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Abstract

Sinkhorn algorithm has been used pervasively to approximate the solution to optimal trans-
port (OT) and unbalanced optimal transport (UOT) problems. However, its practical appli-
cation is limited due to the high computational complexity. To alleviate the computational
burden, we propose a novel importance sparsification method, called Spar-Sink, to effi-
ciently approximate entropy-regularized OT and UOT solutions. Specifically, our method
employs natural upper bounds for unknown optimal transport plans to establish effective
sampling probabilities, and constructs a sparse kernel matrix to accelerate Sinkhorn itera-
tions, reducing the computational cost of each iteration from O(n2) to Õ(n) for a sample
of size n. Theoretically, we show the proposed estimators for the regularized OT and UOT
problems are consistent under mild regularity conditions. Experiments on various syn-
thetic data demonstrate Spar-Sink outperforms mainstream competitors in terms of both
estimation error and speed. A real-world echocardiogram data analysis shows Spar-Sink
can effectively estimate and visualize cardiac cycles, from which one can identify heart
failure and arrhythmia. To evaluate the numerical accuracy of cardiac cycle prediction,
we consider the task of predicting the end-systole time point using the end-diastole one.
Results show Spar-Sink performs as well as the classical Sinkhorn algorithm, requiring
significantly less computational time.
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1. Introduction

The optimal transport (OT) problem, initiated by Gaspard Monge in the 18th century, aims
to calculate the Wasserstein distance that quantifies the discrepancy between two probability
measures. Recently, the Wasserstein distance has played an increasingly preponderant role
in machine learning (Courty et al., 2016; Arjovsky et al., 2017; Meng et al., 2019; Muzellec
et al., 2020; Balaji et al., 2020), statistics (Flamary et al., 2018; Panaretos and Zemel, 2019;
Meng et al., 2020; Dubey and Müller, 2020), computer vision (Ferradans et al., 2014; Su
et al., 2015; Solomon et al., 2015; Xu et al., 2019), biomedical research (Tanay and Regev,
2017; Schiebinger et al., 2019; Marouf et al., 2020), among others. We refer to Peyré and
Cuturi (2019) and Panaretos and Zemel (2019) for recent reviews.

Despite the broad range of applications, existing methods for computing the Wasserstein
distance suffer from a huge computational burden when the sample size n is large. Specifi-
cally, traditional approaches involve solving differential equations (Brenier, 1997; Benamou
et al., 2002) or linear programming problems (Rubner et al., 1997; Pele and Werman, 2009).
The computational cost of such methods is of the order O(n3 log(n)).

To alleviate the computational burden, a large number of efficient computational tools
have been developed in the recent decade. One major class of approaches is called the
regularization-based method, which solves an entropy-regularized OT problem instead of
the original one (Cuturi, 2013). The regularized OT problem is unconstrained and convex
with a differentiable objective function, and can be solved using the Sinkhorn algorithm
(Sinkhorn and Knopp, 1967) in O(Ln2) time, where L is the number of iterations. It has
been shown that regularized OT solutions possess better theoretical properties than the
unregularized counterparts (Montavon et al., 2016; Rigollet and Weed, 2018; Feydy et al.,
2019; Peyré and Cuturi, 2019). Another advantage of the regularization-based approach is
that it can be applied to a generic class of unbalanced optimal transport (UOT) problems
(Chizat et al., 2018b). The UOT problem relaxes the strict marginal constraints of OT by
allowing partial displacement of mass, making it more suitable for applications that involve
both mass variation (e.g., creation or destruction) and mass transportation (Frogner et al.,
2015; Chizat et al., 2018b; Zhou et al., 2018; Wang et al., 2020). The Sinkhorn algorithm
can be naturally extended to approximate UOT solutions, also requiring an O(Ln2) compu-
tational cost (Chizat et al., 2018b; Pham et al., 2020). In general, the Sinkhorn algorithm
enables researchers to approximate the OT and UOT solutions efficiently, and thus has been
extensively studied in the recent decade (Cuturi and Doucet, 2014; Genevay et al., 2019;
Feydy et al., 2019; Lin et al., 2019b; Pham et al., 2020). There also exist slicing-based
methods to approximate the Wasserstein distance (Pitié et al., 2005; Rabin et al., 2011;
Bonneel et al., 2015; Meng et al., 2019; Deshpande et al., 2019; Zhang et al., 2021a; Nguyen
et al., 2021, 2023), and such methods are beyond the scope of this paper. A recent review
of such methods can be found in Nadjahi (2021).

Despite the wide application, the time and memory requirements of the Sinkhorn algo-
rithm grow quadratically with n, which hinders its broad applicability to many large-scale
optimal transport problems. To address the computational bottleneck, many efficient vari-
ants of the Sinkhorn algorithm have been proposed in recent years (Solomon et al., 2015;
Altschuler et al., 2019; Pham et al., 2020; Scetbon and Cuturi, 2020; Scetbon et al., 2021;
Klicpera et al., 2021; Le et al., 2021; Séjourné et al., 2022; Liao et al., 2022a,b). For example,
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in contrast to the scheme of Sinkhorn that updates all rows and columns of the transport
plan at each step, the variants including greedy Sinkhorn (Greenkhorn) (Altschuler et al.,
2017; Lin et al., 2022), randomized Sinkhorn (Randkhorn) (Lin et al., 2019a), and screen-
ing Sinkhorn (Screenkhorn) (Alaya et al., 2019) only update partial row(s) or column(s)
in each iteration, based on different selection criteria. These variants have been shown to
converge faster in practice, making them appealing for large-scale applications. In addi-
tion, Xie et al. (2020) developed an inexact proximal point method to address numerical
instability issues of Sinkhorn algorithm.

