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Abstract

Multiple-try Metropolis (MTM) is a popular Markov chain Monte Carlo method with the
appealing feature of being amenable to parallel computing. At each iteration, it samples
several candidates for the next state of the Markov chain and randomly selects one of them
based on a weight function. The canonical weight function is proportional to the target
density. We show both theoretically and empirically that this weight function induces
pathological behaviours in high dimensions, especially during the convergence phase. We
propose to instead use weight functions akin to the locally-balanced proposal distributions
of Zanella (2020), thus yielding MTM algorithms that do not exhibit those pathological
behaviours. To theoretically analyse these algorithms, we study the high-dimensional per-
formance of ideal schemes that can be thought of as MTM algorithms which sample an
infinite number of candidates at each iteration, as well as the discrepancy between such
schemes and the MTM algorithms which sample a finite number of candidates. Our analysis
unveils a strong distinction between the convergence and stationary phases: in the former,
local balancing is crucial and effective to achieve fast convergence, while in the latter, the
canonical and novel weight functions yield similar performance. Numerical experiments in-
clude an application in precision medicine involving a computationally-expensive forward
model, which makes the use of parallel computing within MTM iterations beneficial.

Keywords: Bayesian statistics, Markov chain Monte Carlo, parallel computing, random-
walk Metropolis, scaling limit, weak convergence.

1. Introduction

1.1 Multiple-try Metropolis

In this paper, we study a specific Markov chain Monte Carlo (MCMC) method introduced
by Liu et al. (2000) called Multiple-try Metropolis (MTM). It can be seen as a generalization
of the Metropolis–Hastings (MH, Metropolis et al. (1953) and Hastings (1970)) algorithm:
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at each iteration, several candidates for the next state of the Markov chain (instead of
one) are sampled, hence the name of the algorithm. MTM can be used to sample from
an intractable distribution π for Monte Carlo integration purposes, where intractable here
refers to the impossibility to compute integrals exactly with respect to that distribution. In
a sampling context, such a distribution is called the target distribution. This distribution
often is a posterior distribution of model parameters resulting from a Bayesian model. In
the following, we assume for simplicity that π admits a strictly positive probability density
function (PDF) with respect to Lebesgue measure, implying that the model parameters
in a Bayesian context are continuous random variables; to simplify the notation, we will
also use π to denote the PDF. When the latter is a posterior density, it is proportional to
the product of the likelihood function and a prior density. Its normalizing constant is not
available, but it is assumed here that the target density can be evaluated pointwise (up to
that normalizing constant).

In its simplest and most popular form, an iteration of MTM is as follows1:

1. N values y1, . . . ,yN ∈ Rd are sampled independently from a proposal distribution
with density qσ(x, · ), where x ∈ Rd is the current state of the chain and σ > 0 is a
fixed scale parameter;

2. one of the yi’s is randomly selected to be the proposal for the next state of the
chain, say yj , with probability proportional to a weight w(x,yj), where w is a strictly
positive weight function;

3. N − 1 values z1, . . . , zN−1 are sampled independently from qσ(yj , · );

4. the proposal is accepted, meaning that the next state is set to be yj , with probability

α(x,yj) := 1 ∧
π(yj) qσ(yj ,x)w(yj ,x)

/(∑N−1
i=1 w(yj , zi) + w(yj ,x)

)
π(x) qσ(x,yj)w(x,yj)

/(∑N
i=1w(x,yi)

) , (1)

where a∧ b := min(a, b) and the dependence of α(x,yj) on yi, i 6= j, and z1, . . . , zN−1
is made implicit to simplify the notation; when the proposal is rejected the chain
remains at x.

Step 3 and the specific form of the acceptance probability (1) are crucial ingredients to
make the resulting Markov chains reversible with respect to π and thus to ensure that
π is an invariant distribution and the algorithm is valid (see Liu et al. (2000) for full
details). Typically, in Step 1, the sampling is performed through a random-walk scheme,
and in particular, using a normal with a mean x and a diagonal covariance matrix with
diagonal elements given by σ2, denoted by qσ(x, · ) = N (x, σ2Id), with Id being the identity
matrix of size d (we also use qσ(x, · ) to denote the distribution to simplify). Note that
the terms qσ(yj ,x) and qσ(x,yj) in (1) cancel each other when the density is symmetric
as with the normal. In Steps 2 and 4, the weight function w(x,y) is typically a function
of the ratio π(y)/π(x), the most popular choice by far being w(x,y) = π(y)/π(x) ∝ π(y).

1. We follow the formulation of Bédard et al. (2012).
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Randomly choosing among the candidates y1, . . . ,yN based on a function of their target-
density evaluations π(y1), . . . , π(yN ) makes MTM an informed scheme, in the sense of
Zanella (2020), meaning that it leverages target-distribution information in the proposal
mechanism. Such schemes can improve in terms of asymptotic variance of ergodic averages
and mixing properties over their uninformed counterparts.

1.2 Potential of MTM and parallel computing in MCMC

MTM is appealing in situations where it is computationally expensive to evaluate the target
density (typically because of the likelihood function), and it is not possible to obtain an ex-
plicit form of its gradient. In this situation, gradient-based MCMC methods may be either
inapplicable or computationally intensive, e.g., if repeated numerical derivative approxima-
tions are required. Practitioners facing such a situation may naturally consider using a
MH sampler with a random-walk proposal mechanism qσ, or its MTM generalization.2 The
weights in Steps 2 and 4 in MTM can be computed in parallel, which results in a signifi-
cant computation-time reduction compared to serial computation when the iteration cost is
largely dominated by that of evaluating the target density. In this situation, the iteration
cost of MTM is roughly twice that of a MH sampler using the proposal distribution qσ.3

We refer to the type of parallelization employed in MTM as in-step parallelization, given
that parallel computing is used within each algorithm iteration. It is to be contrasted with
a basic use of parallel computing where one runs N MH algorithms in parallel each using
the proposal distribution qσ. The advantage of the latter is that it is an embarrassingly
parallel workload with essentially no communication cost (see, e.g., Rosenthal (2000) and
Jacob et al. (2020)). It however does not reduce the burn-in required by each chain to reach
stationarity, and thus its computational speed-up compared to running one MH algorithm
is fundamentally limited if the chains have a large mixing time. As a result, in-step par-
allelization approaches that reduce burn-in can lead to significant gain in efficiency in the
convergence phase; see, e.g., discussions in Neal (2003), Tjelmeland (2004), Frenkel (2004),
Calderhead (2014) and Holbrook (2023).

In order to reduce the burn-in significantly enough to gain in efficiency with MTM,
one has to choose carefully the weight function w. As mentioned, the most popular weight
function is w(x,y) = π(y)/π(x) ∝ π(y). The intuition behind choosing this weight function
is to select yj among the candidates y1, . . . ,yN proportionally to its “probability” under
the target. Although intuitively sensible, this choice lacks theoretical justification and, in
fact, has been observed to yield an MTM algorithm with pathological behaviours. For
example, Martino and Louzada (2017) highlights that MTM with w(x,y) ∝ π(y) may have
issues of convergence if initialized in the tails of the target density because of acceptance
probabilities that are near zero in this area, resulting in Markov chains that get stuck. Also,

2. One could also use MTM with an informed gradient-based proposal distribution, but this is less common
in practice.

3. When the iteration cost is largely dominated by that of evaluating the target density, we know that
the computational cost of the other operations (like sampling from qσ(x, · )) is negligible compared with
that of evaluating the target density. This implies that the iteration cost of the MH sampler roughly
corresponds to that of evaluating the target density once for evaluating the acceptance probability (π(x)
can have been recorded from the previous iteration), and the iteration cost of MTM roughly corresponds
to that of evaluating the target density twice (because the weights in Steps 2 and 4 in MTM can be
computed in parallel).

3



Gagnon, Maire and Zanella

performance often decreases as N increases, which is counter-intuitive as the algorithm has
a larger group of candidates to select the proposal from at each iteration. In this paper, we
show that the cause of those issues is precisely the choice of weight function w(x,y) ∝ π(y)
which makes the resulting MTM globally balanced, a qualifier coined by Zanella (2020) and
that will be justified. Note that alternative choices are discussed in, e.g., Liu et al. (2000)
and Pandolfi et al. (2010), but these are similar in spirit to the choice w(x,y) ∝ π(y) and
are exposed to the same pathologies.

The global objective of this work is to identify effective weight functions based on the-
oretical arguments and to study the resulting MTM algorithms. The effective weight func-
tions that we identify, such as w(x,y) ∝

√
π(y), yield MTM algorithms that have a connec-

tion with the locally-balanced samplers proposed by Zanella (2020) in the context of discrete
state-spaces. Therein, a large class of informed samplers are studied, with proposal distribu-
tions resulting from a combination of a random-walk proposal scheme and what is referred
to as a balancing function. A specific choice of balancing function makes the sampler locally
balanced. As already noted in Zanella (2020), the weight function in MTM and the balanc-
ing function play an analogous role. Given the domination of the locally-balanced sampler
over the globally-balanced one shown in Zanella (2020), it is thus natural to consider the use
of locally-balanced weight functions in MTM, especially given that the resulting samplers
have the same computational cost as their globally-balanced counterpart and are as easy to
implement. In this paper, we refer to MTM with the weight function w(x,y) = π(y)/π(x)
as globally-balanced (GB) MTM and to MTM with a locally-balanced weight function as
locally-balanced (LB) MTM. It will be highlighted in the following that LB MTM is closely
related to gradient-based MCMC methods such as the Metropolis-adjusted Langevin algo-
rithm (MALA, Roberts and Tweedie (1996)) and the Barker proposal scheme of Livingstone
and Zanella (2022).

1.3 Organization of the paper

We now describe how the rest of the paper is organized. In Section 2, we establish a weak
convergence of the Markov chains simulated by MTM towards those simulated by an ideal
sampling scheme, as N → ∞ with the dimension d fixed. This ideal sampling scheme is
the continuous state-space counterpart of the class of informed samplers studied in Zanella
(2020). In Section 3, we study the convergence phase of MTM algorithms through both
theoretical and empirical results. The analysis shows that GB MTM indeed often has issues
of convergence, while LB MTM does not. In fact, LB MTM provides drastic convergence
speed-ups and improved robustness compared to GB MTM. In Section 4, we study MTM
properties in stationarity. Theorem 2 provides high-dimensional scaling-limit results (as
d → ∞) for the ideal scheme with w(x,y) ∝ π(y) and that with a LB weight function,
namely w(x,y) ∝

√
π(y). Theorem 3 then shows that these ideal schemes are approached

by MTM under conditions on the rate at which the number of candidates increases with the
dimension. Combining Theorems 2 and 3 leads to an informative but somewhat negative
conclusion: the ideal scheme with the LB weight function scales better with dimension,
however, the (sufficient) condition under which the corresponding MTM algorithm reaches
its full potential by approaching the ideal scheme is that N scales exponentially with the
dimension. As a result, in common situations, LB MTM provides only mild performance
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improvement compared to GB MTM in stationarity. The theoretical results of Sections
3 and 4 are derived in simple scenarios and numerical results are provided to illustrate
them, including adaptive MTM implementations. To explore whether the scope of those
theoretical results extends beyond simple scenarios, we study in Section 5 the application
of GB and LB MTM to a real-world inference problem of immunotherapy in precision
medicine where the likelihood is expensive to compute and its gradient is not available
in closed form. The empirical results are consistent with the theoretical ones, including
observing a drastically reduced burn-in time for LB MTM. We finish the manuscript with a
discussion in Section 6. The proofs of all theoretical results are deferred to Section A. The
code to reproduce all numerical results is available online.4

While working on our manuscript, it came to our attention that Chang et al. (2022)
independently and concurrently propose to use LB weight functions within MTM and study
the resulting samplers, but the context and focus are quite different. The context and focus
are that of sampling from target distributions defined on discrete state-spaces and more
precisely from target distributions resulting from model-selection problems. Our contribu-
tions and theirs thus have virtually no overlap. That being said, the conclusions in Chang
et al. (2022) and ours are consistent, and in this sense, the two studies are complementary.

2. Ideal schemes and locally-balanced weight functions

We start in Section 2.1 with the identification of LB weight functions as effective weight
functions. The arguments motivating the use of such weight functions rest upon a theoretical
result for which a sketch of a proof was presented in Liu et al. (2000). The result is stated
informally in Section 2.1, while a formal statement is presented in Section 2.2. In Section 2.3,
a connection between LB MTM and gradient-based methods is highlighted.

2.1 Locally-balanced weight functions: A motivation

Liu et al. (2000) presented a sketch of a proof of the convergence of the Markov kernel of
MTM as N → ∞ to that of a MH algorithm using a proposal distribution with a PDF
defined as

Qw,σ(x,y) :=
w(x,y) qσ(x,y)∫
w(x,y) qσ(x,y) dy

,

assuming that the integral in the denominator exists and is finite. We will refer to the MH
algorithm using the proposal distribution Qw,σ as an ideal scheme as it cannot in general be
implemented and it can be thought of as an MTM algorithm sampling an infinite number
of candidates N at each iteration.5

Whenever there exists a positive continuous function g such that w(x,y) is of the form
w(x,y) = g(π(y)/π(x)), the ideal scheme corresponds to the continuous version of the
class of informed samplers studied in Zanella (2020). All the weight functions considered
in our paper are of this form. Even though the work of Zanella (2020) is in the context of
discrete state-spaces, a part of the analysis conducted therein is applicable to the continuous

4. See ancillary files on arXiv:2211.11613.
5. For consistency, we will use the terminology “ideal scheme” also for the globally-balanced version even

if using a large number of candidates N is not effective in that case.
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case as well. In particular, it indicates that the choice w(x,y) ∝ π(y) yields a proposal
distribution which leaves the target distribution invariant (without the MH correction) in
the situation where σ →∞, the approach being, in that sense, global; in fact, the limiting
case corresponds to independent sampling. This justifies the fact that, MTM using the
weight function w(x,y) ∝ π(y) is coined globally-balanced (GB) MTM. Analogously, the
ideal scheme using the proposal PDF Qw,σ(x,y) ∝ π(y) qσ(x,y) will be referred to as the
globally-balanced (GB) ideal scheme.

The problem with using such a function w is that, in high dimensions, the scale pa-
rameter of typical MCMC algorithms is required to be small to avoid near-zero acceptance
probabilities, as indicated by the optimal-scaling theory (see, e.g., Bédard et al. (2012) in
the specific context of MTM). As σ → 0, using Qw,σ(x,y) ∝ π(y) qσ(x,y) leaves π2 in-
variant (without the MH correction), instead of π. In high dimensions, when σ is small,
there is thus a significant discrepancy between the proposal and target distributions, and
this causes the pathological behaviours of GB MTM mentioned previously.

Locally-balanced (LB) proposal distributions aim at correcting this discrepancy. Indeed,
by construction, LB proposal distributions leave π invariant (without the MH correction) in
the limiting situation where σ → 0, which is the regime in agreement with high-dimensional
settings. In our context, within ideal schemes, LB proposal distributions are such that
Qw,σ(x,y) ∝ g(π(y)/π(x)) qσ(x,y), where the balancing function g is a positive continuous
function such that g(x)/g(1/x) = x for x > 0. We thus propose to set the weight function
in MTM to w(x,y) = g(π(y)/π(x)) with g satisfying these conditions. Several functions
g satisfy these conditions (see, e.g., Zanella (2020), Sansone (2022) and Vogrinc et al.
(2023)). In this paper, we focus on two of them which have been thoroughly studied in
other contexts (Power and Goldman, 2019; Gagnon and Maire, 2020; Gagnon, 2021; Sun
et al., 2021; Hird et al., 2022; Liang et al., 2022; Livingstone and Zanella, 2022; Sun et al.,
2022b,a; Zhou and Smith, 2022), namely g(x) =

√
x and g(x) = x/(1 + x), the latter

yielding what is called the Barker proposal distribution in reference to Barker (1965)’s
acceptance-probability choice. The ideal scheme using the proposal PDF Qw,σ(x,y) ∝
g(π(y)/π(x)) qσ(x,y) with g satisfying the conditions above will thus be referred to as the
locally-balanced (LB) ideal scheme. This justifies the fact that, MTM using the weight
function w(x,y) ∝ g(π(y)/π(x)) with g satisfying the conditions above is coined locally-
balanced (LB) MTM.

LB MTM will be seen to not exhibit the pathological behaviours mentioned previously.
Also, LB MTM with g(x) =

√
x will be seen to have an advantage over that with the Barker

weight function in terms of convergence speed-ups. This advantage has been observed in
other contexts (Zhou and Smith, 2022). Significant convergence speed-ups with g(x) =

√
x

have also been observed for MTM in Chang et al. (2022). In stationarity, the performance
of LB MTM with g(x) =

√
x is similar to that with the Barker weight function. All that

suggests the following practical recommendation to MTM users: use LB weight functions,
and more specifically, g(x) =

√
x.

2.2 Convergence towards ideal schemes

To understand why the convergence of MTM towards the ideal scheme might hold, it is
useful to have a characterization of the distribution of a proposal sampled using MTM,
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that we denote by YJ with a capital J to represent that the choice among the candidates
for the proposal is random. This distribution is conditional on the current state of the
Markov chain x, and we use Ex to denote an expectation with respect to the associated
PDF that depends on x. The PDF is based on the product measure

∏N
i=1 qσ(x,yi) dy1:N ,

where y1:N := (y1, . . . ,yN ). That characterization uses that Y1, . . . ,YN are conditionally
independent and identically distributed (IID) given x.

