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Abstract

Consider the problem of simultaneous estimation of location and variance matrix under
Huber’s contaminated Gaussian model. First, we study minimum f -divergence estimation
at the population level, corresponding to a generative adversarial method with a non-
parametric discriminator and establish conditions on f -divergences which lead to robust
estimation, similarly to robustness of minimum distance estimation. More importantly,
we develop tractable adversarial algorithms with simple spline discriminators, which can
be defined by nested optimization such that the discriminator parameters are determined
by maximizing a concave objective function given the current generator. The proposed
methods are shown to achieve minimax optimal rates or near-optimal rates depending on
the f -divergence and the penalty used. This is the first time such near-optimal error rates
are established for adversarial algorithms with linear discriminators under Huber’s contam-
ination model. We present simulation studies to demonstrate advantages of the proposed
methods over classic robust estimators, pairwise methods, and a generative adversarial
method with neural network discriminators.

Keywords: f -divergence, generative adversarial algorithm, Huber’s contamination model,
minimum divergence estimation, penalized estimation, robust location and scatter estima-
tion

1. Introduction

Consider Huber’s contaminated Gaussian model (Huber, 1964): independent observations
X1, . . . , Xn are obtained from Pε = (1−ε)N(µ∗,Σ∗)+εQ, where N(µ∗,Σ∗) is a p-dimensional
Gaussian distribution with mean vector µ∗ and variance matrix Σ∗, Q is a probability dis-
tribution for contaminated data, and ε is a contamination fraction. Our goal is to estimate
the Gaussian parameters (µ∗,Σ∗), without any restriction on Q for a small ε. This allows
both outliers located in areas with vanishing probabilities under N(µ∗,Σ∗) and other con-
taminated observations in areas with non-vanishing probabilities under N(µ∗,Σ∗). We focus
on the setting where the dimension p is small relatively to the sample size n, and no sparsity
assumption is placed on Σ∗ or its inverse matrix. The latter, Σ∗−1, is called the precision
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matrix and is of particular interest in Gaussian graphical modeling. In the low-dimensional
setting, estimation of Σ∗ and Σ∗−1 can be treated as being equivalent.

There is a vast literature on robust statistics (e.g., Huber and Ronchetti, 2009; Maronna
et al., 2019) In particular, the problem of robust estimation from contaminated Gaussian
data has been extensively studied, and various interesting methods and results have been
obtained recently. Under Huber’s contamination model above, while the bulk of the data
are still Gaussian distributed, a challenge is that the contamination status of each obser-
vation is hidden, and the contaminated data may be arbitrarily distributed. In this sense,
this problem should be distinguished from various related problems, including multivariate
scatter estimation for elliptical distributions as in Tyler (1987) and estimation in Gaussian
copula graphical models as in Liu et al. (2012) and Xue and Zou (2012), among others. For
motivation and comparison, we discuss below several existing approaches directly related
to our work.

Existing work. As suggested by the definition of variance matrix Σ∗, a numerically
simple method, proposed in Öllerer and Croux (2015) and Tarr et al. (2016), is to apply a
robust covariance estimator for each pair of variables, for example, based on robust scale
and correlation estimators, and then assemble those estimators into an estimated variance
matrix Σ̂. These pairwise methods are naturally suitable for both Huber’s contamination
model and the cellwise contamination model where the components of a data vector can
be contaminated independently, each with a small probability ε. For various choices of the
correlation estimator, such as the transformed Kendall’s τ and Spearman’s ρ estimator, this
method is shown in Loh and Tan (2018) to achieve, in the maximum norm ‖Σ̂−Σ∗‖max, the
minimax error rate ε+

√
log(p)/n under cellwise contamination and Huber’s contamination

model. However, because a transformed correlation estimator is used, the variance matrix
estimator in Loh and Tan (2018) may not be positive semidefinite (Öllerer and Croux, 2015).
Moreover, this approach seems to rely on the availability of individual elements of Σ∗ as
pairwise covariances and generalization to other multivariate models can be difficult. In
our numerical experiments, such pairwise methods have relatively poor performance when
contaminated data are not easily separable from the uncontaminated marginally, especially
with nonnegligible ε.

For location and scatter estimation under Huber’s contamination model, Chen et al.
(2018) showed that the minimax error rates in the L2 and operator norm, ‖µ̂ − µ∗‖2 and
‖Σ̂ − Σ∗‖op, are ε +

√
p/n and attained by maximizing Tukey’s half-space depth (Tukey,

1975) and a matrix depth function, which is also studied in Zhang (2002) and Paindaveine
and Van Bever (2018). Both depth functions, defined through minimization of certain
discontinuous objective functions, are in general difficult to compute, and maximization of
these depth functions is also numerically intractable. Subsequently, Gao et al. (2019) and
Gao et al. (2020) exploited a connection between depth-based estimators and generative
adversarial nets (GANs) (Goodfellow et al., 2014), and proposed robust location and scatter
estimators in the form of GANs. These estimators are also proved to achieve the minimax
error rates in the L2 and operator norms under Huber’s contamination model. More recent
work in this direction includes Zhu et al. (2020), Wu et al. (2020), and Liu and Loh (2022).

GANs are a popular approach for learning generative models, with numerous impressive
applications (Goodfellow et al., 2014). In the GAN approach, a generator is defined to
transform white noises into fake data, and a discriminator is then employed to distinguish
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between the fake and real data. The generator and discriminator are trained through
minimax optimization with a certain objective function. For GANs used in Gao et al. (2019)
and Gao et al. (2020), the generator is defined by the Gaussian model and the discriminator
is a multi-layer neural network with sigmoid activations in the top and bottom layers.
Hence the discriminator can be seen as logistic regression with the “predictors” defined by
the remaining layers of the neural network. The GAN objective function, usually taken
to the log-likelihood function in the classification of fake and real data, is more tractable
than discontinuous depth functions, but remains nonconvex in the discriminator parameters
and nonconcave in the generator parameters. Training such GANs is challenging through
nonconvex-nonconcave minimax optimization (see, for example, Farnia and Ozdaglar, 2020
and Jin et al., 2020.)

There is also an interesting connection between GANs and minimum divergence (or dis-
tance) (MD) estimation, which has been traditionally studied for robust estimation (Donoho
and Liu, 1988; Lindsay, 1994; Basu and Lindsay, 1994). A prominent example is minimum
Hellinger distance estimation (Beran, 1977; Tamura and Boos, 1986). In fact, as shown
in f -GANs (Nowozin et al., 2016), various choices of the objective function in GANs can
be derived from variational lower bounds of f -divergences between the generator and real
data distributions. Familiar examples of f -divergences include the Kullback–Leibler (KL),
squared Hellinger divergences, and the total variation (TV) distance (Ali and Silvey, 1966;
Csiszár, 1967). In particular, using the log-likelihood function in optimizing the discrim-
inator leads to a lower bound of the Jensen–Shannon (JS) divergence for the generator.
Furthermore, the lower bound becomes tight if the discriminator class is sufficiently rich (to
include the nonparametrically optimal discriminator given any generator). In this sense,
f -GANs can be said to nearly implement minimum f -divergence estimation, where the
parameters are estimated by minimizing an f -divergence between the model and data dis-
tributions. However, this relationship is only approximate and suggestive, because even a
class of neural network discriminators may not be nonparametrically rich with population
data. A similar issue can also be found in the previous studies, where minimum Hellinger
estimation and related methods require a smoothed density function of sample data. This
approach is impractical for multivariate continuous data.

In addition to MD estimation mentioned above, two other methods of MD estimation
have also been studied for robust estimation both in general parametric models and in mul-
tivariate Gaussian models. The two methods are defined by minimization of power density
divergences (also called β-divergences) (Basu et al., 1998; Miyamura and Kano, 2006) and
that of γ-divergences (Windham, 1995; Fujisawa and Eguchi, 2008; Hirose et al., 2017). See
Jones et al. (2001) for a comparison of these two methods. In contrast with f -divergences,
these two divergences can be evaluated without requiring smooth density estimation from
sample data, and hence the corresponding MD estimators can be computed by standard
optimization algorithms. To our knowledge, error bounds have not been formally derived
for these methods under Huber’s contaminated Gaussian model.

Various methods based on iterative pruning or convex programming have been studied
with provable error bounds for robust estimation in Huber’s contaminated Gaussian model
(Lai et al., 2016; Balmand and Dalalyan, 2015; Diakonikolas et al., 2019). These methods
either handle scatter estimation after location estimation sequentially in two stages, or
resort to using normalized differences of pairs with mean zero for scatter estimation.
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Our work. We propose and study adversarial algorithms with linear spline discrimi-
nators, and establish various error bounds for simultaneous location and scatter estimation
under Huber’s contaminated Gaussian model. Two distinct types of GANs are exploited.
The first one is logit f -GANs (Tan et al., 2019), which corresponds to a specific choice
of f -GANs with the objective function formulated as a negative loss function for logistic
regression (or equivalently a density ratio model between fake and real data) when training
the discriminator. The second is hinge GAN (Lim and Ye, 2017; Zhao et al., 2017), where
the objective function is taken to be the negative hinge loss function when training the dis-
criminator. The hinge objective can be derived from a variational lower bound of the total
variation distance (Nguyen et al., 2010; Tan et al., 2019), but cannot be deduced as a special
case of the f -GAN objective even though the total variation is also an f -divergence. See
Remark 4. In addition, we allow two-objective GANs, including the logD trick in Goodfel-
low et al. (2014), where two objective functions are used, one for updating the discriminator
and the other for updating the generator.

As a major departure from previous studies of GANs, our methods use a simple linear
class of spline discriminators, where the basis functions consist of univariate truncated linear
functions (or ReLUs shifted) at 5 fixed knots and the pairwise products of such univariate
functions. For hinge GAN and certain logit f -GANs including those based on the reverse
KL (rKL) and JS divergences, the objective function is concave in the discriminator. By the
linearity of the spline class, the objective function is then concave in the spline coefficients.
Hence our hinge GAN and logit f -GAN methods involve maximization of a concave function
when training the spline discriminator for any fixed generator. In contrast with nonconvex-
nonconcave minimax optimization for GANs with neural network discriminators (Gao et al.,
2019, 2020), the concavity of the inner optimization for the discriminator contributes to both
the numerical tractability and theoretical analysis for our GAN methods. See Remarks 1,
2, 14 and 17. While the optimization for the generator remains nonconvex in our methods,
such a single nonconvex optimization is usually more tractable than nonconvex-nonconcave
minimax optimization.

In spite of the limited capacity of the spline discriminators, we establish various error
bounds for our location and scatter estimators, depending on whether the hinge-GAN or
logit f -GAN is used and whether an L1 or L2 penalty is incorporated when training the dis-
criminator. See Table 1 for a summary of existing and our error rates in scatter estimation.
Our L1 penalized hinge GAN method achieves the minimax error rate ε+

√
log(p)/n in the

maximum norm. Our L2 penalized hinge GAN method achieves the error rate ε
√
p+
√
p/n,

whereas the minimax error rate is ε+
√
p/n, in the p−1/2-Frobenius norm. While this might

indicate the price paid for maintaining the convexity in training the discriminator, our error
rate reduces to the same order

√
p/n as the minimax error rate provided that ε is sufficiently

small, ε = O(
√

1/n), such that the contamination error term ε
√
p is dominated by the sam-

pling variation term
√
p/n up to a constant factor. To our knowledge, such near-optimal

error rates were previously inconceivable for adversarial algorithms with linear discrimina-
tors in robust estimation. Moreover, the error rates for our logit f -GAN methods exhibit
a square-root dependency on the contamination fraction ε, instead of a linear dependency
for our hinge GAN methods. This shows, for the first time, some theoretical advantage of
hinge GAN over logit f -GANs, although comparative performances of these methods may
vary in practice, depending on specific settings.
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Error Error rate Computation

OC15, TMW15, LT18 ‖Σ̂− Σ∗‖max ε+
√

log(p)/n Non-iterative computation

CGR18 ‖Σ̂− Σ∗‖op ε+
√
p/n Minimax optimization with

zero-one discriminators

DKKLMS19 ‖Σ̂− Σ∗‖op ε, provided ε ≥ p/
√
n convex optimization

up to log factors

GYZ20 ‖Σ̂− Σ∗‖op ε+
√
p/n Minimax optimization with

neural network discriminators

L1 logit f -GAN ‖Σ̂− Σ∗‖max
√
ε+

√
log(p)/n

(Theorem 11)

L1 hinge GAN ‖Σ̂− Σ∗‖max ε+
√

log(p)/n Nested or Minimax optimization
(Theorem 15) with an objective function concave

L2 logit f -GAN p−
1
2 ‖Σ̂− Σ∗‖F

√
ε+

√
p/n, provided ε ≤ 1/p in linear spline discriminators

(Theorem 12) up to a constant factor

L2 hinge GAN p−
1
2 ‖Σ̂− Σ∗‖F ε

√
p+

√
p/n

(Theorem 16)

Table 1: Comparison of existing and proposed methods. OC15, TMW15, LT18 refer to methods and theory in

Öllerer and Croux (2015), Tarr et al. (2016), Loh and Tan (2018); CGR18, DKKLMS19, and GYZ20
refer to, respectively, Chen et al. (2018), Diakonikolas et al. (2019), and Gao et al. (2020).

To facilitate and complement our sample analysis, we provide error bounds for the pop-
ulation version of hinge GAN or logit f -GANs with nonparametric discriminators, that is,
minimization of the exact total variation or f -divergence at the population level. From
Theorem 6, population minimum TV or f -divergence estimation under a simple set of con-
ditions on f (Assumption 1) leads to errors of order O(ε) or O(

√
ε) respectively under

Huber’s contamination model. Assumption 1 allows the reverse KL, JS, reverse χ2, and
squared Hellinger divergences, but excludes the mixed KL divergence, χ2 divergence, and,
as reassurance, the KL divergence which corresponds to maximum likelihood estimation
and is known to be non-robust. Hence certain (but not all) minimum f -divergence esti-
mation achieves robustness under Huber’s contamination model or an ε TV-contaminated
neighborhood. Such robustness is identified for the first time for minimum f -divergence
estimation, and is related to, but distinct from, robustness of minimum distance estimation
under ε contaminated neighborhood with respect to the same distance (Donoho and Liu,
1988). See Remark 9 for further discussion. The population error bounds in the L2 and
p−1/2-Frobenius norms are independent of p and hence tighter than the corresponding ε
terms in our sample error bounds for both hinge GAN and logit f -GAN. These gaps can
be attributed to the use of nonparametric versus spline discriminators.

Remarkably, our population analysis also sheds light on the comparison of our sample
results and those in Gao et al. (2020). On one hand, another set of conditions (Assump-
tion 2), in addition to Assumption 1, are required in our sample analysis of logit f -GANs
with spline discriminators. On the other hand, GANs used in Gao et al. (2020) can be recast
as logit f -GANs with neural network discriminators (see Section 5.2). But minimax error
rates are shown to be achieved in Gao et al. (2020) for an f -divergence (for example, the
mixed KL divergence) which, let alone Assumption 2, does not even satisfy Assumption 1
used in our analysis to show robustness of minimum f -divergence estimation. The main
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reason for this discrepancy is that the neural network discriminator in Gao et al. (2020) is
directly constrained to be of order ε+

√
p/n in the log odds, which considerably simplifies

the proofs of rate-optimal robust estimation. In contrast, our methods use linear spline
discriminators (with penalties independent of ε), and our proofs of robust estimation need
to carefully tackle various technical difficulties due to the simple design of our methods.
See Figure 2(b) for an illustration of non-robustness by minimization of the mixed KL
divergence, and Section 5.2 for further discussion on this subtle issue in Gao et al. (2020).

Notation. For a vector a = (a1, . . . , ap)
T ∈ Rp, we denote by ‖a‖1 =

∑p
i=1 |ai|,

‖a‖∞ = max1≤i≤p |ai|, and ‖a‖2 = (
∑p

i=1 a
2
i )

1/2 the L1 norm, L∞ norm, and L2 norm of
a, respectively. For a matrix A = (aij) ∈ Rm×n, we define the element-wise maximum
norm ‖A‖max = max1≤i≤m,1≤j≤n |aij |, the Frobenius norm ‖A‖F = (

∑m
i=1

∑n
j=1 a

2
ij)

1/2, the
vectorized L1 norm ‖A‖1,1 =

∑m
i=1

∑n
j=1 |aij |, the operator norm ‖A‖op = sup‖x‖2≤1 ‖Ax‖2,

and the L∞-induced operator norm ‖A‖∞ = sup‖x‖∞≤1 ‖Ax‖∞. For a square matrix A, we
write A � 0 to indicate that A is positive semidefinite. The tensor product of vectors a
and b is denoted by a ⊗ b, and the vectorization of matrix A is denoted by vec(A). The
cumulative distribution function of the standard normal distribution is denoted by Φ(x),
and the Gaussian error function is denoted by erf(x).

2. Numerical illustration

We illustrate the performance of our JS logit f -GAN and existing methods, with two samples
of size 20000 from a 100-dimensional Huber’s contaminated Gaussian distribution with
ε = 5% and 20%, based on a Toeplitz variance matrix and the first Cauchy contamination
Q in Section 6.2. Figure 1 shows the 95% Gaussian ellipses for two selected coordinates,
using the estimated location vectors and variance matrices except for Tyler’s M-estimator
(Tyler, 1987), Kendalls’s τ with MAD (Loh and Tan, 2018), and Spearman’s ρ with Qn-
estimator (Öllerer and Croux, 2015) where the locations are set to the true means. The
performances of our rKL logit f -GAN and hinge GAN are close to that of JS logit f -GAN.
See Figure 5 for illustration based on the second contamination in Section 6.2.

Among the methods shown in Figure 1, the JS logit f -GAN gives an estimated ellipse
that is closest to the truth, followed with small but noticeable differences by the JS-GAN
(Gao et al., 2020). The MCD (Rousseeuw, 1985) performs among the best when ε = 5% but
deteriorates considerably when ε increases to 20%. The remaining three methods, Kendall’s
τ with MAD, Spearman’s ρ with Qn-estimator, and Tyler’s M-estimator show much less
satisfactory performance. The estimated distributions from these methods are dragged
towards the corner contamination cluster.

The relatively poor performance of the pairwise methods, Kendall’s τ with MAD and
Spearman’s ρ with Qn-estimator, may be explained by the fact that as shown by the
marginal histograms in Figure 1, the data in each coordinate are one-sided heavy-tailed,
but no obvious outliers can be seen marginally. The correlation estimates from Kendall’s
τ and Spearman’s ρ tend to be inaccurate even after sine transformations, especially with
nonnegligible ε = 20%. In contrast, our GAN methods and JS-GAN, as well as MCD in the
case of ε = 5%, are capable of capturing higher dimensional information so that the impact
of contamination is limited to various extents.
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Figure 1: The estimated 95% Gaussian ellipses and marginal histograms for two selected
coordinates, from contaminated data based on the first Cauchy contamination in
Section 6.2 with ε = 5% (left) or 20% (right). For visibility, the data points are
truncated to (−4, 4) on each axis; see Appendix A for untruncated plots.

3. Background: Adversarial algorithms

We review various adversarial algorithms (or GANs), which are exploited by our methods
for robust location and scatter estimation. To focus on main ideas, the algorithms are stated
in their population versions, where the underlying data distribution P∗ is involved instead
of the empirical distribution Pn. Let {Pθ : θ ∈ Θ} be a statistical model and {hγ : γ ∈ Γ}
be a function class, where Pθ is called a generator and hγ a discriminator. In our study, Pθ
is a multivariate Gaussian distribution N(µ,Σ), and hγ is a pairwise spline function which
is specified later in Section 4.2.

For a convex function f : (0,∞) → R, the f -divergence between the distributions P∗
and Pθ with density functions p∗ and pθ is

Df (P∗‖Pθ) =

∫
f

(
p∗(x)

pθ(x)

)
dPθ.

For example, taking f(t) = t log t yields the Kullback–Liebler (KL) divergence DKL(P∗‖Pθ).
The logit f -GAN (Tan et al., 2019) is defined by solving the minimax program

min
θ∈Θ

max
γ∈Γ

Kf (P∗, Pθ;hγ), (1)

where

Kf (P∗, Pθ;h) = EP∗f
′(eh(x))− EPθf

#(eh(x))

= EP∗f
′(eh(x))− EPθ

{
eh(x)f ′(eh(x))− f(eh(x))

}
.

7



Wang and Tan

Throughout, f#(t) = tf ′(t) − f(t) and f ′ denotes the derivative of f . A motivation for
this method is that the objective Kf is a nonparametrically tight, lower bound of the f -
divergence (Tan et al., 2019, Proposition S1): for each θ, it holds that for any function
h,

Kf (P∗, Pθ;h) ≤ Df (P∗‖Pθ), (2)

where the equality is attained at h∗θ(x) = log{p∗(x)/pθ(x)}, the log density ratio between
P∗ and Pθ or equivalently the log odds for classifying whether a data point x is from P∗ or
Pθ. There are two choices of f of particular interest. Taking f(t) = t log t− (t+ 1) log(t+
1)+log 4 leads the Jensen–Shannon (JS) divergence, DJS(P∗‖Pθ) = DKL(P∗‖(P∗+Pθ)/2)+
DKL(Pθ‖(P∗ + Pθ)/2), and the objective function

KJS(P∗, Pθ;h) = −EP∗ log(1 + e−h(x))− EPθ log(1 + eh(x)) + log 4,

which is, up to a constant, the expected log-likelihood for logistic regression with log odds
function h(x). For Kf = KJS, program (1) corresponds to the original GAN (Goodfellow
et al., 2014) with discrimination probability sigmoid(h(x)). Taking f(t) = − log t leads to
the reverse KL divergence DrKL(P∗‖Pθ) = DKL(Pθ‖P∗) and the objective function

KrKL(P∗, Pθ;h) = 1− EP∗e
−h(x) − EPθh(x),

which is the negative calibration loss for logistic regression in Tan (2020).

The objective Kf with fixed θ can be seen as a proper scoring rule reparameterized
in terms of the log odds function h(x) for binary classification (Tan and Zhang, 2022).
Replacing Kf in (1) by the negative hinge loss (which is not a proper scoring rule) leads to

min
θ∈Θ

max
γ∈Γ

KHG(P∗, Pθ;hγ), (3)

where

KHG(P∗, Pθ;h) = EP∗ min(1, h(x)) + EPθ min(1,−h(x)).

This method is related to the geometric GAN described later in (7) and will be called hinge
GAN. By Nguyen et al. (2009) or Proposition 5 in Tan et al. (2019), the objective KHG is
a nonparametrically tight, lower bound of the total variation distance scaled by 2: for each
θ, it holds that for any function h(x),

KHG(P∗, Pθ;h) ≤ 2DTV(P∗‖Pθ), (4)

where the equality is attained at h∗θ(x) = sign(p∗(x)−pθ(x)), and DTV(P∗‖Pθ) =
∫
|p∗(x)−

pθ(x)|/2 dx. The objectives Kf and KHG, with fixed θ, represent two types of loss func-
tions for binary classification. See Buja et al. (2005) and Nguyen et al. (2009) for further
discussions about loss functions and scoring rules.

The preceding programs, (1) and (3), are defined as minimax optimization, each with
a single objective function. There are also adversarial algorithms, which are formulated as
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alternating optimization with two objective functions (see Remark 1). For example, GAN
with the logD trick in Goodfellow et al. (2014) is defined by solving max

γ∈Γ
KJS(P∗, Pθ; γ) with θ fixed,

min
θ∈Θ

EPθ log(1 + e−hγ(x)) with γ fixed.
(5)

The second objective is introduced mainly to overcome vanishing gradients in θ when the
discriminator is confident. The calibrated rKL-GAN (Huszár, 2016; Tan et al., 2019) is
defined by solving  max

γ∈Γ
KJS(P∗, Pθ; γ) with θ fixed,

min
θ∈Θ

−EPθhγ(x) with γ fixed.
(6)

The two objectives are chosen to stabilize gradients in both θ and γ during training. The
geometric GAN in Lim and Ye (2017) or, equivalently, the energy-based GAN in Zhao et al.
(2017) as shown in Tan et al. (2019), is defined by solving max

γ∈Γ
KHG(P∗, Pθ; γ) with θ fixed,

min
θ∈Θ

−EPθhγ(x) with γ fixed.
(7)

Interestingly, the second line in (6) or (7) involves the same objective −EPθhγ(x), which
can be equivalently replaced by KrKL(P∗, Pθ;hγ) because γ and hence hγ are fixed.

Remark 1 We discuss precise definitions for a solution to a minimax problem such as
(1) or (3), and a solution to an alternating optimization problem such as (5)–(7). For an
objective function K(θ, γ), we say that (θ̂, γ̂) is a solution to

min
θ

max
γ

K(θ, γ), (8)

if K(θ̂, γ̂) = maxγ K(θ̂, γ) ≤ maxγ K(θ, γ) for any θ. In other words, we treat (8) as

nested optimization: θ̂ is a minimizer of K(θ, γ̂θ) as a function of θ and γ̂ = γ̂θ̂, where γ̂θ
is a maximizer of K(θ, γ) for fixed θ. This choice is directly exploited in both numerical
implementation and theoretical analysis of our methods later. For two objective functions
K1(θ, γ) and K2(θ, γ), we say that (θ̂, γ̂) is a solution to the alternating optimization problem max

γ
K1(θ, γ) with θ fixed,

min
θ

K2(θ, γ) with γ fixed,
(9)

if K1(θ̂, γ̂) = maxγ K1(θ̂, γ) and K2(θ̂, γ̂) = minθK2(θ, γ̂). In the special case where

K1(θ, γ) = K2(θ, γ), denoted as K(θ, γ), a solution (θ̂, γ̂) to (9) is also called a Nash
equilibrium of K(θ, γ), satisfying K(θ̂, γ̂) = maxγ K(θ̂, γ) = minθK(θ, γ̂). It can be shown
that a Nash equilibrium of K(θ, γ) is equivalently a solution to both minimax problem (8)
and the maximin problem maxγ minθ K(θ, γ), similarly treated as nested optimization. For
general K(θ, γ), the minimax and maximin solutions may differ from each other, although
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Algorithm 1: Gradient descent ascent

Require A GAN objective function K(θ, γ) as in (1) or (3) with P∗ replaced by
the empirical distribution Pn on real data, initial values (θ0, γ0), learning rates
(αd, αg) for the generator and discriminator, and number of epochs T .

for t = 1 . . . T do
Sampling: Generate a sample of fake data to approximate Pθt−1 .
Updating: Compute γt = γt−1 + αd∇γK(θ, γ)|γt−1 ,

and θt = θt−1 − αg∇θK(θ, γt)|θt−1 .

end

Algorithm 2: Gradient descent with concave inner optimization

Require A GAN objective function K(θ, γ), which is concave in γ for each fixed θ,
initial value θ0, learning rate αg for the generator, and number of epochs T .

for t = 1 . . . T do
Sampling: Generate a sample of fake data to approximate Pθt−1 .
Updating: Compute γt = argmaxγK(θt−1, γ) by a concave optimizer,

and θt = θt−1 − αg∇θK(θ, γt)|θt−1 .

end

they coincide and yield a Nash equilibrium by Sion’s minimax theorem in the special setting
where K(θ, γ) is convex in θ for each γ and concave in γ for each θ. Our definition of
single-objective GANs as nested optimization agrees with Jin et al. (2020), where a solu-
tion to (8) is called a (global) minimax point of K(θ, γ), and hence should be distinguished
from the interpretation of GANs as finding Nash equilibria or modifications (Farnia and
Ozdaglar, 2020). On the other hand, our definition of two-objective GANs takes the form
of alternating optimization, which is currently needed for our theoretical analysis (Section
4.4). It remains open whether theoretical guarantees can also be developed for two-objective
GANs based on nested optimization (even with neural network discriminators).

Remark 2 Numerically, GANs are often trained using gradient-based algorithms, notably
the gradient descent ascent algorithm (GDA) (Algorithm 1), which can only be expected
to find local solutions. However, there are subtle issues even in the consideration of local
solutions. Formally as in Jin et al. (2020), a point (θ̂, γ̂) is said to be a local minimax point
of K(θ, γ) if there exist δ0 > 0 and a function h(·) satisfying h(δ)→ 0 as δ → 0, such that
for any δ ∈ (0, δ0], the pair (θ̂, γ̂) satisfies

K(θ̂, γ̂) = max
γ:‖γ−γ̂‖≤h(δ)

K(θ̂, γ) ≤ max
γ:‖γ−γ̂‖≤h(δ)

K(θ, γ),

for any θ satisfying ‖θ − θ̂‖ ≤ δ. As shown in Jin et al. (2020), a local minimax point
can be characterized via necessary and sufficient conditions based on the gradients and
Hessians. But for nonconvex-nonconcave minimax optimization, a global minimax point
may be neither a local minimax point nor a stationary point (i.e., with the gradients of
K being 0 with respect to θ and γ). This differs markedly from nonconvex optimization
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where a global minimum is always a local minimum and, if in the interior of the domain,
a stationary point. Nevertheless, our GAN methods in Section 4 are designed such that
K(θ, γ) is concave in γ for each fixed θ. In this setting, as noted in Jin et al. (2020), a global
minimax point is always a local minimax point, and hence finding a local minimax point
through GDA is provably a feasible strategy for finding a global minimax point. Moreover,
for our methods with concave K(θ, ·), nested optimization can be directly implemented, as
shown in Algorithm 2, using a concave optimizer over γ and gradient descent over θ to
find a local minimizer of L(θ) = K(θ, γ̂θ), with γ̂θ = argmaxγK(θ, γ). This is a feasible
example of gradient descent with max-oracle, for which a performance guarantee is derived
in Jin et al. (2020). Based on these observations, our GAN methods with concave K(θ, ·)
are numerically more tractable than nonconvex-nonconcave GANs.

Remark 3 The population f -GAN (Nowozin et al., 2016) is defined by solving

min
θ∈Θ

max
γ∈Γ

{EP∗Tγ(x)− EPθf
∗(Tγ(x))} , (10)

where f∗ is the Fenchel conjugate of f , i.e., f∗(s) = supt∈(0,∞)(st−f(t)) and Tγ is a function
taking values in the domain of f∗. Typically, Tγ is represented as Tγ(x) = τf (hγ(x)),
where τf : R → dom(f∗) is an activation function and hγ(x) take values unrestricted in
R. The logit f -GAN corresponds to f -GAN with the specific choice τf (u) = f ′(eu) by the
relationship f∗(f ′(t)) = f#(t) (Tan et al., 2019). Nevertheless, a benefit of logit f -GAN is
that the objective Kf in (1) takes the explicit form of a negative discrimination loss such
that hγ(x) can be seen to approximate the log density ratio between P∗ and Pθ.

Remark 4 There is an important difference between hinge GAN and logit f -GAN, although
the total variation is also an f -divergence with f(t) = |t− 1|/2. In fact, taking this choice
of f in logit f -GAN (1) yields

min
θ∈Θ

max
γ∈Γ

{EP∗sign(hγ(x))− EPθsign(hγ(x))} . (11)

This is called TV learning and is related to depth-based estimation in Gao et al. (2019).
Compared with hinge GAN in (3), program (11) is computationally more difficult to solve.
Such a difference also exists in the application of general f -GAN to the total variation.
For the total variation distance scaled by 2 with f(t) = |t − 1|, the conjugate is f∗(s) =
max(−1, s) if s ≤ 1 or ∞ if s > 1. If Tγ is specified as Tγ = min(1, hγ(x)), then the
objective in f -GAN (10) can be shown to be

EP∗ min(1, hγ(x)) + EPθ min(1,max(−1,−hγ(x))),

which in general differs from the negative hinge loss in (3) unless hγ is upper bounded by
1. If hγ is specified as 2 sigmoid(h̃γ)− 1 for a function h̃γ taking values unrestricted in R,
the resulting f -GAN is equivalent to TV-GAN in Gao et al. (2019) defined by solving

min
θ∈Θ

max
γ∈Γ

{
EP∗sigmoid(h̃γ(x))− EPθsigmoid(h̃γ(x))

}
. (12)

However, solving program (12) is numerically intractable as discussed in Gao et al. (2019).
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4. Theory and methods

We propose and study various adversarial algorithms with simple spline discriminators
for robust estimation in a multivariate Gaussian model. Assume that X1, . . . , Xn are in-
dependent observations obtained from Huber’s ε-contamination model, that is, the data
distribution P∗ is of the form

Pε = (1− ε)Pθ∗ + εQ, (13)

where Pθ∗ is N(µ∗,Σ∗) with unknown θ∗ = (µ∗,Σ∗), Q is a probability distribution for
contaminated data, and ε is a contamination fraction. Both Q and ε are unknown and Q
can be an arbitrary probability distribution. The dependency of Pε on (θ∗, Q) is suppressed
in the notation. Equivalently, the data (X1, . . . , Xn) can be represented in a latent model:
(U1, X1), . . . , (Un, Xn) are independent, and Ui is Bernoulli with P(Ui = 1) = ε and Xi is
drawn from Pθ∗ or Q given Ui = 0 or 1 for i = 1, . . . , n.

For theoretical analysis, we consider two choices of the parameter space. The first choice
is Θ1 = {(µ,Σ) : µ ∈ Rp,Σ � 0, ‖Σ‖max ≤ M1} for a constant M1 > 0. Equivalently, the
diagonal elements of Σ is upper bounded by M1 for (µ,Σ) ∈ Θ1. The second choice is
Θ2 = {(µ,Σ) : µ ∈ Rp,Σ � 0, ‖Σ‖op ≤ M2} for a constant M2 > 0. For simplicity,
the dependency of Θ1 on M1 or Θ2 on M2 is suppressed in the notation. For the second
parameter space Θ2, the minimax rates in the L2 and operator norms have been shown to
be achieved using matrix depth (Chen et al., 2018) and GANs with certain neural network
discriminators (Gao et al., 2020).

Our work aims to investigate adversarial algorithms with a simple linear class of spline
discriminators for computational tractability, and establish various error bounds for the
proposed estimators, including those matching the minimax rates in the maximum norms
for the location and scatter estimation over Θ1, and, provided that ε

√
n is bounded by a

constant (independent of p), the minimax rates in the L2 and Frobenius norms over Θ2.
It is worth emphasizing that adversarial algorithms is used in our work to learn the

multivariate Gaussian distribution Pθ∗ with the real data assumed to be from Huber’s
contaminated Gaussian distribution Pε for some unknown (Q, ε), in addition to the unknown
parameter θ∗. Hence this differs from the usual theoretical setting where the real data are
assumed to be generated purely from the model distribution Pθ∗ .

4.1 Population analysis with nonparametric discriminators

A distinctive feature of GANs is that they can be motivated as approximations to minimum
divergence estimation. For example, if the discriminator class {hγ} in (1) is rich enough
to include the nonparametrically optimal discriminator such that maxγ∈ΓKf (P∗, Pθ;hγ) =
Df (P∗‖Pθ) for each θ, then the (population) logit f -GAN amounts to minimizing the f -
divergence Df (P∗‖Pθ). Similarly, if the discriminator class {hγ} in (3) is sufficiently rich,
then the (population) hinge GAN amounts to minimizing the total variation DTV(P∗‖Pθ).

As a prelude to our sample analysis, Theorem 6 shows that at the population level, min-
imization of the total variation and certain f -divergences satisfying Assumption 1 achieves
robustness under Huber’s contamination model, in the sense that the estimation errors are
respectively O(ε) and O(

√
ε), uniformly over all possible Q. Hence with sufficiently rich

(or nonparametric) discriminators, the population versions of the hinge GAN and certain

12
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Name Convex f(t)
Non-incr. Concave Concave Lipschitz
f(t) f ′(t) f ′(eu) f#(eu)

Total variation (1− t)+, |t− 1|/2 X — — —
Reverse KL − log t X X X X
Jensen-Shannon t log t− (t+ 1) log(t+ 1) + log 4 X X X X
Squared Hellinger (

√
t− 1)2 X X X

Reverse χ2 t−1 − 1 X X X
KL t log t X X
Mixed KL {(t− 1) log t}/2 X X
χ2 (t− 1)2 X

Table 2: Common f -divergences and validity of Assumptions 1 (ii)–(iii) and 2 (i)–(ii). The mixed
KL divergence is defined as DmKL(P ||Q) = DKL(P ||Q)/2 +DKL(Q||P )/2.

f -GANs can be said to be robust under Huber’s contamination. From Table 2, Assump-
tion 1 is satisfied by the reverse KL, JS, and squared Hellinger divergences, but violated by
the KL divergence. Minimization of the KL divergence corresponds to maximum likelihood
estimation, which is known to be non-robust under Huber’s contamination model.

Assumption 1 Suppose that f : (0,∞) → R is convex with f(1) = 0 and satisfies the
following conditions.

(i) f is twice differentiable with f ′′(1) > 0.

(ii) f is non-increasing.

(iii) f ′ is concave (i.e., f ′′ is non-increasing)

See Table 2 for validity of conditions (ii) and (iii) in various f -divergences.

Remark 5 Given a convex function f with f(1) = 0, the same f -divergence Df can be
defined using the convex function f(t) + c(t − 1) for any constant c ∈ R. Hence condition
(ii) in Assumption 1 can be relaxed such that f ′ is upper bounded by a constant. The
non-increasingness of f is stated above for ease of interpretation. The other conditions in
Assumption 1 and Assumption 2 are not affected by non-unique choices of f .

Theorem 6 Let Θ0 = {(µ,Σ) : µ ∈ Rp,Σ is a p× p variance matrix}.
(i) Assume that f satisfies Assumption 1. Let θ̄ = argminθ∈Θ0

Df (Pε||Pθ). If√
−2(f ′′(1))−1f ′(1/2)ε+ ε < 1/2, then for any contamination distribution Q,

‖µ̄− µ∗‖2 ≤ C‖Σ∗‖1/2op

√
ε, ‖µ̄− µ∗‖∞ ≤ C‖Σ∗‖1/2max

√
ε, (14)

and

‖Σ̄− Σ∗‖op ≤ C‖Σ∗‖op

√
ε, ‖Σ̄− Σ∗‖max ≤ C‖Σ∗‖max

√
ε, (15)

where C > 0 is a constant depending only on f . The same inequality as in (15) also holds
with ‖Σ̄− Σ∗‖op replaced by p−1/2‖Σ̄− Σ∗‖F.

(ii) Let θ̄ = argminθ∈Θ0
DTV(Pε||Pθ). If ε < 1/4 then (14) and (15) hold for an absolute

constant C > 0 with
√
ε replaced by ε throughout.
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Figure 2: Illustration of robustness of minimum f -divergence location estimation. Figure
(a): Location error |µ̄−µ∗| against contamination fraction ε from 0 to 0.015, with
Pθ∗ being N(0, 1) and contamination Q being Cauchy(5, 1/2) fixed; Figure (b):
Location error |µ̄−µ∗| against contamination location µQ from 0 to 10, with Pθ∗

being N(0, 1), contamination fraction ε = 0.1 fixed, and contamination Q being
Cauchy(µQ, 1/2). The squared Hellinger, reverse χ2, and mixed KL are denoted
by H2, rChi2, and mKL respectively.

