
Journal of Machine Learning Research 24 (2023) 1-37 Submitted 09/22; Revised 02/23; Published 04/23

Bilevel Optimization with a Lower-level Contraction:
Optimal Sample Complexity without Warm-Start

Riccardo Grazzi riccardo.grazzi@iit.it
Computational Statistics and Machine Learning,
Istituto Italiano di Tecnologia, Genoa, Italy and
University College of London, UK

Massimiliano Pontil massimiliano.pontil@iit.it
Computational Statistics and Machine Learning,
Istituto Italiano di Tecnologia, Genoa, Italy and
University College of London, UK

Saverio Salzo saverio.salzo@iit.it

Universitá la Sapienza di Roma, Italy and

Computational Statistics and Machine Learning,

Istituto Italiano di Tecnologia, Genoa, Italy

Editor: Francis Bach

Abstract

We analyse a general class of bilevel problems, in which the upper-level problem consists in
the minimization of a smooth objective function and the lower-level problem is to find the
fixed point of a smooth contraction map. This type of problems include instances of meta-
learning, equilibrium models, hyperparameter optimization and data poisoning adversarial
attacks. Several recent works have proposed algorithms which warm-start the lower-level
problem, i.e. they use the previous lower-level approximate solution as a staring point
for the lower-level solver. This warm-start procedure allows one to improve the sample
complexity in both the stochastic and deterministic settings, achieving in some cases the
order-wise optimal sample complexity. However, there are situations, e.g., meta learning
and equilibrium models, in which the warm-start procedure is not well-suited or ineffective.
In this work we show that without warm-start, it is still possible to achieve order-wise
(near) optimal sample complexity. In particular, we propose a simple method which uses
(stochastic) fixed point iterations at the lower-level and projected inexact gradient descent
at the upper-level, that reaches an ε-stationary point using O(ε−2) and Õ(ε−1) samples for
the stochastic and the deterministic setting, respectively. Finally, compared to methods
using warm-start, our approach yields a simpler analysis that does not need to study the
coupled interactions between the upper-level and lower-level iterates.

Keywords: bilevel optimization; warm-start; non-convex optimization; implicit differen-
tiation; hypergradient; sample complexity.

1. Introduction

This paper studies bilevel optimization in the context of machine learning and the design of
efficient and principled optimization schemes. More specifically, we consider the following

c©2023 Riccardo Grazzi, Massimiliano Pontil and Saverio Salzo.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1043.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1043.html

Grazzi, Pontil and Salzo

general problem

min
λ∈Λ

f(λ) := E[Ê(w(λ), λ, ξ)]

subject to w(λ) = E[Φ̂(w(λ), λ, ζ)],
(1)

where Λ ⊆ Rn is closed and convex, Ê : Rd × Λ × Ξ → R and Φ̂ : Rd × Λ × Z → Rd, ξ
and ζ are two independent random variables with values in Ξ and Z, respectively. In the
following we refer to the problem of finding the fixed point w(λ) of (1) as the lower-level
(LL) problem, whereas we call the upper-level (UL) problem, that of minimizing f .

Many machine learning problems can be naturally cast in the form (1). Important exam-
ples are instances of hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al.,
2017; Liu et al., 2018; Lorraine et al., 2020; Elsken et al., 2019), meta-learning (Andrychow-
icz et al., 2016; Finn et al., 2017; Franceschi et al., 2018), equilibrium models (Bai et al.,
2019), data poisoning attacks (Mei and Zhu, 2015; Muñoz-González et al., 2017), and graph
and recurrent neural networks (Almeida, 1987; Pineda, 1987; Scarselli et al., 2008). In the
following we define

E(w, λ) := E[Ê(w, λ, ξ)], Φ(w, λ) := E[Φ̂(w, λ, ξ)],

and we assume that Φ(·, λ) is a contraction, i.e. Lipschitz continuous with Lipschitz constant
less than one. An important special case of the LL problem in (1), which is the one usually
considered in the related literature, is when

w(λ) = arg min
w∈Rd

E[L̂(w, λ, ζ)]. (2)

In this case, provided that the objective L(w, λ) := E[L̂(w, λ, ζ)] is strongly convex and
Lipschitz smooth, there always exists a sufficiently small η > 0 such that the gradient
descent map

Φ(w, λ) := w − η∇1L(w, λ), (3)

is a contraction with respect to w.

In dealing with Problem (1), we analyse gradient-based methods which exploit approxi-
mations of the hypergradient, i.e. the gradient of f in (1). As shown in Grazzi et al. (2020),
the contraction assumption guarantees that Φ(·, λ) has a unique fixed point w(λ) and the
hypergradient, thanks to the implicit function theorem (Lang, 2012, Theorem 5.9), always
exists and is given by

∇f(λ) = ∇2E(w(λ), λ) + ∂2Φ(w(λ), λ)>v(w(λ), λ), (4)

where ∇iE and ∂Φi are the gradient and the Jacobian matrix with respect to the i-th
component of E and Φ respectively, and v(w, λ) is the solution of the linear system

(I − ∂1Φ(w, λ)>)v = ∇1E(w, λ), (LS)

which is given by v(w, λ) :=
(
I − ∂1Φ(w, λ)>

)−1∇1E(w, λ).

Computing the hypergradient exactly can be impossible or very expensive since it re-
quires to compute the LL and LS solutions w(λ) and v(w(λ), λ). This is especially true in

2

Bilevel Optimization with a Lower-level contraction

large-scale machine learning applications where the number of UL and LL parameters m
and d can be very large. Furthermore, in cases such as hyperparameter optimization, where
E is the average loss over the validation set while Φ is defined in (3) with L being the loss
over the training set, if the data set is large, E, Φ and their derivatives can become very
expensive to compute. For this reason, relying on stochastic estimators (Ê and Φ̂) using
only a mini-batch of examples becomes crucial for devising scalable methods.

To address these issues, approximate implicit differentiation (AID) methods (Pedregosa,
2016; Rajeswaran et al., 2019; Lorraine et al., 2020), compute the hypergradient by using
approximate solutions for the LL and LS problems. Iterative differentiation methods (ITD)
(Maclaurin et al., 2015; Franceschi et al., 2017, 2018; Finn et al., 2017) instead directly
differentiate the lower-level solver. The convergence of those methods to the true hypergra-
dient has been studied in (Grazzi et al., 2020) for AID and ITD methods in the deterministic
case and in (Grazzi et al., 2021) for stochastic AID methods.

By contrast, here we study the convergence rate of a full bilevel procedure to solve
Problem (1), based on an extension of the AID method presented in (Grazzi et al., 2021).
Such type of study was started by Ghadimi and Wang (2018) and was later followed by
several works which we discuss in Section 3. Concerning ITD-based methods, we note that
similar results were proved only in the deterministic setting (Ji et al., 2021, 2022).

Warm-start. A common procedure to improve the overall performance of bilevel al-
gorithms is that of using as a starting point for the LL (or LS) solver at the current UL
iteration, the LL (or LS) approximate solution found at the previous UL iteration (Hong
et al., 2020; Guo and Yang, 2021; Huang and Huang, 2021; Chen et al., 2021). This strat-
egy, which is called warm-start, reduces the number of LL (or LS) iterations needed by the
bilevel procedure and is thought to be fundamental to achieve the optimal sample com-
plexity (Arbel and Mairal, 2021). Moreover, warm-start is sometimes accompanied by the
use of large mini-batches (Ji et al., 2021; Arbel and Mairal, 2021), i.e. averages of many
samples, to estimate gradients or Jacobians. Large mini-batches allow to reduce the number
of UL iteration but increase the cost per iteration and ultimately achieve the same sample
complexity up to log terms.

In spite of the above advantages, warm-start presents a major downside: it is not suitable
in applications where it is expensive to store the whole LL solution, such as meta-learning.
Indeed, meta-learning consists in leveraging “common properties” between a set of learning
tasks in order to facilitate the learning process. We consider a meta-training set of T tasks.
Each task i ∈ {1, . . . , T} relies on a training and a validation set which we denote by Dtr

i

and Dval
i , respectively. The meta-learning optimization problem is a bilevel problem where

the UL objective has the form f(λ) =
∑T

i=1 fi(λ) with fi(λ) := L(wi(λ), λ;Dval
i) and the

LL solution can be written as

w(λ) = arg min
w∈RT×d

T∑
i=1

L(wi, λ;Dtr
i), (5)

where L, λ and wi (the i-th row of w) are the loss function, the meta-parameters, and task-
specific parameters of the i-th task, respectively. For example, in (Franceschi et al., 2018)
wi and λ are the parameters of the last linear layer and the representation part of a neural
network, respectively. Note that the minimization in (5) can be performed separately for

3

Grazzi, Pontil and Salzo

each task. Therefore, when T is large, a common strategy is that of solving, at each UL
iteration only a small random subset of tasks.

In this context using warm-start is problematic. Indeed, if task j is sampled at iteration
s, applying warm-start consistently would require using, as a starting point for the LL
optimization, the solution for that same task j at iteration s−1. However, the task j might
not be among the sampled tasks at iteration s−1. A possible remedy would be to warm-start
by using the last available approximate solution of the LL problem for task j. However, this
solution might have been computed too many iterations before the current one, ultimately
making the warm-start procedure ineffective (see experiments in Section 7.2). In addition,
the above strategy would need to keep the approximate solutions for all the previous tasks
in memory and eventually for all the T tasks, which might be too costly when T and d are
large. Indeed, in Section 7.2 we consider a problem in which the variable w occupies 122
GB of memory. Finally, from the theoretical point of view, this requires a novel analysis to
handle the related delays. This discussion suggests that the warm-start strategy currently
considered in literature is not well suited for meta-learning, and indeed is seldom used in
meta-learning experiments.

We note that similar issues arise also for equilibrium models when dealing with large
data sets. Indeed, in the bilevel formulation of equilibrium models (see e.g. Grazzi et al.
(2020)) the LL problem consists in finding a fixed point representation for each training
example and ultimately yields a separable structure as in meta-learning.

Contributions. In this work we show for the first time that a bilevel procedure that does
not rely on warm-start can achieve optimal sample complexity, improving that by Ghadimi
and Wang (2018). Specifically, we make the following contributions.

• We extend the SID estimator proposed in (Grazzi et al., 2021) by using large mini-
batches to estimate ∇E and ∂2Φ. We prove that this improved SID (Algorithm 1) has
a O(1/t) convergence rate on the mean squared error (MSE), where t is the number
of iterations of the LL and LS solvers and the mini-batch size.

• We analyse the sample complexity of the bilevel procedure in Algorithm 2 (BSGM)
which combines projected inexact gradient descent with the hypergradient estimator
computed via SID. In particular, we prove, without any convexity assumptions on
f , that BSGM achieves the optimal and near-optimal sample complexities of O(ε−2)
(with a finite horizon) and Õ(ε−2), to reach an ε-stationary point of Problem (1). In
addition, it obtains near-optimal complexity of Õ(ε−1) for the deterministic case. We
stress that these results are achieved without warm-start, although with a reasonable
additional assumption (see Theorem 1(iv) and Theorem 19).

• We provide a simple and modular theoretical analysis which also extends previous ones
by considering the more general case where the LL problem is a fixed-point equation
instead of a minimization problem and by relaxing some of the assumptions. In par-
ticular, we cover the case where λ is subject to constraints (i.e. when Λ 6= Rm), which
are often needed to satisfy the other assumptions of the analysis, but neglected by
some previous works. We also extend the scope of applicability of the method by
including e.g. non-Lipschitz LL losses, like the square loss, in problems of type (2).

4

Bilevel Optimization with a Lower-level contraction

• We evaluate the empirical performance of our method against other methods using
warm-start on three instances of the bi-level problem (1). Specifically, we provide
experiments on equilibrium models and meta-learning showing that warm-start is in-
effective and increases the memory cost. We also perform a data poisoning experiment
which shows that warm-start can be beneficial, although our method remains com-
petitive. We provide the code at https://github.com/CSML-IIT-UCL/bioptexps

Notation. We denote by ‖·‖ either the Euclidean norm or the spectral norm (when applied
to matrices). The transpose and the inverse of a given matrix A, is denoted by A> and A−1,
respectively. For a real-valued function g : Rn×Rm → R, we denote by ∇1g(x, y) ∈ Rn and
∇2g(x, y) ∈ Rm, the partial derivatives w.r.t. the first and second variable, respectively. For
a vector-valued function h : Rn ×Rm → Rk we denote by ∂1h(x, y) ∈ Rk×n and ∂2h(x, y) ∈
Rk×m the partial Jacobians w.r.t. the first and second variables respectively. For a random
variable X we denote by E[X] and V[X] its expectation and variance respectively. Finally,
given two random variables X and Y , the conditional variance of X given Y is V[X | Y] :=
E[‖X − E[X | Y]‖2 | Y]. We use the shorthand ∂Φ>v to denote ∂Φ(w, λ)>v for some w, λ.

Organization. In Section 2 we describe the bilevel procedure. We discuss closely related
works in Section 3. In Section 4 we state our assumptions and some properties of the bilevel
problem. In Section 5 we analyse the convergence of SID. In Section 6 we first study the
convergence of the projected inexact gradient method with controllable mean square error
on the gradient, and then combine this analysis with the one in Section 5 to derive the
desired complexity results for BSGM. We present the experiments in Section 7.