Proposition 1 Given a current state x and function h, a proposal YJ sampled using MTM
is such that

Ex[h(YJ)] =

∫
h(y1)

w(x,y1)
1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi) dy1:N .

The expectation in Proposition 1 is to be compared with that of h(Y) with Y ∼ Qw,σ(x, · ),
given a current state x, that can be written as

Ex[h(Y)] =

∫
h(y1)

w(x,y1)∫
w(x,y1) qσ(x,y1) dy1

N∏
i=1

qσ(x,yi) dy1:N . (2)

It is apparent that the expectation in Proposition 1 is an approximation that in (2) (and that
one sampling scheme approximates the other), and that, presumably, the approximation
becomes more accurate as N increases.

We now present a formal result about the weak convergence of Markov chains simulated
by MTM towards those simulated by the ideal sampling scheme, under some conditions.
Let us denote a Markov chain simulated by MTM as {XN (m) : m ∈ N} and that simulated
by the corresponding ideal algorithm by {Xideal(m) : m ∈ N}. Also, let us denote the
Euclidean norm of a vector x by ‖x‖.

Theorem 1 Assume that E[w(X,Y1)
4] < ∞ and E[w(X,Y1)

−4] < ∞ with X ∼ π and
Y1 | X ∼ qσ(X, · ). As N →∞,

1. given any state x, the total variation between the distribution of a proposal YJ sampled
using MTM and Qw,σ(x, · ) converges to 0 at a rate of 1/

√
N ;

2. if additionally

(a) π, Qw,σ( · ,y) and Qw,σ(y, · ) are continuous, for any y,

(b) for all x ∈ Rd, there exists an ε > 0 and an integrable function f(x, · ) such that
sup{ε∈Rd:‖ε‖≤ε}Qw,σ(x + ε,y) ≤ f(x,y) for all y ∈ Rd,

then {XN (m) : m ∈ N} converges weakly towards {Xideal(m) : m ∈ N} provided that
XN (0) ∼ π and Xideal(0) ∼ π.

This result indicates that MTM can be seen as an approximation to the ideal MH
scheme using Qw,σ as a proposal distribution. The latter will thus be considered instead of
the former for theoretical analyses in the next sections. The advantage of doing so is that
the ideal scheme samples only one candidate at each iteration and is thus easier to analyse.
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A refined version of Theorem 1 will be provided in Section 4.2; it allows to quantitatively
evaluate the discrepancy between the chains simulated by MTM and the ideal scheme.

We finish this section with a result indicating that Assumption (b) in part 2 of Theorem 1
is verified in great generality.

Proposition 2 Assume that π is upper bounded, qσ(x, · ) = N (x, σ2Id), and w(x,y) =
π(y)/π(x) or w(x,y) =

√
π(y)/π(x). Then, Assumption (b) in part 2 of Theorem 1 is

satisfied.

2.3 Locally-balanced MTM as a gradient-free alternative

An indirect connection can be established between MTM using g(x) =
√
x and MALA,

and between MTM using g(x) = x/(1 + x) and the MH sampler based on the Barker
proposal scheme of Livingstone and Zanella (2022). Recall that both MALA and the Barker
scheme are gradient-based MCMC algorithms which require that π is differentiable and that
∇ log π can be evaluated pointwise. Interestingly, the MALA proposal can be viewed as an
approximation to the ideal scheme using g(x) =

√
x, whereas the Barker proposal can be

viewed as an approximation to that using g(x) = x/(1 + x). Indeed, they both result from
an approximation of Qw,σ(x, · ) based on a first-order Taylor series expansion of log π:

Qw,σ(x,y ) ∝ g(elog π(y)−log π(x)) qσ(x,y) ≈ g(e(∇ log π(x))T (y−x)) qσ(x,y).

When g(x) =
√
x and qσ(x, · ) = N (x, σ2Id), normalizing the last expression gives exactly

the MALA proposal, while, when g(x) = x/(1 + x), it gives the Barker scheme (see, re-
spectively, Section 5 of Zanella (2020) and Section 3 of Livingstone and Zanella, 2022).
Thus, we can see MALA and the Barker proposal scheme as gradient-based approximations
of the same ideal schemes as those approximated by LB MTM samplers with g(x) =

√
x

and g(x) = x/(1 + x). The approximations used in MTM are different in several aspects.
First, they are stochastic, by opposition to deterministic as in the gradient-based methods.
Second, one has control over the approximations (through N). Last but not least, the
algorithms do not require to evaluate the gradient of log π, which is advantageous when
evaluating the gradient is either infeasible or computationally intensive.

GB MTM approximates an ideal scheme which does not correspond to any known first-
order method. A rich body of literature has shown that MALA and the MH sampler
with the Barker scheme behave quantitatively and qualitatively differently (in terms of
ergodicity measure or scaling-limit regime) to most zero-th order methods such as random-
walk Metropolis (see, e.g., Roberts and Rosenthal (1998), Bou-Rabee and Hairer (2013),
Dwivedi et al. (2018) and Livingstone and Zanella (2022)). It is thus important to study
whether LB MTM inherits some of those favourable properties, which cannot be expected
by GB MTM.

3. Performance during the convergence phase

In this section, we evaluate the performance during the convergence phase6 of MTM with the
different weight functions. We do this by analysing the acceptance probabilities in the tails

6. By convergence phase, often called burn-in in the MCMC literature, we mean the iterations until the
Markov chain simulated by MTM is close in distribution to π.
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in Section 3.1 and by empirically measuring the convergence time of adaptively tuned MTM
in Section 3.2. The adaptive tuning aims to represent how one would use and tune MTM
in practice. As mentioned previously, the acceptance probabilities are near-zero in the tails
with GB MTM, unless the step size σ is made extremely small, which causes convergence
issues in either case. Our analysis shows that these convergence issues do not arise with LB
MTM. Also, numerical results show that MTM with the Barker weight function has higher
acceptance probabilities than that with g(x) =

√
x. This advantage has been observed

in other contexts (Zanella, 2020; Livingstone and Zanella, 2022), and is attributed to the
boundedness of the function g(x) = x/(1+x). In the MTM context, it yields more stability
in the approximation of the ideal scheme. Even though the unboundedness of g(x) =√
x yields less stability, it leads to more persistent movement from the tails to the high-

probability region, which is shown in Section 3.2 to provide better convergence performance.

3.1 Acceptance probabilities in the tails

In this section, we analyse the behaviour of MTM when initialized in the tails by evaluating
the conditional expected acceptance probability, given an initial state x with ‖x‖ large,
where the expectation is with respect to the random variables involved in the proposal
mechanism. A low conditional expected acceptance probability implies that it is likely
that the chain gets stuck and that an issue arises in terms of convergence to the target
distribution as the algorithm progresses. The analysis rests upon a theoretical result about
the ideal scheme. The result is established under a specific and simple scenario: the target
density factorizes, and more precisely,

π(x) =
d∏
i=1

ϕ(xi), x := (x1, . . . , xd)
T ∈ Rd, (3)

and qσ(x, · ) = N (x, σ2Id), where ϕ is the PDF of a standard normal distribution. The
normal assumption and the factorization allow to make precise calculations and in particular
to establish that Qw,σ is a normal distribution when the weight function factorizes as well,
that is when using for instance w(x,y) = π(y)/π(x) or w(x,y) =

√
π(y)/π(x).

We acknowledge that the scenario limits the scope of the analysis. Note that, in Sec-
tion A.3, we provide a result which is less precise, but which holds under weaker assumptions.
With the result provided in Section A.3, we cannot conduct an analysis as thorough as that
performed below. The assumptions are essentially that U := − log π is strongly convex and
L-smooth, instead of assuming that the target density factorizes into a product of normal
densities. The factorization assumption has a long history in analysis of MCMC, especially
in the scaling-limit literature where it is a standard assumption (see, e.g., Roberts et al.
(1997), Roberts and Rosenthal (1998), Bédard (2007), Bédard et al. (2012), Durmus et al.
(2017) and Gagnon et al. (2019)). The factorization is an important structural limitation
which implies independence of the random variables. The normal assumption can be justi-
fied in Bayesian large-sample regimes where the models are regular enough7 (Schmon and
Gagnon, 2022), but it is an important limitation as well. We thus expect the results to be

7. Models that are regular enough are those which satisfy regularity conditions; see Schmon and Gagnon
(2022) for more details.
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informative at least when MTM is used to sample from a posterior distribution resulting
from a large data set (n� d) and a regular model, provided that the model parameters are
a posteriori weakly dependent. The same scenario will be considered for the scaling-limit
analysis in Section 4.

We now present the result in which we use the notation αideal for the acceptance prob-
ability in the ideal MH scheme.

Proposition 3 Consider a current state x and that Y ∼ Qw,σ(x, · ) with qσ(x, · ) = N (x,
σ2Id) and w(x,y) = π(y)/π(x). If the target distribution is defined as in (3),

Ex[αideal(x,Y)] ≤ exp

(
−‖x‖2 σ2

2((1 + σ2)2 − σ2)

)(
1− σ2

(1 + σ2)2

)−d/2
. (4)

In particular, for any σ and d, it holds that lim‖x‖→∞ Ex[αideal(x,Y)] = 0.

Proposition 3 highlights a pathological behaviour as most MCMC methods do not have
acceptance probabilities that are near zero when the current state is in the tails of the
target density. We obtained the corresponding upper bound for the ideal scheme with
w(x,y) =

√
π(y)/π(x) and it does not converge to 0. Of course, this does not guarantee

mathematically that the conditional expected acceptance probability of that scheme is not
near zero in the tails, but it indicates a significant difference. We also tried deriving other
upper bounds to see if they yield different results, but we did not obtain any that allows
to conclude otherwise. We provide below numerical results for both the ideal scheme and
MTM using w(x,y) =

√
π(y)/π(x) which corroborate those findings and suggest that the

acceptance probabilities do not converge to 0 as the current/initial state gets further and
further in the tails.

The result provided in Section A.3 essentially states that lim‖x‖→∞ Ex[αideal(x,Y)] = 0,
for any σ and d, when U := − log π is strongly convex and L-smooth. While being inter-
esting, it does not provide an explicit upper bound on the conditional expected acceptance
probability as in (4) and does not allow for a precise characterization in high-dimensional
regimes where d→∞. Given that we are interested in such regimes, we study the implica-
tions of (4) when d→∞, with x and σ functions of d. Such a study allows to characterize
the relation between d and the location of x in the tails in the situations where there are
convergence issues with the GB ideal scheme and MTM. We highlight a dependence on d
of x,Y, π and σ by denoting these for the rest of the section by xd,Yd, πd and σd. For
the analysis, we consider that σ2d = `2/d and ‖xd‖ = dκ with κ a positive constant; setting
σ2d = `2/d will be seen to be an effective way of scaling σ with d. With these choices, the
conclusion is the following: the conditional expected acceptance probability of the GB ideal
scheme (4) converges to 0 when κ > 1/2, implying that it is sufficient for ‖xd‖ to grow
with d at any rate faster than

√
d to lead to near-zero acceptance probabilities. We highlight

that, with a target distribution such as that defined in (3), ‖xd‖ = dκ with κ around 0.5
is not even far in the tails of the density as ‖Xd‖2 has a chi-squared distribution with a
mean of d and a standard-deviation of

√
2d. This implies that even a random initialization

of GB MTM using a distribution slightly different from the target may lead to issues of
convergence to the target distribution as the algorithm progresses.

10
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We present in Figures 1 and 2 numerical results which complete the analysis. In both
figures, we provide conditional expected acceptance probabilities as a function of κ in the
situation where the target distribution is defined as in (3), qσd(xd, · ) = N (xd, σ

2
dId) with

` = 2.38 and the current/initial state xd is set to xd = (dκ−1/2, . . . , dκ−1/2), ensuring that
‖xd‖ = dκ. The value ` = 2.38 will be seen in Section 4.1 to be optimal for the GB ideal
scheme in a high-dimensional regime. The expectations are approximated using independent
Monte Carlo sampling. The approximations are based on samples of size 1,000,000.

The difference between Figure 1 and Figure 2 is that in the former the results are for the
ideal schemes, whereas in the latter they are for MTM. The results in Figure 2 are for d = 50;
we observed similar results when d = 200. The results for GB samplers are consistent with
the theoretical result about the convergence to 0 of the expectation in (4) when κ > 1/2,
with conditional expected acceptance probabilities close to 1 for κ smaller than 0.5 (for
moderate to high dimensions, and moderate values of N for MTM), followed by a sharp
drop around κ = 0.5. In Figure 1 (a), we notice that the conditional expected acceptance
probability converges to 0 even when d = 5 (thus in the case where the high-dimensional
regime is not attained); this is because ` is not large enough to yield an algorithm that
performs approximately IID sampling (recall the discussion towards the end of Section 2),
suggesting that the conclusion of Proposition 3 holds.

The results in Figure 1 (b) and Figure 2 (b)-(c) suggest that LB schemes do not have is-
sues of convergence to the target distribution when initialized in the tails. They also suggest
that using the Barker weight function in MTM leads to higher acceptance probabilities. As
mentioned, we attribute the difference to the fact that, with MTM, the normalizing constant
of Qw,σ(x, · ) needs to be approximated and the boundedness of the function g(x) = x/(1+x)
yields more stability in the approximation.
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(a) Ideal scheme w. w(xd,yd) = πd(yd)/πd(xd) (b) Ideal scheme w. w(xd,yd) =
√
πd(yd)/πd(xd)

Figure 1: Conditional expected acceptance probability as a function of κ when xd =
(dκ−1/2, . . . , dκ−1/2) and ` = 2.38, for several values of d and: (a) the ideal scheme with
w(xd,yd) = πd(yd)/πd(xd), and (b) the ideal scheme with w(xd,yd) =

√
πd(yd)/πd(xd).

3.2 Convergence to stationarity: simulations with adaptive MCMC

In this section, we perform numerical simulations with adaptive MTM schemes, where the
scale parameter σ is tuned on the fly while the MTM algorithm progresses. Such simulations
allow to: (i) reduce the sensitivity of the simulation set-up to the choice of a specific value
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(a) MTM w. w(xd,yd) =
πd(yd)
πd(xd)

(b) MTM w. w(xd,yd) =
√
πd(yd)
πd(xd)

(c) MTM w. w(xd,yd) =

πd(yd)

πd(xd)

1+
πd(yd)

πd(xd)

Figure 2: Conditional expected acceptance probability as a function of κ when xd =
(dκ−1/2, . . . , dκ−1/2), ` = 2.38 and d = 50, for several values of N and: (a) MTM with
w(xd,yd) = πd(yd)/πd(xd), (b) MTM with w(xd,yd) =

√
πd(yd)/πd(xd), and (c) MTM

with w(xd,yd) = (πd(yd)/πd(xd))/(1 + πd(yd)/πd(xd)).

for σ; (ii) assess the impact of the choice of weight function in a more advanced and realistic
MTM implementation (arguably closer to one that a careful practitioner would use).

The study in this section is non-asymptotic; the mathematical objects like the target
distribution, the scale parameter and the states are thus denoted without a subscript d,
that is π, σ and x. Algorithm 4 found in Section 5 of Andrieu and Thoms (2008) is used to
adaptively tune σ. The algorithm targets an acceptance rate to adapt tuning parameters.
The targeted acceptance rates are 25% and 50% for GB and LB MTM, respectively. These
targets are chosen according to theoretical and empirical results presented in the next
sections. Algorithm 4 of Andrieu and Thoms (2008) also uses a learning rate γ(m), which
here is set to m−0.6, m representing the iteration index. A power of −0.6 allows to reach a
good balance between fast adaptation and stability in this example. We experimented with
different power values and obtained similar conclusions.

The results are presented in Figures 3 and 4. Figure 3 displays trace plots for GB
MTM and LB MTM with qσ(x, · ) = N (x, σ2Id) and target distribution as in (3) with
d = 50. Trace plots of ‖X(m)‖ are presented, with a log-scale on the x-axis, in the sit-
uation where the algorithms are initialized from x = (10, . . . , 10), which corresponds to
x = (dκ−1/2, . . . , dκ−1/2) with κ ≈ 1.09. We observe the pathological behaviour of GB
MTM described before: increasing N deteriorates the convergence performance up to hav-
ing to set σ to near-zero values to achieve non-negligible acceptance rate when N equals
50 or 500. We observe the opposite and desirable results for LB MTM, whose convergence
speed increases with N . To provide a more quantitative picture, Figure 4 shows the conver-
gence times for the same algorithms, target distribution and starting state as in Figure 3.
The results are obtained from 100 independent runs for each algorithm using different val-
ues of N . Here, the convergence time is defined as the first time the chain reaches the 95th
percentile of ‖X‖ under the target distribution. Figure 4 also presents analogous results
for a different target distribution, namely a 50-dimensional product of standard Laplace
distributions. The results are consistent with Figure 3, with LB MTM providing a smooth
and regular improvement in performance with N , unlike GB MTM. Also, it is interesting
to note the difference between the LB MTM with the Barker weight function and that with
g(x) =

√
x. The performance of the former stabilizes quicker as N increases, and do not

reach to same level of improvement as the latter.
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(b) MTM w. w(x,y) =
√
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(c) MTM w. w(x,y) = π(y)/π(x)
1+π(y)/π(x)

Figure 3: Trace plots of the Euclidean norm of the state when d = 50, the scale parameter is
adaptively tuned and the initial state is x = (10, . . . , 10), for several values of N and: (a)
GB MTM, (b) LB MTM with w(x,y) =

√
π(y)/π(x), and (c) LB MTM with w(x,y) =

(π(y)/π(x))/(1 + π(y)/π(x)); the scale on the x-axis is logarithmic.
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(a) MTM w. w(x,y) = π(y)
π(x)

(b) MTM w. w(x,y) =
√
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(c) MTM w. w(x,y) = π(y)/π(x)
1+π(y)/π(x)

Figure 4: Convergence time as a function of N when d = 50, the scale parameter is adaptively
tuned and the initial state is x = (10, . . . , 10), for several values of N and: (a) MTM
with w(x,y) = π(y)/π(x), (b) MTM with w(x,y) =

√
π(y)/π(x), and (c) MTM with

w(x,y) = (π(y)/π(x))/(1 + π(y)/π(x)); on the first row, the target is a 50-dimensional
standard normal distribution, whereas it is a 50-dimensional standard Laplace distribu-
tion on the second row.