Figure 2 provides a simple numerical illustration. From Figure 2(a), the location errors
|µ̄− µ∗| of minimum divergence estimators corresponding to the four robust f -divergences
(reverse KL, JS, squared Hellinger, and reverse χ2) satisfying Assumption 1 are of shapes in
agreement with the order

√
ε in Theorem 6, whereas those corresponding to TV appear to be

linear in ε, for ε close to 0. For the KL, mixed KL, and χ2 divergences, which do not satisfy
Assumption 1(ii), their corresponding errors quickly increase out of the plotting range,
indicating non-robustness of the associated minimum divergence estimation. The differences
between robust and non-robust f -divergences are further demonstrated in Figure 2(b).
As the contamination location moves farther away, the errors of the robust f -divergences
increase initially but then decrease to near 0, whereas those of the non-robust f -divergences
appear to increase unboundedly.

Remark 7 From the proof in Section 7.1, Theorem 6(i) remains valid if f ′′(1) is replaced
by Cf = inft∈(0,1] f

′′(t) in Assumption 1(i) and the definition of Errf0(ε), and Assumption
1(iii), the concavity of f ′, is removed. On the other hand, a stronger condition than As-
sumption 1(iii) is used in our sample analysis: for convex f , the concavity of f ′ is implied
by Assumption 2(i), as discussed in Remark 13.
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Remark 8 The population bounds in Theorem 6 are more refined than those in our sample
analysis later. The population minimizer θ̄ = (µ̄, Σ̄) is defined by minimization over the
unrestricted space Θ0 instead of Θ1 or Θ2 with the restriction ‖Σ‖max ≤M1 or ‖Σ‖op ≤M2.
The population bounds are also adaptive in that the scaling constants depend directly on the
maximum or operator norm of the true variance matrix Σ∗, instead of pre-specified constants
M1 or M2. Note that the parameter space is also restricted such that ‖Σ‖op ≤ M2 and the
error bounds depend on M2 in sample analysis of Gao et al. (2020). Nevertheless, the
population bounds share a similar feature as in our sample bounds later: the error bounds
in the maximum norms are governed by ‖Σ∗‖max, which can be much smaller than ‖Σ∗‖op

involved in the error bounds in the operator norm.

Remark 9 It is interesting to connect and compare our results with Donoho and Liu
(1988), where minimum distance (MD) estimation is studied, that is, minimization of a
proper distance D(P, Pθ) satisfying the triangle inequality. For minimum TV estimation,
let θ̄P = (µ̄P , Σ̄P ) = argminθDTV(P‖Pθ). For location estimation, define

b(ε) = sup
P :DTV(P‖Pθ∗ )≤ε

‖µ̄P − µ∗‖2, b0(ε) = sup
θ:DTV(Pθ‖Pθ∗ )≤ε

‖µ− µ∗‖2,

which are called the bias distortion curve and the gauge function. Scatter estimation can
be discussed in a similar manner. For a general family {Pθ}, the first half in our proof of
Theorem 6(ii) shows that for any P satisfying DTV(P‖Pθ∗) ≤ ε, we have DTV(Pθ̄P ‖Pθ∗) ≤
2ε. This implies a bound similar to Proposition 5.1 in Donoho and Liu (1988):

b(ε) ≤ b0(2ε). (16)

For the multivariate Gaussian family {Pθ}, the second half in our proof of Theorem 6(ii)
derives an explicit upper bound on b0(ε) provided that 2ε ≤ a for a constant a ∈ [0, 1/2):

b0(2ε) ≤ S1,a‖Σ∗‖1/2op (2ε),

where S1,a = {Φ′(Φ−1(1/2 + a))}−1. Combining the preceding inequalities yields b(ε) ≤
C‖Σ∗‖1/2op ε in Theorem 6(ii), with C = 2S1,a. In addition, Proposition 5.1 in Donoho
and Liu (1988) gives the same bound as (16) for MD estimation using certain other dis-
tances D(P, Pθ), including the Hellinger distance, where the MD functional θ̄P = (µ̄P , Σ̄P )
is defined as argminθD(P, Pθ), and b(ε) and b0(ε) are defined with DTV(P‖Pθ∗) replaced by
D(P, Pθ). The distances used in defining the MD functional and the contamination neigh-
borhood are tied to each other. Hence, except for minimum TV estimation, our setting
differs from Donoho and Liu (1988) in studying different choices of minimum f -divergence
estimation over the same Huber’s contamination neighborhood.

Remark 10 We briefly comment on how our result is related to breakdown points in robust
statistics (Huber and Ronchetti, 2009, Section 1.4). For estimating µ∗, the population
breakdown point of a functional T = T (P ) can be defined as sup{ε : bT (ε) < ∞}, where
bT (ε) = supP :DTV(P‖Pθ∗ )≤ε ‖T (P ) − µ∗‖2. Scatter estimation can be discussed in a similar
manner. For T defined from minimum TV estimation, Theorem 6(ii) shows that if ε < 1/4,

then bT (ε) ≤ C‖Σ∗‖1/2op ε, as noted in Remark 9. This not only provides an explicit bound
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on bT (ε), but also implies that the population breakdown point is at least 1/4 for minimum
TV estimation. Similar implications can be obtained from Theorem 6(i) for minimum f -
divergence estimation. For T defined from minimum rKL divergence estimation, Theorem

6(i) shows that if 2
√
ε + ε < 1/2, then bT (ε) ≤ C‖Σ∗‖1/2op

√
ε, and hence the population

breakdown point is at least 0.051. While these estimates of breakdown points can potentially
be improved, our population analysis as well as sample analysis in the subsequent sections
focus on deriving quantitative error bounds in terms of sufficiently small ε and some scaling
constants free of ε.

4.2 Logit f-GAN with spline discriminators

For the population analysis in Section 4.1, a discriminator class is assumed to be rich
enough to include the nonparametrically optimal discriminator which depends on unknown
(ε,Q). Because Q can be arbitrary, this nonparametric assumption is inappropriate for
sample analysis. Recently, GANs with certain neural network discriminators are shown
to achieve sample error bounds matching minimax rates (Gao et al., 2019, 2020). It is
interesting to study whether similar results can be obtained when using GANs with simpler
and computationally more tractable discriminators.

We propose and study adversarial algorithms, including logit f -GAN in this section and
hinge GAN in Section 4.3, each with simple spline discriminators. Define a linear class of
pairwise spline functions, denoted as Hsp:

hsp,γ(x) = γ0 + γT
1ϕ(x) + γT

2 vec(ϕ(x)⊗ ϕ(x)),

where γ = (γ0, γ
T
1 , γ

T
2 )T ∈ Γ with Γ = R1+5p+(5p)2

and ϕ(x) = (ϕT
1 (x), . . . , ϕT

5 (x))T. The
basis vector ϕl(x) ∈ Rp is obtained by applying t 7→ (t − ξl)+ componentwise to x =
(x1, . . . , xp)

T, with the fixed knot ξl = −2,−1, 0, 1, or 2 for l = 1, . . . , 5 respectively. For
concreteness, assume that every two components of γ2 are identical if associated with the
same product of two components of ϕ(x), that is, γ2 can be arranged to a symmetric
matrix. The preceding specification is sufficient for our theoretical analysis. Nevertheless,
similar results can also be obtained, while allowing various changes to the basis functions,
for example, adding x as a subvector to ϕ(x). With this change, a function in Hsp has a
main effect term in each xj , which is a linear spline with fixed knots in {−2,−1, 0, 1, 2},
and a square or interaction term in each pair (xj1 , xj2), which is a product of two spline
functions in xj1 and xj2 for 1 ≤ j1, j2 ≤ p. See Figure 3 for an illustration of the structure
of our spline discriminator.

We consider two logit f -GAN methods with an L1 or L2 penalty on the discriminator,
which lead to meaningful error bounds over the parameter space Θ1 or Θ2 respectively under
the following conditions on f , in addition to Assumption 1. Among the f -divergences in
Table 2, the reverse KL and JS divergences satisfy both Assumptions 1 and 2, and hence the
corresponding logit f -GANs achieve sample robust estimation using spline discriminators.
The squared Hellinger and reverse χ2 divergences satisfy Assumption 1, but not the Lipschitz
condition in Assumption 2(ii). For such f -divergences, it remains a theoretical question
whether sample robust estimation can be achieved using spline discriminators.

16



Adversarial Algorithms for Robust Estimation

Figure 3: Illustration of our spline discriminator. Dashed lines are fixed transformations
with no trainable parameter used and solid lines are linear transformations with

parameter γ. For j = 1, . . . , p, ϕ
(j)
TL is a vector of truncated linear (TL) basis

functions of xj (the jth element of x) at the fixed knots.

Assumption 2 Suppose that f : (0,∞)→ R is strictly convex and three-times continuously
differentiable with f(1) = 0 and satisfies the following conditions.

(i) f ′(eu) is concave in u ∈ R.

(ii) f#(eu) is R1-Lipschitz in u ∈ R for a constant R1 > 0.

See Table 2 for validity of conditions (i) and (ii) in various f -divergences, and Remarks 13
and 14 for further discussions.

The first method, L1 penalized logit f -GAN, is defined by solving

min
θ∈Θ1

max
γ∈Γ

{Kf (Pn, Pθ;hγ,µ)− λ1 pen1(γ)} , (17)

where Kf (Pn, Pθ;h) is Kf (P∗, Pθ;h) in (1) with P∗ replaced by the empirical distribution Pn
of {X1, . . . , Xn}, hγ,µ(x) = hsp,γ(x−µ), pen1(γ) = ‖γ1‖1+‖γ2‖1, the L1 norm of γ excluding
the intercept γ0, and λ1 ≥ 0 is a tuning parameter. In addition to the replacement of P∗ by
Pn, there are two notable modifications in (17) compared with the population version (1).
First, a penalty term is introduced on γ, to achieve suitable control of sampling variation.
Second, the discriminator hγ,µ is a spline function with knots depending on µ, the location
parameter for the generator. By a change of variables, the non-penalized objective in (17)
can be equivalently written as

Kf (Pn, Pθ;hγ,µ) = EPn−µf
′(ehsp,γ(x))− EP0,Σ

f#(ehsp,γ(x)), (18)
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where Pn − µ denotes the empirical distribution on {X1 − µ, . . . ,Xn − µ}. Hence
Kf (Pn, Pθ;hγ,µ) is a negative loss for discriminating between the shifted empirical dis-
tribution Pn − µ and the mean-zero generator P0,Σ. The adaptive choice of knots for the
spline discriminator hγ,µ not only is numerically desirable but also facilitates the control of
sampling variation in our theoretical analysis. See Propositions 33, 44, 52, and 54. All our
sample results such as Theorems 11 and 12 below are non-asymptotic, being valid for any
(n, p, ε, δ) and Q under the stated conditions.

Theorem 11 Assume that ‖Σ∗‖max ≤ M1 and f satisfies Assumptions 1–2. Let θ̂ =

(µ̂, Σ̂) be a solution to (17). For δ < 1/7, if λ1 ≥ C1

(√
log p/n+

√
log(1/δ)/n

)
and

√
ε +

√
1/(nδ) + λ1 ≤ C2, then with probability at least 1 − 7δ the following bounds hold

uniformly over contamination distribution Q,

‖µ̂− µ∗‖∞ ≤ C
(√

ε+
√

1/(nδ) + λ1

)
,

‖Σ̂− Σ∗‖max ≤ C
(√

ε+
√

1/(nδ) + λ1

)
,

where C1, C2, C > 0 are constants, depending on M1 and f but independent of (n, p, ε, δ).

For L1 penalized logit f -GAN, Theorem 11 shows that the estimator (µ̂, Σ̂) achieves
error bounds in the maximum norms in the order

√
ε +

√
log(p)/n. These error bounds

match sampling errors of order
√

log(p)/n in the maximum norms for the standard esti-
mators (i.e., the sample mean and variance) in a multivariate Gaussian model in the case
of ε = 0. Moreover, up to sampling variation, the error bounds also match the population
error bounds of order

√
ε in the maximum norms with nonparametric discriminators in

Theorem 6(i), even though a simple, linear class of spline discriminators is used.

The second method, L2 penalized logit f -GAN, is defined by solving

min
θ∈Θ2

max
γ∈Γ

{Kf (Pn, Pθ;hγ,µ)− λ2 pen2(γ1)− λ3 pen2(γ2)} , (19)

where Kf (Pn, Pθ;h) and hγ,µ(x) are defined as in (17), pen2(γ1) = ‖γ1‖2 and pen2(γ2) =
‖γ2‖2, the L2 norms of γ1 and γ2, and λ2 ≥ 0 and λ3 ≥ 0 are tuning parameters. Compared
with L1 penalized logit f -GAN (17), the L2 norms of γ1 and γ2 are separately associated
with tuning parameters λ2 and λ3 in (19), in addition to the change from L1 to L2 penalties.
As seen from our proofs in Appendices B.2 and B.3, the use of separate tuning parameters
λ2 and λ3 is crucial for achieving meaningful error bounds in the L2 and Frobenius norms
for simultaneous estimation of (µ∗,Σ∗). Our method does not rely on the use of normal-
ized differences of pairs of the observations to reduce the unknown mean to 0 for scatter
estimation as in Diakonikolas et al. (2019).

Theorem 12 Assume that ‖Σ∗‖op ≤ M2, f satisfies Assumptions 1–2, and pε is upper

bounded by a constant B. Let θ̂ = (µ̂, Σ̂) be a solution to (19). For δ < 1/8, if λ2 ≥
C1

(√
p/n+

√
log(1/δ)/n

)
, λ3 ≥ C1

√
p
(√

p/n+
√

log(1/δ)/n
)

, and
√
ε +

√
1/(nδ) +

λ2 ≤ C2, then with probability at least 1 − 8δ the following bounds hold uniformly over
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contamination distribution Q,

‖µ̂− µ∗‖2 ≤ C
(√

ε+
√

1/(nδ) + λ2

)
,

p−1/2‖Σ̂− Σ∗‖F ≤ C
(√

ε+
√

1/(nδ) + λ2 + λ3/
√
p
)
,

where C1, C2, C > 0 are constants, depending on M2 and f but independent of (n, p, ε, δ)
except through the bound B on pε.

For L2 penalized logit f -GAN, Theorem 12 provides error bounds of order
√
ε+
√
p/n, in

the L2 and p−1/2-Frobenius norms for location and scatter estimation. A technical difference
from Theorem 11 is that these bounds are derived under an extraneous condition that pε
is upper bounded. Nevertheless, the error rate,

√
ε +

√
p/n, matches the population error

bounds of order
√
ε in Theorem 6(i), up to sampling variation of order

√
p/n in the L2 and

p−1/2-Frobenius norms. We defer to Section 4.3 further discussion about the error bounds
in Theorems 11–12 compared with minimax error rates.

Remark 13 There are important implications of Assumption 2(i) together with Assump-
tion 1(ii), based on the fact (“composition rule”) that the composition of a non-decreasing
concave function and a concave function is concave. First, for convex f , concavity of f ′(eu)
in u ∈ R implies Assumption 1(iii), that is, concavity of f ′(t) in t ∈ (0,∞). This follows by
writing f ′(t) = g(log t) and applying the composition rule, where g(u) = f ′(eu), in addition
to being concave, is non-decreasing by convexity of f , and log t is concave in t. Note that
concavity of f ′(t) in t may not imply concavity of f ′(eu) in u, as shown by the Pearson
χ2 in Table 2. Second, for convex and non-increasing f , concavity of f ′(eu) in u ∈ R also
implies concavity of −f#(eu) in u ∈ R. In fact, as mentioned in Remark 3, f#(t) can be
equivalently obtained as f#(t) = f∗(f ′(t)), where f∗ is the Fenchel conjugate of f (Tan
et al., 2019). By the composition rule, −f#(eu) = g(f ′(eu)) is concave, where g = −f∗ is
concave and non-decreasing by non-increasingness of f .

Remark 14 The concavity of f ′(eu) and −f#(eu) in u from Assumptions 1(ii) and 2(i),
as discussed in Remark 13, is instrumental from both theoretical and computational per-
spectives. These concavity properties are crucial to our proofs of Theorems 11–12 and later
Corollary 18(i) in Section 4.4. See Lemmas 31 and 57 in Appendix C. Moreover, the concav-
ity of f ′(eu) and −f#(eu) in u, in conjunction with the linearity of the spline discriminator
hγ,µ in γ, indicates that the objective function Kf (Pn, Pθ;hγ,µ) is concave in γ for any fixed
θ. Hence our penalized logit f -GAN (17) or (19) under Assumptions 1–2 can be imple-
mented through nested optimization as in Algorithm 2 with a concave optimizer used to
fully update the spline discriminators, as well as through the gradient descent ascent as in
Algorithm 1. See Remark 2 for further discussion.

4.3 Hinge GAN with spline discriminators

We consider two hinge GAN methods with an L1 or L2 penalty on the spline discriminator,
which leads to theoretically improved error bounds in terms of dependency on (ε, p) over
the parameter space Θ1 or Θ2 respectively, compared with the corresponding logit f -GAN
methods in Section 4.2.
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The first method, L1 penalized hinge GAN, is defined by solving

min
θ∈Θ1

max
γ∈Γ

{KHG(Pn, Pθ;hγ,µ)− λ1 pen1(γ)} , (20)

where KHG(Pn, Pθ;h) is the hinge objective KHG(P∗, Pθ;h) in (3) with P∗ replaced by Pn
and, similarly as in L1 penalized logit f -GAN (17), hγ,µ(x) = hsp,γ(x − µ), pen1(γ) =
‖γ1‖1 + ‖γ2‖1, and λ1 ≥ 0 is a tuning parameter.

Theorem 15 Assume that ‖Σ∗‖max ≤ M1. Let θ̂ = (µ̂, Σ̂) be a solution to (20). For

δ < 1/7, if λ1 ≥ C1

(√
log p/n+

√
log (1/δ)/n

)
and ε +

√
ε/(nδ) + λ1 ≤ C2, then with

probability at least 1−7δ the following bounds hold uniformly over contamination distribution
Q,

‖µ̂− µ∗‖∞≤C
(
ε+

√
ε/(nδ) + λ1

)
,

‖Σ̂− Σ∗‖max≤C
(
ε+

√
ε/(nδ) + λ1

)
,

where C,C1, C2 > 0 are constants, depending on M1 but independent of (n, p, ε, δ).

For L1 penalized hinge GAN, Theorem 15 shows that the estimator (µ̂, Σ̂) achieves
error bounds in the maximum norms in the order ε+

√
log(p)/n, which improve upon the

error rate
√
ε+
√

log(p)/n in terms of dependency on ε for L1 penalized logit f -GAN. This
difference can be traced to that in the population error bounds in Theorem 6. Moreover,
Theorem 5.1 in Chen et al. (2018) indicates that a minimax lower bound on estimator errors
‖µ̂−µ∗‖∞ or ‖Σ̂−Σ∗‖max is also of order ε+

√
log(p)/n in Huber’s contaminated Gaussian

model, where
√

log(p)/n is a minimax lower bound in the maximum norms in the case of
ε = 0. Therefore, our L1 penalized hinge GAN achieves the minimax rates in the maximum
norms for Gaussian location and scatter estimation over Θ1.

The second method, L2 penalized hinge GAN, is defined by solving

min
θ∈Θ2

max
γ∈Γ

{KHG(Pn, Pθ;hγ,µ)− λ2 pen2(γ1)− λ3 pen2(γ2)} , (21)

where, similarly as in L2 penalized logit f -GAN (19), hγ,µ(x) = hsp,γ(x − µ), pen2(γ1) =
‖γ1‖2 and pen2(γ2) = ‖γ2‖2, and λ2 ≥ 0 and λ3 ≥ 0 are tuning parameters.

Theorem 16 Assume that ‖Σ∗‖op ≤ M2. Let θ̂ = (µ̂, Σ̂) be a solution to (21). For

δ < 1/8, if λ2 ≥ C1

(√
p/n+

√
log(1/δ)/n

)
, λ3 ≥ C1

√
p
(√

p/n+
√

log(1/δ)/n
)

, and

√
p
(
ε+

√
ε/(nδ)

)
+λ2 ≤ C2, then with probability at least 1−8δ the following bounds hold

uniformly over contamination distribution Q,

‖µ̂− µ∗‖2 ≤ C
(√

p
(
ε+

√
ε/(nδ)

)
+ λ2

)
,

p−1/2‖Σ̂− Σ∗‖F ≤ C
(√

p
(
ε+

√
ε/(nδ)

)
+ λ2 + λ3/

√
p
)
,

where C1, C2, C > 0 are constants, depending on M2 but independent of (n, p, ε, δ).
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For L2 penalized hinge GAN, Theorem 16 shows that the estimator (µ̂, Σ̂) achieves error
bounds in the L2 and p−1/2-Frobenius norms in the order ε

√
p+
√
p/n. On one hand, these

error bounds reduce to the same order,
√
ε+
√
p/n, as those for L2 penalized logit f -GAN,

under the condition that pε is upper bounded by a constant. On the other hand, when
compared with the minimax rates, there remain nontrivial differences between L2 penalized
hinge GAN and logit f -GAN. In fact, the minimax rates in the L2 and operator norms for
location and scatter estimation over Θ2 is known to be ε+

√
p/n in Huber’s contaminated

Gaussian model (Chen et al., 2018). The same minimax rate can also be shown in the p−1/2-
Frobenius norm for scatter estimation. Then the error rate for L2 penalized hinge GAN in
Theorem 16 matches the minimax rate, and both reduce to the contamination-free error rate√
p/n, provided that ε

√
n is bounded by a constant, i.e., ε = O(

√
1/n), independently of p.

For L2 penalized logit f -GAN associated with the reverse KL or JS divergence (satisfying
Assumptions 1–2), the error bounds from Theorem 12 match the minimax rate provided
both ε = O(p/n) and ε = O(1/p). The latter condition can be restrictive when p is large.

Remark 17 The two functionals, min(1, h) and min(−1, h), are concave in h in the hinge
objective KHG(Pn, Pθ;h). This is reminiscent of the concavity of f ′(eh) and −f#(eh) in h
in the logit f -GAN objective Kf (Pn, Pθ;h) under Assumptions 1(ii) and 2(i) as discussed
in Remark 14. These concavity properties are crucial to our proofs of Theorems 15–16
and Corollary 18(ii) . See Lemmas 51 and 58 in Appendix C. Moreover, the concavity of
KHG(Pn, Pθ;h) in h, together with the linearity of the spline discriminator hγ,µ in γ, implies
that the objective function KHG(Pn, Pθ;hγ,µ) is concave in γ for any fixed θ. Hence similarly
to penalized logit f -GAN, our penalized hinge GAN (20) or (21) can also be implemented
through nested optimization as in Algorithm 2 with concave inner optimization to update
the spline discriminators, as well as the gradient descent ascent as in Algorithm 1.

4.4 Two-objective GAN with spline discriminators

We study two-objective GANs, where the spline discriminator is trained using the objec-
tive function in logit f -GAN or hinge GAN, but the generator is trained using a different
objective function.

Consider the following two-objective GAN related to logit f -GANs (17) and (19): max
γ∈Γ

Kf (Pn, Pθ;hγ,µ)− pen(γ;λ) with θ fixed,

min
θ∈Θ

EPnf
′(ehγ,µ(x))− EPθG(hγ,µ(x)) with γ fixed.

(22)

Similarly, consider the two-objective GAN related to the hinge GAN (20) and (21): max
γ∈Γ

KHG(Pn, Pθ;hγ,µ)− pen(γ;λ) with θ fixed,

min
θ∈Θ

EPn min(hγ,µ(x), 1)− EPθG(hγ,µ(x)) with γ fixed.
(23)

Here pen(γ;λ) is an L1 penalty, λ1(‖γ1‖1 +‖γ2‖1) and Θ is Θ1 = {(µ,Σ) : µ ∈ Rp, ‖Σ‖max ≤
M1} as in (17), or pen(γ;λ) is an L2 penalty λ2‖γ1‖2 +λ3‖γ2‖2 and Θ is Θ2 = {(µ,Σ) : µ ∈
Rp, ‖Σ‖op ≤ M2} as in (19), and G is a function satisfying Assumption 3. Note that the
discriminator hγ,µ is a spline function with knots depending on µ, so that EPnf

′(ehγ,µ(x))
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cannot be dropped in the optimization over θ in (22) or (23). We show that the two-
objective logit f -GAN and hinge GAN achieve similar error bounds as the corresponding
one-objective versions in Theorems 11–16.

Assumption 3 Function G in (22) or (23) is convex and strictly increasing. Hence the
inverse function G−1 exists and is concave and strictly increasing.

Corollary 18 (i) If θ̂ is replaced by a solution to the alternating optimization problem (22)
with the L1 or L2 penalty on γ as in (17) or (19) and the corresponding choice of Θ, then
the results in Theorem 11 or 12 remains valid respectively.

(ii) If θ̂ is replaced by a solution to the alternating optimization problem (23) with the
L1 or L2 penalty on γ as in (20) or (21) and the corresponding choice of Θ, then the results
in Theorem 15 or 16 remains valid respectively.

The two-objective GANs studied in Corollary 18 differ slightly from existing ones as
described in (5)–(7), due to the use of the discriminator hγ,µ depending on µ to facilitate
theoretical analysis as mentioned in Section 4.2. If hγ,µ were replaced by a discriminator hγ
defined independently of θ, then taking Kf = KJS and G(h) = − log(1+e−h) or G(h) = −h
in (22) reduces to GAN with logD trick (5) or calibrated rKL-GAN (6) respectively, and
taking Kf = KHG and G(h) = −h in (23) reduces to geometric GAN (7).

5. Discussion

5.1 GANs with data transformation

Compared with the usual formulations (1) and (3), our logit f -GAN and hinge GAN meth-
ods in Sections 4.2–4.3 involve a notable modification that both the real and fake data
are discriminated against each other after being shifted by the current location parameter.
Without the modification, a direct approach based on logit f -GAN would use the objective
function

Kf (Pn, Pθ;hsp,γ) = EPnf
′(ehsp,γ(x))− EPµ,Σf

#(ehsp,γ(x)), (24)

where the real data and the Gaussian fake data generated from standard noises are discrim-
inated again each other given the parameters (µ,Σ). The idea behind our modification can
be extended by allowing both location and scatter transformation. For example, consider
logit f -GAN with full transformation:

min
θ∈Θ

max
γ∈Γ

{Kf (Pn, Pθ;hγ,µ,Σ)− pen(γ;λ)} , (25)

where Kf is the logit f -GAN objective as in (17) and (19), hγ,µ,Σ(x) = hsp,γ(Σ−1/2(x−µ))
and pen(γ;λ) is an L1 or L2 penalty term. The discriminator hγ,µ,Σ(x) is obtained by
applying hsp,γ(·) with fixed knots to the transformed data Σ−1/2(x− µ). Similarly to (18),
the non-penalized objective in (25) can be equivalently written as

Kf (Pn, Pθ;hγ,µ,Σ) = EΣ−1/2(Pn−µ)f
′(ehsp,γ(x))− EP0,I

f#(ehsp,γ(x)), (26)
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where Σ−1/2(Pn−µ) denotes the empirical distribution on {Σ−1/2(X1−µ), . . . ,Σ−1/2(Xn−
µ)}. Compared with (18) and (24), there are two advantages of using (26) with full transfor-
mation. First, due to both location and scatter transformation, logit f -GAN (25), but not
(17) or (19), can be shown to be affine equivariant. Second, the transformed real data and
the standard Gaussian noises in (26) are discriminated against each other given the current
parameters (µ,Σ), while employing the spline discriminators hsp,γ(x) with knots fixed at
{−2,−1, 0, 1, 2}. Because standard Gaussian data are well covered by the grid formed from
these marginal knots, the discrimination involved in (26) can be informative even when the
parameters (µ,Σ) are updated. The discrimination involved in (24) may be problematic
when employing the fixed-knot spline discriminators, because both the real and fake data
may not be adequately covered by the grid formed from the knots.

From the preceding discussion, it can be more desirable to incorporate both location
and scatter transformation as in (26) than just location transformation as in (18), which
only aligns the centers, but not the scales and correlations, of the Gaussian fake data with
the knots in the spline discriminators. As mentioned in Section 4.2, our sample analysis
exploits the location transformation in establishing certain concentration properties in the
proofs. On the other hand, our current proofs are not directly applicable while allowing both
location and scatter transformation. It is desired in future work to extend our theoretical
analysis in this direction.

5.2 Comparison with Gao et al. (2020)

We first point out a connection between logit f -GANs and the GANs based on proper
scoring rules in Gao et al. (2020). For a convex function g : (0, 1) → R, a proper scoring
rule can be defined as (Savage, 1971; Buja et al., 2005; Gneiting and Raftery, 2007)

Sg(η, 1) = g(η) + (1− η)g′(η), Sg(η, 0) = g(η)− ηg′(η).

The population verion of the GAN studied in Gao et al. (2020) is defined as

min
θ∈Θ

max
γ∈Γ

Lg(P∗, Pθ; qγ), (27)

where qγ(x) ∈ [0, 1], also called a discriminator, represents the probability that an observa-
tion x comes from P∗ rather than Pθ, and

Lg(P∗, Pθ; q) = (1/2) {EP∗Sg(q(x), 1) + EPθSg(q(x), 0)} − g(1/2).

The objective Lg(P∗, Pθ; q) is shown to be a lower bound, being tight if q = 2 dP∗/d(P∗+Pθ),
for the divergence Dg0(P∗‖(P∗ + Pθ)/2), where g0(t) = g(t/2) − g(1/2) for t ∈ (0, 2). For
example, taking g(η) = η log η+(1−η) log(1−η) leads to the log score, Sg(η, 1) = log η and
Sg(η, 0) = log(1 − η). The corresponding objective function Lg(P∗, Pθ; qγ) reduces to the
expected log-likelihood with discrimination probability qγ(x) as used in Goodfellow et al.
(2014). We show that if qγ(x) is specified as a sigmoid probability, then Lg(P∗, Pθ; qγ) can
be equivalently obtained as a logit f -GAN objective for a suitable choice of f .

Proposition 19 Suppose that the discriminator is specified as qγ(x) = sigmoid(hγ(x)).
Then Lg(P∗, Pθ; qγ) = Kf (P∗, Pθ;hγ) for Kf defined in (1) and f(t) = 1+t

2 g0( 2t
1+t) satisfying

that Dg0(P∗‖(P∗ + Pθ)/2) = Df (P∗‖Pθ).
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In contrast with hγ(x) parameterized as a pairwise spline function, Gao et al. (2020)
studied robust estimation in Huber’s contaminated Gaussian model, where qγ(x) is param-
eterized as a neural network with two or more layers and sigmoid activations in the top and
bottom layers. In the case of two layers, the neural network in Gao et al. (2020), Section 4,
is defined as

qγ(x) = sigmoid(hγ(x)), hγ(x) =
J∑
j=1

γ
(1)
j sigmoid(γ

(2)T

j x+ γ
(2)
0j ), (28)

where (γ
(2)
j , γ

(2)
j0 ), j = 1, . . . , J , are the weights and intercepts in the bottom layer, and γ

(1)
j ,

j = 1, . . . , J , are the weights in the top layer constrained such that
∑J

j=1 |γ
(1)
j | ≤ κ for a

tuning parameter κ. Assume that g(η) is three-times continuously differentiable at η = 1/2,
g′′(1/2) > 0, and for a universal constant c0 > 0,

2g′′(1/2) ≥ g′′′(1/2) + c0, (29)

Then Gao et al. (2020) showed that the location and scatter estimators from the sample
version of (27) with discriminator (28) achieve the minimax error rates, O(ε+

√
p/n), in the

L2 and operator norms, provided that κ = O(ε+
√
p/n) among other conditions. However,

with sigmoid activations used inside hγ(x), the sample objective Lg(Pn, Pθ; qγ) may exhibit
a complex, non-concave landscape in γ, which makes minimax optimization difficult.

There is also a subtle issue in how the above result from Gao et al. (2020) can be
compared with even our population analysis for minimum f -divergence estimation, i.e.,
population versions of GANs with nonparametric discriminators. In fact, condition (29)

can be directly shown to be equivalent to saying that d2

du2 f
′(eu)|u=0 ≥ c0 for f associated

with g in Proposition 19. This condition can be satisfied, while Assumption 1 is violated,
for example, by the choice g(η) = (η − 1) log(η/(2 − η)) and f(t) = {(t − 1) log t}/2,
corresponding to the mixed KL divergence DKL(P ||Q)/2 + DKL(Q||P )/2. As shown in
Figure 2, minimization of the mixed KL does not in general lead to robust estimation.
Hence it seems paradoxical that minimax error rates can be achieved by the GAN in Gao
et al. (2020) with its objective function derived from the mixed KL. On the other hand, a
possible explanation can be seen as follows. By the sigmoid activation and the constraint∑J

j=1 |γ
(1)
j | ≤ κ, the log-odds discriminator hγ(x) in (28) is forced to be bounded, |hγ(x)| ≤

κ, where κ is further assumed to small, of the same order as the minimax rate O(ε+
√
p/n).

As a result, maximization of the population objective Lg(P∗, Pθ; qγ) over such constrained
discriminators may produce a divergence with a substantial gap to the actual divergence
Df (P∗‖Pθ) for any fixed θ. Instead, the implied divergence measure may behave more
similarly as the total variation DTV(P∗‖Pθ) than as Df (P∗‖Pθ), due to the boundedness of
hγ(x) by a sufficiently small κ, so that minimax error rates can still be achieved.

6. Simulation studies

We conducted simulation studies to compare the performance of our logit f -GAN and hinge
GAN methods with several existing methods in various settings depending on Q, ε, n, and
p. Results about error dependency on ε are provided in Section 6.3 and those about de-
pendency on n and p are presented in Appendix A. Two contamination distributions Q are
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considered to allow different types of contaminations. In the arXiv preprint of the paper
(Wang and Tan, 2021), only low-dimensional settings are studied, with p between 5–20 and
n between 500–4000. In the current paper, relatively high-dimensional settings are studied,
with p between 25–100 and n between 5000–50000. In such settings, the previous implemen-
tation of our methods based on nested optimization (Algorithm 2) becomes computationally
costly, and hence the current implementation of our methods follows the style of alternating
gradient updates in Algorithm 1, but with Adam used (Kingma and Ba, 2015) instead of
vanilla gradient updates. As discussed in Remark 2, the concavity of our GAN objectives
in the discriminators makes it possible to treat local minimax points as a generally valid
surrogate for global solutions. In addition, training of our methods also benefits from the
fact that the discriminators can be updated without ever being trapped in local maxima
and hence the generators can be consistently pushed into the right direction.

6.1 Implementation of methods

Our methods can be implemented in the style of either nested optimization (Algorithm 2)
or alternating gradient updates (Algorithm 1). Source code for our methods is available at
https://github.com/LMC4S/robust-spline-GAN for nested optimization and https:

//github.com/LMC4S/robust-spline-GAN-pytorch for alternating gradient updates.

We refer to our arXiv preprint (Wang and Tan, 2021) for the former implementation
which is suitable in low-dimensional settings and present only the latter implementation
which is more cost-effective in relatively high-dimensional settings. Our detailed pseudo
code is shown as Algorithm 3 in Appendix A, including the initial values (µ0,Σ0) and the
learning rates. The penalized GAN objective function K(θ, γ;λ) is defined as in (25) for logit
f -GAN or with Kf replaced by KHG for hinge GAN. As discussed in Section 5.1, this scheme
allows adequate discrimination between the back-transformed real data, Σ−1/2(x− µ), and
the standard Gaussian noises using spline discriminators with fixed knots. Below we briefly
discuss the alternating gradient updates and penalty choices.

With spline discriminators, the training objective K(θ, γ;λ) is concave in the discrim-
inator parameter γ and hence the discriminator can be consistently updated to provide a
proper updating direction for the generator. Instead of vanilla gradient updates, we use
Adam (Kingma and Ba, 2015) with a momentum and an adaptive learning rate to alter-
nately update both the discriminator and the generator in the style of Algorithm 1. The
introduction of the momentum helps to overcome possible local minima for the generator
and also accelerates the training for the discriminator.

As dictated by our theory, we employ L1 or L2 penalties on the spline discriminators
to control sampling variation, especially when the sample size n is relatively smaller com-
pared to the dimension of the discriminator parameter γ. Numerically, these penalties help
stabilize the training process by restricting the discriminator power in the early stage. We
tested our methods under different penalty levels and identified default choices of λ for our
rKL and JS logit f -GANs and hinge GAN. These penalty choices are then fixed in all our
subsequent simulations. See Appendix A.2 for results from our tuning experiments.

For comparison, we also implement 5 existing methods for robust estimation.

• JS-GAN (Gao et al., 2020). We use the code from Gao et al. (2020) with minimal
modification. The batch size is set to 1/10 of the data size because the default choice
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500 is too large in our experiment settings. We use the network structure p-2p-bp/2c-1
with LeakyReLU and Sigmoid activations as recommended in Gao et al. (2020).

• Kendall’s τ with MAD (Loh and Tan, 2018). Kendall’s τ (Kendall, 1938) is used to
estimate the correlations after sine transformation and the median absolute deviation
(MAD) (Hampel, 1974) is used to estimate the scales. We use stats.kendalltau

and stats.median abs deviation from Python module SciPy to compute Kendall’s
τ correlations and MAD scale (https://docs.scipy.org/doc/scipy/reference/g
enerated/scipy.stats.kendalltau.html).

• Spearman’s ρ with Qn-estimator (Öllerer and Croux, 2015). The Qn-estimator
(Rousseeuw and Croux, 1993) is used for scale estimation and Spearman’s ρ (Spear-
man, 1987) is used with sine transformation for correlation estimation. We use the R
function corollary to compute Spearman’s ρ correlations and the Qn function in R
package robustbase (https://cran.r-project.org/web/packages/robustbase).

• MCD (Rousseeuw, 1985). The minimum covariance determinant (MCD) estimator
is a high-breakdown robust method and is shown to be superior to the Minimum
volume ellipsoid (MVE) estimator in statistical efficiency (Butler et al., 1993). We
use covariance.MinCovDet in Python module scikit-learn for implementation.
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance
.MinCovDet.html)

• Tyler’s M-estimator (Tyler, 1987). This method is included for completeness, being
designed for multivariate scatter estimation from elliptical distributions, not Huber’s
contaminated Gaussian distribution. The estimated scatter matrix is uniquely defined
subject to the constraint that the determinant is 1. To facilitate comparison in terms
of variance matrix estimation, we rescale the scatter matrix such that its determinant
matches that of the true variance matrix Σ∗, even though this may lead to some unfair
advantage. We use R package fastM for implementation (https://cran.r-project
.org/web/packages/fastM).

In our experiments, we focus on comparing the performance of existing and proposed meth-
ods in terms of scatter estimation (i.e., variance matrix estimation). Tyler’s M-estimator,
Kendall’s τ with MAD, and Spearman’s ρ with Qn deal with scatter estimation only and
hence the locations are set to the true means as mentioned in Section 2. The other methods
handle both location and scatter estimation.

There are also robust S- and M-estimators, for example, based on translated or Tukey’s
biweight functions, which are shown to achieve a high-breakdown property (Rousseeuw,
1985; Rocke, 1996). Several such estimators were included in our previous low-dimensional
experiments (Wang and Tan, 2021). However, the existing R packages for those methods
fail to run successfully in our relatively high-dimensional settings and hence those methods
are not considered in the current experiments.

