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Abstract

We study a multi-round welfare-maximising mechanism design problem in instances where agents
do not know their values. On each round, a mechanism first assigns an allocation to a set of agents
and charges them a price; at the end of the round, the agents provide (stochastic) feedback to the
mechanism for the allocation they received. This setting is motivated by applications in cloud
markets and online advertising where an agent may know her value for an allocation only after
experiencing it. Therefore, the mechanism needs to explore different allocations for each agent
so that it can learn their values, while simultaneously attempting to find the socially optimal set
of allocations. Our focus is on truthful and individually rational mechanisms which imitate the
classical VCG mechanism in the long run. To that end, we first define three notions of regret for
the welfare, the individual utilities of each agent and that of the mechanism. We show that these
three terms are interdependent via an Ω(T 2/3) lower bound for the maximum of these three terms
after T rounds of allocations, and describe an algorithm which essentially achieves this rate. Our
framework also provides flexibility to control the pricing scheme so as to trade-off between the
agent and seller regrets. Next, we define asymptotic variants for the truthfulness and individual
rationality requirements and provide asymptotic rates to quantify the degree to which both properties
are satisfied by the proposed algorithm.

Keywords: Mechanism design, VCG Mechanism, Truthfulness, Game Theory, Bandits

1. Introduction

Mechanism design is one of the most important problems in economics and computer science (Nisan
and Ronen, 2001). A mechanism chooses allocations for multiple rational agents with possibly
conflicting goals and charges them a price. It is necessary to find an outcome (an allocation to each
agent) that is as beneficial as possible to all agents and the mechanism designer. Agents who act in
their own self interest might choose to misrepresent their values in order to obtain an advantageous
allocation. Mechanism design aims to elicit values from agents, such that the agents are incentivised
to report truthfully (truthfulness), while ensuring that they are not worse off than if they had not
participated in the mechanism (individual rationality).

c©2023 Kirthevasan Kandasamy, Joseph E Gonzalez, Michael I Jordan, Ion Stoica .

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/20-1226.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/20-1226.html


KANDASAMY, GONZALEZ, JORDAN, STOICA

As a motivating example, consider a Platform-as-a-Service (PaaS) provider who serves multiple
customers using the same compute cluster. The service provider (seller) chooses a service level
(allocation) for each customer (agent) and charges them accordingly. The service level determines
the resources allocated to the customer, and consequently her value for that service, which could
be tied to her own revenue. A customer’s experience of a service level at a given instant is affected
by exogenous stochastic factors such as traffic, machine failures, etc., which are beyond the control
of the customer. The celebrated VCG mechanism (Vickrey, 1961; Groves, 1979; Clarke, 1971)
provides a means to find outcomes which maximise the social welfare (sum of agent and seller
utilities) in such situations while satisfying truthfulness and individual rationality. For instance, if
one customer’s application is memory intensive and another’s is compute intensive, they can be
co-located on the same set of machines instead of using separate machines. This might be a better
outcome for the service provider as she can serve both customers at a cheaper cost, and for the
customers, since the service provider can now charge them less and they achieve the same end result.
The VCG mechanism requires customers to submit bids for each service level and encourages truthful
behaviour; i.e., the dominant strategy for each customer is to submit their true value as the bid.

Despite the many success stories of mechanism design, deploying it in some real world use cases
has remained challenging since most mechanism design work assumes that agents know their own
values for each allocation. For instance, the VCG mechanism requires that customers submit bids
representing these values. This may not be true in many real world situations, especially when there
are many unsophisticated agents and/or when the number of allocations is very large. However,
having experienced an allocation, it is often the case that a customer can provide feedback based on
their experience. She can either measure this directly via the impact on her own revenue, such as
in online advertising where an ad impression might lead to a click and then a purchase, or gauge it
from performance metrics, such as in the PaaS example where the service level affects the fraction of
queries completed on time, which in turn affects her revenue.

Setting: In a departure from prior work, we study mechanisms where agents do not know their
values a priori. However, the mechanism can learn them over multiple rounds of allocations and
feedback, while simultaneously finding the socially optimal outcome. At the beginning of each
round, the mechanism chooses an outcome, i.e. an allocation for each agent, and charges each agent
a price. At the end of the round, the agents report stochastic feedback on their experience in using
the given allocation, which we will call reward. When choosing an outcome for a given round, the
mechanism may use the rewards reported by the agents in previous rounds.

This problem ushers in the classical explore-exploit dilemma encountered in bandit settings. Provided
that all agents report their rewards truthfully, choosing the outcome that appears to be the best
according to feedback provided by agents up to the current round will likely have large welfare.
However, exploring other outcomes might improve the estimate of the best outcome for future rounds.

As is the case in prior mechanism design work, we assume that agents are strategic and rational,
which necessitates the truthfulness and individual rationality requirements. A strategic agent wishes
to maximise her total utility after T rounds, which is simply the sum of her instantaneous utilities
(value of the allocation received minus price). An individually rational agent wishes to ensure that
her utility after T rounds is non-negative, so that she stands to gain by participating in the mechanism.
Both these requirements are more challenging in our setting. A mechanism cannot learn agent
values if she does not report back truthfully. Since she reports a reward at the end of each round,

2



VCG MECHANISM DESIGN UNDER STOCHASTIC BANDIT FEEDBACK

Truthfulness
E[UπiT − UiT ] ∈ Õ(?)

(Theorem 2)

Individual rationality
−E[UiT ] ∈ Õ(?)

(Theorem 3)

VCG regret
E[RVCG

T ] ∈ Õ(?)

(Theorem 4)

ζ = ETC K1/3T 2/3 n?(λ)K1/3T 2/3, DSIC n2K1/3T 2/3

ζ = OPT nK1/3T 2/3, NIC n?(λ)|S|1/2T 1/2 n2K1/3T 2/3

Table 1: Summary of asymptotic rates for Algorithm 1 for truthfulness, individual rationality, and
the VCG regret RVCG

T (3). Above, n denotes the number of agents, T the number of rounds, |S| the
number of different allocations, K is a problem-specific parameter defined in Section 3, UiT is the
total utility of agent i after T rounds when being truthful, and UπiT is the total utility of agent i after
T rounds when following any other adaptive nontruthful strategy π. DSIC (NIC) indicates that the
mechanism is asymptotically dominant–strategy (Nash) incentive-compatible. Algorithm 1 has two
binary hyperparameters ζ ∈ {ETC,OPT}, and λ ∈ {AGE, SEL} (Section 5). First, when ζ = ETC, the
algorithm follows an explore-then-commit strategy while when ζ = OPT, the algorithm follows an
optimistic strategy with interleaved exploration rounds. When ζ = ETC, we have better truthfulness
guarantees, but weak rates for individual rationality, and vice versa when ζ = OPT. Second, when
λ = AGE (λ = SEL), the pricing strategy is favourable to the agents (seller), via the n? term; here, we
have n?(AGE) = 1 and n?(SEL) = n.

a strategic agent has significantly more opportunity to manipulate outcomes in her favour, than in
typical mechanism design settings where she submits a single bid once. In particular, she may be
strategic over multiple rounds, say, by incurring losses in early rounds in order to gain in the long
run. Additionally, since an agent’s true values cannot be exactly known, the mechanism runs the risk
of overcharging them, which might cause her to withdraw from the mechanism.

We design an algorithm that accounts for the above considerations. Applications such as PaaS or
online advertising, where there are repeated agent-mechanism interactions and where values can be
reported back in an automated way, are suitable for such methods.

Our Contributions: Our goal in this work is to study the fundamental limitations and trade-offs
when designing a repeated VCG mechanism where agents do not know their valuations, but can
provide bandit feedback based on their experience. To that end, our contribution is threefold:

1. First, we formalise mechanism design with bandit feedback for settings where agents do not
know their values, but the mechanism is repeated for several rounds. In order to quantify how
close the mechanism is to the VCG mechanism, our formalism defines the VCG regret; this is
derived via three regret terms for the welfare, the seller, and the agents relative to the VCG
mechanism. Additionally, given the above challenges in achieving truthfulness and individual
rationality exactly, we define asymptotic variants to make the problem tractable.

2. Second, we establish a hardness result via an Ω(T 2/3) lower bound after T rounds for the
VCG regret even under truthful reporting from agents. This result captures the interaction
between the three regret terms mentioned in 1. For instance, a seller can achieve small regret by
demanding large payments from the agents, but this will result in large agent regret. Moreover,
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the value shared by the agents and the seller is limited by the total value generated, and hence
the agent and seller regrets are inherently tied to the welfare regret.

3. Third, we describe VCG-Learn, an algorithm whose behaviour is determined by two binary
hyperparameters. For all values of these hyperparameters, the algorithm is asymptotically
individually rational and truthful, and moreover matches the above lower bound on the VCG
regret up to factors that are polylogarithmic in T and polynomial in other problem-dependent
terms. However, the asymptotic rates and the regrets of the agent and the seller are affected by
the choice of these hyperparameters. Table 1 summarises the results for Algorithm 1.

This manuscript is organised as follows. First, in Section 2, we discuss related work. In Section 3,
we briefly review the VCG mechanism and describe our formalism. Section 4 presents the lower
bound on the VCG regret. Section 5 present our algorithm, VCG-Learn, and Section 6 presents the
theoretical results for VCG-Learn. Section 7 presents some simulation results. The proof of the lower
bound is given in Section 8 and the proofs of results in Section 6 are given in Section 9.

2. Related Work

Bandit problems were first studied by Thompson (1933) and have since become an attractive frame-
work to study exploration-exploitation trade-offs that arise in online decision-making. Optimistic
methods, which usually choose an arm on a given round by maximising an upper confidence bound
on the mean rewards, are known to be minimax optimal in a variety of stochastic optimisation
settings (Lai and Robbins, 1985; Auer, 2002; Bubeck et al., 2011). Explore-then-commit strategies
use separate rounds for exploration and exploitation. While they are provably sub-optimal (Garivier
et al., 2016), they separate exploration from exploitation facilitating a cleaner analysis when we need
to combine optimisation with other side objectives, such as in our problem, where we need to provide
truthfulness guarantees and compute the prices.

Mechanism design has historically been one of the core areas of research in the economics and game
theory literature with applications in kidney exchange (Roth et al., 2004), matching markets (Roth,
1986), and fair division (Procaccia, 2013). Our work is on auction-like settings for mechanism design.
In addition to a rich history of research on this topic, there has also been a recent flurry of work
due to the rise in popularity of sponsored search markets (Lahaie et al., 2007; Mehta et al., 2007;
Aggarwal et al., 2006), wireless spectrum auctions (Cramton, 2013; Milgrom, 2017), and cloud spot
markets (Toosi et al., 2016).

There is a long history of work in the intersection of machine learning and mechanism design. Some
examples include online learning formulations (Dudik et al., 2017; Amin et al., 2013; Kakade et al.,
2010), learning bidder values from past observations (Balcan et al., 2016; Blum et al., 2015; Balcan
et al., 2008), and learning in other settings with truthfulness constraints (Mansour et al., 2015). Some
work in this space study settings where individual agents may learn to bid in a repeated auction. Here,
an agent may not know her value at the beginning, but needs to submit bids at the beginning of each
round. The agent may calibrate her bid based on past rewards. In this line of work, Weed et al. (2016)
and Feng et al. (2018) study a setting where the behaviour of the mechanism is fixed over multiple
rounds, while Nedelec et al. (2019) study a setting where the mechanism may adapt its behaviour so
as to maximize revenue. In a similar vein, Liu et al. (2019) develop bandit methods where agents
on one side of a matching market learn to bid for arms on the other side. In the above work, the
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regret is defined for the agent in question, defined relative to an oracle which knows the true values.
In contrast to these works, in our setting, learning happens entirely on the mechanism side and the
role of each agent is very simple: submit the reward at the end of the round. This imposes minimal
burden on agents who, while being strategic and rational, may not be very sophisticated.

A body of work studies multi-armed bandit formalisms for auctions with canonical use cases in
online advertising (Babaioff et al., 2015, 2014; Devanur and Kakade, 2009). In the above works,
there is a single item (ad slot) with different and unknown click-through rates for each agent ci ∈ R.
The agent has a known private value vi ∈ R for each click and she submits a bid bi ∈ R once ahead
of time representing this value. On each round, the mechanism chooses one of the agents for the slot
and observes the number of clicks c; if agent i was chosen, then E[c] = ci The agent’s reward for this
round is c · vi. They formalise this problem where the agents are viewed as the arms and define regret
with respect to the optimal arm, i.e. the agent with the highest expected reward vi × ci. Importantly,
the stochastic component c of the reward is observed by both the agent and the mechanism. In both
works, truthfulness means that the agent is incentivised to submit a bid bi = vi at the beginning of all
rounds. There are a number of differences between these works and our setting. First, while they
formalise each agent as a different arm competing for the item, in our setting, the allocations are
viewed as arms with multiple agents being able to experience different arms simultaneously. We do
not believe their results, and their lower bound in particular, can be straightforwardly extended to
settings where multiple agents might receive an allocation. Second, in these works the agent can only
submit a single bid and the stochastic component of the reward (number of clicks) is observed by the
mechanism on each round. In contrast, in our setting, the reward on each round is only revealed to
the agent, and she may misreport this reward to the mechanism on each round; therefore, she has
significantly more opportunity to manipulate outcomes in her favour. Due to these differences, their
results are not comparable to ours. We will elaborate in other differences between our results and
theirs in further detail at the end of Sections 4 and 6.

In other related work, Braverman et al. (2019) consider a setting where a seller chooses one of n
agents to receive an item on each round of a repeated auction. The agents submit a payment at
the end of the round to the seller based on the reward they observed. They study mechanisms that
allow the seller to extract as much payment as possible from the agents who themselves are trying to
maximise their long term utility. Nazerzadeh et al. (2016) study a multi-round setting where the
seller chooses an agent and a price on each round; the agent may choose to purchase the item at the
price in which case the seller receives some revenue. Their goal is to maximise the revenue for the
seller over a finite horizon of T rounds. Gatti et al. (2012) study an online advertising setting when
there are multiple ad slots with different click-through rates which are the same for all agents, and
design a mechanism which charges the agents only when an ad is clicked. Finally, some works on
dynamic auctions (Bergemann and Valimaki, 2006; Athey and Segal, 2013; Kakade et al., 2013)
study settings where agent values are unknown at the beginning but there is a known prior on the
agent value. Over time, she receives side information and the mechanism needs to incentivise truth
telling so as to update the posterior.

Perhaps the closest work to ours is Nazerzadeh et al. (2008), who study a single item auction with
a feedback method similar to ours: agents report rewards at the end of the round and the learning
happens at the mechanism. While they consider asymptotic efficiency, truthfulness, and individual
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rationality (with definitions that differ from ours), they do not provide rates, establish lower bounds,
or study the regrets of the agents and seller.

3. Problem Description

3.1 A brief review of the VCG mechanism

We begin with a brief review of mechanism design adapted to our setting. There are n agents
(customers) {1, . . . , n}, a mechanism (seller), and a set of possible outcomes Ω. The mechanism
chooses an outcome ω ∈ Ω and charges a price pi to agent i. For agent i, there exists a function
si : Ω→ S which maps outcomes to allocations relevant to the agent; i.e., different outcomes ω, ω′

might yield the same allocation to the agent, si(ω) = si(ω
′). In this work, |S| <∞. S could be as

large as Ω, but could be much smaller in some applications. This distinction between S and Ω will
be important when we consider the learning problem in Section 3.2; as we will see shortly, our regret
bounds will scale with |S| and not |Ω|.