Based on all the observations made in this section, we provide a recommendation for an
adaptive implementation of LB MTM.

1. Set g(x) =
√
x.

2. Set N equal to the number of available cores for parallel computing.

3. Initialize the step size as σ = `/
√
d with ` = 2.38.
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4. Run MTM with adaptive tuning of σ as in Algorithm 4 of Andrieu and Thoms (2008),
with γ(m) = m−0.6 and a targeted acceptance rate of 50%.

4. Performance at stationarity

In this section, we characterize the high-dimensional behaviour of MTM algorithms after
they have reached stationarity. To this end, we first establish in Section 4.1 the weak con-
vergence of a transformation of the Markov chains produced by ideal MH schemes towards
Langevin diffusions, each started in stationarity, as d → ∞. In Section 4.2, we bridge the
gap between the MTM algorithms and diffusion processes by providing conditions about the
scaling of N with d ensuring the asymptotic equivalence of MTM and ideal schemes. We
finish with numerical experiments in Section 4.3 that corroborate the findings of Sections
4.1 and 4.2.

It is worth mentioning that a scaling-limit analysis of MTM was conducted in Bédard
et al. (2012), but the analysis in that paper is quite different from that conducted here. First,
in Bédard et al. (2012), MTM is not seen as an approximation to an ideal scheme because N
is considered fixed; a weak convergence of a transformation of the Markov chains produced
by MTM towards Langevin diffusions is directly obtained as d → ∞. The asymptotic
regime considered here is that where the number of candidates N increases with d, whereas
the asymptotic regime in Bédard et al. (2012) can be thought of as the situation where N
is small relatively to d. Another difference is that Bédard et al. (2012) considers only GB
MTM, while we study also LB MTM.

Because of the nature of the analysis conducted in Sections 4.1 and 4.2, we, as for the
asymptotic analysis in Section 3.1, highlight a dependency on d of the target distribution,
the scale parameter, the number of candidates, and so on, by denoting them πd, σd, Nd,
etc.

4.1 Scaling limits of ideal schemes

For the analysis, we consider the same scenario as in Section 3.1; in particular, we consider
that the target distribution is defined as in (3). Also, for the analysis, we set σd = `/dτ in
qσd(xd, · ) = N (xd, σ

2
dId), with ` being a positive tuning parameter and τ a positive constant

characterizing the scalability of the algorithm with respect to the dimension (the smaller is
τ , the better is the scalability with respect to d).

Before presenting the scaling-limit result, we introduce required notation. We use Φ
to denote the cumulative distribution function of the standard normal distribution. We
use {Xd,ideal(m) : m ∈ N} to denote a Markov chain simulated by an ideal MH scheme
using Qw,σd(xd, · ) for proposal distribution, and define a re-scaled continuous-time version
{Zd,ideal(t) : t ≥ 0} using:

Zd,ideal(t) := Xd,ideal(bd2τ tc), (5)

with b · c being the floor function. A scaling limit consists in proving that the first component
of {Zd,ideal(t) : t ≥ 0}, denoted by {Zd,ideal(t) : t ≥ 0}, converges weakly to {Z(t) : t ≥ 0},
a Langevin diffusion.

We are now ready to present the scaling-limit result. It is about the GB ideal scheme
and the LB ideal scheme with w(xd,yd) =

√
πd(yd)/πd(xd).
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Theorem 2 Assume that πd is as in (3) and that the proposal distribution in a MH al-
gorithm is Qw,σd(xd, · ) with qσd(xd, · ) = N (xd, σ

2
dId) and σd = `/dτ . Assume also that

Xd,ideal(0) ∼ πd and that Zd,ideal(t) for t ≥ 0 is defined as in (7). Then, as d → ∞,
{Zd,ideal(t) : t ≥ 0} converges weakly towards {Z(t) : t ≥ 0}, a Langevin diffusion such that
Z(0) ∼ N (0, 1) and

dZ(t) = `2(ϑw,τ (`)/2)(logϕ(Z(t)))′ dt+
√
`2ϑw,τ (`) dB(t),

with {B(t) : t ≥ 0} being a standard Brownian motion and ϑw,τ being defined as follows: if
w(xd,yd) =

√
πd(yd)/πd(xd),

ϑw,τ (`) =

{
2Φ(−`3/23) if τ = 1/6,

1 if τ > 1/6;

if w(xd,yd) = πd(yd)/πd(xd),

ϑw,τ (`) =

{
2Φ(−`/2) if τ = 1/2,

1 if τ > 1/2.

To establish such a result, it is crucial that the expected acceptance probability (in
stationarity) E[αideal(Xd,Yd)] (with Xd ∼ πd) converges towards a non-null function of
` that is independent of d; the function ϑw,τ (`) in Theorem 2 is precisely this function.
Theorem 2 thus indicates that τ ≥ 1/2 in the GB ideal scheme allows such a convergence,
whereas τ ≥ 1/6 in the LB ideal scheme is sufficient. This implies that the LB ideal scheme
has a better scaling with the dimension than the GB ideal scheme.

We present numerical results in Figure 5 of E[αideal(Xd,Yd)] as a function of d. These
numerical results allow to show that E[αideal(Xd,Yd)] converges to 0 when w(xd,yd) =√
πd(yd)/πd(xd) and τ < 1/6 and when w(xd,yd) = πd(yd)/πd(xd) and τ < 1/2. The ex-

pectations are approximated using independent Monte Carlo sampling; the approximations
are based on samples of size 1,000,000. We stress that there is an important difference be-
tween E[αideal(Xd,Yd)] and what we called the conditional expected acceptance probability
in Section 3.1: E[αideal(Xd,Yd)] is the unconditional expectation with Xd ∼ πd, whereas
the conditional expected acceptance probability in Section 3.1 is the conditional expectation
given a current state xd. We highlight the difference by referring to E[αideal(Xd,Yd)] as
(simply) the expected acceptance probability.

We finish this section with a discussion about the tuning of the parameter `. For this
part, we analyse another characteristic of the limiting stochastic process in Theorem 2. This
stochastic process can be seen as a function of another process:

Z(t) = V (`2ϑw,τ (`)t), (6)

where {V (t) : t ≥ 0} is the Langevin diffusion with a stochastic differential equation given
by

dV (t) = (logϕ(V (t)))′/2× dt+ dB(t).

The term `2ϑw,τ (`) in (6) is sometimes referred to as the speed measure of {Z(t) : t ≥ 0}.
From a MCMC perspective, the largest speed is best. Indeed, the stationary integrated
autocorrelation time of any function h of the diffusion is proportional to the inverse of the
diffusion speed. The following corollary presents the largest speeds and tuning procedures.
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√
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Figure 5: Expected acceptance probabilities as a function of d for: (a) the ideal scheme with
w(xd,yd) = πd(yd)/πd(xd), ` = 1, and τ = 2/5, τ = 1/2 and τ = 3/5; (b) the ideal
scheme with w(xd,yd) =

√
πd(yd)/πd(xd), ` = 22/3, and τ = 2/15, τ = 1/6 and τ = 2/5;

the limiting expected acceptance probabilities for τ = 1/2 and τ = 1/6 are also presented,
in the GB and LB cases, respectively; with the values used for `, the limits are the same;
the values for τ other than 1/2 and 1/6 have been obtained by increasing and decreasing
these by 20%.

Corollary 1 The speed measure when w(xd,yd) =
√
πd(yd)/πd(xd) and τ = 1/6, given

by 2`2Φ(−`3/23), is maximized at `∗ = 1.650 (to three decimal places), which yields a
limiting expected acceptance probability of 2Φ(−(`∗)3/23) = 0.574 (to three decimal places).
The speed measure when w(xd,yd) = πd(yd)/πd(xd) and τ = 1/2, given by 2`2Φ(−`/2),
is maximized at `∗∗ = 2.381 (to three decimal places), which yields a limiting expected
acceptance probability of 2Φ(−`∗∗/2) = 0.234 (to three decimal places).

This result highlights that: (i) the (asymptotically) optimal expected acceptance prob-
ability for the GB ideal scheme is the same as that for random-walk Metropolis, with the
same maximum speed for the limiting diffusion (Roberts et al., 1997); (ii) the (asymptoti-
cally) optimal expected acceptance probability for the LB ideal scheme is the same as that
for MALA, with the same maximum speed for the limiting diffusion (Roberts and Rosen-
thal, 1998). The latter is expected as MALA can be viewed as an approximation to the
ideal scheme with w(xd,yd) =

√
πd(yd)/πd(xd) (recall the discussion in Section 2.3), and

the approximation is asymptotically exact if the step size in MALA diminishes adequately
with d, as d → ∞. The results in Corollary 1 can be obtained from Roberts et al. (1997)
and Roberts and Rosenthal (1998).

Presenting the largest speed and a tuning procedure for the ideal scheme with w(xd,yd) =√
πd(yd)/πd(xd) and τ = 1/6 in Corollary 1 is interesting as it allows to make that con-

nection with MALA, but we will see in Section 4.2 that in order to take advantage of
such a value for τ in MTM, one would need to use computational resource well beyond
what is reasonable and realistic. We will see that, in MTM, it is more reasonable to use
values around τ = 1/2. With τ = 1/2, the limiting diffusion of the ideal scheme with
w(xd,yd) =

√
πd(yd)/πd(xd) has a speed measure given by `2, which can be compared

with that of the limiting diffusion of the ideal scheme with w(xd,yd) = πd(yd)/πd(xd) in
Corollary 1, given by 2`2Φ(−`/2), because both schemes use the same form for the scale
parameter; see Figure 6 for a comparison of the speed measures.
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Figure 6: Speed measures as a function of ` of the limiting diffusions of the GB and LB ideal
schemes when τ = 1/2; the red point indicates the maximum speed when using the GB
weight function.

Figure 6 suggests that MTM using w(xd,yd) =
√
πd(yd)/πd(xd) is at least as good as

MTM using w(xd,yd) = πd(yd)/πd(xd), in high dimensions if it approximates well the ideal
scheme; this is observed empirically in Section 4.3. Figure 6 also suggests to set ` in MTM
with w(xd,yd) =

√
πd(yd)/πd(xd) as large as possible. However, in practice when sampling

from target distributions having high but fixed dimensions d, ` has to be constrained to
small values compared to d to reflect that it is held constant and thus does not grow with
d in our asymptotic analysis. In our numerical experiments in Section 4.3, we observed
that in moderate to high dimensions, with moderate to large values for Nd, optimally tuned
MTM using w(xd,yd) = g(πd(yd)/πd(xd)) with g(x) =

√
x and g(x) = x/(1 + x) have

acceptance rates in a range of 50% to 60%. We thus recommend to users to start their
tuning procedures with a value of ` yielding an acceptance rate in that range (if they do
not tune ` adaptively as in Section 3.2). Note that the algorithms in Section 4.3 were tuned
using expected squared jumping distance (ESJD).

4.2 Characterizing the approximation of ideal schemes by MTM

In this section, we provide conditions on Nd under which MTM with w(xd,yd) = πd(yd)
πd(xd)

and MTM with w(xd,yd) =
√
πd(yd)/πd(xd) are asymptotically equivalent to their ideal

counterparts as d → ∞. The sense in which they are asymptotically equivalent implies a
convergence of transformations of the Markov chains simulated by these MTM algorithms
towards diffusions. We observed in the proof of Theorem 1 that, for an MTM algorithm
to be asymptotically equivalent to its ideal counterpart, it is sufficient that: (i) the weight
normalization in the proposal distribution of YJ in MTM be asymptotically equivalent to
the normalizing constant of Qw,σd (recall Proposition 1 and (2)), and (ii) the acceptance
probability in MTM be asymptotically equivalent to that in the ideal scheme. We present
below a result stating conditions on Nd under which this holds. The result is established
under the same scenario as in Section 4.1 (the target distribution is defined as in (3) and
qσd(xd, · ) = N (xd, σ

2
dId) with σd = `/dτ ).

Before presenting the result, we introduce required notation. We use {Xd,MTM(m) :
m ∈ N} to denote a Markov chain simulated by a MTM algorithm, and define a re-scaled
continuous-time version {Zd,MTM(t) : t ≥ 0} using:

Zd,MTM(t) := Xd,MTM(bd2τ tc). (7)

We use {Zd,MTM(t) : t ≥ 0} to denote the first component of {Zd,MTM(t) : t ≥ 0}.
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We are now ready to present the result. It is about GB MTM and LB MTM with
w(xd,yd) =

√
πd(yd)/πd(xd).

Theorem 3 Assume that πd is as in (3) and that qσd(xd, · ) = N (xd, σ
2
dId) with σd =

`/dτ . Let Y1, . . . ,YNd be Nd conditionally independent random variables given Xd, each
distributed as Yi | Xd ∼ qσd(Xd, · ) with Xd ∼ πd. Let YJ be a proposal sampled using
MTM. Then, there exists a positive integer d0 such that for any d ≥ d0,

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)
1
Nd

∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]
≤ d2τ

N
1/2
d

%1(d),

and

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d),

whenever w(xd,yd) =
√
πd(yd)/πd(xd) or w(xd,yd) = πd(yd)/πd(xd), %1 and %2 being

functions of d that are explicitly defined in the proof. If τ ≥ 1/2, %1(d) and %2(d) converge
to positive constants as d→∞; Nd = d4τ(1+ρ) with ρ being any positive constant makes the
expectations converge to 0. If τ < 1/2, %1(d) and %2(d) grows with d and Nd = (1+ν)d with
ν being any positive constant makes the expectations converge to 0. When these expectations
converge to 0, {Zd,MTM(t) : t ≥ 0} converges weakly towards the same Langevin diffusion
{Z(t) : t ≥ 0} as in Theorem 2, under the same conditions.

Theorem 3 indicates that, if one wanted to use a larger step size with τ = 1/6, a
sufficient condition for MTM with w(xd,yd) =

√
πd(yd)/πd(xd) to approximates well its

ideal counterpart is to scale Nd exponentially with d. However, using such an enormous
number of candidates is computationally prohibitive. When τ = 1/2, Theorem 3 indi-
cates that scaling Nd quadratically (essentially) with d is sufficient for both MTM with
w(xd,yd) =

√
πd(yd)/πd(xd) and MTM with w(xd,yd) = πd(yd)/πd(xd) to approximate

well their ideal counterparts. We note that these are only sufficient conditions, rather than
necessary ones, and that the implied scalings may not be tight. In particular, taking Nd less
than quadratic in d may be enough when τ = 1/2 and in general more research is needed to
establish optimal ways of scaling Nd with d. Nonetheless, the result suggests that, in high
dimensions, LB MTM schemes will struggle to approximate their ideal counterparts when
an aggressive step size with τ = 1/6 is used. The numerical results in Section 4.3 comple-
ment this analysis: they show that in moderately high dimensions and with a moderately
large number of candidates, optimally tuned MTM with w(xd,yd) =

√
πd(yd)/πd(xd) and

optimally tuned MTM with w(xd,yd) = πd(yd)/πd(xd) have similar performance beyond
the burn-in period, showing that MTM with w(xd,yd) =

√
πd(yd)/πd(xd) is not able to

take advantage of a larger step size because with such a step size it does not approximate
well the ideal scheme and does not have a good performance. This is in contrast with the
results of Section 3 (e.g., Figures 3 and 4) where it is shown that even Nd � d is sufficient
to yield a significant improvement in terms of convergence speed.
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4.3 Numerical experiments

In this section, we evaluate the empirical performance in stationarity of GB MTM and
LB MTM under an non-asymptotic framework; the mathematical objects like the target
distribution, the scale parameter and the number of candidates are thus denoted without
a subscript d, that is π, σ and N . As previously, two LB MTM algorithms are evaluated:
both use a weight function given by w(x,y) = g(π(y)/π(x)); one uses g(x) =

√
x, and the

other one, g(x) = x/(1 + x). The performance is evaluated using the Monte Carlo estimate
of ESJD in stationarity, the latter being defined as

ESJD := E
[
‖XMTM(m+ 1)−XMTM(m)‖2

]
= E

[
‖YJ −X‖2α(X,YJ)

]
,

where X ∼ π and YJ is sampled using the MTM mechanism. The performance evaluation
is conducted under the same scenario as previously: the target distribution is defined as
in (3), d = 50, and qσ(x, · ) = N (x, σ2Id) with σ = `/

√
d. The results have been observed

to be similar when the target is still a normal distribution but with components having
different marginal variances and in higher dimensions. Note that in the scenario considered
here, ESJD can be approximated efficiently using independent Monte Carlo sampling. The
approximations are based on samples of size 100,000.