6.2 Simulation settings

The uncontaminated distribution is N(0,Σ∗) where Σ∗ is a Toeplitz matrix with (i, j) com-
ponent equal to (1/2)|i−j|. The location parameter is unknown and estimated together with
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the variance matrix, except for Tyler’s M -estimator, Kendall’s τ , and Spearman’s ρ. Con-
sider two contamination distributions Q of different types. Denote a p× p identity matrix
as Ip and a p-dimensional vector of ones as 1p.

• Q = Cauchy
(
2.25c, 1

3Ip
)

where c = (1,−1, 1,−1, 1, . . . ) is a p-dimensional vector of
alternating±1. In this setting, the majority of contaminated points may not be seen as
outliers marginally in each coordinate. On the other hand, these contaminated points
can be easily separated as outliers from the uncontaminated Gaussian distribution in
higher dimensions.

• Q = Cauchy(51p, 5Ip). Contaminated points may lie in both low-density and high-
density regions of the uncontaminated Gaussian distribution. The majority of con-
taminated points are outliers that are far from the uncontaminated data, and there
are also contaminated points that are enclosed by the uncontaminated points.

The Cauchy contamination, although being extreme, is chosen to assess our theoretical
results, which are uniform over all possible contaminations. Compared with Gaussian con-
tamination distributions, the setting also makes training of GANs more difficult because
Cauchy does not have any finite moments and some data points can be excessive outliers.
The success of our methods in the presence of Cauchy contamination, as shown below, pro-
vides a strong support for our methods in handling all possible contaminations. See Wang
and Tan (2021) for numerical studies with Gaussian contaminations in low-dimensional
settings, where similar patterns are observed as reported here.

6.3 Experiment results

Table 3 summarizes scatter estimation errors in the maximum norm from L1 penalized hinge
GAN and logit f -GANs and existing methods, where p = 100, n = 20000, and ε increases
from 0% to 20%. See Appendix A.3 for additional results about error dependency on n
and p. The errors are obtained by averaging 20 repeated runs and the numbers in brackets
are standard deviations. The JS logit f -GAN has the best performance, followed closely by
rKL logit f -GAN and hinge GAN and then with more noticeable differences by JS-GAN
in Gao et al. (2020). The MCD performs among the best when there is no contamination
(ε = 0), but its performance deteriorates considerably as ε increases to 20%, especially with
the first contamination. The pairwise methods, Kendall’s τ with MAD and Spearman’s ρ
with Qn-estimator, have poor performances as expected from Figure 1. Estimation errors in
the Frobenius norm from our L2 penalized GAN methods and existing methods are shown
in Table 4. We observe a similar pattern of comparison as in Table 3, except that the hinge
GAN achieves a slight lead.

From Tables 3–4, we see that the estimation errors of our GAN methods, as well as other
methods, increase as ε increases. However, the dependency on ε is not precisely linear for
the hinge GAN, and not in the order

√
ε for the two logit f -GANs. This does not violate our

theoretical bounds, which are derived to hold over all possible contamination distributions,
i.e., for the worst scenario of contamination. For specific contamination settings, it is
possible for logit f -GAN to outperform hinge GAN, and for each method to achieve a
better error dependency on ε than in the worst scenario. For further understanding, we
present in Figure 8 (Appendix A.5) a comparison between two types of contamination
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ε (%) hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

0 0.0299 (0.0027) 0.0304 (0.0027) 0.0321 (0.0042) 0.0360 (0.006) 0.0445 (0.0057) 0.0385 (0.0032) 0.0296 (0.0022) 0.0299 (0.0025)

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

5 0.0333 (0.0031) 0.0302 (0.0027) 0.0303 (0.0028) 0.0472 (0.0116) 0.1651 (0.0058) 0.1989 (0.0051) 0.0470 (0.0264) 0.3138 (0.0142)
10 0.0356 (0.0032) 0.0309 (0.0036) 0.0311 (0.0025) 0.0482 (0.0123) 0.3165 (0.0063) 0.3906 (0.0070) 0.3115 (0.0089) 0.7810 (0.0190)
20 0.0394 (0.0047) 0.0341 (0.0033) 0.0343 (0.0034) 0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)

Q ∼ Cauchy(51p, 5Ip)
5 0.0354 (0.0038) 0.0305 (0.0025) 0.0340 (0.0034) 0.0416 (0.0054) 0.1703 (0.0068) 0.2451 (0.0058) 0.0410 (0.0048) 0.1228 (0.0047)
10 0.0374 (0.0036) 0.0319 (0.0035) 0.0361 (0.0041) 0.0450 (0.0085) 0.3287 (0.0081) 0.5167 (0.0072) 0.0540 (0.0044) 0.2645 (0.0062)
20 0.0433 (0.0045) 0.0349 (0.0033) 0.0385 (0.0043) 0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)

Table 3: Comparison of existing methods and proposed L1 penalized GAN methods (p =
100, n = 20000, and varying ε from 0% to 20%). Estimation error of the variance
matrix is reported in the maximum norm ‖ · ‖max.

ε (%) hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

0 0.7385 (0.0136) 0.7395 (0.0117) 0.7413 (0.0127) 0.8309 (0.0217) 0.766 (0.0139) 0.7793 (0.0189) 0.7333 (0.0124) 0.7357 (0.0121)

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

5 0.7581 (0.0117) 0.7600 (0.0116) 0.7612 (0.0122) 0.9858 (0.0533) 11.3637 (0.1097) 11.4136 (0.1443) 1.3872 (2.7002) 25.4480 (1.2743)
10 0.7781 (0.0123) 0.7822 (0.01) 0.7831 (0.0107) 1.0183 (0.0783) 24.2221 (0.2151) 24.9319 (0.2416) 26.8421 (0.6546) 68.9657 (1.7968)
20 0.8230 (0.0127) 0.8257 (0.0108) 0.8324 (0.0139) 1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)

Q ∼ Cauchy(51p, 5Ip)
5 0.7599 (0.0115) 0.7605 (0.0104) 0.7706 (0.0105) 0.9423 (0.0274) 10.2662 (0.1475) 10.6577 (0.1949) 0.7827 (0.0153) 9.6110 (0.4390)
10 0.7804 (0.0103) 0.7814 (0.0112) 0.7897 (0.0096) 0.9926 (0.0394) 21.9943 (0.2992) 24.4219 (0.3122) 0.8598 (0.0165) 23.4787 (0.5847)
20 0.8252 (0.0114) 0.8261 (0.0129) 0.8376 (0.0125) 1.0623 (0.0627) 52.9465 (0.5247) 65.1641 (0.5581) 1.0715 (0.0214) 54.9783 (1.2116)

Table 4: Comparison of existing methods and proposed L2 penalized GAN methods (p =
100, n = 20000, and varying ε from 0% to 20%). Estimation error of the variance
matrix is reported in the Frobenius norm ‖ · ‖F.

settings for GANs at the population level, similarly to Figure 2. One type may represent
the worst-case contamination in terms of dependency on ε, and the other type is based on
the second contamination studied.

7. Main proofs

We present main proofs of Theorems 6 and 15 in this section. The main proofs of the other
results and details of all main proofs are provided in Appendices B and C.

At the center of our proofs is a unified strategy designed to establish error bounds for
GANs. See, for example, the two-sided bounds of the penalized GAN objective with opti-
mized discriminator in (31) and (37). To derive the upper bounds, we apply the robustness
property of TV or f -divergence under Assumptions 1–2 to remove the impact of contamina-
tion, and then develop suitable concentration properties based on Gaussian or sub-Gaussian
while leveraging the concavity in updating the spline discriminators for hinge GAN or logit
f -GAN (as discussed in Remarks 14 and 17). These can be seen from the proofs of Propo-
sitions 33, 44, 52, and 54 in Appendix C. To derive the lower bounds, we exploit the fact
that it is sufficient to consider a subclass of bounded ramp functions constructed from
unbounded spline functions, and then develop desirable concentration properties over the
ramp or product ramp functions under a general contaminated distribution. These can be
seen from the proofs of Propositions 37, 47, 53, and 55 in Appendix C. Finally, we deduce
estimation error bounds by showing that the expectations of ramp or product ramp func-
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tions are locally linear in the location, scale, and correlation of the underlying Gaussian
distribution; see Lemmas 38 and 40 in Appendix C, with a novel application of Stein’s
lemma.

7.1 Proof of Theorem 6

We state and prove the following result which implies Theorem 6.

Proposition 20 Let Θ0 = {(µ,Σ) : µ ∈ Rp,Σ is a p× p variance matrix }.
(i) Assume that f satisfies Assumption 1, and ε ∈ [0, ε0] for a constant ε0 ∈ [0, 1/2).

Let θ̄ = argminθ∈Θ0
Df (Pε||Pθ). If Errf0(ε) ≤ a for a constant a ∈ [0, 1/2), then we have

‖µ̄− µ∗‖2 ≤ S1,a‖Σ∗‖1/2op Errf0(ε),

‖µ̄− µ∗‖∞ ≤ S1,a‖Σ∗‖1/2maxErrf0(ε),

where S1,a = {Φ′(Φ−1(1/2 +a))}−1 and Errf0(ε) =
√
−2(f ′′(1))−1f ′(1− ε0)ε+ ε. If further

Errf0(ε) ≤ a/(1 + S1,a), then

‖Σ̄− Σ∗‖op ≤ 2S3,a‖Σ∗‖opErrf0(ε) + S2
3,a‖Σ∗‖op(Errf0(ε))2, (30)

‖Σ̄− Σ∗‖max ≤ 4S3,a‖Σ∗‖maxErrf0(ε) + 2S2
3,a‖Σ∗‖max(Errf0(ε))2,

where S3,a = S2,a(1 +S1,a), S2,a = {
√
z0/2 erf ′(

√
2/z0 erf−1(1/2 + a))}−1, and the constant

z0 is defined such that erf(
√
z0/2) = 1/2. The same inequality as (30) also holds with

‖Σ̄− Σ∗‖op replaced by p−1/2‖Σ̄− Σ∗‖F.
(ii) Let θ̄ = argminθ∈Θ0

DTV(Pε||Pθ). Then the statements in (i) hold with Errf0(ε)
replaced by Errh0(ε) = 2ε throughout.

Proof [Proof of Proposition 20] (i) Our main strategy is to show the following inequalities
hold:

d(θ̄, θ∗)−∆1(ε) ≤
√
Df (Pε||Pθ̄) ≤ ∆2(ε, f), (31)

where ∆1(ε) and ∆2(ε, f) are bias terms, depending on ε and (ε, f) respectively and d(θ̄, θ∗)
is the total variation DTV(Pθ̄‖Pθ∗) or simply TV(Pθ̄, Pθ∗). Under certain conditions, d(θ̄, θ∗)
delivers upper bounds, up to scaling constants, on the estimation bias to be controlled,
‖µ̄− µ∗‖∞, ‖µ̄− µ∗‖2, ‖Σ̄− Σ∗‖max, and ‖Σ̄− Σ∗‖op.

(Step 1) The upper bound in (31) follows from Lemma 31 (iv): for any f satisfying
Assumption 1 and any ε ∈ [0, ε0], we have

Df (Pε||Pθ̄) ≤ Df (Pε||Pθ∗) ≤ −f ′(1− ε0)ε = ∆2
2(ε, f),

where ∆2(ε, f) =
√
−f ′(1− ε0)ε. The constant −f ′(1 − ε0) is nonnegative because f is

non-increasing by Assumption 1 (ii).
(Step 2) We show the lower bound in (31) as follows:

d(θ̄, θ∗) ≤ TV(Pθ̄, Pε) + TV(Pε, Pθ∗) ≤ TV(Pθ̄, Pε) + ∆1(ε) (32)

≤
√

2(f ′′(1))−1Df (Pε||Pθ̄) + ∆1(ε), (33)
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where ∆1(ε) = ε. Line (32) follows by the triangle inequality and the fact that TV(Pε, Pθ∗) ≤
εTV(PQ, Pθ∗) ≤ ε. Line (33) follows from Lemma 27: for any f -divergence satisfying
Assumption 1 (iii), we have

Df (Pε||Pθ̄) ≥
f ′′(1)

2
TV(Pε, Pθ̄)

2.

The scaling constant, inft∈(0,1] f
′′(t)/2, in Lemma 27 reduces to f ′′(1)/2, because f ′′ is

non-increasing by Assumption 1 (iii).
(Step 3) Combining the lower and upper bounds in (31), we have

d(θ̄, θ∗) ≤
√

2(f ′′(1))−1∆2(ε, f) + ∆1(ε) = Errf0(ε),

where Errf0(ε) =
√
−2(f ′′(1))−1f ′(1− ε0)ε + ε. The location result then follows from

Proposition 29 provided that Errf0(ε) ≤ a for a constant a ∈ [0, 1/2). The variance matrix
result follows if Errf0(ε) ≤ a/(1 + S1,a).

(ii) For the TV minimizer θ̄, Steps 1 and 2 in (i) can be combined to directly obtain an
upper bound on d(θ̄, θ∗) as follows:

d(θ̄, θ∗) ≤ TV(Pθ̄, Pε) + TV(Pε, Pθ∗) (34)

≤ 2TV(Pε, Pθ∗) (35)

≤ 2ε. (36)

Line (34) is due to the triangle inequality. Line (35) follows because TV(Pθ̄, Pε) ≤
TV(Pθ∗ , Pε) = TV(Pε, Pθ∗) by the definition of θ̄ and the symmetry of TV. Line (36)
follows because TV(Pε, Pθ∗) ≤ εTV(PQ, Pθ∗) ≤ ε as in (32).

Given the upper bound on d(θ̄, θ∗), the location result then follows from Proposition 29
provided that Errh0(ε) ≤ a for a constant a ∈ [0, 1/2). The variance matrix result follows
if Errh0(ε) ≤ a/(1 + S1,a).

7.2 Proof of Theorem 15

We state and prove the following result which implies Theorem 15. See Appendix C.4 for
details about how Proposition 21 implies Theorem 15. For δ ∈ (0, 1/7), define

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
,

λ12 = 2Crad4

√
log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

where Crad4 = Csg6Crad3, depending on universal constants Csg6 and Crad3 in Lemmas 70
and Corollary 82 in Appendix E. Denote

Errh1(n, p, δ, ε) = 3ε+ 2
√
ε/(nδ) + λ12 + λ1,

where λ1 is allowed to depend on λ11 in the following result.
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Proposition 21 Assume that ‖Σ∗‖max ≤M1 and ε ≤ 1/5. Let θ̂ = (µ̂, Σ̂) be a solution to

(20) with λ1 ≥ Csp13M11λ11 where M11 = M
1/2
1 (M

1/2
1 + 2

√
2π) and Csp13 = (5/3)(Csp11 ∨

Csp12), depending on universal constants Csp11 and Csp12 in Lemma 30 in Appendix C. If√
ε(1− ε)/(nδ) ≤ 1/5 and Errh1(n, p, δ, ε) ≤ a for a constant a ∈ (0, 1/2), then the following

holds with probability at least 1− 7δ uniformly over contamination distribution Q,

‖µ̂− µ∗‖∞≤S4,aErrh1(n, p, δ, ε),

‖Σ̂− Σ∗‖max≤S8,aErrh1(n, p, δ, ε),

where S4,a = (1 +
√

2M1 log 2
1−2a)/a and S8,a = 2M

1/2
1 S6,a + S7(1 + S4,a + S6,a) with

S6,a = S5(1 + S4,a/2), S5 = 2
√

2π(1 − e−2/M1)−1, and S7 = 4{( 1√
2πM1

e−1/(8M1)) ∨ (1 −
2e−1/(8M1))}−2.

Remark 22 In Proposition 21 as well as Proposition 23 for Theorem 11, the dependency
of S4,a and S8,a on M1 can be made explicit as follows. For fixed a ∈ (0, 1/2), we have
by direct calculation that limM1→0 S4,a = 1/a and limM1→0 S8,a = 4 + 8

√
2π + (4

√
2π +

4)/a. Moreover, limM1→∞ S4,a/M1
1/2 =

√
2 log(2/(1− 2a))/a and limM1→∞ S8,a/M

5/2
1 =

8π
√

log(2/(1− 2a))/a, that is, S4,a = O(M
1/2
1 ) and S8,a = O(M

5/2
1 ) as M1 → ∞. In

addition, λ1 in Errh1(n, p, δ, ε) can be set to linearly depend on M1. The overall dependency
of our error rates on M1 may potentially be improved. As mentioned in Section 5.1, our
current analysis does not incorporate the scale transformation of real data, which may cause
the sub-optimal dependency of S4,a and S8,a on M1.

Proof [Proof of Proposition 21] The main strategy of our proof is to show that the following
inequalities hold with high probabilities,

d(θ̂, θ∗)−∆12 ≤ max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≤ ∆11, (37)

where ∆11 and ∆12 are error terms, and d(θ∗, θ̂) is a moment matching term, which under
certain conditions delivers upper bounds, up to scaling constants, on the estimation errors
to be controlled, ‖µ̂− µ∗‖∞ and ‖Σ̂− Σ∗‖max.

(Step 1) For upper bound in (37), we show that with probability at least 1− 5δ,

max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≤ max

γ∈Γ
{KHG(Pn, Pθ∗ ;hγ,µ∗)− λ1 pen1(γ)} (38)

≤ max
γ∈Γ

{
∆11 + pen1(γ)∆̃11 − λ1 pen1(γ)

}
. (39)

Inequality (38) follows from the definition of θ̂. Inequality (39) follows from Proposition 52:
it holds with probability at least 1− 7δ that for any γ ∈ Γ,

KHG(Pn, Pθ∗ ;hγ,µ∗) ≤ ∆11 + pen1(γ)∆̃11,
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where ∆11 = 2(ε +
√
ε/(nδ)), ∆̃11 = Csp13M11λ11. From (38)–(39), the upper bound in

(37) holds with probability at least 1− 5δ, provided that the tuning parameter λ1 is chosen
such that λ1 ≥ ∆̃11.

(Step 2) For the lower bound in (37), we show that with probability at least 1− 2δ,

max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≥ max

γ∈Γ0

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
(40)

≥ max
γ∈Γ0

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
− ∆̃12 − λ1. (41)

Inequality (40) holds provided that Γ0 is a subset of Γ.

Take Γ0 = {γ ∈ Γrp : γ0 = 0, pen1(γ) = 1}, where Γrp is the subset of Γ associated
with pairwise ramp functions as in the proof of Theorem 11. Inequality (41) follows from
Proposition 53 because hγ,µ̂(x) ∈ [−1, 1] for γ ∈ Γ0, and hence the hinge loss reduces to a
moment matching term: it holds with probability at least 1− 2δ that for any γ ∈ Γ0,

KHG(Pn, Pθ̂;hγ,µ̂) ≥
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ∆̃12

where ∆̃12 = ε + λ12. From (40)–(41), the lower bound in (37) holds with probability at
least 1− 2δ, where ∆12 = ∆̃12 + λ1 and d(θ̂, θ∗) = maxγ∈Γ0{EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)}.

(Step 3) We complete the proof by relating the moment matching term d(θ̂, θ∗) to the
estimation error between θ̂ and θ∗. First, combining the lower and upper bounds in (37)
shows that with probability at least 1− 9δ,

max
γ∈Γrp,pen1(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ Errh1(n, p, δ, ε). (42)

where

Errh1(n, p, δ, ε) = 3ε+ 2
√
ε/(nδ) + λ12 + λ1.

The desired result then follows from Proposition 42: provided Errh1(n, p, δ, ε) ≤ a, inequality
(42) implies that

‖µ̂− µ∗‖∞ ≤ S4,aErrh1(n, p, δ, ε), ‖Σ̂− Σ∗‖max ≤ S8,aErrh1(n, p, δ, ε).
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Appendix A. Additional information for simulation studies

A.1 Implementation of proposed methods

The detailed algorithm to implement our logit f -GANs and hinge GAN is shown as Algo-
rithm 3. In our experiments, the default learning rates (αd, αg) are set to be (0.002, 0.01)
and increase fivefold when p = 25 or n = 5000, in the lower end of the range of p from 25
to 100 and n from 5000 to 50000 studied. The training steps (sd, sg) for the discriminator
and the generator are (20, 4), the mini-batch size is fixed to be 1000, and the total number

Algorithm 3: Penalized logit f -GAN or hinge GAN (in detail)

Require
1. A penalized GAN objective function K(θ, γ;λ) as in (25) for logit f -GAN or
with Kf replaced by KHG for hinge GAN.

2. Learning rates (αd, αg) for the discriminator and the generator;
3. Learning rate decay parameters (d, r) for the generator;
4. Numbers of training steps (sd, sg) for the discriminator and generator;
5. Base penalty level λ0 so that λ1 = λ0

√
log(p)/n, λ2 = λ0

√
p/n, and

λ3 = λ0

√
p2/n.

6. Mini-batch size m and number of epochs T .
Initialization
1. Initialize µ0 by the median of X. Initialize discriminator intercept γ0 by 0.01.

2. Initialize Σ
1/2
0 and the discriminator parameters (γ1, γ2) randomly by Xavier

uniform (Glorot and Bengio, 2010).
for t = 1 . . . T do

for u = 1 . . . T/m do
Draw mini-batch (x1, . . . , xm) from real data without replacement;
for s = 1 . . . sd do

Generate (z1, . . . , zm) from N(0, I) and the fake data µt−1 + Σ
1/2
t−1zi,

i = 1, . . . ,m;
gγ ← ∇γK(θt−1, γ;λ); gγ ← gγ/‖gγ‖2;
Update γt with gradient gγ using the Adam algorithm (Kingma and Ba,
2015) with learning rate αd.

end
for s = 1 . . . sg do

Generate (z1, . . . , zm) from N(0, I) and the fake data µt−1 + Σ
1/2
t−1zi,

i = 1, . . . ,m;
gθ ← ∇θK(θ, γt;λ); gθ ← gθ/‖gθ‖2;
Update θt with gradient gθ using the Adam algorithm with learning rate
αg.

end
Decaying the generator learning rate: αg ← rαg after every d epochs.

end

end
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of training epochs is set to be T = 150× (50000/n) depending on n. We also decrease the
learning rate of the generator as αg ← rαg with r = 0.5 after each 10× (50000/n) epochs.
This choice leads to stable convergence while keeping the running time relatively short.

For initialization of the variance matrix, we use a novel approach by treating the en-

tries of Σ
1/2
0 as network weights and assigning uniform random numbers according to the

Xavier uniform initialization in the neural network literature (Glorot and Bengio, 2010).
This initialization scheme along with the Adam optimizer helps the generator accumulate
momentum and overcome local minima issues. If initialized with Kendall’s τ and MAD,
it is possible that the generator may start near a generator local minimum and eventually
become stuck there.

For implementation of rKL logit f -GAN, we modify the un-penalized objective

KrKL(P∗, Pθ;h) = 1− EP∗e
−h(x) − EPθh(x),

to
1− EP∗e

−h(x) + max(−EPθh(x), 9).

This modification caps the un-penalized rKL logit f -GAN objective by 10 and helps stabi-
lize the initial steps of training where the fake data and real data, especially in the case of
Cauchy contamination, can be separable. Despite the presence of an exponential term in
the objective, the rKL logit f -GAN remains numerically stable because the trained discrim-
inator h usually produces positive values on real data and the expectation of exp(−h(x))
over real data is then upper bounded by 1. During the early training steps when the dis-
criminator is relatively weak, any real data point x in the mini-batch that causes a much
negative value h(x) and an overflow of exp(−h(x)) is dropped.

A.2 Tuning penalty levels

We conducted tuning experiments to identify base penalty levels λ0 which are expected
to work reasonably well in various settings for our logit f -GANs and hinge GAN, where
the dependency on (p, n) is already absorbed in the penalty parameters λ1, λ2, λ3. In the
tuning experiments, we tried two contamination proportions ε and two choices of contam-
ination distributions Q as described in Section 6.2. Results are collected from 20 repeated
experiments on a grid of penalty levels for each method.

As shown in Figure 4, although the average estimation error varies as the contamination
setting changes, there is a consistent and stable range of the penalty level λ0 which leads
to approximately the best performance for each method with L1 penalty used. For L2

penalized methods, although the pattern does not directly suggest a best choice of λ0 in
the range studied, the relative levels of estimation errors are less sensitive to the choice of
λ0. Hence we decide to use the same λ0 for both L1 and L2 penalties. We manually pick
λ0 = 0.1 for the hinge GAN, λ0 = 0.025 for the JS logit f -GAN, and λ0 = 0.3 for the rKL
logit f -GAN, which are then fixed in all subsequent simulations.
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Figure 4: Average estimation errors against penalty levels. In this setting p = 100,
n = 10000, ε ∈ {0.1, 0.2}, and contamination distribution Q is either
(A) Cauchy(2.25c, (1/3)Ip) or (B) Cauchy(51p, 5Ip). Penalty levels for the
hinge GAN are {0, 0.1, 0.2, 0.3, 0.4}, penalty levels for the JS logit f -GAN
are {0, 0.025, 0.05, 0.075, 0.1}, and penalty levels for the rKL logit f -GAN are
{0.1, 0.3, 0.5, 0.7, 0.9}.
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n hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

5000 0.0762 (0.0066) 0.0661 (0.0057) 0.0713 (0.0054) 0.1123 (0.0229) 0.8251 (0.0225) 0.8801 (0.0145) 0.7016 (0.0207) 1.8392 (0.0616)
10000 0.0603 (0.0080) 0.0491 (0.0059) 0.0535 (0.0065) 0.3602 (0.5281) 0.7915 (0.0182) 0.8441 (0.0111) 0.6807 (0.0165) 1.8287 (0.0588)
20000 0.0394 (0.0047) 0.0341 (0.0033) 0.0343 (0.0034) 0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)
50000 0.0249 (0.0024) 0.0217 (0.0031) 0.0220 (0.0029) 0.0257 (0.0038) 0.7283 (0.0078) 0.8128 (0.0050) 0.6412 (0.0063) 1.7916 (0.0303)

Q ∼ Cauchy(51p, 5Ip)
5000 0.0845 (0.0061) 0.0683 (0.0062) 0.0857 (0.0068) 0.1053 (0.0172) 0.8826 (0.0264) 1.3862 (0.0241) 0.1114 (0.0094) 0.6212 (0.0214)
10000 0.0617 (0.0079) 0.0507 (0.0058) 0.0616 (0.0092) 0.0642 (0.0059) 0.8482 (0.0221) 1.3416 (0.0168) 0.0926 (0.0086) 0.6049 (0.0190)
20000 0.0433 (0.0045) 0.0349 (0.0033) 0.0385 (0.0043) 0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)
50000 0.0270 (0.0023) 0.0216 (0.0024) 0.0228 (0.0028) 0.0280 (0.0038) 0.7774 (0.0067) 1.2895 (0.0070) 0.0697 (0.0027) 0.5746 (0.0106)

Table 5: Comparison of existing methods and proposed L1 penalized GAN methods (p =
100, ε = 0.2, and varying n from 5000 to 50000). Estimation error of the variance
matrix is reported in the maximum norm ‖ · ‖max.

n hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

5000 1.6767 (0.0369) 1.7287 (0.0363) 1.7815 (0.0412) 2.2490 (0.1139) 57.3156 (0.8202) 57.9363 (0.6875) 59.4896 (1.8053) 166.1099 (6.1982)
10000 1.1616 (0.0194) 1.1656 (0.0210) 1.1618 (0.0212) 27.4313 (50.7247) 57.0247 (0.6821) 58.1719 (0.5326) 58.8850 (1.2543) 166.5466 (5.6400)
20000 0.8230 (0.0127) 0.8257 (0.0108) 0.8324 (0.0139) 1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)
50000 0.5164 (0.0092) 0.5165 (0.0085) 0.5304 (0.0086) 0.6117 (0.0172) 56.8829 (0.2575) 57.9339 (0.1991) 57.2158 (0.5557) 165.1025 (3.0179)

Q ∼ Cauchy(51p, 5Ip)
5000 1.6531 (0.0329) 1.6603 (0.034) 1.6644 (0.0317) 2.2775 (0.1051) 53.3447 (1.0113) 65.3052 (1.2984) 1.8307 (0.0332) 55.3160 (2.1087)
10000 1.1624 (0.0201) 1.1686 (0.0203) 1.1767 (0.0213) 1.5363 (0.0371) 53.0505 (0.8515) 65.7633 (0.9984) 1.3728 (0.0393) 55.4997 (1.8886)
20000 0.8252 (0.0114) 0.8261 (0.0129) 0.8376 (0.0125) 1.0623 (0.0627) 52.9465 (0.5247) 65.1641 (0.5581) 1.0715 (0.0214) 54.9783 (1.2116)
50000 0.5162 (0.0087) 0.5171 (0.0089) 0.5330 (0.0088) 0.6380 (0.0651) 52.8773 (0.2932) 65.4056 (0.3857) 0.8515 (0.0126) 54.9977 (1.0236)

Table 6: Comparison of existing methods and proposed L2 penalized GAN methods (p =
100, ε = 0.2, and varying n from 5000 to 50000). Estimation error of the variance
matrix is reported in the Frobenius norm ‖ · ‖F.

A.3 Error dependency on n and p

Tables 5–6 show the performance of various methods depending on sample size n for the
two choices of contamination in Section 6.2. We fix the dimension p = 100 and ε = 0.2 and
increase n from 5000 to 50000. Tables 7–8 show how the performance of methods depending
on sample size p for the two choices of contamination. We fix ε = 0.2 and n = 20000 and
increase p from 25 to 100. Estimation errors are measured in the maximum norm and the
Frobenius norm.

For all methods considered, the estimation errors decrease as n increases except for JS-
GAN in the first contamination setting (location 2.25c). As can be seen in Tables 5-6, when
n = 10000, we observe that 5 out of 20 runs appear to fail. In this setting, most outliers sit
close to the uncontaminated data while a small number of outliers stretch to an extreme
range. This makes it difficult for the discriminator to recognize both patterns and JS-GAN
to perform satisfactorily, given that the discriminator objective surface is non-concave. The
JS-GAN may require further tuning in this setting, but that is out of our scope.

It is also worth noting that with ε = 20%, the estimation errors of the coordinate-wise
robust estimators (Kendall’s τ and Spearman’s ρ) show minimal decrease as n increases.
This is because the error caused by the outliers tends to dominate the sampling variation,
so that a 10-fold increase in n would not much reduce the overall error.
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p hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

25 0.0452 (0.0052) 0.0270 (0.0035) 0.0271 (0.0034) 0.0406 (0.0092) 0.7429 (0.0126) 0.8184 (0.0127) 0.1632 (0.1263) 1.2278 (0.0210)
50 0.0355 (0.0055) 0.0309 (0.0046) 0.0304 (0.0039) 0.0410 (0.0092) 0.7505 (0.0097) 0.8216 (0.0076) 0.6566 (0.0113) 1.5793 (0.0327)
100 0.0394 (0.0047) 0.0341 (0.0033) 0.0343 (0.0034) 0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)

Q ∼ Cauchy(51p, 5Ip)
25 0.0531 (0.0057) 0.0290 (0.0034) 0.0364 (0.0044) 0.0413 (0.0125) 0.7968 (0.0130) 1.2938 (0.0136) 0.1348 (0.0076) 0.4320 (0.0080)
50 0.0423 (0.0066) 0.0308 (0.0034) 0.0350 (0.0043) 0.0399 (0.0051) 0.8040 (0.0092) 1.3053 (0.0177) 0.1021 (0.0068) 0.5190 (0.0120)
100 0.0433 (0.0045) 0.0349 (0.0033) 0.0385 (0.0043) 0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)

Table 7: Comparison of existing methods and proposed L1 penalized GAN methods (n =
20000, ε = 0.2, and varying p from 25 to 100). Estimation error of the variance
matrix is reported in the maximum norm ‖ · ‖max.

p hinge GAN JS logit f -GAN rKL logit f -GAN GYZ JS-GAN Kendall MAD Spearman Qn MCD Tyler M

Q ∼ Cauchy
(
2.25c, 1

3Ip
)

25 0.2257 (0.0123) 0.2015 (0.0143) 0.2078 (0.0132) 0.2708 (0.0340) 14.2615 (0.1157) 14.6782 (0.0907) 1.4760 (3.2881) 26.4004 (0.4716)
50 0.4049 (0.0102) 0.4069 (0.0106) 0.4189 (0.0116) 0.4969 (0.0314) 28.4992 (0.2994) 29.1559 (0.1745) 29.1963 (0.4268) 70.8530 (1.5583)
100 0.8230 (0.0127) 0.8257 (0.0108) 0.8324 (0.0139) 1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)

Q ∼ Cauchy(51p, 5Ip)
25 0.2629 (0.0269) 0.2337 (0.0236) 0.2379 (0.0187) 0.2668 (0.0283) 13.4870 (0.1570) 17.2077 (0.1721) 0.7394 (0.0259) 9.7713 (0.1783)
50 0.4195 (0.0123) 0.4135 (0.0108) 0.4335 (0.0146) 0.4954 (0.0224) 26.6736 (0.3348) 33.3405 (0.3435) 0.8040 (0.0282) 24.1314 (0.5441)
100 0.8252 (0.0114) 0.8261 (0.0129) 0.8376 (0.0125) 1.0623 (0.0627) 52.9465 (0.5247) 65.1641 (0.5581) 1.0715 (0.0214) 54.9783 (1.2116)

Table 8: Comparison of existing methods and proposed L2 penalized GAN methods (n =
20000, ε = 0.2, and varying p from 25 to 100). Estimation error of the variance
matrix is reported in the Frobenius norm ‖ · ‖F.

As p increases, the estimation errors seem to be affected to a lesser extent when measured
in the maximum norm. This is expected because an error rate

√
log(p)/n (ε term aside) has

been established for our three L1 penalized methods as well as Kendall’s τ and Spearman’s
ρ (Loh and Tan, 2018). When measured in the Frobenius norm, the estimation errors go
up as p increases, which is also expected.

In summary, our methods demonstrate remarkable consistency in handling various com-
binations of (p, n) for different types of contaminations. In contrast, the MCD and the two
coordinate-wise robust estimators produce significantly different results when the contami-
nation pattern changes. Although JS-GAN (Gao et al., 2020) achieves outstanding results
in some cases, there are other cases where its performance is noticeably worse and less stable
than our GAN methods with easy-to-train spline discriminators.

A.4 Illustration with the second contamination

Figure 5 shows the 95% Gaussian ellipses estimated for two selected coordinates, similarly as
in Figure 1 but with two samples of size 20000 from a 100-dimensional Huber’s contaminated
Gaussian distributions based on the second contamination Q in Section 6.2. Comparison
of the methods studied is qualitatively similar to that found in Figure 1. For completeness,
the untruncated version of Figure 1 or 5 is presented in Figure 6 or 7 respectively. In each
figure, only a random subsample of size 400 is included; otherwise the axes need to be of
an even wider range to show the entire sample.
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Figure 5: The estimated 95% Gaussian ellipses and observed marginal histograms for two
selected coordinates, from contaminated data based on the second Cauchy con-
tamination in Section 6.2 with ε = 5% (top) or 20% (bottom). The data points
are shown within the axis ranges (−4, 8); see Figure 7 for untruncated plots.
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Figure 6: The untruncated version of Figure 1. Only the true 95% Gaussian ellipses are
shown for two selected coordinates, from contaminated data based on the first
Cauchy contamination in Section 6.2 with ε = 5% (top) or 20% (bottom).
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Figure 7: The untruncated version of Figure 5. Only the true 95% Gaussian ellipses are
shown for two selected coordinates, from contaminated data based on the second
Cauchy contamination in Section 6.2 with ε = 5% (top) or 20% (bottom).
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Figure 8: Comparison between two types of contamination in the error dependency on
ε. Location error |µ̄ − µ∗| against contamination fraction ε from 0 to 0.001,
with Pθ∗ being N(0, 1). Figure (a): Non-overlapping contamination, Q being
Cauchy(5, 1/64); Figure (b): Overlapping contamination, Q being Cauchy(5, 5).
The squared Hellinger and reverse χ2 are denoted by H2 and rChi2 respectively.

A.5 Comparison of contamination settings

To provide further understanding of the worst-case contamination, we present in Figure 8
a comparison between two types of contamination for GANs at the population level, simi-
larly to Figure 2. One type (non-overlapping contamination) may represent the worst-case
contamination in terms of dependency on ε, where outliers do not overlap with the uncon-
taminated data. The errors from the robust f -divergence minimization exhibit square-root
dependency on ε, whereas those from the TV minimization exhibit linear dependency on ε.
The other type (overlapping contamination) is based on the second contamination used in
our simulation studies. The errors from robust f -divergence and TV minimization appear
to be linear in ε. Nevertheless, we also find that despite the worst-case dependency on
ε, training of GANs with non-overlapping contaminations is numerically much easier than
dealing with the two settings of overlapping contaminations in our simulation studies.

Appendix B. Main proofs of results

B.1 Proof of Theorem 11

We state and prove the following result which implies Theorem 11. For b > 0, define two
factors R2,b = sup|u|≤b

d
duf

′(eu) and R3,b = R31,b+R32,b with R31,b = sup|u|≤b
d2

du2 {−f ′(eu)}
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and R32,b = sup|u|≤b
d2

du2 f
#(eu). For δ ∈ (0, 1), define

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
,

λ12 = Crad4

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

where Crad4 = Csg6Crad3, depending on universal constants Csg6 and Crad3 in Lemmas 70
and Corollary 82 in Appendix E. Denote

Errf1(n, p, δ, ε) = (f ′′(1))−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))

− f ′(e−b1)
√
ε+

1

2
R3,b1(

√
ε+

√
1/n) +R2,b1λ12 + λ1

}
,

where b1 =
√
ε +

√
1/n. Note that R2,b, R3,b are bounded provided that b is bounded,

because f is three-times continuously differentiable as required in Assumption 2.

Proposition 23 Assume that ‖Σ∗‖max ≤ M1, and f satisfies Assumptions 1–2. Let θ̂ =

(µ̂, Σ̂) be a solution to (17) with λ1 ≥ Csp13R1M11λ11, where M11 = M
1/2
1 (M

1/2
1 + 2

√
2π)

and Csp13 = (5/3)(Csp11 ∨ Csp12), depending on universal constants Csp11 and Csp12 in
Lemma 30 in Appendix C. If ε ≤ 1/5,

√
ε(1− ε)/(nδ) ≤ 1/5, and Errf1(n, p, δ, ε) ≤ a for a

constant a ∈ (0, 1/2), then we have that with probability at least 1− 7δ,

‖µ̂− µ∗‖∞ ≤ S4,aErrf1(n, p, δ, ε),

‖Σ̂− Σ∗‖max ≤ S8,aErrf1(n, p, δ, ε),

where S4,a = (1 +
√

2M1 log 2
1−2a)/a and S8,a = 2M

1/2
1 S6,a + S7(1 + S4,a + S6,a) with

S6,a = S5(1 + S4,a/2), S5 = 2
√

2π(1 − e−2/M1)−1, and S7 = 4{( 1√
2πM1

e−1/(8M1)) ∨ (1 −
2e−1/(8M1))}−2.

