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Abstract

We introduce two block coordinate descent algorithms for solving optimization problems
with ordinary differential equations (ODEs) as dynamical constraints. In contrast to prior
algorithms, ours do not need to implement sensitivity analysis methods to evaluate loss
function gradients. They result from the reformulation of the original problem as an equiv-
alent optimization problem with equality constraints. In our first algorithm we avoid
explicitly solving the ODE by integrating the ODE solver as a sequence of implicit con-
straints. In our second algorithm, we add an ODE solver to reset the estimate of the ODE
solution, but no sensitivity analysis method is needed. We test the proposed algorithms
on the problem of learning the parameters of the Cucker-Smale model. The algorithms
are compared with gradient descent algorithms based on ODE solvers endowed with sen-
sitivity analysis capabilities. We show that the proposed algorithms are at least 4x faster
when implemented in Pytorch, and at least 16x faster when implemented in Jax. For large
versions of the Cucker-Smale model, the Jax implementation is thousands of times faster.
Our algorithms generate more accurate results both on training and test data. In addition,
we show how the proposed algorithms scale with the number of optimization variables, and
how they can be applied to learning black-box models of dynamical systems. Moreover,
we demonstrate how our approach can be combined with approaches based on sensitivity
analysis enabled ODE solvers to reduce the training time.
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1. Introduction

Various engineering applications in system design, control, or diagnosis are formulated as
optimization problems with dynamical constraints. The most common mathematical mod-
els to describe system dynamics include ordinary differential equations (ODEs), differential
algebraic equations (DAEs), or partial differential equations (PDEs). Such models rarely
have closed-form solutions, requiring numerical approximation of their solutions via solvers.
Computing gradients of loss functions requires using sensitivity analysis techniques to de-
termine the changes in the model dynamics as the optimization parameters are varied.
Dickinson and Gelinas (1976), and Cao et al. (2002) introduced the direct and adjoint sen-
sitivity analysis methods, respectively. In direct methods, the sensitivity of the solution
of an ODE ẋ = f(x; θ), where x and θ are the state vector and the model parameters,
respectively, is explicitly computed by solving an associated ODE defined in terms of the
Jacobian of the map f(x; θ). The direct method works well when the number of optimiza-
tion parameters θ is small, but does poorly as the size of θ increases. In contrast, using the
adjoint method there is no need to explicitly compute the sensitivity of the state x with
respect to θ. The gradient of the loss function is computed by solving the adjoint ODE that
scales linearly with the size of the state vector.

Recently, deep learning platforms such as Pytorch (Paszke et al. (2017)) or Jax (Brad-
bury et al. (2018)) were endowed with capability to include ODEs in their models. Comput-
ing gradients of loss functions over ODE solutions requires implementing sensitivity analysis
methods (direct or adjoint) in the computational structure of these platforms. Regardless
of the approach, as the complexity of these dynamical models grows so does the computa-
tional cost to solve them. Moreover, the time required to solve ODEs depends on the type
of solver used (e.g., fixed/adaptive step, explicit/implicit) and on the numerical stability
of the ODE. The latter is determined by the parameters explored during the optimization
process and, at times, can destabilize the main ODE, or the ODE needed to be solved in
the direct or adjoint methods. In this paper we introduce algorithms that remove the need
to solve ODEs induced by direct or adjoint sensitivity analysis methods. Consequently,
our algorithms are faster, since at most we have to solve only the main ODE. We are par-
ticularly interested in how the dimension of the state vector affects the computationally
complexity of the optimization process. The reason for such an interest is that in applica-
tions such as model-based diagnosis we often use single or double fault assumptions that
require estimating a small number of parameters compared the state dimension.

We first formulate the optimization problem with dynamical constraints. Let x ∈ Rn
denote a state vector that satisfies an ODE ẋ = f(x; θ), where θ ∈ Rp is a set of parameters
of the ODE that also serve as optimization parameters for the learning problem. Let
y = h(x) ∈ Rm be a vector representing indirect observations of the state vector x. We
denote by x̂(θ) = [x̂1(θ), x̂2(θ), . . . , x̂N (θ)] and by ŷ = H(x̂) = [ŷ1, ŷ2, . . . , ŷN ] the solution
of the ODE and its corresponding outputs, respectively, at time samples T = {ti}Ni=0, with
h = ti+1 − ti. Let L(ŷ(x̂(θ))) = (L ◦ ŷ ◦ x)(θ) = L̄(θ) be a scalar loss function (e.g., mean
square error). Then an optimization problem with dynamical constraints can be expressed
as

min
θ
L̄(θ), (1)
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where x̂(θ) = ODESolver(θ;x0), x0 is the initial condition of the ODE, and ODESolver

generates the solution of the ODE at time instants T . A first order gradient descent
algorithm to solve (1) is given by

θk+1 = θk − α∇θL̄(θk), (2)

where ∇θL̄(θ) is the gradient of the loss function with respect to the vector of parameters
θ. The loss function gradient can be explicitly written as:

∇θL̄(θk) =

[
∂x̂

∂θ
(θk)

]T [∂ŷ
∂x̂

(x̂k)

]T
∇ŷL(ŷk),

where ∂x̂
∂θ and ∂ŷ

∂x̂ are the Jacobian of the states with respect to θ, and of the outputs with
respect to the states, respectively, and where x̂k = x̂(θk) and ŷk = H(x̂k). We summarize
the iteration (2) in Algorithm 1.

Algorithm 1 Gradient Descent with Sensitivities-Enabled ODE Solver.