Agent i has a value function, vi : S → [0, 1], where vi(s) represents her private independent value
for the allocation s. For an outcome ω ∈ Ω, we will overload notation and write vi(ω) = vi(si(ω)).
After the agent experiences an allocation, she realises a reward Xi drawn from a σ sub-Gaussian
distribution with mean vi(s). We let v0 : Ω → R denote the value function of the mechanism
designer. In the PaaS example, v0(ω) may denote the cost to the service provider for providing
the service where the allocations are as specified in ω. For an outcome ω and prices {pi}ni=1, the
utility of agent i is ui = E[Xi] − pi = vi(ω) − pi. The utility of the seller (which may represent
profit) is u0 = v0(ω) +

∑n
i=1 pi. The welfare V (ω) is the sum of the agent and seller values

V (ω) =
∑n

i=1 vi(ω) + v0(ω), which is also the sum of all utilities regardless of the prices {pi}ni=1.

The expectations above are taken with respect to the rewards, i.e. the exogenous stochasticity arising
when agents experience their allocation. In applications of interest, the agent does not have control
over nor is able to predict this stochasticity.

The VCG Mechanism: Assume that the agents know their value functions vi and submit them
truthfully as bids to the seller. The VCG mechanism stipulates that we choose the outcome ω? which
maximises the welfare. We then charge agent i an amount pi?, which is the loss her presence causes
to the others. Precisely, denoting V 9i(ω) = v0(ω) +

∑
j 6=i vj(ω), we have

ω? = argmax
ω∈Ω

V (ω), pi? = max
ω∈Ω

V 9i(ω)− V 9i(ω?). (1)

In general, an agent may submit a bid bi : S → [0, 1] (not necessarily truthfully), and the mechanism
computes the outcomes and prices by replacing vi with bi above. The VCG mechanism satisfies the
following three fundamental desiderata in mechanism design (Karlin and Peres, 2017):

1. Truthfulness: A mechanism is truthful or dominant strategy incentive-compatible if, regardless
of the bids submitted by other agents, the utility ui of agent i is maximised when bidding
truthfully, i.e. bi = vi.

2. Individual rationality: A mechanism is individually rational if it does not charge an agent
more than her bid for an allocation. Thus, if she bids truthfully, her utility is nonnegative.
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3. Efficiency: If all agents bid truthfully, a mechanism is efficient if it maximises welfare.

Since the agents cannot control the exogenous stochasticity, it is meaningful for agents to submit
bids based on their expected rewards, i.e. their value. This is different from Bayesian formalisms for
mechanism design where agent values are drawn from a known prior and she may submit bids based
on this value. (A Bayesian formulation of this setting would assume priors over the values, i.e. the
expected rewards, themselves.) The following examples illustrate our motivations.

Example 1 (PaaS) In the PaaS example from Section 1, S are the service levels (allocations)
available to a customer. Ω = Sn are the possible outcomes. −v0(ω) is the cost for providing the
service as specified in ω. An agent’s reward Xi for a service level s could denote her instantaneous
revenue, which is affected by exogenous stochastic factors such as traffic, machine failures, etc., but it
concentrates around her expected revenue, i.e. her value, vi(s). A strategic agent who cannot control
such stochastic effects would hence submit bids so as to maximise her utility (expected reward minus
price). Such PaaS services can take place in a competitive market or internally within an organisation
where the provider is one team providing a service to other teams.

Example 2 (Online Advertising) A publisher (mechanism) has a set of advertising slots S and
must assign them to n advertisers (agents). Typically, |S| � n and there exists ∅ ∈ S indicating no
assignment. When a slot is assigned to an advertiser, her reward is her instantaneous revenue which
is simply the number of people who clicked the ad and then purchased the product. Consequently, it
is a random quantity. Different agents could have different values for different slots. Ω is the set of
possible ways in which the mechanism can assign slots to advertisers.

Henceforth, when we say that an agent is truthful, we mean that she reports her values truthfully,
whereas when we say that a mechanism is truthful, we mean that it incentivises truthful behaviour
from the agents. We are now ready to describe the learning problem when agents do not know their
values, but when the mechanism is repeated for multiple rounds.

3.2 Learning a VCG mechanism under bandit feedback from agents

In the multi-round setting, agent and seller values {vi}ni=0 remain fixed throughout all the rounds. On
round t, the mechanism chooses an outcome ωt ∈ Ω and sets prices {pit}ni=1 for the agents. Then,
agent i realises a stochastic reward Xit which has expectation vi(ωt). At the end of the round, she
reports a reward Yit; if she is being truthful, she would report Yit = Xit, but she may also choose to
misreport the reward. While the agent does not know her values vi, by reporting the reward at the
end of each round, the mechanism could learn these values over multiple rounds.

While the primary focus of this work is on agents who do not know their values, our mechanism
can also accommodate agents who know their values up front. Hence, we will also permit agents to
submit bids bi : S → [0, 1] (not necessarily bi = vi) which represent her values for all rounds; she
may do so once before the first round. We will refer to agents who submit rewards at the end of each
round as those participating by rewards, and those who submit bids once at the beginning as those
participating by bids. As we will see shortly, stronger results are possible for agents who participate
by bids as their values need not be learned.
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When choosing outcome ωt on round t, the mechanism may use the information gathered from
previous rewards {Xi`}t−1

`=1 for agents participating by rewards and the bids bi for agents participating
by bids. The utility of agent i on round t is uit = E[Xit]− pit = vi(ωt)− pit, where the expectation
is only with respect to the rewards (exogenous stochasticity) at round t. The utility of the seller is
u0t = v0(ωt) +

∑n
i=1 pit. Let UiT , U0T , defined below, denote the sum of utilities of agent i and the

mechanism respectively over T rounds. We have:

UiT =

T∑
t=1

uit, U0T =

T∑
t=1

u0t. (2)

Our goal is to design an anytime algorithm which imitates the VCG mechanism over time. To that
end, we quantify the performance of an algorithm via the following regret terms, defined relative to
the VCG mechanism (1), after T rounds of interactions:

Rw
T = TV (ω?)−

T∑
t=1

V (ωt), RiT = Tui? − UiT , Ra
T =

n∑
i=1

RiT ,

R0T = Tu0? − U0T , RVCG
T = max(nRw

T , R
a
T , R0T ). (3)

Here ω? is the optimal outcome (1), which we will assume is unique. Moreover, u0? = v0(ω?) +∑
i pi? and ui? = vi(ω?) − pi? are the utilities of the seller and agent i respectively in the VCG

mechanism. Rw
T is the welfare regret over T rounds; it measures the welfare of the chosen outcomes

ωt relative to ω?. RiT is the regret of agent i and R0T is the regret of the seller, both defined relative
to the VCG mechanism. Ra

T is the sum of all agents’ regrets. Finally, we also define the VCG regret
RVCG
T . In (2) and (3), we have followed pseudo-regret convention, which takes an expectation with

respect to the rewards at the current round.

Our goal is to imitate the VCG mechanism over time, and RVCG
T captures how well the welfare,

and all agent/seller utilities converge uniformly to their VCG values. As we will see shortly, RVCG
T

will be a fundamental quantity in this problem, and we will use it to establish a hardness result. We
focus on the VCG mechanism because it is one of the well-studied paradigms in multi-parameter
mechanism design and is therefore a natural starting point. Moreover, even in competitive markets,
sellers may be motivated to maximise welfare for long-term customer retention. This is similar in
spirit to Devanur and Kakade (2009) who study a seller’s regret, and Weed et al. (2016) who study
an agent’s regret when the agent bids in a repeated single item auction—in both cases, the regret is
defined relative to the Vickrey auction.

A truthful agent simply reports her rewards at the end of each round. In general though, a strategic
agent follows some strategy π so as to maximise her sum of utilities over several rounds. If she
is participating by rewards, π is a map from her past information {(si(ω`), pi`, Xi`, Yi`)}t−1

`=1 and
current allocation, price, and reward (si(ωt), pit, Xit) to a (possibly random) scalar to report as Yit.
In particular, the agent may adopt a non-truthful strategy π, where she misreports her reward at the
end of the current round so as to manipulate the allocations she may receive in future rounds, with
the intent of maximising her long-term utility UπiT for large T . We also mention that if an agent is
participating by bids, π is simply the bid that she submits ahead of time.
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In addition to obtaining sublinear VCG regret (3), we would like to achieve the three desiderata
for mechanism design given in Section 3.1. Here we define variants of those desiderata in order to
precisely delineate the extent to which they can be achieved in our setting.

1. Truthfulness: Let UiT and UπiT respectively denote the sum of utilities of agent i when she is
being truthful and when she is following any other (non-truthful) strategy π. A mechanism is
truthful, if, for all π, T , UπiT ≤ UiT almost surely (a.s), regardless of the behaviour of other
agents. It is asymptotically truthful if, for all π, T , E[UπiT − UiT ] ∈ o(T ), regardless of the
behaviour of other agents. A mechanism is asymptotically Nash incentive-compatible (NIC) if,
for all π, T , E[UπiT − UiT ] ∈ o(T ), when the other agents are behaving truthfully.

2. Individual rationality: Assume that agent i is truthful. A mechanism is individually rational
if, for all T , UiT ≥ 0 a.s, regardless of the behaviour of other agents. It is asymptotically
individually rational if limT→∞

1
T E[UiT ] ≥ 0, regardless of the behaviour of other agents.

3. Efficiency: A mechanism is asymptotically efficient if E[Rw
T ] ∈ o(T ) when all agents are

reporting truthfully.

To undestand the difference between the almost-sure and in-expectation definitions above, recall that
uit = vi(ωt) − pit contains an expectation with respect to the reward at round t, but is a random
quantity as the outcome ωt and price pit depend on the rewards realised/reported by all agents in
previous rounds. In our almost sure definitions above, the statements should hold regardless of this
randomness, whereas in our in-expectation definitions, they need to hold in expectation over the past
exogenous randomness.

While achieving dominant-strategy incentive-compatibility is a desirable goal, it can be difficult,
especially in multi-round mechanisms (Babaioff et al., 2014, 2013). A common approach to sidestep
this difficulty is to adopt a Bayesian formalism which assumes that agent values are drawn from
known prior beliefs and consider ex ante or ex interim versions of incentive-compatibility. However,
Bayesian assumptions can be strong (Schummer, 2004) as it may not be possible to know the
prior distributions ahead of time. In contrast, we do not make such distributional assumptions,
but rely on asymptotic notions of truthfulness to make the problem tractable. If a mechanism is
asymptotically truthful, the maximum value an agent may gain by not being truthful vanishes over
time. In many applications it is reasonable to assume that agents would be truthful if the benefit
of deviating is negligible, especially in settings where they may not know their value. It is worth
pointing out that prior work has explored similar ideas of approximate incentive-compatibility in
various contexts (Nazerzadeh et al., 2008; Lipton et al., 2003; Kojima and Manea, 2010; Roberts and
Postlewaite, 1976; Feder et al., 2007; Daskalakis et al., 2006).

Finally, we will define two problem-dependent terms for what follows. First, let K be the minimum
number of rounds necessary to assign all allocations to all agents. In Example 1, we can do this
in K = |S| rounds, provided that there are no constraints on assigning different service levels to
different agents. In Example 2, this can be done in K = n rounds if |S| < n. Second, let Vmax be an
upper bound on the expected welfare. Since vi(s) ∈ [0, 1], Vmax could be as large as O(n). However,
it can be small in settings such as Example 2 where it is O(1) if there is only one ad slot.

We make two observations before we proceed. First, we consider a fairly unadorned version of this
problem as it provides the simplest platform to study how truthfulness and individual rationality

9
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constraints affect learning in this setting. One could study richer models which assume structure
between the allocations in S or that the values vi change on each round. For instance, we may
assume that S ⊂ Rd and that vi is either linear or smooth in these d attributes. We may also consider
variations which incorporate changing values and/or contextual information. While these settings
are beyond the scope of this work, we believe the analysis techniques and intuitions developed in
this work would be useful in analysing such settings. Second, while our feedback model requires
agents to share their observed reward at the end of each round, this is not too dissimilar from agents
sharing their values in mechanism design. For instance, in Example 2, in usual truthful mehanisms,
the agents would share their expected revenue from an ad slot when its known, whereas in our setting
they would submit their instantaneous revenue on each round so that its expectation can be learned.

4. A Hardness Result

We first establish a lower bound on the VCG regret, defined in (3), even when all agents are truthful.
To formalise this, let Θ be the class of problems with n agents, and A be the class of algorithms for
this setting. Note that the regret terms in (3) depend on the specific problem in Θ and algorithm in A.

Theorem 1 Let n ≥ 2 and assume all agents are truthful. Let the VCG regret RVCG
T be as defined

in (3). Then, for T ≥ 128n,

inf
A

sup
Θ

E
[
RVCG
T

]
≥ 1

50
(n− 1)

4/3T
2/3.

The above result on the VCG regret captures the interaction between the welfare, agent, and selller
regret terms in (3). For instance, regardless of the chosen outcome, the seller can achieve small regret
by demanding large payments from the agents; however, this will result in large agent regret. Hence,
there is a natural trade-off between agent and seller regrets, which is determined by how the prices
{pit}i,t are set when the VCG prices {pi?}i are unknown1. Achieving small VCG regret requires that
we estimate the prices accurately, which in turn requires that we estimate the welfare of the optimal
outcomes without each given agent (1). Unlike in typical bandit settings, where O(

√
T ) regret

is possible since it is sufficient to simply choose the optimal outcome, simultaneously estimating
optimal outcomes without each agent necessitates incurring Ω(T 2/3) regret.

It is necessary to study max(nRw
T , R

a
T , R0T ) instead of max(Ra

T , R0T ) as we need to account for the
fact that the value being shared by the agents and the mechanism is constrained by the total welfare
generated, which is factored into the welfare regret Rw

T . Precisely, the total welfare generated over T
rounds is TV (ω?)−Rw

T and not the maximum achievable TV (ω?) when the values are known.

It is instructive to compare this result with prior lower bounds in similar settings where learning
happens on the mechanism side (Babaioff et al., 2014, 2015; Devanur and Kakade, 2009). In the
online advertising setting described in Section 2, Babaioff et al. (2014) show that Ω(T 2/3) welfare
regret is unavoidable for deterministic a.s. truthful mechanisms. Devanur and Kakade (2009)
establish a similar lower bound for the seller regret, defined relative to the seller’s revenue in a

1. In fact, we will also see this phenomenon manifest in our algorithm, where, while there is flexibility to handle this
trade-off in a way that is favourable to either the agent or the seller, the maximum of Ra

T and R0T is always large
(Proposition 6).
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Vickrey auction for online advertising. Both hardness results rely on a necessary and sufficient
condition for truthfulness in single parameter auctions (Archer and Tardos, 2001; Myerson, 1981).
In contrast, our result for the VCG regret is obtained by studying the estimation error of the prices
and applies to the maximum of the welfare, agent, and seller regrets, even when agents are reporting
truthfully. Moreover, while our result applies to the VCG regret for general mechanisms, their results
apply to the welfare/seller regrets only in the online advertising use case described in Section 2.
Babaioff et al. (2015) design a randomised multi-round mechanism for this online advertising use
case which is truthful in expectation and achieves O(

√
T ) welfare regret. This result does not

contradict our result above which, as described in Section 2, considers a different feedback model
and additionally accounts for the agent and seller regrets along with the welfare regret.

Proof sketch of Theorem 1: Minimising all regret terms requires that we estimate the VCG
prices (1) correctly, which is the main bottleneck as the best outcome omitting any given agent might
be very different from the optimal outcome. We first use a series of manipulations to lower bound the
VCG regret via RVCG

T ≥ nERw
T + EWT where Rw

T is the welfare regret and WT captures how well
we have estimated the prices. These two terms are conflicting: keeping ERw

T small requires that we
repeatedly choose the optimal outcome ω?, but if we do so then we may not be able to estimate the
optimal outcomes omitting each agent, leading to large EWT . We reduce the task of minimising the
supremum of this sum over Θ to a binary hypothesis testing problem between two carefully chosen
problems in Θ. We then apply a high probability version of Fano’s inequality to obtain the result.
The complete proof is given in Section 8.