Proof [Proof of Proposition 23]
The main strategy of our proof is to show that the following inequalities hold with high

probabilities,

d(θ̂, θ∗)−∆12 ≤ max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≤ ∆11, (43)

where ∆11 and ∆12 are error terms, and d(θ∗, θ̂) is a moment matching term, which under
certain conditions delivers upper bounds, up to scaling constants, on the estimation errors
to be controlled, ‖µ̂− µ∗‖∞ and ‖Σ̂− Σ∗‖max.

(Step 1) For the upper bound in (43), we show that with probability at least 1− 5δ,

max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≤ max

γ∈Γ
{Kf (Pn, Pθ∗ ;hγ,µ∗)− λ1 pen1(γ)} (44)

≤ max
γ∈Γ

{
∆11 + pen1(γ)∆̃11 − λ1 pen1(γ)

}
. (45)
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Inequality (44) follows from the definition of θ̂. Inequality (45) follows from Proposition 33:
it holds with probability at least 1− 5δ that for any γ ∈ Γ,

Kf (Pn, Pθ∗ ;hγ,µ∗) ≤ ∆11 + pen1(γ)∆̃11,

where ∆11 = −f ′(3/5)(ε+
√
ε/(nδ)), ∆̃11 = Csp13R1M11λ11, and

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
.

Note that λ11 is the same as in the proof of Theorem 15, and the above ∆̃11 differs from
∆̃11 in the proof of Theorem 15 only in the factor R1. From (44)–(45), the upper bound in
(43) holds with probability at least 1− 5δ, provided that the tuning parameter λ1 is chosen
such that λ1 ≥ ∆̃11.

(Step 2) For the lower bound in (43), we show that with probability at least 1− 2δ,

max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
≥ max

γ∈Γ0

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ1 pen1(γ)

}
(46)

≥ max
γ∈Γ0

f ′′(1)
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ∆̃12 − λ1b1. (47)

Inequality (46) holds provided that Γ0 is a subset of Γ. As a subset of the pairwise spline
class Hsp, define a class of pairwise ramp functions, Hrp, such that each function in Hrp

can be expressed as, for x = (x1, . . . , xp)
T ∈ Rp,

hrp,β,c(x) = β0 +

p∑
j=1

β1j ramp(xj − cj) +
∑

1≤i 6=j≤p
β2,ij ramp(xi)ramp(xj),

where ramp(t) = 1
2(t + 1)+ − 1

2(t − 1)+ for t ∈ R, c = (c1, . . . , cp)
T with cj ∈ {0, 1}, and

β = (β0, β
T
1 , β

T
2 )T with β1 = (β1j : j = 1, . . . , p)T and β2 = (β2,ij : 1 ≤ i 6= j ≤ p)T. For

symmetry as in γ2, assume that the coefficients in β2 are symmetric, β2,ij = β2,ji for any
i 6= j. By the definition of ramp(·), each function hrp,β,c(x) can be represented as hγ(x) in
the spline class Hsp, where β and γ satisfy β0 = γ0, ‖β1‖1 = ‖γ1‖1, and ‖β2‖1 = ‖γ2‖1.
Incidentally, this relationship also holds when symmetry is not imposed in the coefficients
in γ2 or in β2. Denote as Γrp the subset of Γ such that Hrp = {hγ(x) : γ ∈ Γrp}.

Take Γ0 = {γ ∈ Γrp : γ0 = 0,pen1(γ) = b1} for some fixed b1 > 0. Inequality (47)
follows from Proposition 37: it holds with probability at least 1− 2δ that for any γ ∈ Γ0,

Kf (Pn, Pθ̂;hγ,µ̂) ≥ f ′′(1)
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ∆̃12,

where ∆̃12 = −f ′(e−b1)ε+ 1
2b

2
1R3,b1 + b1R2,b1λ12, and

λ12 = Crad4

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
.
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Note that λ12 is the same as in the proof of Theorem 15. From (46)–(47), the lower bound
in (43) holds with probability at least 1 − 2δ, where ∆12 = ∆̃12 + λ1b1 and d(θ̂, θ∗) =
f ′′(1) maxγ∈Γ0{EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)}.

(Step 3) We complete the proof by choosing appropriate b1 and relating the moment
matching term d(θ̂, θ∗) to the estimation error between θ̂ and θ∗. First, due to the linearity
of hγ,µ̂ in γ, combining the lower and upper bounds in (43) shows that with probability at
least 1− 7δ,

f ′′(1)b1 max
γ∈Γrp,pen1(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ −f ′(3/5)(ε+

√
ε/(nδ))− f ′(e−b1)ε+

1

2
b21R3,b1 + b1R2,b1λ12 + λ1b1.

Taking b1 =
√
ε+ 1/

√
n in the preceding display and rearranging yields

max
γ∈Γrp,pen1(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ Errf1(n, p, δ, ε), (48)

where

Errf1(n, p, δ, ε) = (f ′′(1))−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))

− f ′(e−b1)
√
ε+

1

2
R3,b1(

√
ε+ 1/

√
n) +R2,b1λ12 + λ1

}
.

The desired result then follows from Proposition 42: provided Errf1(n, p, δ, ε) ≤ a, inequality
(48) implies that

‖µ̂− µ∗‖∞ ≤ S4,aErrf1(n, p, δ, ε), ‖Σ̂− Σ∗‖max ≤ S8,aErrf1(n, p, δ, ε).

B.2 Proof of Theorem 12

We state and prove the following result which implies Theorem 12. For b > 0, define
R4,b = inf |u|≤b

d
duf

#(eu), in addition to R2,b and R3,b as in Proposition 23. For δ ∈ (0, 1),
define

λ21 =

√
5p+ log(δ−1)

n
, λ22 = Crad5

√
16p

n
+

√
2p log(δ−1)

n
,

λ31 = λ21 +
5p+ log(δ−1)

n
, λ32 = Crad5

√
6(p− 1)

n
+

√
(p− 1) log(δ−1)

n
.

where Crad5 = Csg,12Crad3, depending on universal constants Csg,12 and Crad3 in Lemmas 67
and Corollary 82 in Appendix E. Denote

Errf2(n, p, δ, ε) = (
√

2R
4,b†2

)−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))− f ′(e−b

†
2)
√
ε

+ 4C2
sg,12M2R3,b†2

(
√
ε+

√
1/(np)) +R

2,b†2
λ22 + λ2

}
,

Errf3(n, p, δ, ε) = (2R
4,2b†3

)−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))− f ′(e−2b†3)

√
ε

+ (80C2
sg,12M2)R

3,2b†3
(
√
ε+

√
1/(np)) +R

2,b†3
λ32 + λ3/

√
p
}
,
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where b2 =
√
ε +

√
1/(np), b†2 = b2

√
2p, b3 =

√
ε/p +

√
1/(np2), and b†3 = b2

√
p(p− 1).

Note that by the strict convexity and monotonicity of f as required in Assumption 1–2, we
have that

R4,b = inf
|u|≤b

d

du
f#(eu) = inf

|u|≤b

d

du

{
−f∗(f ′(eu))

}
is bounded away from zero provided that b is bounded.

Proposition 24 Assume that ‖Σ∗‖op ≤ M2, and f satisfies Assumptions 1–2. Let θ̂ =
(µ̂, Σ̂) be a solution to (19) with

λ2 ≥ (5/3)Csp21M
1/2
2 R1λ21, λ3/

√
p ≥ (25

√
5/3)Csp22M21R1λ31,

where M21 = M
1/2
2 (M

1/2
2 + 2

√
2π), Csp21 =

√
2Csg7Csg5, and Csp22 =

√
2/πCsp21 + Csg8,

depending on universal constants Csg5, Csg7, and Csg8 in Lemmas 69, 71, and 72 in Appendix
E. If ε ≤ 1/5,

√
ε(1− ε)/(nδ) ≤ 1/5, and Errf2(n, p, δ, ε) ≤ a for a constant a ∈ (0, 1/2),

then we have that with probability at least 1− 8δ,

‖µ̂− µ∗‖2 ≤ S4,aErrf2(n, p, δ, ε),

p−1/2‖Σ̂− Σ∗‖F ≤ S9,aErrf2(n, p, δ, ε) + S7Errf3(n, p, δ, ε),

where S9,a = 2M
1/2
2 S6,a +

√
2S7(S4,a + S6,a) and (S4,a, S6,a, S7) are defined as in Proposi-

tion 23 except with M1 replaced by M2 throughout.

Remark 25 In Proposition 24 as well as Proposition 26 for Theorem 16, the dependency
of S4,a, S7, and S9,a on M2 can be made explicit as follows. For fixed a ∈ (0, 1/2), we
have by direct calculation that limM2→0 S4,a = 1/a, limM2→0 S7 = 4, and limM2→0 S9,a =
16
√
π + (8

√
π + 4

√
2)/a. Moreover, limM2→∞ S4,a/M2

1/2 =
√

2 log(2/(1− 2a))/a,

limM2→∞ S7/M2 = 8π and limM2→∞ S9,a/M
5/2
1 = 8π

√
log(2/(1− 2a))/a, that is, S4,a =

O(M
1/2
2 ), S7 = O(M2), and S9,a = O(M

5/2
2 ) as M2 →∞. In addition, λ2 in Errf2(n, p, δ, ε)

can be set to linearly depend on M
1/2
2 , and λ3 in Errf3(n, p, δ, ε) can be set to linearly depend

on M2. The overall dependency of our error rates on M2 may potentially be improved, for
a similar reason as discussed in Remark 22.

Proof [Proof of Proposition 24] The main strategy of our proof is to show that the following
inequalities hold with high probabilities,

d(θ̂, θ∗)−∆22 ≤ max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≤ ∆21, (49)

where ∆21 and ∆22 are error terms, and d(θ̂, θ∗) is a moment matching term, similarly as
in the proof of Theorem 11. However, additional considerations are involved.

We split the proof into several steps. In Step 1, we derive the upper bound in (49)
by exploiting two tuning parameters λ2 and λ3 associated with γ1 and γ2 respectively. In
Steps 2 and 3, we derive the first version of the lower bound in (49) and then deduce upper
bounds on ‖µ̂−µ∗‖2 and ‖σ̂−σ∗‖2, where σ̂ or σ∗ is the vector of standard deviations from
Σ̂ or Σ∗ respectively. In Steps 4 and 5, we derive the second version of the lower bound in
(49) and then deduce an upper bound on ‖Σ̂− Σ∗‖F.
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(Step 1) For the upper bound in (49), we show that with probability at least 1− 4δ,

max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≤ max

γ∈Γ
{Kf (Pn, Pθ∗ ;hγ,µ∗)− λ2 pen2(γ1)− λ3 pen2(γ2)} (50)

≤ max
γ∈Γ

{
∆21 + pen2(γ1)∆̃21 + pen2(γ2)∆̃31 − λ2 pen2(γ1)− λ3 pen2(γ2)

}
. (51)

Inequality (50) follows from the definition of θ̂. Inequality (51) follows from Proposition 44:
it holds with probability at least 1− 4δ that for any γ ∈ Γ1,

Kf (Pn, Pθ∗ ;hγ,µ∗) ≤ ∆21 + pen2(γ1)∆̃21 + pen2(γ2)
√
p∆̃31,

where

∆21 = −f ′(3/5)(ε+
√
ε/(nδ)), ∆̃21 = (5/3)Csp21M

1/2
2 R1λ21,

∆̃31 = (25
√

5/3)Csp22M21R1λ31,

and

λ21 =

√
5p+ log(δ−1)

n
, λ31 = λ21 +

5p+ log(δ−1)

n
.

From (50)–(51), the upper bound in (49) holds with probability at least 1 − 4δ, provided
that the tuning parameters λ2 and λ3 are chosen such that λ2 ≥ ∆̃21 and λ3 ≥

√
p∆̃31.

(Step 2) For the first version of the lower bound in (49), we show that with probability
at least 1− 2δ,

max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≥ max

γ∈Γ1

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)

}
(52)

≥ max
γ∈Γ10

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)

}
(53)

≥ max
γ∈Γ10

R
4,b†2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
− ∆̃22 − λ2b2, (54)

where Γ1 = {(γ0, γ
T
1 , γ

T
2 )T : γ2 = 0}. Inequality (52) follows because Γ1 is a subset of Γ such

that γ2 = 0 and hence pen2(γ2) = 0 for γ ∈ Γ1. Inequality (53) holds provided that Γ10 is
a subset of Γ1. As a subset of the main-effect spline class Hsp1, define a main-effect ramp
class, Hrp1, such that each function in Hrp1 can be expressed as, for x = (x1, . . . , xp)

T ∈ Rp,

hrp1,β,c(x) = β0 +

p∑
j=1

β1jramp(xj − cj),

where ramp(t) = 1
2(t+ 1)+− 1

2(t− 1)+ for t ∈ R, c = (c1, . . . , cp)
T with cj ∈ {0, 1}, and β =

(β0, β
T
1 )T with β1 = (β11, . . . , β1p)

T. Only the main-effect ramp functions are included, while
the interaction ramp functions are excluded, in hrp1,β,c(x). By the definition of ramp(·),
each function hrp1,β,c(x) can be represented as hγ(x) ∈ Hsp1 with γ = (γ0, γ

T
1 )T ∈ Γrp1,
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such that β and γ satisfy β0 = γ0 and ‖β1‖2 =
√

2‖γ1‖2. For example, for ramp(x1), the
associated norms are ‖β1‖2 = 1 and ‖γ1‖2 =

√
1/2. Denote as Γrp1 the subset of Γ1 such

that Hrp1 = {hγ(x) : γ ∈ Γrp1}.
Take Γ10 = {γ ∈ Γrp1 : pen2(γ) = b2,EPθ∗hγ,µ̂(x) = 0,EPθ̂hγ,µ̂(x) ≤ 0} for some fixed

b2 > 0. Inequality (54) follows from Proposition 47: it holds with probability at least 1−2δ
that for any γ ∈ Γ10,

Kf (Pn, Pθ̂;hγ,µ̂) ≥ R
4,b†2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
− ∆̃22,

where b†2 = b2
√

2p, ∆̃22 = −f ′(e−b
†
2)ε+ 4C2

sg,12M2b
2
2R3,b†2

+ b2R2,b†2
λ22, and

λ22 = Crad5

√
16p

n
+

√
2p log(δ−1)

n
.

From (53)–(54), the lower bound in (49) holds with probability at least 1 − 2δ, where
∆22 = ∆̃22 + λ2b2 and d(θ̂, θ∗) = R

4,b†2
{EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)}.

(Step 3) We deduce upper bounds on ‖µ̂−µ∗‖2 and ‖σ̂−σ∗‖2, by choosing appropriate b2
and relating the moment matching term d(θ̂, θ∗) to the estimation errors. First, combining
the upper bound in (49) from Step 1 and the lower bound from Step 2 shows that with
probability at least 1− 6δ,

R
4,b†2

b2 max
γ∈Γrp1,pen2(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ −f ′(3/5)(ε+

√
ε/(nδ))− f ′(e−b

†
2)ε+ 4C2

sg,12M2b
2
2R3,b†2

+ b2R2,b†2
λ22 + λ2b2.

Taking b2 =
√
ε+

√
1/(np) in the preceding display and rearranging yields

max
γ∈Γrp1,pen2(γ)=

√
1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ Errf2(n, p, δ, ε), (55)

where

Errf2(n, p, δ, ε) = (
√

2R
4,b†2

)−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))

− f ′(e−b
†
2)
√
ε+ 4C2

sg,12M2R3,b†2
(
√
ε+

√
1/(np)) +R

2,b†2
λ22 + λ2

}
.

The error bounds for (µ̂, σ̂) then follows from Proposition 48: provided Errf2(n, p, δ, ε) ≤ a,
inequality (55) implies that

‖µ̂− µ∗‖2 ≤ S4,aErrf2(n, p, δ, ε), (56)

‖σ̂ − σ∗‖2 ≤ S6,aErrf2(n, p, δ, ε). (57)
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(Step 4) For the second version of the lower bound in (49), we show that with probability
at least 1− 2δ,

max
γ∈Γ

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≥ max

γ∈Γ2

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ3 pen2(γ2)

}
(58)

≥ max
γ∈Γ20

{
Kf (Pn, Pθ̂;hγ,µ̂)− λ3 pen2(γ2)

}
(59)

≥ max
γ∈Γ20

f ′′(1)
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ∆̃32 − λ3b3, (60)

where Γ2 = {(γ0, γ
T
1 , γ

T
2 )T : γ1 = 0}. Inequality (58) follows because Γ2 is a subset of Γ such

that γ1 = 0 and hence pen2(γ1) = 0 for γ ∈ Γ2. Inequality (59) holds provided that Γ20 is
a subset of Γ2. As a subset of the interaction spline class Hsp2, define an interaction ramp
class, Hrp2, such that each function in Hrp2 can be expressed as, for x = (x1, . . . , xp)

T ∈ Rp,

hrp2,β(x) = β0 +
∑

1≤i 6=j≤p
β2,ijramp(xi)ramp(xj),

where ramp(t) = 1
2(t+ 1)+ − 1

2(t− 1)+ for t ∈ R, and β = (β0, β
T
2 )T with β2 = (β2,ij : 1 ≤

i 6= j ≤ p)T. In contrast with the function hrp1,β,c(x) in Hsp1, only the interaction ramp
functions are included, while the main-effect ramp functions are excluded, in hrp2,β(x). For
symmetry as in γ2, assume that the coefficients in β2 are symmetric, β2,ij = β2,ji for any
i 6= j. By the definition of ramp(·), each function hrp2,β(x) can be represented as hγ(x) ∈
Hsp2 with γ = (γ0, γ

T
2 )T ∈ Γrp2, such that β and γ satisfy β0 = γ0 and ‖β2‖2 = 2‖γ2‖2.

For example, for ramp(x1)ramp(x2), the associated norms are ‖β2‖2 = 1 and ‖γ2‖2 = 1/2.
Denote as Γrp2 the subset of Γ2 such that Hrp2 = {hγ(x) : γ ∈ Γrp2}.

Take Γ20 = {γ ∈ Γrp2 : pen2(γ) = b3,EPθ∗hγ,µ̂(x) = 0,EPθ̂hγ,µ̂(x) ≤ 0} for some fixed
b3 > 0. Inequality (60) follows from Proposition 49: it holds with probability at least 1−2δ
that for any γ ∈ Γ20,

Kf (Pn, Pθ̂;hγ,µ̂) ≥ R
4,2b†3

{
EPθ∗h(x)− EPθ̂h(x)

}
− ∆̃32,

where b†3 = b3
√
p(p− 1), ∆̃32 = −f ′(e−2b†3)ε+ (80C2

sg,12M2)pb23R3,2b†3
+
√
pb3R2,b†3

λ32, and

λ32 = Crad4

√
6(p− 1)

n
+

√
(p− 1) log(δ−1)

n
.

From (59)–(60), the lower bound in (49) holds with probability at least 1 − 2δ, where
∆22 = ∆̃32 + λ3b3 and d(θ̂, θ∗) = R

4,2b†3
maxγ∈Γ20{EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)}.

(Step 5) We deduce an upper bound on ‖Σ̂−Σ∗‖F, by choosing appropriate b3 and relat-
ing the moment matching term d(θ̂, θ∗) to the estimation error. First, combining the upper
bound in (49) from Step 1 and the lower bound from Step 4 shows that with probability
1− 6δ,

R
4,2b†3

b3 max
γ∈Γrp2,pen2(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ −f ′(3/5)(ε+

√
ε/(nδ))− f ′(e−2b†3)ε+ (80C2

sg,12M2)pb23R3,2b†3
+
√
pb3R2,b†3

λ32 + λ3b3.
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Taking b3 =
√
ε/p+

√
1/(np2) in the preceding display and rearranging yields

max
γ∈Γrp2,pen2(γ)=1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ √p Errf3(n, p, δ, ε), (61)

where

Errf3(n, p, δ, ε) = (2R
4,2b†3

)−1
{
− f ′(3/5)(

√
ε+

√
1/(nδ))

− f ′(e−2b†3)
√
ε+ (80C2

sg,12M2)R
3,2b†3

(
√
ε+

√
1/(np)) +R

2,b†3
λ32 + λ3/

√
p
}
.

The error bound for Σ̂ then follows from Proposition 50: inequality (61) together with the
error bounds (56)–(57) implies that

1
√
p
‖Σ̂− Σ∗‖F ≤ 2M

1/2
2 ‖σ̂ − σ∗‖2 + S7

{√
2∆µ̂,σ̂ + Errf3(n, p, δ, ε)

}
≤ S9,aErrf2(n, p, δ, ε) + S7Errf3(n, p, δ, ε),

where ∆µ̂,σ̂ = (‖µ̂− µ∗‖22 + ‖σ̂ − σ∗‖22)1/2 and S9,a = 2M
1/2
2 S6,a +

√
2S7(S4,a + S6,a).

B.3 Proof of Theorem 16

We state and prove the following result which implies Theorem 16. For δ ∈ (0, 1), define
(λ21, λ31, λ22, λ32) the same as in Sections B.1 and B.2. Denote

Errh2(n, p, δ, ε) = 3ε(2p)1/2 + 2
√

2pε/(nδ) + λ2 + λ22,

Errh3(n, p, δ, ε) = 3ε
√
p− 1 + 2

√
ε(p− 1)/(nδ) + λ32/2 + (25

√
5/6)Csp22M21λ31.

Proposition 26 Assume that ‖Σ∗‖op ≤ M2. Let θ̂ = (µ̂, Σ̂) be a solution to (21) with

λ3/
√
p ≥ (25

√
5/3)Csp22M21λ31 and λ2 ≥ (5/3)Csp21M

1/2
2 λ21, where M21, Csp21, and Csp22

are defined as in Proposition 24. If ε ≤ 1/5,
√
ε(1− ε)/(nδ) ≤ 1/5 and Errh2(n, p, δ, ε) ≤ a

for a constant a ∈ (0, 1/2), then we have that with probability at least 1− 8δ,

‖µ̂− µ∗‖2 ≤ S4,aErrh2(n, p, δ, ε),

p−1/2‖Σ̂− Σ∗‖F ≤ S9,aErrh2(n, p, δ, ε) + S7Errh3(n, p, δ, ε),

where (S4,a, S6,a, S7, S9,a) are defined as in Proposition 24.

Proof [Proof of Proposition 26]
The main strategy of our proof is to show that the following inequalities hold with high

probabilities,

d(θ̂, θ∗)−∆22 ≤ max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≤ ∆21, (62)

where ∆21 and ∆22 are error terms, and d(θ̂, θ∗) is a moment matching term, similarly as
in the proof of Theorem 15. However, additional considerations are involved.
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(Step 1) For the upper bound in (62), we show that with probability at least 1− 4δ,

max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≤ max

γ∈Γ
{KHG(Pn, Pθ∗ ;hγ,µ∗)− λ2 pen2(γ1)− λ3 pen2(γ2)} (63)

≤ max
γ∈Γ

{
∆21 + pen2(γ1)∆̃21 + pen2(γ2)∆̃31 − λ2 pen2(γ1)− λ3 pen2(γ2)

}
. (64)

Inequality (63) follows from the definition of θ̂. Inequality (64) follows from Proposition 54:
it holds with probability at least 1− 4δ that for any γ ∈ Γ1,

KHG(Pn, Pθ∗ ;hγ,µ∗) ≤ ∆21 + pen2(γ1)∆̃21 + pen2(γ2)
√
p∆̃31,

where

∆21 = 2(ε+
√
ε/(nδ)), ∆̃21 = (5/3)Csp21M

1/2
2 λ21, ∆̃31 = (25

√
5/3)Csp22M21λ31,

and λ21 and λ31 are the same as in the proof of Theorem 12. Note that ∆̃21 and ∆̃31

differ from those in the proof of Theorem 12 only in that R1 is removed. From (63)–(64),
the upper bound in (62) holds with probability at least 1 − 4δ, provided that the tuning
parameters λ2 and λ3 are chosen such that λ2 ≥ ∆̃21 and λ3 ≥

√
p∆̃31.

(Step 2) For the first version of the lower bound in (62), we show that with probability
at least 1− 2δ,

max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≥ max

γ∈Γ1

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)

}
(65)

≥ max
γ∈Γ10

{
KHG(Pn, Pθ̂;hγ,µ̂)

}
− λ2 (2p)−1/2 (66)

≥ max
γ∈Γ10

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
− ∆̃22 − λ2(2p)−1/2, (67)

where Γ1 = {(γ0, γ
T
1 , γ

T
2 )T : γ2 = 0}. Inequality (65) follows because Γ1 is defined as a subset

of Γ such that γ2 = 0 and hence pen2(γ2) = 0 for γ ∈ Γ1.
Take Γ10 = {γ ∈ Γrp1 : γ0 = 0,pen2(γ) = (2p)−1/2}, where Γrp1 is the subset of Γ1

associated with main-effect ramp functions as in the proof of Theorem 12. Inequality (66)
holds because Γ10 ⊂ Γ1 by definition. Inequality (67) follows from Proposition 55: it holds
with probability at least 1− 2δ that for any γ ∈ Γ10,

KHG(Pn, Pθ̂;hγ,µ̂) ≥ EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)− ∆̃22,

where ∆̃22 = ε+ λ22(2p)−1/2, and

λ22 = Crad5

√
16p

n
+

√
2p log(δ−1)

n
.

Note that λ22 is the same as in the proof of Theorem 12. From (65)–(67), the lower
bound in (62) holds with probability at least 1 − 2δ, where ∆22 = ∆̃22 + λ2(2p)−1/2 and
d(θ̂, θ∗) = EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x).
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(Step 3) We deduce upper bounds on ‖µ̂−µ∗‖2 and ‖σ̂−σ∗‖2, by choosing appropriate b2
and relating the moment matching term d(θ̂, θ∗) to the estimation errors. First, combining
the upper bound in (62) from Step 1 and the lower bound from Step 2 shows that with
probability at least 1− 6δ,

(2p)−1/2 max
γ∈Γrp1,pen2(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ 3ε+ 2

√
ε/(nδ) + (λ2 + λ22)(2p)−1/2,

which gives

max
γ∈Γrp1,pen2(γ)=

√
1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ Errh2(n, p, δ, ε), (68)

where

Errh2(n, p, δ, ε) = 3ε
√
p+ 2

√
pε/(nδ) + (λ2 + λ22)/

√
2.

The desired result then follows from Proposition 48: provided Errh2(n, p, δ, ε) ≤ a, inequality
(68) implies that

‖µ̂− µ∗‖2 ≤ S4,aErrh2(n, p, δ, ε),

‖σ̂ − σ∗‖2 ≤ S6,aErrh2(n, p, δ, ε).

(Step 4) For the second version of the lower bound in (49), we show that with probability
at least 1− 2δ,

max
γ∈Γ

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ2 pen2(γ1)− λ3 pen2(γ2)

}
≥ max

γ∈Γ2

{
KHG(Pn, Pθ̂;hγ,µ̂)− λ3 pen2(γ2)

}
(69)

≥ max
γ∈Γ20

{
KHG(Pn, Pθ̂;hγ,µ̂)

}
− λ3 (4q)−1/2 (70)

≥ max
γ∈Γ20

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
− ∆̃32 − λ3(4q)−1/2, (71)

where Γ2 = {(γ0, γ
T
1 , γ

T
2 )T : γ1 = 0}. Inequality (69) follows because Γ2 is a subset of Γ such

that γ1 = 0 and hence pen2(γ1) = 0 for γ ∈ Γ2.
Take Γ20 = {γ ∈ Γrp2 : Γ0 = 0,pen2(γ) = (4q)−1/2} for q = p(1 − p), where Γrp2 is

the subset of Γ2 associated with interaction ramp functions as in the proof of Theorem
12. Inequality (70) holds because Γ20 ⊂ Γ2 by definition. Inequality (71) follows from
Proposition 56: it holds with probability at least 1− 2δ that for any γ ∈ Γ20,

KHG(Pn, Pθ̂;hγ,µ̂) ≥ EPθ∗h(x)− EPθ̂h(x)− ∆̃32,

where ∆̃32 = ε+
√
pλ32(4q)−1/2 and

λ32 = Crad4

√
6(p− 1)

n
+

√
(p− 1) log(δ−1)

n
.
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Note that λ32 is the same as in the proof of Theorem 12. From (69)–(71), the lower
bound in (62) holds with probability at least 1 − 2δ, where ∆22 = ∆̃32 + λ3(4q)−1/2 and
d(θ̂, θ∗) = maxγ∈Γ20{EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)}.

(Step 5) We deduce an upper bound on ‖Σ̂ − Σ∗‖F, by relating the moment matching
term d(θ̂, θ∗) to the estimation error. First, combining the upper bound in (62) from Step
1 and the lower bound from Step 4 shows that with probability 1− 6δ,

(4q)−1/2 max
γ∈Γrp2,pen2(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ 3ε+ 2

√
ε/(nδ)−√pλ32(4q)−1/2 − (25/3)

√
5pCsp22M21λ31(4q)−1/2,

which gives

max
γ∈Γrp2,pen2(γ)=1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ √p Errh3(n, p, δ, ε), (72)

where

Errh3(n, p, δ, ε) = 3ε
√
p− 1 + 2

√
ε(p− 1)/(nδ) + λ32/2 + (25

√
5/6)Csp22M21λ31

The desired result then follows from Proposition 50: inequality (72) implies that

1
√
p
‖Σ̂− Σ∗‖F ≤ 2M

1/2
2 ‖σ̂ − σ∗‖2 + S7(

√
2∆µ̂,σ̂ + Errh3(n, p, δ, ε))

≤ S9,aErrh2(n, p, δ, ε) + S7Errh3(n, p, δ, ε),

where ∆µ̂,σ̂ = (‖µ̂− µ∗‖22 + ‖σ̂ − σ∗‖22)1/2 and S9,a = 2M
1/2
2 S6,a +

√
2S7(S4,a + S6,a).

B.4 Proof of Corollary 18

(i) In the proofs of Theorems 11 and 12, we used the main frame,

d(θ̂, θ∗)−∆1 ≤ max
γ∈Γ
{Kf (Pn, Pθ̂;hγ,µ̂)− pen(γ;λ)} ≤ ∆2, (73)

where pen(γ;λ) is λ1(‖γ1‖1 + ‖γ2‖1) or λ2‖γ1‖2 + λ3‖γ2‖2. For Theorems 11 and 12, we
showed the upper bound in (73) using the fact that θ̂ is the minimizer of

max
γ∈Γ
{Kf (Pn, Pθ;hγ,µ)− λpen(γ)},

which is a function of θ by the definition of (17) and (19) as nested optimization (see
Remark 1). Now θ̂ is not defined as a minimizer of the above function, but a solution to
an alternating optimization problem (22) with two objectives. We need to develop new
arguments. On the other hand, we showed the lower bound in (73) for Theorems 11 and 12,
through choosing different subsets of Γ. The previous arguments are still applicable here.
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(Step 1) For the upper bound in (73), we show that the following holds with probability
at least 1− δ,

max
γ∈Γ
{Kf (Pn, Pθ̂;hγ,µ̂)− pen(γ;λ)}

≤ max
γ∈Γ
{−f ′(1− ε̂)ε̂+R1

∣∣∣EPθ∗,nhγ,µ̂(x)− EPθ∗hγ,µ̂(x)
∣∣∣− pen(γ;λ)} (74)

≤ ∆1 + max
γ∈Γ
{R1

∣∣∣EPθ∗,nhγ,µ̂(x)− EPθ∗hγ,µ̂(x)
∣∣∣− pen(γ;λ)}, (75)

where ε̂ is the (unobserved) fraction of contamination in (X1, . . . , Xn). Inequality (74)
follows from Lemma 57, and is the most important step for connecting two-objective GAN
with logit f -GAN. Inequality (75) follows from an upper bound on ε̂ as proved in Proposition
33, where ∆1 = −f ′(3/5)(ε+

√
ε/(nδ)), the same as ∆11 and ∆21 in the proofs of Theorems

11 and 12.
Similarly as in Proposition 33 or 44, the term |EPθ∗,nhγ,µ̂(x) − EPθ∗hγ,µ̂(x)| can be

controlled in terms of the L1 or L2 norms of (γ1, γ2), using Lemma 30 or 43. Then for
pen(γ;λ) defined as an L1 or L2 penalty, it can be shown that the following holds with
probability at least 1− 4δ or 1− 6δ,

R1

∣∣∣EPθ∗,nhγ,µ̂(x)− EPθ∗hγ,µ̂(x)
∣∣∣− pen(γ;λ) ≤ 0. (76)

provided that the tuning parameters λ1 or (λ2, λ3) are chosen as in Theorem 11 or 12
respectively. From (74)–(76), the upper bound holds in (73) with probability 1 − 5δ or
1− 7δ.

(Steps 2,3) The lower bound step and the estimation error step for L1 or L2 penalized
two-objective GAN are the same as in the proofs of Theorems 11 and 12 respectively.

(ii) For the two-objective hinge GAN hinge (23), the result follows similarly using
Lemma 58 with ∆1 = 2(ε+

√
ε/(nδ)) and R1 = 1.

Appendix C. Technical details

C.1 Details in main proof of Theorem 6

Lemma 27 Suppose that f : (0,∞)→ R is convex with f(1) = 0 and satisfies Assumption
1(i). Denote Cf = inft∈(0,1] f

′′(t). Then

Df (P ||Q) ≥
Cf
2

TV(P,Q)2.

If further Assumption 1(iii) holds, then Df (P ||Q) ≥ f ′′(1)
2 TV(P,Q)2.

Proof Because x2 is convex in x, by Jensen’s inequality, we have

TV(P,Q)2 ≤
∫
f2

TV(p/q)dQ,

where fTV(t) = (1 − t)+ and p/q is the density ratio dP/dQ. Note that Df (P‖Q) can be
equivalently obtained as Df̃ (P‖Q), where f̃(t) = f(t) − f ′(1)(t − 1). Therefore, it suffices

to show that f̃(t) ≥ Cf
2 f

2
TV (t) for t ∈ (0,∞).
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By a Taylor expansion of f , we have

f(t) = f(1) + f ′(1)(t− 1) +
f ′′(t̃)

2
(t− 1)2

≥ f ′(1)(t− 1) +
Cf
2

(t− 1)2, (77)

where t̃ lies between t and 1. If t ∈ (0, 1], then (77) gives

f̃(t) ≥
Cf
2

(t− 1)2 =
Cf
2

(1− t)2
+ =

Cf
2
f2

TV(t).

If t ∈ (1,∞), then because Cf ≥ 0 by convexity of f , (77) gives

f̃(t) ≥
Cf
2

(t− 1)2 ≥ 0 =
Cf
2

(1− t)2
+ =

Cf
2
f2
TV (t).

Combining the two cases completes the proof.

Denote as Φ(·) the cumulative distribution function of N(0, 1), and erf(x) the probability
of [−

√
2x,
√

2x] under N(0, 1) for x ≥ 0.

Lemma 28 Let a ∈ [0, 1/2) be arbitrarily fixed.
(i) If Φ(x) ≤ 1/2 + a for x ≥ 0 , then

x ≤ S1,a {Φ(x)− 1/2} ,

where S1,a = {Φ′(Φ−1(1/2 + a))}−1.
(ii) If |erf(x

√
z0/2)− 1/2| ≤ a for x ≥ 0, then

|x− 1| ≤ S2,a

∣∣∣erf(x
√
z0/2)− 1/2

∣∣∣ ,
where S2,a = {

√
z0/2erf ′(

√
2/z0erf−1(1/2 + a))}−1 and z0 is an universal constant such

that erf(
√
z0/2) = 1/2.

Proof (i) By the mean value theorem, we have Φ(x) ≥ 1
2 +S−1

1,ax, because Φ′(·) is decreasing
on [0,+∞).

(ii) By the mean value theorem, we have |erf(x
√
z0/2) − 1/2| ≥ S−1

2,a|x− 1|, because
erf ′(·) is decreasing on [0,+∞).

Proposition 29 For two multivariate Gaussian distributions, Pθ̄ and Pθ∗, with θ̄ = (µ̄, Σ̄)
and θ∗ = (µ∗,Σ∗), denote d(θ̄, θ∗) = TV(Pθ̄, Pθ∗).

(i) If d(θ̄, θ∗) ≤ a for a constant a ∈ [0, 1/2), then

‖µ̄− µ∗‖2 ≤ S1,a‖Σ∗‖1/2op d(θ̄, θ∗),

‖µ̄− µ∗‖∞ ≤ S1,a‖Σ∗‖1/2maxd(θ̄, θ∗),

where S1,a = {Φ′(Φ−1(1/2 + a))}−1 as in Lemma 28.
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(ii) If further d(θ̄, θ∗) ≤ a/(1 + S1,a), then

‖Σ̄− Σ∗‖op ≤ 2S3,a‖Σ∗‖opd(θ̄, θ∗) + S2
3,a‖Σ∗‖op(d(θ̄, θ∗))2,

‖Σ̄− Σ∗‖max ≤ 4S3,a‖Σ∗‖maxd(θ̄, θ∗) + 2S2
3,a‖Σ∗‖max(d(θ̄, θ∗))2,

where S3,a = S2,a(1 +S1,a), S2,a = {
√
z0/2 erf ′(

√
2/z0 erf−1(1/2 + a))}−1, and the constant

z0 is defined such that erf(
√
z0/2) = 1/2, as in Lemma 28.

Proof The TV distance, DTV(P1‖P2), can be equivalently defined as

TV(P1, P2) = sup
A∈A
|P1(A)− P2(A)|,

for P1 and P2 defined in a probability space (X ,A). This definition is applicable to multi-
variate Gaussian distributions with singular variance matrices. To derive the desired results,
we choose specific events A and show that the differences in the means and variance matrices
can be upper bounded by |Pθ̄(A)− Pθ∗(A)|.

We first show results (i) and (ii), when Σ∗ and Σ̄ are nonsingular. Then we show that
the results remain valid when Σ∗ or Σ̄ is singular.

(i) Assume that both Σ∗ and Σ̄ are nonsingular. For any u ∈ Rp, we have by the
definition of TV,

Pµ∗,Σ∗(u
TX ≤ uTµ̄)− Pµ̄,Σ̄(uTX ≤ uTµ̄) ≤ d(θ̄, θ∗).

For nonzero u ∈ Rp, because uTΣ̄u 6= 0 and uTΣ∗u 6= 0, we have

Pµ̄,Σ̄(uTX ≤ uTµ̄) =
1

2
,

Pµ∗,Σ∗(u
TX ≤ uTµ̄) = Φ

(
uT(µ̄− µ∗)√

uTΣ∗u

)
.

Combining the preceding three displays shows that for nonzero u ∈ Rp,

Φ

(
uT(µ̄− µ∗)√

uTΣ∗u

)
≤ 1

2
+ d(θ̄, θ∗).

By Lemma 28 (i), if d(θ̄, θ∗) ≤ a for a constant a ∈ [0, 1/2), then for any u ∈ Rp satisfying
uT(µ̄− µ∗) ≥ 0,

0 ≤uT(µ̄− µ∗) ≤
√
uTΣ∗uS1,ad(θ̄, θ∗). (78)

Let U2 = {u ∈ Rp : ‖u‖2 = 1}. By (78) with u restricted such that u ∈ U2 and uT(µ̄−µ∗) ≥
0, we have

‖µ̄− µ∗‖2 = sup
u∈U2

uT(µ̄− µ∗)

≤ S1,a‖Σ∗‖1/2op d(θ̄, θ∗).
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Similarly, let U∞ = {±ej : j = 1, . . . , p}, where ej is a vector with jth coordinate being one
and others being zero. By (78) with u restricted such that u ∈ U∞ and uT(µ̄− µ∗) ≥ 0, we
have

‖µ̄− µ∗‖∞ = sup
u∈U∞

uT(µ̄− µ∗)

≤ S1,a‖Σ∗‖1/2maxd(θ̄, θ∗).