Require: α: Stepsize
Require: x0: Initial state vector
Require: θ0: Initial parameter vector
k ← 0
while θk not converge do
k ← k + 1
θk ← θk−1 − α∇θL̄(θk−1)

end while
return θk

In direct sensitivity analysis methods, key to the implementation of the gradient descent
algorithm is the evaluation of the Jacobian of the state vector with respect to θ. This quan-
tity reflects the sensitivity of the state with respect to the vector of parameters. To avoid
using numerical approximations when evaluating ∂x

∂θ , ODE solvers were augmented with the
capability to compute sensitivities of the solution x(t) with respect to θ. For example, the
SUNDIALS software family, introduced by Gardner et al. (2022); Hindmarsh et al. (2005),
with DAE solvers such as CVODES and IDAS, include both direct and adjoint-based ap-
proaches to compute sensitivities. When improving a model to account for behavior that is
not captured in an initial model, as discussed in Psichogios and Ungar (1992); Meleshkova
et al. (2021), one approach is to hybridize the ODE by augmenting it with new representa-
tions such as neural networks (NNs). Training the parameters of the NN would require the
implementation of the learning problem on a deep learning (DL) platform such as Pytorch or
Jax. Currently, the algorithms in the SUNDIALS library are not directly integrated with
DL platforms. Such platforms are of interest, since the optimization algorithm can take
advantage of the automatic differentiation (AD) feature when computing gradients of loss
functions. Recently, DL platforms were endowed with capabilities that include ODE-based
layers. For example, Chen et al. (2018) used the adjoint method to compute the gradient of
the loss function, by extending the original ODE with an additional ODE representing the
adjoint variable dynamics. Similar efforts to extend Jax with ODE simulation capabilities
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were made by Hessel et al. (2020). Regardless of the direct or adjoint approach to account
for state sensitivities, as the size of the state vector increases, the evaluation of the loss
function gradient will be more costly: at least linear in the state dimension, even when
discounting the sometimes unpredictable numerical stability of the ODE solvers.

We introduce two block coordinate descent algorithms (Bertsekas (1999)) that do not
require sensitivity analysis methods to compute loss function gradients. The proposed
algorithms are based on implicit constraints derived from the ODE and can be easily ex-
tended to dynamical models represented as DAEs. More importantly, they support batch
executions over time samples that can be efficiently executed on GPUs. For a vector
x = x0:N = [x0;x1;x2 . . . ;xN ] ∈ Rn(N+1), x1:N is the vector x without x0, and x0:N−1 is the
vector x without the last entry xN . For a function f(x), f(x0:N ) = [f(x0); f(x1) . . . ; f(xN )].
We introduce the residual function r(x, θ) : Rn(N+1)+p → RnN derived from the application
of direct collocation methods. The residual function measures how close a sequence of state
vectors x is to a solution of the ODE for which the residual function is defined. We give an
example of such a residual function in Section 2. In addition to the residual function, we
define the loss function F (x, θ) = L̃(x) + 1

2‖r(x, θ)‖
2, where L̃(x) = (L ◦ y)(x).

Algorithm 2 Block coordinate gradient descent with residual functions based on implicit
constraints.

Require: αx, αθ: Stepsizes
Require: r(x, θ): Residual function as implicit dynamical constraints
Require: x0: Initial state vector
Require: θ0: Initial parameter vector
x0 ← ODESolver(θ0;x0)
k ← 0
while θk, xk not converge do
k ← k + 1
xk ← xk−1 − αx∇xF (xk−1, θk−1)
θk ← θk−1 − αθ∇θF (xk, θk−1)

end while
return xk, θk

The proposed algorithms are described in Algorithms 2 and 3. ODESolver is a solver
that does not compute the sensitivities of the state with respect to the parameters θ, thus,
it is inherently faster. In the next section, we will demonstrate that Algorithm 3 is an
approximation of Algorithm 1, where the difference comes from a redefinition of the residual
function. Both algorithms follow naturally from a gradient descent algorithm applied to
the optimization problem (1), reformulated to explicitly include equality constraints. The
vector of optimization variables xk generated by Algorithm 2 does not have to be an ODE
solution except when it has converged to the local minimizer. By using the residual function
r(x, θ), in effect, we embed an ODE solver within the learning problem, without the need
to explicitly solve ODEs. Such a formulation scales much better with the number of time
samples, since we no longer have to solve, in a sequential manner, for the ODE solution and
the state sensitivities.
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Algorithm 3 Block coordinate gradient descent with residual functions based on implicit
constraints and state reset.

Require: αx, αθ: Stepsizes
Require: r(x, θ): Residual function as implicit dynamical constraints
Require: x0: Initial state vector
Require: θ0: Initial parameter vector
k ← 0
while θk, xk not converge do
k ← k + 1
xk−1 ← ODESolver(θk−1;x0)
xk ← xk−1 − αx∇xF (xk−1, θk−1)
θk ← θk−1 − αθ∇θF (xk, θk−1)

end while
return xk, θk

Accuracy of direct collocation method: Direct collocation methods minimize the
error between the learned state trajectory and the actual ODE solution. Such local colloca-
tion methods are both computationally simple and efficient, and support batch executions.
The collocation used in Algorithms 2 and 3 uses a third order polynomial to represent the
ODE solution between two time instances. The resulting approximation error can be made
smaller be choosing a finer discretization stepsize h. Alternatively, we can use higher or-
der polynomials, e.g., fifth-order Gauss-Lobatto method described by Herman and Conway
(1996). Such a method, based on Gauss-Lobatto quadrature (also known as Radau quadra-
ture) is closely related to how ODE solvers compute solutions using the implicit Radau
numerical solver presented in Hairer and Wanner (1999). In other words, rather than sep-
arately solving the ODE, we encode the ODE solver within the optimization problem via
quadrature induced equality constraints, and jointly solve for both the parameter vector θ
and the ODE solution. One advantage of the ODE solvers introduced in Chen et al. (2018)
is the access to adaptive-step solvers. Residuals in Algorithm 3 can be formulated with an
adaptive step, as well. Indeed, since we solve an ODE at each step, the solution can provide
the step adaptive quadrature coefficients that can be used to construct the residual func-
tion. For example, the scipy.integrate.solve ivp function can return an OdeSolution

object that includes the time instants between which local interpolants are defined, and the
local interpolants. These local interpolants can be used to construct residual functions and
evaluate them at predetermined time instants.

Memory and time efficiency: The memory cost is a function of the number of
optimization variables (states and parameters) and the number of the residuals imposing
ODE solution constraints. Gradient evaluation depends only on the computational graph
of f(x; θ). Unlike Algorithm 1, since there is no explicit dependence between the state
variables (they are seen as independent optimization variables), state time causality has
no explicit impact. The time complexity of Algorithms 2 and 3 depends on the rate of
convergence of the gradient descent algorithm and the time per iteration. The rate of
convergence for various versions of the gradient descent algorithm is discussed in Reddi
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et al. (2018). The cost per iteration (epoch) plays a big factor in the total time to generate
a solution. Algorithm 2 does not require solving ODEs, thus is the fastest.

