JMLR Volume 24
- Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search
- Benjamin Moseley, Joshua R. Wang; (1):1−36, 2023.
[abs][pdf][bib]
- The Brier Score under Administrative Censoring: Problems and a Solution
- Håvard Kvamme, Ørnulf Borgan; (2):1−26, 2023.
[abs][pdf][bib]
- Bayesian Spiked Laplacian Graphs
- Leo L Duan, George Michailidis, Mingzhou Ding; (3):1−35, 2023.
[abs][pdf][bib] [code]
- Efficient Structure-preserving Support Tensor Train Machine
- Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner; (4):1−22, 2023.
[abs][pdf][bib] [code]
- Cluster-Specific Predictions with Multi-Task Gaussian Processes
- Arthur Leroy, Pierre Latouche, Benjamin Guedj, Servane Gey; (5):1−49, 2023.
[abs][pdf][bib] [code]
- AutoKeras: An AutoML Library for Deep Learning
- Haifeng Jin, François Chollet, Qingquan Song, Xia Hu; (6):1−6, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- On Distance and Kernel Measures of Conditional Dependence
- Tianhong Sheng, Bharath K. Sriperumbudur; (7):1−16, 2023.
[abs][pdf][bib]
- A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
- Radu I. Bot, Michael Sedlmayer, Phan Tu Vuong; (8):1−37, 2023.
[abs][pdf][bib]
- Sampling random graph homomorphisms and applications to network data analysis
- Hanbaek Lyu, Facundo Memoli, David Sivakoff; (9):1−79, 2023.
[abs][pdf][bib] [code]
- A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees
- Michael J. O'Neill, Stephen J. Wright; (10):1−34, 2023.
[abs][pdf][bib]
- Optimal Strategies for Reject Option Classifiers
- Vojtech Franc, Daniel Prusa, Vaclav Voracek; (11):1−49, 2023.
[abs][pdf][bib]
- Learning-augmented count-min sketches via Bayesian nonparametrics
- Emanuele Dolera, Stefano Favaro, Stefano Peluchetti; (12):1−60, 2023.
[abs][pdf][bib]
- Adaptation to the Range in K-Armed Bandits
- Hédi Hadiji, Gilles Stoltz; (13):1−33, 2023.
[abs][pdf][bib]
- Python package for causal discovery based on LiNGAM
- Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu; (14):1−8, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions
- Jon Vadillo, Roberto Santana, Jose A. Lozano; (15):1−42, 2023.
[abs][pdf][bib] [code]
- Globally-Consistent Rule-Based Summary-Explanations for Machine Learning Models: Application to Credit-Risk Evaluation
- Cynthia Rudin, Yaron Shaposhnik; (16):1−44, 2023.
[abs][pdf][bib] [code]
- Learning Mean-Field Games with Discounted and Average Costs
- Berkay Anahtarci, Can Deha Kariksiz, Naci Saldi; (17):1−59, 2023.
[abs][pdf][bib]
- An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization
- Le Thi Khanh Hien, Duy Nhat Phan, Nicolas Gillis; (18):1−41, 2023.
[abs][pdf][bib] [code]
- Regularized Joint Mixture Models
- Konstantinos Perrakis, Thomas Lartigue, Frank Dondelinger, Sach Mukherjee; (19):1−47, 2023.
[abs][pdf][bib] [code]
- Interpolating Classifiers Make Few Mistakes
- Tengyuan Liang, Benjamin Recht; (20):1−27, 2023.
[abs][pdf][bib]
- Graph-Aided Online Multi-Kernel Learning
- Pouya M. Ghari, Yanning Shen; (21):1−44, 2023.
[abs][pdf][bib] [code]
- Lower Bounds and Accelerated Algorithms for Bilevel Optimization
- Kaiyi ji, Yingbin Liang; (22):1−56, 2023.
[abs][pdf][bib]
- Bayesian Data Selection
- Eli N. Weinstein, Jeffrey W. Miller; (23):1−72, 2023.