5. Algorithm

We now describe our algorithm for this setting, called VCG-Learn, which is outlined in Algorithm 1.
The algorithm has two binary hyperparameters λ, ζ, which control the trade-offs between the agent
and seller regrets and properties such as truthfulness and individual rationality. We will first describe
the algorithm then explain how these hyperparameters may be used to control the above properties.

VCG-Learn proceeds over a sequence of brackets. Brackets are indexed by q and rounds by t. Each
bracket begins with an explore-phase of K rounds where the mechanism assigns all allocations in S
to all agents at least once. It does not charge the agents during this phase but collects their realised
rewards. This is then followed by b5

6Kq
1/2c rounds, during which the mechanism sets the outcome

and prices based on the rewards collected thus far. The outcomes in the latter phase are chosen
dependent on hyperparameter ζ; if ζ = ETC (explore-then-commit), we only use rewards from the
explore phase to determine the outcomes, whereas when ζ = OPT (optimistic), we use rewards from
all rounds thus far. By proceeding in brackets in the above manner, we are able to optimally control
the time spent in the different phases. As the length of the latter phase increases with each bracket,
we spend more rounds in this phase than in the explore phase as the mechanism is repeated for longer.

To describe how we compute the outcome, we first define the following three quantities, vit, v̂it, v̂it :
S → [0, 1]. For an agent participating by rewards, vit(s) is the sample mean of the rewards when
agent i was assigned outcome s ∈ S, which serves as an estimate for vi(s). Next, v̂it(s) and v̂it(s)
are upper and lower confidence bounds respectively for vi(s). They are computed as shown in (4).
Below, Dt denotes the round indices belonging to explore phases up to round t− 1 when ζ = ETC
and Dt = {1, . . . , t− 1} when ζ = OPT. Nit(s) denotes the number of observations from agent i

11
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for allocation s in the first t − 1 rounds that are used in the computation for vit, v̂it, v̂it. σ is the
sub-Gaussian constant for the reward distributions (see Section 3.1), The vit, v̂it, v̂it quantities are
first computed when t > K and Nit(s) ≥ 1 so they are well defined. We have:

Nit(s) =
∑
`∈Dt

1
(
si(ω`) = s

)
, vit(s) = clip

 1

Nit(s)

∑
`∈Dt

Xi` 1
(
si(ω`) = s), 0, 1

 ,

v̂it(s) = vit(s) + σ

√
5 log(t− qK + 1) + 2 log(|S|)

Nit(s)
,

v̂it(s) = vit(s)− σ

√
5 log(t− qK + 1) + 2 log(|S|)

Nit(s)
. (4)

Since vi(s) ∈ [0, 1], we clip the initial estimate between 0 and 1 to obtain vit. We will assume
that each agent experiences each allocation in S exactly once during the exploration phase at the
beginning of each bracket. If an agent was assigned the same allocation multiple times, we will use
the reported value of only one of them, picked arbitrarily. For an agent i who participates by bidding
bi, we simply set, for all s ∈ S,

vit(s) = v̂it(s) = v̂it(s) = bi(s). (5)

We now define V̂t, an upper confidence bound on the welfare at time t. In line 8, the algorithm
chooses the outcome which maximises V̂t in round t:

V̂t(ω) = v0(ω) +
∑n

i=1
v̂it(ω). (6)

Finally, we describe how the prices are computed in line 9, which depend on the hyperparameter
λ ∈ {AGE, SEL}. First define the functions fit, git : S → [0, 1] for all i, t as follows: if λ = AGE
(agent favourable pricing), set fit = v̂it and git = v̂it; if λ = SEL (seller favourable pricing), set
fit = v̂it and git = v̂it. Then define F 9it , G

9i
t as follows:

F 9it (ω) = v0(ω) +
∑
j 6=i

fjt(sj(ω)), G9it (ω) = v0(ω) +
∑
j 6=i

gjt(sj(ω)). (7)

As described in line 9, we charge price pit = maxω∈Ω F
9i
t (ω)−G9it (ω) from agent i on rounds t

that are not in the exploration phase. This completes the description of the algorithm, outlined in
Algorithm 1.

To warm us up for the theoretical analysis in the next section, we discuss the implications of the
hyperparameter choices ζ, λ. First, when ζ = ETC, Algorithm 1 behaves similarly to explore-then-
commit-style bandit algorithms (Perchet et al., 2013). It first explores all options at the beginning of
each bracket. It then switches to an exploit phase for the remainder of the bracket during which it
commits to the best outcome found during previous explore phases2. The main advantage of this

2. As all agents experience all allocations exactly once during each explore phase, when ζ = ETC, the maximiser of the
upper confidence bound V̂t and the mean V t = v0 +

∑
i vit coincide.
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Algorithm 1 VCG-Learn
Require: ζ ∈ {ETC,OPT}, λ ∈ {AGE, SEL}. # ζ, λ are hyperparameters. See lines 9 and 10.

1: Collect bids {bi}i from agents participating by bids.
2: t← 0. # t indexes rounds

3: for q = 1, 2, . . . , do # q indexes brackets

4: Explore phase: Assign each allocation s ∈ S to each agents at least once and charge them
price 0 on each round. Collect reported rewards {Yit}i,t from agents participating by rewards.

5: t← t+K. #K is the number of rounds required for the explore phase. See Sec. 3

6: for r = 1, . . . , b5
6Kq

1/2c, do
7: t← t+ 1.
8: Choose outcome ωt ← argmaxω V̂t(ω). # V̂t is a UCB on the welfare. See (4),(5),(6)

9: Charge each agent i, pit ← maxω F
9i
t (ω)−G9it (ωt). #λ determines computation of F 9i

t

and G9i
t respectively. See (7)

10: if ζ = OPT then
11: Collect reported reward {Yit}i from each agent i participating by rewards.
12: end if
13: end for
14: end for

two-phase strategy is a clean separation between preference learning and outcome/pricing selection
which gives rise to strong truthfulness guarantees. When ζ = OPT, the procedure is reminiscent of
optimistic strategies (Lai and Robbins, 1985) which maximise an upper confidence bound using
rewards from all rounds. Not only is this empirically sample-efficient as it uses rewards from all
rounds, but it also enjoys better welfare regret and individual rationality properties over ζ = ETC
as we shall demonstrate shortly. Unfortunately, this comes at the cost of weaker guarantees on
truthfulness. We will elucidate this in Section 6. While optimistic strategies do not usually require an
explore phase, this is necessary in our problem to accurately estimate the prices and to guarantee
asymptotic NIC. Consequently, our bounds on the welfare, agent, seller regrets are worse than the
typical

√
T rates one comes to expect of optimistic strategies in stochastic bandit problems.

Next, consider λ, which is used in computing the F 9it , G
9i
t quantities (7), and consequently determines

the pricing calculation in line (9) of Algorithm 1. While λ does not affect the outcome and the
welfare generated on each round, it determines how this welfare is shared between the agents and the
seller; therefore, it affects the agent and seller regrets RiT , R0T . For instance, suppose we choose
λ = SEL. In line (9), this uses the most optimistic estimate of the maximum welfare omitting agent i
in F 9it , and the most pessimistic estimate of the values of the current outcome for the other agents in
G9it . This results in large payments and consequently is the most favourable pricing scheme to the
seller, while still ensuring asymptotic truthfulness, individual rationality, and sublinear agent regret.
Similarly, when λ = AGE, the pricing is favourable to the agents. We will illustrate these trade-offs,
along with their effects on individual rationality and truthfulness, in the next section. These options
give a practitioner a fair amount of flexibility when applying Algorithm 1 for their specific use case.
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6. Main Results for Algorithm 1

We now present our main theoretical results for VCG-Learn, providing rates for asymptotic truthful-
ness, individual rationality, and VCG regret in Sections 6.1, 6.2, and 6.3 respectively. In Section 6.4
we also provide bounds on the agent, seller, and welfare regrets defined in (3). We wish to remind the
reader that Table 1 summarises the main results (Theorems 2, 3, and 4) of this section. The proofs of
all results are given in Section 9.

6.1 Asymptotic truthfulness

We first state the truthfulness/NIC properties of the proposed algorithm. Theorem 2 establishes that
Algorithm 1 is asymptotically truthful when ζ = ETC and is asymptotically NIC when ζ = OPT. In
fact, we will state a slightly stronger result for the ζ = OPT case. For this, we say that a strategy π by
agent j is stationary if she either participates by bids, or if participating by rewards, when assigned
an allocation s ∈ S, she reports a sample from some fixed distribution dependent on s. Any other
strategy is non-stationary. Intuitively, when an agent participates by rewards, if we view the rewards
reported for any allocation as a time series, the strategy is stationary if this time series is stationary.

While truthfulness implies stationarity, a non-truthful player can be either stationary or non-stationary.
For example, when participating by rewards, an agent may choose to report Yit = φs(Xit) when
assigned an allocation s, where the functions {φs}s ∈ S may be designed to squash or amplify
rewards for certain allocations, say, so as to discourage or encourage the mechanism from assigning
said allocation to the agent in the future. Such reports, while non-truthful, come from a stationary
distribution. An agent is also stationarily non-truthful if, when participating by bids, she submits
false values. We have the following theorem.

Theorem 2 Let π be any non-truthful strategy for agent i. Fix the strategies adopted by the other
agents. Let UπiT , UiT be the sum of agent i’s utilities when she follows π and when being truthful
respectively. The following statements hold for any λ ∈ (AGE, SEL) for all T > 2K.

1. First let ζ = ETC. If an agent participates by bids, then regardless of the behaviour of others, then
UπiT − UiT ≤ 0 a.s; i.e. Algorithm 1 is truthful. If the agent participates by rewards, then, regardless
of the behaviour of the others, we have,

E[UπiT − UiT ] ≤ 10σ
√

log(|S|T )K
1/3T

2/3 + 4 ∈ Õ
(
K

1/3T
2/3
)
.

2. Next, let ζ = OPT and assume that all agents other than i adopt stationary policies. Then, for any
(stationary or non-stationary) strategy π for agent i,

E[UπiT − UiT ] ≤ 10σ(6n+ 2)
√

log(|S|T )K1/3T 2/3 + 12n ∈ Õ
(
nK

1/3T
2/3
)
.

The above imply that Algorithm 1 is asymptotically truthful when ζ = ETC and asymptotically Nash
incentive-compatible when ζ = OPT for an agent participating by rewards.

The guarantees when ζ = OPT is weak when compared to ζ = ETC in two regards. Not only
does the asymptotic bound scale with n, but it also holds only when the other agents are adopting
stationary policies. However, since truthfulness implies stationarity, it does imply an asymptotic
Nash equilibrium; that is, when ζ = OPT, if all other agents are truthful, then the amount by which
an agent stands to gain by misreporting her rewards vanishes over multiple rounds.
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However, as we will see shortly, when ζ = OPT, we have better empirical results and theoretical
bounds on the welfare regret, individual rationality and the agent and seller regrets since we use data
from all rounds. Using only a small fraction of the data can be wasteful if we do not expect agents to
be very strategic. The ζ = OPT option is primarily motivated by this practical consideration. It allows
us to efficiently learn in such environments, while providing some protection against a nontruthful
agent, not just in settings where the other agents are being truthful, but also when they may try to
manipulate the mechanism with “simple” methods, such as squashing/amplifying their rewards for
certain allocations.

Proof sketch: We write the instantaneous difference in the utilities as uπit − uit = (uπit − ũit) +
(ũit − uit). Here, uπit is the utility on round t when the agent reports according to strategy π up
to round t − 1, ũit is the utility on round t when she follows π up to round t − 2 and switches
to truth-telling on round t − 1, and uit is the utility on round t when she is truthful on all rounds.
The first term captures the benefit of misreporting in the current round; this can be bound using
proof techniques for truthfulness of the VCG mechanism. The latter term captures the benefit of
misreporting in previous rounds; this can be large, since, an agent’s false reports will have affected
the outcomes and prices chosen by the mechanism not just in the current round but in previous rounds
as well. To control this term, we use properties of our algorithm to show that the agent’s past actions
cannot have changed the outcomes by too much; for instance, for the harder ζ = OPT case, this term
is dominated by values reported by the other agents; since they are adopting stationary policies, the
reported values concentrate around the respective means which cannot be influenced by the agent.

6.2 Asymptotic individual rationality

Our next theorem establishes the asymptotic individual rationality properties of Algorithm 1.

Theorem 3 Consider any agent i. Let UiT be the sum of her utilities after T rounds when she
participates truthfully (while others may not). The following statements are true for all T > 2K.

1. First let ζ = ETC. When λ = AGE, UiT ≥ 0 a.s for all T for an agent participating by bids; i.e,
Algorithm 1 is (almost surely) individually rational. For an agent participating by rewards,

E[UiT ] ≥ −10σ
√

log(|S|T )K
1/3T

2/3 − 4, i.e. E[−UiT ] ∈ Õ
(
K

1/3T
2/3
)

That is, Algorithm 1 is asymptotically individually rational. Similarly, when λ = SEL,

E[UiT ] ≥ −10σn
√

log(|S|T )K
1/3T

2/3 − 4, i.e. E[−UiT ] ∈ Õ
(
nK

1/3T
2/3
)

2. Next, let ζ = OPT. When λ = AGE, for all agents, UiT ≥ 0 a.s for all T for an agent participating
by bids; i.e, Algorithm 1 is individually rational. Moreover, for an agent participating by rewards,

E[UiT ] ≥ −9σ
√
|S|T log(|S|T )− 6, i.e. E[−UiT ] ∈ Õ

(
|S|1/2T 1/2

)
That is, Algorithm 1 is asymptotically individually rational. Similarly, when λ = SEL,

E[UiT ] ≥ −9σn
√
|S|T log(|S|T )− 6, i.e. E[−UiT ] ∈ Õ

(
n|S|1/2T 1/2

)
.
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While the above theorem implies asymptotic individual rationality for all ζ, λ values, let us consider
how the different hyperparameter choices affect the rates in the theorem. We see that when ζ = OPT,
the O(T 1/2) rates are better than when ζ = ETC, where the rate is O(T 2/3). This demonstrates the
first trade-off determined by the ζ hyperparameter: when ζ = ETC, we have stronger truthfulness
guarantees but weaker individual rationality guarantees than when ζ = OPT. The stronger rates are
possible in the latter case because we use all data to learn an agent’s preferences. Next, when λ = SEL,
the asymptotic rates for individual rationality have an additional n dependence than when λ = AGE.
In the former case, the agents bear the brunt of the uncertainty in the price estimation leading to
worse rates; we will see this manifest in the agent and seller regret bounds as well in Section 6.4.
Finally, we also see that when λ = AGE, the individual rationality holds exactly and almost surely for
agents participating by bids while it only does so asymptotically for agents participating by rewards.
Hence, if an agent knows her values, she is better off submitting them as bids up front.

It is also worth highlighting that the above bounds above have dependence on the size of the allocation
set |S| and not the size of the outcomes |Ω| (recall from Section 3 that K also may depend on |S|,
but not |Ω|). While |Ω| can be quite large, possibly as large as |S|n, the rates scale with |S| since
the updates to the means and confidence intervals for one agent occur independent of the rewards
observed by the others (4).

Proof sketch: All agents have non-negative utility in the exploration phase so we can restrict
our attention to rounds not in the exploration phase. We first show that we can decompose the
utility of agent i on round t as uit = ct + dt where ct = vi(si(ωt)) − git(si(ωt)) and dt =
Gt(ωt)−maxω F

9i
t (ω). Intuitively, ct, if negative, can be viewed as negative utility that an agent

may accrue due to the mechanism mis-estimating her values, and dt, if negative, can be viewed as
negative utility that an agent may accrue due to the mechanism mis-estimating the values of the other
agents, and consequently the prices. When λ = SEL, we show that ct is small (its sum can be bound
by a constant) but dt is large; in this case, the agents bear most of the effects of uncertainty in values
leading to large asymptotic rates which scale with n. When λ = AGE, dt is small and ct is large;
however, as the seller bears the effects of the uncertainty, it does not scale with n. In the remainder
of the analysis we show that when ζ = ETC, the information obtained in the explore phase rounds
lead to a T 2/3 rate, whereas when ζ = OPT, the information obtained in all rounds lead to a T 1/2 rate.