Mini-batch executions: Algorithms 2 and 3 can be run on mini-batches based on
time intervals: given a time window ∆, we can randomly select a time instant ti and update
the optimization variables based on a cost function defined using the optimization variables
included in the mini-batch, only. In other words, the loss function is defined based on
the state variables {xi, . . . , xi+∆}. The only requirement is to have the cost function L
separable in terms of time instants, requirement satisfied by a typical loss function such
as the mean square error. In the case of Algorithm 3, one option is to solve the ODE for
each epoch using the initial condition x0, followed by gradient evaluations on mini-batches.
Alternatively, we can reset the state by computing the solution of the ODE on the time
interval corresponding to the mini-batch, where the initial state is chosen as xi, the current
estimate for the state at time instant ti.

Loss function gradient: In the case of Algorithm 1, the gradient of the loss function
depends on the sensitivity of the state with respect of the optimization variables xθ = ∂x

∂θ .

In turn, the state sensitivity xθ evolves according to the ODE ẋθ = ∂f
∂xxθ + ∂f

∂θ . Therefore,

the stability of the gradient of the loss function depends on the Jacobian ∂f
∂x . A poor choice

of initial parameters θ can make the ODE unstable, leading to gradient explosion if the
stepsize of the gradient descent algorithm is too small. Alternatively, a very stable ODE
combined with a small ∂f

∂θ can lead to fast gradient decay, hence a slow convergence of the
gradient descent algorithm. Since both Algorithm 2 and 3 do not use explicitly the state
sensitivity in the evaluation of the loss functions, their evolution will not be as significantly
impacted by the dynamics of the state sensitivity.

Limitations: In Chen et al. (2018), the authors employ an ODE solver to generate
solutions in the latent space for training a time series generative model. During each
gradient update iteration, an initial condition in the latent space is randomly sampled
from a Gaussian distribution, with its mean and covariance matrix being determined by a
model that is continuously updated. This implies that the ODE solutions vary throughout
the training process. However, we cannot apply our approach to this learning problem
because, in addition to the various model parameters, the ODE solutions themselves are
optimization variables. Therefore, they are assumed to remain consistent throughout the
learning process.

Experiments: We evaluated Algorithms 1-3 on the problem of learning the parameters
of the particle-based Cucker-Smale ODE model. Various versions of this model can be found
in Carrillo et al. (2010). This model is nonlinear, and we can easily increase the state vector
size by increasing the number of particles. We will compare the accuracy of the algorithms
both on training and testing data, and the time per iteration (epoch). We also present loss
function results based on the ODE solutions for parameter values explored during the search
process. Such a loss function is more meaningful for comparison with Algorithm 1 since
Algorithm 2 does not necessarily generates ODE solutions during the optimization process.
We also demonstrate how our approach scales with the number of model parameters and
its effectiveness in learning the parameters of a black-box model, one that lacks a specific
structure, as seen in the case of the Cucker-Smale model. Furthermore, we illustrate how
our proposed algorithms can be combined with algorithms employing sensitivity analysis
enabled ODE solvers to speedup the learning process in an autoencoder training scenario.
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2. Algorithms

Problem (1) can be reformulated as an optimization problem with equality constraints of
the form

min
θ,x

L̃(x) (3)

such that: r̃(x, θ) = 0,

where L̃ = L ◦ y, r̃(x, θ) = x − x̂(θ) is the vector-valued residual function that quantifies
how far x is from the solution of the ODE x̂(θ) = ODESolver(θ;x0). Assuming that L̃(x)
attains minimum value at zero, (3) is equivalent to the unconstrained optimization problem

min
θ,x

L̃(x) +
1

2
‖r̃(x, θ)‖2. (4)

We later describe how we can deal with the case where L̃(x) does not attain its minimum
as zero. The unconstrained optimization problem (4) can be solved using a gradient descent
algorithm, where the iterative equations are given by

xk+1 = xk − αx

[
∇xL̃(xk) +

(
∂r̃

∂x
(xk, θk)

)T
r̃(xk, θk)

]
, (5)

θk+1 = θk − αθ

[(
∂r̃

∂θ
(xk, θk)

)T
r̃(xk, θk)

]
, (6)

where ∇xL̃(xk) =
(
∂y
∂x(xk)

)T
∇yL(y(xk)). The Jacobians of the residual function r̃ can

be explicitly written as:
∂r̃

∂x
= I,

∂r̃

∂θ
= −∂x̂

∂θ
,

where I is the identity matrix.
In the following, we recover Algorithm 1 by manipulating iterations (5)-(6). We make

a first modification in (6) to bring it closer to the iteration (2). Namely, we replace xk by
xk+1 resulting in

xk+1 = xk − αx

[
∇xL̃(xk) +

(
∂r̃

∂x
(xk, θk)

)T
r̃(xk, θk)

]
, (7)

θk+1 = θk − αθ

[(
∂r̃

∂θ
(xk+1, θk)

)T
r̃(xk+1, θk)

]
.

By replacing the residual function r̃ with the r defined in terms of implicit constraints,
we have obtained Algorithm 2, which can be interpreted as iteration steps in a coordinate
descent method, as described in Bertsekas (1999). This change is an intermediate step to
get to Algorithm 3. After this change, xk is not guaranteed to be a solution of the ODE.
We can enforce this by resetting the state at each iteration to a solution of the ODE, i.e.,
xk = x̂(θk). This enforcement can be accomplished with any ODE solver, and does not have
to compute the state sensitivities with respect to the vector of parameters. Thus, solving
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the ODE is faster since no additional equations accounting for the state sensitivities are
added. There are several effects of this second change. First, no term involving the residual
function r̃ appears in (7), since r̃(xk, θk) = 0. Second, the residual function evaluated at
(xk+1, θk) becomes

r̃(xk+1, θk) = −αx∇xL̃(xk),

while the Jacobian ∂r̃
∂θ (xk+1, θk) remains unchanged since it does not depend on x, i.e.,

∂r̃

∂θ
(xk+1, θk) =

∂x̂

∂θ
(θk).