The last line uses the fact that supu∈U∞ u
TΣ∗u = ‖diag(Σ∗)‖∞ = ‖Σ∗‖max by the nature of

variance matrices.

(ii) Assume that Σ∗ and Σ̄ are nonsingular. We first separate the bias caused by the
location difference between Pθ̄ and Pθ∗ . By the triangle inequality, we have

TV(Pµ̄,Σ∗ , Pµ̄,Σ̄) ≤ TV(Pµ̄,Σ∗ , Pµ∗,Σ∗) + TV(Pµ∗,Σ∗ , Pµ̄,Σ̄). (79)

By Lemma 27, we know that TV (P,Q) ≤
√

2DKL(P ||Q). Then we have

TV(Pµ̄,Σ∗ , Pµ∗,Σ∗) ≤
√

2DKL(Pµ̄,Σ∗ ||Pµ∗,Σ∗)

≤ S1,ad(θ̄, θ∗). (80)

provided that d(θ̄, θ∗) ≤ a. Inequality (80) follows because by standard calculation

DKL(N(µ̄,Σ∗)||N(µ∗,Σ∗)) =
1

2
(µ̄− µ∗)TΣ∗−1(µ̄− µ∗),

and taking u = Σ∗−1(µ̄− µ∗) in (78) gives√
(µ̄− µ∗)TΣ∗−1(µ̄− µ∗) ≤ S1,ad(θ̄, θ∗).

Combining (79) and (80) yields

TV(Pµ̄,Σ∗ , Pµ̄,Σ̄) ≤ d(θ̄, θ∗) + S1,ad(θ̄, θ∗). (81)

For any u ∈ Rp such that uT(Σ̄− Σ∗)u ≥ 0, (81) implies

0 ≤ Pµ̄,Σ∗
{

(uTX − uTµ̄)2 ≤ z0u
TΣ̄u

}
− Pµ̄,Σ̄

{
(uTX − uTµ̄)2 ≤ z0u

TΣ̄u
}

= P0,Σ∗
{

(uTX)2 ≤ z0u
TΣ̄u

}
− P0,Σ̄

{
(uTX)2 ≤ z0u

TΣ̄u
}

≤ d(θ̄, θ∗) + S1,ad(θ̄, θ∗),

where z0 is an universal constant such that erf(
√
z0/2) = 1/2. Similarly, for any u ∈ Rp

such that uT(Σ̄− Σ∗)u ≤ 0, (81) implies

0 ≤ Pµ̄,Σ∗
{

(uTX − uTµ̄)2 ≥ z0u
TΣ̄u

}
− Pµ̄,Σ̄

{
(uTX − uTµ̄)2 ≥ z0u

TΣ̄u
}

= P0,Σ∗
{

(uTX)2 ≥ z0u
TΣ̄u

}
− P0,Σ̄

{
(uTX)2 ≥ z0u

TΣ̄u
}

≤ d(θ̄, θ∗) + S1,ad(θ̄, θ∗).
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Notice that the choice of z0 ensures that for Z ∈ N(0, 1),

P0,Σ̄

{
(uTX)2 ≤ z0u

TΣ̄u
}

= P(Z2 ≤ z0) =
1

2
= P(Z2 ≥ z0) = P0,Σ̄

{
(uTX)2 ≥ z0u

TΣ̄u
}
.

Moreover, for any nonzero u ∈ Rp, we have by the definition of erf,

P0,Σ∗
{

(uTX)2 ≤ z0u
TΣ̄u

}
= erf

(√
z0uTΣ̄u

2uTΣ∗u

)
.

Combining the preceding four displays shows that for any nonzero u ∈ Rp,∣∣∣∣∣erf

(√
z0uTΣ̄u

2uTΣ∗u

)
− 1

2

∣∣∣∣∣ ≤ (1 + S1,a)d(θ̄, θ∗).

By Lemma 28 (ii), if d(θ̄, θ∗) ≤ min(a, a/(1 + S1,a)) = a/(1 + S1,a), then for any nonzero
u ∈ Rp, ∣∣∣∣∣

√
uTΣ̄u

uTΣ∗u
− 1

∣∣∣∣∣ ≤ S2,a(1 + S1,a)d(θ̄, θ∗),

or equivalently for any u ∈ Rp,∣∣∣√uTΣ̄u−
√
uTΣ∗u

∣∣∣ ≤ S2,a(1 + S1,a)
√
uTΣ∗ud(θ̄, θ∗). (82)

Notice that for any a, b, c≥0, if |
√
a −
√
b| ≤ c then |a − b| ≤ 2

√
bc + c2. Thus, inequality

(82) implies

‖Σ̄− Σ∗‖op = sup
u∈U2

∣∣uT(Σ̄− Σ∗)u
∣∣

≤ 2S3,a‖Σ∗‖opd(θ̄, θ∗) + S2
3,a‖Σ∗‖op(d(θ̄, θ∗))2, (83)

where S3,a = S2,a(1 + S1,a).
To handle ‖Σ̄ − Σ∗‖max, let U2,∞ = {±eij : i, j = 1, . . . , p, i 6= j}, where eij is a

vector in U2 with only ith and jth coordinates possibly being nonzero. For u ∈ U2,∞, we
have uTΣ∗u = uT

ijΣ
∗
ijuij and uTΣ̄u = uT

ijΣ̄ijuij , where uij ∈ R2 is formed by ith and jth

coordinates of u, and Σ∗ij and Σ̄ij are 2× 2 matrices, formed by selecting ith and jth rows

and columns from Σ∗ and Σ̄ respectively. Similarly as in the deviation of (83), applying
inequality (82) with u ∈ U2,∞, we have

‖Σ̄ij − Σ∗ij‖op = sup
u∈U2,∞

∣∣uT(Σ̄− Σ∗)u
∣∣

≤ 2S3,a‖Σ∗ij‖opd(θ̄, θ∗) + S2
3,a‖Σ∗ij‖op(d(θ̄, θ∗))2.

Because for a matrix A ∈ Rm1×m2 , ‖A‖max ≤ ‖A‖op ≤
√
m1m2‖A‖max, the above inequality

implies that for any i 6= j ∈ {1, . . . , p},

‖Σ̄ij − Σ∗ij‖max

≤ 4S3,a‖Σ∗ij‖maxd(θ̄, θ∗) + 2S2
3,a‖Σ∗ij‖max(d(θ̄, θ∗))2. (84)
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Taking the maximum on both sides of (84) over i 6= j gives the desired result:

‖Σ̄− Σ∗‖max= max
i 6=j∈{1,...,p}

‖Σ̄ij − Σ∗ij‖max

≤ 4S3,a‖Σ∗‖maxd(θ̄, θ∗) + 2S2
3,a‖Σ∗‖max(d(θ̄, θ∗))2.

(iii) Consider the case where Σ∗ or Σ̄ is singular. As the following argument is symmetric
in Σ∗ and Σ̄, we assume without loss of generality that Σ∗ is singular. Fix any nonzero u
such that uTΣ∗u = 0.

First, we show that for θ̄ = (µ̄, Σ̄) such that TV(Pθ̄, Pθ∗) < 1, we also have uTΣ̄u = 0.
In fact, TV(Pθ̄, Pθ∗) < 1 implies∣∣Pµ∗,Σ∗(uTX = uTµ∗)− Pµ̄,Σ̄(uTX = uTµ∗)

∣∣ ≤ d(θ̄, θ∗) < 1. (85)

Note that Pµ∗,Σ∗(u
TX = uTµ∗) = 1 because uTΣ∗u = 0. If uTΣ̄u > 0, then Pµ̄,Σ̄(uTX =

uTµ∗) = 0, and hence (85) gives

|1− 0| ≤ d(θ̄, θ∗) < 1,

which is a contradiction. Thus uTΣ̄u = 0.

Next we show that for θ̄ = (µ̄, Σ̄) such that TV(θ̄, θ∗) < 1, we also have uT(µ∗− µ̄) = 0.
In fact, with uTΣ̄u = 0 as shown above, we have that Pµ̄,Σ̄(uTX = uTµ∗) = 1 if uTµ∗ = uTµ̄
and Pµ̄,Σ̄(uTX = uTµ∗) = 0 otherwise. If uTµ∗ 6= uTµ̄, then inequality (85) gives

|1− 0| ≤ d(θ̄, θ∗) < 1,

which is a contradiction. Thus uTµ∗ = uTµ̄.

From the two preceding results, we see that the upper bounds (78) and (82) derived in
(i) and (ii) remain valid for any u ∈ Rp satisfying uTΣ∗u = 0. Hence the desired results
hold by the remaining proofs in (i) and (ii).

C.2 Details in main proof of Theorem 11

Lemma 30 Suppose that X1, . . . , Xn are independent and identically distributed as X ∼
Np(0,Σ) with ‖Σ‖max ≤ M1. For k fixed knots ξ1, . . . , ξk in R, denote ϕ(x) =
(ϕT

1 (x), . . . , ϕT
k (x))T, where ϕl(x) ∈ Rp is obtained by applying t 7→ (t − ξl)+ componen-

twise to x ∈ Rp for l = 1, . . . , k. Then the following results hold.

(i) Each component of the random vector ϕ(X) − Eϕ(X) is a sub-gaussian random

variable with tail parameter M
1/2
1 .

(ii) For any δ > 0, we have that with probability at least 1− 2δ,

sup
‖w‖1=1

∣∣∣∣∣wT

{
1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

}∣∣∣∣∣
≤ Csp11M

1/2
1

√
2 log(kp) + log(δ−1)

n
,
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where Csp11 =
√

2Csg5, depending on the universal constant Csg5 in Lemma 69.
(iii) Let A1 = {A ∈ Rkp×kp : ‖A‖1,1 = 1}. For any δ > 0, we have that with probability

at least 1− 4δ, both the inequality in (ii) and

sup
A∈A1

∣∣∣∣∣ 1n
n∑
i=1

ϕT(Xi)Aϕ(Xi)− EϕT(X)Aϕ(X)

∣∣∣∣∣
≤ Csp12M11

{√
2 log(kp) + log(δ−1)

n
+

2 log(kp) + log(δ−1)

n

}
,

where M11 = M
1/2
1 (M

1/2
1 +

√
2π‖ξ‖∞), ‖ξ‖∞ = maxl=1,...,k |ξl|, and Csp12 =

√
2/πCsp11 +

Csx7Csx6Csx5. Constants (Csx5, Csx6, Csx7) are the universal constants in Lemmas 74, 75,
and 76.

Proof (i) This can be obtained as the univariate case of Lemma 43 (i). It is only required
that the marginal variance of each component of X is upper bounded by M1.

(ii) Notice that

sup
‖w‖1=1

∣∣∣∣∣wT

{
1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

}∣∣∣∣∣ =

∥∥∥∥∥ 1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

∥∥∥∥∥
∞

.

By (i) and sub-gaussian concentration (Lemma 69), each component of n−1
∑n

i=1 ϕ(Xi) −
Eϕ(X) is sub-gaussian with tail parameter Csg5(M1/n)1/2. Then for any t > 0, by the
union bound, we have that with probability at 1− 2k2p2e−t,∥∥∥∥∥ 1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

∥∥∥∥∥
∞

≤
√

2Csg5(M1/n)1/2t1/2.

Taking t = 2 log(kp) + log(δ−1) gives the desired result.
(iii) The difference of interest can be expressed in terms of the centered variables as

1

n

n∑
i=1

ϕT
i Aϕi − EϕTAϕ

=
1

n

n∑
i=1

(ϕi − Eϕ)TA(ϕi − Eϕ)− E{(ϕ− Eϕ)TA(ϕ− Eϕ)} (86)

+
1

n

n∑
i=1

2(Eϕ)TA(ϕi − Eϕ). (87)

We handle the concentration of the two terms separately. Denote ϕi = ϕ(Xi), ϕ = ϕ(X),
ϕ̃i = ϕi − Eϕ, and ϕ̃ = ϕ− Eϕ.

First, for A ∈ A1, the term in (87) can be bounded as follows:∣∣∣∣∣2(Eϕ)TA
1

n

n∑
i=1

ϕ̃i

∣∣∣∣∣ ≤ 2‖Eϕ‖∞‖A‖1,1

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
∞

= 2‖Eϕ‖∞

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
∞

≤ 2

(
M

1/2
1√
2π

+ ‖ξ‖∞

)∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
∞

,
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where ‖ξ‖∞ = maxl=1,...,k |ξl|. The second step holds because ‖A‖1,1 = 1 for A ∈ A1. The

third step holds because ‖Eϕl‖∞ ≤M
1/2
1 /
√

2π+ |ξl| for l = 1, . . . , 5 by Lemma 59. By (ii),
for any δ > 0, we have that with probability at least 1− 2δ,∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
∞

≤ Csp11M
1/2
1

√
2 log(kp) + log(δ−1)

n
.

From the preceding two displays, we obtain that with probability at least 1− 2δ,

sup
A∈A1

∣∣∣∣∣2(Eϕ)TA
1

n

n∑
i=1

ϕ̃i

∣∣∣∣∣
≤
√

2

π
Csp11M

1/2
1

(
M

1/2
1 +

√
2π‖ξ‖∞

)√2 log(kp) + log(δ−1)

n
. (88)

Next, notice that

sup
A∈A1

∣∣∣∣∣ 1n
n∑
i=1

ϕ̃T
i Aϕ̃i − Eϕ̃TAϕ̃

∣∣∣∣∣ =

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i ⊗ ϕ̃i − Eϕ̃⊗ ϕ̃

∥∥∥∥∥
max

.

From (i), each component of ϕ̃i is sub-gaussian with tail parameter M
1/2
1 . By Lemma 74,

each element of ϕ̃i⊗ ϕ̃i is sub-exponential with tail parameter Csx5M1. By Lemma 75, each
element of the centered version, ϕ̃i ⊗ ϕ̃i − Eϕ̃ ⊗ ϕ̃, is sub-exponential with tail parameter
Csx6Csx5M1. Then for any t > 0, by Lemma 76 and the union bound, we have that with
probability at least 1− 2k2p2e−t,∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i ⊗ ϕ̃i − Eϕ̃⊗ ϕ̃

∥∥∥∥∥
max

≤ Csx7Csx6Csx5M1

(√
t

n
∨ t

n

)
.

Taking t = 2 log(kp) + log(δ−1), we obtain that with probability at least 1− 2δ,∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i ⊗ ϕ̃i − Eϕ̃⊗ ϕ̃

∥∥∥∥∥
max

≤ Csx7Csx6Csx5M1

{√
2 log(kp) + log(δ−1)

n
∨ 2 log(kp) + log(δ−1)

n

}
. (89)

Combining the two bounds (88) and (89) gives the desired result.

Lemma 31 Suppose that f : (0,∞)→ R is convex, non-increasing, and differentiable, and
f(1) = 0. Denote f#(t) = tf ′(t)− f(t).

(i) For any t > 0 and ε ∈ [0, 1), we have

(1− ε)f ′(t)− f#(t) ≤ −f ′(1− ε)ε. (90)
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(ii) Let ε0 ∈ (0, 1) be fixed. For any ε ∈ [0, ε0] and any function h : Rp → R, we have

Kf (Pε, Pθ∗ ;h) ≤ −f ′(1− ε0)ε.

(iii) Suppose, in addition, that f ′(eu) is concave in u and f#(eu) is R1-Lipschitz in u
as stated in Assumption 2. Let ε1 ∈ (0, 1) be fixed. If ε̂ = n−1

∑n
i=1 Ui ∈ [0, ε1], then for

any function h : Rp → R,

Kf (Pn, Pθ∗ ;h) ≤ −f ′(1− ε1)ε̂+R1|EPθ∗,nh(x)− EPθ∗h(x)|, (91)

where Pθ∗,n denotes the empirical distribution of {Xi : Ui = 0, i = 1, . . . , n} in the latent
representation of Huber’s contamination model.

Proof (i) Notice that by definition,

(1− ε)f ′(t)− f#(t) = (1− ε)f ′(t)− tf ′(t) + f(t)

= f(t) + f ′(t)((1− ε)− t).

By the convexity of f , we have that for any t > 0 and ε ∈ [0, 1),

f(t) + f ′(t)((1− ε)− t) ≤ f(1− ε).

Moreover, by the convexity of f and f(1) = 0, we have

f(1− ε) ≤ f(1) + f ′(1− ε)((1− ε)− 1) = −f ′(1− ε)ε.

Combining the preceding three displays yields the desired result.
(ii) For any function h, we have

Kf (Pε, Pθ∗ ;h) = εEQf
′(eh(x)) + EPθ∗

{
(1− ε)f ′(eh(x))− f#(eh(x))

}
≤ EPθ∗

{
(1− ε)f ′(eh(x))− f#(eh(x))

}
, (92)

using the fact that f is non-increasing and hence f ′(t) ≤ 0 for t > 0. Setting t = eh(x) in
(90) shows that for ε ≤ ε0,

(1− ε)f ′(eh(x))− f#(eh(x)) ≤ −f ′(1− ε)ε ≤ −f ′(1− ε0)ε. (93)

where f ′(1− ε) ≥ f ′(1− ε0) for ε ≤ ε0 by the convexity of f . Combining (92) and (93) leads
to the desired result.

(iii) For any function h, Kf (Pn, Pθ∗,n;h) can be bounded as follows:

Kf (Pn, Pθ∗ ;h)

=
1

n

n∑
i=1

Uif
′(eh(Xi)) +

1

n

n∑
i=1

(1− Ui)f ′(eh(Xi))− EPθ∗f
#(eh(x))

≤ (1− ε̂)EPθ∗,nf
′(eh(x))− EPθ∗f

#(eh(x)) (94)

≤ (1− ε̂)f ′(eEPθ∗,nh(x)
)− f#(eEPθ∗ h(x)) (95)

≤ −f ′(1− ε1)ε̂+ |f#(e
EPθ∗,nh(x)

)− f#(eEPθ∗ h(x))| (96)

≤ −f ′(1− ε1)ε̂+R1|EPθ∗,nh(x)− EPθ∗h(x)|. (97)
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Line (94) follows because f ′(t) ≤ 0 for t > 0. Line (95) follows from Jensen’s inequality by
the concavity of f ′(eu) and −f#(eu) in u. Line (96) follows because

(1− ε̂)f ′(eEPθ∗,nh(x)
)− f#(e

EPθ∗,nh(x)
) ≤ −f ′(1− ε1)ε̂,

obtained by taking ε = ε̂ and t = e
EPθ∗,nh(x)

in (90) and using f ′(1 − ε̂) ≥ f ′(1 − ε1) for
ε̂ ≤ ε1. Finally, line (97) follows because f#(eu) is R1-Lipschitz in u.

Remark 32 Compared with (91), Kf (Pn, Pθ∗ ;h) can also be bounded as

Kf (Pn, Pθ∗ ;h) ≤ −f ′(1− ε1)ε̂+ |EPθ∗,nf
#(eh(x))− EPθ∗f

#(eh(x))|. (98)

In fact, this follows directly from (94), because for ε̂ ≤ ε1,

(1− ε̂)f ′(eh(x))− f#(eh(x)) ≤ −f ′(1− ε1)ε̂,

which can be obtained by taking ε = ε̂ and t = eh(x) in (90), similarly as (93). However,
the bound (98) involves the moment difference of f#(eh(x)) between Pθ∗ and Pθ∗,n, which is
difficult to control for h in our spline class, even with f#(eu) Lipschitz in u. In contrast,
by exploiting the concavity of f ′(eu) and −f#(eu) in u, the bound (91) is derived such
that it involves the moment difference of h(x), which can be controlled by Lemma 30 in
Proposition 33 or by Lemma 43 in Proposition 44.

Proposition 33 In the setting of Proposition 23, it holds with probability at least 1 − 5δ
that for any γ ∈ Γ,

Kf (Pn, Pθ∗ ;hγ,µ∗) ≤ −f ′(3/5)(ε+
√
ε/(nδ)) + pen1(γ)Csp13R1M11λ11,

where Csp13 = (5/3)(Csp11 ∨ Csp12) with Csp11 and Csp12 as in Lemma 30, M11 = M1 +

2M
1/2
1

√
2π, and

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
.

Proof Consider the event Ω1 = {|ε̂ − ε| ≤
√
ε(1− ε)/(nδ)}. By Chebyshev’s inequal-

ity, we have P(Ω1) ≥ 1 − δ. In the event Ω1, we have |ε̂ − ε| ≤ 1/5 by the assumption√
ε(1− ε)/(nδ) ≤ 1/5 and hence ε̂ ≤ 2/5 by the assumption ε ≤ 1/5. By Lemma 31 with

ε1 = 2/5, it holds in the event Ω1 that for any γ ∈ Γ,

Kf (Pn, Pθ∗ ;hγ,µ∗)

≤ −f ′(3/5)ε̂+R1

∣∣∣EPθ∗,nhγ,µ∗(x)− EPθ∗hγ,µ∗(x)
∣∣∣

≤ −f ′(3/5)(ε+
√
ε/(nδ)) +R1

∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)
∣∣∣ . (99)

The last step (99) uses the fact that EPθ∗hγ,µ∗(x) = EP(0,Σ∗)hγ(x) and EPθ∗,nhγ,µ∗(x) =
EPθ∗,nhγ(x− µ∗), by the definition hγ,µ∗(x) = hγ(x− µ∗).
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Next, conditionally on the contamination indicators (U1, . . . , Un) such that the event
Ω1 holds, we have that {Xi : Ui = 1, i = 1, . . . , n} are n1 independent and identically
distributed observations from Pθ∗ , where n1 =

∑n
i=1(1 − Ui) = n(1 − ε̂) ≥ (3/5)n. Denote

as Ω2 the event that for any γ1 and γ2,∣∣∣EPθ∗,nγT
1ϕ(x− µ∗)− EP(0,Σ∗)γ

T
1ϕ(x)

∣∣∣ ≤ ‖γ1‖1Csp11M
1/2
1

√
2 log(5p) + log(δ−1)

(3/5)n
,

and ∣∣∣EPθ∗,nγT
2 (ϕ(x− µ∗)⊗ ϕ(x− µ∗))− EP(0,Σ∗)γ

T
2 (ϕ(x)⊗ ϕ(x))

∣∣∣
≤ ‖γ2‖1Csp12M11

{√
2 log(5p) + log(δ−1)

(3/5)n
+

2 log(5p) + log(δ−1)

(3/5)n

}
,

where Csp11, Csp12, and M11 are defined as in Lemma 30 with ‖ξ‖∞ = 2. In the event Ω2,
the preceding inequalities imply that for any γ = (γ0, γ

T
1 , γ

T
2 )T ∈ Γ,∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)
∣∣∣

≤ pen1(γ)(5/3)(Csp11 ∨ Csp12)M11λ11, (100)

where hγ(x) = γ0 + γT
1ϕ(x) + γT

2 (ϕ(x) ⊗ ϕ(x)) and pen1(γ) = ‖γ1‖1 + ‖γ2‖1. By applying
Lemma 30 with k = 5 to {Xi−µ∗ : Ui = 1, i = 1, . . . , n}, we have P(Ω2|U1, . . . , Un) ≥ 1−4δ
for any (U1, . . . , Un) such that Ω1 holds. Taking the expectation over (U1, . . . , Un) given Ω1

shows that P(Ω2|Ω1) ≥ 1− 4δ and hence P(Ω1 ∩ Ω2) ≥ (1− δ)(1− 4δ) ≥ 1− 5δ.
Combining (99) and (100) in the event Ω1 ∩Ω2 indicates that, with probability at least

1− 5δ, the desired inequality holds for any γ ∈ Γ.

Lemma 34 Suppose that X1, . . . , Xn are independent and identically distributed as X ∼ Pε.
Let b > 0 be fixed and g : Rp → [0, 1]q be a vector of fixed functions. For a convex and twice
differentiable function f : (0,∞)→ R, define

F (X1, . . . , Xn) = sup
‖w‖1=1,µ∈Rp

{
Kf (Pn, Pθ̂; bw

Tgµ)−Kf (Pε, Pθ̂; bw
Tgµ)

}
= sup
‖w‖1=1,µ∈Rp

{
1

n

n∑
i=1

f ′(ebw
Tgµ(Xi))− Ef ′(ebw

Tgµ(X))

}
,

where gµ(x) = g(x − µ). Suppose that conditionally on (X1, . . . , Xn), the random variable
Zn,j = supµ∈Rp |n−1

∑n
i=1 εigµ,j(Xi)| is sub-gaussian with tail parameter

√
Vg/n for j =

1, . . . , q, where (ε1, . . . , εn) are Rademacher variables, independent of (X1, . . . , Xn), and
gµ,j : Rp → [0, 1] denotes the jth component of gµ. Then for any δ > 0, we have that with
probability at least 1− 2δ,

F (X1, . . . , Xn) ≤ bR2,b

{
Csg6

√
Vg log(2q)

n
+

√
2 log(δ−1)

n

}
,

where R2,b = sup|u|≤b
d

duf
′(eu) and Csg6 is the universal constant in Lemma 70.
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Proof First, F satisfies the bounded difference condition, because |bwTgµ| ≤ b with ‖w‖1 =
1 and f ′ is non-decreasing by the convexity of f :

sup
X1,...,Xn,X′i

∣∣F (X1, . . . , Xn)− F (X1, . . . , X
′
i, . . . , Xn)

∣∣
≤ f ′(eb)− f ′(e−b)

n
≤

2bR2,b

n
,

where R2,b = sup|u|≤b
d

duf
′(eu). By McDiarmid’s inequality (McDiarmid, 1989), for any

t > 0, we have that with probability at least 1− 2e−2nt2 ,

|F (X1, . . . , Xn)− EF (X1, . . . , Xn)| ≤ 2bR2,bt.

For any δ > 0, taking t =
√

log(δ−1)/(2n) shows that with probability at least 1− 2δ,

|F (X1, . . . , Xn)− EF (X1, . . . , Xn)| ≤ bR2,b

√
2 log(δ−1)

n
.

Next, the expectation of F (X1, . . . , Xn) can be bounded as follows:

E sup
‖w‖1=1,µ∈Rp

{
1

n

n∑
i=1

f ′(ebw
Tgµ(Xi))− Ef ′(ebw

Tgµ(X))

}

≤ 2E sup
‖w‖1=1,µ∈Rp

{
1

n

n∑
i=1

εif
′(ebw

Tgµ(Xi))

}
(101)

≤ 2R2,b E sup
‖w‖1=1,µ∈Rp

{
1

n

n∑
i=1

εibw
Tgµ(Xi)

}
(102)

≤ 2bR2,b E sup
µ∈Rp

∥∥∥∥∥ 1

n

n∑
i=1

εigµ(Xi)

∥∥∥∥∥
∞

≤ 2bR2,bCsg6

√
Vg log(2q)

n
. (103)

Line (101) follows from the symmetrization Lemma 77, where (ε1, . . . , εn) are Rademacher
variables, independent of (X1, . . . , Xn). Line (102) follows by Lemma 78, because f ′(eu) is
R2,b-Lipschitz in u ∈ [−b, b]. Line (103) follows because

E sup
µ∈Rp

∥∥∥∥∥ 1

n

n∑
i=1

εigµ(Xi)

∥∥∥∥∥
∞

= E sup
µ∈Rp

max
j=1,...,q

∣∣∣∣∣ 1n
n∑
i=1

εigµ,j(Xi)

∣∣∣∣∣
= E max

j=1,...,q
sup
µ∈Rp

∣∣∣∣∣ 1n
n∑
i=1

εigµ,j(Xi)

∣∣∣∣∣
≤ Csg6

√
Vg log(2q)

n
.

For the last step, we use the assumption that conditionally on (X1, . . . , Xn), the random
variable Zn,j = supµ∈Rp |n−1

∑n
i=1 εigµ,j(Xi)| is sub-gaussian with tail parameter

√
Vg/n
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for each j = 1, . . . , q, and apply Lemma 70 to obtain E(maxj=1,...,q Zn,j |X1, . . . , Xn) ≤
Csg6

√
Vg log(2q)/n, and then E(maxj=1,...,q Zn,j) ≤ Csg6

√
Vg log(2q)/n.

Combining the tail probability and expectation bounds yields the desired result.

Remark 35 Results of Lemma 34 and Lemma 45 still hold with R2,b and R2,b
√
q replaced by

1 if Kf is replaced by KHG. This is true because f ′(eu) will be replaced by identity function
which is just 1-Lipschitz.

Lemma 36 Suppose that f : (0,∞)→ R is convex and three-times differentiable. Let b > 0
be fixed. For any function h : Rp → [−b, b], we have

Kf (Pε, Pθ̂;h) ≥ f ′(e−b)ε+ f ′′(1)
{

EPθ∗h(x)− EPθ̂h(x)
}
− 1

2
b2R3,b,

where R3,b = R31,b +R32,b, R31,b = sup|u|≤b
d2

du2 {−f ′(eu)}, and R32,b = sup|u|≤b
d2

du2 f
#(eu).

Proof First, Kf (Pε, Pθ̂;h) can be bounded as

Kf (Pε, Pθ̂;h)

= εEQf
′(eh(x)) + (1− ε)EPθ∗f

′(eh(x))− EPθ̂f
#(eh(x))

≥ f ′(e−b)ε+ EPθ∗f
′(eh(x))− EPθ̂f

#(eh(x))

= f ′(e−b)ε+Kf (Pθ∗ , Pθ̂;h),

where the inequality follows because f ′(eh(x)) ≥ f ′(e−b) for h(x) ∈ [−b, b] by the convexity
of f . Next, consider the function κ(t) = Kf (Pθ∗ , Pθ̂; th). A Taylor expansion of κ(1) =
Kf (Pθ∗ , Pθ̂;h) about t = 0 yields

Kf (Pθ∗ , Pθ̂;h) = f ′′(1)
{

EPθh(x)− EPθ̂h(x)
}
− 1

2
κ′′(t),

where for some t ∈ [0, 1],

κ′′(t) = −EPθ∗

{
h2(x)

d2

du2
f ′(eu)|u=th(x)

}
+ EPθ̂

{
h2(x)

d2

du2
f#(eu)|u=th(x)

}
.

The desired result then follows because h(x) ∈ [−b, b] and th(x) ∈ [−b, b] for t ∈ [0, 1], and
hence κ′′(t) ≤ R3,b by the definition of R3,b.

Proposition 37 Let b1 > 0 be fixed. In the setting of Proposition 23, it holds with proba-
bility at least 1− 2δ that for any γ ∈ Γrp with γ0 = 0 and pen1(γ) = b1,

Kf (Pn, Pθ̂;hγ,µ̂)

≥ f ′′(1)
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}

+ f ′(e−b1)ε− 1

2
b21R3,b1 − b1R2,b1λ12
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where, with Crad4 = Csg6Crad3,

λ12 = Crad4

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

depending on the universal constants Csg6 and Crad3 in Lemma 70 and Corollary 82.

Proof By definition, for any γ ∈ Γrp, hγ(x) can be represented as hrp,β,c(x) such that
β0 = γ0 and pen1(β) = pen1(γ):

hrp,β,c(x) = β0 +

p∑
j=1

β1j ramp(xj − cj) +
∑

1≤i 6=j≤p
β2,ij ramp(xi)ramp(xj),

where c = (c1, . . . , cp)
T with cj ∈ {0, 1}, and β = (β0, β

T
1 , β

T
2 )T with β1 = (β1j : j =

1, . . . , p)T and β2 = (β2,ij : 1 ≤ i 6= j ≤ p). Then for any γ ∈ Γrp with γ0 = 0 and pen1(γ) =
b1, we have β0 = 0 and pen1(β) = b1 correspondingly, and hence hγ(x) = hrp,β,c(x) ∈
[−b1, b1] by the boundedness of the ramp function in [0, 1]. Moreover, hrp,β,c(x) with β0 = 0
and pen1(β) = b1 can be expressed in the form b1w

Tg(x), where for q = 2p + p(p − 1),
w ∈ Rq is an L1 unit vector, and g : Rp → [0, 1]q is a vector of functions including ramp(xj)
and ramp(xj − 1) for j = 1, . . . , p, and ramp(xi)ramp(xj) for 1 ≤ i 6= j ≤ p. For symmetry,
ramp(xi)ramp(xj) and ramp(xj)ramp(xi) are included as two distinct components in g, and
the corresponding coefficients are identical to each other in w. Parenthetically, at most one
of the coefficients in w associated with ramp(xj) and ramp(xj − 1) is nonzero for each j,
but this property is not used in the subsequent discussion.

Next, Kf (Pn, Pθ̂;hγ,µ̂) can be bounded as

Kf (Pn, Pθ̂;hγ,µ̂)

≥ Kf (Pε, Pθ̂;hγ,µ̂)− {Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)}.

For any γ ∈ Γrp with γ0 = 0 and pen1(γ) = b1, applying Lemma 36 with h = hγ,µ̂ and
b = b1 yields

Kf (Pε, Pθ̂;hγ,µ̂)

≥ f ′′(1)
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}

+ f ′(e−b1)ε− 1

2
b21R3,b1 .

By Lemma 34 with b = b1 and g(x) ∈ [0, 1]q defined above, it holds with probability at least
1− 2δ that for any γ ∈ Γrp with γ0 = 0 and pen1(γ) = b1,

{Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)}

≤ b1R2,b1

{
Csg6

√
Vg log(2q)

n
+

√
2 log(δ−1)

n

}

= b1R2,b1

{
Csg6Crad3

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n

}
,

where Vg = 4C2
rad3 is determined in Lemma 34 as follows. For j = 1, . . . , q, consider the

function class Gj = {gµ,j : µ ∈ Rp}, where µ = (µ1, . . . , µp)
T and, as defined in Lemma 34,
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gµ,j(x) is either a moving-knot ramp function, ramp(xj1 − µj1) or ramp(xj1 − µj1 − 1) or
a product of moving-knot ramp functions, ramp(xj1 − µj1)ramp(xj2 − µj2) for 1 ≤ j1 6=
j2 ≤ p. By Lemma 60, the VC index of moving-knot ramp functions is 2. By applying
Corollary 82 (i) and (ii) with vanishing H, we obtain that conditionally on (X1, . . . , Xn),
the random variable Zn,j = supµ∈Rp |n−1

∑n
i=1 εigµ,j(Xi)| = supfj∈Gj |n

−1
∑n

i=1 εifj(Xi)| is

sub-gaussian with tail parameter Crad3

√
4/n for j = 1, . . . , q.

Combining the preceding three displays leads to the desired result.

Lemma 38 (Local linearity 1) For δ ∈ R and 0 ≤ σ1, σ2 ≤ M1/2, denote Dh =
Eh(σ1Z + δ)−Eh(σ2Z), where h is a function on R and Z is a standard Gaussian random
variable. For h1(x) = ±ramp(x), if |Dh1 | ≤ a for a ∈ (0, 1/2), then we have

|δ| ≤ S4,a|Dh1 |, (104)

where S4,a = (1 +
√

2M log 2
1−2a)/a. For h2(x) = ±ramp(x− 1), we have

|σ1 − σ2| ≤ S5(|Dh2 |+ |δ|/2), (105)

where S5 = 2
√

2π(1− e−2/M )−1.

Remark 39 Define a ramp function class

R1 = {±ramp(x− c), x ∈ R : c = 0, 1} .

In the setting of Lemma 38, suppose that for fixed a ∈ (0, 1/2),

D
def
= sup

h∈R1

{Eh(σ1Z + δ)− Eh(σ2Z)} ≤ a.

Then we have

|δ| ≤ S4,aD, |σ1 − σ2| ≤ S6,aD,

where S6,a = S5(1 + S4,a/2). This shows that the moment matching discrepancy D over
R1 delivers upper bounds, up to scaling constants, on the mean and standard deviation
differences, provided that D is sufficiently small, for example, D ≤ 1/3.

Proof
[Proof of (104)] First, assume that δ is nonnegative. The other direction will be discussed

later. Take h(x) = ramp(x). Then h(x) + h(−x) = 1 for all x ∈ R and

Eh(σ2Z) = Eh(σ1Z) =
1

2
.

Define g(t) = Eh(σ1Z + t) − Eh(σ1Z) = Eh(σ1Z + t) − 1
2 for t ∈ R. Then g(0) = 0 and

g(δ) = Dh ≤ a. We notice the following properties for the function g.
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(i) g(t) is non-decreasing and concave for t ≥ 0.

(ii) g(t)/t is non-increasing for t > 0.

(iii) g(t) ≥ 1
2 − exp{−(t− 1)2/(2σ2

1)} for t ≥ 1.

For property (i), the derivative of g(t) is g′(t) = 1
2E{1σ1Z+t∈[−1,1]} ≥ 0. Moreover, g′(t) is

non-increasing: for 0 ≤ t1 < t2,

g′(t1) =
1

2
P(−1− t1 ≤ σ1Z ≤ 1− t1)

=
1

2
P(−1− t1 ≤ σ1Z ≤ 1− t2) +

1

2
P(1− t2 ≤ σ1Z ≤ 1− t1),

g′(t2) =
1

2
P(−1− t2 ≤ σ1Z ≤ 1− t2)

=
1

2
P(−1− t1 ≤ σ1Z ≤ 1− t2) +

1

2
P(−1− t2 ≤ σ1Z ≤ −1− t1),

and

P(1− t2 ≤ σ1Z ≤ 1− t1) = P(t1 − 1 ≤ σ1Z ≤ t2 − 1)

≤ P(t1 + 1 ≤ σ1Z ≤ t2 + 1) = P(−1− t2 ≤ σ1Z ≤ −1− t1).

The last inequality holds because (t− 1)2 ≤ (t+ 1)2 for any t ≥ 0 and hence
∫ t2
t1

exp{−(t−
1)2/(2σ2

1)}dt ≥
∫ t2
t1

exp{−(t + 1)2/(2σ2
1)}dt. To show (ii), we write g(t) = g(t) − g(0) =

t
∫ 1

0 g
′(tz) dz. Then g(t)/t =

∫ 1
0 g
′(tz) dz is non-increasing in t because g′ is non-increasing.

To show (iii), we notice that h(x) ≥ 1x>1 and hence for t ≥ 1,

g(t) +
1

2
= Eh(σ1Z + t)

≥ 1− P (σ1Z + t ≤ 1) = 1− P(σ1Z ≥ t− 1)

≥ 1− exp{−(t− 1)2/(2σ2
1)}.

The last inequality follows by the Gaussian tail bound: P(Z ≥ z) ≤ e−z
2/2 for z > 0.

By the preceding properties, we show that δ ≤ S4,aDh and hence (104) holds. Without
loss of generality, assume that δ 6= 0. For a ∈ (0, 1/2), let ta > 0 be determined such that
g(ta) = a. Then δ ≤ ta and, by property (ii), g(δ)/δ ≥ a/ta. If ta ≥ 1, then, by property
(iii), a = g(ta) ≥ 1

2 − exp{−(ta − 1)2/(2σ2
1)}, and hence

ta ≤ 1 +
√

2σ1

√
log

2

1− 2a
.