2. Bilevel Stochastic Gradient Method

We study the simple double-loop procedure in Algorithm 2 (BSGM). BSGM uses projected
inexact gradient updates for the UL problem, where the (biased) hypergradient estimator
is provided by Algorithm 1 (SID). SID computes the hypergradient by first solving the LL
problem (Step 1), then it computes the estimator of the partial gradients of the UL function
E using mini-batches of size J (Step 2). After this it computes an approximate solution
to the LS (Step 3). Finally, it combines the LL and LS solutions together with min-batch
estimators of ∇2E and ∂2Φ, both computed using a mini-batch of size J , to give the final
hypergradient estimator (Step 4). We remark that the samplings performed at all the four
steps have to be mutually independent. Moreover, to solve the LL and LS problems we
use simple stochastic fixed-point iterations which reduce to stochastic gradient descent in
LL problems of type (2). We use the same sequence of step sizes ηi for both the LL and
LS solvers and the same batch size J for both ∇E and ∂2Φ to simplify the analysis and
to reduce the number of configuration parameters of the method. While this choice still
achieves optimal sample complexity, it may be suboptimal in practice.

SID is an extension of Algorithm 1 in Grazzi et al. (2021) which additionally takes mini-
batches of size J to reduce the variance in the estimation of ∇E and ∂2Φ. Note that while
we specify the LL and LS solvers, the analysis of Algorithm 2 in Section 5 works for any
converging solver, similarly to Grazzi et al. (2021). In particular, one could use variance
reduction or acceleration methods to further improve convergence whenever possible.

5

https://github.com/CSML-IIT-UCL/bioptexps

Grazzi, Pontil and Salzo

Algorithm 1 Stochastic Implicit Differentiation (SID)

Requires: t, k, J, λ, w0, (ηi)
∞
i=0.

1. LL Solver:

for i = 0, 1, . . . t− 1⌊
wi+1(λ) = wi(λ) + ηi(Φ̂(wi(λ), λ, ζi)− wi(λ))

(6)

where (ζi)0≤i≤t−1 are i.i.d. copies of ζ.

2. Compute∇iĒJ(wt(λ), λ) = 1
J

∑J
j=1∇iÊ(wt(λ), λ, ξj), where (ξj)1≤j≤J are i.i.d. copies

of ξ and i ∈ {1, 2}.

3. LS Solver:

for i = 0, 1, . . . k − 1⌊
vi+1(wt(λ), λ) = vi(wt(λ), λ) + ηi(Ψ̂wt(λ)(vi(wt(λ), λ), λ, ζ̂i)− vi(wt(λ), λ))

(7)

where Ψ̂w(v, λ, z) := ∂1Φ̂(w, λ, z)>v +∇1ĒJ(w, λ), (ζ̂i)0≤i≤k−1 are i.i.d. copies of ζ.

4. Compute the approximate hypergradient as

∇̂f(λ) :=∇2ĒJ(wt(λ), λ) + ∂2Φ̄J(wt(λ), λ)>vk(wt(λ), λ).

where ∂2Φ̄J(wt(λ), λ) = 1
J

∑J
j=1 ∂2Φ̂(wt(λ), λ, ζ ′j) and (ζ ′j)1≤j≤J are i.i.d. copies of ζ.

Algorithm 2 Bilevel Stochastic Gradient Method (BSGM)

Requires: λ0, w0, α, ηj , ts, Js.
for s = 0, 1, . . .

1. Compute ∇̂f(λs) using Algorithm 1 (SID) with t = ts, k = ts, J = Js, λ = λs, ηi = ηj ,
and w0 = w0, v0 = 0 (no warm-start).

2. λs+1 = PΛ(λs − α∇̂f(λs))

3. Comparison with Related Work

Bilevel optimization has a long history, see (Dempe and Zemkoho, 2020) for a comprehensive
review. In this section we only present results which are closely related to ours.

Several gradient-based algorithms, together with sample complexity rates have been
recently introduced for stochastic bilevel problems with LL of type (2). They all follow
a structure similar to Algorithm 2, where each UL update uses one (or more for variance

6

Bilevel Optimization with a Lower-level contraction

Algorithm SC BS-LL WS ts ks αs ηt,s
BSA (Ghadimi and Wang, 2018) O(ε−3) Θ(1) N, N Θ(

√
s) Θ(log(

√
s)) Θ(1/

√
S) Θ(1/t)

TTSA (Hong et al., 2020) Õ(ε−2.5) Θ(1) Y, N 1 Θ(log(
√
s)) Θ(S−2/5) Θ(S−3/5)

stocBiO (Ji et al., 2021) Õ(ε−2) Θ(S) Y, N Θ(1) Θ(log(
√
s)) ≤ 1/4Lf Θ(1)

SMB (Guo et al., 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(
√
s)) Θ(1/

√
S) Θ(1/

√
S)

saBiAdam (Huang and Huang, 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(
√
s)) Θ(1/

√
s) Θ(1/

√
s)

ALSET (Chen et al., 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(
√
S)) Θ(1/

√
S) Θ(1/

√
S)

Amigo (Arbel and Mairal, 2021) O(ε−2) Θ(S) Y, Y Θ(1) Θ(1) ≤ 1/Lf Θ(1)

BSGM Theorem 7(i) Õ(ε−2) Θ(1) N, N Θ(s) Θ(s) ≤ 1/Lf Θ(1/t)

BSGM Theorem 7(ii) O(ε−2) Θ(1) N, N Θ(S) Θ(S) ≤ 1/Lf Θ(1/t)

STABLE (Chen et al., 2022) O(ε−2) Θ(1) Y, N 1 ESI Θ(1/
√
S) Θ(1/

√
S)

FSLA (Li et al., 2022) O(ε−2) Θ(1) Y, Y 1 1 Θ(1/
√
s) Θ(1/

√
s)

STABLE-VR (Guo and Yang, 2021) Õ(ε−1.5) Θ(1) Y, N 1 ESI Θ(s−1/3) Θ(s−1/3)

SUSTAIN (Khanduri et al., 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(
√
s)) Θ(s−1/3) Θ(s−1/3)

VR-saBiAdam (Huang and Huang, 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(
√
s)) Θ(s−1/3) Θ(s−1/3)

MRBO (Yang et al., 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(S)) Θ(s−1/3) Θ(s−1/3)

VRBO (Yang et al., 2021) Õ(ε−1.5) Θ(
√
S) Y, N Θ(1) Θ(log(

√
S)) Θ(1) Θ(1)

Table 1: Sample complexity (SC) of stochastic bilevel optimization methods for finding an
ε-stationary point of Problem (1) with LL of type (2). BS-LL is the LL mini-
batch size, i.e. the one used to approximate Φ in the LL solver. WS indicates the
use of warm-start, e.g. Y, N means that warm-start is used for the LL problem
but not for the LS. ts and ks denote the number of iterations for the LL and LS
problems respectively, while αs and ηt,s are the stepsize respectively for the UL
and LL problems at the s-th UL iteration and t-th LL iteration. Lf is the Lipschitz
constant of ∇f , S is the total number of UL iteration and ESI means that the LS
estimator is given by an exact single sample inverse which costs O(d3). The last 7
results are obtained under additional expected smoothness assumptions (Arjevani
et al., 2022).

reduction methods) hypergradient estimator computed using a variant of Algorithm 1 with
different LL and LS solvers. The algorithms mainly differ in how they compute the LL, LS
and UL updates (e.g. in the choice of the step sizes ηt,s, αs, mini-batch sizes, and whether
they use variance reduction techniques), in the number of LL and LS iterations ts, ks, and
in the use of warm-start. These differences are summarized in Table 1.

Ghadimi and Wang (2018) introduce the first convergence analysis for a simple double-
loop procedure, both in the deterministic and stochastic settings. Their algorithm uses
(stochastic) gradient descent both at the upper and lower levels (SGD-SGD) and approx-
imates the LS solution using an estimator of the inverted LL hessian based on truncated
Neumann series (with ks elements). In the stochastic setting, this procedure needs O(ε−3)
samples to reach an ε-stationary point. This sample complexity is achieved by increasing
the number of LL and LS iterations, i.e. at the s-th UL iteration it sets ts = Θ(

√
s) and

ks = Θ(log(
√
s)).

Differently from this seminal work, all subsequent ones warm-start the LL problem to
improve the sample complexity, since this allows them to choose ts = Θ(1) or even ts = 1,

7

Grazzi, Pontil and Salzo

the latter case is referred to as single-loop. Warm-start combined with the simple SGD-SGD
strategy can improve the sample complexity by carefully selecting the UL and LL stepsize,
i.e. using two timescale (Hong et al., 2020) or single timescale (Chen et al., 2021) stepsizes,
or by employing larger and ε-dependent mini-batches (Ji et al., 2021). Warm-starting also
the LS can further improve the sample-complexity to O(ε−2) (Arbel and Mairal, 2021).
The complexity O(ε−2) is optimal, since the optimal sample complexity of methods using
unbiased stochastic gradient oracles with bounded variance on smooth functions is Ω(ε−2),
and this lower bound is also valid for bilevel problems of type (1)1 (also with LL of type (2)).

Chen et al. (2022); Khanduri et al. (2021); Guo and Yang (2021); Huang and Huang
(2021); Yang et al. (2021) achieve the best-known sample complexity of Õ(ε−1.5) using vari-
ance reduction techniques2. Li et al. (2022) introduce the first fully single loop algorithm
where both the LL and LS are warm-started and solved with one iteration, although it
achieves a sample complexity of O(ε−2) while using variance reduction. Variance reduc-
tion techniques require additional algorithmic parameters and need expected smoothness
assumptions to guarantee convergence (Arjevani et al., 2022). Furthermore, they increase
the cost per iteration compared to the SGD-SGD strategy since they require two stochastic
samples per iteration to estimate gradients instead of one. For these reasons, we do not
investigate these kinds of techniques in the present work.

Except for Chen et al. (2022); Guo and Yang (2021), all aforementioned methods and
ours are also computationally efficient, since they only require gradients and Hessian-vector
products. Hessian-vector products have a cost comparable to gradients thanks to automatic
differentiation. Chen et al. (2022); Guo and Yang (2021) further rely on operations like
inversions and projections of the LL Hessian. These can be too costly with a large number
(d) of LL variables, which can make it impractical even to compute the full hessian.

All the aforementioned works study smooth bilevel problems with LL of type (2) and
with a twice differentiable and strongly convex LL objective. At last, we mention two lines
of work which consider different bilevel formulations: (Bertrand et al., 2020, 2022), which
study the error of hypergradient approximation methods for certain non-smooth bilevel
problems, and (Liu et al., 2020, 2022; Arbel and Mairal, 2022), which analyse algorithms
to tackle bilevel problems with more than one LL solution.

The sample complexity improvement that our method achieves compared to Ghadimi
and Wang (2018), i.e. from O(ε−3) to O(ε−2), is possible because our hypergradient esti-
mator (SID) uses mini-batches of size Θ(ε−1) (instead of Θ(1)) to estimate ∇E and ∂2Φ
and a stochastic solver with decreasing step-sizes (instead of the truncated Neumann series
inverse estimator) also to solve the LS problem (similar to the LL solver). This allows SID
to have O(ε−1) mean squared error (see Theorem 10). In contrast, the hypergradient esti-
mator in Ghadimi and Wang (2018) achieves O(ε−1) only for the bias, while the variance
does not vanish. Consequently, we can use a more aggressive UL step-size (constant instead
of decreasing), which reduces the number of UL iterations from O(ε−2) to O(ε−1).

Among the methods using warm-start, Amigo (Arbel and Mairal, 2021) is the most
similar to ours. Indeed, it achieves the same O(ε−2) optimal sample complexity as BSGM.
Also, the number of UL iterations and the size of the mini-batch to estimate ∇E and ∂2Φ

1. We can easily see this when E(w, λ) = g(λ) and Ê(w, λ, ξ) = ĝ(λ, ξ) where g : Λ 7→ R is Lipschitz smooth
and ĝ is an unbiased estimate of g whose gradient w.r.t. λ has bounded variance.

2. Chen et al. (2022) uses variance reduction only on the LL Hessian updates (see eq. (12)).

8

Bilevel Optimization with a Lower-level contraction

is O(ε−1), as for our method. The main differences with respect to BSGM are in the use
of (i) the warm-start procedure in the LL and LS problems, which in general decreases
the complexity, (ii) mini-batch sizes of the order of Θ(ε−1) to estimate Φ (in the LL), ∂1Φ
(in the LS), which increase the complexity, contrasting with our choice of taking just one
sample for estimating the same quantities. Overall, (i)-(ii) balance out and ultimately give
the same total complexity.

We note that our improvement over point (ii) is necessary to achieve the optimal sample
complexity. Indeed, if one istead carries out the analysis by using (ii), constant step-
sizes for the LS and LL, and setting ks, ts = Θ(log(S)), only suboptimal complexity of
O(ε−2 log(ε−1)) is achieved, because mini-batches of size Θ(ε−1) are used 2S(1 + log(S))
(instead of just 2S) times in S UL iterations.