Therefore, we obtain the new iterations

xk = ODESolver(θk;x0),

θk+1 = θk − α

[(
∂x̂

∂θ
(θk)

)T
∇xL̃(xk)

]
. (8)

where α = αθαx and (8) is exactly the iteration (2). Hence, unsurprisingly, we have
recovered the gradient descent algorithm for solving (1). It should be clear by now that
to avoid having to explicitly compute the sensitivities of the state vector with respect to
θ, we change the residual function r̃ by another residual function that does not have such
requirements. An example of such a residual function is based on the Hermite-Simpson
derivative collocation with trapezoid quadrature, discussed in Hargraves and Paris (1987),
and is given by

r(x, θ) = −x1:N + x0:N−1 +
h

6
[f(x0:N−1; θ) + f(x1:N ; θ) + 4f(xc; θ)] ,

where xc = 1
2 [x1:N + x0:N−1] + h

8 [f(x0:N−1; θ)− f(x1:N ; θ)]. The residual function is zero
when evaluated at a solution of the ODE. The evaluation of this residual function is very
efficient since batches of time instances can be executed in parallel.

Assuming Lipschitz continuity of f(x), we are guaranteed by the Picard–Lindelöf the-
orem found in Lindelöf (1894) that the ODE has a solution and it is unique. Hence by
replacing the residual function r̃(x, θ) with r(x, θ), we do not change the solution of (3).
Retracing the previous steps, where instead of using the residual function r̃, we use r, we
recover Algorithm 3. We note that since xk is a solution of the ODE, r(xk, θk) = 0, and
therefore ∇xF (xk, θk) = ∇xL̃(xk). The gradients and Jacobians that appear in Algorithm
2 and Algorithm 3 can be computed using automatic differentiation.

2.1 Enforcing the Residual Function Equality Constraints

If L̃ does not attain its minimum at zero, we need to make sure that the norm of the
residual function is forced to be as small as possible. We can achieve this by introduc-
ing a hyper-parameter λ that acts as a weight for the residual function. The new cost
function becomes F (x, θ) = L̃(x) + λ

2‖r(x, θ)‖
2 and we can do a hyper-parameter search

to reduce the magnitude of the residual function. A better approach is to update λ dur-
ing the optimization process, based on the magnitude of the residual function. A guided
strategy for updating online the weight function is based on a variant of the Augmented
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Lagrangian method introduced in Hestenes (1969) that employs the extended Lagragian
function: Lρ(x, θ, λ) = L(x)+λT r(x, θ)+ ρ

2‖r(x, θ)‖
2, for ρ > 0. In this method, we solve a

min-max optimization problem: minx,θ maxλ L(x, θ, λ). An extension of Algorithm 2 that
enforces the residual equality constraint is summarized in Algorithm 4.

Algorithm 4 Augmented Lagrangian method based on gradient descent iterations

Require: αx, αθ: Stepsizes
Require: r(x, θ): Residual function as implicit dynamical constraints
Require: x0: Initial state vector
Require: ρ > 0: Residual function norm weight
Require: θ0: Initial parameter vector
λ0: Initial Lagrange multiplier vector
x0 ← ODESolver(θ0;x0)
k ← 0
while θk, xk, λk not converge do
k ← k + 1
xk ← xk−1 − αx∇xLρ(xk−1, θk−1, λk−1)
θk ← θk−1 − αθ∇θLρ(xk, θk−1, λk−1)
λk ← λk−1 + ρr(xk, θk)

end while
return xk, θk

3. Experiments

We evaluated Algorithms 1 - 3 on the Cucker-Smale model describing the interaction be-
tween particles that include self-propelling, friction and attraction-repulsion phenomena.
It takes into account an alignment mechanism of the particles by averaging their relative
velocities with all the other particles. The strength of this averaging process depends on
the mutual distance. For N particles the model is described by the following dynamical
system:

ẋi = vi,

v̇i =
1

N

N∑
j=1

H(‖xi − xj‖)(vj − vi)−
1

N
∇U(‖xi − xj‖),

for i = 1, . . . , N , where xi and vi are the two-dimensional particle positions and velocities,
H(r) = 1

(1+r2)γ
is the communication rate, and U(r) = −cae−r/la + cre

−r/lr is the inter

particle potential energy. The parameter γ is a positive scalar, and ca, cr and la, lr are
the strength and the length of the attraction and repulsion, respectively. The number of
states is linear in the number of particles, i.e., 4N . The learning problem is defined as
follows: given the particle trajectories (i.e., time series of positions and velocities) learn the
parameters of model.

We tested the algorithms for various number of particles: N ∈ {5, 10, 20, 50, 100, 200}.
We used one time series as training data, generated with the same, random, initial param-
eters, for all cases. The training loss function is the sum of squared errors (SSE). The test
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data consists of model trajectories generated with random initial conditions. We compared
Algorithms 1 - 3 using four metrics: average iteration time, training loss function (i.e.,
SSE), training relative sum of squared error (RSSE) based on ODE solutions, and RSSE
on test data. We run the algorithm for 5k epochs and evaluated the four metrics for all
combinations of algorithms and number of particles. The RSSE metric is computed with
respect to the solution of the ODE for a particular instance of the model parameters gen-
erated during the optimization process. This way we can compare how far the solution of
the ODE is from the target trajectories. The total optimization time is computed as the
product between the average epoch time and the number of epochs. Since Algorithms 1 and
3 must solve ODEs, their epochs are computationally more expensive. We implemented the
three algorithms on both Pytorch and Jax and used their ODE solvers to generate ODE
solutions and state sensitivities, when needed. In particular, we used the adaptive step
Dopri5 ODE solver. The Jax implementation is faster since we took advantage of the just
in time compiling (JIT) feature. The training and testing were done on a PC with Intel 12
core Xeon 3.5 GHz CPU with 64 GB of RAM, and an NVIDIA GEFORCE RTX 2080 Ti
GPU card.