This inequality remains valid if ta < 1. Therefore, δ ≤ g(δ)ta/a ≤ g(δ)S4,a = DhS4,a, by
the assumption σ1 ≤M1/2 and the definition of S4,a.

When δ is negative, a similar argument taking h(x) = −ramp(x), which is the same as
ramp(−x)− 1, shows that −δ ≤ S4,aDh and hence (104) holds.
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[Proof of (105)] First, assume that σ1 − σ2 is nonnegative. Take h(x) = ramp(x − 1).
Notice that h(x) is (1/2)-Lipschitz and hence |h(x+δ)−h(x)| ≤ |δ|/2. Then by the triangle
inequality, we have

Eh(σ1Z)− Eh(σ2Z) ≤ Dh + |δ|/2.

Define g(t) = Eh(tZ) − Eh(σ2Z) for t ≥ 0. Then g(σ2) = 0 and g(σ1) ≤ Dh + |δ|/2. The
derivative g′(t) = 1

2E{Z1tZ∈[0,2]} can be calculated as

g′(t) =
1

2

∫ 2/t

0

1√
2π
ze−z

2/2 dz =
1

2
√

2π

{
1− e−

(2/t)2

2

}
.

By the mean value theorem, g(σ1) = g(σ1) − g(σ2) = g′(t)(σ1 − σ2) ≥ g′(M1/2)(σ1 − σ2),
where t ∈ [σ2, σ1] and hence t ≤M1/2 because σ1 ≤M1/2. Therefore, we have

σ1 − σ2 ≤ g′(M1/2)−1g(σ1) ≤ S5(Dh + |δ|/2),

by the definition S5 = g′(M1/2)−1 = 2
√

2π(1− e−2/M )−1.
When σ1 − σ2 is negative, a similar argument taking h(x) = −ramp(x− 1) shows that

σ2 − σ1 ≤ S5(Dh + |δ|/2) and hence (105) holds.

Lemma 40 (Local linearity 2) For δ1, δ2 ∈ R, 0 ≤ σ1, σ2, σ̃1, σ̃2 ≤ M1/2, and ρ, ρ̃ ∈
[−1, 1], denote Dh = Eh(X̃) − Eh(X), where h is a function on R2, X = (X1, X2)T is

a Gaussian random vector in R2 with mean 0 and variance matrix

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
, and

X̃ = (X̃1, X̃2)T is a Gaussian random vector in R2 with mean δ = (δ1, δ2)T and variance

matrix

(
σ̃2

1 σ̃1σ̃2ρ̃
σ̃1σ̃2ρ̃ σ̃2

2

)
. For h(x) = ±ramp(x1)ramp(x2), we have

|ρ̃σ̃1σ̃2 − ρσ1σ2| ≤M1/2‖σ̃ − σ‖1 + S7(|Dh|+ ∆/2),

where S7 = 4{( 1√
2πM

e−1/(8M))∨(1−2e−1/(8M))}−2, which behaves like to 4(1−2e−1/(8M))−2

as M → 0 or 8πMe1/(4M) as M → ∞, and ∆ = ‖δ‖1 + ‖σ̃ − σ‖1, with σ = (σ1, σ2)T and
σ̃ = (σ̃1, σ̃2)T.

Proof First, we handle the effect of different means and standard deviations between X̃
and X in Dh. Denote D†h = Eh(Ỹ ) − Eh(X), where Ỹ = (Ỹ1, Ỹ2)T is a Gaussian random

vector with mean 0 and variance matrix

(
σ2

1 σ1σ2ρ̃
σ1σ2ρ̃ σ2

2

)
. Then we have

|D†h| ≤ |Dh|+ ∆/2. (106)

In fact, assume that Ỹ = (σ1Z1, σ2Z2)T and X̃ = δ + (σ̃1Z1, σ̃2Z2)T, where (Z1, Z2)T

is a Gaussian random vector with mean 0 and variance matrix

(
1 ρ̃
ρ̃ 1

)
. For h(x) =
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±ramp(x1)ramp(x2), we have

|Eh(Ỹ )− Eh(X)|

≤ |Eh(X̃)− Eh(X)|+
∑
j=1,2

E |ramp(Ỹj)− ramp(X̃j)|

≤ |Eh(X̃)− Eh(X)|+
∑
j=1,2

{δ2
j + (σ̃j − σj)2}1/2/2

≤ |Eh(X̃)− Eh(X)|+ ∆/2.

The first inequality follows by the triangle inequality and the fact that ramp(·) is bounded
in [0, 1]. The second step uses E |ramp(Ỹj)−ramp(X̃j)| ≤ (1/2)E|Ỹj−X̃j | ≤ (1/2)E1/2[{δj+
(σ̃j−σj)Zj}2] = {δ2

j +(σ̃j−σj)2}1/2/2, by the fact that ramp(·) is (1/2)-Lipschitz, EZj = 0,

and E(Z2
j ) = 1. The third inequality follows because

√
u1 + u2 ≤

√
u1 +

√
u2.

Next, we show that

|ρ̃− ρ|σ1σ2 ≤ 8πMe1/(4M)|D†h|. (107)

Assume that ρ̃ − ρ is nonnegative. The other direction will be discussed later. Now take
h(x) = ramp(x1)ramp(x2), and define g(t) = Eh(Y ) − Eh(X) for t ∈ [−1, 1], where Y =

(Y1, Y2)T is a Gaussian random vector with mean 0 and variance matrix

(
σ2

1 σ1σ2t
σ1σ2t σ2

2

)
.

Then g(ρ) = 0 and g(ρ̃) = D†h. The derivative g′(t) can be calculated as

g′(t) =
1

4
σ1σ2E1Y1∈[−1,1]1Y2∈[−1,1]. (108)

In fact, Y1 can be represented as Y1 = tσ1
σ2
Y2+
√

1− t2σ1Z1, where Z1 is a standard Gaussian
variable independent of Y2. Then direct calculation yields

g′(t) =
1

2
E1Y1∈[−1,1]

(
σ1

σ2
Y2 −

t√
1− t2

σ1Z1

)
ramp(Y2)

=
1

2
E1Y1∈[−1,1]

{
σ1

σ2
Y2 −

t

1− t2
(Y1 − t

σ1

σ2
Y2)

}
ramp(Y2)

=
1

2
E1Y1∈[−1,1]

(
1

1− t2
σ1

σ2
Y2 −

t

1− t2
Y1

)
ramp(Y2)

=
1

2

1

1− t2
σ1

σ2
E1Y1∈[−1,1]

(
Y2 − t

σ2

σ1
Y1

)
ramp(Y2).

By Stein’s lemma using the fact that Y2 given Y1 is Gaussian with mean tσ2
σ1
Y1 and variance

(1− t2)σ2
2, we have

E

{(
Y2 − t

σ2

σ1
Y1

)
ramp(Y2)

∣∣∣Y1

}
= E

{
(1− t2)σ2

2

1

2
1Y2∈[−1,1]

∣∣∣Y1

}
.

Substituting this into the expression for g′(t) gives the formula (108).
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To show (107), we derive a lower bound on g′(t). Assume without loss of generality that
σ1 ≤ σ2, because formula (108) is symmetric in Y1 and Y2. By the previous representation
of Y1, we have |Y1| ≤

√
1− t2σ1|Z1|+ σ1

σ2
|Y2| ≤ σ1|Z1|+ |Y2| and hence

g′(t) ≥ 1

4
σ1σ2E1Y1∈[−1,1]1Y2∈[−1/2,1/2]

≥ 1

4
σ1σ2E1σ1|Z1|∈[−1/2,1/2]1Y2∈[−1/2,1/2]

≥ S−1
7 σ1σ2.

where S7 = 4{( 1√
2πM1/2 e−1/(8M)) ∨ (1 − 2e−1/(8M))}−2. The last inequality follows by

the independence of Z1 and Y2, σ1 ≤ M1/2, σ2 ≤ M1/2, and the two probability bounds:
P(M1/2|Z1| ≤ 1/2) ≥ 1√

2πM
e−(1/2)2/(2M) and P(M1/2|Z1| ≤ 1/2) ≥ 1 − 2e−(1/2)2/(2M).

Hence by the mean value theorem, we have

g(ρ̃) = g(ρ̃)− g(ρ) ≥ (ρ̃− ρ)σ1σ2S
−1
7 ,

which gives the desired bound (107) in the case of ρ̃ ≥ ρ:

(ρ̃− ρ)σ1σ2 ≤ S7g(ρ̃) = S7D
†
h.

When ρ̃ − ρ is negative, a similar argument taking h(x) = −ramp(x1)ramp(x2) and
interchanging the roles of Ỹ and X leads to (107).

Finally, by the triangle inequality, we find

|ρ̃σ̃1σ̃2 − ρσ1σ2| ≤ |σ̃1σ̃2 − σ1σ2|+ |ρ̃− ρ|σ1σ2

≤M1/2(|σ̃1 − σ1|+ |σ̃2 − σ2|) + |ρ̃− ρ|σ1σ2.

Combining this with (106) and (107) leads to the desired result.

Remark 41 Define a ramp main-effect and interaction class

R2 =
{
±ramp(xj − c), (x1, x2) ∈ R2 : j = 1, 2, c = 0, 1

}⋃{
±ramp(x1)ramp(x2), (x1, x2) ∈ R2

}
.

In the setting of Lemma 40, suppose that for fixed a ∈ (0, 1/2),

D
def
= sup

h∈R2

{
Eh(X̃)− Eh(X)

}
≤ a.

Then combining Lemma 38–40 yields

max(|δ1|, |δ2|) ≤ S4,aD, max(|σ̃1 − σ1|, |σ̃2 − σ2|) ≤ S6,aD,

max(|σ̃2
1 − σ2

1|, |σ̃2
2 − σ2

2|, |ρ̃σ̃1σ̃2 − ρσ1σ2|) ≤ S8,aD

where S8,a = S7(1 + S4,a + S6,a) + 2M1/2S6,a. This shows that the moment matching dis-
crepancy D over R2 delivers upper bounds, up to scaling constants, on the mean, variance,
and covariance differences, provided that D is sufficiently small.
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Proposition 42 In the setting of Proposition 23 or Proposition 21, suppose that for a ∈
(0, 1/2),

D
def
= sup

γ∈Γrp,pen1(γ)=1

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ a. (109)

Then we have

‖µ̂− µ∗‖∞ ≤ S4,aD,

‖Σ̂− Σ∗‖max ≤ S8,aD,

where S4,a and S8,a are defined as in Lemma 38 and Remark 41 with M = M1.

Proof For any γ ∈ Γrp with pen1(γ) = 1, the function hγ,µ̂(x) = hγ(x−µ̂) can be expressed
as hrp,β,c(x− µ̂) with pen1(β) = 1. For j = 1, . . . , p, by restricting hγ,µ̂(x) in (109) to those
with hγ(x) defined as ramp functions of xj and using Remark 39, we obtain

|µ̂j − µ∗j | ≤ S4,aD, |σ̂j − σ∗j | ≤ S6,aD.

For 1 ≤ i 6= j ≤ p, by restricting hγ,µ̂(x) in (109) to those with hγ(x) defined as ramp
interaction functions of (xi, xj) and using Remark 41, we obtain

max
(
|Σ̂ii − Σ∗ii|, |Σ̂jj − Σ∗jj |, |Σ̂ij − Σ∗ij |

)
≤ S8,aD,

where Σ̂ij and Σ∗ij are the (i, j)th elements of Σ̂ and Σ∗ respectively. Combining the
preceding two displays leads to the desired result.

C.3 Details in main proof of Theorem 12

Lemma 43 Suppose that X1, . . . , Xn are independent and identically distributed as X ∼
Np(0,Σ) with ‖Σ‖op ≤ M2. For k fixed knots ξ1, . . . , ξk in R, denote ϕ(x) =
(ϕT

1 (x), . . . , ϕT
k (x))T, where ϕl(x) ∈ Rp is obtained by applying t 7→ (t − ξl)+ componen-

twise to x ∈ Rp for l = 1, . . . , k. Then the following results hold.

(i) ϕ(X)− Eϕ(X) is a sub-gaussian random vector with tail parameter (kM2)1/2.

(ii) For any δ > 0, we have that with probability at least 1− δ,

sup
‖w‖2=1

∣∣∣∣∣ 1n
n∑
i=1

wTϕ(Xi)− EwTϕ(X)

∣∣∣∣∣
≤ Csp21(kM2)1/2

√
kp+ log(δ−1)

n
,

where Csp21 =
√

2Csg7Csg5 and (Csg5, Csg7) are the universal constants in Lemmas 69 and
71.
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(iii) Let A2 = {A ∈ Rkp×kp : ‖A‖F = 1, AT = A}. For any δ > 0, we have that with
probability at least 1− 3δ, both the inequality in (ii) and

1√
kp

sup
A∈A2

∣∣∣∣∣ 1n
n∑
i=1

ϕT(Xi)Aϕ(Xi)− EϕT(X)Aϕ(X)

∣∣∣∣∣
≤ Csp22kM21

{√
kp+ log(δ−1)

n
+
kp+ log(δ−1)

n

}
,

where M21 = M
1/2
2 (M

1/2
2 +

√
2π‖ξ‖∞), ‖ξ‖∞ = maxl=1,...,k |ξl|, Csp22 =

√
2/πCsp21 +Csg8,

and Csg8 is the universal constant in Lemma 72.

Proof (i) First, we show that wTϕ(x) is a k1/2-Lipschitz function for any L2 unit vector w ∈
Rkp. For any x1, x2 ∈ Rp, we have |wT(ϕ(x1)− ϕ(x2))| ≤

∑k
l=1 ‖wl‖2‖ϕl(x1)− ϕl(x2)‖2 ≤∑k

l=1 ‖wl‖2‖x1 − x2‖ ≤ k1/2‖x1 − x2‖, where w is partitioned as w = (wT
1 , . . . , w

T
k )T, and

‖ϕl(x1)−ϕl(x2)‖2 ≤ ‖x1−x2‖2 because each component of ϕl(x) is 1-Lipschitz, as a function
of only the corresponding component of x. Next, X can be represented as Σ1/2Z, where Z
is a standard Gaussian random vector. For any z1, z2 ∈ Rp and L2 unit vector w ∈ Rkp, we
have

|wTϕ(Σ1/2z1)− wTϕ(Σ1/2z2)|
≤ k1/2‖Σ1/2(z1 − z2)‖2 ≤ k1/2‖Σ1/2‖op‖z1 − z2‖2 ≤ (kM2)1/2‖z1 − z2‖2.

Hence wTϕ(X) is a (kM2)1/2-Lipschitz function of the standard Gaussian vector Z. By
Theorem 5.6 in Boucheron et al. (2013), the centered version satisfies that for any t > 0,

P (|wT(ϕ(X)− Eϕ(X))| > t) ≤ 2e−t
2/(2kM2).

That is, wT(ϕ(X) − Eϕ(X)) is sub-gaussian with tail parameter (kM2)1/2. The desired
result follows by the definition of sub-gaussian random vectors.

(ii) As shown above, wT(ϕ(X)− Eϕ(X)) is sub-gaussian with tail parameter (kM2)1/2

for any L2 unit vector w. Then wT{n−1
∑n

i=1 ϕ(Xi) − Eϕ(X)} is sub-gaussian with tail
parameter Csg5(kM2/n)1/2 by sub-gaussian concentration (Lemma 69). Hence by definition,
we have that n−1

∑n
i=1 ϕ(Xi)−Eϕ(X) is a sub-gaussian random vector with tail parameter

Csg5(kM2/n)1/2. Notice that

sup
‖w‖2=1

∣∣∣∣∣ 1n
n∑
i=1

wTϕ(Xi)− EwTϕ(X)

∣∣∣∣∣ =

∥∥∥∥∥ 1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

∥∥∥∥∥
2

.

The desired result follows from Lemma 71: with probability at least 1− δ, we have∥∥∥∥∥ 1

n

n∑
i=1

ϕ(Xi)− Eϕ(X)

∥∥∥∥∥
2

≤ Csg7Csg5(kM2)1/2

{√
kp

n
+

√
log(δ−1)

n

}

≤
√

2Csg7Csg5(kM2)1/2

√
kp+ log(δ−1)

n
.
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(iii) The difference of interest can be expressed in terms of the centered variables as

1

n

n∑
i=1

ϕT
i Aϕi − EϕTAϕ

=
1

n

n∑
i=1

(ϕi − Eϕ)TA(ϕi − Eϕ)− E{(ϕ− Eϕ)TA(ϕ− Eϕ)} (110)

+
1

n

n∑
i=1

2(Eϕ)TA(ϕi − Eϕ). (111)

We handle the concentration of the two terms separately. Denote ϕi = ϕ(Xi), ϕ = ϕ(X),
ϕ̃i = ϕi − Eϕ, and ϕ̃ = ϕ− Eϕ.

First, for A ∈ A2 the term in (111) can be bounded as follows:∣∣∣∣∣2(Eϕ)TA
1

n

n∑
i=1

ϕ̃i

∣∣∣∣∣ ≤ 2‖Eϕ‖2‖A‖op

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
2

≤ 2‖Eϕ‖2

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
2

≤ 2
√
kp

(
M

1/2
2√
2π

+ ‖ξ‖∞

)∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
2

,

where ‖ξ‖∞ = maxl=1,...,k |ξl|. The second inequality holds because ‖A‖op ≤ ‖A‖F = 1.

The third inequality holds because ‖Eϕl‖2 ≤
√
p(M

1/2
2 /
√

2π + |ξl|) by Lemma 59. By (ii),
for any δ > 0, we have that with probability at least 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃i

∥∥∥∥∥
2

≤ Csp21(kM2)1/2

√
kp+ log(δ−1)

n
.

From the preceding two displays, we obtain that with probability at least 1− δ,

1√
kp

sup
A∈A2

∣∣∣∣∣2(Eϕ)TA
1

n

n∑
i=1

ϕ̃i

∣∣∣∣∣
≤
√

2

π
Csp21(kM2)1/2

(
M

1/2
2 +

√
2π‖ξ‖∞

)√kp+ log(δ−1)

n
. (112)

Next, consider an eigen-decomposition A =
∑kp

l=1 λlwlw
T
l , where λl’s are eigenvalues

and wl’s are the eigenvectors with ‖wl‖2 = 1. The concentration of the term in (110) can
be controlled as follows:

sup
A∈A2

∣∣∣∣∣ 1n
n∑
i=1

ϕ̃T
i Aϕ̃i − Eϕ̃TAϕ̃

∣∣∣∣∣ = sup
A∈A2

∣∣∣∣∣
kp∑
l=1

λlw
T
l

(
1

n

n∑
i=1

ϕ̃iϕ̃
T
i − Eϕ̃ϕ̃T

)
wl

∣∣∣∣∣
≤ sup

A∈A2

(
kp∑
l=1

|λl|

)∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃iϕ̃
T
i − Eϕ̃ϕ̃T

∥∥∥∥∥
op

≤
√
kp

∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃iϕ̃
T
i − Eϕ̃ϕ̃T

∥∥∥∥∥
op

.
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The last inequality uses the fact that ‖A‖F = (
∑kp

l=1 λ
2
l )

1/2 = 1 and hence
∑kp

l=1 |λl| ≤
√
kp

for A ∈ A2. From (i), ϕ̃i is a sub-gaussian random vector with tail parameter (kM2)1/2.
By Lemma 72, for any δ > 0, we have that with probability at least 1− 2δ,∥∥∥∥∥ 1

n

n∑
i=1

ϕ̃iϕ̃
T
i − Eϕ̃ϕ̃T

∥∥∥∥∥
op

≤ Csg8kM2

{√
kp+ log(δ−1)

n
+
kp+ log(δ−1)

n

}
,

From the preceding two displays, we obtain that with probability at least 1− 2δ,

1√
kp

sup
A∈A2

∣∣∣∣∣ 1n
n∑
i=1

ϕ̃T
i Aϕ̃i − Eϕ̃TAϕ̃

∣∣∣∣∣
≤ Csg8kM2

{√
kp+ log(δ−1)

n
+
kp+ log(δ−1)

n

}
. (113)

Combining the two bounds (112) and (113) gives the desired result.

Proposition 44 In the setting of Proposition 24, it holds with probability at least 1 − 4δ
that for any γ = (γ0, γ1, γ2)T ∈ Γ,

Kf (Pn, Pθ∗ ;hγ,µ∗) ≤ −f ′(3/5)(ε+
√
ε/(nδ))

+ pen2(γ1)(5/3)Csp21M
1/2
2 R1λ21

+ pen2(γ2)(25
√

5/3)Csp22M21R1
√
pλ31,

where Csp21 and Csp22 are defined as in Lemma 43, M21 = M
1/2
2 (M

1/2
2 + 2

√
2π), and

λ21 =

√
5p+ log(δ−1)

n
, λ31 = λ21 +

5p+ log(δ−1)

n
.

Proof Consider the event Ω1 = {|ε̂ − ε| ≤
√
ε(1− ε)/(nδ)}. By Chebyshev’s inequal-

ity, we have P(Ω1) ≥ 1 − δ. In the event Ω1, we have |ε̂ − ε| ≤ 1/5 by the assumption√
ε(1− ε)/(nδ) ≤ 1/5 and hence ε̂ ≤ 2/5 by the assumption ε ≤ 1/5. By Lemma 31 with

ε1 = 2/5, it holds in the event Ω1 that for any γ ∈ Γ,

Kf (Pn, Pθ∗ ;hγ,µ∗)

≤ −f ′(3/5)ε̂+R1

∣∣∣EPθ∗,nhγ,µ∗(x)− EPθ∗hγ,µ∗(x)
∣∣∣

≤ −f ′(3/5)(ε+
√
ε/(nδ)) +R1

∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)
∣∣∣ . (114)

The last step also uses the fact that EPθ∗hγ,µ∗(x) = EP(0,Σ∗)hγ(x) and also EPθ∗,nhγ,µ∗(x) =
EPθ∗,nhγ(x− µ∗), by the definition hγ,µ∗(x) = hγ(x− µ∗).

Next, conditionally on the contamination indicators (U1, . . . , Un) such that the event
Ω1 holds, we have that {Xi : Ui = 1, i = 1, . . . , n} are n1 independent and identically
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distributed observations from Pθ∗ , where n1 =
∑n

i=1(1 − Ui) = n(1 − ε̂) ≥ (3/5)n. Denote
as Ω2 the event that for any γ1 and γ2,∣∣∣EPθ∗,nγT

1ϕ(x− µ∗)− EP(0,Σ∗)γ
T
1ϕ(x)

∣∣∣ ≤ ‖γ1‖2Csp21M
1/2
2

√
5p+ log(δ−1)

(3/5)n
,

and ∣∣∣EPθ∗,nγT
2 (ϕ(x− µ∗)⊗ ϕ(x− µ∗))− EP(0,Σ∗)γ

T
2 (ϕ(x)⊗ ϕ(x))

∣∣∣
≤ ‖γ2‖2Csp225M21

√
5p

{√
5p+ log(δ−1)

(3/5)n
+

5p+ log(δ−1)

(3/5)n

}
,

where Csp21, Csp22, and M21 are defined as in Lemma 43 with ‖ξ‖∞ = 1. In the event Ω2,
the preceding inequalities imply that for any γ = (γ0, γ

T
1 , γ

T
2 )T ∈ Γ,∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)

∣∣∣
≤ pen2(γ1)(5/3)Csp21M

1/2
2 λ21 + pen2(γ2)(5/3)Csp225M21

√
5pλ31, (115)

where hγ(x) = γ0 + γT
1ϕ(x) + γT

2 (ϕ(x) ⊗ ϕ(x)), pen2(γ1) = ‖γ1‖2, and pen2(γ2) = ‖γ2‖2.
By applying Lemma 43 with k = 5 to {Xi − µ∗ : Ui = 1, i = 1, . . . , n}, we have
P(Ω2|U1, . . . , Un) ≥ 1 − 3δ for any (U1, . . . , Un) such that Ω1 holds. Taking the expec-
tation over (U1, . . . , Un) given Ω1 shows that P(Ω2|Ω1) ≥ 1 − 3δ and hence P(Ω1 ∩ Ω2) ≥
(1− δ)(1− 3δ) ≥ 1− 4δ.

Combining (114) and (115) in the event Ω1 ∩ Ω2 indicates that, with probability at
least 1− 4δ, the desired inequality holds for any γ ∈ Γ.

Lemma 45 Suppose that X1, . . . , Xn are independent and identically distributed as X ∼ Pε.
Let b > 0 be fixed and g : Rp → [0, 1]q be a vector of fixed functions. For a convex and twice
differentiable function f : (0,∞)→ R, define

F (X1, . . . , Xn)

= sup
‖w‖2=1,µ∈Rp,η0∈[0,1]q

{
Kf (Pn, Pθ̂; bw

Tgµ,η0)−Kf (Pε, Pθ̂; bw
Tgµ,η0)

}
= sup
‖w‖2=1,µ∈Rp,η0∈[0,1]q

{
1

n

n∑
i=1

f ′(ebw
Tgµ,η0 (Xi))− Ef ′(ebw

Tgµ,η0 (X))

}
,

where gµ,η0(x) = g(x − µ) − η0. Suppose that conditionally on (X1, . . . , Xn), the random
variable Zn,j = supµ∈Rp,η0∈[0,1]q |n−1

∑n
i=1 εigµ,η0,j(Xi)| is sub-gaussian with tail parame-

ter
√
Vg/n for j = 1, . . . , q, where (ε1, . . . , εn) are Rademacher variables, independent of

(X1, . . . , Xn), and gµ,η0,j : Rp → [−1, 1] denotes the jth component of gµ,η0. Then for any
δ > 0, we have that with probability at least 1− 2δ,

F (X1, . . . , Xn) ≤ bR2,b
√
q

{
Csg,12

√
2qVg
n

+

√
2q log(δ−1)

n

}
,

where R2,b
√
q = sup|u|≤b√q

d
duf

′(eu) and Csg,12 is the universal constant in Lemma 67.
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Proof First, F satisfies the bounded difference condition, because |bwTgµ,η0 | ≤ b
√
q with

‖w‖2 ≤ 1 and f ′ is non-decreasing by the convexity of f :

sup
X1,...,Xn,X′i

∣∣F (X1, . . . , Xn)− F (X1, . . . , X
′
i, . . . , Xn)

∣∣
≤ f ′(eb

√
q)− f ′(e−b

√
q)

n
≤

2b
√
qR2,b

n
,

where R2,b
√
q = sup|u|≤b√q

d
duf

′(eu). By McDiarmid’s inequality (McDiarmid, 1989), for

any t > 0, we have that with probability at least 1− 2e−2nt2 ,

|F (X1, . . . , Xn)− EF (X1, . . . , Xn)| ≤ 2b
√
qR2,bt.

For any δ > 0, taking t =
√

log(δ−1)/(2n) shows that with probability at least 1− 2δ,

|F (X1, . . . , Xn)− EF (X1, . . . , Xn)| ≤ bR2,b

√
2q log(δ−1)

n
.

Next, the expectation of F (X1, . . . , Xn) can be bounded as follows:

E sup
‖w‖2=1,µ∈Rp,η0∈[0,1]q

{
1

n

n∑
i=1

f ′(ebw
Tgµ,η0 (Xi))− Ef ′(ebw

Tgµ,η0 (X))

}

≤ 2E sup
‖w‖2=1,µ∈Rp,η0∈[0,1]q

{
1

n

n∑
i=1

εif
′(ebw

Tgµ,η0 (Xi))

}
(116)

≤ 2R2,b
√
q E sup
‖w‖2=1,µ∈Rp,η0∈[0,1]q

{
1

n

n∑
i=1

εibw
Tgµ,η0(Xi)

}
(117)

≤ 2bR2,b
√
q E sup

µ∈Rp,η0∈[0,1]q

∥∥∥∥∥ 1

n

n∑
i=1

εigµ,η0(Xi)

∥∥∥∥∥
2

≤ 2bR2,b
√
qCsg,12

√
2qVg
n

. (118)

Line (116) follows from the symmetrization Lemma 77, where (ε1, . . . , εn) are Rademacher
variables, independent of (X1, . . . , Xn). Line (117) follows by Lemma 78, because f ′(et) is
R2,b

√
q-Lipschitz in u ∈ [−b√q, b√q]. Line (118) follows because

E sup
µ∈Rp,η0∈[0,1]q

∥∥∥∥∥ 1

n

n∑
i=1

εigµ,η0(Xi)

∥∥∥∥∥
2

≤

E sup
µ∈Rp,η0∈[0,1]q

∥∥∥∥∥ 1

n

n∑
i=1

εigµ,η0(Xi)

∥∥∥∥∥
2

2


1/2

≤


q∑
j=1

E sup
µ∈Rp,η0∈[0,1]q

∣∣∣∣∣ 1n
n∑
i=1

εigµ,η0,j(Xi)

∣∣∣∣∣
2


1/2

≤ Csg,12

√
2qVg
n

.
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For the last step, we use the assumption that conditionally on (X1, . . . , Xn), the random
variable Zn,j = supµ∈Rp,η0∈[0,1]q |n−1

∑n
i=1 εigµ,η0,j(Xi)| is sub-gaussian with tail parame-

ter
√
Vg/n for each j = 1, . . . , q, and apply Lemma 67 to obtain E(Z2

n,j |X1, . . . , Xn) ≤
C2

sg,12(2Vg/n), and then E(Z2
n,j) ≤ C2

sg,12(2Vg/n).

Combining the tail probability and expectation bounds yields the desired result.

Lemma 46 Suppose that f : (0,∞)→ R is convex and three-times differentiable. Let b > 0
be fixed.

(i) For any function h : Rp → [−b, b], we have

Kf (Pε, Pθ̂;h) ≥ f ′(e−b)ε+ f ′(eEPθ∗ h(x))− f#(e
EP

θ̂
h(x)

)− 1

2
R33,b,

where R33,b = R31,bVarPθ∗h(x)+R32,bVarPθ̂h(x), R31,b = sup|u|≤b
d2

du2 {−f ′(eu)}, and R32,b =

sup|u|≤b
d2

du2 f
#(eu).

(ii) If, in addition, EPθ∗h(x) = 0 and EPθ̂h(x) ≤ 0, then

Kf (Pε, Pθ̂;h) ≥ f ′(e−b)ε+R4,b

{
EPθ∗h(x)− EPθ̂h(x)

}
− 1

2
R33,b,

where R4,b = inf |u|≤b
d

duf
#(eu).

Proof (i) First, Kf (Pε, Pθ̂;h) can be bounded as follows:

Kf (Pε, Pθ̂;h)

= εEQf
′(eh(x)) + (1− ε)EPθ∗f

′(eh(x))− EPθ̂f
#(eh(x))

≥ f ′(e−b)ε+ EPθ∗f
′(eh(x))− EPθ̂f

#(eh(x)),

= f ′(e−b)ε+Kf (Pθ∗ , Pθ̂;h),

where the inequality follows because f ′(eh(x)) ≥ f ′(e−b) for h(x) ∈ [−b, b] by the convexity
of f . Next, consider the function

κ(t) = EPθ∗f
′(eE1+th̃1(x))− EPθ̂f

#(eE2+th̃2(x)),

where E1 = EPθ∗h(x), E2 = EPθ̂h(x), h̃1(x) = h(x)−E1, and h̃2(x) = h(x)−E2. A Taylor
expansion of κ(1) = Kf (Pθ∗ , Pθ̂;h) about t = 0 yields

Kf (Pθ∗ , Pθ̂;h) = f ′(eE1)− f#(eE2)− 1

2
κ′′(t),

where for some t ∈ [0, 1],

κ′′(t) = −EPθ∗

{
h̃2

1(x)
d2

du2
f ′(eE1+u)|u=th̃1(x)

}
+ EPθ̂

{
h̃2

2(x)
d2

du2
f#(eE2+u)|u=th̃2(x)

}
.
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The desired result then follows because E1 + th̃1(x) ∈ [−b, b] and E2 + th̃2(x) ∈ [−b, b] for
t ∈ [0, 1] and hence κ′′(t) ≤ R33,b by the definition of R33,b.

(ii) The inequality from (i) can be rewritten as

Kf (Pε, Pθ̂;h)

≥ f ′(e−b)ε+
{
f ′(eEPθ∗ h(x))− f#(eEPθ∗ h(x))

}
+ f#(eEPθ∗ h(x))− f#(e

EP
θ̂
h(x)

)− 1

2
R33,b.

If EPθ∗h(x) = 0, then

Kf (Pε, Pθ̂;h) ≥ f ′(e−b)ε+ f#(eEPθ∗ h(x))− f#(e
EP

θ̂
h(x)

)− 1

2
R33,b.

Moreover, if EPθ∗h(x)− EPθ̂h(x) ≥ 0, then

f#(eEPθ∗ h(x))− f#(e
EP

θ̂
h(x)

) ≥ R4,b

{
EPθ∗h(x)− EPθ̂h(x)

}
.

by the mean value theorem and the definition of R4,b. Combining the preceding two
displays gives the desired result.

Proposition 47 Let b2 > 0 be fixed and b†2 = b2
√

2p. In the setting of Proposition 24, it
holds with probability at least 1−2δ that for any γ ∈ Γrp1 with pen2(γ) = b2, EPθ∗hγ,µ̂(x) = 0,
and EPθ̂hγ,µ̂(x) ≤ 0,

Kf (Pn, Pθ̂;hγ,µ̂)

≥ R
4,b†2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
+ f ′(e−b

†
2)ε− 4C2

sg,12M2b
2
2R3,b†2

− b2R2,b†2
λ22

where R3,b = R31,b +R32,b as in Lemma 36 and, with Crad5 = Csg,12Crad3,

λ22 = Crad5

√
16p

n
+

√
2p log(δ−1)

n
,

depending on the universal constants Csg,12 and Crad3 in Lemma 67 and Corollary 82.

Proof By definition, for any γ ∈ Γrp1, hγ(x) can be represented as hrp1,β,c(x) such that
β0 = γ0 and pen2(β) =

√
2pen2(γ):

hrp1,β,c(x) = β0 +

p∑
j=1

β1jramp(xj − cj)

= β0 + βT
1ϕrp,c(x),

where c = (c1, . . . , cp)
T with cj ∈ {0, 1}, β = (β0, β

T
1 )T with β1 = (β11, . . . , β1p)

T, and
ϕrp,c(x) : Rp → [0, 1]p denotes the vector of functions with the jth component ramp(xj−cj)
for j = 1, . . . , p. Then for any γ ∈ Γrp1 with pen2(γ) = b2, we have β0 = γ0 and pen2(β) =√

2b2 correspondingly, and hence hγ(x) − γ0 = hrp1,β,c(x) − β0 ∈ [−b2
√

2p, b2
√

2p] by the
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Cauchy–Schwartz inequality and the boundedness of the ramp function in [0, 1]. Moreover,
hrp1,β,c(x) can be expressed in the form β0 + pen2(β)wTg(x), where for q = 2p, w ∈ Rq
is an L2 unit vector, g : Rp → [0, 1]q is a vector of functions, including ramp(xj) and
ramp(xj−1) for j = 1, . . . , p. Parenthetically, at most one of the coefficients in w associated
with ramp(xj) and ramp(xj − 1) is nonzero for each j, although this property is not used
in the subsequent discussion.

For any γ ∈ Γrp1 with pen2(γ) = b2 and EPθ∗hγ,µ̂(x) = 0, the function hγ,µ̂(x) can be
expressed as

hγ,µ̂(x) = βT
1 {ϕrp,c(x− µ̂)− β01} ,

where β01 = EPθ∗ϕrp,c(x − µ̂). The mean-centered ramp functions in ϕrp,c(x − µ̂) − β01

are bounded between [−1, 1], and hence hγ,µ̂(x) ∈ [−b2
√

2p, b2
√

2p] similarly as above.
Moreover, such hγ,µ̂(x) can be expressed in the form pen2(β)wT{g(x−µ̂)−η0}, where w ∈ Rq
is an L2 unit vector, g(x) : Rp → [0, 1]q is defined as above, and η0 = EPθ∗g(x− µ̂) ∈ [0, 1]q

by the boundedness of the ramp function in [0, 1].
Next, Kf (Pn, Pθ̂;hγ,µ̂) can be bounded as

Kf (Pn, Pθ̂;hγ,µ̂)

≥ Kf (Pε, Pθ̂;hγ,µ̂)− {Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)}. (119)

For any γ ∈ Γrp1 with pen2(γ) = b2, EPθ∗hγ,µ̂(x) = 0, and EPθ̂hγ,µ̂(x) ≤ 0, applying

Lemma 46(ii) with h = hγ,µ̂ and b = b†2 = b2
√

2p yields

Kf (Pε, Pθ̂;hγ,µ̂) ≥ f ′(e−b
†
2)ε

+R
4,b†2

{
EPθ∗h(x)− EPθ̂h(x)

}
− 1

2

{
R

31,b†2
VarPθ∗hγ,µ̂(x) +R

32,b†2
VarPθ̂hγ,µ̂(x)

}
.

By Lemma 62(i), VarPθ∗hγ,µ̂(x) can bounded as follows:

VarPθ∗hγ,µ̂(x) = VarPθ∗β
T
1ϕrp,c(x− µ̂)

≤ ‖β1‖22 · 2C2
sg,12(

√
2)2‖Σ∗‖op = 4pen2

2(β)C2
sg,12M2.

Similarly, VarPθ∗hγ,µ̂(x) can also be bounded by 4pen2
2(β)C2

sg,12M2, because ‖Σ̂‖op ≤ M2.
Hence Kf (Pε, Pθ̂;hγ,µ̂) can be bounded as

Kf (Pε, Pθ̂;hγ,µ̂)

≥ f ′(e−b
†
2)ε+R

4,b†2

{
EPθ∗h(x)− EPθ̂h(x)

}
− 4C2

sg,12M2b
2
2R3,b†2

, (120)

where R3,b = R31,b + R32,b as in Lemma 36. Moreover, by Lemma 34 with b =
√

2b2 and
g(x) ∈ [0, 1]q defined above, it holds with probability at least 1 − 2δ that for any γ ∈ Γrp1

with γ0 = 0 and pen2(γ) = b2,

{Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)}

≤ b2R2,b2
√
q

{
Csg,12

√
2qVg
n

+

√
q log(δ−1)

n

}

≤ b2R2,b2
√

2p

{
Csg,12Crad3

√
16p

n
+

√
2p log(δ−1)

n

}
, (121)
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where Vg = 4C2
rad3 is determined in Lemma 34 as follows. For j = 1, . . . , q, consider

the function class Gj = {gµ,η0,j : µ ∈ Rp, η0 ∈ [0, 1]q}, where µ = (µ1, . . . , µp)
T, η0 =

(η01, . . . , η0q)
T, and, as defined in Lemma 34, gµ,η0,j(x) is of the form ramp(xj1 − µj1)− η0j

or ramp(xj1−µj1−1)−η0j . By Lemma 60, the VC index of moving-knot ramp functions is
2. By Lemma 61, the VC index of constant functions is also 2. By applying Corollary 82 (ii)
with vanishing G, we obtain that conditionally on (X1, . . . , Xn), the random variable Zn,j =
supµ∈Rp,η0∈[0,1]q |n−1

∑n
i=1 εigµ,η0,j(Xi)| = supfj∈Gj |n

−1
∑n

i=1 εifj(Xi)| is sub-gaussian with

tail parameter Crad3

√
4/n for j = 1, . . . , q.