For the deterministic case, we improve the rate of Ghadimi and Wang (2018) from
O(ε−5/4) to O(ε−1 log(ε−1)) by setting ts = Θ(κ log(s)) (and also ks) instead of ts =
d(s+ 1)1/4/2e, where κ = (1 − q)−1 and q is the contraction constant defined in Assump-
tion A(i). Ji et al. (2021); Arbel and Mairal (2021) have an improved complexity of O(ε−1),
obtained by using warm-start and setting ts, ks = Θ̃(κ), where κ is proportional to the the
LL condition number.

Finally, note that warm-start makes it possible to set ts and ks with no dependence on
ε both in the deterministic and stochastic settings, improving the sample complexity (by
removing a log factor) in the former case. However, in the stochastic case the complexity
does not improve because solving the LL and LS problems cannot have lower complexity
than O(ε−1), which is that of the sample mean estimation error. Such complexity is already
achieved by our stochastic fixed-point iteration solvers with decreasing step-sizes and no
warm-start.

4. Assumptions and Preliminary Results

We hereby state the assumptions used for the analysis, discuss them and outline in a lemma
some useful smoothness properties of the bilevel problem.

Assumption A The set Λ ⊆ Rm is closed and convex and the mappings Φ: Rd × Λ→ Rd
and E : Rd × Λ→ R are differentiable in an open set containing Rd × Λ. For every λ ∈ Λ:

(i) Φ(·, λ) is a contraction, i.e., ‖∂1Φ(w, λ)‖ ≤ q for some q < 1 and for all w ∈ Rd.

(ii) ‖∂iΦ(w(λ), λ)− ∂iΦ(w, λ)‖ ≤ νi‖w(λ)− w‖ for i ∈ {1, 2}, ∀w ∈ Rd.

(iii) ‖∇iE(w(λ), λ)−∇iE(w, λ)‖ ≤ µi‖w(λ)− w‖ for i ∈ {1, 2}, ∀w ∈ Rd.

(iv) E(·, λ) is Lipschitz cont. on Rd with constant LE.

Assumption B Let w0 : Λ→ Rd. For every w∗ ∈ {w(λ) |λ ∈ Λ}, λ ∈ Λ:

(i) ∇1E(w∗, ·),∇2E(w∗, ·) are Lipschitz cont. on Λ with constants µ̄1, µ̄2 respectively.

(ii) ∂1Φ(w∗, ·), ∂2Φ(w∗, ·) are Lipschitz cont. on Λ with constants ν̄1, ν̄2 respectively.

(iii) ‖w(λ)− w0(λ)‖ ≤ B for some B ≥ 0.

9

Grazzi, Pontil and Salzo

(iv) ‖∂2Φ(w(λ), λ)‖ ≤ LΦ for some LΦ ≥ 0.

Assumption C The random variables ζ and ξ take values in measurable spaces Ξ and Z
and Φ̂ : Rd × Λ × Z 7→ Rd, Ê : Rd × Λ × Ξ 7→ R are measurable functions, differentiable
w.r.t. the first two arguments in an open set containing Rd×Λ, and, for all w ∈ Rd, λ ∈ Λ:

(i) E[Φ̂(w, λ, ζ)]=Φ(w, λ), E[Ê(w, λ, ξ)]=E(w, λ) and we can exchange derivatives with
expectations when taking derivatives on both sides.

(ii) V[Φ̂(w, λ, ζ)] ≤ σ1 + σ2‖Φ(w, λ)− w‖2 for some σ1, σ2 ≥ 0.

(iii) V[∂1Φ̂(w, λ, ζ)] ≤ σ′1, V[∂2Φ̂(w, λ, ζ)] ≤ σ′2 for some σ′1, σ
′
2 ≥ 0.

(iv) V[∇1Ê(w, λ, ξ)] ≤ σ1,E, V[∇2Ê(w, λ, ξ)] ≤ σ2,E for some σ1,E , σ2,E ≥ 0.

Assumptions A, B and C are similar to the ones in (Ghadimi and Wang, 2018) and
subsequent works, but extended to the bilevel fixed point formulation and sometimes weak-
ened. Assumptions A and C are sufficient to obtain meaningful upper bounds on the mean
square error of the SID estimator (Algorithm 1), while Assumption B enables us to derive
the convergence rates of the bilevel procedure in Algorithm 2. The deterministic case can
be studied by setting, in Assumption C, σ1 = σ2 = σ′1 = σ′2 = σ1,E = σ2,E = 0.

Remark 1

(i) Although the majority of recent works set Λ = Rm, many bilevel problems satisfy
the assumptions above only when Λ 6= Rm. E.g., when λ is a scalar regularization
parameter in the LL objective and Φ is the gradient descent map, λ has to be bounded
from below away from zero for Φ(·, λ) to always be a contraction (Assumption A(i)).
Also, when Λ and {w0(λ) |λ ∈ Λ} are bounded and closed, and Assumption A(i) is
satisfied, then B(iii)(iv) are satisfied because w(·) is continuous in Λ. Our analysis
directly considers the case Λ ⊆ Rm, which includes the others.

(ii) The Lipschitz assumption on E (A(iv)) is needed to upper bound ‖∇1E(wt(λ), λ)‖.
Otherwise, this is difficult to achieve since, in the stochastic setting, we have no control
on the LL iterates wt(λ). This assumption is not required in the deterministic case.

(iii) Assumption B(iv) is weaker than the one commonly used in related works, which
requires the partial Jacobian ∂2Φ(w, λ) to be bounded uniformly on Rd×Λ. By contrast,
we assume only the boundedness on the solution path {(w(λ), λ) |λ ∈ Λ}. This allows
to extend to scope of applicability of the method. For example, when λ ∈ [λmin, λmax]
is the L2-regularization parameter multiplying (1/2)‖w‖2 in the LL objective, Φ is the
gradient descent map and w0(λ) = 0, then ‖∂2Φ(w, λ)‖ = ‖w‖ which is unbounded,
while ‖∂2Φ(w(λ), λ)‖ = ‖w(λ)‖ is bounded since w(·) is differentiable (from A(i)) and
therefore continuous in [λmin, λmax] which is a bounded and closed set.

(iv) Assumption B(iii) uniformly bounds the distance of the LL solution w(λ) from the
starting point of the LL solver w0(λ). A similar assumption (with w0(λ) = 0) is
stated implicitly also in (Ghadimi and Wang, 2018) (See e.g. definition of M in eq.
(2.28)). B(iii) is not needed when using warm-start (see also Theorem 19), although it

10

Bilevel Optimization with a Lower-level contraction

is satisfied when Λ and {w0(λ) |λ ∈ Λ} are bounded and closed and A(i) holds, but also
in some cases where Λ is unbounded. For example in meta-learning, when λ is the bias
in the LL regularization, i.e. Λ = Rd, Φ(w, λ) = (1−ηγ)w−η∇L(w)+ηγλ with L L-
smooth, w0(λ) = λ and η > 0 being the LL step-size, we have w(λ) = λ−γ−1∇L(w(λ))
which implies supλ∈Rd‖w(λ)‖ =∞ while supλ∈Rd‖w(λ)− w0(λ)‖ ≤ γ−1L.

(v) Assumption C(ii) is more general than the corresponding one in (Ghadimi and Wang,
2018), which is a bound on the variance on the LL gradient estimator recovered by
setting σ2 = 0 and Φ̂(w, λ, ξ) = w−∇1L̂(w, λ, ξ) with ∇1L̂(w, λ, ξ) being an unbiased
estimator of the LL gradient. Having σ2 > 0 allows the variance to grow away from the
fixed point, which occurs for example when the unregularized loss in the LL Problem (2)
is not Lipschitz (like for the square loss).

Remark 2 Variance reduction methods (Chen et al., 2022; Guo and Yang, 2021; Khanduri
et al., 2021; Huang and Huang, 2021) require also an expected smoothness assumption
on ∇Ê, Φ̂ and ∂Φ̂ (often satisfied in practice). See (Arjevani et al., 2022). A random
function g(·, ξ), where ξ is the random variable, meets the expected smoothness assumption
if E[‖g(x1, ξ)− g(x2, ξ)‖]2 ≤ L̃2

g‖x1 − x2‖2, for every x1, x2, where L̃g ≥ 0.

The existence of the hypergradient ∇f(λ) is guaranteed by the fact that Φ and E are
differentiable and that Φ(·, λ) is a contraction (Assumption A(i)). Furthermore, we have
the following properties for the bilevel problem.

Lemma 3 (Smoothness properties of the bilevel problem) If Assumptions A
and B(i)(ii)(iv) are satisfied, the following statements hold.

(i) ‖w′(λ)‖ ≤ Lw := LΦ
1−q for every λ ∈ Λ.

(ii) w′(·) is Lipschitz continuous with constant

Lw′ =
ν̄2

1− q
+

LΦ

(1− q)2

(
ν2 + ν̄1 +

ν1LΦ

1− q

)
.

(iii) ∇f(·) is Lipschitz continuous with constant

Lf = µ̄2 + LELw′ +
LΦ

1− q

(
µ2 + µ̄1 +

µ1LΦ

1− q

)
.

The proof is in Appendix A.1. See Lemma 2.2 in Ghadimi and Wang (2018) for the special
case of Problem (1) with LL of type (2).

5. Convergence of SID

In this section, we fix λ and provide an upper bound to the mean squared error of the
hypergradient approximation:

MSE∇̂f(λ) := E[‖∇̂f(λ)−∇f(λ)‖2], (8)

11

Grazzi, Pontil and Salzo

where ∇̂f(λ) is given by SID (Algorithm 1). In particular, we show that when the mini-
batch size J and the number of LL and LS iterations t and k tend to∞, and the algorithms
to solve the LL and LS problems converge in mean square error, then the mean square
error of ∇̂f(λ) tends to zero. Moreover, using the stochastic fixed-point iteration solvers in
(6)-(7) with decreasing stepsizes and setting t = k = J we have MSE∇̂f(λ) = O(1/t).

This analysis is similar to the one of Algorithm 1 in Grazzi et al. (2021) Section 3
but with some crucial differences. First, this work considers the more challenging setting
with stochasticity also in the UL objective. Second, Algorithm 1 in Grazzi et al. (2021)
is a special case of Algorithm 1 with J = 1, and letting J → ∞ is necessary to have an
hypergradient estimator with zero MSE in the limit.

In the following, we first provide an analysis which is actually agnostic with respect to
the specific solvers of the LL and LS problems. More specifically, according to Algorithm 1

∇̂f(λ) :=∇2ĒJ(wt(λ), λ) + ∂2Φ̄J(wt(λ), λ)>vk(wt(λ), λ).

where wt(λ) is the output of a t steps stochastic algorithm that approximates the LL solution
w(λ) starting from w0(λ) and, for every w, vk(w, λ) is the output of a k steps stochastic
algorithm that approximates the solution v̄(w, λ) of the linear system

(I − ∂1Φ(w, λ)>)v = ∇1ĒJ(w, λ).

Recall that ∇iĒJ(wt(λ), λ) = 1
J

∑J
j=1∇iÊ(wt(λ), λ, ξj) for i ∈ {1, 2} and ∂2Φ̄J(wt(λ), λ) =

1
J

∑J
j=1 ∂2Φ̂(wt(λ), λ, ζ ′j). To this respect we also make the following assumption.

Assumption D For every w ∈ Rd, λ ∈ Λ, t, k, J ≥ 1, j ∈ {1, . . . , J}, the random variables
vk(w, λ), wt(λ), ζ ′j are mutually independent, wt(λ) is independent of ξj and

E[‖wt(λ)− w(λ)‖2] ≤ ρ(t), E[‖vk(w, λ)− v̄(w, λ)‖2] ≤ σ(k),

where ρ : N 7→ R+ and σ : N 7→ R+.

To analyse the MSE in (8), we start with the standard bias-variance decomposition

MSE∇̂f(λ) = ‖E[∇̂f(λ)]−∇f(λ)‖2︸ ︷︷ ︸
bias

+V[∇̂f(λ)]︸ ︷︷ ︸
variance

.
(9)

Then, using the law of total variance, we can write the useful decomposition

V[∇̂f(λ)] = E[V[∇̂f(λ) | wt(λ)]]︸ ︷︷ ︸
variance I

+V[E[∇̂f(λ) | wt(λ)]]︸ ︷︷ ︸
variance II

. (10)

In the following three theorems we will bound the bias and the variance terms of the MSE.
After that we state the final MSE bound in Theorem 7.

Theorem 4 (Bias upper bounds) Suppose that Assumptions A,C, B(iv) and D are sat-
isfied. Let λ ∈ Λ, t, k ∈ N. Let ∆̂w := ‖wt(λ)− w(λ)‖, then the following hold.

(i)
∥∥E[∇̂f(λ) | wt(λ)]−∇f(λ)

∥∥ ≤ c1∆̂w + LΦ

√
σ(k) + ν2∆̂w

√
σ(k).

12

Bilevel Optimization with a Lower-level contraction

(ii) ‖E[∇̂f(λ)]−∇f(λ)‖ ≤ c1

√
ρ(t) + LΦ

√
σ(k) + ν2

√
ρ(t)

√
σ(k),

where

c1 = µ2 +
µ1LΦ + ν2LE

1− q
+
ν1LELΦ

(1− q)2
.