In Figure 7, we present results of ESJD as a function of N , for ` fixed, while in Figure 8,
results of ESJD as a function of ` are presented, for several values ofN . The value of ` used in
Figure 7 corresponds to that which maximizes ESJD when N = 5; the same value of ` = 3.20
is optimal for all algorithms (at least according to our grid search). The results in Figures 7
and 8 unveil that when N is small, all algorithms are essentially equivalent in stationarity,
but they also unveil another problem with GB MTM. The algorithm behaviour changes
drastically as N increases, to the extend that a performance reduction may be observed
while keeping ` fixed. This is counter-intuitive and may be confusing to users that may
diminish the value of ` to compensate, while the opposite is desirable. That pathological
behaviour is not exhibited by LB MTM algorithms, which behave as one would expect, with
a performance that increases monotonically with N , while keeping ` fixed. The results in
Figure 8 also allow to notice that if a user manages to optimally tune GB MTM, then it is
not significantly outperformed in stationarity by LB MTM for reasonable values of N , as
mentioned previously.
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Figure 7: ESJD as a function of N when d = 50, ` = 3.20 for MTM with w(x,y) = π(y)/π(x),
MTM with w(x,y) =

√
π(y)/π(x), and MTM with w(x,y) = (π(y)/π(x))/(1 +

π(y)/π(x)).
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Figure 8: ESJD as a function of ` when d = 50, for several values of N and: (a) MTM with
w(x,y) = π(y)/π(x), (b) MTM with w(x,y) =

√
π(y)/π(x), and (c) MTM with

w(x,y) = (π(y)/π(x))/(1 + π(y)/π(x)).

5. Application of MTM for Bayesian inference in immunotherapy

We study in this section the application of MTM as an inference solution in a real-world
context of immunotherapy in precision medicine involving a model with a likelihood function
that is expensive to evaluate. The context is described in Section 5.1, the data and the model
used to analyse them are presented in Section 5.2, and the application of MTM algorithms
is studied in Section 5.3. Our study suggests that the scope of the results (empirical and
theoretical) of the previous sections about GB MTM and LB MTM extends beyond the
simple contexts in which they were derived. Note that in this section, we adopt a notation
which is consistent with typical Bayesian-statistics contexts; it is thus different from that
adopted in the other sections.

5.1 Context

Precision medicine is an innovative approach of care whereby patients are subject to per-
sonalized treatment strategies that take into account their personal data (genetics, lifestyle,
health history, etc.). In Jenner et al. (2021), the authors study the effect of such personal-
ized treatments on advanced-stage cancer patients based on cancer vaccines and oncolytic
immunotherapy. Oncolytic viruses such as vesicular stomatitis virus (VSV) and vaccinia
virus (VV) have the potential to destroy tumor cells and to induce a systemic anti-tumour
immune response and, as such, can lead to what is commonly referred to as virotherapy.
At the moment, several related open questions form a very active strand of research. For
instance, one would like to assess the potential benefits offered by combining different on-
colytic viruses or the use of virus enhancers. Even though it is not restricted to cancer
treatments, being able to find the optimal treatment schedule for a given patient is a cen-
tral question in precision medicine. It is believed that, provided that these questions can
be addressed, oncolytic virotherapy will form a major breakthrough in cancer treatment.
Statistical modelling and Bayesian inference represent a way to help answering those ques-
tions. The reliability and efficiency of the numerical methods leading to the inference is
thus of crucial importance. In Section 5.3, we evaluate the performance of different MTM
algorithms.
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5.2 Data and model

In practice, data are collected from a cohort of K advanced-stage cancer patients that
are examined at T time points. At each time point t ∈ {1, . . . , T}, the state of patient
k ∈ {1, . . . ,K} is summarized through statistics yk(t) ∈ Rm1 , with m1 ∈ N. These statis-
tics represent the variables of interest. Covariate data points xk ∈ Rm2 with m2 ∈ N,
independent of time but associated to a patient, are also collected. Each patient is assigned
a personalized treatment schedule rk which is considered as a data point from a categorical
variable. The covariate data points and the personalized treatment schedules are considered
to be fixed and known, in contrast to yk(t) which is assumed in a statistical model to be a
realization of a random variable. The assumed statistical model is a forward model :

Yk(t) = ŷ(t,θ,xk, rk) + σ εk(t) , (8)

where ŷ(t,θ,xk, rk) is the output of a dynamical system proposed in Jenner et al. (2021) and
described below, σ > 0 is a scale parameter, and ε1(1), . . . , ε1(T ), . . . , εK(1), . . . , εK(T ) ∈
Rm1 are random standardized errors. The scale parameter is considered here fixed and
known to simplify. The unknown parameter is θ ∈ Rd with d = 14. We assume that
εk(t) ∼ N (0, Im1), t = 1, . . . , T and k = 1, . . . ,K, are IID random variables independent of
θ, which is a common assumption in the literature.

The output ŷ(t,θ,xk, rk) is produced given (t,θ,xk, rk) from a discretized version of
the numerical solution of a system of time-delay differential equations (DDE):

dyk(t)

dt
= Φθ(t,yk(t),y

−
k (t),xk, rk) , (9)

where Φθ is a differential operator, parameterized by θ. The notation y−k (t) refers to
{yk(t′) , t′ < t}. Time-delay differential equations are commonly used to model dynamical
systems of interest in fields such as epidemiology and demography. More details on the
operator Φθ used can be found in Jenner et al. (2021). In particular, the parameter θ
(see Table TS3 in Jenner et al. (2021)) consists essentially of a logarithmic transformation
of biological rates such as rates at which certain cell cycles occur, infection rates of VV
and VSV, etc. It is important to stress that (9) cannot be solved exactly but that a
computationally-intensive numerical solver (which requires solving a system of intermediate
ordinary differential equations obtained by the so-called linear chain technique) exists and
is made available in Jenner et al. (2021). This solver needs to run at each evaluation of the
likelihood function.

The work of Jenner et al. (2021) is in a context of optimization of treatment schedule, and
is based on a virtual cohort. The virtual patients are created from: 1) simulated covariate
data points xk with summary statistics similar to real cohorts, 2) a treatment schedule rk
that is assigned to each virtual patient, and 3) outputs ŷ(t,θ,xk, rk) resulting from the
numerical solution of (9). The parameter θ used to produce the outputs ŷ(t,θ,xk, rk) is
set to a value θ∗ based on expert opinion. Here the problem that we consider is that of
numerical estimation of the unknown parameter θ in the model (8) based on a data set.

Our data set has been simulated from a virtual cohort (generated as in Jenner et al.
(2021)) that is then fed into the model defined in (8). The simulated data set consists of
a virtual cohort of K = 10 patients, where each patient is examined once per week for
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T = 20 weeks. At each examination, m1 = 4 statistics are measured; they are described in
Figure 9. These data were simulated using the expert opinion θ∗. Having knowledge about
the parameter (that is considered unknown in the Bayesian analysis) helps to evaluate the
reliability of the different MTM algorithms.
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Figure 9: Data {yk(t)} := {yt,k[1], yt,k[2], yt,k[3], yt,k[4]} for the cohort, simulated using (8);
yt,k[1] is related to the number of quiescent tumor cells at time t for individual
k, yt,k[2] is related to the number of G1-phase tumour cell population, yt,k[3] is
related to the total infected cell population, yt,k[4] is related to the total virus
load.

5.3 Application study of MTM for Bayesian inference

The goal in practice is to perform Bayesian inference for θ, given the data related to the
cohort of patients. We here discuss how one can proceed and present a study of the reliability
of MTM algorithms.

A non-informative truncated Gaussian prior distribution is assigned to θ. The trunca-
tion stems from that the DDE solver is numerically unstable when the parameter value is
beyond a compact set Θ, which includes θ∗. It can be readily checked that the posterior
distribution verifies

π(θ | {yk(t)}) ∝ π̄(θ | {yk(t)}) := exp

− 1

2σ2

∑
t,k

(yk(t)− ŷ(t,θ,xk, rk))2 − 1

2
‖θ − µ‖2

1θ∈Θ ,

where π̄ is the unnormalized version of the posterior density and µ ∈ Rd is a prior hyper-
parameter. Because of the terms ŷ(t,θ,xk, rk), posterior expectations cannot be derived
in closed form for non-trivial observables and IID sampling from π is virtually impossible.
Moreover, assuming that π is differentiable, the gradient of π is not available explicitly
and is computationally expensive to approximate. This makes standard gradient-based
methods, such as MALA or Hamiltonian Monte Carlo, computationally intensive and not
straightforward to implement. Also, the posterior distribution exhibits an irregular and
complex behaviour; see, e.g., the strong correlations and truncation effect in Figure 10.
This makes posterior-approximation methods requiring a tractable approximation to the
posterior distribution, such as importance sampling, independent MH, as well as default
variational methods, highly non-trivial to apply successfully.
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Figure 10: Pairwise marginal samples from π.

To perform Bayesian inference in such a situation, one may thus naturally turn to
a random-walk Metropolis algorithm. If parallel computing is available, LB MTM with
w(x,y) =

√
π(y)/π(x) is an appealing alternative as it can exploit parallel computing

to speed up convergence. The non-trivial shape of the posterior distribution provides an
interesting test case for the results derived in the previous sections with regular and isotropic
target distributions. Here, we compare MH with LB MTM and GB MTM using different
values of N . All samplers use the proposal qσ(x, · ) = N (x, σ2Id), with σ = `/

√
d, and the

parameter ` is adaptively tuned as in Section 3.2.

Figure 11 shows the convergence to stationarity of the different algorithms, monitored
through the log-posterior-density value (up to a normalizing constant). The right panel of
Figure 11 displays the evolution of the step-size parameter {`m} across MCMC iterations.
We clearly observe the pathology of GB MTM described previously, with a performance
that deteriorates as N increases. In particular, it can be seen that GB MTM requires
extremely small step sizes to navigate the low density regions (see Figure 11, right panel).

LB MTM instead exhibits a convergence speed that increases with N , as one expects. In
particular, in this example, LB MTM with N = 20 converges significantly faster compared
to N = 1, roughly by a factor of 7 based on a quantitative comparison of the trace plots
in Figure 11, left panel. With our parallel implementation8, the computational cost per
iteration of MTM with N = 20 is about 3.5 times higher than MH, resulting in an effective
reduction of wall-clock time required for burn-in by a factor of roughly 2. Note that the
actual improvement ratio can depend heavily on the model and parallel implementation
used, with the improvement typically larger for higher-dimensional problems.

6. Discussion

In this paper, we revisited the promises and pitfalls of a popular MCMC method, namely
MTM, through several new theoretical and empirical results. We proposed to use a novel
class of weight functions, based on the so-called locally-balanced proposal distributions,
that can be employed instead of the classical GB weight function without impacting neither
the computational cost nor the coding complexity of MTM. The resulting LB MTM scheme

8. In our experiment, we used a desktop computer with 32 cores (thus larger than the number of candidates
N), AMD Ryzen 9 5950X processor, Alma Linux 8.5 operating system, 64 GB of RAM, and off-the-shelf
high-level MATLAB parallelization.
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Figure 11: Convergence of GB MTM (solid lines) and LB MTM (dashed lines), with a log-
scale on the x-axis; all chains are started from the same state θ0 belonging to the
tails of π; left panel: trace plots of − log π̄(θm | {yk(t)}) indicating the progress
towards the high-probability region (designated by the dotted black line); right
panel: adaptation of the step-size parameter ` as the algorithms progress.

is remarkably and positively different compared to the GB MTM one, especially regarding
the behaviour of the induced Markov chains during the convergence phase. This difference
is associated with substantially reduced burn-in time and an element of stability that,
together with an easier tuning of the method, make LB MTM an appealing and competitive
algorithm for high-dimensional Bayesian inference problems for which nothing except the
unnormalized posterior density is known and when the latter is computationally expensive
to evaluate, which makes in-step parallel computing beneficial.

Part of the research effort conducted in this paper can also be cast as an attempt to
generalize the use of LB samplers beyond the discrete-state-space scenario. In particular,
LB MTM is similar in spirit to exact-approximation schemes, in the sense of Andrieu and
Vihola (2016), given that it can be thought of as approximations of ideal LB samplers
that use a noisy version of the acceptance probability without affecting the invariant dis-
tribution. Further work in this direction is needed to explore these connections to strands
of literature. Also, the results in this paper motivate further non-asymptotic (in N and
d) theoretical analyses to identify other quantitative or qualitative differences between LB
MTM algorithms and their GB counterpart. The rich literature on non-asymptotic analysis
of MH exact-approximations (see, e.g., Andrieu and Vihola (2016), Andrieu et al. (2020),
and Wang (2022)) may prove useful in this direction.

While we have focused mainly on MTM and the impact of the weight function, it would
be interesting to provide a systematic comparison of LB MTM with other multiple-proposal
MCMC schemes (e.g., Neal (2003); Tjelmeland (2004); Frenkel (2004); Calderhead (2014);
Holbrook (2023) and references therein) and more generally to other approaches that could
in principle exploit in-step parallelization to speed-up convergence of MCMC. One such
approach would be to exploit parallel target-density evaluations to derive numerical (e.g.
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finite-difference) approximations to the gradient, ∇ log π, and then employ off-the-shelf
gradient-based MCMC methods. We leave the exploration of such comparisons for future
work, noting that it is likely that the optimal scheme among the ones mentioned above
will depend on features of the target distribution (such as dimensionality, smoothness and
regularity), and on the parallel-computing environment available (see, e.g., Glatt-Holtz et al.
(2022) for examples of GPU implementations of multiple-proposal MCMC methods with
large values of N) as well as potentially other aspects.
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Appendix A. Proofs

Proof [Proposition 1] First, let us look at

Px(J = j | Y1, . . . ,YN ) = Ex[1J=j | Y1, . . . ,YN ] =
w(x,Yj)∑N
i=1w(x,Yi)

.

Using this and that Y1, . . . ,YN are conditionally IID given x, we have that

Ex[h(YJ)] =
N∑
j=1

Ex[h(Yj)1J=j ] =
N∑
j=1

Ex[h(Yj)E[1J=j | Y1, . . . ,YN ]]

=

N∑
j=1

Ex

[
h(Yj)

w(x,Yj)∑N
i=1w(x,Yi)

]

=
N∑
j=1

∫
h(yj)

w(x,yj)∑N
i=1w(x,yi)

N∏
i=1

qσd(x,yi) dy1:N

=

∫
h(y1)

w(x,y1)
1
N

∑N
i=1w(x,yi)

N∏
i=1

qσd(x,yi) dy1:N .
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A.1 Proof of Theorem 1

In order to prove Theorem 1, we provide a general convergence result.

Theorem 4 Let {PN : N ≥ 1} be a collection of Markov transition kernels and P a Markov
transition kernel such that PN (for any N) and P admit π as invariant distribution. If the
following assumptions hold:

(a) the Markov transition kernels {PN : N ≥ 1} satisfy∫
|PNh(x)− Ph(x)|π(x) dx→ 0

as N →∞ for all h ∈ Cb, where

PNh(x) :=

∫
PN (x,y)h(y) dy,

with an analogous definition for Ph, Cb being the space of bounded continuous func-
tions;

(b) Ph is continuous for any h ∈ Cb,

then {XN (m) : m ∈ N} converges weakly to {X(m) : m ∈ N} provided that XN (0) ∼ π and
X(0) ∼ π, {XN (m) : m ∈ N} and {X(m) : m ∈ N} being the Markov chains with transition
kernels PN and P , respectively.

We present a proof here for self-containedness, but do not claim the originality of the
result. The proof is strongly inspired by that of Theorem 2 in Schmon et al. (2021).
Proof To prove that {XN (m) : m ∈ N} converges weakly to {X(m) : m ∈ N}, we only need
to prove the convergence of finite-dimensional distributions (Karr, 1975). It thus suffices to
prove that for any positive integer k

|E[f0(XN (0)) . . . fk(XN (k))]− E[f0(X(0)) . . . fk(X(k))]| → 0,

as N → ∞, for all f0, . . . , fk ∈ Cb given that (x(0), . . . ,x(k)) 7→
∏k
i=0 fi(x(i)) is measure

determining by Proposition 4.6 in Chapter 2 of Ethier and Kurtz (1986).
We prove this by induction. For k = 0, the convergence is trivial because XN (0) ∼ π

and X(0) ∼ π. Now assume that it is true for k ≥ 0, and let us verify that it is true for
k + 1.

|E[f0(XN (0)) . . . fk(XN (k))fk+1(XN (k + 1))]− E[f0(X(0)) . . . fk(X(k))fk+1(X(k + 1))]|
= |E[f0(XN (0)) . . . fk(XN (k))PNfk+1(XN (k))]− E[f0(X(0)) . . . fk(X(k))Pfk+1(X(k))]|
≤ |E[f0(XN (0)) . . . fk(XN (k))PNfk+1(XN (k))− f0(XN (0)) . . . fk(XN (k))Pfk+1(XN (k))]|

+ |E[f0(XN (0)) . . . fk(XN (k))Pfk+1(XN (k))]− E[f0(X(0)) . . . fk(X(k))Pfk+1(X(k))]|
≤MkE[|PNfk+1(XN (k))− Pfk+1(XN (k))|]

+ |E[f0(XN (0)) . . . fk(XN (k))Pfk+1(XN (k))]− E[f0(X(0)) . . . fk(X(k))Pfk+1(X(k))]|,
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using that there exists a positive constant M such that fi ≤ M for all i. The term on
the penultimate line vanishes as a consequence of Assumption (a). That on the last line
vanishes because Pfk+1 is bounded and continuous by Assumption (b).

Before presenting the proof of Theorem 1, we present a result that will be used in it and
in other proofs.

Proposition 4 (Müller and Stoyan, 2002, Corollary 1.5.24) For any N ≥ 2 exchangeable
random variables X1, . . . , XN and any convex function φ, we have

E

[
φ

(
1

N

N∑
i=1

Xi

)]
≤ E

[
φ

(
1

N − 1

N−1∑
i=1

Xi

)]
,

whenever the expectations exist.