6.3 Bounding the VCG regret

Finally, we will upper bound the VCG regret RVCG
T for Algorithm 1. Recall that RVCG

T captures how
well the welfare, all agent utilities and the seller utility converge uniformly to the VCG values.

Theorem 4 Assume all agents are truthful. Let RVCG
T be as defined in (3). The following statements

hold for any λ ∈ (AGE, SEL). Whe ζ = ETC, for all T > 2K,

E[RVCG
T ] ≤

(
3Vmax(n+ 3) + 10(5n2 + n)

√
log(|S|T )

)
K

1/3T
2/3 + 4Vmax(n

2 + 3n)

∈ Õ
(
n2K

1/3T
2/3
)
.

Next, when ζ = OPT, we have that for all T > 2K,

E[RVCG
T ] ≤ 9σ(3n2 + n)

√
|S|T log(|S|T ) +

(
3Vmax(n+ 3) + 20σn2

√
log(|S|T )

)
K

1/3T
2/3
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+ 6Vmax(n
2 + 3n) ∈ Õ

(
n2K

1/3T
2/3
)
.

We find that for both choices of ζ, we have an Õ(n2K1/3T 2/3) upper bound on the VCG regret
RVCG
T . It is worth noting that since we use data from all rounds, the constants in the higher order

n2K1/3T 2/3 terms are smaller when ζ = OPT than when ζ = ETC. While both upper bounds differ
by a poly(n) factor from the lower bound in Theorem 1, it achieves the T 2/3 rate. This establishes
minimax optimality for VCG-Learn.

Proof sketch: We first decompose the VCG regret as follows:

RVCG
T . nRw

T +
n∑
i=1

∑
t

E[|A9it | |Et] + n
∑
t

E[|Bt| |Et],

where, A9it = V 9i(ω9i? )− F 9it (ω9i? ), Bt = Gt(ωt)− V (ω?), and the . notation ignores lower order
terms. Here, Bt is due to the error in estimating the optimum outcome and A9it is due to the error
in estimating the optimum without agent i. This decomposition bounds the VCG regret in terms of
the difference between the true values of the agents and their upper or lower confidence bounds. To
bound the

∑
tA
9i
t terms, we use the fact that the information obtained in the explore phase rounds

lead to a n2T 2/3 rate for both ζ choices. For the Rw
T and

∑
tBt terms, we similarly obtain a nT 2/3

rate when ζ = ETC and a nT 1/2 rate when ζ = OPT.

6.4 Bounding the welfare, agent, and seller regrets

Finally, in this section, to better understand the behaviour of the algorithm under various hyperpa-
rameter choices, we individually bound the welfare, agent, and seller regrets defined in (3). While
the VCG regret provides a bound on the welfare and seller regrets, we find that tighter bounds are
possible based on the different hyperparameters. First, in Proposition 5, we bound the welfare regret.

Proposition 5 Assume all agents are truthful. Let Rw
T be as defined in (3). The following statements

hold for any λ ∈ (AGE, SEL). When ζ = ETC, for all T > 2K,

E[Rw
T ] ≤

(
3Vmax + 10n

√
log(|S|T )

)
K

1/3T
2/3 + 4Vmaxn ∈ Õ

(
nK

1/3T
2/3
)
.

Moreover, when ζ = OPT, for all T > 2K, the welfare regret satisfies,

E[Rw
T ] ≤ 9n

√
|S|T log(|S|T ) + 3VmaxK

1/3T
2/3 + 6Vmaxn ∈ Õ

(
n|S|1/2T 1/2 + VmaxK

1/3T
2/3
)
.

The above results imply that in both cases Algorithm 1 is asymptotically efficient.

When ζ = OPT, the welfare regret is Õ(n|S|1/2T 1/2 + VmaxK
1/3T 2/3) whereas, when ζ = ETC, it is

Õ(nK1/3T 2/3). When Vmax ∈ o(n), the former is better (recall from Section 3, that the maximum
welfare Vmax ∈ O(n), but could be much smaller). More precisely, there are two factors contributing
to the welfare regret: first, the rounds spent in the exploration phase during which the instantaneous
regret may be arbitrarily bad; second, the effects of the estimation errors of the values. For both
choices of ζ, the former can be bound by VmaxK

1/3T 2/3. In contrast, when ζ = OPT, the latter can
be bound by n|S|1/2T 1/2 as we use data from all the rounds, whereas when ζ = ETC, it can only
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be bound by nK1/3T 2/3. We will see this effect empirically as well, with ζ = OPT performing
significantly better than ζ = ETC.

Next we will consider the agent and seller regrets. For this, we define v†i below, which can be used to
bound the instantaneous regret of agent i during the exploration phase, i.e. ui? − uit ≤ v†i . If the
agent prefers any allocation s ∈ S for free than paying the VCG price (1) for the socially optimal
outcome, she will incur no regret during the exploration rounds, and correspondingly, v†i = 0.

v†i = max
(
vi(ω?)− pi? −min

s
vi(s), 0

)
. (8)

Proposition 6 bounds the agent and seller regrets for the different ζ, λ choices.

Proposition 6 Assume all agents are truthful. Let RiT and Ra
T be as defined in (3). Let κi = 1 if

agent i participates by rewards and 0 if she participates by bids. The following statements hold after
T > 2K rounds for the ζ, λ choices specified.

1. Let ζ = ETC. Then, when λ = AGE, we have

E[RiT ] ≤
(
3v†i + 10σκi

√
log(|S|T )

)
K

1/3T
2/3 + 4n ∈ Õ

(
K

1/3T
2/3
)

E[R0T ] ≤
(
3Vmax + 20σn2

√
log(|S|T )

)
K

1/3T
2/3 + 4Vmaxn ∈ Õ

(
n2K

1/3T
2/3
)

If λ = SEL, we have

E[RiT ] ≤
(
3v†i + 20σn

√
log(|S|T )

)
K

1/3T
2/3 + 4n ∈ Õ

(
nK

1/3T
2/3
)
,

E[R0T ] ≤ 3VmaxK
1/3T

2/3 + 4Vmaxn ∈ Õ
(
VmaxK

1/3T
2/3
)

2. Let ζ = OPT. Then, when λ = AGE, we have

E[RiT ] ≤ 9σκi
√
|S|T log(|S|T ) + 3v†iK

1/3T
2/3 + 6n ∈ Õ

(
|S|1/2T 1/2 + v†iK

1/3T
2/3
)

E[R0T ] ≤ 9σn2
√
|S|T log(|S|T ) +

(
3Vmax + 10σn2

√
log(|S|T )

)
K

1/3T
2/3 + 6Vmaxn

∈ Õ
(
n2|S|1/2T 1/2 + n2K

1/3T
2/3
)
.

If λ = SEL, we have

E[RiT ] ≤ 9σn
√
|S|T log(|S|T ) +

(
3v†i + 20σn

√
log(|S|T )

)
K

1/3T
2/3 + 6n

∈ Õ
(
n|S|1/2T 1/2 + nK

1/3T
2/3
)
,

E[R0T ] ≤ 3VmaxK
1/3T

2/3 + 6Vmaxn ∈ Õ
(
VmaxK

1/3T
2/3
)
.

While, generally speaking, the agent and seller regrets scale at rate T 2/3, the dependence on other
problem parameters are determined by the choices for ζ and λ. First consider the case ζ = ETC. If
we choose λ = SEL, which, as we explained before, is favourable to the seller, the seller’s regret
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scales at rate VmaxK
1/3T 2/3, with at most linear dependence on n. However, this is disadvantageous

for an agent—her regret and asymptotic individual rationality bounds (Theorem 3) scale linearly
with n. On the other hand, if we choose λ = AGE, then the agent regret is the smallest, but the seller
suffers some disadvantageous consequences. Since v̂jt ≤ v̂jt, in line 9 of Algorithm 1, pit could be
negative, i.e., the seller makes a payment to the customer. This violates the no-positive-transfers
property which is considered desirable in mechanism design. The seller’s regret is also poor, with n2

scaling. We may draw similar conclusions when ζ = OPT, with the main difference being that some
terms can be bounded by T 1/2 rates. It is also worth noting that when ζ = OPT, for agents for whom
v†i = 0, we achieve

√
T regret.

It is worth observing that while the welfare regret is simply the sum of the agent and seller regrets
Rw
T = R0T +

∑n
i=1RiT (see (3)), the bounds for Rw

T given in Proposition 5 is smaller than the sum
of the agent and seller bounds in Proposition 5 for all ζ choices. For instance, when ζ = ETC, we
have Rw

T ∈ Õ(nK1/3T 2/3), but naively summing the bounds on the agent and seller regrets would
yield a bound Õ(n2K1/3T 2/3). This discrepancy can be explained by the fact that the prices do not
affect the welfare and therefore the error in estimating the prices need not be accounted for in the
welfare regret. However, the agent and seller utilities depend on the price, and consequently their
regret bounds should account for this error. As we explained in Section 4, estimating the prices is
one of the main bottlenecks in this set up. We are able to bound the welfare regret separately and
obtain a better bound than the sum of individual regrets. For example, in our simulation in Figure 1,
the regret of the mechanism and the first agent are fairly large while the regret of many of the other
agents is negative. This highlights the fact that the regret of any one agent or the seller might be
large due to the error in estimating the prices, even though the sum of these regret terms, which is the
welfare regret, is small.

6.5 Discussion

It is worth contextualising the above results with prior work on mechanism design with bandit
feedback in the online advertising setting. As explained in Section 2, these settings, where an agent
submits a single bid ahead of time and the stochasticity is observed by the mechanism on each round,
is different from ours, where the mechanism needs to rely on the agents to report their values on each
round. In a fixed-horizon version of this problem, Babaioff et al. (2014) describe an almost surely
truthful mechanism with T 2/3 welfare regret and Devanur and Kakade (2009) describe an almost
surely truthful mechanism with T 2/3 seller regret. While they focus on a simpler problem and provide
stronger truthfulness guarantees, it is worth noting that both works use an explore-then-commit
style algorithm to guarantee truthfulness. Babaioff et al. (2015) describe a truthful-in-expectation
mechanism with

√
T welfare regret. However, they do not bound the agent and seller regrets.

Finally, we note that our algorithm and analysis assumes that seller values are known. If this is
unknown, one can define lower and upper confidence bounds for the seller similar to (4) and use
them in Algorithm 1 in place of v0, similar to those of the agents. While T 2/3 rates are still possible,
there are additional considerations. First, in many applications, it may not be reasonable to assume
that this distribution has the same sub-Gaussian constant σ (e.g. PaaS); the variance of the seller
might scale with n and this will invariably be reflected in the regret bounds, including that of the
agents. Second, since Ω may be much larger than S , this results in long exploration phases and worse
regret bounds reflected via the parameter K.
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Figure 1: Results for a single-item simulation study. We show the welfare regret, the seller regret, and
the regret of four agents for the four difference choices for (ζ, λ) over 3000 rounds. Lower is better
in all plots. Agent 1 has the highest value, and if the values were known, the item would be assigned
to agent 1. The figures were obtained by averaging over 50 independent runs and the shaded regions
represent two standard errors. The jagged shape of the curves is due to the periodic exploration phase
in the algorithm. Some of the curves overlap in the last two plots for agents 3 and 7.

7. A Simulation

We present some simulation results in a single-parameter single-item environment. Here, ten agents
are competing for a single item and all of them are participating by rewards. When an agent receives
the item, her value is drawn stochastically from aN (µ, 0.5) distribution where µ is chosen uniformly
on a grid in the interval (0.2, 0.9). Agent 1 has a value of 0.9 for receiving the item (and will be the
agent who receives the item if values are known) and agent 10 has a value of 0.2. If an agent does
not receive the item, their value is non-stochastically zero. Observe that this is environment is rather
noisy—the variance of the reward distribution is large when compared to the range of the values of
the agents. The game is repeated for 3000 rounds.

We have shown the pseudo-regrets for the welfare, the seller, and some of the agents in Figure 1
for all possible choices of the ζ and λ hyperparameters. As we see, ζ = OPT performs better than
ζ = ETC on all plots as it uses all the data. Moreover, we see that the agents have lower regret when
λ = AGE than when λ = SEL, and vice versa for the seller. The regrets of agents 2 to 10 decrease
indefinitely leading to negative regret since their utility at the socially optimal outcome is zero, but
they occasionally get the item assigned to them during the exploration phase.
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8. Proof of Theorem 1

In this section, we present our proof of the lower bound in Section 4. We will first describe notation
and definitions that will be used throughout our proofs in Sections 8 and 9.

Notation: E,P will denote expectations and probabilities. Et,Pt will denote expectation and
probability when conditioned on observations up to time t− 1; for example, Pt(·) = P(·|Dt), where
Dt = {si`, Yi`}i≤n,`≤t−1.

Recall that ω? = argmaxω V (ω) is the socially optimal outcome. Let si? = si(ω?) be the allocation
for agent i at the optimum. Similarly, V 9i and ω9i? , defined below, will denote the welfare without
agent i and its optimiser respectively.

V 9i(ω) = v0(ω) +
∑
j 6=i

vi(ωt), ω9i? = argmax
ω∈Ω

V 9i(ω). (9)

We will first state the following fact, which is straightforward to verify, regarding agent and seller
utilities in the VCG mechanism.

Fact 7 When the outcome and the prices are chosen according to the VCG mechanism,

ui? = vi(si?)− pi? = V (ω?)− V 9i(ω9i? ),

u0? = v0(ω?) +
n∑
i=1

pi? =
n∑
i=1

V 9i(ω9i? )− (n− 1)V (ω?).

Our second result expresses the regret terms in (3) in a way that is convenient for analysis. For this,
we define quantities HT ,WT below.

HT =
1

T

n∑
i=1

T∑
t=1

(
pit + V 9i(ωt)

)
, WT = HT −

n∑
i=1

V 9i(ω9i? ). (10)

HT is computed using observations from rounds 1 to T , and can be thought of as the algorithm’s
estimate of

∑
i V
9i(ω?) at the end of T rounds. The following lemma expresses Ra

T and R0T in
terms of Rw

T and WT .

Lemma 8 Let Ra
T , R0T , R

w
T be as defined in (3). Then,

Ra
T = nRw

T + TWT , R0T = −(n− 1)Rw
T − TWT .

Proof Let hit = pit + V 9i(ωt) so that HT = 1
T

∑n
i=1

∑T
t=1 hit. For agent i, we can use Fact 7 and

the fact that uit = vi(ωt)− pit = V (ωt)− hit to obtain,

ui? − uit = (V (ω?)− V (ω9i? ))− (V (ωt)− hit) = (V (ω?)− V (ωt)) + (hit − V (ω9i? )).

Then, since Ra
T =

∑
i

∑
t(ui? − uit), we have

Ra
T =

T∑
t=1

n∑
i=1

(
(V (ω?)− V (ωt)) + (hit − V (ω9i? ))

)
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= n
T∑
t=1

(V (ω?)− V (ωt)) + T

(
HT −

n∑
i=1

V 9i(ω9i? )

)
.

This proves the first claim. For the seller, at time t, we observe

u0t = v0(ωt) +
n∑
i=1

pit = v0(ωt) +
n∑
i=1

hit −
n∑
i=1

V 9i(ωt) =
n∑
i=1

hit − (n− 1)V (ωt).

As before, we can now use Fact 7 to write,

R0T =
T∑
t=1

(u0? − u0t) =
T∑
t=1

n∑
i=1

(
V 9i(ω9i? )− hit

)
+ (n− 1)

T∑
t=1

(V (ωt)− V (ω?)).

The claim follows by observing that the first term in the RHS is −TWT and that the second term is
−Rw

T .

