, Chandra Sekhar Seelamantula; (126):1−100, 2023.
[abs][pdf][bib]      [code]

Graph Clustering with Graph Neural Networks
Anton Tsitsulin, John Palowitch, Bryan Perozzi, Emmanuel Müller; (127):1−21, 2023.
[abs][pdf][bib]      [code]

An Eigenmodel for Dynamic Multilayer Networks
Joshua Daniel Loyal, Yuguo Chen; (128):1−69, 2023.
[abs][pdf][bib]      [code]

A First Look into the Carbon Footprint of Federated Learning
Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro P. B. Gusmao, Yan Gao, Daniel J. Beutel, Taner Topal, Akhil Mathur, Nicholas D. Lane; (129):1−23, 2023.
[abs][pdf][bib]

Combinatorial Optimization and Reasoning with Graph Neural Networks
Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, Petar Velickovic; (130):1−61, 2023.
[abs][pdf][bib]

A Rigorous Information-Theoretic Definition of Redundancy and Relevancy in Feature Selection Based on (Partial) Information Decomposition
Patricia Wollstadt, Sebastian Schmitt, Michael Wibral; (131):1−44, 2023.
[abs][pdf][bib]

Generalized Linear Models in Non-interactive Local Differential Privacy with Public Data
Di Wang, Lijie Hu, Huanyu Zhang, Marco Gaboardi, Jinhui Xu; (132):1−57, 2023.
[abs][pdf][bib]

Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
Benjamin Jakubowski, Sriram Somanchi, Edward McFowland III, Daniel B. Neill; (133):1−57, 2023.
[abs][pdf][bib]      [code]

MARS: A Second-Order Reduction Algorithm for High-Dimensional Sparse Precision Matrices Estimation
Qian Li, Binyan Jiang, Defeng Sun; (134):1−44, 2023.
[abs][pdf][bib]

Sparse GCA and Thresholded Gradient Descent
Sheng Gao, Zongming Ma; (135):1−61, 2023.
[abs][pdf][bib]

Dimension Reduction in Contextual Online Learning via Nonparametric Variable Selection
Wenhao Li, Ningyuan Chen, L. Jeff Hong; (136):1−84, 2023.
[abs][pdf][bib]

Implicit Bias of Gradient Descent for Mean Squared Error Regression with Two-Layer Wide Neural Networks
Hui Jin, Guido Montufar; (137):1−97, 2023.
[abs][pdf][bib]      [code]

Asymptotics of Network Embeddings Learned via Subsampling
Andrew Davison, Morgane Austern; (138):1−120, 2023.
[abs][pdf][bib]      [code]

Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games
Ben Hambly, Renyuan Xu, Huining Yang; (139):1−56, 2023.
[abs][pdf][bib]

Jump Interval-Learning for Individualized Decision Making with Continuous Treatments
Hengrui Cai, Chengchun Shi, Rui Song, Wenbin Lu; (140):1−92, 2023.
[abs][pdf][bib]      [code]

Optimal Convergence Rates for Distributed Nystroem Approximation
Jian Li, Yong Liu, Weiping Wang; (141):1−39, 2023.
[abs][pdf][bib]      [code]

On Tilted Losses in Machine Learning: Theory and Applications
Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith; (142):1−79, 2023.
[abs][pdf][bib]      [code]

Large sample spectral analysis of graph-based multi-manifold clustering
Nicolas Garcia Trillos, Pengfei He, Chenghui Li; (143):1−71, 2023.
[abs][pdf][bib]      [code]

Escaping The Curse of Dimensionality in Bayesian Model-Based Clustering
Noirrit Kiran Chandra, Antonio Canale, David B. Dunson; (144):1−42, 2023.
[abs][pdf][bib]

Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang; (145):1−46, 2023.
[abs][pdf][bib]      [code]

Off-Policy Actor-Critic with Emphatic Weightings
Eric Graves, Ehsan Imani, Raksha Kumaraswamy, Martha White; (146):1−63, 2023.
[abs][pdf][bib]      [code]

Stochastic Optimization under Distributional Drift
Joshua Cutler, Dmitriy Drusvyatskiy, Zaid Harchaoui; (147):1−56, 2023.
[abs][pdf][bib]

Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave Min-Max Problems with PL Condition
Zhishuai Guo, Yan Yan, Zhuoning Yuan, Tianbao Yang; (148):1−63, 2023.
[abs][pdf][bib]

Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning
Titouan Vayer, Rémi Gribonval; (149):1−51, 2023.
[abs][pdf][bib]

MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning
Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen, Runzhe Wu, Ying Wen, Yaodong Yang, Yong Yu, Jun Wang, Weinan Zhang; (150):1−12, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Generalization error bounds for multiclass sparse linear classifiers
Tomer Levy, Felix Abramovich; (151):1−35, 2023.
[abs][pdf][bib]

Selective inference for k-means clustering
Yiqun T. Chen, Daniela M. Witten; (152):1−41, 2023.
[abs][pdf][bib]      [code]

Consistent Model-based Clustering using the Quasi-Bernoulli Stick-breaking Process
Cheng Zeng, Jeffrey W Miller, Leo L Duan; (153):1−32, 2023.
[abs][pdf][bib]      [code]

Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy, Zayd Hammoudeh, Daniel Lowd; (154):1−48, 2023.
[abs][pdf][bib]      [code]

Adaptive Data Depth via Multi-Armed Bandits
Tavor Baharav, Tze Leung Lai; (155):1−29, 2023.
[abs][pdf][bib]

Integrating Random Effects in Deep Neural Networks
Giora Simchoni, Saharon Rosset; (156):1−57, 2023.
[abs][pdf][bib]      [code]

Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the in the O(epsilon^(-7/4)) Complexity
Huan Li, Zhouchen Lin; (157):1−37, 2023.
[abs][pdf][bib]      [code]

Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees
Hamid Reza Feyzmahdavian, Mikael Johansson; (158):1−75, 2023.
[abs][pdf][bib]

Infinite-dimensional optimization and Bayesian nonparametric learning of stochastic differential equations
Arnab Ganguly, Riten Mitra, Jinpu Zhou; (159):1−39, 2023.
[abs][pdf][bib]

Multivariate Soft Rank via Entropy-Regularized Optimal Transport: Sample Efficiency and Generative Modeling
Shoaib Bin Masud, Matthew Werenski, James M. Murphy, Shuchin Aeron; (160):1−65, 2023.
[abs][pdf][bib]      [code]

q-Learning in Continuous Time
Yanwei Jia, Xun Yu Zhou; (161):1−61, 2023.
[abs][pdf][bib]      [code]

Flexible Model Aggregation for Quantile Regression
Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani; (162):1−45, 2023.
[abs][pdf][bib]      [code]

Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
Gavin Zhang, Salar Fattahi, Richard Y. Zhang; (163):1−55, 2023.
[abs][pdf][bib]

A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller, Viktor Zaverkin, Johannes Kästner, Ingo Steinwart; (164):1−81, 2023.
[abs][pdf][bib]      [code]

Robust Methods for High-Dimensional Linear Learning
Ibrahim Merad, Stéphane Gaïffas; (165):1−44, 2023.
[abs][pdf][bib]

A Parameter-Free Conditional Gradient Method for Composite Minimization under Hölder Condition
Masaru Ito, Zhaosong Lu, Chuan He; (166):1−34, 2023.
[abs][pdf][bib]

Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start
Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo; (167):1−37, 2023.
[abs][pdf][bib]      [code]

Inference on the Change Point under a High Dimensional Covariance Shift
Abhishek Kaul, Hongjin Zhang, Konstantinos Tsampourakis, George Michailidis; (168):1−68, 2023.
[abs][pdf][bib]

DART: Distance Assisted Recursive Testing
Xuechan Li, Anthony D. Sung, Jichun Xie; (169):1−41, 2023.
[abs][pdf][bib]

Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios, Valentin Debarnot, Ivan Dokmanić; (170):1−48, 2023.
[abs][pdf][bib]      [code]

Incremental Learning in Diagonal Linear Networks
Raphaël Berthier; (171):1−26, 2023.
[abs][pdf][bib]

Beyond the Golden Ratio for Variational Inequality Algorithms
Ahmet Alacaoglu, Axel Böhm, Yura Malitsky; (172):1−33, 2023.
[abs][pdf][bib]      [code]

From Classification Accuracy to Proper Scoring Rules: Elicitability of Probabilistic Top List Predictions
Johannes Resin; (173):1−21, 2023.
[abs][pdf][bib]

© JMLR .
Mastodon