Proof [Theorem 1] We start with Result 1. The strategy to prove the result is the same as
that to prove Theorem 2.1.1 in Huggins (2014). The probability that YJ belongs to a set
A, for fixed x, as a function of N is

QNw,σ(x, A) := Px,N (YJ ∈ A) = Ex

[
1Y1∈A

w(x,Y1)
1
N

∑N
i=1w(x,Yi)

]
,

using Proposition 1. To simplify the notation for this part of the proof, we omit the
dependence on w, σ and x that are fixed throughout, and use QN (A) := QNw,σ(x, A) and
Q(A) := Qw,σ(x, A).

We have that

QN (A) = Ex

[
1Y1∈Aw(x,Y1)Ex

[
1

1
N

∑N
i=1w(x,Yi)

| Y1

]]
.

With

h(Y1) := Ex

[
1

1
N

∑N
i=1w(x,Yi)

| Y1

]
,

we have that

QN (A) = Ex [1Y1∈Aw(x,Y1)h(Y1)] =

∫
A
w(x,y1)h(y1) qσ(x,y1) dy1

=

∫
A
Ex[w(x,Y1)]h(y1)Qw,σ(x,y1) dy1.

This implies that we have an expression for the following Radon–Nikodym derivative:

dQN

dQ
(y1) = Ex[w(x,Y1)]Ex

[
1

1
N

∑N
i=1w(x,Yi)

| Y1 = y1

]

≥ Ex[w(x,Y1)]
1
N

∑N
i=1 Ex[w(x,Yi) | Y1 = y1]

=
NEx[w(x,Y1)]

(N − 1)Ex[w(x,Y1)] + w(x,y1)
,
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using Jensen’s inequality.
To prove Result 1, we use that the total variation between QN (A) and Q(A) can be

bounded above using the Kullback–Leibler divergence, and more precisely, by√
1

2

∫
Q(y1) dy1 log

dQ

dQN
(y1).

We have that∫
Q(y1) dy1 log

dQ(y1)

dQN (y1)
≤
∫
Q(y1) dy1 log

(N − 1)Ex[w(x,Y1)] + w(x,y1)

NEx[w(x,Y1)]

≤ log

∫
Q(y1) dy1

(N − 1)Ex[w(x,Y1)] + w(x,y1)

NEx[w(x,Y1)]

= log

(
1 +

∫
w(x,y1)Q(y1) dy1 − Ex[w(x,Y1)]

NEx[w(x,Y1)]

)
= log

(
1 +

∫
w(x,y1)

2qσ(x,y1) dy1 − Ex[w(x,Y1)]
2

NEx[w(x,Y1)]2

)
≤ varx[w(x,Y1)]

NEx[w(x,Y1)]2
,

using Jensen’s inequality and that log(1 + x) ≤ x for all x > −1. This concludes the proof
of Result 1 as, by assumption Ex

[
w(x,Y1)

4
]
<∞, and Ex[w(x,Y1)] > 0 given that w is a

strictly positive function.
We now prove Result 2. To achieve this, we use Theorem 4, which requires that:

(a) for every h ∈ Cb (the space of bounded continuous functions),∫
|PNh(x)− Pidealh(x)|π(x) dx→ 0,

where PN is the Markov kernel simulated by MTM and Pideal is the Markov kernel
simulated by the ideal scheme;

(b) Pidealh is continuous for any h ∈ Cb.

Let us first define PN and Pideal:

PN (x, A) :=

N∑
j=1

∫
yj∈A

w(x,yj)∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(yj , zi)α(x,yj) d(y1:N , z1:N−1)

+ 1x∈A

N∑
j=1

∫
w(x,yj)∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)
N−1∏
i=1

qσ(yj , zi) (1− α(x,yj)) d(y1:N , z1:N−1),

and

Pideal(x, A) :=

∫
y∈A

Qw,σ(x,y)αideal(x,y) dy + 1x∈A

∫
Qw,σ(x,y) (1− αideal(x,y)) dy,
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where

αideal(x,y) := 1 ∧ π(y)Qw,σ(y,x)

π(x)Qw,σ(x,y)
.

In PN (x, A), the integrals are the same for all j. Therefore,

PN (x, A) :=

∫
y1∈A

w(x,y1)
1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi)α(x,y1) d(y1:N , z1:N−1)

+ 1x∈A

∫
w(x,y1)

1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi) (1− α(x,y1)) d(y1:N , z1:N−1).

Consequently,

PNh(x) =

∫
w(x,y1)

1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi)α(x,y1)h(y1) d(y1:N , z1:N−1)

+ h(x)

∫
w(x,y1)

1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi) (1− α(x,y1)) d(y1:N , z1:N−1),

and

Pidealh(x) :=

∫
Qw,σ(x,y)αideal(x,y)h(y) dy + h(x)

∫
Qw,σ(x,y) (1− αideal(x,y)) dy.

(10)

We first prove that ∫
|PNh(x)− Pidealh(x)|π(x) dx→ 0.

Using the triangle inequality, it suffices to prove that∫ ∣∣∣∣∣
∫

w(x,y1)
1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi)α(x,y1)h(y1) d(y1:N , z1:N−1)

−
∫
Qw,σ(x,y)αideal(x,y)h(y) dy

∣∣∣∣ π(x) dx→ 0,

and∫ ∣∣∣∣∣h(x)

∫
w(x,y1)

1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)
N−1∏
i=1

qσ(y1, zi) (1− α(x,y1)) d(y1:N , z1:N−1)

−h(x)

∫
Qw,σ(x,y) (1− αideal(x,y)) dy

∣∣∣∣ π(x) dx→ 0.

We prove the first convergence and the other one follows using the same arguments. Using
that we can rewrite∫

Qw,σ(x,y)αideal(x,y)h(y) dy

=

∫
w(x,y1)∫

w(x,y1) qσ(x,y1) dy1
αideal(x,y1)h(y1) d(y1:N , z1:N−1),
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Jensen’s inequality and that h is bounded, let us say by a positive constant M ,∫ ∣∣∣∣∣
∫

w(x,y1)
1
N

∑N
i=1w(x,yi)

N∏
i=1

qσ(x,yi)

N−1∏
i=1

qσ(y1, zi)α(x,y1)h(y1) d(y1:N , z1:N−1)

−
∫
Qw,σ(x,y)αideal(x,y)h(y) dy

∣∣∣∣ π(x) dx

≤M
∫∫ ∣∣∣∣∣ w(x,y1)

1
N

∑N
i=1w(x,yi)

α(x,y1)−
w(x,y1)∫

w(x,y1) qσ(x,y1) dy1
αideal(x,y1)

∣∣∣∣∣
×

N∏
i=1

qσ(x,yi)
N−1∏
i=1

qσ(y1, zi) d(y1:N , z1:N−1)π(x) dx

= ME

[∣∣∣∣∣ w(X,Y1)
1
N

∑N
i=1w(X,Yi)

α(X,Y1)−
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1
αideal(X,Y1)

∣∣∣∣∣
]
.

From the strong law of large numbers, we have that with probability 1

1

N

N∑
i=1

w(x,Yi)→
∫
w(x,y1) qσ(x,y1) dy1, as N →∞.

for all x. Therefore, with probability 1,

1

N

N∑
i=1

w(X,Yi)→
∫
w(X,y1) qσ(X,y1) dy1.

Also, with probability 1,

α(X,Y1) = 1 ∧
π(Y1) qσ(Y1,X)w(Y1,X)

/(
1
N

(∑N−1
i=1 w(Y1,Zi) + w(Y1,X)

))
π(X) qσ(X,Y1)w(X,Y1)

/(
1
N

(∑N
i=2w(X,Yi) + w(X,Y1)

))

→ 1 ∧
π(Y1) qσ(Y1,X)w(Y1,X)

/∫
w(Y1, z1) qσ(Y1, z1) dz1

π(X) qσ(X,Y1)w(X,Y1)

/∫
w(X,y1) qσ(X1,y1) dy1

= 1 ∧ π(Y1)Qw,σ(Y1,X)

π(X)Qw,σ(X,Y1)
= αideal(X,Y1).

Therefore, with probability 1,∣∣∣∣∣ w(X,Y1)
1
N

∑N
i=1w(X,Yi)

α(X,Y1)−
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1
αideal(X,Y1)

∣∣∣∣∣→ 0.

To be able to conclude that the expectation converges, we prove that the random variable
is uniformly integrable. We more specifically prove that

sup
N

E

( w(X,Y1)
1
N

∑N
i=1w(X,Yi)

α(X,Y1)−
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1
αideal(X,Y1)

)2
 <∞,
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which implies that the random variable is uniformly integrable. We have that

E

( w(X,Y1)
1
N

∑N
i=1w(X,Yi)

α(X,Y1)−
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1
αideal(X,Y1)

)2


≤ 2E

( w(X,Y1)
1
N

∑N
i=1w(X,Yi)

α(X,Y1)

)2


+ 2E

[(
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1
αideal(X,Y1)

)2
]

≤ 2E

( w(X,Y1)
1
N

∑N
i=1w(X,Yi)

)2
+ 2E

[(
w(X,Y1)∫

w(X,y1) qσ(X,y1) dy1

)2
]

≤ 2E
[
w(X,Y1)

4
]1/2 E [w(X,Y1)

−4]1/2 + 2E
[
w(X,Y1)

2
] [∫

w(X,y1) qσ(X,y1) dy1

]−2
,

which is finite. We used that for any real numbers a, b, (a + b)2 ≤ 2a2 + 2b2, that 0 ≤
α, αideal ≤ 1, Cauchy–Schwarz inequality, and Proposition 4 for

Ex

( 1

N

N∑
i=1

w(x,Yi)

)−4 ≤ Ex

[
w(x,Y1)

−4] ,
with E

[
w(X,Y1)

−4] <∞.
We now show that Pidealh is continuous. Define xε := x + ε with ‖ε‖ ≤ ε, where ε > 0

can be chosen to be arbitrarily small. We want to prove that

lim
ε→0

Pidealh(xε) = Pidealh(x).

This is true under the assumptions if we can interchange the limit and the integral in (10).
We are allowed to do it using the dominated convergence theorem because h is bounded,
0 ≤ αideal ≤ 1 and Qw,σ(x + ε,y) ≤ f(x,y), an integrable (in y) function, for all x.

A.2 Proof of Proposition 2

Proof [Proposition 2] We prove the result for the case where w(x,y) = π(y)/π(x). The
proof is analogous for the case where w(x,y) =

√
π(y)/π(x).

We have that

Qw,σ(x + ε,y) =
w(x + ε,y) qσ(x + ε,y)∫
w(x + ε,y) qσ(x + ε,y) dy

=
π(y) qσ(x + ε,y)∫
π(y) qσ(x + ε,y) dy

.

Also,

qσ(x + ε,y) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
(y − (x + ε))T (y − (x + ε))

)
=

1

(2πσ2)d/2
exp

(
− 1

2σ2
(y − x)T (y − x)

)
exp

(
1

2σ2
εT (y − x)

)
exp

(
− 1

2σ2
εT ε

)
.
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Therefore,

qσ(x + ε,y) ≤ qσ(x,y) exp
( ε

2σ2
‖y − x‖

)
,

given that

exp

(
− 1

2σ2
εT ε

)
≤ 1,

and

εT (y − x) ≤ |εT (y − x)| ≤ ‖ε‖‖y − x‖ ≤ ε‖y − x‖,

by Cauchy–Schwarz inequality.

We thus have an upper bound of the numerator of Qw,σ(x + ε,y) that does not depend
on ε. We now find a lower bound of the denominator that does not depend on ε. By Fatou’s
lemma, we have that

lim inf
ε→0

∫
π(y) qσ(x + ε,y) dy ≥

∫
π(y) qσ(x,y) dy.

We have that ‖ε‖ ≤ ε with ε > 0 an arbitrarily small value. We thus know that we can
choose ε such that ∫

π(y) qσ(x + ε,y) dy ≥
∫
π(y) qσ(x,y) dy − ξ,

with ξ an arbitrarily small value. In particular, we can choose ε such that

ξ ≤
∫
π(y) qσ(x,y) dy,

implying that ∫
π(y) qσ(x + ε,y) dy ≥ 1

2

∫
π(y) qσ(x,y) dy.

Note that
∫
π(y) qσ(x,y) dy > 0 because π(y) is assumed to be strictly positive. Note also

that
∫
π(y) qσ(x,y) dy <∞. Indeed,∫

π(y) qσ(x,y) dy ≤ 1

(2πσ2)d/2

∫
π(y) dy <∞.

In the case where w(x,y) =
√
π(y)/π(x), we use Cauchy–Schwarz inequality instead of the

boundedness of qσ to reach the same conclusion.

To summarize, we know that we can choose ε so that

Qw,σ(x + ε,y) ≤
π(y) qσ(x,y) exp

(
ε

2σ2 ‖y − x‖
)

1
2

∫
π(y) qσ(x,y) dy

,

which is independent of ε. We know that the denominator on the right-hand side (RHS) is
strictly positive and finite. To conclude the proof, we need to show that the numerator is
integrable.
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We have that∫
π(y) qσ(x,y) exp

( ε

2σ2
‖y − x‖

)
dy =

∫
Ax

π(y) qσ(x,y) exp
( ε

2σ2
‖y − x‖

)
dy

+

∫
Ac

x

π(y) qσ(x,y) exp
( ε

2σ2
‖y − x‖

)
dy,

where Ax is the set of values of y, with x fixed, such that ‖y− x‖ ≤ 1. Given that this set
is compact and that the integrand is upper bounded, we know that∫

Ax

π(y) qσ(x,y) exp
( ε

2σ2
‖y − x‖

)
dy <∞.

Now, let us analyse the other integral, we have that∫
Ac

x

π(y) qσ(x,y) exp
( ε

2σ2
‖y − x‖

)
dy ≤

∫
Ac

x

π(y) qσ(x,y) exp
( ε

2σ2
‖y − x‖2

)
dy

≤
∫
π(y)

1

(2πσ2)d/2
exp

(
−1− ε

2σ2
‖y − x‖2

)
dy

≤ 1

(2πσ2)d/2

∫
π(y) dy <∞,

which concludes the proof.

A.3 Proof of Proposition 3

Before presenting the proof of Proposition 3, we provide two lemmas which are used in
it and in several other proofs. After presenting the proof of Proposition 3, we present a
result stating that lim‖x‖→∞ Ex[αideal(x,Y)] = 0 for any σ and d under weaker assumptions
than those supposed in Proposition 3. As mentioned in Section 3.1, the assumptions are
essentially that U := − log π is strongly convex and L-smooth. In the proof of that result,
it will be noticed that L-smoothness is not necessary but makes the proof simpler. It will
also be noticed in the statement of the result that, instead of strong convexity, we assume
that ‖∇U(x)‖ → ∞ as ‖x‖ → ∞, which is weaker, but is in fact the crucial assumption for
having lim‖x‖→∞ Ex[αideal(x,Y)] = 0.

Lemma 1 When the target density is defined as in (3) and the proposal distribution is
Qw,σ with qσ(x, · ) = N (x, σ2Id) and w(x,y) = π(y)/π(x), we have that

αideal(x,y) = 1 ∧ exp

(
1

2(1 + σ2)

d∑
i=1

(y2i − x2i )

)
.
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Proof [Lemma 1] We have that

αideal(x,y) = 1 ∧ π(y)Qw,σ(y,x)

π(x)Qw,σ(x,y)

= 1 ∧
d∏
i=1

∫
ϕ(zi) (1/σ)ϕ((zi − xi)/σ) dzi∫
ϕ(zi) (1/σ)ϕ((zi − yi)/σ) dzi

= 1 ∧
d∏
i=1

∫
ϕ(xi + σui)ϕ(ui) dui∫
ϕ(yi + σui)ϕ(ui) dui

= 1 ∧
d∏
i=1

∫
exp

(
−σ2

2 (ui + xi/σ)2
)
ϕ(ui) dui∫

exp
(
−σ2

2 (ui + yi/σ)2
)
ϕ(ui) dui

= 1 ∧ exp

(
1

2(1 + σ2)

d∑
i=1

(y2i − x2i )

)
,

using the definition of Qw,σ, the factorization of the target and proposal densities, a change
of variable and the equality

∫
exp

(
−σ

2

2
(ui + xi/σd)

2

)
ϕ(ui) dui = E

[
exp

(
−σ

2

2
Zi

)]
=

exp
(
− x2i

2(1+σ2)

)
(1 + σ2)1/2

,

with Zi that follows a non-central chi-squared distribution.

Lemma 2 When the target density is defined as in (3) and the proposal distribution is
Qw,σ with qσ(x, · ) = N (x, σ2Id) and w(x,y) = π(y)/π(x), we have that Y ∼ Qw,σ(x, · ) is
equal in distribution to

x

1 + σ2
+

√
σ2

1 + σ2
U,

where the components of U := (U1, . . . , Ud)
T are d independent standard-normal random

variables.

Proof [Lemma 2] The PDF Qw,σ(x, · ) is such that

Qw,σ(x,y) =

d∏
i=1

ϕ(yi) (1/σ)ϕ((yi − xi)/σ) ∝
d∏
i=1

exp

(
−1

2

1 + σ2

σ2

(
yi −

xi
1 + σ2

)2
)
,

implying that the components in Y := (Y1, . . . , Yd)
T are d conditionally independent random

variables with

Yi ∼ N
(

Xi

1 + σ2
,

σ2

1 + σ2

)
,

for all i. This concludes the proof.
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Proof [Proposition 3] Using Lemma 1,

E[αideal(x,Y)] = E

[
1 ∧ exp

(
1

2(1 + σ2)

d∑
i=1

(Y 2
i − x2i )

)]
.