The proof is in Appendix A.2 and similar to that of Theorem 3.1 in Grazzi et al. (2021).

Theorem 5 (Variance I bound) Suppose that Assumptions A,C, B(iv) and D are satis-
fied. Let λ ∈ Λ, t, k ∈ N. Then

E[V[∇̂f(λ) | wt(λ)]] ≤
(
σ2,E + 4

σ′2(L2
E + σ1,E) + L2

Φσ1,E

(1− q)2

)
2

J
+ 8(L2

Φ + σ′2)σ(k)

+ 8ν2
2ρ(t)

(
σ(k) +

σ1,E

J(1− q)2

)
.

The proof is in Appendix A.3.

Theorem 6 (Variance II bound) Suppose that Assumptions A,C, B(iv) and D are sat-
isfied. Let λ ∈ Λ, and t, k ∈ N. Then

V[E[∇̂f(λ) | wt(λ)]] ≤ 3
(
c2

1ρ(t) + L2
Φσ(k) + ν2

2ρ(t)σ(k)
)
,

where c1 is defined as in Theorem 4.

Proof From the property of the variance (Theorem 24(ii)) we get V[E[∇̂f(λ) | wt(λ)]] ≤
E
[
‖E[∇̂f(λ) | wt(λ)]−∇f(λ)‖2

]
. The statement follows from Theorem 4(i), the inequality

(a+ b+ c)2 ≤ 3(a2 + b2 + c2), then taking the total expectation and finally using Assump-
tion D.

Theorem 7 (MSE bound for SID) Suppose that Assumptions A,C, B(iv) and D are
satisfied. Let λ ∈ Λ, and t, k, J ∈ N. Then, if we use Algorithm 1, we have

MSE∇̂f(λ) ≤
(
σ2,E + 4

σ′2(L2
E + σ1,E) + L2

Φσ1,E

(1− q)2

)
2

J
+

(
6c2

1 +
8ν2

2σ1,E

(1− q)2

)
ρ(t)

+
(
14L2

Φ + 8σ′2
)
σ(k) + 14ν2

2ρ(t)σ(k),

where c1 is defined in Theorem 4. In particular, if limt→∞ ρ(t) = limk→∞ σ(k) = 0, then

lim
t,k,J→∞

MSE∇̂f(λ) = 0

Proof Follows from (9)-(10) and summing bounds in Theorems 4(ii), 5, and 6.

We will show in Section 5.1 that by using the LL and LS solvers in (6)-(7) with carefully
chosen decreasing stepsizes, we have ρ(t) = O(1/t) and σ(k) = O(1/k) and hence, by setting
t = k = J we can achieve MSE∇̂f(λ) = O(1/t) (Theorem 10).

13

Grazzi, Pontil and Salzo

5.1 Convergence of Solvers for The Lower-Level Problem and Linear System

We analyse the convergence of a stochastic version of the Krasnoselskii-Mann iteration for
contractive operators used in Algorithm 1 to solve both LL and LS problems. A similar
analysis is done in (Grazzi et al., 2021, Section 5).

We recall the procedures (6), (7) used to solve the LL and LS problems in Algorithm 2.
Let ζ, ξ be random variables with values in Z and Ξ. Let (ζt)t∈N and (ζ̂t)t∈N be independent
copies of ζ and let (ηt)t∈N be a sequence of stepsizes.

For every w ∈ Rd we let v0(w, λ) = 0, w0 : Λ → Rd satisfying Assumption B(iii), and,
for k, t ∈ N,

wt+1(λ) := wt(λ) + ηt(Φ̂(wt(λ), λ, ζt)− wt(λ)), (11)

vk+1(w, λ) := vk(w, λ) + ηk(Ψ̂w(vk(w, λ), λ, ζ̂k)− vk(w, λ)), (12)

where Ψ̂w(v, λ, z) := ∂1Φ̂(w, λ, z)>v +∇1ĒJ(w, λ) and ĒJ(w, λ) = (1/J)
∑J

j=1 Ê(w, λ, ξj),
(ξj)1≤j≤J being i.i.d. copies of the random variable ξ ∈ Ξ.

Note that to reduce the number of hyperparameters of the method, we use the same
sequence of stepsizes (ηt)t∈N for both the LL and LS problems. This choice might not be
optimal and results in more conservative step sizes.

Theorem 8 Let Assumption A(i), C and B(iii) hold. Let wt(λ) and vk(w, λ) be defined as
in (11) and (12). Assume

∑∞
t=0 ηt = +∞ and

∑∞
t=0 η

2
t < +∞. Then, for every λ ∈ Λ,

w ∈ Rd, we have

lim
t→∞

wt(λ) = w(λ), lim
k→∞

vk(w, λ) = v̄(w, λ) P-a.s.

Moreover, let σ̃2 := max{2σ′1/(1 − q)2, σ2} and ηt := β/(γ + t) with β > 1/(1 − q2) and
γ ≥ β(1 + σ̃2). Then for every w ∈ Rd, t, k > 0

E[‖wt(λ)− w(λ)‖2] ≤ dw
γ + t

E[‖vk(w, λ)− v̄(w, λ)‖2] ≤ dv
γ + k

(13)

where

dw := max

{
γB2,

β2σ1

β(1− q2)− 1

}
,

dv := max

{
L2
E + σ1,E

(1− q)2
γ,

2(L2
E + σ1,E)σ′1
(1− q)2

β2

β(1− q2)− 1

}
Alternatively, with constant step size ηt = η ≤ 1/(1 + σ̃2)

E[‖wt(λ)− w(λ)‖2] ≤ (1− η(1− q2))tB2 +
ησ1

1− q2
(14)

E[‖vk(w, λ)− v̄(w, λ)‖2] ≤ (1− η(1− q2))k
L2
E + σ1,E

(1− q)2
+

η

1− q2

2(L2
E + σ1,E)σ′1
(1− q)2

(15)

Proof The statement follows by applying Theorems 4.1 and 4.2 in (Grazzi et al., 2021)
with T̂ = Φ̂(·, λ, ·) and T̂ = Ψ̂w(·, λ, ·) where we recall that Ψ̂w(v, λ, z) = ∂1Φ̂(w, λ, z)>v +

14

Bilevel Optimization with a Lower-level contraction

∇1ĒJ(w, λ) and ĒJ(w, λ) = (1/J)
∑J

j=1 Ê(w, λ, ξj), (ξj)1≤j≤J being i.i.d. copies of the
random variable ξ ∈ Ξ. To that purpose, in view of those theorems it is sufficient to
verify Assumptions D in (Grazzi et al., 2021). This is immediate for Φ̂(·, λ, ·), due to
Assumptions A(i) and C. Further, applying B(iii) and C(ii) gives the first inequality in (13)
and (14). Concerning Ψ̂w(·, λ, ·), let Ẽ[·] = E[· | (ξj)1≤j≤J] and Ṽ[·] = V[· | (ξj)1≤j≤J]. It
follows from Assumptions A(i) and C(i) that

Ẽ[Ψ̂w(v, λ, ζ)] = ∂1Φ(w, λ)>v +∇1ĒJ(w, λ) =: Ψw(v, λ).

Since ‖∂1Ψw(v, λ)‖ = ‖∂1Φ(w, λ)‖ ≤ q, Ψw(·, λ) is a contraction with constant q and
Assumption D(i)-(ii) in (Grazzi et al., 2021) are satisfied. Furthermore, from Assumption C

Ṽ[Ψ̂w(v, λ, ζ)] ≤ ‖v‖2σ′1, (16)

and

‖v‖ ≤ ‖Ψw(v, λ)− v‖+ ‖Ψw(v, λ)‖
≤ ‖Ψw(v, λ)− v‖+ ‖∂1Φ(w, λ)>v +∇1ĒJ(w, λ)‖
≤ ‖Ψw(v, λ)− v‖+ q‖v‖+ ‖∇1ĒJ(w, λ)‖.

It follows that

‖v‖ ≤ 1

1− q
(
‖Ψw(v, λ)− v‖+ ‖∇1ĒJ(w, λ)‖

)
. (17)

Hence, combining (16) and (17) we obtain

Ṽ[Ψw(v, λ, ζ)] ≤ 2σ′1
(1− q)2

‖Ψw(v, λ)− v‖2 +
2‖∇1ĒJ(w, λ)‖2σ′1

(1− q)2
,

which satisfies Assumption D(iii) in (Grazzi et al., 2021). Thus, we can apply Theorem
4.1 and 4.2 in (Grazzi et al., 2021) to obtain results on vk(w, λ) which hold conditioned to
(ξj)

J
j=1. The bounds in the second inequality of (13) and in (15) are finally obtained by

taking the total expectation and noting that

E[‖∇1ĒJ(w, λ)‖2] = ‖∇1E(w, λ)‖2 + V[∇1ĒJ(w, λ)] ≤ L2
E + σ1,E/J ≤ L2

E + σ1,E .

Remark 9 (On warm-start) Using Assumption B(iii) and setting v0(w, λ) = 0 we re-
moved any dependency on the starting points for the LL and LS in the final rates of The-
orem 8. On the contrary, previous work have exploited this dependency to study the warm-
start of the LL (LS) which sets, at the s-th UL iteration w0(λs) = wt(λs−1) (v0(w, λs) =
vk(w, λs−1)). However, this complicates the analysis, since the rates of Theorem 8 will also
depend on the UL update (e.g. on the UL step size αs).

15

Grazzi, Pontil and Salzo

Corollary 10 Suppose that Assumptions A,C, B(iv)(iii) are satisfied and suppose that
∇̂f(λ) is computed via Algorithm 1 with t = k = J ∈ N and LL/LS stepsizes (ηj)j∈N
chosen according to the decreasing case of Theorem 8. Then, we obtain

MSE∇̂f(λ) ≤
cb + cv
t

, (18)

where
cb = 3c2

1dw + 3L2
Φdv + 3ν2

2dwdv

cv = σ2,E + 8
σ′2(L2

E + σ1,E) + L2
Φσ1,E

(1− q)2
+

(
3c2

1 +
8ν2

2σ1,E

(1− q)2

)
dw

+ (11L2
Φ + 8σ′2)dv + 11ν2

2dvdw,

(19)

and dw, dv, c1 are defined in Theorems 4 and 8. Hence, MSE∇̂f(λ) ≤ ε in t = O(ε−1).

6. Convergence of BSGM

In this section, we first derive convergence rates of the projected inexact gradient method
for L-smooth possibly non-convex objectives (Section 6.1). Then, we combine this result
with the mean square error upper bounds in Section 5 to obtain in Section 6.2, the desired
convergence rate and sample complexity for BSGM (Algorithm 2).

6.1 Projected Inexact Gradient Method

Let f : Λ 7→ R, be an L-smooth function on the convex set Λ ⊆ Rm. We consider the
following projected inexact gradient descent algorithm

λ0 ∈ Λ
for s = 0, 1, . . .⌊
λs+1 = PΛ

(
λs − α∇̂f(λs)

)
,

(20)

where PΛ is the projection onto Λ, α > 0 is the step-size and ∇̂f(λs) is s stochastic estimator
of the gradient. We stress that we do not assume that ∇̂f(λs) is unbiased.

Definition 11 (Proximal Gradient Mapping) The proximal gradient mapping of f is

Gα(λ) := α−1 (λ− PΛ(λ− α∇f(λ)))

The above gradient mapping is commonly used in constrained non-convex optimiza-
tion as a replacement of the gradient for the characterization of stationary points (see
e.g. (Drusvyatskiy and Lewis, 2018)). Indeed, λ∗ is a stationary point if and only if
Gα(λ∗) = 0 and in the unconstrained case (i.e. Λ = Rm) we have Gα(λ) = ∇f(λ).
Since the algorithm is stochastic we provide guarantees in expectation. In particular,
we bound 1

S

∑S−1
s=0 E[‖Gα(λs)‖2]. Note that this quantity is always greater or equal than

mins∈{0,...S−1} E[‖Gα(λs)‖2], meaning that at least one of the iterates satisfies the bound.
The following theorem and subsequent corollary provide such upper bounds which have a

linear dependence on the MSE of ∇̂f(λs). A similar setting is studied also by Dvurechensky
(2017) where they consider inexact gradients but with a different error model. Schmidt et al.
(2011) provide a similar result in the convex case.

16

Bilevel Optimization with a Lower-level contraction

Theorem 12 Let Λ ⊆ Rm be convex and closed, f : Λ 7→ R be L-smooth and {λs}s be a
sequence generated by Algorithm (20). Furthermore, let ∆f := f(λ0) − infλ f(λ), c > 0,

δs := ‖∇f(λs)− ∇̂f(λs)‖ and 0 < α < 2/[L(1 + c)]. Then for all S ∈ N

1

S

S−1∑
s=0

‖Gα(λs)‖2 ≤
1

S

[
4∆f

cαL(1 + c))
+ 2

(
1 +

1

cαLc

) S−1∑
s=0

δ2
s

]
,

where cα = α(2− αL(1 + c)).