Our proof of Theorem 1 uses techniques from binary hypothesis testing to establish a lower
bound on the VCG regret. For this, we begin by reviewing some facts about the KL diver-
gence KL(·‖·). Recall that for two probabilities P,Q with Q absolutely continuous with respect
to P , the KL divergence is KL(P‖Q) = EP

[(
dP
dQ(X)

)]
. For distributions P, P ′, Q,Q′ with

supp (P ) = supp (Q) and supp (P ′) = supp (Q′), the KL divergence between the product
distributions satisfies KL(P × P ′‖Q × Q′) = KL(P‖Q) + KL(P ′‖Q′). Additionally, for two
univariate Gaussians N (µ1, 1),N (µ2, 1), we know KL(N (µ1, 1)‖N (µ2, 1)) = (µ1 − µ2)2/2. The
following result from Tsybakov (2008) will be useful in our proof.

Lemma 9 (Tsybakov (2008), Lemmas 2.1 and 2.6) Let P,Q be probabilities such that Q is abso-
lutely continuous with respect to P . Let A be any event. Then,

P (A) +Q(Ac) ≥ 1

2
exp

(
−KL(P‖Q)

)
.

We are now ready to prove the theorem.

Proof of Theorem 1. Let n > 1. Since the maximum is larger than an average, for any set of
real numbers {ai}i, we have max({ai}i) ≥

∑
i αiai for any {αi}i such that αi ≥ 0,

∑
i αi = 1.

Using Lemma 8 and the fact that Rw
T is positive, we obtain the following two upper bounds on

max(nRw
T , R

a
T , R0T ):

max(nRw
T , R

a
T , R0T ) ≥ 4

5
nRw

T +
1

5
R0T ≥

2

5
nRw

T −
1

5
TWT ,

max(nRw
T , R

a
T , R0T ) ≥ 4

5
nRw

T +
1

5
TRa

T = nRw
T +

1

5
TWT ≥

2

5
nRw

T +
1

5
TWT .

The LHS should be larger than both of the above lower bounds. Since max(a + b, a + c) =
a+ max(b, c), we have,

RVCG
T = max(nRw

T , R
a
T , R0T ) ≥ 2

5
nRw

T +
1

5
T |WT |

∆
= QT .
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We will obtain a lower bound on infA supΘ EQT which translates to a lower bound on the desired
quantity. Our strategy for doing so is to consider two problems in Θ and show that any algorithm
will not be able to distinguish between them. Both problems will have the same set of outcomes
Ω = {0, 1, . . . , . . . , |Ω| − 1} with Ω = S and |Ω| ≥ n+ 1. In the first problem, henceforth called θ0,
the optimal outcome is 0 with vi(0) = 1/2 for all agents i. For outcome j ∈ {1, . . . , n}, vj(j) = 0
and vi(j) = 1/2 for every other agent i 6= j. For j > n, vi(j) < 1/4 for all i. When an outcome
ω is chosen, agent i realises a value drawn from N (vi(ω), 1). Finally, the seller has 0 value for all
outcomes, v0(j) = 0 for all j ∈ Ω. The following statements are true about problem θ0:

V (ω?) = V (0) =
n

2
, V 9i(ω9i? ) = V (i) =

n

2
− 1

2
,

n∑
i=1

V 9i(ω9i? ) =
n2

2
− n

2
.

The second problem, henceforth called θ1, is the same as θ0 but differs in outcomes j ∈ {1, . . . , n},
as shown below. Here, the value of δ ∈ (0, 1/(2(n− 1))) will be specified shortly. We have:

vi(j) =

{
0 if i = j,
1
2 + δ if i 6= j.

The following statements are true about problem θ1:

V (ω?) = V (0) =
n

2
, V 9i(ω9i? ) = V (i) =

n

2
− 1

2
+ (n− 1)δ,

n∑
i=1

V 9i(ω9i? ) =
n2

2
− n

2
+ n(n− 1)δ.

In the above problems, if δ is set to be too large, then it becomes easier to distinguish between the
values of different outcomes using stochastic observations thus making the problem easy. If δ is
set to be too small, then the regret terms become small since all outcomes have similar values. The
largest lower bound is obtained by careful choice of δ (dependent on both n and T ) so as to balance
between these two cases.

We will make the dependence of QT on the problem explicit and write QT (θ0), QT (θ1) respectively.
Consider any algorithm in A. Expectations and probabilities when we execute this algorithm
problem in θ0 will be denoted Eθ0 ,Pθ0 , and in problem θ1, they will be denoted Eθ1 ,Pθ1 . Let
Nt(ω) =

∑t−1
i=1 1(ωt = ω) denote the number of times outcome ω ∈ Ω was chosen in the first t− 1

time steps. With this notation, we can upper bound the welfare regret in problem θ ∈ {θ0, θ1} as,

Eθ[Rw
T ] =

∑
j≥1

(V (0)− V (j))Eθ[Nt(j)] ≥
n∑
j=1

(V (0)− V (j))Eθ[Nt(j)].

Using the observation that the gap between the optimal and any other outcome in problem θ0 is at
least 1/2, and that when HT > n2/2−n/2 +n(n− 1)δ/2, |WT | is at least n(n− 1)δ/2, we obtain
the following lower bound on Eθ0 [QT (θ0)]:

Eθ0 [QT (θ0)] ≥ 2n

5

n∑
k=1

1

2
Eθ0 [Nt+1(k)] +

T

5

n(n− 1)δ

2
Pθ0
(
HT >

n2

2
− n

2
+

1

2
n(n− 1)δ︸ ︷︷ ︸

event A

)
,
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≥ n

10

(
n∑
k=1

2Eθ0 [Nt+1(k)] + Tn(n− 1)δ Pθ0(A)

)
. (11)

By a similar argument regarding HT under the event Ac in problem θ1, we obtain the following.
Here, we have dropped the Eθ1 [Nt+1(k)] terms which are positive.

Eθ1 [QT (θ1)] ≥ n

10
Tn(n− 1)δ Pθ1(Ac).

To combine these results we will apply Lemma 9 on Pθ0(A)+P′θ0(Ac) in a manner similar to Bubeck
et al. (2013). Letting θT0 , θ

T
1 denote the probability laws of the observed rewards up to round T in

problems θ0, θ1 respectively, we obtain

Pθ0(A) + P′θ0(Ac) ≥ 1

2
exp

(
−KL(θT0 ‖θT1 )

)
=

1

2
exp

−(n− 1)δ2

2

n∑
j=1

Eθ0 [NT+1(j)]

 .

For the first step we have used the fact that A is measurable with respect to the σ-field generated by
observations up to round T . For the second step, observe that the outcomes 0, n+ 1, n+ 2, |Ω| − 1
have the same distributions under both θ0 and θ1. For any outcome i ∈ {1, . . . , n}, the distribution of
agent i is also the same in both problems. For all other agents j 6= i, the KL divergence between the
corresponding distributions in the two problems is δ2/2. By combining the three previous bounds,
we obtain an upper bound on Eθ0 [QT (θ0)] + Eθ1 [QT (θ1)]:

10

n

(
Eθ0 [QT (θ0)] + Eθ1 [QT (θ1)]

)
≥

n∑
k=1

2Eθ0 [Nt+1(k)] + T (n− 1)δ
(
Pθ0(A) + P′θ0(Ac)

)
,

≥ 2
n∑
k=1

Eθ0 [Nt+1(k)] +
1

2
T (n− 1)δ exp

(
−(n− 1)δ2

2

n∑
k=1

Eθ0 [Nt+1(k)]

)

≥ min
x

{
2x +

1

2
T (n− 1)δ exp

(
−(n− 1)δ2

2
x

)}
≥ 4

(n− 1)δ2
log

(
T (n− 1)2δ3

8

)
.

Finally, we choose δ =
(

16
T (n−1)2

)1/3
so that the log term above can be upper bounded by a constant.

This results in the following bound:

1

2

(
Eθ0 [QT (θ0)] + Eθ1 [QT (θ1)]

)
≥ log(2)

5 · 162/3
· T 2/3(n− 1)

4/3,

where δ < 1
2(n−1) is satisfied if T > 128n. The claim follows by observing supθ∈Θ E[QT (θ)] ≥

max (Eθ0 [QT (θ0)],Eθ1 [QT (θ1)]) ≥ 1
2Eθ0 [QT (θ0)] + 1

2Eθ1 [QT (θ1)]. �
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9. Proofs of Results in Section 6

In this section, we analyse Algorithm 1. Section 9.1 controls the probability that the confidence
intervals given in (4) capture the true values. The proofs of Theorems 2, 3, and 4 are given in
Sections 9.2, 9.3, and 9.6 respectively. Sections 9.4 and 9.5 prove Propositions 5 and 6 respectively.
The bounds onR0T andRw

T will be useful in boundingRVCG
T . In Section 9.7, we state some technical

results that are used in our proofs. We begin with some notation and definitions.

Notation & Definitions: Recall that Algorithm 1 proceeds in a sequence of brackets. In our proofs,
qt will denote the bracket index round t belongs to and Tq will be the number of rounds completed
by q brackets. Then,

Tqt−1 < t ≤ Tqt . (12)

Eit, defined below, will denote the event that agent i’s values are trapped by the lower and upper
confidence bounds at round t when she participates truthfully. Et denotes the same for all agents.
Here v̂it, v̂it are as defined in (4). We have:

Eit =
(
∀ s ∈ S, vi(s) ∈ [v̂it(s), v̂it(s)]

)
, Et =

n⋂
i=1

Eit. (13)

For the outcome ωt at time t, let sit = si(ωt) be the allocation for agent i. Hence, for instance,
we can write V (ωt) = v0(ωt) +

∑n
i=1 vi(ωt) = v0(ωt) +

∑n
i=1 vi(sit). We will similarly use the

following definitions for the upper and lower bound on the welfare at time t, the functions F 9it , G
9i
t

used in the pricing calclulation, and their optimisers. Some of these terms have been defined before.

V̂t(ω) = v0(ω) +
n∑
i=1

v̂it(ωt), ωt = argmax
ω∈Ω

V̂t(ω), V̂ t(ω) = v0(ω) +
n∑
i=1

v̂it(ωt),

F 9it (ω) = v0(ω) +
∑
j 6=i

fit(ωt), ω9it = argmax
ω∈Ω

F 9it (ω), (14)

G9it (ω) = v0(ω) +
∑
j 6=i

git(ωt), Gt(ω) = v0(ω) +

n∑
i=1

git(ωt).

Next, we define some quantities related to the mean and confidence intervals defined in (4). For
brevity, we will denote the unclipped empirical mean in (4) by v′it(s). Next, we define βt, σit as
shown below. With this, we can rewrite the upper and lower confidence bounds in (4) as follows:

βt =
√

5 log(t− qK + 1) + 2 log(|S|), σit(s) =

 0 if i plays by bids
σ√
Nit(s)

otherwise , (15)

v̂it(s) = vit(s) + βtσit(s), v̂it(s) = vit(s)− βtσit(s).
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9.1 Bounding Pt(Ect )

In this section, we control the probability that the upper and lower confidence bounds do not trap the
true values {vi(s)}i,s. Recall that sub-Gaussian random variables satisfy the following concentration
property. Let {Xi}ni=1 be n i.i.d samples from a σ sub-Gaussian distribution and X = 1

n

∑
iXi be

its sample mean. Then,

P(X > ε) ≤ e
−nε2
2σ2 , P(X < ε) ≤ e

−nε2
2σ2 .

Lemma 10 Assume that agent i participates truthfully and let Eit be as defined in (13). When
ζ = ETC, for t /∈ E in bracket q, Pt(Ecit) ≤ 2(t− qK)−5/2. Moreover, for all T ,

∑T
t=1,t/∈E Pt(Ect ) ≤

4. When ζ = OPT, for t /∈ E in bracket q, Pt(Ecit) ≤ 2(t − qK)−3/2. Moreover, for all T ,∑T
t=1,t/∈E Pt(Ect ) ≤ 6.

Proof If the agent participates by bids truthfully, then v̂it = v̂it = vi and the claim is trivially
true. For agents participating by rewards, we will first prove this for ζ = OPT. Consider the event
{vi(s) > v̂it(s)} and recall the definitions in (4). Let v′it(s) be the unclipped empirical mean in (4).
Let vit(s) = max(0, v′it(s)) and ̂̂vit(s) = vit(s) +βtσit(s). Since vit(s) = min(1, vit(s)), we havê̂vit(s) ≥ v̂it(s). However, the following calculations show that P (vi(s) > v̂it(s)) = P(vi(s) >̂̂vit(s)).

Pt (vi(s) > v̂it(s))

= Pt
(
vi(s) > v̂it(s)|v′it(s) ≥ 1

)
Pt(v′it(s) ≥ 1) + Pt

(
vi(s) > v̂it(s)|v′it(s) < 1

)
Pt(v′it(s) < 1)

= Pt (vi(s) > ̂̂vit(s)|vit(s) ≥ 1)Pt(vit(s) ≥ 1) + Pt (vi(s) > ̂̂vit(s)|vit(s) < 1)Pt(vit(s) < 1)

= Pt (vi(s) > ̂̂vit(s)) .
Here, the second step uses two arguments. First, when v′it(s) < 1, then v̂it(s) = ̂̂vit(s). Second,
when v′it(s) ≥ 1, then Pt(vi(s) > v̂it(s)) = Pt(vi(s) > ̂̂vit(s)) = 1 since vi(s) ≤ 1 < v̂it(s) ≤̂̂vit(s). We can now bound,

Pt(vi(s) > v̂it(s)) = Pt
(
vi(s) > max(0, v′it(s)) + βtσit(s)

)
≤ Pt

(
vi(s) >

1

Nit(s)

t−1∑
`=1

Xi`1(sit = s) + βt
σ√
Nit(s)

)

≤ Pt
(
∃τ ∈ {q, . . . , t− (K − 1)q}, vi(s) >

1

τ

τ∑
`=1

X ′i` + βt
σ√
τ

)

≤
t−qK+q∑
τ=q

Pt
(
vi(s) >

1

τ

τ∑
`=1

X ′i` + βt
σ√
τ

)
≤ (t− qK + 1)e−β

2
t /2

≤ 1

|S|(t− qK + 1)3/2

In the second step, if v′it(s) was clipped below at 0, then we can replace it with a smaller quantity. In
the third step, we have used the fact that Nit(s) would take a value in {q, . . . , t− (K − 1)q} since
there have been qK exploration rounds thus far, during which we have collected rewards from agent
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i for allocation s exactly q times. {X ′i`}τ`=1 denotes the rewards Xi` collected when Nit(s) = τ . The
fourth step uses a union bound and the fourth step applies the sub-Gaussian condition. A similar
bound can be shown for the event {vi(s) < v̂it(s)}. The first claim follows by applying a union
bound over these two events and over all s ∈ S. The second claim follows from the observation∑∞

t=1 t
−3/2 ≤ 1 +

∫∞
1 t−3/2 ≤ 3.

Now consider ζ = ETC. The calculations above can be repeated, except Nit(s) = qt (12) deter-
ministically for all i, t. (When ζ = OPT, Nit(s) is random and depends on the reward realised.)
Therefore, we will not need the sum over τ ∈ {q, . . . , t − (K − 1)q}, resulting in the bound
e−β

2
t /2 ≤ 1

|S|(t−qK)5/2
. The second claim follows from

∑
t t
−5/2 ≤ 2.

Lemma 11 Assume that all agents participate truthfully and let Et be as defined in (13). When
ζ = ETC, for t /∈ E in bracket q, Pt(Ect ) ≤ 2n(t− qK)−5/2. Moreover, for all T ,

∑T
t=1,t/∈E Pt(Ect ) ≤

4n. When ζ = OPT, for t /∈ E in bracket q, Pt(Ect ) ≤ 2n(t − qK)−3/2. Moreover, for all T ,∑T
t=1,t/∈E Pt(Ect ) ≤ 6n.