3.1 Pytorch Implementation

The Pytorch implementation details of the three algorithms are shown in Table 1. In

State update Parameter update ODE solver

Algorithm 1 X Adam (lr = 0.01) Dopri5

Algorithm 2 SGD (lr = 0.01) Adam (lr = 0.01) X

Algorithm 3 SGD (lr = 1) Adam (lr = 0.01) Dopri5

Table 1: Algorithms 1—3 Pytorch implementation details.

the case of Algorithm 2 we used SGD and Adam algorithms for updating the state and the
parameters, respectively. Both algorithm used a stepsize lr = 0.01. In the case of Algorithm
3, we used the same combination of algorithms, but the stepsize for SGD is lr = 1, so that
the product between the two stepsizes in 0.01. All experiments were executed on a GPU
device. We used the ODE solver in the torchdiffeq library for Algorithms 1 and 3. In the
case of Algorithm 1 we tested the performance of both direct and adjoint methods for the
sensitivity analysis. In what follows, we refer to optimization algorithms that use the direct
and adjoint methods, as Algorithm 1, direct, and Algorithm 1, adjoint, respectively. Both
options are provided by the torchdiffeq library. In the case of Algorithm 3, the ODE
solver was used to compute the ODE solution only, and not the state sensitivities. Table 2
shows the epoch time for each of the three algorithms for various number of particles. As
expected, Algorithm 3 average iteration time is smaller than Algorithm 1 iteration time,
since no sensitivities are computed. Algorithm 2 is at least 4x faster then Algorithm 1 since
it makes the best use of the parallel computations enabled by the GPU. The GPU was
used for all experiments related to Algorithm 1 resulting in rather flat average iteration
time. Slight improvements in time per epoch can be obtain if the CPU is used for small
number of particles. However, CPU usage does not scale with the number of particles. Not
unexpectedly, the implementation that uses the adjoint method is much slower since the
number of state variables dominate the number of parameters.

10



Sensitivity-Free Gradient Descent Algorithms

N=5 N=10 N=20 N=50 N=100 N=200

Algorithm 1, direct 0.463 0.602 0.594 0.565 0.606 0.614

Algorithm 1, adjoint 2.655 2.651 2.665 2.673 2.681 2.819

Algorithm 2 0.009 (50x) 0.008 (75x) 0.008 (74x) 0.011 (51x) 0.037 (16x) 0.155 (4x)

Algorithm 3 0.171 (3x) 0.188 (3x) 0.192 (3x) 0.179 (3x) 0.184 (3x) 0.279 (2x)

Table 2: Pytorch: Algorithms 1—3 average time per epoch in seconds. Improvements of
Algorithms 2 and 3 over the fastest version of Algorithm 1 are shown in parentheses.

Figure 1 shows the training loss for the three algorithms in logarithmic scale. Only the
training losses for Algorithms 2 and 3 are truly comparable since they have the same loss
function. We note that Algorithm 1’s loss function at the end of training is comparable
to that of Algorithm 3. The results show that Algorithm 2 has the best performance in
training, measured by the SSE value and the time it needed to reach the SSE value, and
it is followed by Algorithm 3. Algorithm 1 has the worst performance in training, however
since the loss function is defined with respect to a different residual function, we cannot
draw a definitive conclusion. More insights on the performance of the three algorithms
come from comparing the RSSE plots. The RSSE metrics are computed based on the
ODE solutions at the model parameter instances generated during the optimization process.
Figure 2 shows the RSSE plots of the three algorithms for various numbers of particles. All
observations we made about the SSE plots carry to this set of plots. Algorithms 2 and 3 are
superior to Algorithm 1 (both versions) in convergence time and best achieved RSSE value.
We evaluated the accuracy of the results against test data generated using 100 randomly
selected initial conditions. The average RSSE metrics for each case, are shown in Table
3. Similar to the training results, Algorithm 2 gives the most accurate results. Next most
accurate results are generated by Algorithm 3, followed by Algorithm 1.

N=5 N=10 N=20 N=50 N=100 N=200

Algorithm 1, direct 3.97× 10−5 2.42× 10−6 1.82× 10−6 7.26× 10−7 5.00× 10−7 4.32× 10−7

Algorithm 1, adjoint 3.98× 10−5 2.44× 10−6 1.85× 10−6 7.40× 10−7 5.12× 10−7 4.41× 10−7

Algorithm 2 1.65× 10−6 2.50× 10−7 1.77× 10−7 8.52× 10−8 3.70× 10−8 3.24× 10−8

Algorithm 3 3.65× 10−6 1.85× 10−7 3.18× 10−7 1.96× 10−6 2.37× 10−7 1.98× 10−7

Table 3: Pytorch: Algorithms 1—3 RSSE on test data.

3.2 Jax Implementation

We repeated the experiments using Jax implementations. One advantage using Jax is the
speedups enabled by JIT. The optimization algorithms implementation details are shown
in Table 4. In the case of Algorithm 2, for stability reasons, we changed the stepsizes for
the SGD and Adam algorithm, while making sure that their product is equal to the stepize
product used in the Pytorch implementation, i.e., 0.01. The times per iteration in the Jax
implementation are shown in Table 5. Similar to the Pythorch implementation, Algorithms
2 and 3 are much faster than Algorithm 1. In addition, the training losses for Algorithms
2 and 3, shown in Figures 3 and 4, are consistently smaller than Algorithm 1’s training
loss. Algorithm 1 uses the Jax provided ODE solver with the same Dopri5 integration
scheme, as in the Pytorch case. The sensitivity analysis in the ODE solver implementation
is based on the adjoint method. We note that even when using JIT, the time per iteration
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Figure 1: Pytorch: SSE training loss comparison for various number of particles.

State update Parameter update ODE solver

Algorithm 1 X Adam (lr = 0.01) Dopri5

Algorithm 2 SGD (lr = 0.01) Adam (lr = 0.01) X

Algorithm 3 SGD (lr = 0.1) Adam (lr = 0.1) Dopri5

Table 4: Algorithms 1—3 Jax implementation details.

of the Jax implementation of Algorithm 1 is significantly slower than that of the Pytorch
implementation using the direct method, but much faster that the adjoint version. In the
case of Algorithms 2 and 3, the time efficiency is dramatically better in Jax than in Pytorch,
mainly due to the use of the JIT feature.
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Figure 2: Pytorch: RSSE training loss comparison for various number of particles.

N=5 N=10 N=20 N=50 N=100 N=200

Algorithm 1, adjoint 0.935 0.973 1.243 1.526 1.728 1.896

Algorithm 2 0.0012 (x780) 0.0014 (x695) 0.0015 (x827) 0.0013 (x1173) 0.0014 (x1234) 0.0013 (x1458)

Algorithm 3 0.06 (x16) 0.06 (x16) 0.061 (x20) 0.062 (x25) 0.065 (x27) 0.072 (x27)

Table 5: Jax: Algorithms 1—3 average time per epoch in seconds. Improvements of Algo-
rithms 2 and 3 over Algorithm 1 are shown in parentheses.