Proof Since Λ is convex and closed, the projection is a firmly non-expansive operator, i.e.
for every γ, β ∈ Rn,

‖PΛ(γ)− PΛ(β)‖2 + ‖γ − PΛ(γ)− β + PΛ(β)‖2 ≤ ‖γ − β‖2,

which yields, by expanding the second term in the LHS

2‖PΛ(γ)− PΛ(β)‖2 + ‖γ − β‖2 − 2(γ − β)>(PΛ(γ)− PΛ(β)) ≤ ‖γ − β‖2,

and, after simplifying

‖PΛ(γ)− PΛ(β)‖2 ≤ (γ − β)>(PΛ(γ)− PΛ(β)).

In particular, substituting γ = λs and β = λs − α∇̂f(λs) we get

‖λs − λs+1‖2 ≤ α∇̂f(λs)
>(λs − λs+1). (21)

Now, it follows from the Lipschitz smoothness of f that for every γ, β ∈ Λ

f(β) ≤ f(γ) +∇f(γ)>(β − γ) +
L

2
‖β − γ‖.

Then substituting γ = λs and β = λs+1, and letting c′ = Lc with c > 0, we obtain

f(λs+1) ≤ f(λs)− (∇f(λs)∓ ∇̂f(λs))
>(λs − λs+1) +

L

2
‖λs − λs+1‖2

≤ f(λs)− (∇f(λs)− ∇̂f(λs))
>(λs − λs+1) +

(
L

2
− 1

α

)
‖λs − λs+1‖2

≤ f(λs) +
1

2c′
‖∇f(λs)− ∇̂f(λs))‖2 +

(
L+ c′

2
− 1

α

)
‖λs − λs+1‖2

≤ f(λs) +
1

2c′
‖∇f(λs)− ∇̂f(λs)‖2 − η‖λs − λs+1‖2,

where we used eq. (21) for the second line, the Young inequality a>b ≤ (1/2c′)‖a‖2 +
(c′/2)‖b‖2 in the third line, and the definition η := 1/α− (L+ c′)/2, which is positive due
to the assumption on α, in the last line. Rearranging the terms we get

‖λs − λs+1‖2 ≤
1

η

(
f(λs)− f(λs+1) +

1

2c′
‖∇f(λs)− ∇̂f(λs)‖2

)
. (22)

17

Grazzi, Pontil and Salzo

Furthermore, let λ̄s := PΛ(λs − α∇f(λs)). Then, we have that

‖λs+1 − λ̄s‖2 = ‖PΛ(λs − α∇̂f(λs))− PΛ(λs − α∇f(λs))‖2

≤ α2‖∇̂f(λs)−∇f(λs)‖2,
(23)

where we used the fact that the projection is 1-Lipschitz.

Now, recalling the definition of Gα(λ) we have that Gα(λs) = α−1(λs − λ̄s) and hence,
using the inequalities (22) and (23), we have

‖Gα(λs)‖2 = α−2‖λs ∓ λs+1 − λ̄s‖2

≤ 2α−2
(
‖λs − λs+1‖2 + ‖λs+1 − λ̄s‖2

)
≤ 2

ηα2

(
f(λs)− f(λs+1) +

1

2c′
‖∇̂f(λs)−∇f(λs)‖2

)
+ 2‖∇̂f(λs)−∇f(λs)‖2

=
2

ηα2
(f(λs)− f(λs+1)) +

(
2 + (ηc′)−1α−2

)
‖∇̂f(λs)−∇f(λs)‖2.

Summing the inequalities over s and noting that −f(λs) ≤ − infλ f(λ) we get

S−1∑
s=0

‖Gα(λs)‖2 ≤
2∆f

ηα2
+
(
2 + (ηc′)−1α−2

) S−1∑
s=0

‖∇̂f(λs)−∇f(λs)‖2.

Finally, dividing both sides of the above inequality by S, recalling the definition of η, δs
and c′, (13) follows.

Corollary 13 Under the same assumptions of Theorem 12 we have

1

S

S−1∑
s=0

E[‖Gα(λs)‖2] ≤ 1

S

[
4∆f

cαL(1 + c))
+ 2

(
1 +

1

cαLc

) S−1∑
s=0

MSE∇̂f(λs)

]
,

where cα = α(2− αL(1 + c)). Consequently, setting c = 1/2, for any α ≤ 1/L we have

1

S

S−1∑
s=0

E[‖Gα(λs)‖2] ≤ 1

Sα

[
8∆f +

10

L

S−1∑
s=0

MSE∇̂f(λs)

]
.

We recall that MSE∇̂f(λ) := E[‖∇̂f(λ)−∇f(λ)‖2].

Proof Follows by taking expectation of the inequality in the statement of Theorem 12

Remark 14 Note that if the error term
∑S−1

s=0 MSE∇̂f(λs) grows sub-linearly with S, The-

orem 13 provides useful convergence rates. In particular, when
∑∞

s=0 MSE∇̂f(λs) < ∞,

we have a convergence rate of O(1/S), which matches the optimal rate of (exact) gradient
descent on smooth and possibly non-convex objectives.

18

Bilevel Optimization with a Lower-level contraction

6.2 Bilevel Convergence Rates and Sample Complexity

Here, we finally prove the convergence rates and sample complexity of Algorithm 2 by com-
bining the results of the previous section with the bounds on the MSE of the hypergradient
estimator obtained in Section 5.

Definition 15 (Sample Complexity) An algorithm which solves the stochastic bilevel
problem in (1) has sample complexity N if the total number of samples of ζ and ξ is equal
to N . For Algorithm 2, this corresponds to the total number of evaluations of ∇Ê, Φ̂, ∂Φ̂>v.

In the following theorem we establish the sample complexity of Algorithm 2 for ts =
ks = Js = dc3(s+ 1)e and ts = ks = Jsdc3Se (finite horizon), where c3 > 0 is an additional
hyperparameter that can be tuned empirically.

Theorem 16 (Stochastic BSGM) Suppose that Λ ⊆ Rm and Assumptions A, B, C are
satisfied. Assume that the bilevel Problem (1) is solved by Algorithm 2 with α ≤ 1/Lf
and (ηj)j∈N are decreasing and chosen according to Theorem 8, where Lf is defined in
Theorem 3. Let λ0 ∈ Λ, Gα(λ) := α−1 (λ− PΛ(λ− α∇f(λ))) be the proximal gradient
mapping, c3 > 0, and cb and cv be the defined in Theorem 10. Then the following hold.

(i) Suppose that for every s ∈ N ts = ks = Js = dc3(s+ 1)e. Then for every S ∈ N we
have

1

S

S−1∑
s=0

E[‖Gα(λs)‖2] ≤ 1

Sα

[
8∆f +

10

Lf

cb + cv
c3

(log(S) + 1)

]
.

Moreover, after Õ(ε−2) samples there exists s∗ ≤ S − 1 such that E[‖Gα(λs∗)‖2] ≤ ε.

(ii) Finite horizon. Let S ∈ N, and suppose that for s = 0, . . . , S−1, ts = ks = Js = dc3Se.
Then we have

1

S

S−1∑
s=0

E[‖Gα(λs)‖2] ≤ 1

Sα

[
8∆f +

10

Lf

cb + cv
c3

]
.

Moreover, after O(ε−2) samples there exists s∗ ≤ S − 1 such that E[‖Gα(λs∗)‖2] ≤ ε.

Proof We first compute N , i.e. the total number of samples used in S iterations. At the
s-th iteration, Algorithm 2 requires executing Algorithm 1 which uses ts + ks + Js copies
of ζ, for evaluating Φ̂, ∂1Φ̂>v, and ∂2Φ̂>v, and additional Js copies of ξ for evaluating
∇Ê. Thus, the s-th UL iteration uses 4dc3(s+ 1)e and 4dc3Se samples for case (i) and (ii)
respectively. Hence, we have

(i) : 2c3S
2 ≤ N = 4

S−1∑
s=0

dc3(s+ 1)e ≤ 4(c3 + 1)S2.

(ii) : 4c3S
2 ≤ N = 4dc3Se

S−1∑
s=0

1 ≤ 4(c3 + 1)S2.

This implies that in both cases N = Θ(S2) or equivalently S = Θ(
√
N).

19

Grazzi, Pontil and Salzo

(i): Theorem 10, with ts = dc3(s+ 1)e, yields

S−1∑
s=0

MSE∇̂f(λs) ≤ (cb + cv)

S−1∑
s=0

1

c3(s+ 1)
≤ cb + cv

c3
(log(S) + 1).

Since ∇f is Lf -Lipschitz continuous, thanks to Theorem 3 we can apply Theorem 13

and obtain (i). Therefore, we have 1
S

∑S−1
s=0 E[‖Gα(λs)‖2] ≤ ε in a number of UL iterations

S = Õ(ε−1). Since we proved N = Θ(S2), the sample complexity result for case (i) follows.
(ii): Similarly to the case (i), we apply Theorem 10 with ts = dc3Se obtaining

S−1∑
s=0

MSE∇̂f(λs) ≤ (cb + cv)

S−1∑
s=0

1

c3S
=
cb + cv
c3

.

Since ∇f is Lf -Lipschitz, thanks to Theorem 3, we derive (ii) from Theorem 13.

Therefore, in this case we have 1
S

∑S−1
s=0 E[‖Gα(λs)‖2] ≤ ε in a number of UL iterations

S = O(ε−1). Since N = Θ(S2), the sample complexity result for case (ii) follows.

In the following theorem we derive rates for Algorithm 2 in the deterministic case, i.e.
when the variance of Φ̂ ∂Φ̂ and ∇Ê is zero. In this case we will show that the LL and
LS solvers in Algorithm 1 can be implemented with constant step size and with Js = 1, to
obtain the near-optimal sample complexity of Õ(ε−1).

Theorem 17 (Deterministic BSGM) Suppose that Λ ⊆ Rm and Assumptions A, B, C
are satisfied with σ1 = σ2 = σ′1 = σ′2 = σ1,E = σ2,E = 0, hence Φ̂ = Φ and Ê = E. Assume
that the bilevel Problem (1) is solved by Algorithm 2 with α ≤ 1/Lf with Lf defined in
Theorem 3, ηj = 1, ts = ks = dc3 log(s+ 1)e and Js = 1, and c3 ≥ 1/ log(1/q) > 0. Let
λ0 ∈ Λ and Gα(λ) := α−1 (λ− PΛ(λ− α∇f(λ))) be the proximal gradient mapping. Then

1

S

S−1∑
s=0

‖Gα(λs)‖2 ≤
1

Sα

[
8∆f +

5Cπ2

3Lf

]
,

where

C := 3

(
µ2 +

µ1LΦ + ν2LE
1− q

+
ν1LELΦ

(1− q)2

)2

B2 + 3L2
Φ

L2
E

(1− q)2
+ 3ν2

2

B2L2
E

(1− q)2
.

Also, after O(ε−1 log(ε−1)) samples there exists s∗ ∈ {0, . . . , S−1} such that ‖G(λs∗)‖2 ≤ ε.

The Proof is in Appendix A.4 and is similar to that of Theorem 16.

Remark 18 (Dependency on the contraction constant) By setting ηt = β/(γ + t)
with β = 2/(1 − q2) and γ = β(1 + σ̃2) in Algorithm 1 and α = 1/Lf in Algorithm 2,
we obtain a sample complexity of O(ε−2κ10) and Õ(ε−1κ4) respectively for the stochastic
case of Theorem 16 and the deterministic case of Theorem 17 where κ = (1− q)−1. For LL
problems of type (2) with Lipschitz smooth and strongly convex loss, by appropriately setting
η in (3), κ is proportional to the condition number of the LL problem. In comparison, Amigo

20

Bilevel Optimization with a Lower-level contraction

(Arbel and Mairal, 2021) reaches a sample complexity of O(ε−2κ9) and O(ε−1κ4) but with
a stronger assumption, which in our setting can be formulated as

‖∂2Φ(w, λ)‖ ≤ LΦ ∀w ∈ Rd, λ ∈ Λ.

If we make such assumption (which implies Assumption B(iv)) we obtain a complexity of
O(ε−2κ8) for the stochastic case.

Finally, for the deterministic case we have ts = ks = Θ(κ log(s)), while in Arbel and
Mairal (2021) ts, ks = Θ̃(κ) (also for the stochastic case) and in Ghadimi and Wang (2018)
ts = d(s+ 1)1/4/2e, which does not depend on κ.

Remark 19 (An advantage of warm-start) Our sample complexity results as well as
those in Ghadimi and Wang (2018) depend on the constant B, defined in Assumption B(iii)
such that ‖w0(λ)− w(λ)‖ ≤ B ∀λ ∈ Λ. Instead, warm-start complexity bounds do not
require such assumption and instead depend only on the quantity ‖w0(λ0)− w(λ0)‖, which
can be much smaller than B; see e.g. (Arbel and Mairal, 2021). Although our method
matches the sample complexity of warm-start approaches in the parameter ε, this aspect
may lead to better bounds for warm-start, thus explaining why it is generally advantageous
in practice.