Proof This follows by an application of the union bound over the agents i ∈ {1, . . . , n} on the
results of Lemma 10.

9.2 Proof of Theorem 2

We will first prove Theorem 2. We begin with the following Lemma. To state it, consider any strategy
π that agent i may follow when reporting her rewards. Let uit be the utility of the agent on round
t when she reports truthfully on rounds 1 to t − 1 (recall that the allocation the agent receives on
round t depends on the rewards {Yi`}t−2

`=1 she reported on rounds in the first t − 1 rounds), let uπit
be the utility of the agent when she follows strategy π from rounds 1 through t− 1, and let ut−1

it be
the utility of agent on round t when she follows π on rounds 1 thorough t − 2 and then switches
to truth-telling at the end of round t− 1. If participating by bids, this means it will change the bid
function, and if participating by rewards, it means it will replace the reported rewards Yi` for rounds
1, . . . , t− 2 with the true rewards Xi` and then report truthfully at round t− 1. Agent i’s allocation
at round t when the agent replaces her rewards this way will be different to the allocation chosen
when simply reporting truthfully since her past untruthful behaviour will have affected the outcomes
chosen by the mechanism in the previous rounds (this is particularly the case when ζ = OPT). We
should also emphasise that this behaviour of replacing the rewards is only for the purposes of our
proof below. We have the following result.

Lemma 12 Let uit, uπit, u
t−1
it be as defined above. Then,

UπiT − UiT =
T∑
t=1

uπit − ut−1
it +

T∑
t=2

ut−1
it − uit. (16)

Proof The claim follows by adding and subtracting
∑T

t=1 u
t−1
it , rearranging the terms, and noting

that u0
i1 = ui1.
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When applying the above Lemma, we will denote the strategy which follows π up to round t− 2 and
switches to truth-telling at the end of round t − 1 as πt−1. We will denote the outcomes at round
t when following π, πt−1 and truth-telling by ωπt , ω

t−1
t and ωt respectively, and the allocations for

agent i by sπit, s
r
it, sit for respectively; therefore, sπit = si(ω

π
t ), srit = si(ω

t−1
t , and sit = si(ωt).

9.2.1 PROOF OF THEOREM 2.1

We begin with Lemma 12. First, consider the second summation in its RHS, where we claim that
each term inside the summation is 0. To see this, note that πt−1 is also participating truthfully at
round t. It has replaced its reported rewards with its true realised rewards in the previous rounds.
The mechanism only uses rewards reported in the exploration rounds to decide outcomes on the
exploitation rounds, and the outcomes in the exploration rounds are chosen independent of the
bids/rewards reported by the agent. As the outcome and prices in round t will be the same for both
policies, we have ut−1

it = uit. (As we will see shortly in Section 9.2.2, this will not be the case when
ζ = OPT, and the second sum will be non-zero.)

Now turn to the first summation in the RHS of Lemma 12, the bound of which will leverage intuitions
from the proof of truthfulness of the VCG mechanism. In the remainder of the proof, git will denote
the appropriate quantity, either v̂it or v̂it depending on the value of hyperparameter λ, for agent i
when following πt−1. Since, at time t, she has switched to being truthful and only rewards from the
exploration phase are used in computing outcomes, this will be the same as had she been truthful
throughout. Similarly, let Gt denote either V̂ t or V̂t when agent i follows πt−1. Using these, we can
write for t /∈ E,

uπit − ut−1
it =

(
vi(s

π
it) +

(
v0(ωπt ) +

∑
j 6=i

gjt(ω
π
t )
)
−max

ω
F 9it (ω)

)
(17)

−
(
vi(s

t−1
it ) +

(
v0(ωt−1

t ) +
∑
j 6=i

gjt(ω
t−1
t )

)
−max

ω
F 9it (ω)

)
,

= vi(s
π
it)− vi(st−1

it ) +
(
v0(ωπt ) +

∑
j 6=i

gjt(ω
π
t )
)
−
(
v0(ωt−1

t ) +
∑
j 6=i

gjt(ω
t−1
t )

)
,

= (vi(s
π
it)− git(sπit)) + (git(s

t−1
it )− vi(st−1

it )) +(
v0(ωπt ) +

n∑
i=1

gjt(ω
π
t )︸ ︷︷ ︸

Gt(ωπt )

)
−
(
v0(ωt−1

t ) +

n∑
i=1

gjt(ω
t−1
t )︸ ︷︷ ︸

Gt(ω
t−1
t )

)
,

≤ (vi(s
π
it)− git(sπit)) + (git(s

t−1
it )− vi(st−1

it )).

Here, the first step substitutes expressions for uπit, u
t−1
it from Fact 7. The maxω F

9i
t (ω) terms are

cancelled out in the second step; they will be the same for both policies π, πt−1 since it is computed
using the rewards reported by other agents in rounds 1, . . . , t − 1 and hence does not depend on
the fact that agent i has switched policies in the current round. The third step adds and subtracts
git(s

π
it) + git(s

t−1
it ) and observes that the last two terms are Gt(ωπt ), Gt(ω

t−1
t ), where, recall Gt is

the appropriate quantity computed after agent i switches to truthful reporting.

28



VCG MECHANISM DESIGN UNDER STOCHASTIC BANDIT FEEDBACK

To obtain the last step, recall that ωt = ωt−1
t = argmaxω V̂t(ω) by line 8 of Algorithm 1. Moreover,

when ζ = ETC, v̂it, vit, v̂it are vertically shifted functions; for agents participating by bids, they are
identical while for agents participating by rewards, we use only one observation per allocation per
agent in each exploration phase. Therefore, V̂ t, V t, V̂t are also vertically shifted functions and hence
ωt = ωt−1

t = argmax V̂t = argmax V̂ t = argmaxV t. Therefore, regardless of the value of λ, we
have Gt(ωt−1

t ) ≥ Gt(ωπt ). We emphasise that the above calculations do not use the fact that v̂jt is
an upper confidence bound on vj for agents j 6= i; this may not be true since agent j may not be
truthful. Instead, it is simply treated as a function of rewards reported by agent j in previous rounds.

To complete the proof, we can use the fact that that the git terms are computed under truthful reporting
from agent i. If the agent participates by bids, then git = vi and hence uπit−u

t−1
it ≤ 0 a.s. Combining

this with the fact that the utilities for all policies are the same during t ∈ E, we have UπiT − UiT ≤ 0
a.s.. For an agent participating by rewards, under Eit,

vi(s
π
it)− git(sπit) + git(s

t−1
it )− vi(st−1

it ) = vi(s
π
it)− v̂it(sπit) + v̂it(s

t−1
it )− vi(st−1

it ) (18)

≤ 2βtσit(si(ω
9i
t )) ≤ 2

√
2βtσK

1/3t
−1/3.

Above, we have used the fact the widths of the confidence intervals are all equal. For the last step,
we use the following argument to bound σit(s) for any s ∈ S . It uses Lemma 18 and the fact that at
time t, agent i will have experienced all allocations s ∈ S at least qt times.

∀ i ∈ {1, . . . , n}, t ≥ 1, s ∈ S, σit(s) = σ/
√
Nit(s) ≤ σ/

√
qt ≤

√
2K1/3t−1/3. (19)

We will use the bound in (19) repeatedly in our proofs.

Therefore, (18) leads us to E[uπit − u
t−1
it |Eit] ≤ 2

√
2βtσK

1/3t−1/3 and consequently,

E[UπiT − UiT ] =
∑
t

E[uπit − ut−1
it |Eit] +

∑
t

P(Eit) ≤ 3
√

2βTK
1/3T

2/3 + 4.

The last step uses Lemma 10 to bound
∑

t P(Eit). The claim follows by substituting for βT (15). �

9.2.2 PROOF OF THEOREM 2.2

The main difference in applying Lemma 12 in the ζ = OPT case is that now the mechanism uses all
of the rewards reported by the agents, and this needs to be accounted for when bounding the two
summations. Unlike in Section 9.2.1, we cannot take values such as v̂it, v̂it to be the same for πt−1

and truth-telling because now the mechanism is using reported rewards from all rounds to determine
the outcome at round t; while we have swapped all false reports with the true rewards in πt−1, the
outcomes in the rounds outside the exploration phase will have been different, and therefore so are
the rewards realised and the quantities computed based on the rewards. Therefore, in this proof, we
will annotate quantities related to strategy πt−1

t at time t with a prime. For example, v̂′it : S → R
(see (4)) will be the upper confidence bounds at time t for agent i when following πt−1. On the same
note, E ′it denotes the event that agent i’s true values fall within the confidence interval at time t when
she follows πt−1.

For the terms in the first summation in the RHS of Lemma 12, by repeating the calculations in (17),
we obtain (using our above notation),

uπit − ut−1
it = (vi(s

π
it)− g′it(sπit)) + (g′it(s

t−1
it )− vi(st−1

it )) +G′t(ω
π
t )−G′t(ωt−1

t ).
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Recall that (g′it, G
′
t) denote either (v̂

′
it, V̂ t) or (v̂′it, V̂

′
t ) as per the value of λ being SEL or AGE. They

are computed in round t under truthful reporting. If agent i participates by bids, then g′it = vi and
hence vi(s)− g′it(s) = 0 for all s. If she participates by rewards, then for all choices of λ,

E[(vi(s
π
it)− g′it(sπit)) + (g′it(s

t−1
it )− vi(st−1

it )|E ′it] ≤ 2
√

2σβtK
1/3t

−1/3. (20)

This follows from the observation that when λ = AGE, the first term is less than 0 while the second
is less than 2βtσit(s

t−1
it ) ≤ 2

√
2σβtK

1/3t−1/3 by Lemma 18 and the fact that there have been qt
exploration phases (see (19)); a similar argument holds for λ = SEL, but with the terms reversed.

Next, we use ωt−1
t = argmaxω V̂

′
t (ω) to bound the difference G′t(ω

π
t )−G′t(ωt−1

t ). When λ = AGE,

G′t(ω
π
t )−G′t(ωt−1

t ) = V̂ ′t (ωπt )− V̂ ′t (ωt−1
t ) ≤ 0.

When λ = SEL, we can use the fact that at round t /∈ E all allocations will have been experienced by
each agent at least qt times (12) to obtain,

G′t(ω
π
t )−G′t(ωt−1

t ) = V̂ t(ω
π
t )− V̂ t(ω

t−1
t )

≤ V̂ ′t (ωπt )− V̂ ′t (ωt−1
t ) + 2βt

∑
i

(σ′it(s
t−1
it )− σ′it(ωπt ))

≤ 2βt
∑
i

σ′it(ω
t−1
t ) ≤ 2σβt

∑
i

1
√
qt
≤ 2
√

2σβtnK
1/3t

−1/3.

The last step uses Lemma 18. Now summing over all t and using Lemma 20, we obtain

∑
t/∈E

E[uπit − ut−1
it |E

′
it] ≤

{
3
√

2σκiβTK
1/3T 2/3 if λ = AGE,

3
√

2σ(n+ κi)βTK
1/3T 2/3 if λ = SEL.

(21)

We now move to the second summation in the RHS of Lemma 12. To bound this term, we will use
the fact that all agents except i are adopting stationary policies. Therefore, the rewards reported by
any agent j 6= i for any s ∈ S concentrates around some mean, and we can apply Lemma 10 for that
agent. For the remainder of this proof, vj(s) will denote the mean of this distribution. (This may not
be equal to the true value of agent j for allocation s since she may not be truthful.) Et, E ′t denote the
events that vj(s) falls within the confidence intervals (v̂jt(s), v̂jt(s)), (v̂

′
jt(s), v̂

′
jt(s)) respectively

for all agents j at round t. Here, recall, the former interval is obtained for agent j when agent i is
being truthful from the beginning and the latter when i is following πt−1. We now expand each term
in the second summation as follows,

ut−1
it − uit =

(
vi(s

t−1
it ) +

(
v0(ωt−1

t ) +
∑
j 6=i

g′jt(ω
t−1
t )

)
−max

ω
F ′9it (ω)

)
(22)

−
(
vi(sit) +

(
v0(ωt) +

∑
j 6=i

gjt(ωt)
)
−max

ω
F 9it (ω)

)
,

=
(
vi(s

t−1
it )− g′it(st−1

it )
)

+
(
git(sit)− vi(sit)

)
+
(
G′t(ω

t−1
t )−Gt(ωt)

)
+
(

max
ω

F 9it (ω)−max
ω

F ′9it (ω)
))
.
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The first step uses the expressions in Fact 17, while the second step adds and subtracts g′it(s
t−1
it ) +

git(sit) and rearranges the terms. To bound all four terms in (22), we will use that git, g′it, Gt, G
′
t,

F 9it , F ′9it are all computed under truthful reporting from agent i, that all other agents are adopting
stationary policies, and that each agent has experienced each allocation at least qt times (12) in round
t. The first two terms are 0 for an agent participating by bids. If participating by rewards, via a
similar reasoning to that used in (20),

E[(vi(s
t−1
it )− g′it(st−1

it )) + (git(sit)− vi(sit))|E ′it, Eit] ≤ 2
√

2σβtK
1/3t

−1/3.

To bound the third term in (22), observe that V̂ ′t − V̂t is uniformly bounded under Et ∩ E ′t.

V̂ ′t (ω)− V̂t(ω) =
∑
i

(v̂′it(ω)− v̂it(ω)) =
∑
i

(v̂′it(ω)− vi(ω)) +
∑
i

(vi(ω)− v̂it(ω))

≤ 2
√

2σβtnK
1/3t

−1/3.

Observing that ωt−1
t = argmaxω V̂

′
t (ωt) and ωt = argmaxω V̂t(ωt), we use Lemma 19 to obtain,

G′t(ω
t−1
t )−Gt(ωt) = V̂ ′t (ωt−1

t )− V̂t(ωt) + βtκλ
∑
j

(σjt(ωt)− σ′jt(ωt−1
t ))

≤ (2 + κλ)
√

2σβtnK
1/3t

−1/3.

Here κλ = 0 if λ = AGE and κλ = 2 if λ = SEL. Above, the first step rewrites the expression
for Gt, G′t in terms of V̂t, V̂ ′t , and κλ. The second step drops the σ′it(ω

t−1
t ) terms and bounds the

σit(ω
t−1
t ) terms using Lemma 18. To bound the last term, we observe that F ′9it − F 9it is uniformly

bounded under Et ∩ E ′t. Using a similar reasoning to (20),

F ′t(ω)− Ft(ω) =
∑
i

(f ′it(ω)− fit(ω)) =
∑
i

(f ′it(ω)− vi(ω)) +
∑
i

(vi(ω)− fit(ω))

≤ 2
√

2σβtnK
1/3t

−1/3.

By Lemma 19, we therefore have, maxω F
9i
t (ω)−maxω F

′9i
t (ω) ≤ 2

√
2σβtnK

1/3t−1/3. Summing
over all t and using Lemma 20, we can now bound the second summation in Lemma 12.∑

t/∈E

E[ut−1
it − uit|E

′
t, Et] ≤ 3

√
2σ
(
κi + n(4 + κλ/2)

)
βTK

1/3T
2/3. (23)

Finally, we can combine the results in (21), (23) to obtain

E[UπiT − UiT ] =
∑
t/∈E

E[uπit − uit] =
∑
t/∈E

E[uπit − uit|Et, E ′t] +
∑
t/∈E

P(Ect ∪ E ′ct )

=
∑
t/∈E

E[uπit − ut−1
it |E

′
it] +

∑
t/∈E

E[ut−1
it − uit|Et, E

′
t] + 12n

≤ 3
√

2σ
(
2κi + n(4 + κλ)

)
βTK

1/3T
2/3 + 12n.