We run the models learned using Algorithms 1, 2 and 3 on the same test data used in the
Pytorch case. The results are shown in Table 6, showing that Algorithm 2 fares better than
both Algorithms 1 and 3, while Algorithm 3 is comparable in accuracy to Algorithm 1. Note
that Algorithm 3 exhibits an oscillatory behavior near the local minima. Such a behavior
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Figure 3: Jax: SSE training loss comparison for various number of particles.

is less visible in the Pytorch case. We speculate that this behavior is induce, in part, by
the ODE solver implementations in Jax, combined with the adaptive nature of the gradient
scaling in Adam algorithm. An additional source of the oscillating behavior near the local
minima is the approximation error induced by the use of collocation methods to approximate
the ODE dynamics; error that can be reduced by using a finer time discretization scheme.

3.3 Sensitivity to the Initial Conditions of the Optimization Variables

We present experimental results demonstrating the sensitivity of the optimization algo-
rithms to the initial values of the optimization variables. These results and the results
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Figure 4: Jax: RSSE training loss comparison for various number of particles.

N=5 N=10 N=20 N=50 N=100 N=200

Algorithm 1 9.78× 10−5 5.31× 10−5 2.43× 10−5 2.10× 10−5 1.94× 10−5 1.94× 10−5

Algorithm 2 7.78× 10−5 6.74× 10−7 1.86× 10−7 1.40× 10−7 1.56× 10−7 1.46× 10−7

Algorithm 3 9.52× 10−5 2.29× 10−6 3.02× 10−5 2.43× 10−5 2.25× 10−5 2.17× 10−5

Table 6: Jax: Algorithms 1—3 RSSE on test data.

in the following sections are generated using Pytorch implementations. Specifically, we
examine this phenomenon in the context of 50 particles, comparing the performance of Al-
gorithms 1, 2 and 3. We use only the direct version of Algorithm 1. We sample random
initial values for the optimization variables from a uniform distribution, and we conduct
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Figure 5: Uncertainty quantification of loss metrics under random initial conditions for the
optimization variables. Dark color curves represent the mean metrics, while light color areas
is determined by the variances of the loss functions, over the random trials.

10 trials to learn the optimal parameters of the Cucker-Smale model. Our report includes
information on the uncertainty surrounding the SSE and RSSE metrics, as well as the distri-
butions of the learned parameters. We employ similar hyperparameters for the optimization
algorithms as outlined in the previous section. Figures 5 illustrate the impact of random
initial conditions on the uncertainty in the SSE and RSSE metrics. Notably, Algorithm
3 appears to exhibit higher sensitivity, in both metrics. Algorithm 2 has a rather small
uncertainty on the SSE loss. Although our metrics exhibit more variability in the training
results, the variability is concentrated at the lower values of the loss functions. Moreover,
the loss metrics of Algorithms 2 and 3 are not worse than the loss of Algorithm 1, even when
considering this variability. Note that both axes of the plots are logarithmic, thus when
plotted on decimal scale, the uncertainty of the loss functions would appear insignificant.

Figure 6 illustrates the uncertainty in the optimization variables after the final training
iteration, using box plots. With the exception of parameter γ, that is correctly estimated
by all algorithms, the remaining parameters do exhibit variability in their learned values.
However, this is not necessarily a surprise, since many values for the coefficients in the
exponential terms of the Cucker-Smale model can generate similar trajectories. This phe-
nomenon is clear in parameter la. Once la is large enough, increasing its value will produce
no significant changes in predictions . Figure 6d shows the histograms of the RSSE metric
on 100 test trajectories with random initial conditions, and over the trained models cor-
responding to the 10 trials. Algorithms 2 and 3 tend to outperform Algorithm 1, in the
majority of the tests.

3.4 Increasing the Number of Parameters in the Cucker-Smale Model

In the preceding section, we presented various statistics pertaining to the training algo-
rithms’ performance in learning five parameters of the Cucker-Smale model. In this section,
we present results obtained when the number of parameters scales quadratically with the
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Figure 6: Uncertainty quantification: (i) optimization variables boxplots after the last
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Figure 7: Training results for 200 particles and Cucker-Smale model with non-uniform γ
parameters.

number of agents of the model. We achieve this by introducing a modification to the γ
parameter in the definition of the communication rate, making it dependent on the inter-
action between pairs of agents. Consequently, the γ parameter becomes γi,j , where i and
j represent two distinct agents. For a model with N = 200 agents, this leads to a total of
N(N − 1)/2 = 4950 γ parameters.

We examine the performance of two algorithms: Algorithm 2, which employs block
coordinate gradient descent without state reset, and Algorithm 1, which utilizes gradient
descent with a sensitivity-enabled ODE solver. We investigate the scenario where N = 200,
and the details of the training experiments are provided in Table 7. Note that Algorithm 2
exhibits a computational speed advantage, being nearly 100 times faster than Algorithm 1.

Algorithm 1 direct Algorithm 2

# iterations 5000 5000

optim alg Adam Adam

learning rate 0.005 0.005

ODE solver Dopri5 X

avg iter time 0.45 sec 0.06 sec

Table 7: Cuker-Smale model training experiment for 200 particles and with non-uniform γ
parameters.

The decay of the SSE and RSSE metrics during training is depicted in Figures 7. As
expected, Algorithm 2 is faster and generates lower training losses by the end of the training
process.

We conducted tests on both models by comparing them against ground truth, test trajec-
tories generated around the initial condition of the trajectory used for training. Specifically,
we employed a Gaussian distribution centered at the (random) initial condition used to gen-
erate the training data, with a variance of 5. The objective is to assess the performance of
the two trained models under similar conditions. Algorithm 2 yielded an average RSSE of
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Figure 8: Training results for 200 particles and black box models.

approximately 3.6× 10−4 over 100 trials, while Algorithm 1 produced an average RSSE of
approximately 3.5 × 10−4. Although Algorithm 1 exhibited slightly better generalization
with a 10−5 improvement, it operated at nearly 100 times slower speed. This disparity in
time performance becomes even more pronounced when implementing Algorithm 2 using
the JIT feature, as demonstrated in previous experiments.