We have that

E

[
1 ∧ exp

(
1

2(1 + σ2)

d∑
i=1

(Y 2
i − x2i )

)]
≤ E

[
exp

(
1

2(1 + σ2)

d∑
i=1

(Y 2
i − x2i )

)]

= exp

(
− 1

2(1 + σ2)
‖x‖2

)
E

exp

 1

2(1 + σ2)

d∑
i=1

(
xi

1 + σ2
+

√
σ2

1 + σ2
Ui

)2


= exp

(
− 1

2(1 + σ2)
‖x‖2

)
E

[
exp

(
σ2

2(1 + σ2)2

d∑
i=1

(
xi

σ
√

1 + σ2
+ Ui

)2
)]

= exp

(
− 1

2(1 + σ2)
‖x‖2

)
exp

(
1

2(1+σ2)3
‖x‖2

1− σ2

(1+σ2)2

)(
1− σ2

(1 + σ2)2

)−d/2
,

using Lemma 2 and the explicit expression of the moment generating function of a non-
central chi-squared distribution. Note that the latter can be used because σ2/(1+σ2)2 < 1.
The first two terms on the RHS above can be combined and simplified; their product is
equal to

exp

(
−‖x‖2 σ2

2((1 + σ2)2 − σ2)

)
.

Proposition 5 Consider a current state x and that Y ∼ Qw,σ(x, · ) with qσ(x, · ) = N (x,
σ2Id) and w(x,y) = π(y)/π(x). Assume that U := − log π is continuously differentiable.
Assume that U is L-smooth, meaning that its gradient, ∇U , is L-Lipschitz. Finally, assume
that ‖∇U(x)‖ → ∞ as ‖x‖ → ∞. Then, for any σ and d, it holds that

lim
‖x‖→∞

Ex[αideal(x,Y)] = 0.

Proof [Proposition 5] Let us define Z(x) :=
∫
π(y) qσ(x,y) dy. We first provide a lower

bound on Z(x)/π(x) which will be useful to prove our result. To provide this lower bound,
we will use that

|U(y)− U(x)−∇U(x)T (y − x)| ≤ L

2
‖y − x‖2,
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given that U is L-smooth; see (Bubeck, 2015, Lemma 3.4). Using this, we have that

Z(x)

π(x)
=

∫
exp(−(U(y)− U(x))) qσ(x,y) dy

≥
∫

exp

(
−∇U(x)T (y − x)− L

2
‖y − x‖2

)
qσ(x,y) dy

=

∫
exp

(
−∇U(x)T z− L

2
‖z‖2

)
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖z‖2

)
dz

=

(
σ−2

L+ σ−2

)d/2 ∫
exp

(
−∇U(x)T z

) 1

(2π(L+ σ−2))d/2
exp

(
−L+ σ−2

2
‖z‖2

)
dz

=

(
σ−2

L+ σ−2

)d/2
exp

(
1

2(L+ σ−2)
‖∇U(x)‖2

)
,

where the third line follows from a change of variables z = y − x, and the last line follows
from the explicit expression of the moment generating function of a multivariate normal
distribution.

Now, we make use of that bound. When Y ∼ Qw,σ(x, · ) with qσ(x, · ) = N (x, σ2Id) and
w(x,y) = π(y)/π(x),

αideal(x,y) = 1 ∧ Z(x)

Z(y)
≤ Z(x)

Z(y)
.

Therefore, we have that

Ex[αideal(x,Y)] ≤
∫
π(y) qσ(x,y)

Z(y)
dy

=

∫
π(x + z) qσ(0, z)

Z(x + z)
dz

≤
∫ (

σ−2

L+ σ−2

)−d/2
exp

(
− 1

2(L+ σ−2)
‖∇U(x + z)‖2

)
qσ(0, z) dz

after a change of variables z = y−x. We conclude the proof using the bounded convergence
theorem: for any σ, d, L and z,

(
σ−2

L+ σ−2

)−d/2
exp

(
− 1

2(L+ σ−2)
‖∇U(x + z)‖2

)
→ 0,

as ‖x‖ → ∞ and

(
σ−2

L+ σ−2

)−d/2
exp

(
− 1

2(L+ σ−2)
‖∇U(x + z)‖2

)
≤
(

σ−2

L+ σ−2

)−d/2
.
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A.4 Proof of Theorem 2

Proof [Theorem 2] We prove a weak convergence towards a diffusion, denoted by {Z(t) : t ≥
0}, in the Skorokhod topology (for more details about this type of convergence, see Chapter
3 of Ethier and Kurtz (1986)). In order to prove the result, we demonstrate the convergence
of the finite-dimensional distributions of {Zd,ideal(t) : t ≥ 0} to those of {Z(t) : t ≥ 0}. To
achieve this, we verify Condition (c) of Theorem 8.2 from Chapter 4 of Ethier and Kurtz
(1986). The weak convergence then follows from Corollary 8.6 of Chapter 4 of Ethier and
Kurtz (1986). The remaining conditions of Theorem 8.2 and the conditions of Corollary 8.6
are either straightforward or easily derived from the proof given here.

The proof of the convergence of the finite-dimensional distributions relies on the con-
vergence of (what we call) the pseudo-generator of {Zd,ideal(t) : t ≥ 0}, an operator that we
now introduce. The proof follows.

Pseudo-generator. The process {Zd,ideal(t) : t ≥ 0} is a jump process for which the
time in between the (possible) jumps is deterministic: we know that every 1/d2τ unit of
time, the process jumps if the proposal is accepted. The pseudo-generator is a discrete
version of infinitesimal generators of stochastic processes. It is defined as follows:

φd,ideal(t) := d2τE[h(Zd,ideal(t+ 1/d2τ ))− h(Zd,ideal(t)) | FZd,ideal(t)],

where h is a test function and FZd,ideal(t) is the natural filtration associated to {Zd,ideal(t) :
t ≥ 0}. The Markov property, the fact that Zd,ideal(0) ∼ πd and that {Xd,ideal(m) : m ∈ N}
is time-homogeneous imply that for any t,

φd,ideal(t) = d2τE[h(Zd,ideal(t+ 1/d2τ ))− h(Zd,ideal(t)) | Zd,ideal(t)]
dist.
= d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd],

where “
dist.
= ” denotes an equality in distribution, Xd ∼ πd and Y1 is the first coordinate

of Yd ∼ Qw,σ(Xd, · ).
We prove the convergence of φd,ideal(t) towards Gh(Zd,ideal(t)) in some sense, where G

is the generator of the diffusion. The form of G allows to restrict our attention to test
functions h ∈ C∞c (R), the space of infinitely differentiable functions on R with compact
support (Theorem 2.5 from Chapter 8 of Ethier and Kurtz (1986)).

Proof of the convergence of the finite-dimensional distributions. Condition
(c) of Theorem 8.2 from Chapter 4 of Ethier and Kurtz (1986) essentially reduces to the
following convergence:

E|φd,ideal(t)−Gh(Zd,ideal(t))| → 0 as d→∞,

for all t. The generator is such that

Gh(Zd,ideal(t)) = `2(ϑw,τ (`)/2)(logϕ(Zd,ideal(t)))
′h′(Zd,ideal(t)) + `2(ϑw,τ (`)/2)h′′(Zd,ideal(t))

dist.
= `2(ϑw,τ (`)/2)(logϕ(X1))

′h′(X1) + `2(ϑw,τ (`)/2)h′′(X1),

where the equality in distribution follows from the fact that the process starts in stationarity,
that is Zd,ideal(0) ∼ πd. We can thus see φd,ideal(t)−Gh(Zd,ideal(t)) in the expectation above

40



Improving multiple-try Metropolis with local balancing

as a difference of two functions of Xd ∼ πd, and will write Gh(X1) instead of Gh(Zd,ideal(t))
in the expectation. Note that the form of the generator indicates that ϕ is the unique
invariant PDF of the diffusion.

We prove that

E|d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]−Gh(X1)| → 0.

The key here is to use a Taylor expansion in (h(Y1) − h(X1))αideal(Xd,Yd) to obtain
derivatives of h as in Gh(X1). Specifically, we write

h(Y1)− h(X1) = h′(X1)(Y1 −X1) + h′′(X1)
(Y1 −X1)

2

2
+ h′′′(W )

(Y1 −X1)
3

6
,

where W belongs to (X1, Y1) or (Y1, X1) (depending which one of X1 and Y1 is smaller).
Therefore, using the triangle inequality,

E|d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]−Gh(X1)|
= E|d2τE[h′(X1)(Y1 −X1)αideal(Xd,Yd) | Xd]− `2(ϑw,τ (`)/2)(logϕ(X1))

′h′(X1)|

+ E
∣∣∣∣d2τE [h′′(X1)

(Y1 −X1)
2

2
αideal(Xd,Yd) | Xd

]
− `2(ϑw,τ (`)/2)h′′(X1)

∣∣∣∣
+ E

∣∣∣∣d2τE [h′′′(W )
(Y1 −X1)

3

6
αideal(Xd,Yd) | Xd

]∣∣∣∣ . (11)

We now prove that each term on the RHS converges to 0. We prove this for the case
w(xd,yd) = π(yd)/π(xd); the case w(xd,yd) =

√
π(yd)/π(xd) is proved similarly.

We have that

E
∣∣∣∣d2τE [h′′′(W )

(Y1 −X1)
3

6
αideal(Xd,Yd) | Xd

]∣∣∣∣ ≤ M

6
d2τE[E[|Y1 −X1|3 | Xd]]

≤ M

6
d2τ

(
E
∣∣∣∣ σ2dX1

1 + σ2d

∣∣∣∣3 + 3E

[(
σ2dX1

1 + σ2d

)2
]√

σ2d
1 + σ2d

E|U1|+ 3E
[∣∣∣∣ σ2dX1

1 + σ2d

∣∣∣∣] σ2d
1 + σ2d

E[U2
1 ]

+

(
σ2d

1 + σ2d

)3/2

E|U1|3
)
,

using Jensen’s inequality, that 0 ≤ αideal ≤ 1, that there exists a positive constant M such
that |h′′′| ≤M , Lemma 2 and the triangle inequality. The random variables X1 and U1 are
independent and both follow a standard normal distribution, implying that E|X1|pE|U1|q is
finite and independent of d for any p and q. Recall that σd = `/dτ . The sum above thus
converges to 0.

For the other terms in (11), we view the function αideal(xd,yd) (for any realization of
Xd and Yd) as a function of y1 (while keeping the other variables fixed) and we use a Taylor
expansion around x1 to obtain a function independent of x1 and y1. To see this, we recall
that

αideal(xd,yd) = 1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=1

(y2i − x2i )

)
,
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using Lemma 1. We thus write

αideal(xd,yd) = αideal(xd,y
∗
d) +

(
∂

∂y1
αideal(xd,yd)

∣∣∣∣
y1=x1

)
(y1 − x1)

+

(
∂2

∂y21
αideal(xd,yd)

∣∣∣∣
y1=w

)
(y1 − x1)2

2
,

where y∗d := (x1, y2, . . . , yd) and w belongs to (x1, y1) or (y1, x1). We have that

αideal(xd,y
∗
d) = 1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(y2i − x2i )

)
,

∂

∂y1
αideal(xd,yd)

∣∣∣∣
y1=x1

=
x1

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(y2i − x2i )

)
1

(
d∑
i=2

(y2i − x2i ) < 0

)
,

(12)

∂2

∂y21
αideal(xd,yd)

∣∣∣∣
y1=w

=

(
1

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(y2i − x2i ) + w2 − x21

)

+
w2

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(y2i − x2i ) + w2 − x21

))
1

(
d∑
i=2

(y2i − x2i ) + w2 − x21 < 0

)
.

We replace αideal(Xd,Yd) in

E|d2τE[h′(X1)(Y1 −X1)αideal(Xd,Yd) | Xd]− `2(ϑw,τ (`)/2)(logϕ(X1))
′h′(X1)|

in (11) by the sum above. We want to prove that the expectation converges to 0. Using the
triangle inequality and that M can be chosen such that |h′| ≤ M , it is sufficient to show
that

ME

∣∣∣∣∣d2τE
[

(Y1 −X1)

(
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

))

+ (Y1 −X1)
2 X1

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
1

(
d∑
i=2

(Y 2
i −X2

i ) < 0

)
| Xd

]
−`2(ϑw,τ (`)/2)(logϕ(X1))

′ | → 0,

and that the following expectation converges to 0:

Md2τE

∣∣∣∣∣ (Y1 −X1)3

2

(
1

1 + σ2
d

exp

(
1

2(1 + σ2
d)

d∑
i=2

(Y 2
i −X2

i ) +W 2 −X2
1

)

+
W 2

1 + σ2
d

exp

(
1

2(1 + σ2
d)

d∑
i=2

(Y 2
i −X2

i ) +W 2 −X2
1

))
1

(
d∑
i=2

(Y 2
i −X2

i ) +W 2 −X2
1 < 0

)∣∣∣∣∣ .
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We start with the last term. Using the triangle inequality, it is lesser than or equal to

Md2τ

2(1 + σ2d)
E|Y1 −X1|3 +

Md2τ

2(1 + σ2d)
E[|Y1 −X1|3W 2].

We have seen before that d2τE|Y1 − X1|3 → 0. Also, given X1 and writing Y1 = X1

1+σ2
d

+√
σ2
d

1+σ2
d
U1 under the conditional expectation, we can show that |W | ≤ |X1|+

√
σ2
d

1+σ2
d
|U1|, and

consequently, that d2τE[|Y1−X1|3W 2]→ 0 in the same way we proved that d2τE|Y1−X1|3 →
0.

For the other term, we first note that (logϕ(X1))
′ = −X1. We simplify the notation by

defining

f1(Xd) := E

[
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]
,

and

f2(Xd) := E

[
exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
1

(
d∑
i=2

(Y 2
i −X2

i ) < 0

)
| Xd

]
.

Using the conditional independence among Y1, . . . , Yd given Xd,

E

[
(Y1 −X1)

(
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

))

+ (Y1 −X1)
2 X1

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
1

(
d∑
i=2

(Y 2
i −X2

i ) < 0

)
| Xd

]

= E [Y1 −X1 | Xd] f1(Xd) +
X1

1 + σ2d
E
[
(Y1 −X1)

2 | Xd

]
f2(Xd)

= E

[
−
σ2dX1

1 + σ2d
+

√
σ2d

1 + σ2d
U1 | Xd

]
f1(Xd)

+
X1

1 + σ2d
E

[
σ4dX

2
1

(1 + σ2d)
2
− 2

σ2dX1

1 + σ2d

√
σ2d

1 + σ2d
U1 +

σ2d
1 + σ2d

U2
1 | Xd

]
f2(Xd)

= −
σ2dX1

1 + σ2d
f1(Xd) +

σ4dX
3
1

(1 + σ2d)
3
f2(Xd) +

σ2dX1

(1 + σ2d)
2
f2(Xd)

= −σ2dX1

(
f1(Xd)

1 + σ2d
− f2(Xd)

(1 + σ2d)
2

)
+

σ4dX
3
1

(1 + σ2d)
3
f2(Xd).
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Therefore,

E

∣∣∣∣∣d2τE
[

(Y1 −X1)

(
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

))

+ (Y1 −X1)
2 X1

1 + σ2d
exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
1

(
d∑
i=2

(Y 2
i −X2

i ) < 0

)
| Xd

]
−`2(ϑw,τ (`)/2)(logϕ(X1))

′ |

≤ E
∣∣∣∣−X1`

2

((
f1(Xd)

1 + σ2d
− f2(Xd)

(1 + σ2d)
2

)
− ϑw,τ (`)

2

)
+

σ4dX
3
1

(1 + σ2d)
3
f2(Xd)

∣∣∣∣
≤ E

∣∣∣∣−X1`
2

((
f1(Xd)

1 + σ2d
− f2(Xd)

(1 + σ2d)
2

)
− ϑw,τ (`)

2

)∣∣∣∣+ d2τE
∣∣∣∣ σ4dX

3
1

(1 + σ2d)
3

∣∣∣∣ ,
using the triangle inequality and that 0 ≤ f2(Xd) ≤ 1. As previously,

d2τE
∣∣∣∣ σ4dX

3
1

(1 + σ2d)
3

∣∣∣∣→ 0.

We also have that

f1(Xd)

1 + σ2d
− f2(Xd)

(1 + σ2d)
2

=
E[1

(∑d
i=2(Y

2
i −X2

i ) ≥ 0
)
| Xd]

(1 + σ2d)
2

+
σ2df1(Xd)

(1 + σ2d)
2
.