The first step observes that the allocations and prices are the same during the exploration phase
rounds E. The third step uses Lemma 11, although E ′t now refers to an event when the strategy
changes at each step. The claim follows by substituting for βT (15) and then observing κλ ≤ 2 and
κi ≤ 1. �
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9.3 Proof of Theorem 3

In this Section, we prove the individual rationality properties of Algorithm 1. In our proofs, we will
only assume that agent i is participating truthfully. While the computed upper/lower confidence
bounds of all agents will appear in the analysis, we will not use the fact that v̂jt ≤ vj ≤ v̂jt for j 6= i.
We will however use Lemma 10 to control the probability of the event v̂it ≤ vi ≤ v̂it for agent i.

9.3.1 PROOF OF THEOREM 3.1

We will first consider the ζ = ETC case. For all agents, uit ≥ 0 when t ∈ E, so let us consider t /∈ E.
By Fact 17, we have for t /∈ E,

uit = vi(sit)− git(sit)︸ ︷︷ ︸
ct

+Gt(ωt)− F 9it (ω9it )︸ ︷︷ ︸
dt

. (24)

We will first bound ct. If agent i participates by bids truthfully, git = vi and hence ct = 0 a.s. To
bound ct when she participates by rewards truthfully, let c̃t = max(0, git(sit) − vi(sit)). Clearly,
c̃t ≥ 0 and ct ≥ −c̃t. Observing that v̂it ≤ vi ≤ v̂it under Eit (13), and that git = v̂it when λ = AGE
and git = v̂it when λ = SEL, we have,

E[c̃t|Eit] ≤ 0 if λ = SEL, E[c̃t|Eit] ≤ 2βtσit(sit) if λ = AGE.

To bound dt, we first observe that ωt = argmaxω Gt(ω) since V̂ t, V t, V̂t are vertically shifted
functions (using the same argument used in Section 9.2.1). Now, consider the case λ = AGE. Since,
V̂t = V̂ 9it + v̂it and v̂it ≥ vit ≥ 0 (recall from (4) that we clip vit between 0 and 1), we have that
V̂ 9it ≥ V̂ 9it . By observing V̂ 9it ≤ V̂ 9it , we have

dt = max
ω

Gt −max
ω

F 9it = max V̂t −max V̂ 9it ≥ max V̂t −max V̂ 9it ≥ 0.

When λ = SEL, and therefore Gt = V̂ t and F 9it = V̂ 9it , one no longer has dt ≥ 0 since V̂ 9it can be
larger than V̂ t. However, we can obtain a weaker bound of the form,

dt = V̂ t(ωt)− V̂ 9it (ω9it ) = max V̂t −max V̂ 9it − 2
∑
j

σjt(sjt) ≥ −2
√

2σβtnK
1/3t

−1/3.

Above, the last step uses that V̂t ≥ V̂ 9it as before and (19) to bound the σjt(sjt) terms.

We can now bound the utilities for the various cases in the theorem for agent i. First, when λ = SEL
and agent i is participating by bids, we have, uit = ct+dt ≥ 0 a.s. for all t /∈ E. Therefore, UiT ≥ 0
for all T and the mechanism is individually rational for this agent. That is, the algorithm is (almost
surely) individually rational. If agent i participates by rewards truthfully, we have

E[−UiT ] ≤
∑
t/∈E

Et[−ct|Eit] +
∑
t/∈E

Et[−dt|Eit] +
∑
t/∈E

Pt(Ecit).

By combining the results above and applying Lemma 10, we obtain,

E[UiT ] ≥
∑
t/∈E

E[uit] ≥

{
−3
√

2σβtK
1/3T 2/3 − 4, if λ = AGE,

−3
√

2nσβtK
1/3T 2/3 − 4, if λ = SEL.

The claim follows by substituting for βT (15). �
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9.3.2 PROOF OF THEOREM 3.2

Now we will consider the ζ = OPT case. As in Section 9.3.1, we will write uit = ct + dt where
ct, dt are as defined in (24), and consider rounds t /∈ E. First consider ct. If agent i participates by
bids truthfully, git = vi and hence ct = 0. To bound ct when she participates by rewards truthfully,
let c̃t = max(0, git(sit)− vi(sit)) ≥ 0. Using a similar argument as above, we have

E[c̃t|Eit] ≤ 0 if λ = SEL, E[c̃t|Eit] ≤ 2βtσit(sit) if λ = AGE.

To bound dt, first note that V̂t(ωt) − max V̂ 9it ≥ 0 since V̂t = V̂ 9it + v̂it and v̂it ≥ 0. Therefore,
when λ = AGE,

dt = V̂t(ωt)− F 9it (ω9it ) ≥ V̂t(ωt)−max V̂ 9it ≥ 0,

and when λ = SEL,

dt = V̂ t(ωt)− F 9it (ω9it ) ≥ V̂t(ωt)−max V̂ 9it − 2βt
∑
j

σjt(sjt) ≥ −2βt
∑
j

σjt(sjt).

To bound the
∑

t σit(sit) terms in ct and dt when ζ = OPT, we use the following argument which
leads to a tighter upper bound bound.

∑
t/∈E

σit(sit)

σ
=
∑
t/∈E

1√
Nit(sit)

≤
∑
t>K

1√
Nit(sit)

≤
∑
s∈S

NiT (s)∑
j=1

1√
j

(25)

≤ 2
∑
s∈S

√
NiT (s) ≤ 2

√
|S|(T − qK) ≤ 2

√
|S|T .

The first step simply adds more terms to the summation. The second step observes that the summation
can be written as |S| different summations, one for each s ∈ S . The third step uses Lemma 20. We
will use the above bound in (25) elsewhere in our proofs for the ζ = OPT case.

By the same argument for other agents j and using the fact that βt ≤ βT for all t < T , we have∑
t βtσjt(sjt) ≤ 2σβT |S|1/2T 1/2 for all agents j. Therefore, for an agent participating by bids,

UiT ≥ 0 if λ = AGE and UiT ≥ −4βTσn|S|1/2T 1/2 if λ = SEL. For an agent participating by rewards,
we have:

E[UiT ] ≥ −
∑
t/∈E

E[c̃t|Eit] +
∑
t/∈E

E[dt]−
∑
t/∈E

P(Ecit) ≥

{
−4βTσ|S|1/2T 1/2 − 6 if λ = AGE,

−4βTσn|S|1/2T 1/2 − 6 if λ = SEL.

�

9.4 Proof of Proposition 5

In this section, we bound the welfare regret Rw
T . The bounds we establish for the welfare regret here

and for the seller regret in Section 9.5 will be useful when we bound the VCG regret in Section 9.6.
The following lemma provides a bound that will be useful in the proof of Proposition 5.
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Lemma 13 The welfare regret Rw
T (3) satisfies the following bound.

E[Rw
T ] ≤ 3VmaxK

1/3T
2/3 + 2βT

∑
t/∈E

n∑
i=1

Et[σit(sit)] + Vmax

∑
t/∈E

Pt(Ect ).

Proof Write Rw
T =

∑T
t=1 rt where rt = V (ω?) − V (ωt). Recall that E denotes time indices

belonging to the explore phase. We split the instantaneous regret terms to obtain,

Rw
T =

T∑
t=1,t∈E

rt +
T∑

t=1,t/∈E

rt.

First consider the second summation. Using the notation in (15), we obtain,

Et[rt] ≤ E[rt|Et] + E[rt|Ect ]P(Ect ) = Et[V (ω?)− V̂t(ωt) + V̂t(ωt)− V (ωt)|Et] + VmaxPt(Ect )

≤ Et[V (ω?)− V̂t(ω?) + V̂t(ωt)− V (ωt)|Et] + VmaxPt(Ect )

≤ Et[V̂t(ωt)− V̂ t(ωt)|Ect ] + VmaxPt(Ect ) ≤ 2βt

n∑
i=1

Et[σit(sit)] + VmaxPt(Ect ). (26)

Here, the third step uses the fact that V̂t is maximised at ωt. The fourth step uses that V̂t ≥ V and
V̂ t ≤ V under Et. Now summing over all t, we obtain

E[Rw
T ] ≤

∑
t∈E

Et[rt] +
∑
t/∈E

Et[rt] ≤
∑
t∈E

Vmax +
∑
t/∈E

(
2

n∑
i=1

βtEt[σit(sit)] + VmaxPt(Ect )
)
.

Now, the number of terms in the first summation can be bound by qTK ≤ 3K1/3T 2/3 using Lemma 18.
The claim follows by observing βt ≤ βT for all t ≤ T .

Proof of Proposition 5. We will first consider the case ζ = ETC, and apply Lemma 13. By
Lemma 11, we have

∑
t Pt(Ect ) ≤ 4n. By following a similar argument to (19), we obtain σit(sit) ≤√

2K1/3t−1/3. Then, using Lemma 20 to bound
∑
t−1/3, we have

E[Rw
T ] ≤ 4nVmax + 3VmaxK

1/3T
2/3 + 3

√
2βTnK

1/3T
2/3. (27)

Next, consider ζ = OPT. In order to use Lemma 13, we will use a similar argument as in (25) to
obtain

∑
t/∈E σit(sit) ≤ 2σ|S|1/2T 1/2. Next, by Lemma 11, we have

∑
t Pt(Ect ) ≤ 6n. These results

when applied with Lemma 13 yield:

E[Rw
T ] ≤ 6Vmaxn+ 4σnβT |S|

1/2T
1/2 + 3K

1/3T
2/3. (28)

The claims follow by substituting for βT (15) in (27) and (28). �
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9.5 Proof of Proposition 6

In this section, we bound the agent and seller regrets. First, in Lemma 14 we provide an upper
bound on the agent regret. Recall that v†i = max(ui? −mins vi(s), 0) from (8). If the agent prefers
receiving any item in S for free instead of the socially optimal outcome at the VCG price, then this
term will be 0 and the agent does not incur any regret during the exploration phase rounds.

Lemma 14 Consider any agent i and define at, bt as follows for t ≥ 0.

at = F 9it (ω9it )− V̂ t(ω
9i
? ), bt = git(sit)− v̂it(sit) + V̂t(ωt)−Gt(ωt).

Then, the following bound holds on the regret of agent i.

E[RiT ] ≤ 3v†iK
1/3T

2/3 +
∑
t/∈E

Et[at|Et] +
∑
t/∈E

Et[bt|Et] +
∑
t/∈E

Pt(Ect ).

Proof As above, we will write RiT =
∑

t∈E rit +
∑

t/∈E rit, where rit = ui? − uit. We will first
bound the second summation in expectation. For t /∈ E, we use Facts 7 and 17 to obtain,

rit = git(sit)− vi(sit) + V (ω?)−Gt(ωt) + F 9it (ω9it )− V 9i(ω9i? ).

Under Et, the following are true; vi(sit) ≥ v̂it(sit); V (ω?) ≤ V̂t(ω?) ≤ V̂t(ωt) since ωt maximises
V̂t, and V 9i(ω9i? ) ≥ V 9i(ω9it ) ≥ V̂ t(ω

9i
t ) since ω9i? maximises V 9i. This leads us to,

Et[rit] ≤ Et[F 9it (ω9it )− V̂ t(ω
9i
t )︸ ︷︷ ︸

at

|Et] + Et[git(sit)− v̂it(sit) + V̂t(ωt)−Gt(ωt)︸ ︷︷ ︸
bt

|Et] + Pt(Ect ).

Summing over all t yields the following bound on the agent regret:

E[RiT ] ≤
∑
t∈E

v†i +
∑
t/∈E

Et[rit|Et] +
∑
t/∈E

Pt(Ect ) (29)

≤ 3v†iK
1/3T

2/3 +
∑
t/∈E

Et[at|Et] +
∑
t/∈E

Et[bt|Et] +
∑
t/∈E

Pt(Ect ).

Here, for the first summation, we applied Lemma 18 to obtain v†i qTK ≤ 3v†iK
1/3T 2/3.

When applying the above lemma, the value of hyperparameter λ in Algorithm 1 will decide the
bounds for at, bt respectively. Additionally, note that at, bt are measurable with respect to the sigma
field generated by observations up to time t− 1. Hence, Et[at],Et[bt] are deterministic quantities.
Our next lemma bounds the seller regret. For this, we first define A9it , for i ∈ {1, . . . , n} and Bt as
follows for t ≥ 0:

A9it = V 9i(ω9i? )− F 9it (ω9i? ), Bt = Gt(ωt)− V (ω?). (30)
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Lemma 15 Let A9it and Bt be as defined in (30). Then, the following bound holds on the regret of
the seller (3):

E[R0T ] ≤ 3VmaxK
1/3T

2/3 +
∑
t/∈E

n∑
i=1

Et[A9it |Et] + (n− 1)
∑
t/∈E

Et[Bt|Et] + Vmax

∑
t/∈E

Pt(Ect ).

Proof WriteR0T =
∑T

t∈E r0t+
∑T

t/∈E r0t, where r0t = u0?−u0t. To bound the second summation,
we use Facts 7 and 17 to obtain the following expression for r0t when t /∈ E:

r0t = u0? − u0t =
n∑
i=1

(
V 9i(ω9i? )− F 9it (ω9it )

)
+ (n− 1) (Gt(ωt)− V (ω?)) . (31)

Hence, for t /∈ E, we have Et[r0t] ≤ Et[r0t|Et] + Et[r0t|Ect ]P(Ect ) ≤
∑n

i=1 E[A9it |Et] + (n −
1)E[Bt|Et] + VmaxPt(Ect ). Summing over all t yields the following bound on the seller regret:

E[R0T ] ≤
∑
t∈E

Vmax +
∑
t/∈E

Et[r0t]

≤ 3VmaxK
1/3T

2/3 +
∑
t/∈E

n∑
i=1

Et[A9it |Et] + (n− 1)
∑
t/∈E

Et[Bt|Et] + Vmax

∑
t/∈E

Pt(Ect ).

Here, for the first summation, we applied Lemma 18 to obtain qTK ≤ 3K1/3T 2/3.

9.5.1 PROOF OF PROPOSITION 6.1, AGENT REGRET

Let us first consider RiT , the regret for agent i, when ζ = ETC. We will apply Lemma 14 and proceed
to control the at, bt terms for the two different choices for λ when Et holds. First consider at. When
λ = AGE, we have F 9it = V̂ 9it and therefore at = 0 a.s. When λ = SEL, we have F 9it = V̂ 9it and
therefore under Et,

at = V̂ 9it (ω9it )− V̂ 9it (ω9it ) =
n∑
i=1

2βtσit(si(ω
9i
t )) ≤ 2

√
2βtnσK

1/3t
−1/3.

The last step uses an argument similar to (19) followed by Lemma 18. Along with Lemma 20, we
have the following bounds on the sum of at’s:

∑
t/∈E

E[at|Et] ≤

{
0 if λ = AGE,

3
√

2βTnσK
1/3T 2/3 if f = SEL.

(32)

Now consider bt and assume the agent participates by rewards. When λ = AGE, git = v̂it and
G9it = V̂ 9it . We therefore have, bt = v̂it(sit) − v̂it(sit) = 2βtσit(sit) ≤ 2

√
2σβtK

1/3t−1/3 under
Et. Similarly, when λ = SEL, git = v̂it and G9it = V̂ 9it , which results in bt = V̂t(ωt) − V̂ t(ωt) =
2βt
∑

i σit(ωt) ≤ 2
√

2σβtnK
1/3t−1/3. For an agent participating by bids v̂it = git = vi. The only

change in the analysis is that now bt = V̂t(ωt)−Gt(ωt) which can be bound in a similar fashion to
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above depending on the value of λ. Accounting for these considerations, and using Lemma 20, we
have the following bounds on the sum of bt’s:

∑
t/∈E

E[bt|Et] ≤

{
3
√

2βTσκiK
1/3T 2/3 if λ = AGE,

3
√

2βTσnK
1/3T 2/3 if λ = SEL.

(33)

Recall that κi = 1 if the agent participates by rewards and 0 if she participates by bids. Finally, an
application of Lemma 11 leads to the following bounds for the agent regret:

E[RiT ] ≤

{
4n+

(
3v†i + 3

√
2κiσβT

)
K1/3T 2/3, if λ = AGE,

4n+
(
3v†i + 6

√
2σβTn

)
K1/3T 2/3, if λ = SEL.