Combining the inequalities (119)–(121) leads to the desired result.

Proposition 48 In the setting of Proposition 24 or Proposition 26, suppose that for a ∈
(0, 1/2),

D
def
= sup

γ∈Γrp1,pen2(γ)=
√

1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
≤ a. (122)

Then we have

‖µ̂− µ∗‖2 ≤ S4,aD, (123)

‖σ̂ − σ∗‖2 ≤ S5 (D + ‖µ̂− µ∗‖2/2) ≤ S6,aD, (124)

where S4,a, S5, and S6,a are defined as in Lemma 38 and Remark 39 with M = M2.

Proof For any γ ∈ Γrp1 with pen2(γ) =
√

1/2, the function hγ(x) can be obtained as
hrp1,β,c(x) with pen2(β) = 1. For j = 1, . . . , p, we restrict hγ,µ̂(x) in (122) such that hγ(x)
is a ramp function of xj , in the form ±ramp(xj−c) for c ∈ {0, 1}. Applying Lemma 38 shows

that there exists h
(1)
j (xj) in the form ±ramp(xj) and h

(2)
j (xj) in the form ±ramp(xj − 1)

such that

|µ̂j − µ∗j | ≤ S4,a

{
EPθ∗h

(1)
j (xj − µ̂j)− EPθ̂h

(1)
j (xj − µ̂j)

}
, (125)

|σ̂j − σ∗j | ≤ S5

{
EPθ∗h

(2)
j (xj − µ̂j)− EPθ̂h

(2)
j (xj − µ̂j)

}
+ S5|µ̂j − µ∗j |/2. (126)

From (125), we have that for any L2 unit vector w = (w1, . . . , wp)
T,

p∑
j=1

|wj(µ̂j − µj)| ≤ S4,a

p∑
j=1

|wj |
{

EPθ∗h
(1)
j (xj − µ̂j)− EPθ̂h

(1)
j (xj − µ̂j)

}
= S4,a

{
EPθ∗h

(1)(x− µ̂)− EPθ̂h
(1)(x− µ̂)

}
,

where h(1)(x) =
∑p

j=1 |wj |h
(1)
j (xj). In fact, h(1)(x) can be expressed as hrp1,β,c(x) such that

c = (0, . . . , 0)T and each component in β1 is either |wj | or −|wj | for j = 1, . . . , p, which
implies that pen2(β) = ‖w‖2 = 1. Hence by the definition of D, we obtain (123).
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Similarly, from (126), we have that for any L2 unit vector w = (w1, . . . , wp)
T,

p∑
j=1

|wj(σ̂j − σj)|

≤ S5

p∑
j=1

|wj |
{

EPθ∗h
(2)
j (xj − µ̂j)− EPθ̂h

(2)
j (xj − µ̂j)

}
+ S5

p∑
j=1

|wj(µ̂j − µ∗j )|/2

= S5

{
EPθ∗h

(2)(x− µ̂)− EPθ̂h
(2)(x− µ̂)

}
+ S5|wT(µ̂− µ∗)|/2,

where h(2)(x) =
∑p

j=1 |wj |h
(2)
j (xj), which can be expressed in the form hrp1,β,c(x) with

c = (1, . . . , 1)T and pen2(β) = ‖w‖2 = 1. Hence by the definition of D, we obtain (124).

Proposition 49 Let b3 > 0 be fixed and b†3 = b3
√
p(p− 1). In the setting of Proposition 24,

it holds with probability at least 1−2δ that for any γ ∈ Γrp2 with pen2(γ) = b3, EPθ∗hγ,µ̂(x) =
0, and EPθ̂hγ,µ̂(x) ≤ 0,

Kf (Pn, Pθ̂;hγ,µ̂)

≥ R
4,2b†3

{
EPθ∗h(x)− EPθ̂h(x)

}
+ f ′(e−2b†3)ε− (80C2

sg,12M2)pb23R3,2b†3
−√pb3R2,b†3

λ32,

where R3,b = R31,b +R32,b as in Lemma 36 and, with Crad5 = Csg,12Crad3,

λ32 = Crad5

√
12(p− 1)

n
+

√
(p− 1) log(δ−1)

n
,

depending on the universal constants Csg,12 and Crad3 in Lemma 67 and Corollary 82.

Proof By definition, for any γ ∈ Γrp2, hγ(x) can be represented as hrp2,β(x) such that
β0 = γ0 and pen2(β) = 2pen2(γ), where

hrp2,β(x) = β0 +
∑

1≤i 6=j≤p
β2,ijramp(xi)ramp(xj)

= β0 + βT
2 vec(ϕrp(x)⊗ ϕrp(x)),

where β = (β0, β
T
2 )T with β2 = (β2,ij : 1 ≤ i 6= j ≤ p)T, and ϕrp(x) : Rp → [0, 1]p denotes the

vector of functions with the jth component ramp(xj) for j = 1, . . . , p. Then for any γ ∈ Γrp2

with pen2(γ) = b3, we have β0 = γ0 and pen2(β) = 2b3 correspondingly, and hence hγ(x)−
γ0 = hrp2,β(x) − β0 ∈ [−2b3

√
p(p− 1), 2b3

√
p(p− 1)], by the boundedness of the ramp

function in [0, 1] and the Cauchy–Schwartz inequality, ‖β2‖1 ≤
√
p(p− 1)‖β2‖2. Moreover,

hrp2,β(x) can be expressed in the form β0 + pen2(β)wTg(x), where for q = p(p− 1), w ∈ Rq
is an L2 unit vector, g : Rp → [0, 1]q is a vector of functions, including ramp(xi)ramp(xj)
for 1 ≤ i 6= j ≤ p. For symmetry, ramp(xi)ramp(xj) and ramp(xj)ramp(xi) are included as
two distinct components in g, and the corresponding coefficients are assumed to be identical
to each other in w.
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For any γ ∈ Γrp2 with pen2(γ) = b3 and EPθ∗hγ,µ̂(x) = 0, the function hγ,µ̂(x) can be
expressed as

hγ,µ̂(x) = βT
2 {ϕrp(x− µ̂)− β0} ,

where β0 = EPθ∗ϕrp(x − µ̂). The mean-centered ramp functions in ϕrp(x − µ̂) − β0 are
bounded between [−1, 1], and hence hγ,µ̂(x) ∈ [−b32p, b32p] similarly as above. Moreover,
such hγ,µ̂(x) can be expressed in the form pen2(β)wT{g(x − µ̂) − η0}, where w ∈ Rq is an
L2 unit vector, g(x) : Rp → [0, 1]q is defined as above, and η0 = EPθ∗g(x − µ̂) ∈ [0, 1]q by
the boundedness of the ramp function in [0, 1].

Next, Kf (Pn, Pθ̂;hγ,µ̂) can be bounded as

Kf (Pn, Pθ̂;hγ,µ̂)

≥ Kf (Pε, Pθ̂;hγ,µ̂)− |Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)|. (127)

For any γ ∈ Γrp2 with pen2(γ) = b3, EPθ∗hγ,µ̂(x) = 0, and EPθ̂hγ,µ̂(x) ≤ 0, applying

Lemma 46(ii) with h = hγ,µ̂ and b = 2b†3 = 2b3
√
p(p− 1) yields

Kf (Pε, Pθ̂;hγ,µ̂) ≥ f ′(e−2b†3)ε

+R
4,2b†3

{
EPθ∗h(x)− EPθ̂h(x)

}
− 1

2

{
R

31,2b†3
VarPθ∗hγ,µ̂(x) +R

32,2b†3
VarPθ̂hγ,µ̂(x)

}
.

By Lemma 63(ii), VarPθ∗hγ,µ̂(x) can bounded as follows:

VarPθ∗hγ,µ̂(x)

= VarPθ∗β
T
2 vec(ϕrp(x− µ̂)⊗ ϕrp(x− µ̂))

≤ ‖β2‖22 · 20C2
sg,12(

√
2)2p‖Σ∗‖op

≤ 40pen2
2(β)C2

sg,12pM2.

Similarly, VarPθ∗hγ,µ̂(x) can also be bounded by 40pen2
2(β)C2

sg,12pM2, because ‖Σ̂‖op ≤M2.
Hence, with pen2(β) = 2b3, Kf (Pε, Pθ̂;hγ,µ̂) can be bounded as

Kf (Pε, Pθ̂;hγ,µ̂)

≥ f ′(e−2b†3)ε+R
4,2b†3

{
EPθ∗h(x)− EPθ̂h(x)

}
− 80C2

sg,12pM2b
2
3R3,2b†3

, (128)

where R3,b = R31,b + R32,b as in Lemma 36. Moreover, by Lemma 34 with b = 2b3 and
g(x) ∈ [0, 1]q defined above, it holds with probability at least 1 − 2δ that for any γ ∈ Γrp2

with γ0 = 0 and pen2(γ) = b3,

|Kf (Pn, Pθ̂;hγ,µ̂)−Kf (Pε, Pθ̂;hγ,µ̂)|

≤ b3R2,b3
√
q

{
Csg,12

√
2qVg
n

+

√
q log(δ−1)

n

}

= b3R2,b†3

{
Csg,12Crad3

√
12p(p− 1)

n
+

√
p(p− 1) log(δ−1)

n

}
, (129)

83



Wang and Tan

where Vg = 6C2
rad3 is determined in Lemma 34 as follows. For j = 1, . . . , q, consider the func-

tion class Gj = {gµ,η0,j : µ ∈ Rp, η0 ∈ [0, 1]q}, where µ = (µ1, . . . , µp)
T, η0 = (η01, . . . , η0q)

T,
and, as defined in Lemma 34, gµ,η0,j(x) is of the form ramp(xj1 −µj1)ramp(xj2 −µj2)− η0j

for 1 ≤ j1 6= j2 ≤ p. By Lemma 60, the VC index of moving-knot ramp func-
tions is 2. By Lemma 61, the VC index of constant functions is also 2. By apply-
ing Corollary 82 (ii), we obtain that conditionally on (X1, . . . , Xn), the random vari-
able Zn,j = supµ∈Rp,η0∈[0,1]q |n−1

∑n
i=1 εigµ,η0,j(Xi)| = supfj∈Gj |n

−1
∑n

i=1 εifj(Xi)| is sub-

gaussian with tail parameter Crad3

√
6/n for j = 1, . . . , q.

Combining the inequalities (127)–(129) leads to the desired result.

Proposition 50 In the setting of Proposition 24 or Proposition 26, denote

D = sup
γ∈Γrp2,pen2(γ)=1/2

{
EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
.

Then we have

‖Σ̂− Σ∗‖F ≤ 2M
1/2
2

√
p‖σ̂ − σ∗‖2 + S7(

√
2p∆µ̂,σ̂ +D),

where ∆µ̂,σ̂ = (‖µ̂− µ∗‖22 + ‖σ̂ − σ∗‖22)1/2 and S7 is defined as in Lemma 40 with M = M2.

Proof For any γ ∈ Γrp2 with pen2(γ) = 1/2, the function hγ(x) ∈ Hrp2 can be obtained
as hrp2,β(x) with pen2(β) = 1. First, we handle the effect of different means and standard
deviations between Pθ∗ and Pθ̂ in D. Denote

D† = sup
γ∈Γrp2,pen2(γ)=1/2

{
EP

θ†
hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
,

where θ† = (µ̂,diag(σ̂)Σ∗0diag(σ̂)) and Σ∗0 is defined as the correlation matrix such that
Σ∗ = diag(σ∗)Σ∗0diag(σ∗). Then D† can be related to D as follows:

D† ≤ D +
√

2p∆µ̂,σ̂, (130)

where ∆µ̂,σ̂ = (‖µ̂ − µ∗‖22 + ‖σ̂ − σ∗‖22)1/2. In fact, by Lemma 65 with g(x) set to ϕrp(x),
which is (1/2)-Lipschitz and componentwise bounded in [0, 1], we have that for any γ ∈ Γrp2

with pen2(γ) = 1/2, ∣∣∣EP
θ†
hγ,µ̂(x)− EPθ∗hγ,µ̂(x)

∣∣∣ ≤√2p∆µ̂,σ̂.

For each pair 1 ≤ i 6= j ≤ p, we restrict hγ,µ̂(x) such that hγ(x) is ramp(xi)ramp(xj) or
−ramp(xi)ramp(xj). Applying Lemma 40 shows that there exists rij ∈ {−1, 1} such that

|ρ̂ij − ρ∗ij |σ̂iσ̂j ≤ S7rij

{
EP

θ†
hij(x− µ̂)− EPθ̂hij(x− µ̂)

}
,
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where hij(x) = ramp(xi)ramp(xj). By the triangle inequality, we have

|ρ̂ij σ̂iσ̂j − ρ∗ijσ∗i σ∗j |
≤ σ̂i|σ̂j − σ∗j |+ σ∗j |σ̂∗i − σ∗i |+ |ρ̂ij − ρ∗ij |σ̂iσ̂j

≤M1/2
2 |σ̂i − σ∗i |+M

1/2
2 |σ̂j − σ∗j |+ S7rij

{
EP

θ†
hij(x− µ̂)− EPθ̂hij(x− µ̂)

}
.

In addition, we have |σ̂2
i − σ∗i

2| = |(σ̂i + σ∗i )(σ̂i − σ∗i )| ≤ 2M
1/2
2 |σ̂i − σ∗i |. Then for any L2

unit vector w = (wij : 1 ≤ i, j ≤ p)T ∈ Rp×p,
p∑
i=1

∣∣∣wii(σ̂2
i − σ∗i

2)
∣∣∣+

∑
1≤i 6=j≤p

∣∣wij(ρ̂ij σ̂iσ̂j − ρ∗ijσ∗1σ∗2)
∣∣

≤ 2M
1/2
2

p∑
i=1

|wii||σ̂i − σ∗i |+M
1/2
2

∑
1≤i 6=j≤p

|wij |
(
|σ̂i − σ∗i |+ |σ̂j − σ∗j |

)
+ S7

∑
1≤i 6=j≤p

|wij |rij
{

EP
θ†
hij(x− µ̂)− EPθ̂hij(x− µ̂)

}
= M

1/2
2

∑
1≤i,j≤p

|wij |
(
|σ̂i − σ∗i |+ |σ̂j − σ∗j |

)
+ S7

{
EP

θ†
h(x− µ̂)− EPθ̂h(x− µ̂)

}
,

where h(x) =
∑

1≤i 6=j≤p |wij |rijhij(x). The function h(x) can be expressed as hrp2,β(x) such
that β2,ii = 0 for i = 1, . . . , p and β2,ij = |wij |rij for 1 ≤ i 6= j ≤ p, and hence pen2(β) ≤
‖w‖2 = 1. By the definition of D†, we have EP

θ†
h(x − µ̂) − EPθ̂h(x − µ̂) ≤ D†. Moreover,

by the Cauchy–Schwartz inequality,
∑

1≤i,j≤p |wij ||σ̂i − σ∗i | ≤
√
p‖σ̂ − σ∗‖2. Substituting

these inequalities into the preceding display shows that

p∑
i=1

∣∣∣wii(σ̂2
i − σ∗i

2)
∣∣∣+

∑
1≤i 6=j≤p

∣∣wij(ρ̂ij σ̂iσ̂j − ρ∗ijσ∗1σ∗2)
∣∣

≤ 2M
1/2
2

√
p‖σ̂ − σ∗‖2 + S7D

†. (131)

Combining (130) and (131) yields the desired result.

C.4 Details in main proof of Theorem 15

For completeness, we restate Proposition 21 in the main proof of Theorem 15 below. For
δ ∈ (0, 1/7), define

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
,

λ12 = 2Crad4

√
log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

where Crad4 = Csg6Crad3, depending on universal constants Csg6 and Crad3 in Lemmas 70
and Corollary 82 in Appendix E. Denote

Errh1(n, p, δ, ε) = 3ε+ 2
√
ε/(nδ) + λ12 + λ1.
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Proposition 21 (restated) Assume that ‖Σ∗‖max ≤ M1 and ε ≤ 1/5. Let θ̂ = (µ̂, Σ̂)

be a solution to (20) with λ1 ≥ Csp13M11λ11 where M11 = M
1/2
1 (M

1/2
1 + 2

√
2π) and

Csp13 = (5/3)(Csp11∨Csp12), depending on universal constants Csp11 and Csp12 in Lemma 30
in Appendix C. If

√
ε(1− ε)/(nδ) ≤ 1/5 and Errh1(n, p, δ, ε) ≤ a for a constant a ∈ (0, 1/2),

then the following holds with probability at least 1 − 7δ uniformly over contamination dis-
tribution Q,

‖µ̂− µ∗‖∞≤S4,aErrh1(n, p, δ, ε),

‖Σ̂− Σ∗‖max≤S8,aErrh1(n, p, δ, ε),

where S4,a = (1 +
√

2M1 log 2
1−2a)/a and S8,a = 2M

1/2
1 S6,a + S7(1 + S4,a + S6,a) with

S6,a = S5(1 + S4,a/2), S5 = 2
√

2π(1 − e−2/M1)−1, and S7 = 8πM1e1/(4M1) S7 =
4{( 1√

2πM1
e−1/(8M1)) ∨ (1− 2e−1/(8M1))}−2.

To see why Proposition 21 leads to Theorem 15, we show that conditions in Proposi-
tion 21 are satisfied under the setting of Theorem 15. For a constant a ∈ (0, 1/2), let

C1 = 2
√

3Csp13M11,

C2 =
1

5
∧
√

3C1

6
∧

(
3 ∨

( √
2C1

4Crad4 + 2
+ 1

))
,

C = S8,a

(
3 ∨

( √
2C1

4Crad4 + 2
+ 1

))
.

Then the following conditions

(i) λ1 ≥ C1

(√
log p/n+

√
log (1/δ)/n

)
,

(ii) ε+
√
ε/(nδ) + λ1 ≤ C2,

imply the conditions

(iii) λ1 ≥ Csp13M11λ11,

(iv) Errh1(n, p, δ, ε) ≤ a,

(v) ε ≤ 1/5 and
√
ε(1− ε)/(nδ) ≤ 1/5.

In fact, condition (v) follows directly from condition (ii) because C2 ≤ 1/5. For conditions
(iii) and (iv), we first show that λ11 and λ12 can be upper bounded as follows:

λ11 ≤
√

2 log p+ 3 log(δ−1)

n
+

2 log p+ 3 log(δ−1)

n
(132)

≤ 2

√
2 log p+ 3 log(δ−1)

n
≤ 2

√
2 log p

n
+ 2

√
3 log(δ−1)

n
, (133)
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and

λ12 ≤ 2Crad4

√
2 log 2 + 2 log p

n
+

√
2 log(δ−1)

n
(134)

≤ 2Crad4

√
2 log p

n
+ (2Crad4 + 1)

√
2 log(δ−1)

n
. (135)

Lines (132) and (135) hold because log(1/δ) ≥ log(5) for δ ∈ (0, 1/7). Line (133) holds

because

√
2 log p+3 log(δ−1)

n ≤ 1 and hence the linear term in λ11 is upper bounded by the

square root term. To see this, by conditions (i) and (ii) we have√
2 log p+ 3 log(δ−1)

n
≤
√

3 log p

n
+

√
3 log(δ−1)

n
≤
√

3λ1

C1
≤
√

3C2

C1
≤ 1.

Line (134) holds because log (2p(p+ 1)) ≤ 2 log 2 + 2 log p for p ≥ 1. With the above upper
bounds for λ11 and λ12, we show that condition (i) implies condition (iii) as follows:

λ1 ≥ C1

(√
log p

n
+

√
log (1/δ)

n

)

= 2
√

3Csp13M11

(√
log p

n
+

√
log (1/δ)

n

)
≥ Csp13M11λ11,

and condition (ii) implies condition (iv) as follows:

Errh1(n, p, δ, ε) = 3ε+ 2
√
ε/(nδ) + λ12 + λ1

≤ 3

(
ε+

√
ε

nδ

)
+

( √
2C1

4Crad4 + 2
+ 1

)
λ1

≤

(
3 ∨

( √
2C1

4Crad4 + 2
+ 1

))(
ε+

√
ε

nδ
+ λ1

)

≤

(
3 ∨

( √
2C1

4Crad4 + 2
+ 1

))
C2 ≤ a.

Therefore, Proposition 21 implies Theorem 15 with constant C = S8,a

(
3 ∨

( √
2C1

4Crad4+2 + 1
))

.

Lemma 51 Consider the hinge GAN (3).
(i) For any ε ∈ [0, 1] and any function h : Rp → R, we have

KHG(Pε, Pθ∗ ;h) ≤ 2ε.

(ii) For any function h : Rp → R, we have

KHG(Pn, Pθ∗ ;h) ≤ 2ε̂+ |EPθ∗,nh(x)− EPθ∗h(x)|, (136)

where ε̂ = n−1
∑n

i=1 Ui and Pθ∗,n denotes the empirical distribution of {Xi : Ui = 0, i =
1, . . . , n} in the latent representation of Huber’s contamination model.
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Proof (i) For any h : Rp → R we have

KHG(Pε, Pθ∗ ;h)

= εEQ min(1, h(x)) + (1− ε)EPθ∗ min(1, h(x)) + EPθ∗ min(1,−h(x))

≤ ε+ (1− ε)EPθ∗ min(1, h(x)) + EPθ∗ min(1,−h(x)) (137)

≤ 2ε+ (1− ε)
{

EPθ∗ min(1, h(x)) + EPθ∗ min(1,−h(x))
}

(138)

≤ 2ε. (139)

Inequalities (137) and (138) hold because min(1, u)∨min(1,−u) ≤ 1 for all u ∈ R. Inequality
(139) holds because min(1, u) + min(1,−u) ≤ 0 for all u ∈ R.

(ii) Because both min(1, u) and min(1,−u) are concave in u ∈ R and upper bounded by
1, we have

KHG(Pn, Pθ∗ ;h)

=
1

n

n∑
i=1

Ri min(1, h(Xi)) +
1

n

n∑
i=1

(1−Ri) min(1, h(Xi)) + EPθ∗ min(1,−h(Xi))

≤ ε̂+ (1− ε̂)EPθ∗,n min(1, h(Xi)) + EPθ∗ min(1,−h(Xi)) (140)

≤ ε̂+ (1− ε̂) min(1,EPθ∗,nh(Xi)) + min(1,−EPθ∗h(Xi)) (141)

≤ 2ε̂+ (1− ε̂)
{

min(1,EPθ∗,nh(Xi)) + min(1,−EPθ∗h(Xi))
}

(142)

≤ 2ε̂+ 0 + |min(1,−EPθ∗,nh(x))−min(1,−EPθ∗h(x))| (143)

≤ 2ε̂+ 0 + |EPθ∗,nh(x)− EPθ∗h(x)| (144)

Lines (140) and (142) hold because min(1, u) ∨ min(1,−u) ≤ 1 for all u ∈ R. Line (141)
follows from Jensen’s inequality by the concavity of min(1, u) and min(1,−u). Line (143)
follows because min(1, u) + min(1,−u) ≤ 0 for all u ∈ R, and the last line (144) holds
because min(1,−u) is 1-Lipschitz in u.

Proposition 52 In the setting of Proposition 21, it holds with probability at least 1 − 5δ
that for any γ ∈ Γ,

KHG(Pn, Pθ∗ ;hγ,µ∗) ≤ 2(ε+
√
ε/(nδ)) + pen1(γ)Csp13M11λ11,

where Csp13 = (5/3)(Csp11 ∨ Csp12) with Csp11 and Csp12 as in Lemma 30, M11 =

M
1/2
1 (M

1/2
1 + 2

√
2π), and

λ11 =

√
2 log(5p) + log(δ−1)

n
+

2 log(5p) + log(δ−1)

n
.

Proof The proof is similar to that of Proposition 33 and we use the same definition of Ω1

and Ω2. In the event Ω1 we have |ε̂ − ε| ≤ 1/5 by the assumption
√
ε(1− ε)/(nδ) ≤ 1/5
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and hence ε̂ ≤ 2/5 by the assumption ε ≤ 1/5. Thus, by Lemma 51 with ε1 = 2/5, it holds
in the event Ω1 that for any γ ∈ Γ,

KHG(Pn, Pθ∗ ;hγ,µ∗)

≤ 2ε̂+
∣∣∣EPθ∗,nhγ,µ∗(x)− EPθ∗hγ,µ∗(x)

∣∣∣
≤ 2(ε+

√
ε/(nδ)) +

∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)
∣∣∣ . (145)

The last step (145) uses the fact that EPθ∗hγ,µ∗(x) = EP(0,Σ∗)hγ(x) and EPθ∗,nhγ,µ∗(x) =
EPθ∗,nhγ(x− µ∗), by the definition hγ,µ∗(x) = hγ(x− µ∗).

Next, as shown in Proposition 33, it holds in the event Ω2 while conditionally on Ω1

that for any γ = (γ0, γ
T
1 , γ

T
2 )T ∈ Γ,∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)

∣∣∣
≤ pen1(γ)(5/3)(Csp11 ∨ Csp12)M11λ11, (146)

where hγ(x) = γ0 + γT
1ϕ(x) + γT

2 (ϕ(x) ⊗ ϕ(x)) and pen1(γ) = ‖γ1‖1 + ‖γ2‖1. Combining
(145) and (146) indicates that in the event Ω1 ∩ Ω2 with probability at least 1 − 5δ, the
desired inequality holds for any γ ∈ Γ.

Proposition 53 In the setting of Proposition 21, it holds with probability at least 1 − 2δ
that for any γ ∈ Γrp with γ0 = 0 and pen1(γ) = 1,

KHG(Pn, Pθ̂;hγ,µ̂)

≥
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ε− λ12

where, with Crad4 = Csg6Crad3 is the same constant in Proposition 37,

λ12 = Crad4

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

depending on the universal constants Csg6 and Crad3 in Lemma 70 and Corollary 82.

Proof By definition, for any γ ∈ Γrp, hγ(x) can be represented as hrp,β,c(x) such that
β0 = γ0 and pen1(β) = pen1(γ) in the same way as in Proposition 37. Then for any
γ ∈ Γrp with γ0 = 0 and pen1(γ) = 1, we have β0 = 0 and pen1(β) = 1 correspondingly,
and hence hγ(x) = hrp,β,c(x) ∈ [−1, 1] by the boundedness of the ramp function in [0, 1].
Moreover, hrp,β,c(x) with β0 = 0 and pen1(β) = 1 can be expressed in the form wTg(x),
where for q = 2p + p(p − 1), w ∈ Rq is an L1 unit vector, and g : Rp → [0, 1]q is a vector
of functions including ramp(xj) and ramp(xj − 1) for j = 1, . . . , p, and ramp(xi)ramp(xj)
for 1 ≤ i 6= j ≤ p. For symmetry, ramp(xi)ramp(xj) and ramp(xj)ramp(xi) are included as
two distinct components in g, and the corresponding coefficients are identical to each other
in w.
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Next, KHG(Pn, Pθ̂;hγ,µ̂) can be bounded as

KHG(Pn, Pθ̂;hγ,µ̂)

≥ KHG(Pε, Pθ̂;hγ,µ̂)− {KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)}. (147)

For any γ ∈ Γrp with γ0 = 0 and pen1(γ) = 1, because hγ,µ̂(x) ∈ [−1, 1], we
have min(hγ,µ̂(x), 1) = hγ,µ̂(x) and min(−hγ,µ̂(x), 1) = −hγ,µ̂(x). Hence the hinge
KHG(Pε, Pθ̂;hγ,µ̂) in (147) reduces to a moment matching term and can be lower bounded
as follows:

KHG(Pε, Pθ̂;hγ,µ̂)

= EPε min(hγ,µ̂(x), 1) + EPθ̂ min(−hγ,µ̂(x), 1)

= EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)

= εEQhγ,µ̂(x) + (1− ε)EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

≥ −ε+
{

EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
.

Similarly, the two other hinge terms in (147) also reduce to moment matching terms:

{KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)}

=
{

EPnhγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
−
{

EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}

= EPnhγ,µ̂(x)− EPεhγ,µ̂(x).

We apply Lemma 34 with b = 1, g(x) ∈ [0, 1]q defined above, and f ′(eu) and f#(eu) replaced
by the identity function in u. It holds with probability at least 1− 2δ that for any γ ∈ Γrp

with γ0 = 0 and pen1(γ) = b1,

EPnhγ,µ̂(x)− EPεhγ,µ̂(x)

≤ Csg6

√
Vg log(2q)

n
+

√
2 log(δ−1)

n

= Csg6Crad3

√
4 log(2p(p+ 1))

n
+

√
2 log(δ−1)

n
,

as shown in Proposition 37. Combining the preceding three displays leads to the desired
result.

C.5 Details in main proof of Theorem 16

Proposition 54 In the setting of Proposition 26, it holds with probability at least 1 − 4δ
that for any γ = (γ0, γ1, γ2)T ∈ /Gamma,

KHG(Pn, Pθ∗ ;hγ,µ∗) ≤ 2(ε+
√
ε/(nδ)) + pen2(γ1)(5/3)Csp21M

1/2
2 R1λ21

+ pen2(γ2)(25
√

5/3)Csp22M21R1
√
pλ31,
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where Csp21 and Csp22 are defined as in Lemma 43, M21 = M
1/2
2 (M

1/2
2 + 2

√
2π), and

λ21 =

√
5p+ log(δ−1)

n
, λ31 = λ21 +

5p+ log(δ−1)

n
.

Proof The proof is similar to that of Proposition 44 and we use the same definition of Ω1

and Ω2. In the event Ω1 we have |ε̂ − ε| ≤ 1/5 by the assumption
√
ε(1− ε)/(nδ) ≤ 1/5

and hence ε̂ ≤ 2/5 by the assumption ε ≤ 1/5. By Lemma 51 with ε1 = 2/5, it holds that
in the event Ω1 for any γ ∈ Γ,

KHG(Pn, Pθ∗ ;hγ,µ∗)

≤ 2ε̂+
∣∣∣EPθ∗,nhγ,µ∗(x)− EPθ∗hγ,µ∗(x)

∣∣∣
≤ 2(ε+

√
ε/(nδ)) +

∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)
∣∣∣ . (148)

The last step (148) uses the fact that EPθ∗hγ,µ∗(x) = EP(0,Σ∗)hγ(x) and EPθ∗,nhγ,µ∗(x) =
EPθ∗,nhγ(x− µ∗), by the definition hγ,µ∗(x) = hγ(x− µ∗).

Next, as shown in Proposition 44, it holds in event Ω2 while conditionally on Ω1 that
for any γ = (γ0, γ

T
1 , γ

T
2 )T ∈ Γ,∣∣∣EPθ∗,nhγ(x− µ∗)− EP(0,Σ∗)hγ(x)

∣∣∣
≤ pen2(γ1)(5/3)Csp21M

1/2
2 λ21 + pen2(γ2)(5/3)Csp223M21

√
3pλ31, (149)

where hγ(x) = γ0 + γT
1ϕ(x) + γT

2 (ϕ(x) ⊗ ϕ(x)), pen2(γ1) = ‖γ1‖2, and pen2(γ2) = ‖γ2‖2.
Combining (148) and (149) indicates that, in the event Ω1 ∩ Ω2 with probability at least
1− 4δ, the desired inequality holds for any γ ∈ Γ.

Proposition 55 In the setting of Proposition 26, it holds with probability at least 1 − 2δ
that for any γ ∈ Γ10,

KHG(Pn, Pθ̂;hγ,µ̂)

≥
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ε− λ22(2p)−1/2

where, with Crad5 = Csg,12Crad3, and

λ22 = Crad5

√
16p

n
+

√
2p log(δ−1)

n
,

depending on the universal constants Csg,12 and Crad3 in Lemma 67 and Corollary 82.

Proof For any γ ∈ Γ10 ⊂ Γrp1, because pen2(γ) = (2p)−1/2 and Γ0 = 0, we have β0 = 0 and
pen2(β) = p−1/2. Hence, hγ(x) = hrp1,β,c(x) ∈ [−1, 1] by the Cauchy–Schwartz inequality
and the boundedness of the ramp function in [0, 1]. Then the mean-centered version hγ,µ̂(x),
with EPθ∗hγ,µ̂(x) = 0, is also bounded in [−1, 1]. Moreover, such hγ,µ̂(x) can be expressed
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in the form pen2(β)wT{g(x − µ̂) − η0}, where, for q = 2p, w ∈ Rq is an L2 unit vector,
g : Rp → [0, 1]q is a vector of functions, including ramp(xj) and ramp(xj−1) for j = 1, . . . , p,
and η0 = EPθ∗g(x− µ̂) ∈ [0, 1]q.

Next, KHG(Pn, Pθ̂;hγ,µ̂) can be bounded as

KHG(Pn, Pθ̂;hγ,µ̂)

≥ KHG(Pε, Pθ̂;hγ,µ̂)− {KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)}. (150)

For any γ ∈ Γ10, because hγ,µ̂(x) ∈ [−1, 1], we have min(hγ,µ̂(x), 1) = hγ,µ̂(x) and
min(−hγ,µ̂(x), 1) = −hγ,µ̂(x). Then the hinge term KHG(Pn, Pθ̂;hγ,µ̂) reduces to a mo-
ment matching term and can be lower bounded as follows:

KHG(Pε, Pθ̂;hγ,µ̂)

= EPε min(hγ,µ̂(x), 1) + EPθ̂ min(−hγ,µ̂(x), 1)

= EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)

= εEQhγ,µ̂(x) + (1− ε)EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

≥ −ε+
{

EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
. (151)

Similarly, the absolute difference term in (150) can be simplified as follows:

{KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)}

=
{

EPnhγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
−
{

EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}

= EPnhγ,µ̂(x)− EPεhγ,µ̂(x).

We apply Lemma 45 with b = 1, g(x) ∈ [0, 1]q and η0 defined above, and f ′(eu) and f#(eu)
replaced by the identity function in u. It holds with probability at least 1− 2δ that for any
γ ∈ Γ01,

EPnhγ,µ̂(x)− EPεhγ,µ̂(x)

≤ (2p)−1/2

{
Csg,12

√
2qVg
n

+

√
q log(δ−1)

n

}

≤ (2p)−1/2

{
Csg,12Crad3

√
16p

n
+

√
2p log(δ−1)

n

}
, (152)

as shown in Proposition 47. Combining the inequalities (150)–(152) leads to the desired
result.

Proposition 56 In the setting of Proposition 26, it holds with probability at least 1 − 2δ
that for any γ ∈ Γ20,

KHG(Pn, Pθ̂;hγ,µ̂)

≥
{

EPθ∗hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
− ε−√pλ32(4q)−1/2
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where q = p(1− p), and, with Crad6 = Csg,12Crad3,

λ32 = Crad6

√
12(p− 1)

n
+

√
(p− 1) log(δ−1)

n
.

Proof For any γ ∈ Γ20 ⊂ Γrp2, because pen2(γ) = (4q)−1/2 and γ0 = 0, we have pen2(β) =
2pen2(γ) = q−1/2. Hence hγ(x) = hrp2,β(x) ∈ [−1, 1] by the boundedness of the ramp
function in [0, 1] and the Cauchy–Schwartz inequality, ‖β2‖1 ≤ q1/2‖β2‖2. Then the mean-
centered version hγ,µ̂(x), with EPθ∗hγ,µ̂(x) = 0, is also bounded in [−1, 1]. Moreover, such
hγ,µ̂(x) can be expressed in the form pen2(β)wT{g(x− µ̂)−η0}, where, for q = p(p−1), w ∈
Rq is an L2 unit vector, g : Rp → [0, 1]q is a vector of functions, including ramp(xi)ramp(xj)
for 1 ≤ i 6= j ≤ p, and η0 = EPθ∗g(x− µ̂) ∈ [0, 1]q.

Next, KHG(Pn, Pθ̂;hγ,µ̂) can be bounded as

KHG(Pn, Pθ̂;hγ,µ̂)

≥ KHG(Pε, Pθ̂;hγ,µ̂)− |KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)|. (153)

For any γ ∈ Γ20, because hγ,µ̂(x) ∈ [−1, 1], we have min(hγ,µ̂(x), 1) = hγ,µ̂(x) and
min(−hγ,µ̂(x), 1) = −hγ,µ̂(x). Then the hinge term KHG(Pn, Pθ̂;hγ,µ̂) reduces to a mo-
ment matching term and can be lower bounded as follows:

KHG(Pε, Pθ̂;hγ,µ̂)

= EPε min(hγ,µ̂(x), 1) + EPθ̂ min(−hγ,µ̂(x), 1)

= EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)

= εEQhγ,µ̂(x) + (1− ε)EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)

≥ −ε+
{

EP ∗θ hγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}
. (154)

Similarly, the absolute difference term in (153) can be simplified as follows:

|KHG(Pn, Pθ̂;hγ,µ̂)−KHG(Pε, Pθ̂;hγ,µ̂)|

=
∣∣∣{EPnhγ,µ̂(x)− EPθ̂hγ,µ̂(x)

}
−
{

EPεhγ,µ̂(x)− EPθ̂hγ,µ̂(x)
}∣∣∣

= |EPnhγ,µ̂(x)− EPεhγ,µ̂(x)|.

We apply Lemma 45 with b = 1, g(x) ∈ [0, 1]q and η0 defined above, and f ′(eu) and f#(eu)
replaced by the identity function in u. It holds with probability at least 1− 2δ that for any
γ ∈ Γ20,

|EPnhγ,µ̂(x)− EPεhγ,µ̂(x)|

≤ (4q)−1/2

{
Csg,12

√
2qVg
n

+

√
q log(δ−1)

n

}

=
√
p(4q)−1/2

{
Csg,12Crad3

√
12(p− 1)

n
+

√
(p− 1) log(δ−1)

n

}
, (155)

as shown in Proposition 49. Combining the inequalities (153)–(155) leads to the desired
result.

93



Wang and Tan

C.6 Details in proof of Corollary 18

Lemma 57 Assume that f satisfies Assumptions 1 and 2, and G satisfies Assumption 3.
Let (γ̂, θ̂) be a solution to the alternating optimization problem (22).

(i) Let ε0 ∈ (0, 1) be fixed. For any ε ∈ [0, ε0] and any function h : Rp → R, we have

Kf (Pε, Pθ̂;h) ≤ −f ′(1− ε0)ε.

(ii) Let ε1 ∈ (0, 1) be fixed. If ε̂ = n−1
∑n

i=1 Ui ∈ [0, ε1], then for any function h : Rp →
R, we have

Kf (Pn, Pθ̂;h) ≤ −f ′(1− ε1)ε̂+R1|EPθ∗,nh(x)− EPθ∗h(x)|, (156)

where Pθ∗,n denotes the empirical distribution of {Xi : Ui = 0, i = 1, . . . , n} in the latent
representation of Huber’s contamination model.

Proof (i) As mentioned in Remark 3, the logit f -GAN objective in (10) can be equivalently
written as

Kf (Pε, Pθ̂;h) = EPεf
′(eh(x))− EPθ̂f

#(eh(x))

= EPεT (h(x))− EPθ̂f
∗{T (h(x))},

where T (u) = f ′(eu) and f∗ is the convex conjugate of f . Because f is convex and non-
decreasing by Assumptions 1 and 2, we have that f∗ is convex and non-decreasing.