7. Experiments

We design the experiments with the following goals. Firstly, we assess the difficulties of
applying warm-start and the effect of different upper-level batch sizes in a classification
problem involving equilibrium models and in a meta-learning problem. In both settings the
lower-level problem can be divided into several smaller sub-problems. Secondly, we compare
our method with others achieving near-optimal sample complexity in a data poisoning
problem. All methods have been implemented in PyTorch (Paszke et al., 2019) and the
experiments have been executed on a GTX 1080 Ti GPU with 11GB of dedicated memory.

7.1 Equilibrium Models

We consider a variation of the equilibrium models experiment presented in (Franceschi et al.,
2018, Section 3.2). In particular, we consider a multi-class classification problem with the
following bilevel formulation:

min
λ∈Λ

n∑
i=1

CE(θw(λ)i + b, yi)

subject to w(λ)i = tanh(Aw(λ)i +BXi + c) ∀i ∈ {1, . . . , n}
(24)

where CE is the cross-entropy loss, (X, y) ∈ Rn×p × {0, . . . , c}n is the training set, λ =
(θ, b, A,B, c), Λ = {θ ∈ Rc×d : ‖θ‖∞ ≤ 1} × Rc × {A ∈ Rd×d : ‖A‖ ≤ 0.5} × Rd×p × Rd
and w(λ)i ∈ Rd is the fixed point representation for i-th training example. The constraint
on A, guarantees that for all i, the map w 7→ tanh(Aw + Bxi + c) is a contraction with
Lipschitz constant not greater than 0.5. We perform this experiments using the whole
MNIST training set, hence n = 6× 104, p = 784, c = 10, and set d = 200.

21

Grazzi, Pontil and Salzo

0 20 40 60 80 100 120 140
Time (s)

10 5

10 4

10 3

10 2

10 1

100

101
Squared Norm of Proximal Gradient Map

BSGM+WS (BS 600)
BSGM (BS 600)
BSGM+WS (BS 6000)
BSGM (BS 6000)
BSGM+WS (Det)
BSGM (Det)

0 20 40 60 80 100 120 140 160
Epochs

10 5

10 4

10 3

10 2

10 1

100

101
Squared Norm of Proximal Gradient Map

0 20 40 60 80 100
Time (s)

95

96

97

98

99

100
Train Accuracy

0 20 40 60 80 100 120 140 160
Epochs

95

96

97

98

99

100
Train Accuracy

0 20 40 60 80 100 120 140
Time (s)

96.50
96.75
97.00
97.25
97.50
97.75
98.00
98.25
98.50

Test Accuracy

0 20 40 60 80 100 120 140 160
Epochs

96.50
96.75
97.00
97.25
97.50
97.75
98.00
98.25
98.50

Test Accuracy

Figure 1: Equilibrium Models on MNIST. Results show mean (solid, dashed and dotted
lines) and max-min (shaded region) over 5 seeds varying the randomness in the
mini-batches and the initialization. BSGM is the method in Algorithm 2 while
BSGM+WS is the variant with warm-start on the LL. BS indicates the mini-
batch size used while methods with Det in the name use the whole training set
of 60K examples.

22

Bilevel Optimization with a Lower-level contraction

We compare variants of BSGM (Algorithm 2) with different batch sizes (Js in Algo-
rithm 2), which in this case indicates the number of training examples used to estimate the
gradients of the UL objective. Moreover, we evaluate an extension of BSGM which uses
warm-start only on the LL problem (similar to StochBiO (Ji et al., 2021)). Note that when
using warm-start, all the fixed point representations computed by the algorithm are stored
in memory to be used in the future. When the ratio between the number of examples n and
the batch size is large, this can greatly increase the memory cost of the algorithm compared
to the procedure without warm-start. For this particular problem, this cost is manageable
since it amounts to storing a total of nd = 12 × 106 floats, which correspond to 48 MB of
memory, but for higher values of d and n it quickly becomes prohibitive, as we show in the
meta-learning experiment.

Let λ0 = (θ0, b0, A0, B0, c0) be the hyperparameters at initialization, we set b0 = 0, and
we sample each coordinate of θ0, A0, B0, and c0 from a Gaussian distribution with zero mean
and standard deviation 0.01. In Algorithm 2 we also set w0(λ) = 0, ts = ks = 2, and α = 0.5.
Since computing the map w 7→ tanh(Aw+Bxi+ c) is relatively cheap, we use deterministic
solvers with step-size 1 for the LL and LS of each training example. To evaluate the UL
parameters found by the algorithms, we compute an accurate approximation of the LL
solution and the hypergradient on all training examples by running the LL and LS solver
for 20 steps. The proximal gradient map is computed according to (11) with α = 1.

Results are shown in Figure 1, where we compare three key performance measures of
the different methods versus time and number of epochs. When comparing methods using
the same batch size we can see that using warm-start improves the performance in terms of
the norm of the proximal gradient map, i.e. the quantity that we can control theoretically.
However, this effect decreases with smaller batch sizes since more UL iterations can pass
until the same example is sampled twice. Furthermore, train and test accuracy are similar
for methods with the same batch size, regardless of the use of warm-start. Finally, we note
that decreasing the mini-batch consistently improves the performance in terms of number
of epochs while, thanks to the parallelism of the GPU, the performance with batch size
equal to 600 and 6000 are similar.

7.2 Meta-Learning

We perform a meta-learning experiment on Mini-Imagenet (Vinyals et al., 2016), a popular
few-shot classification benchmark. Mini-Imagenet contains 100 classes from Imagenet which
are split into 64, 16, 20 for the meta-train, meta-validation and meta-test sets respectively. A
task is constructed by selecting some images from c randomly selected classes. Each image is
downsampled to 84× 84 pixels. Similarly to Franceschi et al. (2018), we evaluate an hyper-
representation model where the UL parameters are the parameters of the representation
layers of a convolutional neural network (CNN), shared across tasks, while the task-specific
LL parameters are the parameters of the last linear layer. The CNN is composed by stacking
4 blocks, each made by a 3 × 3 convolutions with 32 output channels followed by a batch
normalization layer.

We evaluate the performance of Algorithm 2 where the network parameters λ0 are
initialized using the default random initialization in PyTorch, w0(λ) = 0, α = 0.2, ηj = 0.05,
ts = 10, and different batch sizes Js = {8, 16, 32}. The batch size in this case corresponds

23

Grazzi, Pontil and Salzo

0 1000 2000 3000 4000 5000 6000
UL iterations

50

55

60

65

70

75
Accuracy

BS 8 (test)
BS 16 (test)
BS 32 (test)
BS 8 (train)
BS 16 (train)
BS 32 (train)

0 100 200 300 400
Time (s)

50

55

60

65

70

75
Accuracy

Figure 2: 5-way 5-shot classification on Mini-Imagenet. The plot show mean (solid lines)
and max−min (shaded region) over 5 runs. Values are the average accuracy over
1000 meta-train/meta-test tasks computed after 10 steps of the LL solver. At the
end of training all methods have seen a total of 50K tasks.

to the number of tasks at each UL iteration. Using warm start in this setting could require
to save the last linear layer for all tasks, hence n × d × c floats, where n is the number of
tasks and d× c are the number of weights in the last linear layer. A meta-training task is
constructed by selecting c = 5 classes out of 64, hence the number of tasks is n = 7,624,512.
Moreover, we set d = 800. Thus, storing the last layer for all tasks would require 122 GB
of storage, which largely exceeds our GPU memory. Furthermore, the ratio between n and
batch size is very high and this is likely to make the effect of using warm-start negligible.

Results are shown in Figure 2, where we see that methods with smaller batch-sizes
converge faster despite requiring a higher number of UL iterations. Furthermore, since
during meta-training we see only 50, 000 tasks, we also implemented the method using
warm-start by storing the approximate solutions to all previously sampled tasks to be used
as initialization when they are sampled again. We run the method with mini-batch size
equal to 8 and for 5 seeds and observed that all metrics essentially overlap the ones without
warm-start, while the memory cost increases by 0.8 GB. These experiments suggest that
warm-start may be ineffective in meta-learning problems, as mentioned in the introduction.
Indeed, in this setting we observed that each task is sampled at most 3 times in a total of
6, 250 iterations.

7.3 Data Poisoning

We consider the data poisoning scenario where a malicious agent or attacker aims at de-
creasing the performance of a machine learning model by corrupting its training data set.
In particular, the attacker adds noise to some training examples. However, this noise must
be small in magnitude to avoid for the attack to be uncovered.

Specifically, we consider an image classification problem on the MNIST data set where
(X, y) ∈ Rn×p×{1, . . . , c}n, and (X ′, y′) ∈ Rn′×p×{1, . . . , c}n are the training and validation
sets, and p = 784, c = 10, n = 45,000 and n′ = 15,000 are the number of features, classes,

24

Bilevel Optimization with a Lower-level contraction

training examples and validation examples respectively. Furthermore, we randomly select
I ⊆ {1, . . . , n} to be the indices of the corrupted training examples such that |I| = 9,000.
The attacker finds the noise λ by solving the following bilevel optimization problem.

max
λ∈Λ

1

n′

n′∑
i=i

CE(w(λ)>X ′i, y
′
i)

subject to w(λ) = arg min
w∈Rp×c

1

n

n∑
i=1

CE(w>(Xi + λi), yi) +
0.1

p
‖w‖2,

(25)

where CE is the cross-entropy loss, Λ = {λ ∈ Rn×p |λi ∈ B2(0, 5) ∀i ∈ I, λi = 0 ∀i ∈
{1, . . . , n}/I} and B2(0, 5) is the p-dimensional L2-ball centered in 0 with radius 5. Note
that the LL problem is both strongly convex and Lipschitz smooth.

Baselines. We compare our method with StochBiO (Ji et al., 2021), Amigo (Arbel and
Mairal, 2021), ALSET (Chen et al., 2022), which achieve (near) optimal sample complexity.
We also consider ALSET†, i.e. a variant of ALSET where the LS problem is solved using
warm-start and only one iteration. All baselines have been implemented as extensions to
Algorithm 2 specialized to LL problems of type (2), which differ only in the use of warm-
start and in the number of iterations and batch-sizes used. Except for ALSET†-DET, which
is the deterministic version of ALSET† and computes the LL objective exactly, all other
methods use mini-batches of size 90 to estimate the LL objective and its derivatives. We
found this value to be sufficiently large for Amigo and StochBiO to perform well. The UL
objective is instead always computed using all 15K validation examples. To fairly evaluate
the different bilevel optimization methods, the linear model used for the final evaluation is
trained by 1000 steps of gradient descent on the LL objective

1

n

n∑
i=1

CE(w>(Xi + λ∗), yi) +
0.1

p
‖w‖2,

where λ∗ is the output of the bilevel optimization method.

Random Search. Bilevel optimization methods have several configuration parameters
which greatly affect the performance, e.g. the number of iterations for the LL and LS
solvers, step sizes for the UL, LL and LS. Theoretical values for these parameters are often
too conservative, hence they are usually set via manual search which is hard to reproduce
and may be suboptimal. Thus, for a better comparison, we set a total budget of 2M single-
sample gradients and hessian-vector products, so that each algorithm uses the same number
of samples3, and perform a random search with 200 random configuration parameters to
select the configurations achieving the lowest accuracy on the validation set. Values and
ranges of the random search are shown in Table 2. Note that to reduce the number of
configuration parameters we keep them unchanged across UL and LL/LS iterations. For
our method, we observed that using fixed instead of decreasing stepsizes for the LL/LS does
not affect the top performances after the random search. Furthermore, we set k = t and

3. We do not account for the difference in computational cost between gradients and hessian vector-
products. The latter are usually more costly in practice.

25

Grazzi, Pontil and Salzo

ηLL = ηLS only for our method and all the others which use warm-start both for the LL
and LS problems, which we observed that improves the performance4.

Results. In Table 3 we show the results. Our method (BSGM) outperforms all the single-
loop bilevel optimization methods (ALSET† and ALSET). However, methods using warm-
start only in the LL (StochBiO) and both in LL and LS (Amigo) outperform BSGM, albeit
not by a large margin. To aid reproducibility, we report in Table 4 the best configuration
parameters of each method.

Method WS t k J α ηLL ηLS

StochBiO Y,N [10 : 104] [10 : 104] k [103 : 109] [10−4 : 10] [10−4 : 10]
Amigo Y,Y [10 : 104] t t [103 : 109] [10−4 : 10] ηLL

BSGM (ours) N,N [10 : 104] t t [103 : 109] [10−4 : 10] ηLL

ALSET†-DET Y,Y 1 1 1 [103 : 109] [10−4 : 10] ηLL

ALSET† Y,Y 1 1 1 [103 : 109] [10−4 : 10] ηLL

ALSET Y,N 1 [10 : 104] 1 [103 : 109] [10−4 : 10] [10−4 : 10]

Table 2: Configurations parameters for the random search. The WS column indicates
whether warm-start is used (Y) or not (N) for the LL (first entry) and LS (second
entry). t, k and J are respectively the number of iteration for the LL and LS and
the batch size, while α, ηLL, and ηLS are the step sizes for the UL, LL and LS
respectively. Configuration parameters are sampled according to the log-uniform
distribution over the specified ranges. For all methods we set λ0 = 0.