9.5.2 PROOF OF PROPOSITION 6.1, SELLER REGRET

Now, we will consider R0T , the seller regret, when ζ = ETC. We will apply Lemma 15 and
proceed to control the A9it , Bt terms for the two different choices for λ under Et. First consider
the A9it terms. When λ = SEL, then F 9it = V̂ 9it is an upper bound for V 9i under Et. Hence,
A9it = maxV 9i −max V̂ 9it ≤ 0. When λ = AGE, under Et, we obtain the following uniform bound
on V 9i(ω)− F 9it (ω):

∀ω ∈ Ω, V 9i(ω)− F 9it (ω) ≤ V̂ 9it (ω)− V̂ 9it (ω) =
∑
j 6=i

2βtσjt(sj(ω))

≤ 2
√

2σβt(n− 1)K
1/3t

−1/3. (34)

Here, the last step uses an argument similar to (19). Hence, by Lemma 19, we have A9it =
maxV 9i −maxF 9it ≤ 2

√
2σβt(n − 1)K1/3t−1/3 under Et. Along with Lemma 20, we obtain the

following.

n∑
i=1

∑
t/∈E

E[A9it |Et] ≤

{
3
√

2σβTn(n− 1)K1/3T 2/3 if λ = AGE,

0 if λ = SEL.
(35)

Now, we turn to Bt. For this, note that under Et, V (ω?) ≥ V (ωt) ≥ V̂ t(ωt). When λ = SEL, we
have Gt = V̂ t and therefore Bt ≤ 0. When λ = AGE, we have Gt = V̂t and therefore,

Bt ≤ V̂t(ωt)− V̂ t(ωt) = 2βt

n∑
i=1

σit(sit) ≤ 2
√

2σnβtK
1/3t

−1/3.

This yields the following bounds for the sum of Bt’s.

(n− 1)
∑
t/∈E

E[Bt|Et] ≤

{
3
√

2σβTn(n− 1)K1/3T 2/3 if λ = AGE,

0 if λ = SEL.
(36)

Combining the above results with Lemma 15 and Lemma 11 leads to the following bounds for the
seller regret:

E[R0T ] ≤

{
4nVmax +

(
3Vmax + 6

√
2σβTn(n− 1)

)
K1/3T 2/3. if λ = AGE,

4nVmax + 3VmaxK
1/3T 2/3. if λ = SEL.
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9.5.3 PROOF OF PROPOSITION 6.2, AGENT REGRET

Next, we will consider agent i’s regret RiT , when ζ = OPT. As in Section 9.5.1, we will use
Lemma 14 and control the at, bt terms for the two different choices for λ under Et. First, at is
bounded identically to obtain the upper bound in (32); this uses the fact that even when ζ = OPT,
there will have been qT exploration phases by round T .

Next, consider bt. When λ = AGE, git = v̂it and G9it = V̂ 9it . We therefore have, bt = v̂it(sit) −
v̂it(sit) = 2βtσit(sit) if the agent is participating by rewards and bt = 0 if she is participating by
bids. Similarly, when λ = SEL, bt = V̂t(ωt)− V̂ t(ωt) ≤ 2βt

∑
i σit(ωt) under Et. Using a similar

argument to (25), we obtain the following bounds on the sum of bt’s when t /∈ E:

∑
t/∈E

E[bt|Et] ≤

{
4κiβTσ|S|1/2T 1/2 if λ = AGE,

4βTσn|S|1/2T 1/2 if λ = SEL.
(37)

Combining the above results with Lemma 14 and Lemma 11 leads to the following bounds for the
agent regret:

E[RiT ] ≤

{
6n+ 4σβTκi|S|1/2T 1/2 + 3v†iK

1/3T 2/3, if λ = AGE,

6n+ 4σβTn|S|1/2T 1/2 + (3v†i + 3
√

2σβTn)K1/3T 2/3, if λ = SEL.

9.5.4 PROOF OF PROPOSITION 6.2, SELLER REGRET

Finally, we will consider the seller regret R0T , when ζ = OPT. Following along the same lines as
Section 9.5.2, we will use Lemma 15 to control the seller regret, and moreover, use the expression
in (35) to bound the E[A9it |Et] terms. The same bounding technique can be used since, even when
ζ = OPT, there will have been qT exploration phases by round T .

To bound the Bt terms, we first observe that under Et, V (ω?) ≥ V (ωt) ≥ V̂ t(ωt). When λ = SEL,
we have Gt = V̂ t, and therefore Bt ≤ 0. When λ = AGE, we have Gt = V̂t, and therefore
Bt ≤ V̂t(ωt) − V̂ t(ωt) = 2βt

∑
i σit(sit). Putting these results together and using a similar

argument to (25), we obtain the following bounds on the sum of Bt’s:

(n− 1)
∑
t/∈E

E[Bt|Et] ≤

{
4σβTn(n− 1)|S|1/2T 1/2 if λ = AGE,

0 if λ = SEL.
(38)

Combining the above results with Lemma 15 and Lemma 11 leads to the following bounds for the
seller regret:

E[R0T ] ≤

{
6nVmax + 4σβTn(n− 1)|S|1/2T 1/2 +

(
3Vmax + 3

√
2σβTn(n− 1)

)
K1/3T 2/3, if λ = AGE,

6nVmax + 3VmaxK
1/3T 2/3, if λ = SEL.

9.6 Proof of Theorem 4

We now bound RVCG
T . First, we provide a bound on RVCG

T in terms of A9it and Bt defined in (30).
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Lemma 16 Let A9it , Bt be as defined in (30). Then, the following bound holds on the VCG regret
RVCG
T defined in (3).

E[RVCG
T ] ≤ 2

n∑
i=1

∑
t/∈E

E[|A9it | |Et] + 2(n− 1)
∑
t/∈E

E[|Bt| |Et] + 6VmaxK
1/3T

2/3

+ (n+ 1)Rw
T + 2Vmax

∑
t/∈E

Pt(Ect ).

Proof Recall that Rw
T is always non-negative while Ra

T and R0T may be positive or negative. From
Lemma 8, we have Ra

T +R0T = Rw
T . Since the maximum is smaller than the sum, we have

RVCG
T = max(nRw

T , R
a
T , R0T ) ≤ nRw

T + |Ra
T |+ |R0T | ≤ (n+ 1)Rw

T + 2|R0T |. (39)

By the triangle inequality, we obtain the following bound on |R0T |, similar to Lemma 15:

E[|R0T |] ≤
∑
t∈E

E[|r0t|] +
∑
t/∈E

E[|r0t| |Et] +
∑
t/∈E

E[|r0t| |Et]

≤ VmaxKqT +

n∑
i=1

∑
t/∈E

E[|A9it | |Et] + (n− 1)
∑
t/∈E

E[|Bt| |Et] + Vmax

∑
t/∈E

Pt(Ect ).

The claim follows by combining the above bound with (39) and then applying Lemma 18 for a bound
on KqT .

We are now ready to prove Theorem 4.

Proof of Theorem 4. First consider the ζ = ETC case. We will use Lemma 16 to control RVCG
T .

We already have an upper bound on Rw
T from Section 9.4, and upper bounds on A9it and Bt from

Sections 9.5.2 and 9.5.4. The lower bounds forA9it , Bt are obtained by simply reversing the argument.

First consider, |A9it |. If λ = SEL, we already saw A9it ≤ 0. By using an argument similar to (34),
we obtain −A9it ≤ 2

√
2σβt(n − 1)K1/3t−1/3. Similarly, if λ = AGE, we already saw A9it ≤

2
√

2σβt(n− 1)K1/3t−1/3. Moreover,

−A9it = V̂ 9it (ω9it )− V 9i(ω?) ≤ V 9i(ω9it )− V 9i(ω?) ≤ 0.

Therefore, for both λ values we have |A9it | ≤ 2
√

2σβt(n − 1)K1/3t−1/3. After an application of
Lemma 20, we obtain, ∑

i

∑
t/∈E

E[|A9it | |Et] ≤ 3
√

2σβtn(n− 1)K
1/3T

2/3. (40)

By following a similar argument, we can obtain (n − 1)
∑

t/∈E E[|Bt| |Et] ≤ 3
√

2σβtn(n −
1)K1/3T 2/3. The claim follows by combining the above with Lemma 16, the bound on the welfare
regret in (27), and Lemma 11 to control

∑
t/∈E Pt(Ect ).

Now consider the ζ = OPT case. Since there will have been qT exploration phases in T rounds, we
use the expression in (40) to bound the sum of E[|A9it ||Et] terms. Next, let us turn to the |Bt| terms
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in the RHS of Lemma 16. When λ = AGE, we already saw in Section 9.5.4 that Bt ≤ 0. Moreover,
−Bt = V (ω?)− V̂ t(ωt) ≤ V̂t(ωt)− V̂ t(ωt) ≤ 2βt

∑
i σit(sit) under Et. Similarly, when λ = SEL,

we already saw Bt ≤ 2βt
∑

i σit(sit). Moreover, −Bt = V (ω?)− V̂t(ωt) ≤ 0. In all cases, we have
|Bt| ≤ 2βt

∑
i σit(sit) and therefore, by following the same calculations in (25), we have,

(n− 1)
∑
t/∈E

E[|Bt| |Et] ≤ 4σβTn(n− 1)|S|1/2T 1/2.

The claim follows by combining the above with Lemma 16, the bound on the welfare regret in (28),
and Lemma 11 to control

∑
t/∈E Pt(Ect ). �

9.7 Some Technical Lemmas

This section states some technical results that were used throughout our proofs. The following fact,
akin to Fact 7, is straightforward to verify.

Fact 17 In round t of Algorithm 1, the agent and seller utilities satisfy the following for the given
{fit, git}i,t choices.

if t ∈ E, uit = vi(sit), if t /∈ E, uit = vi(sit)− git(sit) +Gt(ωt)− F 9it (ω9it ),

if t ∈ E, u0t = v0(ωt), if t /∈ E, u0t =
n∑
i=1

F 9it (ω9it )− (n− 1)Gt(ωt).

The following result bounds the number of brackets qT (12) after a given number of rounds T .

Lemma 18 Consider Algorithm 1 on the T th round, where T > 2K, and let qT denote the current
bracket index. If T is an exploration round, i.e. T ∈ E, then qT ≤ 3K−2/3T 2/3. If T /∈ E, then,
1
2K

−2/3T 2/3 ≤ qT ≤ 3K−2/3T 2/3.

Proof For brevity, write q = qT , c = 5/6, d = 1/2. First let T /∈ E. Using the notation in (12), we
have

Tq−1 +K < T ≤ Tq, where, Tm = Km+
m∑
t=1

bcKtdc.

To bound Tm, letting Sm =
∑m

t=1 t
d and bounding the sum of an increasing function by an integral

we have, ∫ m

0
tddt < Sm <

∫ m+1

1
tddt =⇒ md+1

d+ 1
< Sm <

(m+ 1)d+1 − 1

d+ 1
. (41)

This leads to the following bounds on T ,

T ≤ Tq ≤ qK +

q∑
t=1

cKtd ≤ qK +
cK

d+ 1

(
(q + 1)d+1 − 1

)
(42)

≤ qd+1K +
cK

d+ 1
(2q)d+1 ≤ c1q

3/2K,
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T ≥ Tq−1 +K ≥ qK +

q−1∑
t=1

(cKtd − 1) ≥ qK − (q − 1) +
cK

d+ 1
(q − 1)d+1 (43)

≥ cK

d+ 1

(q
2

)d+1
= c2q

3/2K.

In (42), we have used the upper bound in (41) withm = q, and the facts q ≤ q3/2, q+1 ≤ 2q. In (43),
we have used the lower bound in (41) with m = q − 1, and the facts qK > q − 1, q − 1 ≥ q/2; the
last inequality holds when q ≥ 2 which is true when T ≥ 2K. Now, by substituting the values for c
and d, we have c1 = 1 + 10

√
2/9 and c2 = 5

√
2/36. Thus,

q ≤
(

T

c2K

)2/3

≤ 3
T 2/3

K2/3
, q ≥

(
T

c1K

)2/3

≥ 1

2

T 2/3

K2/3
.

This proves the result for T /∈ E. If T ∈ E, by noting that T ≥ Tq−1, we can repeat the calculations
in (43) to obtain the same bound.

The following two results were used repeatedly throughout our proofs.

Lemma 19 Let f1, f2 : X → R for some finite set X such that f1(x) − f2(x) ≤ ε for all x ∈ X
and a given ε ≥ 0. Then max f1 −max f2 ≤ ε.

Proof Let xi = argmax fi. Then, f1(x1)− f2(x2) ≤ f2(x1)− f2(x2) + ε ≤ ε.

Lemma 20
∑n

t=1 t
−1/2 ≤ 2n1/2,

∑n
t=1 t

−1/3 ≤ 3
2n

2/3.

Proof By bounding the summation of a decreasing function by an integral we have for r ∈ [0, 1],∑n
t=1 t

−r ≤ 1 +
∫ n

1 t−rdt ≤ 1 + n1−r

1−r −
1

1−r ≤
n1−r

1−r . Setting r = 1/2, 1/3 yields the results.

10. Conclusion

We have studied mechanism design in settings where agents may not know their values, but can
experience an allocation and report back a realised reward. The goal of the mechanism is to learn the
values of the users while simultaneously finding the optimal outcome and satisfying game-theoretic
desiderata such as individual rationality and truthfulness. We established a lower bound on the VCG
regret for this problem, and presented an algorithm that essentially achieves this rate. The proposed
framework allows a practitioner to control trade-offs between various properties that they might be
interested in, such as agent and seller regrets, individual rationality, and truthfulness. We conclude
with two avenues for future work.

First, we have assumed that we can maximise the upper confidence bound (6) exactly. In many set-
tings, this might be computationally prohibitive, and we might only be able to obtain an approximate
solution. It will be instructive to study which of the desiderata carry through in this case. If we have
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an α-approximate solver (α < 1), it is straightforward to show that sublinear welfare regret (3) is
possible under truthful reporting, if it is defined asRw

T = αTV (ω?)−
∑

t V (ωt). However, bounding
the agent and seller regrets requires more careful analysis as their utility depends on the near-optimal
outcome chosen by the solver. Implications on truthfulness are even less clear, especially as an agent
can be strategic over multiple rounds.

Second, the lower bound in Theorem 1 only captures one of the two key difficulties in this problem,
namely pricing calculation for agent/seller trade-offs; the other being truthfulness. It is worth studying
the implications of even asymptotic truthfulness on learning. While our algorithm is optimal with
respect to the lower bound for the VCG regret, in some applications, it is not necessary to minimise
all three regret terms in RVCG

T . For instance, the PaaS setting in Example 1 could occur within an
organisation, where the service provider is one team providing a service to other (agent) teams. In
such cases, the seller regret is not a meaningful quantity. In this setting, it is possible to obtain

√
T

regret for both the welfare and the agents if the agents report truthfully: at all time steps, select
the outcome which maximises the upper confidence bound on the welfare and choose a favourable
pricing scheme to the agents, such as the one obtained by setting λ = AGE. However, this is not a
truthful mechanism. In situations like this, we believe that truthfulness will prevent obtaining

√
T

regret. For instance, Babaioff et al. (2013) and Devanur and Kakade (2009) show that T 2/3 regret is
unavoidable for deterministic truthful algorithms in their online advertising problem. Their proof
relies heavily on a necessary and sufficient condition for truthfulness in single-parameter auctions
where agents submit bids (Myerson, 1981; Archer and Tardos, 2001). Extensions of this condition
to multi-parameter auctions exist (Rochet, 1987), but only in instances where agents submit bids
ahead of time. This characterisation does not apply in our problem where the agent does not know
her value and reports a reward at the end of the round.
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