Denote as LG(θ, γ) the generator objective function, EPεf
′(ehγ,µ(x)) − EPθG(hγ,µ(x)).

By the definition of a solution to alternating optimization (see Remark 1), we have

LG{(µ̂, Σ̂), γ̂} ≤ LG{(µ∗, Σ̂), γ̂},
LG{(µ̂, Σ̂), γ̂} ≤ LG{(µ̂,Σ∗), γ̂},

that is, the generator loss at θ̂ is less than that at any θ, with the discriminator parameter
fixed at γ̂. The preceding inequalities can be written out as

EPεT (ehγ̂,µ̂(x))− EPθ̂G(hγ̂,µ̂(x)) ≤ EPεT (ehγ̂,µ∗ (x))− EPµ∗,Σ̂G(hγ̂,µ∗(x)),

and

EPεT (ehγ̂,µ̂(x))− EPθ̂G(hγ̂,µ̂(x)) ≤ EPεT (ehγ̂,µ̂(x))− EPµ̂,Σ∗G(hγ̂,µ̂(x)).

Note that either the location or the variance matrix, but not both, is changed on the two
sides in each inequality. In the first inequality, we have EPθ̂G(hγ̂,µ̂(x)) = EPµ∗,Σ̂G(hγ̂,µ∗(x))

because both are equal to EP0,Σ̂
G(hγ̂,0(x)). In the second inequality, the term EPεT (ehγ̂,µ̂(x))

is on both sides. Then the two inequalities yield

EPεT (ehγ̂,µ̂(x)) ≤ EPεT (ehγ̂,µ∗ (x)),

−EPθ̂G(hγ̂,µ̂(x)) ≤ −EPµ̂,Σ∗G(hγ̂,µ̂(x)).
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Now we are ready to derive an upper bound for Kf (Pε, Pθ̂;hγ̂,µ̂):

Kf (Pε, Pθ̂;hγ̂,µ̂)

= EPεT (hγ̂,µ̂)− EPθ̂f
∗{T (G−1(G(hγ̂,µ̂)))}

≤ EPεT (hγ̂,µ̂)− f∗{T (G−1(EPθ̂G(hγ̂,µ̂)))} (157)

≤ EPεT (hγ̂,µ∗)− f∗{T (G−1(EPµ̂,Σ∗G(hγ̂,µ̂)))} (158)

≤ (1− ε)EPθ∗T (hγ̂,µ∗)− f∗{T (G−1(EPµ∗,Σ∗G(hγ̂,µ∗)))} (159)

≤ (1− ε)T (EPθ∗hγ̂,µ∗)− f
∗{T (EPµ∗,Σ∗hγ̂,µ∗)} (160)

≤ f(1− ε) ≤ −f ′(1− ε0)ε. (161)

Line (157) follows from Jensen’s inequality by the convexity of f∗. Line (158) follows
from the two inequalities derived above, together with the fact that −f∗(T (G−1)) is non-
increasing, by non-decreasingness of f∗, T , and G−1. In (159) we use the fact that
EPµ̂,Σ∗G(hγ̂,µ̂) = EPµ∗,Σ∗G(hγ̂,µ∗(x)) and drop the EQ term because T ≤ 0. Line (160)
follows from Jensen’s inequality by the convexity of G and the concavity of T , together
with the fact that −f∗(T (G−1)) is non-increasing. For the last line (161), by the definition
of Fenchel conjugate we have

(1− ε)s− f∗(s) ≤ f(1− ε) ≤ −f ′(1− ε0)ε,

with s set to EPθ∗T (hγ̂,µ∗).
(ii) To derive an upper bound for Kf (Pn, Pθ̂;hγ̂), we first argue similarly as in part (i):

Kf (Pn, Pθ̂;hγ̂,µ̂)

= ε̂EQT (hγ̂,µ̂) + (1− ε̂)EPθ∗,nT (hγ̂,µ̂)− EPθ̂f
∗{T (hγ̂,µ̂)}

≤ (1− ε̂)T (EPθ∗,nhγ̂,µ∗)− f
∗{T (EPµ∗,Σ∗hγ̂,µ∗)}.

Then we use the R1-Lipschitz property of f∗(T ) and obtain

(1− ε̂)T (EPθ∗,nhγ̂,µ∗)− f
∗{T (EPµ∗,Σ∗hγ̂,µ∗)}

≤ (1− ε̂)T (EPθ∗,nhγ̂,µ∗)− f
∗{T (EPθ∗,nhγ̂,µ∗)}+R1|EPθ∗,nhγ̂,µ∗ − EPθ∗hγ̂,µ∗ |

≤ f(1− ε̂) +R1|EPθ∗,nhγ̂,µ∗ − EPθ∗hγ̂,µ∗ |
≤ −f ′(1− ε1)ε̂+R1|EPθ∗,nhγ̂,µ∗ − EPθ∗hγ̂,µ∗ |.

Combining the preceding displays completes the proof.

Lemma 58 Let (γ̂, θ̂) be a solution to the alternating optimization problem (23).
(i) For any ε ∈ [0, 1] and any function h : Rp → R, we have

KHG(Pε, Pθ̂;h) ≤ 2ε.

(ii) If ε̂ = n−1
∑n

i=1 Ui ∈ [0, 1], then for any function h : Rp → R, we have

KHG(Pn, Pθ̂;h) ≤ 2ε̂+ |EPθ∗,nh(x)− EPθ∗h(x)|, (162)

where Pθ∗,n denotes the empirical distribution of {Xi : Ui = 0, i = 1, . . . , n} in the latent
representation of Huber’s contamination model.
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Proof (i) By the same argument used in the proof of Lemma 57 with T (u) replaced by
min(u, 1) and −f∗(T (u)) replaced by min(−u, 1) we have:

KHG(Pε, Pθ̂;hγ̂,µ̂)

≤ ε+ (1− ε) min(EPθ∗hγ̂,µ∗ , 1) + min(−EPθ∗hγ̂,µ∗ , 1) (163)

≤ 2ε. (164)

Inequality (163) is derived by the same argument that leads to (157)-(160) with the fact that
min(u, 1) is concave and non-decreasing and that min(−u, 1) is concave and non-increasing
just like T and −f∗(T ) in Lemma 57 respectively. The ε term is a result of the fact that
min(u, 1) ≤ 1. Inequality (164) is by the same argument used in Lemma 51:

(1− ε) min(u, 1) + min(−u, 1)

≤ ε+ (1− ε){min(u, 1) + min(−u, 1)}
≤ ε,

with u set to be hγ̂,µ∗ .

(ii) To derive an upper bound for KHG(Pn, Pθ̂;hγ̂), we first argue similarly as in part
(i):

KHG(Pn, Pθ̂;hγ̂,µ̂)

= ε̂EQ min(hγ̂,µ̂, 1) + (1− ε̂)EPθ∗,n min(hγ̂,µ̂, 1) + EPθ̂ min(−hγ̂,µ̂, 1)

≤ ε̂+ (1− ε̂) min(EPθ∗,nhγ̂,µ∗ , 1) + min(−EPµ∗,Σ∗hγ̂,µ∗ , 1).

Then we use the 1-Lipschitz property of min(−u, 1) and obtain

(1− ε̂) min(EPθ∗,nhγ̂,µ∗ , 1) + min(−EPµ∗,Σ∗hγ̂,µ∗ , 1)

≤ (1− ε̂) min(EPθ∗,nhγ̂,µ∗ , 1) + min(−EPθ∗,nhγ̂,µ∗ , 1) + |EPθ∗,nhγ̂,µ∗ − EPθ∗hγ̂,µ∗ |
≤ ε̂+ |EPθ∗,nhγ̂,µ∗ − EPθ∗hγ̂,µ∗ |.

Combining the preceding displays completes the proof.

C.7 Proofs in Section 5

Proof [Proof of Proposition 19] We first verify that f(t) = 1+t
2 g0( 2t

1+t) is convex on [0,+∞)
and f(1) = 0 so that Df is a valid f -divergence. Because g0 is convex by the convexity of g
and f ′′(t) = 2

(1+t)3 g
′′
0( 2t

1+t), it follows that f is convex on [0,+∞). Direct calculation gives

f(1) = g0(1) = 0. Thus, f defines a valid f -divergence.
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Next we show that Lg(P∗, Pθ; qγ) = Kf (P∗, Pθ;hγ). Denote ehγ(x) by t and qγ(x) by q.
Then we have

Kf (P∗, Pθ;hγ) = EP∗f
′(t)− EPθ

{
tf ′(t)− f(t)

}
= EP∗

{
1

1 + t
g′0

(
2t

1 + t

)
+

1

2
g0

(
2t

1 + t

)}
− EPθ

{
t

1 + t
g′0

(
2t

1 + t

)
− 1

2
g0

(
2t

1 + t

)}
(165)

= EP∗

{
(1− q)g′0 (2q) +

1

2
g0 (2q)

}
− EPθ

{
qg′0 (2q)− 1

2
g0 (2q)

}
= EP∗

{
1− q

2
g′ (q) +

1

2
g (q)− 1

2
g

(
1

2

)}
− EPθ

{
q

2
g′ (q)− 1

2
g (q) +

1

2
g

(
1

2

)}
(166)

=
1

2
{EP∗Sg(q, 1)− EPθSg(q, 0)} − g

(
1

2

)
. (167)

Line (165) is by direct calculation. Lines (166)–(167) are by the definition of g and Sg.
Finally, by the definition of f from g0, direct calculation gives∫

qf

(
p

q

)
=

∫
p+ q

2
g0

(
2p

p+ q

)
,

which implies that Dg0(P∗||(P∗ + Pθ)/2) = Df (P∗||Pθ).

Appendix D. Auxiliary lemmas

D.1 Truncated linear basis

The following result gives upper bounds on the moments of the truncated linear basis, which
are used in the proofs of Lemma 30 and 43.

Lemma 59 For X ∼ N(0, σ2) and ξ ∈ R, we have

E(X − ξ)+ ≤
σ√
2π

+ |ξ|,

E[{(X − ξ)+}2] ≤ σ2 + ξ2.

Proof The second result is immediate: E[{(X − ξ)+}2] ≤ E{(X − ξ)2} = σ2 + ξ2. The
first result can be shown as follows:

E(X − ξ)+ =

∫ ∞
ξ

(x− ξ) 1√
2πσ

e−
x2

2σ2 dx

=
σ√
2π

e−
ξ2

2σ2 − ξ
∫ ∞
ξ

1√
2πσ

e−
x2

2σ2 dx

≤ σ√
2π

+ |ξ|.

The last inequality holds because 0 ≤
∫∞
ξ

1√
2πσ

e−
x2

2σ2 dx ≤ 1.
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D.2 VC index of ramp functions

For a collection C of subsets of X , and points x1, . . . , xn ∈ X , define

∆Cn(x1, . . . , xn) = #{C ∩ {x1, . . . , xn} : C ∈ C},

that is, ∆Cn(x1, . . . , xn) is the number of subsets of {x1, . . . , xn} picked out by the collection
C. We say that a subset {xi, . . . , xj} ⊂ {x1, . . . , xn} is picked up by C if {xi, . . . , xj} ∈
{C ∩ {x1, . . . , xn} : C ∈ C}. For convenience, we also say that {xi, . . . , xj} is picked up by
C if {xi, . . . , xj} = C ∩ {x1, . . . , xn}. Moreover, define

mC(n) = max
x1,...,xn

∆Cn(x1, . . . , xn),

and the Vapnik–Chervonenkis (VC) index of C as (van der Vaart and Wellner, 1996)

V (C) = inf{n ≥ 1 : mC(n) < 2n}.

where the infimum over the empty set is taken to be infinity.
The subgraph of a function f : X → R is defined as Gf = {(x, t) ∈ X × R : t < f(x)}.

For a collection of functions F , denote the collection of corresponding subgraphs as GF =
{Gf : f ∈ F}, and define the VC index of F as V (F) = V (GF ).

Lemma 60 For F = {fb(x) = 1− (x+ b)+ + (x+ b−1)+ : b ∈ R}, we have that V (F) = 2.
Moreover, the VC index of {fb(−x) : b ∈ R} = {ramp(x− b) : b ∈ R} is 2. That is, the VC
index of moving-knots ramp functions is 2.

Proof
To show V (F) = 2, we need to show mGF (1) = 21 and mGF (2) < 22. The first property

is trivially true. For the second property, it suffices to show that for any two distinct points
{(x1, t1), (x2, t2)}, there is at least a subset of {(x1, t1), (x2, t2)} that cannot be picked up
by Gfb for any fb ∈ F . Without loss of generality, assume that x1 ≤ x2. We arbitrarily fix
fb ∈ F and discuss several cases depending on t2 − t1 and x2 − x1.

If t2 − t1 ≤ −(x2 − x1), then if (x1, t1) ∈ Gfb , i.e., fb(x1) > t1, we have

fb(x2)− fb(x1) ≥ (−1)(x2 − x1)

≥ t2 − t1.

This implies that fb(x2) ≥ fb(x1) − t1 + t2 > t2 and hence (x2, t2) ∈ Gfb . As a result, a
subset containing just (x1, t1) cannot be picked up by Gfb .

If t2 − t1 ≥ 0, then if (x2, t2) ∈ Gfb , i.e., fb(x2) > t2, we have

fb(x1) ≥ fb(x2) > t2 ≥ t1,

and hence (x2, t2) ∈ Gfb . Thus, the subset {(x2, t2)} can never be picked up by Gfb .
If t2 − t1 < 0 and t2 − t1 > −(x2 − x1), then if fb(x2) > t2, we have

fb(x1)− fb(x2) ≥ (−1)(x1 − x2)

> −(t2 − t1).
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This implies that fb(x1) > fb(x2)− t2 + t1 > t1. As a result, the subset {(x2, t2)} can never
be picked up by Gfb .

Combining the preceding cases shows that mGF (2) < 22 and V (F) = 2. Moreover, the
class of functions {fb(−x) : b ∈ R}, denoted as F̃ , admits a one-to-one correspondence
with F . A subset of {(x1, t1), (x2, t2)} is picked up by GF if and only if the corresponding
subset of {(−x1, t1), (−x2, t2)} is picked up by GF̃ . Hence V (F̃) = V (F) = 2.

Lemma 61 For F = {f(x) ≡ b : b ∈ R}, we have that V (F) = 2. That is, the VC index
of constant functions is 2.

Proof For any two distinct points (x1, t1) and (x2, t2), assume that with loss of generality
t1 ≤ t2. Then the singleton {(x2, t2)} can never be picked up by Gf for any f ∈ F , and
hence mGF (2) < 22 and V (F) = 2. In fact, if (x2, t2) is in the subgraph of f(x) ≡ b, then
t2 < b. As a result, t1 ≤ t2 < b, indicating that (x1, t1) is also in the subgraph.

D.3 Lipschitz functions of Gaussian vectors

Say that a function g : Rp → Rm is L-Lipschitz if ‖g(x1) − g(x2)‖2 ≤ L‖x1 − x2‖2 for any
x1, x2 ∈ Rp.

Lemma 62 Let X ∼ Np(µ,Σ), and g : Rp → Rm be an L-Lipschitz function.
(i) For any vector w ∈ Rm with ‖w‖2 = 1, we have

E
[
{wT(g(X)− Eg(X))}2

]
≤ 2C2

sg,12L
2‖Σ‖op,

where Csg,12 is the universal constant from Lemma 67. Hence we have

‖Var g(X)‖op ≤ 2C2
sg,12L

2‖Σ‖op.

(ii) For any symmetric matrix A ∈ Rm×m with ‖A‖F = 1, we have

E
[
{(g(X)− Eg(X))TA(g(X)− Eg(X))}2

]
≤ 4C4

sg,12mL
4‖Σ‖2op.

Proof (i) By Boucheron et al. (2013), Theorem 5.6, it can be shown that for any L2 unit

vector w, wT(g(X) − Eg(X)) is sub-gaussian with tail parameter L‖Σ‖1/2op . See the proof
of Lemma 43(i) for a similar argument. Then by Lemma 67, E[{wT(g(X) − Eg(X))}2] ≤
2C2

sg,12L
2‖Σ‖op.

(ii) Consider an eigen-decomposition A =
∑m

j=1 λjwjw
T
j , where λj ’s are eigenvalues

and wj ’s are the eigenvectors with ‖wj‖2 = 1. Denote g = g(X) and g̃ = g − Eg. Then
g̃TAg̃ =

∑m
j=1 λj(w

T
j g̃)2 and

(g̃TAg̃)2 ≤

 m∑
j=1

λ2
j

 m∑
j=1

(wT
j g̃)4

 ≤ 4C4
sg,12mL

4‖Σ‖2op.
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The first step uses the Cauchy–Schwartz inequality, and the second step uses the fact
that

∑m
j=1 λ

2
j = ‖A‖2F = 1 and E(wT

j g̃)4 ≤ 4C4
sg,12L

4‖Σ‖2op by Lemma 67 because wT
j g̃j is

sub-gaussian with tail parameter L‖Σ‖1/2op for each j.

The following result provides a 4th-moment bound which depends linearly on L2‖Σ‖op,
under a boundedness condition in addition to the Lipschitz condition.

Lemma 63 Let X ∼ Np(µ,Σ), and g : Rp → [0, 1]m be an L-Lipschitz function.

(i) For any matrix A ∈ Rm×m with ‖A‖F = 1, we have

E
[
{(g(X)− Eg(X))TA(g(X)− Eg(X))}2

]
≤ 2C2

sg,12mL
2‖Σ‖op.

(ii) For any matrix A ∈ Rm×m with ‖A‖F = 1, we have

E
[
{gT(X)Ag(X)− EgT(X)Ag(X)}2

]
≤ 20C2

sg,12mL
2‖Σ‖op.

Proof (i) Denote g = g(X) and g̃ = g − Eg. Then each component of g̃ is contained in
[−1, 1] by the boundedness of g. The variable (g̃TAg̃)2 can be bounded as follows:

(g̃TAg̃)2 = tr(g̃TAg̃g̃TATg̃) = tr(Ag̃g̃TATg̃g̃T)

≤ tr(Ag̃g̃TAT)‖g̃g̃T‖op (168)

≤ m tr(Ag̃g̃TAT) = m tr(ATAg̃g̃T). (169)

Line (168) follows from von Neumann’s trace equality. Line (169) uses the fact that
‖g̃g̃T‖op ≤ m, because wTg̃g̃Tu = (wTg̃)2 ≤ ‖w‖22‖g̃‖22 ≤ m‖w‖22 for any w ∈ Rm, by
the boundedness of g̃. Then the desired result follows because

Etr(ATAg̃g̃T) = tr(ATAVar(g))

≤ tr(ATA)‖Var(g)‖op (170)

≤ 2C2
sg,12L

2‖Σ‖op. (171)

Line (170) also follows from von Neumann’s trace equality. Line (171) follows because
tr(ATA) = ‖A‖2F = 1 and ‖Var(g)‖op ≤ 2C2

sg,12L
2‖Σ‖op by Lemma 62(i), with g being an

L-Lipschitz function.

(ii) The difference gTAg−EgTAg can be expressed in terms of the centered variables as
gTAg − EgTAg = (g̃TAg̃ − Eg̃TAg̃) + 2(Eg)TAg̃. Then

(gTAg − EgTAg)2 ≤ 2(g̃TAg̃ − Eg̃TAg̃)2 + 8{(Eg)TAg̃}2

≤ 2(g̃TAg̃ − Eg̃TAg̃)2 + 8‖Eg‖22‖Ag̃‖22. (172)

The expectation of the first term on (172) can be bounded using (i) as

2E{(g̃TAg̃ − Eg̃TAg̃)2} = 2E{(g̃TAg̃)2} − 2(Eg̃TAg̃)2

≤ 2E{(g̃TAg̃)2} ≤ 4mC2
sg,12L

2‖Σ‖op.
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The expectation of the second term on (172) can be bounded as

8‖Eg‖22 E‖Ag̃‖22 = 8‖Eg‖22 Etr(ATAg̃g̃T)

≤ 16mC2
sg,12L

2‖Σ‖op.

by inequality (171) and the fact that ‖Eg‖22 ≤ m. Combining the preceding two bounds
yields the desired result.

D.4 Moment matching for Lipschitz functions

The following result gives an upper bound on moment matching of quadratic forms under
a Lipschitz condition.

Lemma 64 Let g : Rp → Rm be an L-Lipschitz function, and let X1 = µ1 + D1Z and
X2 = µ2 + D2Z, where Z ∈ Rp is a random vector in which the second moments of all
components are 1, µ1, µ2 ∈ Rp, and D1 = diag(d1) and D2 = diag(d2) with d1, d2 ∈ Rp+.
Then for any matrix A ∈ Rm×m with ‖A‖F = 1,

|EgT(X1)Ag(X1)− EgT(X2)Ag(X2)|
≤ 2
√
mL2∆2 + 2

√
2L∆(E‖g2‖22)1/2,

where ∆2 = ‖µ1 − µ2‖22 + ‖d1 − d2‖22.

Proof Denote g1 = g(X1) and g2 = g(X2). The difference gT
1Ag1 − gT

2Ag2 can be decom-
posed as

gT
1Ag1 − gT

2Ag2

= (g1 − g2)TA(g1 − g2) + 2(g1 − g2)TAg2. (173)

The expectation of the first term on (173) can be bounded as

|E(g1 − g2)TA(g1 − g2)| = |tr (AV )|

≤
m∑
j=1

sj(A)‖V ‖op (174)

≤ 2
√
mL2

(
‖µ1 − µ2‖22 + ‖d1 − d2‖22

)
, (175)

where s1(A), . . . , sm(A) are the singular values of A, and V = E{(g1 − g2)(g1 − g2)T}. Line
(174) follows from von Neumann’s trace inequality. Line (175) follows because

∑m
j=1 sj(A) ≤

√
m{
∑m

j=1 s
2
j (A)}1/2 =

√
m‖A‖F =

√
m with ‖A‖F = 1 and ‖V ‖op ≤ 2L2(‖µ1 − µ2‖22 +

‖d1 − d2‖22), which can be shown as follows. For any L2 unit vector w, we have

wTV w = E
[
{wT(g1 − g2)}2

]
≤ E‖g1 − g2‖22

≤ L2E‖µ1 +D1Z − (µ2 +D2Z)‖22
≤ 2L2

{
‖µ1 − µ2‖22 + E‖(D1 −D2)Z‖22

}
≤ 2L2

(
‖µ1 − µ2‖22 + ‖d1 − d2‖22

)
, (176)
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using the fact that g(·) is L-Lipschitz and the marginal variances of Z are 1. The expectation
of the second term on (173) can be bounded as

|E(g1 − g2)TAg2| ≤ E |(g1 − g2)TAg2|
≤ E‖g1 − g2‖2‖Ag2‖2
≤ E1/2(‖g1 − g2‖22)E1/2(‖Ag2‖22)

≤
√

2L
(
‖µ1 − µ2‖22 + ‖d1 − d2‖22

)1/2
(E‖g2‖22)1/2. (177)

Line (177) uses the fact that E{‖g1 − g2‖22} ≤ 2L2(‖µ1 − µ2‖22 + ‖d1 − d2‖22) based on (176)
and the following argument:

E‖Ag2‖22 ≤ E(‖A‖2op‖g2‖22) ≤ E‖g2‖22,

where the last step follows because ‖A‖op ≤ ‖A‖F = 1. Combining (173), (175), and (177)
yields the desired result.

The following result gives a tighter bound than in Lemma 64 under a boundedness
condition in addition to the Lipschitz condition.

Lemma 65 In the setting of Lemma 64, suppose that each component of g1(x) and g2(x)
is bounded in [−1, 1]. Then for any matrix A ∈ Rm×m with ‖A‖F = 1,

|EgT(X1)Ag(X1)− EgT(X2)Ag(X2)| ≤ 2
√

2mL∆,

where ∆2 = ‖µ1 − µ2‖22 + ‖d1 − d2‖22.

Proof The difference gT
1Ag1 − gT

2Ag2 can also be decomposed as

gT
1Ag1 − gT

2Ag2 = (g1 − g2)TAg1 + (g1 − g2)TAg2.

By (177), both of the two terms on the right-hand side can be bounded in absolute values
by
√

2L∆(E‖g2‖22)1/2 and hence by
√

2mL∆, because E‖g2‖22 ≤ m by the componentwise
boundedness of g1 and g2.

Appendix E. Technical tools

E.1 von Neumann’s trace inequality

Lemma 66 (Von Neumann, 1937) For any m×m matrices A and B with singular values
α1 ≥ · · · ≥ αm ≥ 0 and β1 ≥ · · · ≥ βm ≥ 0 respectively,

|tr(AB)| ≤
m∑
j=1

αjβj .

As a direct consequence, if A is symmetric and non-negative definite, then

|tr(AB)| ≤ tr(A)‖B‖op

This follows because the singular values αi’s are also the eigenvalues of A and hence tr(A) =∑m
j=1 αj for a symmetric and nonnegative definite matrix A, and ‖B‖op = maxi=j,...,m βj

by the definition of ‖B‖op.
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E.2 Sub-gassisan and sub-exponential properties

The following results can be obtained from Vershynin (2018), Proposition 2.5.2.

Lemma 67 For a random variable Y , the following properties are equivalent: there exist
universal constants Csg,ij > 0 such that the C−1

sg,ijKj ≤ Ki ≤ Csg,ijKj for all 1 ≤ i 6= j ≤ 4,
where Ki is the parameter appearing in property (i).

(i) P(|Y | > t) ≤ 2 exp(− t2

2K2
1
) for any t > 0.

(ii) E1/p(|Y |p) ≤ K2
√
p for any p ≥ 1.

(iii) E exp(Y 2/K2
3 ) ≤ 2.

If EY = 0, then properties (1)–(3) are also equivalent to the following one.

(iv) E exp(sY ) ≤ exp(
K2

4s
2

2 ), for any s ∈ R.

Say that Y is a sub-gaussian random variable with tail parameter K if property (1) holds
in Lemma 67 with K1 = K. The following result shows that being sub-gaussian depends
only on tail probabilities of a random variable.

Lemma 68 Suppose that for some b,K > 0, a random variable Y satisfies that

P(|Y | > b+ t) ≤ 2e−
t2

2K2 for any t > 0.

Then Y is sub-gaussian with tail parameter K + b.

Proof We distinguish two cases of y > 0. First, if y > K+b, then (y−b)/K > y/(K+b) > 1
and

P(|Y | > y) ≤ 2 exp

{
−(y − b)2

2K2

}
≤ 2 exp

{
− y2

2(K + b)2

}
.

Second, if y ≤ K + b, then

P(|Y | > y) ≤ 1 ≤ 2e−
1
2 ≤ 2 exp

{
− y2

2(K + b)2

}
.

Hence the desired result holds.

The following result follows directly from Chernoff’s inequality.

Lemma 69 Suppose that (Y1 . . . , Yn) are independent such that EYi = 0 and Yi is sub-
gaussian with tail parameter K for i = 1, . . . , n. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣ > Csg5t

)
≤ 2 exp

(
− nt2

2K2

)
for any t > 0.

where Csg5 = Csg,14 as in Lemma 67.
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The following result can be obtained from Vershynin (2018), Exercise 2.5.10.

Lemma 70 Let (Y1, . . . , Yn) be random variables such that Yi is sub-gaussian with tail
parameter K for i = 1, . . . , n. Then

E max
i=1,...,n

|Yi| ≤ Csg6K
√

log(2n),

where Csg6 > 0 is a universal constant.

Say that Y ∈ Rd is a sub-gaussian random vector with tail parameter K if wTY is
sub-gaussian with tail parameter K for any w ∈ Rd with ‖w‖2 = 1. The following result
can be obtained from Hsu et al. (2012), Theorem 2.1.

Lemma 71 Suppose that Y ∈ Rd with EY = 0 is a sub-gaussian random vector with tail
parameter K. Then for any t > 0, we have that with probability at least 1− e−t,

‖Y ‖2 ≤ Csg7K(
√
d+
√
t),

where Csg7 > 0 is a universal constant.

The following result can be obtained from Vershynin (2010), Theorem 5.39 and Remark
5.40(1). Formally, this is different from Vershynin (2018), Theorem 4.7.1 and Exercise 4.7.3,
due to assumption (4.24) used in the latter result.

Lemma 72 Suppose that Y1, . . . , Yn are independent and identically distributed as Y ∈ Rd,
where Y is a sub-gaussian random vector with tail parameter K. Then for any t > 0, we
have that with probability at least 1− 2e−t,∥∥∥∥∥ 1

n

n∑
i=1

YiY
T
i − Σ

∥∥∥∥∥
op

≤ Csg8K
2

(√
d+ t

n
+
d+ t

n

)
,

where Σ = E(Y Y T) and Csg8 is a universal constant.

The following result can be obtained from Vershynin (2018), Proposition 2.5.2.

Lemma 73 For a random variable Y , the following properties are equivalent: there exist
universal constants Csx,ij > 0 such that the C−1

sx,ijKj ≤ Ki ≤ Csx,ijKj for all 1 ≤ i 6= j ≤ 4,
where Ki is the parameter appearing in property (i).

(i) P(|Y | > t) ≤ 2 exp(− t
K1

) for any t > 0.

(ii) E1/p(|Y |p) ≤ K2p for any p ≥ 1.

(iii) E exp(|Y |/K3) ≤ 2.

If EY = 0, then properties (i)–(iii) are also equivalent to the following one.

(iv) E exp(sY ) ≤ exp(
K2

4s
2

2 ), for any s ∈ R satisfying |s| ≤ K−1
4 .
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Say that Y is a sub-exponential random variable with tail parameter K if property (1)
holds in Lemma 73 with K1 = K. The following result, from Vershynin (2018), Lemma
2.7.7, provides a link from sub-gaussian to sub-exponential random variables.

Lemma 74 Suppose that Y1 and Y2 are sub-gaussian random variables with tail parameters
K1 and K2 respectively. Then Y1Y2 is sub-exponential with tail parameter Csx5K1K2, where
Csx5 > 0 is a universal constant.

The following result about centering can be obtained from Vershynin (2018), Exercise
2.7.10.

Lemma 75 Suppose that Y is sub-exponential random variable with tail parameter K.
Then Y −EY is sub-exponential random variable with tail parameter Csx6K, where Csx6 > 0
is a universal constant.

The following result can be obtained from Vershynin (2018), Corollary 2.8.3.

Lemma 76 Suppose that (Y1 . . . , Yn) are independent such that EYi = 0 and Yi is sub-
exponential with tail parameter K for i = 1, . . . , n. Then

P

{∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣ > Csx7K

(√
t

n
∨ t

n

)}
≤ 2e−t for any t > 0.

where Csx7 > 0 is a universal constant.

E.3 Symmetrization and contraction

The following result can be obtained from the symmetrization inequality (Section 2.3.1 in
van der Vaart and Wellner, 1996) and Theorem 7 in Meir and Zhang (2003).

Lemma 77 Let X1, . . . , Xn be i.i.d. random vectors and F be a class of real-valued func-
tions such that Ef(X1) <∞ for all f ∈ F . Then we have

E sup
f∈F

{
1

n

n∑
i=1

f(Xi)− Ef(Xi)

}
≤ 2E sup

f∈F

{
1

n

n∑
i=1

εif(Xi)

}
,

where ε1, . . . , εn are i.i.d. Rademacher random variables that are independent of X1, . . . , Xn.
The above inequality also holds with the left-hand side replaced by

E sup
f∈F

{
Ef(Xi)−

1

n

n∑
i=1

f(Xi)

}
.

105



Wang and Tan

Proof For completeness, we give a direct proof. Let (X ′1, . . . , X
′
n) be i.i.d. copies of

(X1, . . . , Xn). Then we have

E sup
f∈F

{
1

n

n∑
i=1

f(Xi)− Ef(X)

}

= EXi

[
sup
f∈F

EX′i

{
1

n

n∑
i=1

f(Xi)− f(X ′i)

}]

≤ EXi,X′i

[
sup
f∈F

{
1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(X ′i)

}]
(178)

= EXi,X′i,εi

[
sup
f∈F

εi

{
1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(X ′i)

}]
(179)

≤ EXi,εi

{
sup
f∈F

1

n

n∑
i=1

εif(Xi)

}
+ EX′i,εi

{
sup
f∈F

1

n

n∑
i=1

−εif(X ′i)

}

= 2EXi,εi

{
sup
f∈F

1

n

n∑
i=1

εif(Xi)

}
.

Line (178) follows from Jensen’s inequality. Line (179) follows because for a pair of i.i.d.
random variables, their difference is a symmetric random variable about 0 and its distribu-
tion remains the same when multiplied by an independent Rademacher random variable. A
similar argument is also applicable for upper bounding E supf∈F

{
Ef(Xi)− 1

n

∑n
i=1 f(Xi)

}
.

Lemma 78 Let φ be a function with a Lipschitz constant R. Then in the setting of
Lemma 77, we have

E sup
f∈F

{
1

n

n∑
i=1

εiφ(f(Xi))

}
≤ E sup

f∈F

{
1

n

n∑
i=1

εiRf(Xi)

}
.

E.4 Entropy and maximal inequality

For a function class F in a metric space endowed with norm ‖ · ‖, the covering number
N (δ,F , ‖ · ‖) is defined as the smallest number of balls of radius δ in the ‖ · ‖-metric needed
to cover F . The entropy, H(δ,F , ‖ · ‖) is defined as logN (δ,F , ‖ · ‖). The following max-
imal inequality can be obtained from Dudley’s inequality for sub-gaussian variables (e.g.,
van de Geer, 2000, Corollary 8.3; Bellec et al., 2018, Proposition 9.2) including Rademacher
variables.

Lemma 79 Let F be a class of functions f : X → R, and (ε1, . . . , εn) be independent
Rademacher random variables. For a fixed set of points {xi ∈ X : i = 1, . . . , n}, define the
random variable

Zn(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ .
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Suppose that supf∈F ‖f‖n ≤ 1 and
∫ 1

0 H
1/2(u,F , ‖ · ‖n) du ≤ Ψn(F), where ‖ · ‖n is the

empirical L2 norm, ‖f‖n = {n−1
∑n

i=1 f
2(xi)}1/2. Then for any t > 0,

P
{
Zn(F)/Crad > n−1/2(Ψn(F) + t)

}
≤ 2e−

t2

2 , (180)

where Crad > 0 is a universal constant.

The following result, taken from van der Vaart and Wellner (1996), Theorem 2.6.7,
provides an upper bound on the entropy of a function class in terms of the VC index. For
any r ≥ 1 and probability measure Q, the Lr(Q) norm is defined as ‖f‖r,Q = (

∫
|f |r dQ)1/r.

Lemma 80 Let F be a VC class of functions such that supf∈F |f | ≤ 1. Then for any r ≥ 1
and probability measure Q, we have

N (u,F , ‖ · ‖r,Q) ≤ CvcV (F)(16e)V (F)u−r(V (F)−1) for any u ∈ (0, 1),

where V (F) denotes the VC index of F and Cvc ≥ 1 is a universal constant.

We deduce the following implications of the preceding results, which can be used in
conjunction with Lemmas 60–61.

Corollary 81 In the setting of Lemma 79, the random variable Zn(F) is sub-gaussian with
tail parameter Cradn

−1/2(Ψn(F) + 1).

Proof By (180), the results follows from an application of Lemma 68.

Corollary 82 In the setting of Lemma 79, the following results hold.

(i) If supf∈F |f | ≤ 1, then Zn(F) is sub-gaussian with tail parameter Crad2

√
V (F)/n,

where Crad2 = Crad{1 +
√

2 + log(16Cvc) +
∫ 1

0

√
2 log(u−1) du}.

(ii) Consider another two classes G and H of functions from X to R in addition to F ,
and let Fcom = {fg + h : f ∈ F , g ∈ G, h ∈ H}. If supf∈F∪G∪H |f | ≤ 1, then Zn(Fcom) is

sub-gaussian with tail parameter Crad3

√
{V (F) + V (G) + V (H)}/n, where Crad3 = Crad{1+√

2 + log(16Cvc) +
∫ 1

0

√
2 log(3u−1) du}.

Proof (i) Take r = 2 and Q to be the empirical distribution on {x1, . . . , xn}. By Lemma 80,
the entropy integral

∫ 1
0 H

1/2(u,F , ‖ · ‖n) du can be upper bounded by∫ 1

0
log1/2

{
CvcV (F)(16e)V (F)u−2(V (F)−1)

}
du

=

∫ 1

0

{
log(Cvc) + log V (F) + V (F) log(16e) + 2(V (F)− 1) log(u−1)

}1/2
du

≤
√
V (F)

∫ 1

0

{√
2 + log(16Cvc) +

√
2 log(u−1)

}
du,
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using log V (F) ≤ V (F) for V (F) ≥ 1 and
√
u1 + u2 ≤

√
u1 +

√
u2. Taking Ψn(F) in (i) to

be the right-hand side of the preceding display yields the desired result by Corollary 81.

(ii) First, we show that the covering number N (u,Fcom, ‖ · ‖n) is upper bounded by the
product N (u/3,F , ‖ · ‖n)N (u/3,G, ‖ · ‖n)N (u/3,H, ‖ · ‖n). Denote as F̂ a (u/3)-net of F
with the cardinality N (u/3,F , ‖ · ‖n). Similarly, denote as Ĝ and Ĥ those of G, H with the
cardinality N (u/3,G, ‖ · ‖n) and N (u/3,H, ‖ · ‖n) respectively. For any f ∈ F , g ∈ G and
h ∈ H, there exist f̂ ∈ F̂ , ĝ ∈ Ĝ and ĥ ∈ Ĥ such that

‖f̂ − f‖n ≤ u/3, ‖ĝ − g‖n ≤ u/3, ‖ĥ− h‖n ≤ u/3.

By the triangle inequality and supf∈F∪G |f | ≤ 1, we have

‖f̂ ĝ + ĥ− fg − h‖n
≤ ‖(f̂ − f)ĝ‖n + ‖f(ĝ − g)‖n + ‖ĥ− h‖n
≤ ‖f̂ − f‖n + ‖ĝ − g‖n + ‖ĥ− h‖n ≤ u.

This shows that F̂com = {f̂ ĝ + ĥ : f̂ ∈ F̂ , ĝ ∈ Ĝ, ĥ ∈ Ĥ} is a u-net of Fcom with respect to
‖ · ‖n. Hence the covering number N (u,Fcom, ‖ · ‖n) is upper bounded by the cardinality of
F̂com, that is, N (u/3,F , ‖ · ‖n)N (u/3,G, ‖ · ‖n)N (u/3,H, ‖ · ‖n).

Next, by Lemma 80 applied to F , G, and H and similar calculation as in (i), the entropy
integral

∫ 1
0 H

1/2(u,Fcom, ‖ · ‖n) du can be upper bounded by∫ 1

0
{logN (u/3,F , ‖ · ‖n) + logN (u/3,G, ‖ · ‖n) + logN (u/3,H, ‖ · ‖n)}1/2 du

≤
√
V (F) + V (G) + V (H)

∫ 1

0

{√
2 + log(16Cvc) +

√
2 log(3u−1)

}
du.

The desired result follows by applying Corollary 81 to the class Fcom, with Ψn(Fcom) taken
to be the right-hand side of the preceding display.
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