[abs][pdf][bib] [code]
- Calibrated Multiple-Output Quantile Regression with Representation Learning
- Shai Feldman, Stephen Bates, Yaniv Romano; (24):1−48, 2023.
[abs][pdf][bib] [code]
- Discrete Variational Calculus for Accelerated Optimization
- Cédric M. Campos, Alejandro Mahillo, David Martín de Diego; (25):1−33, 2023.
[abs][pdf][bib] [code]
- Generalization Bounds for Noisy Iterative Algorithms Using Properties of Additive Noise Channels
- Hao Wang, Rui Gao, Flavio P. Calmon; (26):1−43, 2023.
[abs][pdf][bib]
- The SKIM-FA Kernel: High-Dimensional Variable Selection and Nonlinear Interaction Discovery in Linear Time
- Raj Agrawal, Tamara Broderick; (27):1−60, 2023.
[abs][pdf][bib]
- Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
- XuranMeng, JeffYao; (28):1−40, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- HiClass: a Python Library for Local Hierarchical Classification Compatible with Scikit-learn
- Fábio M. Miranda, Niklas Köhnecke, Bernhard Y. Renard; (29):1−17, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Attacks against Federated Learning Defense Systems and their Mitigation
- Cody Lewis, Vijay Varadharajan, Nasimul Noman; (30):1−50, 2023.
[abs][pdf][bib] [code]
- Labels, Information, and Computation: Efficient Learning Using Sufficient Labels
- Shiyu Duan, Spencer Chang, Jose C. Principe; (31):1−35, 2023.
[abs][pdf][bib]
- Sparse PCA: a Geometric Approach
- Dimitris Bertsimas, Driss Lahlou Kitane; (32):1−33, 2023.
[abs][pdf][bib]
- Gap Minimization for Knowledge Sharing and Transfer
- Boyu Wang, Jorge A. Mendez, Changjian Shui, Fan Zhou, Di Wu, Gezheng Xu, Christian Gagné, Eric Eaton; (33):1−57, 2023.
[abs][pdf][bib] [code]
- Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
- Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne; (34):1−11, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopically Rational Followers?
- Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan; (35):1−52, 2023.
[abs][pdf][bib]
- Label Distribution Changing Learning with Sample Space Expanding
- Chao Xu, Hong Tao, Jing Zhang, Dewen Hu, Chenping Hou; (36):1−48, 2023.
[abs][pdf][bib]
- First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems
- Michael I. Jordan, Tianyi Lin, Manolis Zampetakis; (38):1−46, 2023.
[abs][pdf][bib]
- Sensing Theorems for Unsupervised Learning in Linear Inverse Problems
- Julián Tachella, Dongdong Chen, Mike Davies; (39):1−45, 2023.
[abs][pdf][bib]
- On Batch Teaching Without Collusion
- Shaun Fallat, David Kirkpatrick, Hans U. Simon, Abolghasem Soltani, Sandra Zilles; (40):1−33, 2023.
[abs][pdf][bib]
- Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data
- Shaowu Pan, Steven L. Brunton, J. Nathan Kutz; (41):1−60, 2023.
[abs][pdf][bib] [code]
- A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
- Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zachary Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan; (42):1−63, 2023.
[abs][pdf][bib] [code]
- Benchmarking Graph Neural Networks
- Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson; (43):1−48, 2023.
[abs][pdf][bib] [code]
- Robust Load Balancing with Machine Learned Advice
- Sara Ahmadian, Hossein Esfandiari, Vahab Mirrokni, Binghui Peng; (44):1−46, 2023.
[abs][pdf][bib]
- The multimarginal optimal transport formulation of adversarial multiclass classification
- Nicolás García Trillos, Matt Jacobs, Jakwang Kim; (45):1−56, 2023.
[abs][pdf][bib]
- The d-Separation Criterion in Categorical Probability
- Tobias Fritz, Andreas Klingler; (46):1−49, 2023.
[abs][pdf][bib]
© JMLR . |