Method Test (Val) Best Test (Top 10) Val (Top 10)

StochBiO 76.78 (73.57) 79.97 ± 1.92 77.33 ± 2.28
Amigo 78.01 (75.09) 79.29 ± 0.94 76.27 ± 0.93
BSGM (ours) 78.05 (75.05) 80.90 ± 1.33 78.16 ± 1.48
ALSET†-DET 83.03 (80.30) 86.13 ± 1.38 84.10 ± 1.73
ALSET† 90.75 (89.99) 90.66 ± 0.13 90.19 ± 0.15
ALSET 90.89 (90.49) 90.99 ± 0.11 90.65 ± 0.10

Table 3: Data-poisoning Accuracy (Lower is better). We report values for best and top
10 best performing parameter configurations selected via random search. For the
top 10 results we report mean ± standard deviation. ALSET†-DET is the best
performing deterministic method, all the others are stochastic.

4. Indeed, we observed that using k 6= t and ηLL 6= ηLS for BSGM and Amigo does not improve and
usually decreases the performance of the best methods, while setting k = t and ηLL = ηLS decreases the
performance of StochBiO.

26

Bilevel Optimization with a Lower-level contraction

Method Test (Val) Acc t k J α ηLL ηLS

StochBiO 76.78 (73.57) 418 2477 k 1.0× 106 5.4× 10−3 1.3× 10−2

Amigo 78.01 (75.09) 155 t t 1.0× 107 1.1× 10−2 LL sz
BSGM (ours) 78.05 (75.05) 287 t t 4.0× 108 9.0× 10−2 LL sz
ALSET†-DET 83.03 (80.30) 1 1 1 1.8× 105 5.6× 10−1 LL sz
ALSET† 90.75 (89.99) 1 1 1 1.6× 106 5.3× 10−2 3.9× 10−1

ALSET 90.89 (90.49) 1 85 1 5.5× 108 2.0× 10−2 2.7× 10−1

Table 4: Best configuration parameters. Configuration parameters with lowest validation
accuracy among 200 random configurations for each method.

8. Conclusions

In this paper, we studied bilevel optimization problems where the upper-level objective is
smooth and the lower-level solution is the fixed point of a smooth contraction mapping. In
particular, we presented BSGM (Algorithm 2), a bilevel optimization procedure based on
inexact gradient descent, where the inexact gradient is computed via SID (Algorithm 1).
SID uses stochastic fixed-point iterations to solve both the lower-level problem and the
linear system and estimates ∇E and ∂2Φ using large mini-batches. We proved that, even
without the use of warm-start on the lower-level problem and the linear system, BSGM
achieves optimal and near-optimal sample complexity in the stochastic and deterministic
bilevel setting respectively. We stress that in recent literature, warm-start was thought to
be crucial to achieve the optimal sample complexity. We also showed that, when compared
to methods using warm-start, our approach yields a simplified and modular analysis which
does not deal with the interactions between upper-level and lower-level iterates. Moreover,
we showed empirically the inconvenience of the warm-start strategy on equilibrium models
and meta-learning. Finally, we compared our method with several bilevel methods relying
on warm-start on a data-poisoning experiment.

Acknowledgments

This work was supported in part by the EU Projects ELISE and ELSA, as well the PNNR
Project FAIR. We thank all anonymous reviewers for their useful insights and suggestions.

27

Grazzi, Pontil and Salzo

Appendix A. Main Proofs

A.1 Proof of Lemma 3

To prove (i), recall that w′(λ) =
(
I − ∂1Φ(w(λ), λ)

)−1
∂2Φ(w(λ), λ), hence

‖w′(λ)‖ = ‖
(
I − ∂1Φ(w(λ), λ)

)−1
∂2Φ(w(λ), λ)‖

≤ ‖
(
I − ∂1Φ(w(λ), λ)

)−1‖‖∂2Φ(w(λ), λ)‖

≤
∞∑
i=0

‖∂1Φ(w(λ), λ)‖i‖∂2Φ(w(λ), λ)‖ ≤
∞∑
i=0

qiLΦ =
LΦ

1− q
,

where in the second inequality we used the properties of Neumann series and in the last
inequality we used Assumption A(i) and B(iv).

Next we prove (ii). Let A(λ) = I − ∂1Φ(w(λ), λ) For every λ ∈ Λ

‖A(λ1)−A(λ2)‖ = ‖∂1Φ(w(λ1), λ1)− ∂1Φ(w(λ2), λ2)‖
≤ ‖∂1Φ(w(λ2), λ1)− ∂1Φ(w(λ2), λ2)‖

+ ‖∂1Φ(w(λ1), λ1)− ∂1Φ(w(λ2), λ1)‖
≤ ν̄1‖λ1 − λ2‖+ ν1‖w(λ1)− w(λ2)‖

≤
(
ν̄1 +

ν1LΦ

1− q

)
‖λ1 − λ2‖,

where we used Assumption A(ii) and B(ii) in the second inequality and (i) in the last
inequality. Consequently, for every λ1, λ2 ∈ Λ

‖w′(λ1)− w′(λ2)‖ ≤ ‖A(λ1)−1‖‖∂2Φ((w(λ1), λ1)− ∂2Φ((w(λ2), λ2)‖
+ ‖∂2Φ((w(λ1), λ1)‖‖A(λ1)−1‖‖A(λ1)−A(λ2)‖‖A(λ2)−1‖
≤ ‖A(λ1)−1‖‖∂2Φ((w(λ1), λ2)− ∂2Φ((w(λ2), λ2)‖

+ ‖A(λ1)−1‖‖∂2Φ((w(λ1), λ1)− ∂2Φ((w(λ1), λ2)‖
+ ‖∂2Φ((w(λ1), λ1)‖‖A(λ1)−1‖‖A(λ1)−A(λ2)‖‖A(λ2)−1‖

≤

[
ν2LΦ/(1− q) + ν̄2

1− q
+

LΦ

(1− q)2

(
ν̄1 +

ν1LΦ

1− q

)]
‖λ1 − λ2‖.

To prove (iii) instead, let

∇̄f(w, λ) := ∇2E(w, λ) + ∂2Φ(w, λ)
[
I − ∂1Φ(w, λ)>

]−1∇1E(w, λ) (26)

Note that ∇f(λ) = ∇̄f(w(λ), λ). We have that for every λ1, λ2 ∈ Λ

‖∇f(λ1)−∇f(λ2)‖ ≤ ‖∇f(λ1)− ∇̄f(w(λ1), λ2)‖+ ‖∇f(λ2)− ∇̄f(w(λ1), λ2)‖ (27)

We bound the two terms of the RHS of (27) as follows.

‖∇f(λ1)− ∇̄f(w(λ1), λ2)‖ ≤ ‖∇2E(w(λ1), λ1)−∇2E(w(λ1), λ2))‖+
+ ‖w′(λ1)‖‖∇1E(w(λ1), λ1)−∇1E(w(λ1), λ2))‖

≤
(
µ̄2 +

LΦµ̄1

1− q
)
‖λ1 − λ2‖,

28

Bilevel Optimization with a Lower-level contraction

‖∇f(λ2)− ∇̄f(w(λ1), λ2)‖ ≤ ‖∇2E(w(λ2), λ2)−∇2E(w(λ1), λ2))‖
+ ‖w′(λ2)‖‖∇1E(w(λ2), λ2)−∇1E(w(λ1), λ2))‖
+ ‖∇1E(w(λ1), λ2)‖‖w′(λ2)− w′(λ1)‖

≤
(
LELw′ +

µ2LΦ

1− q
+

µ1L
2
Φ

(1− q)2

)
‖λ1 − λ2‖.

Summing the two inequalities above we obtain the final result.

A.2 Proof of Theorem 4

Proof (i): Using the definition of ∇̂f(λ) and the fact that ζ ′j and vk(wt(λ), λ) are inde-
pendent random variables, we get

E[∇̂f(λ) | wt(λ)] = ∇2E(wt(λ), λ) + ∂2Φ(wt(λ), λ)>E[vk(wt(λ), λ) | wt(λ)].

Consequently, recalling the hypergradient equation, we have,∥∥E[∇̂f(λ) | wt(λ)]−∇f(λ)
∥∥

≤ ‖∇2E(w(λ), λ)−∇2E(wt(λ), λ)‖
+
∥∥∂2Φ(w(λ), λ)>v(w(λ), λ)− ∂2Φ(wt(λ), λ)>E[vk(wt(λ), λ) | wt(λ)]

∥∥
≤ ‖∇2E(w(λ), λ)−∇2E(wt(λ), λ)‖

+ ‖∂2Φ(w(λ), λ)‖‖v(w(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖
+ ‖∂2Φ(w(λ), λ)− ∂2Φ(wt(λ), λ)‖‖E[vk(wt(λ), λ) | wt(λ)]‖. (28)

Now, concerning the term ‖v(w(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖ in the above inequality, we
have

‖v(w(λ), λ)−E[vk(wt(λ), λ) | wt(λ)]‖

≤ ‖v(w(λ), λ)− v(wt(λ), λ)‖+ ‖v(wt(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖. (29)

Since E[v̄(wt(λ), λ) | wt(λ)] = v(wt(λ), λ) we have

‖v(wt(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖ = ‖E[v̄(wt(λ), λ)− vk(wt(λ), λ) | wt(λ)]‖

Moreover, using Jensen inequality and Assumption D we obtain

‖E[v̄(wt(λ), λ)− vk(wt(λ), λ) | wt(λ)]‖ =
√
‖E[v̄(wt(λ), λ)− vk(wt(λ), λ) | wt(λ)]‖2

≤
√
E[‖v̄(wt(λ), λ)− vk(wt(λ), λ)‖2 | wt(λ)]

≤
√
σ(k). (30)

Therefore, using Theorem 20, (29) yields

‖v(w(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖ ≤
(

ν1LE
(1− q)2

+
µ1

1− q

)
‖w(λ)− wt(λ)‖+

√
σ(k).

(31)

29

Grazzi, Pontil and Salzo

In addition, it follows from (29)-(30) and theorem 21 that

‖E[vk(wt(λ), λ) | wt(λ)]‖ ≤ ‖v(wt(λ), λ)‖+ ‖v(wt(λ), λ)− E[vk(wt(λ), λ) | wt(λ)]‖

≤ LE
1− q

+
√
σ(k). (32)

Finally, combining (28), (31), and (32), and using Assumption A, (i) follows. Then, since

‖E[∇̂f(λ)]−∇f(λ)‖ =
∥∥E[E[∇̂f(λ) | wt(λ)]−∇f(λ)

]∥∥ ≤ E
[∥∥E[∇̂f(λ) | wt(λ)]−∇f(λ)

∥∥],
(ii) follows by taking the expectation in (i), using Assumption D and that E[∆̂w] =√

(E[∆̂w])2 ≤
√

E[∆̂2
w] ≤

√
ρ(t).

A.3 Proof of Theorem 5

Proof Let Ẽ[·] := E[· | wt(λ)], Ṽ[·] := V[· | wt(λ)], b1 := ∂2Φ(wt(λ), λ)>vk(wt(λ), λ) and
b2 := Ṽ[∇2ĒJ(wt(λ), λ)]. Then,

Ṽ[∇̂f(λ)] = Ẽ
[
‖∇̂f(λ)− Ẽ[∇̂f(λ)]‖2

]
≤ 2Ẽ

[
‖∂2Φ(wt(λ), λ)>Ẽ[vk(wt(λ), λ)]∓ b1 − ∂Φ̄J(λ)>vk(wt(λ), λ)‖2

]
+ 2b2

≤ 2‖∂2Φ(wt(λ), λ)‖2Ẽ
[
‖vk(wt(λ), λ)− Ẽ[vk(wt(λ), λ)]‖2

]
+ 2Ẽ

[
‖vk(wt(λ), λ)‖2

]
Ẽ
[
‖∂Φ̄J(λ)− ∂2Φ(wt(λ), λ)‖2

]
+ 2b2.

= 2 ‖∂2Φ(wt(λ), λ)‖2︸ ︷︷ ︸
a1

Ṽ[vk(wt(λ), λ)]︸ ︷︷ ︸
a2

+2 Ẽ
[
‖vk(wt(λ), λ)‖2

]︸ ︷︷ ︸
a3

Ṽ[∂2Φ̄J(λ)] + 2b2,

where for the last inequality we used that ζ ′i ⊥⊥ vk(wt(λ), λ) | wt(λ) and, in virtue of
Lemma 27, that

Ẽ
[
∆>v ∂2Φ(wt(λ), λ)(∂2Φ̄J(wt(λ), λ, ζ)− ∂2Φ(wt(λ), λ))>vk(wt(λ), λ)

]
= 0,

where ∆v := vk(wt(λ), λ) − Ẽ[vk(wt(λ), λ)]. In the following, we will bound each term of
the inequality in order.

a1 = ‖∂2Φ(wt(λ), λ)∓ ∂2Φ(w(λ), λ)‖2

≤ 2‖∂2Φ(w(λ), λ)‖2 + 2‖∂2Φ(w(λ), λ)− ∂2Φ(wt(λ), λ)‖2

≤ 2L2
Φ + 2ν2

2‖w(λ)− wt(λ)‖2.