Using that 0 ≤ f1(Xd) ≤ 1, the triangle inequality and because

`2σ2d
(1 + σ2d)

2
E|X1| → 0,

we can now focus on

E

∣∣∣∣∣∣−X1`
2

E
[
1

(∑d
i=2(Y

2
i −X2

i ) ≥ 0
)
| Xd

]
(1 + σ2d)

2
− ϑw,τ (`)

2

∣∣∣∣∣∣ .
We have that Y 2

i −X2
i = (Yi −Xi)(Yi + Xi), and as previously, we use that given Xd, we

can write Yi = Xi
1+σ2

d
+

√
σ2
d

1+σ2
d
Ui, and consequently,

Yi −Xi = −
σ2d

1 + σ2d
Xi +

1√
1 + σ2d

σdUi,

Yi +Xi =
2 + σ2d
1 + σ2d

Xi +
1√

1 + σ2d

σdUi,

and

(Yi −Xi)(Yi +Xi) = −
2 + σ2d
1 + σ2d

σ2dX
2
i −

1

(1 + σ2d)
3/2

σ3dXiUi

+
(2 + σ2d)

(1 + σ2d)
3/2

σdUiXi +
1

1 + σ2d
σ2dU

2
i .
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We define Sd :=
∑d

i=2 Y
2
i − X2

i and Wd := −2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i +

(2+σ2
d)

(1+σ2
d)

3/2σd
∑d

i=2 UiXi +

`2d
(1+σ2

d)(d−1)
. If τ = 1/2, in Sd, we notice that 1

1+σ2
d
σ2d
∑d

i=2 U
2
i → `2 with probability 1 as a

result of the strong law of large numbers. Also, 1
(1+σ2

d)
3/2σ

3
d

∑d
i=2XiUi → 0 with probability

1 for the same reason. Therefore, given Xd, Sd follows essentially a normal distribution

with mean −2+σ2
d

1+σ2
d

∑d
i=2 σ

2
dX

2
i + `2 and variance

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i . We want to use this

and that is why we will prove that Sd and Wd are asymptotically equivalent; Wd has a
conditional normal distribution. We have an explicit expression for E [1 (Wd ≥ 0) | Xd] and
we can use it.

For the rest of the proof, we consider that τ = 1/2. If τ > 1/2, we can use the

same strategy as below, but with Wd := −2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i +

(2+σ2
d)

(1+σ2
d)

3/2σd
∑d

i=2 UiXi because

1
1+σ2

d
σ2d
∑d

i=2 U
2
i → 0. In this case, Wd has a conditional normal distribution whose mean

is −2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i and variance

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i . Both converge to 0 with probability

1, but the mean converges quicker than the standard deviation, implying that the limit of
the explicit expression for E [1 (Wd ≥ 0) | Xd] is Φ(0) = 1/2, which allows to conclude.

Let us now return to the case τ = 1/2. Using the triangle inequality,

E
∣∣∣∣−X1`

2

(
E [1 (Sd ≥ 0) | Xd]

(1 + σ2d)
2

− ϑw,τ (`)

2

)∣∣∣∣ ≤ E
∣∣∣∣−X1`

2

(
E [1 (Wd ≥ 0) | Xd]

(1 + σ2d)
2

− ϑw,τ (`)

2

)∣∣∣∣
+ E

∣∣∣∣− X1`
2

(1 + σ2d)
2

(E [1 (Wd ≥ 0) | X]− E [1 (Sd ≥ 0) | X])

∣∣∣∣ .
(13)

We now prove that the last expectation converges to 0. Using the Cauchy–Schwarz inequal-
ity and Jensen’s inequality, it is sufficient to prove that E[(1 (Wd ≥ 0)− 1 (Sd ≥ 0))2]→ 0
given that

`2

(1 + σ2d)
2
E[X2

1 ]1/2 =
`2

(1 + σ2d)
2
→ `2.

We have that

E[(1 (Wd ≥ 0)− 1 (Sd ≥ 0))2] = P(Wd ≥ 0, Sd < 0) + P(Wd < 0, Sd ≥ 0)

= P(Wd ≥ 0, Sd < 0, |Wd − Sd| > d−1/4)

+ P(Wd ≥ 0, Sd < 0, |Wd − Sd| ≤ d−1/4)
+ P(Wd < 0, Sd ≥ 0, |Wd − Sd| > d−1/4)

+ P(Wd < 0, Sd ≥ 0, |Wd − Sd| ≤ d−1/4)
≤ 2P(|Wd − Sd| > d−1/4)

+ P(Wd ≥ 0, Sd < 0,Wd − Sd ≤ d−1/4)
+ P(Wd < 0, Sd ≥ 0, Sd −Wd ≤ d−1/4)
≤ 2P(|Wd − Sd| > d−1/4) + P(−d−1/4 ≤Wd ≤ d−1/4).
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Using Markov’s inequality,

P(|Wd − Sd| > d−1/4) ≤ E|Wd − Sd|
d−1/4

=
E
∣∣∣ `2d
(1+σ2

d)(d−1)
− 1

1+σ2
d
σ2d
∑d

i=2 U
2
i + 1

(1+σ2
d)

3/2σ
3
d

∑d
i=2XiUi

∣∣∣
d−1/4

Also,

d1/4E

∣∣∣∣∣ `2d

(1 + σ2d)(d− 1)
− 1

1 + σ2d
σ2d

d∑
i=2

U2
i

∣∣∣∣∣
≤ d1/4E

( `2d

(1 + σ2d)(d− 1)
− 1

1 + σ2d
σ2d

d∑
i=2

U2
i

)2
1/2

= d1/4var

[
1

1 + σ2d
σ2d

d∑
i=2

U2
i

]1/2
=
`2d1/4

√
d− 1

(1 + σ2d)d
→ 0,

and

d1/4E

∣∣∣∣∣ 1

(1 + σ2d)
3/2

σ3d

d∑
i=2

XiUi

∣∣∣∣∣ ≤ `3(d− 1)d1/4

(1 + σ2d)
3/2d3/2

2

π
→ 0.

To compute P(−d−1/4 ≤Wd ≤ d−1/4), we use that given Xd,

Wd ∼ N

(
−

2 + σ2d
1 + σ2d

σ2d

d∑
i=2

X2
i +

`2d

(1 + σ2d)(d− 1)
,
(2 + σ2d)

2

(1 + σ2d)
3
σ2d

d∑
i=2

X2
i

)
.

Therefore,

P(−d−1/4 ≤Wd ≤ d−1/4) = E

Φ

d−1/4 +
2+σ2

d

1+σ2
d
σ2d
∑d

i=2X
2
i − `2d

(1+σ2
d)(d−1)√

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i




− E

Φ

−d−1/4 +
2+σ2

d

1+σ2
d
σ2d
∑d

i=2X
2
i − `2d

(1+σ2
d)(d−1)√

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i


 .

As d→∞,

±d−1/4 +
2+σ2

d

1+σ2
d
σ2d
∑d

i=2X
2
i − `2d

(1+σ2
d)(d−1)√

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i

−→ `

2
with probability 1.
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So, using Lebesgue’s dominated convergence theorem, we know that P(−d−1/4 ≤ Wd ≤
d−1/4)→ 0.

We return to the other term in (13):

E
∣∣∣∣−X1`

2

(
E [1 (Wd ≥ 0) | Xd]

(1 + σ2d)
2

− ϑw,τ (`)

2

)∣∣∣∣
≤ E[X2

1 ]1/2`2E

[(
E [1 (−Wd ≤ 0) | Xd]

(1 + σ2d)
2

− ϑw,τ (`)

2

)2
]1/2

,

using the Cauchy–Schwarz inequality. We have that

E [1 (−Wd ≤ 0) | Xd] = Φ

−
2+σ2

d

1+σ2
d
σ2d
∑d

i=2X
2
i + `2d

(1+σ2
d)(d−1)√

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i

→ Φ

(
− `

2

)
,

with probability 1. Therefore,

E

[(
E [1 (−Wd ≤ 0) | Xd]

(1 + σ2d)
2

− ϑw,τ (`)

2

)2
]1/2

→ 0,

using Lebesgue’s dominated convergence theorem, which concludes this part given that
E[X2

1 ] = 1.
There remains to prove that

E
∣∣∣∣d2τE [h′′(X1)

(Y1 −X1)
2

2
αideal(Xd,Yd) | Xd

]
− `2ϑw,τ (`)

2
h′′(X1)

∣∣∣∣→ 0,

in (11). We proceed as before with a Taylor expansion around x1 of αideal(xd,yd), viewed
as function of y1. This time it is less complicated because we write

αideal(xd,yd) = αideal(xd,y
∗
d) +

(
∂

∂y1
αideal(xd,yd)

∣∣∣∣
y1=w

)
(y1 − x1).

Using that M can be chosen such that |h′′| ≤ M , the triangle inequality, and that 0 ≤
exp(x)1(x < 0) ≤ 1 (see the partial derivative ∂

∂y1
αideal(xd,yd) (12)),

E
∣∣∣∣d2τE [h′′(X1)

(Y1 −X1)
2

2
αideal(Xd,Yd) | Xd

]
− `2ϑw,τ (`)

2
h′′(X1)

∣∣∣∣
≤ME

∣∣∣∣d2τE [(Y1 −X1)
2

2
| Xd

]
f1(Xd)− `2

ϑw,τ (`)

2

∣∣∣∣+
d2τ

2(1 + σ2d)
E[|W ||Y1 −X1|3].

From what we have seen before, we know that

d2τ

2(1 + σ2d)
E[|W ||Y1 −X1|3]→ 0.
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We also know that

E
[

(Y1 −X1)
2

2
| Xd

]
= E

[
σ4dX

2
1

2(1 + σ2d)
2
−

σ2dX1

1 + σ2d

√
σ2d

1 + σ2d
U1 +

σ2d
2(1 + σ2d)

U2
1 | Xd

]
.

Therefore, using the triangle inequality and that 0 ≤ f1(Xd) ≤ 1,

E
∣∣∣∣d2τE [(Y1 −X1)

2

2
| Xd

]
f1(Xd)− `2

ϑw,τ (`)

2

∣∣∣∣ ≤ `2E ∣∣∣∣ 1

2(1 + σ2d)
f1(Xd)−

ϑw,τ (`)

2

∣∣∣∣
+ d2τE

[
σ4dX

2
1

2(1 + σ2d)
2

]
.

We have that

d2τE
[

σ4dX
2
1

2(1 + σ2d)
2

]
=

`4

2d(1 + σ2d)
2
→ 0.

To conclude the proof, there thus remains to show that

E

∣∣∣∣∣ 1

1 + σ2d
E

[
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣∣→ 0.

We proceed similarly as before when we proved that

E

∣∣∣∣∣E
[
1

(
d∑
i=2

(Y 2
i −X2

i ) ≥ 0

)
| Xd

]
− Φ

(
− `

2

)∣∣∣∣∣ −→ 0,

when τ = 1/2.
Using the triangle inequality,

E

∣∣∣∣∣ 1

1 + σ2d
E

[
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

1 + σ2d
E

[
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]

−E

[
1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]∣∣∣∣∣
+ E

∣∣∣∣∣E
[

1 ∧ exp

(
1

2(1 + σ2d)

d∑
i=2

(Y 2
i −X2

i )

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣∣ .
The first term on the RHS converges to 0 given that 0 ≤ 1 ∧ exp(x) ≤ 1.

Given Xd, we saw that we can write

(Yi −Xi)(Yi +Xi) = −
2 + σ2d
1 + σ2d

σ2dX
2
i −

1

(1 + σ2d)
3/2

σ3dXiUi

+
(2 + σ2d)

(1 + σ2d)
3/2

σUiXi +
1

1 + σ2d
σ2dU

2
i .
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We define Sd :=
∑d

i=2 Y
2
i − X2

i and Wd := −2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i +

(2+σ2
d)

(1+σ2
d)

3/2σd
∑d

i=2 UiXi +

`2d
(1+σ2

d)(d−1)
. For the rest of the proof, we consider that τ = 1/2. If τ > 1/2, we can use the

same strategy as below, but with Wd := −2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i +

(2+σ2
d)

(1+σ2
d)

3/2σd
∑d

i=2 UiXi because

1
1+σ2

d
σ2d
∑d

i=2 U
2
i → 0. In this case, Wd has a conditional normal distribution whose mean is

−2+σ2
d

1+σ2
d
σ2d
∑d

i=2X
2
i and variance

(2+σ2
d)

2

(1+σ2
d)

3σ
2
d

∑d
i=2X

2
i . Both converge to 0 with probability 1,

but the mean converges quicker than the standard deviation, implying that the limit of the

explicit expression for E
[
1 ∧ exp

(
1

2(1+σ2
d)
Wd

)
| Xd

]
is 2Φ(0) = 1, which allows to conclude.

Let us return to the case τ = 1/2. Using the triangle inequality,

E
[∣∣∣∣E [1 ∧ exp

(
1

2(1 + σ2d)
Sd

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣]
≤ E

[∣∣∣∣E [1 ∧ exp

(
1

2(1 + σ2d)
Sd

)
| Xd

]
− E

[
1 ∧ exp

(
1

2(1 + σ2d)
Wd

)
| Xd

]∣∣∣∣]
+ E

[∣∣∣∣E [1 ∧ exp

(
1

2(1 + σ2d)
Wd

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣] .
We now show that each term vanishes. We start with the first one:

E
[∣∣∣∣E [1 ∧ exp

(
1

2(1 + σ2d)
Sd

)
| Xd

]
− E

[
1 ∧ exp

(
1

2(1 + σ2d)
Wd

)
| Xd

]∣∣∣∣]
≤ E

[∣∣∣∣1 ∧ exp

(
1

2(1 + σ2d)
Sd

)
− 1 ∧ exp

(
1

2(1 + σ2d)
Wd

)∣∣∣∣]
≤ 1

2(1 + σ2d)
E|Sd −Wd|,

using Jensen’s inequality and that the function 1∧ exp(x) is 1-Lipschitz continuous. It has
been proved previously that E|Sd −Wd| → 0.

Given Xd,
1

2(1 + σ2d)
Wd ∼ N

(
µd, s

2
d

)
,

with

µd := −
2 + σ2d

2(1 + σ2d)
2
σ2d

d∑
i=1

X2
i +

`2d

2(1 + σ2d)
2(d− 1)

,

and

s2d :=
(2 + σ2d)

2

4(1 + σ2d)
5
σ2d

d∑
i=1

X2
i .

Therefore,

E
[
1 ∧ exp

(
1

2(1 + σ2d)
Wd

)
| Xd

]
= Φ

(
µd
sd

)
+ exp

(
µd +

s2d
2

)
Φ

(
−sd −

µd
sd

)
→ 2Φ

(
− `

2

)
,
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with probability 1. Lebesgue’s dominated convergence theorem allows to establish that

E
[∣∣∣∣E [1 ∧ exp

(
1

2(1 + σ2d)
Wd

)
| Xd

]
− ϑw,τ (`)

∣∣∣∣]→ 0,

which concludes the proof.

A.5 Proof of Theorem 3

Proof [Theorem 3] We first prove that if

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)
1
Nd

∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]
≤ d2τ

N
1/2
d

%1(d)→ 0,

and

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d)→ 0,

then {Zd,MTM(t) : t ≥ 0} converges weakly towards the same Langevin diffusion {Z(t) : t ≥
0} as in Theorem 2, where %1(d) and %2(d) are explicitly defined below.

We saw in the proof of Theorem 2 that to prove a weak convergence towards a diffusion, it
is essentially sufficient to prove that the pseudo-generator of {Zd,MTM(t) : t ≥ 0} converges
towards the generator of the diffusion in the 1-norm. We thus first derive the pseudo-
generator of {Zd,MTM(t) : t ≥ 0}. It is defined as follows:

φd,MTM(t) := d2τE[h(Zd,MTM(t+ 1/d2τ ))− h(Zd,MTM(t)) | FZd,MTM
(t)],

where h is a test function and FZd,MTM
(t) is the natural filtration associated to {Zd,MTM(t) :

t ≥ 0}. The Markov property, the fact that Zd,MTM(0) ∼ πd and that {Xd,MTM(m) : m ∈ N}
is time-homogeneous imply that for any t,

φd,MTM(t) = d2τE[h(Zd,MTM(t+ 1/d2τ ))− h(Zd,MTM(t)) | Zd,MTM(t)]

dist.
= d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd],

where the last equality is in distribution, Xd ∼ πd and YJ,1 is the first coordinate of YJ , a
proposal generated by MTM.

The convergence in the 1-norm of the pseudo-generator of {Zd,MTM(t) : t ≥ 0} towards
the generator of the diffusion thus corresponds to

E|d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd]−Gh(X1)|
≤ E|d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd]− d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]|

+ E|d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]−Gh(X1)|,

using the triangle inequality, where Y1 is the first coordinate of Yd ∼ Qw,σ(Xd, · ). We saw
in the proof of Theorem 2 that

E|d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]−Gh(X1)| → 0.

50



Improving multiple-try Metropolis with local balancing

Using the triangle inequality,

E|d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd]− d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]|
≤ E|d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd]

− d2τE[(h(YJ,1)− h(X1))αideal(Xd,YJ) | Xd]|
+ E|d2τE[(h(YJ,1)− h(X1))αideal(Xd,YJ) | Xd]

− d2τE[(h(Y1)− h(X1))αideal(Xd,Yd) | Xd]|.

We now prove that each of the two expectations on the RHS converges to 0 if

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)
1
Nd

∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]
≤ d2τ

N
1/2
d

%1(d)→ 0,

and

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d)→ 0.

We start with the second one. Given any realisation xd, we have an explicit expression for
the conditional expressions and use them; we thus use the notation Exd . Using Proposition 1,

|Exd [(h(YJ,1)− h(x1))αideal(xd,YJ)]− Exd [(h(Y1)− h(x1))αideal(xd,Yd)]|

≤
∫
|h(y1,1)− h(x1)|αideal(xd,y1)

∣∣∣∣∣ w(xd,y1)
1
Nd

∑Nd
i=1w(xd,yi)

− w(xd,y1)∫
w(xd,y1) qσd(xd,y1) dy1

∣∣∣∣∣
×

Nd∏
i=1

qσd(xd,yi) dy1:Nd

≤ 2MExd

∣∣∣∣∣ w(xd,Y1)
1
Nd

∑Nd
i=1w(xd,Yi)

− w(xd,Y1)

Exd [w(xd,Y1)]

∣∣∣∣∣ ,
using Jensen’s inequality and the triangle inequality, along with the fact that there exists a
positive constant M such that |h| ≤M , where y1,1 is the first coordinate of y1.