3.5 Learning Black-Box models for the Cucker-Smale Dynamics

In this section, we conduct a comparative analysis of Algorithms 1 and 3 in the context of
learning black box models for the Cucker-Smale dynamics. We are specifically focusing on
a scenario where N = 200, resulting in a state dimension of 800. To represent the right-
hand side of the ODE, we employ a neural network with two hidden layers, each of which
is designed to match the state vector dimension, i.e., 800. We utilize the tanh activation
function for these layers. The training data used is consistent with that of the previous
sections. Table 8 provides an overview of the training experiment details, while Figures 8
illustrate the training results of the black-box models. The training process was executed
on a GPU. When examining both the SSE and RSSE metrics, it becomes evident that
Algorithm 3 outperforms Algorithm 1 in terms of absolute training time and loss metrics.

Algorithm 1 direct Algorithm 3

# iterations 4000 4000

optim alg Adam Adam

learning rate 0.0001 0.0001

ODE solver Dopri5 Dopri5 (state reset only)

avg iter time 0.45 sec 0.29 sec

Table 8: Black box model training experiment for 200 particles.

We conducted tests on the two models by comparing them against ground truth tra-
jectories generated by sampling around the initial conditions of the training trajectory.
Specifically, we employed a Gaussian distribution centered at the initial condition used to
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generate the training data, with a variance of 1. Given the high number of parameters in
the black-box model, we do not anticipate that the models will generalize well far from the
training trajectory. To enhance model generalization, we could consider utilizing a more
extensive dataset comprising numerous trajectories originating from various initial coordi-
nates as part of the training data. However, our primary objective in this context is to
evaluate the performance of the two trained models under similar conditions. Both algo-
rithms yielded an average RSSE metric of 0.111 when computed across 100 test trials. This
experiment demonstrates that, while there is no noticeable improvement in the test data
performance metric, Algorithm 3 exhibits greater speed and the potential for even greater
speed when utilizing the JIT feature.

3.6 A Hybrid Approach for Speeding up Learning Dynamical Models

The time needed by learning algorithms to converge to a (local) minimizer depends on
various factors, including the type of optimization algorithm (whether it is gradient-based,
gradient-free, or of the first or second order), problem complexity, and distance between
the initial values of the optimization variables and a local minima. While our proposed
algorithms are faster since they do not explicitly perform sensitivity analysis, they do in-
troduce approximation errors because they approximate ODE solutions using collocation
methods. We propose a hybrid approach in which we employ Algorithm 3 to compute an
initial estimate of the optimization variables. This estimate is then refined using Algorithm
1, which includes a sensitivity-enabled ODE solver. We compare the hybrid approach with
the scenario where only Algorithm 1 is used. We use training time and prediction accuracy
on test data as metrics for comparison. As an example, we adapted the approach for train-
ing time series generative models shown in Chen et al. (2018). The authors investigated
the ability of ODE models to extrapolate time series. The proposed architecture includes a
recurrent neural network (RNN) with 25 hidden units in the recognition network to output
the initial value of the latent trajectory, which is 4-dimensional. The latent space dynamics
are modeled with a one-hidden-layer network with 20 hidden units, and the decoder is a
neural network with one hidden layer containing 20 hidden units. Unlike the original im-
plementation, we learn an autoencoder instead of a variational autoencoder (VAE) to avoid
dealing with sample-based ODE solutions. We kept the architectures of the various neural
networks as described in Chen et al. (2018), except for the dimension of the output of the
RNN, which is 4 in our case, since we do not output a mean and variance. Additionally,
instead of optimizing the ELBO cost function typically used in VAE problems, we minimize
the MSE cost. We set the maximum number of iterations to 4000, and use Adam, with a
constant learning rate of 0.001, as optimization algorithm. We generated a dataset of 6000,
2-dimensional spirals, each starting at a different point, sampled at 200 equally-spaced time
steps. We use the first 3000 for training, and the remaining 3000 for testing.

For the hybrid scenario, we split the training process in two steps. We use Algorithm 3
for the first 1250 iterations, after which we switch to Algorithm 1, for the remaining 2750
iterations. Algorithm 1 runs a sensitivity-enabled ODE solver implementing the direct
method.

To test the trained models we use the first half of the time samples of the test trajecto-
ries for reconstructing the initial conditions of the latent trajectories. We use these initial
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Figure 9: Examples of reconstructed and predicted trajectories generated by models trained
using the hybrid approach and the approach that uses a sensitivity analysis enabled ODE
solver.

conditions to simulate the latent dynamics and produce trajectories in the latent space.
These latent trajectories are then passed through the decoder to reconstruct and predict
trajectories. The results are show in Table 9. Not unexpectedly, the hybrid approach is

Hybrid torchdiffeq odeint

avg iter time 0.31 sec 0.43 sec

total training time 1262 sec 1722 sec

MSE training 0.0164 0.05

RMSE reconstruction 0.175 0.320

RMSE prediction 0.241 0.213

Table 9: Comparison between the hybrid and the sensitivity-enabled ODE solver-based
(i.e., torchdiffeq) AE training and testing results.

faster since one iteration of Algorithm 3 is roughly 3x faster than one iteration of Algorithm
1. The hybrid approach provides a smaller training cost at the end of the training process,
and a smaller average reconstruction cost on test data. The implementation based on Algo-
rithm 1 does offer a better average prediction cost on test data. Examples of reconstructions
(red color) and predictions (blue color) of trajectories are shown in Figure 9. Note that we
do not reconstruct/predict the full trajectories, but a total of 200 samples: 100 samples for
reconstruction, and the next 100 samples for prediction. This example shows the potential
for significant training time reductions by first using a faster, but approximate optimization
algorithm to get close to a local minima. In other words, Algorithm 3 acts as a faster,
surrogate of Algorithm 1.
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4. Related Work