Then, applying Assumption D, and Lemma 24(ii)

a2 = Ṽ[vk(wt(λ), λ)] ≤ Ẽ[‖vk(wt(λ), λ)∓ v̄(wt(λ), λ)− v(wt(λ), λ)‖2]

≤ 2σ(k) + 2
σ1,E

J(1− q)2
,

30

Bilevel Optimization with a Lower-level contraction

where in the last inequality, recalling Assumption C(iv), we used

Ẽ
[
‖v(wt(λ), λ)− v̄(wt(λ), λ)‖2

]
≤

‖(I − ∂1Φ(wt(λ), λ)>)−1‖2Ẽ[‖∇1E(wt(λ), λ)−∇1ĒJ(wt(λ), λ)‖2] ≤
‖(I − ∂1Φ(wt(λ), λ)>)−1‖2Ṽ[∇1ĒJ(wt(λ), λ)] ≤

σ1,E

J(1− q)2
.

(33)

Furthermore, exploiting Assumption A and D, and Theorem 21,

a3 = Ẽ
[
‖vk(wt(λ), λ)∓ v̄(wt(λ), λ)∓ v(wt(λ), λ)‖2

]
≤ 2‖v(wt(λ), λ)‖2 + 4Ẽ

[
‖v(wt(λ), λ)− v̄(wt(λ), λ)‖2

]
+ 4Ẽ

[
‖v̄(wt(λ), λ)− vk(wt(λ), λ)‖2

]
≤ 2

L2
E

(1− q)2
+ 4

σ1,E

J(1− q)2
+ 4σ(k),

where we used (33) in the last inequality. Using the formula for the variance of the sum of
independent random variables and Assumption C we have

Ṽ[∂Φ̄J(λ)] ≤ σ′2
J
, Ṽ[∇2ĒJ(wt(λ), λ)] ≤

σ2,E

J
.

Combining the previous bounds together and defining ∆̂w := ‖w(λ)− wt(λ)‖ and simplify-
ing some terms knowing that J > 1 we get that

Ṽ[∇̂f(λ)] ≤
(
σ2,E + 4

σ′2(L2
E + σ1,E) + L2

Φσ1,E

(1− q)2

)
2

J
+ 8(L2

Φ + σ′2)σ(k)

+ 8ν2
2∆2

w

(
σ(k) +

σ1,E

J(1− q)2

)
.

The proof is completed by taking the total expectation on both sides of the inequality above.

A.4 Proof of Theorem 17

Proof Similarly to the proof of Theorem 16, but with Js = 1, we obtain a number of
samples in S iterations which is N =

∑S−1
s=0 2(ts + 1) = 2

∑S
s=1dc3 log(s)e + 1. , if S > 1

N ≥ 2c3

S∑
s=dS/2e

log(s) ≥ c3(S/2− 1) log(S/2),

N ≤ 2c3S log

(
1

S

S∑
s=1

s

)
+ 4S ≤ 4S

[
c3 log

(
S + 1

2

)
+ 1

]
.

Therefore, N = Θ(S log(S)).

31

Grazzi, Pontil and Salzo

Since in the deterministic case V[∇̂f(λ)] = 0 and E[∇̂f(λ)] = ∇̂f(λ), Theorem 4(ii) and
setting J = 1 yields

‖∇̂f(λs)−∇f(λs)‖2

≤ 3

(
µ2 +

µ1LΦ + ν2LE
1− q

+
ν1LELΦ

(1− q)2

)2

ρ(ts) + 3L2
Φσ(ks) + 3ν2

2ρ(ts)σ(ks).
(34)

Now we note that, in view of last result of Theorem 8, we have

ρ(ts) = q2tsB2, σ(ks) = q2ks L2
E

(1− q)2
,

and consequently, since ts = ks and q2x ≤ qx with x ≥ 1, we get

‖∇̂f(λs)−∇f(λs)‖2 ≤ Cq2ts ,

where C incorporates all the constants occurring in (34).
Recall that ts = dc3 log(s+ 1)e and c3 ≥ 1/ log(1/q) > 0. From the change of base

formula we have

ts ≥ c3 log(1/q) logq(1/(s+ 1)) ≥ logq(1/(s+ 1)),

since logq(1/(s+ 1)) ≥ 0 due to q < 1, s ≥ 0. Consequently,

q2ts ≤ q2 logq(1/(s+1)) =
1

(s+ 1)2
.

Hence, we can bound the sum of squared errors as follows.

S−1∑
s=0

‖∇̂f(λs)−∇f(λs)‖2 ≤
S−1∑
s=0

C

(s+ 1)2
≤

S∑
s=1

C

s2
≤ Cπ2

6
.

Using this result in combination with Theorem 13 we obtain (17). Therefore, we have
1
S

∑S−1
s=0 E[‖Gα(λs)‖2] ≤ ε in a number of UL iterations S = O(ε−1). Since we proved that

N = Θ(S log(S)) we obtain the final sample complexity result.

Appendix B. Lemmas

Lemma 20 Let Assumption A be satisfied. Then, for every w ∈ Rd

‖v(w(λ), λ)− v(w, λ)‖ ≤
(

ν1LE
(1− q)2

+
µ1

1− q

)
‖w(λ)− w‖. (35)

Proof Let A1 := (I − ∂1Φ(w(λ), λ)>) and A2 = (I − ∂1Φ(w, λ)>). Then it follows from
Theorem 28 that

‖v(w(λ), λ)− v(w, λ)‖ ≤ ‖∇1E(w(λ), λ)‖‖A−1
1 −A

−1
2 ‖+ µ1‖A−1

2 ‖‖w(λ)− w‖

≤ ‖∇1E(w(λ), λ)‖‖A−1
1 (A2 −A1)A−1

2 ‖+
µ1

1− q
‖w(λ)− w‖

≤
(

ν1

(1− q)2
‖∇1E(w(λ), λ)‖+

µ1

1− q

)
‖w(λ)− w‖.

32

Bilevel Optimization with a Lower-level contraction

Moreover, Assumption A yields that ‖∇1E(w(λ), λ)‖ ≤ LE . Hence, the statement follows.

Lemma 21 Let Assumption A be satisfied. Then, for every w ∈ Rd

‖v(w, λ)‖ ≤ ‖(I − ∂1Φ(w, λ)>)−1‖‖∇1E(w, λ)‖ ≤ LE
1− q

. (36)

Proof It follows from the definition of v(w, λ) and Assumptions A(i) and A(iv)

Appendix C. Standard Lemmas

For completeness, in this section we state without proof some standard results used in the
analysis. A proof can be found in (Grazzi et al., 2021).

Lemma 22 Let X be a random vector with values in Rd and suppose that E[‖X‖2] < +∞.
Then E[X] exists in Rd and ‖E[X]‖2 ≤ E[‖X‖2].

Definition 23 Let X be a random vector with value in Rd such that E[‖X‖2] < +∞. Then
the variance of X is

V[X] := E[‖X − E[X]‖2] (37)

Lemma 24 (Properties of the variance) Let X and Y be two independent random vari-
ables with values in Rd and let A be a random matrix with values in Rn×d which is inde-
pendent on X. We also assume that X,Y , and A have finite second moment. Then the
following hold.

(i) V[X] = E[‖X‖2]− ‖E[X]‖2,

(ii) E[‖X − x‖2] = V[X] + ‖E[X]− x‖2 ∀x ∈ Rd. Hence, V[X] = minx∈Rd E[‖X − x‖2].

(iii) V[X + Y] = V[X] + V[Y],

(iv) V[AX] ≤ V[A]V[X] + ‖E[A]‖2V[X] + ‖E[X]‖2V[A].

Definition 25 (Conditional Variance). Let X be a random variable with values in Rd and
Y be a random variable with values in a measurable space Y. We call conditional variance
of X given Y the quantity

V[X | Y] := E[‖X − E[X | Y]‖2 | Y].

Lemma 26 (Law of total variance) Let X and Y be two random variables, we can prove
that

V[X] = E[V[X | Y]] + V[E[X | Y]] (38)

33

Grazzi, Pontil and Salzo

Lemma 27 Let ζ and η be two independent random variables with values in Z and Y
respectively. Let ψ : Y → Rm×n, φ : Z → Rn×p, and ϕ : Y → Rp×q matrix-valued measurable
functions. Then

E[ψ(η)(φ(ζ)− E[φ(ζ)])ϕ(η)] = 0 (39)

Lemma 28 Let A be a square matrix such that ‖A‖ ≤ q < 1 Then, I −A is invertible and

‖(I −A)−1‖ ≤ 1

1− q
.

References

Luis B Almeida. A learning rule for asynchronous perceptrons with feedback in a combi-
natorial environment. In First International Conference on Neural Networks, volume 2,
pages 609–618, 1987.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. In Advances in Neural Information Processing Systems,
pages 3981–3989, 2016.

Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel
optimization. In International Conference on Learning Representations, 2021.

Michael Arbel and Julien Mairal. Non-convex bilevel games with critical point selection
maps. arXiv preprint arXiv:2207.04888, 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Pro-
gramming, 305:1–50, 2022.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in
Neural Information Processing Systems, pages 688–699, 2019.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre
Gramfort, and Joseph Salmon. Implicit differentiation of lasso-type models for hyperpa-
rameter optimization. In International Conference on Machine Learning, pages 810–821.
PMLR, 2020.

Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel
Vaiter, Alexandre Gramfort, and Joseph Salmon. Implicit differentiation for fast hy-
perparameter selection in non-smooth convex learning. Journal of Machine Learning
Research, 23(149):1–43, 2022.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gra-
dient method for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for
stochastic bilevel optimization. In International Conference on Artificial Intelligence and
Statistics, volume 151 of PMLR, pages 2466–2488, 2022.

34

Bilevel Optimization with a Lower-level contraction

Stephan Dempe and Alain Zemkoho. Bilevel Optimization. Springer, 2020.

Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear
convergence of proximal methods. Mathematics of Operations Research, 43(3):919–948,
2018.

Pavel Dvurechensky. Gradient method with inexact oracle for composite non-convex opti-
mization. arXiv preprint arXiv:1703.09180, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning-Volume
70, pages 1126–1135, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Ma-
chine Learning-Volume 70, pages 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In Interna-
tional Conference on Machine Learning, pages 1563–1572, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the itera-
tion complexity of hypergradient computation. In International Conference on Machine
Learning, pages 3748–3758. PMLR, 2020.

Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Convergence properties of stochas-
tic hypergradients. In International Conference on Artificial Intelligence and Statistics,
pages 3826–3834. PMLR, 2021.

Zhishuai Guo and Tianbao Yang. Randomized stochastic variance-reduced methods for
stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-
average estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale frame-
work for bilevel optimization: Complexity analysis and application to actor-critic. arXiv
preprint arXiv:2007.05170, 2020.

Feihu Huang and Heng Huang. BiAdam: Fast Adaptive Bilevel Optimization Methods.
arXiv e-prints, art. arXiv:2106.11396, June 2021.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892.
PMLR, 2021.

35

Grazzi, Pontil and Salzo

Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from
loops. arXiv preprint arXiv:2205.14224, 2022.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran
Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum.
Advances in Neural Information Processing Systems, 34:30271–30283, 2021.

Serge Lang. Fundamentals of differential geometry, volume 191. Springer Science & Business
Media, 2012.

Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization
without hessian inverse. In AAAI Conference on Artificial Intelligence, volume 36, pages
7426–7434, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
In International Conference on Learning Representations, 2018.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-
order algorithmic framework for bi-level programming beyond lower-level singleton. In
International Conference on Machine Learning, pages 6305–6315. PMLR, 2020.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A general descent
aggregation framework for gradient-based bi-level optimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparame-
ters by implicit differentiation. In International Conference on Artificial Intelligence and
Statistics, pages 1540–1552. PMLR, 2020.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter op-
timization through reversible learning. In International Conference on Machine Learning,
pages 2113–2122, 2015.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with
back-gradient optimization. In ACM Workshop on Artificial Intelligence and Security,
pages 27–38, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Interna-
tional Conference on Machine Learning, pages 737–746, 2016.

36

Bilevel Optimization with a Lower-level contraction

Fernando J Pineda. Generalization of back-propagation to recurrent neural networks. Phys-
ical Review Letters, 59(19):2229, 1987.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning
with implicit gradients. In Advances in Neural Information Processing Systems, pages
113–124, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks, 20
(1):61–80, 2008.

Mark Schmidt, Nicolas Roux, and Francis Bach. Convergence rates of inexact proximal-
gradient methods for convex optimization. Advances in Neural Information Processing
Systems, 24, 2011.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimiza-
tion. Advances in Neural Information Processing Systems, 34:13670–13682, 2021.

37

	Introduction
	Bilevel Stochastic Gradient Method
	Comparison with Related Work
	Assumptions and Preliminary Results
	Convergence of SID
	Convergence of Solvers for The Lower-Level Problem and Linear System

	Convergence of BSGM
	Projected Inexact Gradient Method
	Bilevel Convergence Rates and Sample Complexity

	Experiments
	Equilibrium Models
	Meta-Learning
	Data Poisoning

	Conclusions
	Main Proofs
	Proof of Lemma 3
	Proof of th:boundbias
	Proof of th:varboundone
	Proof of Theorem 17

	Lemmas
	Standard Lemmas