Regarding the first one,

E|d2τE[(h(YJ,1)− h(X1))α(Xd,YJ) | Xd]− d2τE[(h(YJ,1)− h(X1))αideal(Xd,YJ) | Xd]|
≤ 2ME[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|],

using Jensen’s inequality and the triangle inequality, along with the fact that |h| ≤M .
Therefore, if

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)
1
Nd

∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]
≤ d2τ

N
1/2
d

%1(d)→ 0,

and

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d)→ 0,
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then {Zd,MTM(t) : t ≥ 0} converges weakly towards {Z(t) : t ≥ 0}.
We now prove that each of these two expectations converges to 0. We first prove that

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)
1
Nd

∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]
≤ d2τ

N
1/2
d

%1(d), (14)

and next we prove that

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d). (15)

We have that

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]

= E

[
E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣ | Xd

]]
.

For any realisation xd, we have an explicit expression for the conditional expectation and
therefore write it as follows:

Exd

[
d2τ

∣∣∣∣∣ w(xd,Y1)∑Nd
i=1w(xd,Yi)

− w(xd,Y1)

Exd [w(xd,Y1)]

∣∣∣∣∣
]

= Exd

[
d2τ

∣∣∣∣∣ w(xd,xd + σdU1)∑Nd
i=1w(xd,xd + σdUi)

− w(xd,xd + σdU1)

Exd [w(xd,xd + σdU1)]

∣∣∣∣∣
]
,

using that Yi ∼ qσd(xd, · ) is equal in distribution to xd + σdUi with Ui := (Ui,1, . . . , Ui,d),
Ui,1, . . . , Ui,d being d (conditionally) independent standard normal random variables. We
prove the result for the case w(xd,yd) = π(yd)/π(xd); the case w(xd,yd) =

√
π(yd)/π(xd)

is proved similarly.
Using the definition of the GB weight function and the Cauchy–Schwarz inequality,

Exd

[
d2τ

∣∣∣∣∣ w(xd,xd + σdU1)∑Nd
i=1w(xd,xd + σdUi)

− w(xd,xd + σdU1)

Exd [w(xd,xd + σdU1)]

∣∣∣∣∣
]

= Exd

d2τ
∣∣∣∣∣∣
πd(xd + σdU1)

(
1
Nd

∑Nd
i=1 πd(xd + σdUi)− Exd [πd(xd + σdU1)]

)
1
Nd

∑Nd
i=1 πd(xd + σdUi)Exd [πd(xd + σdU1)]

∣∣∣∣∣∣


≤ d2τExd

( πd(xd + σdU1)
1
Nd

∑Nd
i=1 πd(xd + σdUi)

)2
1/2

× Exd

( 1

Nd

Nd∑
i=1

πd(xd + σdUi)

Exd [πd(xd + σdU1)]
− 1

)2
1/2

.
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We analyse these two terms separately. First,

Exd

( πd(xd + σdU1)
1
Nd

∑Nd
i=1 πd(xd + σdUi)

)2
1/2

= Exd


 exp

(
−1

2

∑d
j=1(xj + σdU1j)

2
)

1
Nd

∑Nd
i=1 exp

(
−1

2

∑d
j=1(xj + σdUij)2

)
2

1/2

≤ Exd

exp

−2σ2d

d∑
j=1

(U1j + xj/σd)
2

1/4

× Exd

 1

Nd

Nd∑
i=1

exp

−σ2d
2

d∑
j=1

(Uij + xj/σd)
2

−41/4

≤ Exd

exp

−2σ2d

d∑
j=1

(U1j + xj/σd)
2

1/4

Exd

exp

2σ2d

d∑
j=1

(U1j + xj/σd)
2

1/4

=
exp

(
− ‖xd‖2

2(1+4σ2
d)

)
(1 + 4σ2d)

d/8

exp
(
‖xd‖2

2(1−4σ2
d)

)
(1− 4σ2d)

d/8
=

exp
(
4σ2
d‖xd‖

2

1−16σ4
d

)
(1 + 4σ2d)

d/8(1− 4σ2d)
d/8

,

using the Cauchy–Schwarz inequality, Proposition 4, and the explicit expression of the
moment generating function of a non-central chi-squared distribution. Note that

Exd

exp

2σ2d

d∑
j=1

(U1j + xj/σd)
2


exists for large enough d; it more precisely exists when 4σ2d < 1.

We now turn to the other term:

Exd

( 1

Nd

Nd∑
i=1

πd(xd + σdUi)

Exd [πd(xd + σdU1)]
− 1

)2
1/2

=
1

N
1/2
d

varxd

[
πd(xd + σdU1)

Exd [πd(xd + σdU1)]

]1/2

≤ 1

N
1/2
d

Exd

[
exp

(
−
∑d

j=1(xj + σdU1j)
2
)]1/2

Exd

[
exp

(
−1

2

∑d
j=1(xj + σdU1j)2

)]
=

1

N
1/2
d

(1 + σ2d)
d/2

(1 + 2σ2d)
d/4

exp

(
σ2d‖xd‖2

2(1 + 2σ2d)(1 + σ2d)

)
.
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Putting all that together yields

E

[
d2τ

∣∣∣∣∣ w(Xd,Y1)∑Nd
i=1w(Xd,Yi)

− w(Xd,Y1)

E[w(Xd,Y1) | Xd]

∣∣∣∣∣
]

≤ d2τ

N
1/2
d

(1 + σ2d)
d/2

(1 + 2σ2d)
d/4(1− 16σ4d)

d/8
E
[
exp

(
4σ2d‖Xd‖2

(1− 16σ4d)

)
exp

(
σ2d‖X‖2

2(1 + 2σ2d)(1 + σ2d)

)]

=
d2τ

N
1/2
d

(1 + σ2d)
d/2

(1 + 2σ2d)
d/4(1− 16σ4d)

d/8
E
[
exp

(
σ2d(9 + 24σ2d)‖X‖2

2(1− 16σ4d)(1 + 2σ2d)(1 + σ2d)

)]

=
d2τ

N
1/2
d

(1 + σ2d)
d/2

(1 + 2σ2d)
d/4(1− 16σ4d)

d/8

(
1−

σ2d(9 + 24σ2d)

(1− 16σ4d)(1 + 2σ2d)(1 + σ2d)

)−d/2
,

using the explicit expression of the moment generating function of a chi-squared distribution.
Note that the expectation in the penultimate line exists for large enough d.

When τ ≥ 1/2,

%1(d) :=
(1 + σ2d)

d/2

(1 + 2σ2d)
d/4(1− 16σ4d)

d/8

(
1−

σ2d(9 + 24σ2d)

(1− 16σ4d)(1 + 2σ2d)(1 + σ2d)

)−d/2
converges to a constant. So the expectation converges to 0 if

Nd = d4τ(1+ρ),

with any ρ > 0.
When w(xd,yd) =

√
πd(yd)/πd(xd), the terms are different, but the speed is the same.

Therefore having τ = 1/2 with Nd = d4τ(1+ρ) also makes the expectation vanish, but we can
also use τ = 1/6 with Nd = (1 + ν)d to make the expectation vanish, ν being any positive
constant.

There remains to prove the bound in (15), that is

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ d2τ

N
1/2
d

%2(d).

We first use that the function 1 ∧ x is 1-Lipschitz continuous:

E[d2τ |α(Xd,YJ)− αideal(Xd,YJ)|] ≤ E[d2τ |r(Xd,YJ)− rideal(Xd,YJ)|],

where

r(Xd,YJ) :=

πd(YJ) qσd(YJ ,Xd)w(YJ ,Xd)

/(∑Nd−1
i=1 w(YJ ,Zi) + w(YJ ,Xd)

)
πd(Xd) qσd(Xd,YJ)w(Xd,YJ)

/(∑Nd
i=1w(Xd,Yi)

) ,

and

rideal(Xd,YJ) :=
πd(YJ)Qw,σd(YJ ,Xd)

πd(Xd)Qw,σd(Xd,YJ)
.
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Recall that

Qw,σd(xd,yd) :=
w(xd,yd) qσd(xd,yd)∫
w(xd,yd) qσd(xd,yd) dyd

.

Using Proposition 1, we can write E[d2τ |r(Xd,YJ)− rideal(Xd,YJ)|] as E[d2τ |r(Xd,Y1)−
rideal(Xd,Y1)|], where the latter expectation is computed with respect to the following PDF:

πd(xd)
w(xd,y1)

1
Nd

∑Nd
i=1w(xd,yi)

Nd∏
i=1

qσd(xd,yi)

Nd−1∏
i=1

qσd(y1, zi).

This means that the expectation E[d2τ |r(Xd,Y1)− rideal(Xd,Y1)|] can be written as

Ẽ

[
d2τ

∣∣∣∣∣ w(Y1,Xd)
1
Nd

∑Nd−1
i=1 w(Y1,Zi) + w(Y1,Xd)

− w(Y1,Xd)

EY1 [w(Y1,Xd)]

EXd
[w(Xd,Y1)]

1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣
]
,

with respect to a PDF given by

πd(y1)

Nd∏
i=2

qσd(xd,yi)

Nd−1∏
i=1

qσd(y1, zi) qσd(y1,xd),

where EY1 [w(Y1,Xd)] is a fonction of the random variable Y1 for which any realisation y1

is mapped to ∫
w(y1,xd) qσd(y1,xd) dxd;

EXd
[w(Xd,Y1)] is defined analogously. We noted a change of PDF in the expectation by

using the notation “ Ẽ ”.
Using the triangle inequality,

Ẽ

[
d2τ

∣∣∣∣∣ w(Y1,Xd)
1
Nd

∑Nd−1
i=1 w(Y1,Zi) + w(Y1,Xd)

− w(Y1,Xd)

EY1 [w(Y1,Xd)]

EXd
[w(Xd,Y1)]

1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣
]

≤ Ẽ

[
d2τ

∣∣∣∣∣ w(Y1,Xd)
1
Nd

∑Nd−1
i=1 w(Y1,Zi) + w(Y1,Xd)

− w(Y1,Xd)

EY1 [w(Y1,Xd)]

∣∣∣∣∣
]

+ Ẽ

[
d2τ

∣∣∣∣∣ w(Y1,Xd)

EY1 [w(Y1,Xd)]
− w(Y1,Xd)

EY1 [w(Y1,Xd)]

EXd
[w(Xd,Y1)]

1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣
]
.

The first expectation on the RHS can be seen as an expectation with respect to the PDF
πd(y1)

∏Nd−1
i=1 qσd(y1, zi) qσd(y1,xd); so this expectation is equal to that in (14) and it thus

converges to 0 under the same conditions.
For the other one, we have that

Ẽ

[
d2τ

∣∣∣∣∣ w(Y1,Xd)

EY1 [w(Y1,Xd)]
− w(Y1,Xd)

EY1 [w(Y1,Xd)]

EXd
[w(Xd,Y1)]

1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣
]

= Ẽ

[
d2τ

w(Y1,Xd)

EY1 [w(Y1,Xd)]

1
1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣ 1

Nd

Nd∑
i=1

w(Xd,Yi)− EXd
[w(Xd,Y1)]

∣∣∣∣∣
]
.
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This expectation can be seen as an expectation with respect to the PDF

πd(y1)

Nd∏
i=2

qσd(xd,yi) qσd(y1,xd) = π(y1)

Nd∏
i=1

qσd(xd,yi),

using that qσd is symmetric. We prove the result for the case w(xd,yd) = πd(yd)/πd(xd);
the case w(xd,yd) =

√
πd(yd)/πd(xd) is proved similarly. For any realisation y1, we have

that

w(y1,Xd)

Ey1 [w(y1,Xd)]
=

πd(Xd)

1
(2π)d/2

Ey1

[
exp

(
−σ2

d
2

∑d
j=1(U1j + y1j/σd)2

)]
=

πd(Xd)

(2π)−d/2(1 + σ2d)
−d/2 exp

(
− 1

2(1+σ2
d)

∑d
j=1 y

2
1j

) ,
using that qσd(xd, · ) is a normal distribution, where, as previously, U11, . . . , U1Nd are (con-
ditionally) independent standard normal random variables. We can thus rewrite the expec-
tation

Ẽ

[
d2τ

w(Y1,Xd)

EY1 [w(Y1,Xd)]

1
1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣ 1

Nd

Nd∑
i=1

w(Xd,Yi)− EXd
[w(Xd,Y1)]

∣∣∣∣∣
]

as

≈
E

d2τ (1 + σ2d)
d/2

exp
(
− σ2

d

2(1+σ2
d)
‖Y1‖2

)
1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣ 1

Nd

Nd∑
i=1

w(Xd,Yi)− EXd
[w(Xd,Y1)]

∣∣∣∣∣
 ,

where the expectation is with respect to the PDF πd(xd)
∏Nd
i=1 qσd(xd,yi). Using the defi-

nition of the GB weight function,

≈
E

d2τ (1 + σ2d)
d/2

exp
(
− σ2

d

2(1+σ2
d)

∑d
j=1 Y

2
1j

)
1
Nd

∑Nd
i=1w(Xd,Yi)

∣∣∣∣∣ 1

Nd

Nd∑
i=1

w(Xd,Yi)− EXd
[w(Xd,Y1)]

∣∣∣∣∣


=
≈
E

d2τ (1 + σ2d)
d/2

exp
(
− σ2

d

2(1+σ2
d)

∑d
j=1 Y

2
1j

)
1
Nd

∑Nd
i=1 exp

(
−1

2

∑d
j=1 Y

2
ij

)
×

∣∣∣∣∣∣ 1

Nd

Nd∑
i=1

exp

−1

2

d∑
j=1

Y 2
ij

− EXd

exp

−1

2

d∑
j=1

Y 2
1j

∣∣∣∣∣∣
 .

We omit the ≈ above
≈
E for the rest of the proof to simplify the notation and note that

for the rest of the proof the random variables are such that Xd ∼ πd and Y1, . . . ,YNd are
conditionally independent given Xd with a distribution given by Yi ∼ N (Xd, σ

2
dId).
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We have that

E

 exp
(
− σ2

d

2(1+σ2
d)

∑d
j=1 Y

2
1j

)
1
Nd

∑Nd
i=1 exp

(
−1

2

∑d
j=1 Y

2
ij

)
×
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Nd

Nd∑
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2
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Y 2
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2
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Y 2
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= E

E
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(
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d

2(1+σ2
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∑d
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2
1j

)
1
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∑Nd
i=1 exp
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−1

2
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2
ij

)
×
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Nd
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exp
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2
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j=1

Y 2
ij

− EXd

exp

−1

2

d∑
j=1

Y 2
1j

∣∣∣∣∣∣ | Xd

 .

Given any realisation xd, we have an explicit expression for the conditional expectation
and therefore write it as follows:

Exd

 exp
(
− σ2

d

2(1+σ2
d)

∑d
j=1(xj + σdU1j)

2
)

1
Nd

∑Nd
i=1 exp

(
− 1

2

∑d
j=1(xj + σdUij)2

)
×
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Nd
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i=1

exp

−1

2

d∑
j=1

(xj + σdUij)
2

− Exd

exp

−1

2

d∑
j=1

(xj + σdU1j)
2
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≤ Exd

exp

− σ2
d

1 + σ2
d

d∑
j=1

(xj + σdU1j)
2

 1

Nd

Nd∑
i=1

exp

−1

2
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j=1

(xj + σdUij)
2
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× Exd


 1
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exp
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2
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2

− Exd

exp
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2

d∑
j=1

(xj + σdU1j)
2

2

1/2

using that Yi ∼ qσd(xd, · ) is equal in distribution to xd + σdUi and the Cauchy–Schwarz
inequality.
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We analyse the two terms on the RHS separately. First,

Exd

exp

− σ2d
1 + σ2d

d∑
j=1

(xj + σdU1j)
2

 1

Nd

Nd∑
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exp
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−21/2

≤ Exd

exp
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)d/8 exp
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‖xd‖2
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)
(
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using the Cauchy–Schwarz inequality, Proposition 4, and the expression for the moment
generating function of a non-central chi-squared distribution. Note that

Exd

exp

2σ2d

d∑
j=1

(xj/σd + U1j)
2



exists for large enough d; it more precisely exists when 4σ2d < 1.
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Second,

Exd

 1

Nd

Nd∑
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varxd
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2
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=
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N
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2(1+2σ2

d)

)
(1 + 2σ2d)

d/4
.

Putting all the results above together yields
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1
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exp
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2
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∣∣∣∣∣∣


≤ d2τ

N
1/2
d

(1 + σ2d)
d/2(

1 +
8σ4
d
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d

)d/8 (
1− 4σ2d

)d/8
(1 + 2σ2d)

d/4

E
[
exp

(
3σ2d‖Xd‖2

(1− 4σ2d)(1 + 2σ2d)
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=
d2τ

N
1/2
d

(1 + σ2d)
d/2(

1 +
8σ4
d
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d/4
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1− 6σ2
d

(1−4σ2
d)(1+2σ2

d)

)d/2
using the explicit expression for the moment generating function of a chi-squared distribu-
tion. Note that the expectation in the penultimate line exist for large enough d. The last
term, seen as a function of d, behaves as that in the bound (14), and thus converges to 0
under the same conditions. Note that

%2(d) :=
(1 + σ2d)

d/2

(1 + 2σ2d)
d/4(1− 16σ4d)

d/8

(
1−

σ2d(9 + 24σ2d)
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+
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)d/2 .
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