The authors of Chen et al. (2018) introduced the notion of “neural” ODE, where they
parameterized the right-hand side f of an ODE by a neural network. Their approach for
computing gradients of loss functions uses the adjoint method for implementing sensitivity
analysis, and avoids using backpropagation. Thus, it eliminates the memory cost and nu-
merical errors induced by differentiating through the operations of the forward pass. Chen
et al. (2018) made available a Pytorch library named torchdiffeq that enables composi-
tions of neural-ODEs with Pytorch layers. Moreover, the parameters of the resulting model
can be trained simultaneously. The library torchdiffeq includes both direct and adjoint
methods to support sensitivity analysis. Chen et al. (2018); Rubanova et al. (2019); Grath-
wohl et al. (2019) use neural ODEs to learn latent time series models, density models, and
as a replacement for very deep neural networks. These algorithms are closely related to the
sensitivity analysis methods introduced in Gardner et al. (2022); Hindmarsh et al. (2005).
They include explicit ODE solvers only since they do not require Newton-Raphson steps to
solve the implicit nonlinear equations. Our approach to integrating dynamical constraints
described in Algorithms 2 and 3 is compatible with Pytorch models as well. Parameter
training would require adding a loss function for minimizing the ODE-induced residuals.
When using the state-reset approach, we can use any ODE solver, implicit or explicit. Jax
includes the ability to solve ODEs as well, and it does include the Dopri5 solver we used for
comparison purposes. In the current implementation, the state sensitivities are computed
using adjoint methods only. The Jax based ODE solver library Diffrax described in Kidger
(2021) supports sensitivity analysis computations, as well. This library includes a similar
number of integrators as torchdiffeq. One of the advantages of Jax is the ability to use
the JIT decorator that results in tremendous computational efficiency gains. There are
efforts to provide similar capability to Pytorch, however these efforts have not yet resulted
in the same level of maturity as in the Jax case. Kidger et al. (2021) demonstrate a reduc-
tion in function evaluations, potentially reaching up to a 60% decrease, in the execution of
the adjoint method for sensitivity analysis. This improvement is achieved by substituting
the conventional L2 norm in the backpropagation gradient update with a semi-norm. In a
complementary vein, Zhuang et al. (2020) present an alternative approach to enhance the
numerical efficiency of backpropagation gradient updates executed as part of the adjoint
method for sensitivity analysis. The authors delve into a potential explanation for the sub-
optimal performance of neural-ODE based learning techniques compared to discrete layer
methods. Their hypothesis is rooted in the presence of numerical errors within the reverse-
mode integration process of the adjoint method. To address this issue, they introduce
the adaptive checkpoint adjoint (ACA) method. This technique incorporates a trajectory
checkpoint strategy to ensure the accuracy of the reverse-mode trajectory. It eliminates the
redundant components in the shallow computation graphs generated by backpropagation.
While discrete layer models may offer superior performance, they necessitate uniform time
discretization. Neural-ODEs, on the other hand, can be particularly advantageous for han-
dling non-uniformly sampled data, which is often encountered in sensor measurement time
series. The proposed Algorithms 2 and 3 avoid having to expletively evaluate differential
equations to implement the sensitivity analysis, employing whether direct or adjoint meth-
ods. However, these algorithms are not applicable to learning problems involving sampling
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over ODE trajectories. For example, they are not suitable for learning approaches rooted in
variational inference methods. An intriguing approach for accelerating the adjoint method
is introduced by Daulbaev et al. (2020). These authors advocate the use of barycentric
Lagrange interpolation (BLI) on activation values over a Chebyshev grid as an alternative
to executing the backward pass over ODEs involving activation state variables. This ap-
proach presents a trade-off similar to ours, involving considerations of stability, accuracy
and memory consumption. For instance, achieving an accurate approximation of ODE
dynamics may necessitate employing a smaller time step, which in turn implies increased
memory resource utilization. In contrast, our approach utilizes local approximations of the
ODE solution, specifically a sequence of polynomials that must satisfy the ODE solution
at consecutive time points. The BLI approach bears some resemblance to the use of global
representations for ODE/PDE solutions using neural networks, as seen in Han et al. (2018).
However, one notable advantage of the BLI approach is its theoretical foundation. Our
approach aligns more closely with model predictive control numerical approximations, as
described in Garcia et al. (1989). This methodology employs collocation methods to ap-
proximate ODEs, forming a nonlinear program. Furthermore, we provide justification for
our block coordinate gradient descent algorithms by emulating a backpropagation algorithm
based on a direct method for sensitivity analysis. There is previous work on carrying dif-
ferentiation operators over the steps of ODE solvers. Farrell et al. (2013) applied adjoint
methods to both ODEs and PDEs together with backpropagation over the forward steps of
the ODE/PDE solvers, resulting in the dolfin library. Gradient estimations using direct
sensitivity analysis methods was demonstrated by Carpenter et al. (2015). Choosing the
direct or adjoint method depends on the problem. When the number of optimization vari-
ables dominates the size of the state vector, the adjoint methods are preferred. In contrast,
when the number of optimization variables is small compared to the size of the state vector,
direct methods are numerically more efficient. This was clear in the Cucker-Smale example,
where the number of parameters remained constant, while the state vector dimension was
increasing. Han et al. (2018) use global parameterization of solutions, as an alternative to
direct collocation methods. They use neural networks to parameterize solutions of PDEs,
where automatic differentiation is used the construct a loss function in terms of spatial and
temporal differential operators. Boyd (2001) shows how spectral methods can be used to
represent differential equations solutions as expansion of basis functions (e.g., Chebyshev,
Fourier). Closer to our idea is the result introduced by Roesch et al. (2021), where the
authors avoid using ODE solvers by approximating the state derivative using a collocation
method. In their approach, the loss function is defined in terms of the approximation of
the observed state derivative and the one predicted by a neural-ODE. The state needs to
be fully observed. Our approach applies to partially observed systems, as well. In addition,
we improve the speed of convergence via a coordinate descent approach.

5. Conclusions

ODE solvers endowed with sensitivity analysis capabilities have uses in many engineer-
ing applications (e.g., design, control or diagnosis) that employ model-based approaches.
The integration of such solvers in DL platforms enables compositions with various neural
network layers, and end to end support of automatic differentiation. Such solvers though
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become slower as the complexity of the models increases. We presented two gradient descent
algorithms based on block coordinate descent. They were designed by reformulating an op-
timization problem with dynamical constraint into an equivalent optimization problem with
explicit equality constraints. The equality constraints are residual functions that reflect how
close the optimization variables representing the estimate of an ODE solution are from the
ODE solution. The residual functions were based on direct collocation methods to enable
their parallel evaluation. The algorithms were implemented in the Pytorch and Jax frame-
works and tested on the Cucker-Smale model of various complexities. In both frameworks
the proposed algorithm are significantly faster and are at least as accurate as the gradient
descent algorithms that use ODE solvers featuring sensitivity analysis. In addition, we
tested the algorithms on learning black-box dynamical models, and showed how our algo-
rithms can be used in conjunction with sensitivity-enabled ODE-based implementations, to
speedup the training process.
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