Nevertheless, most of the existing variants of the Sinkhorn algorithm still require an
O(Ln2) computational cost. One exception is the Nys-Sink approach proposed by Altschuler
et al. (2019), where the authors proposed to accelerate the Sinkhorn algorithm using the
Nyström method, a well-known technique for low-rank matrix approximation (Kumar et al.,
2012). The computational complexity of Nys-Sink is reduced to O(Lrn), where r ≤ n de-
notes the estimated rank of the kernel matrix K with respect to (w.r.t.) the Sinkhorn
algorithm. Further details of the kernel matrix K will be provided in the subsequent sec-
tion. However, the Nys-Sink method suffers from two limitations: it requires (i) K to
be symmetric positive semi-definite, and (ii) K possessing a low-rank structure. Such con-
straints restrict the applicability of Nys-Sink in many practical scenarios. For instance,
the Wasserstein-Fisher-Rao distance (Kondratyev et al., 2016; Chizat et al., 2018a; Liero
et al., 2018), a popular distance in UOT problems, is associated with a kernel matrix K that
is highly sparse and nearly full-rank; see Section 2 for more details. The Nys-Sink method
thus may be ineffective for estimating the Wasserstein-Fisher-Rao distance in large-scale
UOT problems. Therefore, the development of an efficient variant of the Sinkhorn algo-
rithm capable of handling large-scale asymmetric and nearly full-rank kernel matrix K
remains a blank field requiring further research.

In this paper, we propose a randomized sparsification variant of the Sinkhorn algorithm,
called Spar-Sink, for both OT and UOT problems. Specifically, we construct a sparsified
kernel matrix K̃ by carefully sampling s = o(n2) elements from K and setting the remaining
ones to zero. We then leverage K̃ and sparse matrix multiplications to accelerate the
iterations in the Sinkhorn algorithm, reducing the computational cost from O(n2) to O(s)
per iteration.

The key to the success of the proposed strategy is developing an effective sampling
probability. We demonstrate that both OT and UOT problems provide natural upper
bounds for the elements in the unknown optimal transport plan. Drawing inspiration from
the importance sampling technique, we employ such upper bounds to construct sampling
probabilities. Theoretically, we show that the proposed estimators for entropic OT and
UOT problems are consistent when s = Õ(n) under certain regularity conditions, where
Õ(·) suppresses logarithmic factors. Extensive simulations show Spar-Sink yields much
smaller estimation errors compared with mainstream competitors.

We consider a real-world echocardiogram data analysis to demonstrate the performance
of Spar-Sink. Specifically, we propose using the Wasserstein-Fisher-Rao (WFR) distance
(Kondratyev et al., 2016; Chizat et al., 2018a; Liero et al., 2018), a special metric in UOT
problems, to characterize the similarity between any two frames in an echocardiogram
video. Compared to the Wasserstein distance, the WFR distance prevents long-range mass
transportation between two distributions, and thus can achieve a balance between global
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transportation and local truncation. Intuitively, such a distance is more consistent with
the nature of myocardial motion that the cardiac muscle would not transport too far.
We focus on the task of cardiac cycle identification, which is an essential but laborious
task for the downstream assessment of cardiac function (Ouyang et al., 2020). We apply
the proposed Spar-Sink algorithm to approximate the WFR distance and predict cardiac
cycles automatically and efficiently, which has the potential to obviate the heavy work for
cardiologists. Empirical results show that our method can effectively estimate and visualize
cardiac cycles, with the potential to identify heart failure and arrhythmia from the results.
To evaluate the numerical accuracy of cardiac cycle prediction, we predict the end-systole
time point using the end-diastole one. The results show Spar-Sink achieves the same
prediction accuracy as the Sinkhorn algorithm while requiring much less computational
time.

A problem closely related to the optimal transport is the (fixed-support) Wasserstein
barycenter problem, which aims to calculate the barycenter of a set of probability measures
(whose supports are predetermined) in the Wasserstein space (Agueh and Carlier, 2011).
Extending the work of Cuturi (2013), Wasserstein barycenters can also be approximated by
entropic smoothing (Cuturi and Doucet, 2014) using the iterative Bregman projection (IBP)
algorithm (Benamou et al., 2015). Concerning the computational hardness, significant
research has been devoted to further enhancing the celebrated IBP algorithm (Cuturi and
Peyré, 2018; Kroshnin et al., 2019; Lin et al., 2020; Guminov et al., 2021). In this paper,
we also extend the idea of sparsification to the IBP algorithm, efficiently approximating
Wasserstein barycenters.

The remainder of this paper is organized as follows. We start in Section 2 by intro-
ducing the background of OT and UOT problems. In Section 3, we develop the sampling
probabilities and provide the details of the main algorithm. The theoretical properties of
the proposed estimators are presented in Section 4. We examine the performance of the
proposed method through extensive synthetic data sets in Section 5. Echocardiogram data
analysis is provided in Section 6. Extensions, technical details, and additional numerical
results and applications are relegated to the Appendix.

2. Background

Here we summarize the notation used throughout the paper. We adopt the standard conven-
tion of using uppercase boldface letters for matrices, lowercase boldface letters for vectors,
and regular font for scalars. We denote non-negative real numbers by R+, the set of integers
{1, . . . , n} by [n], and the (n− 1)-dimensional simplex by ∆n−1 = {x ∈ Rn+ :

∑n
i=1 xi = 1}.

An empirical measure µ supported by n points xi ∈ Rd, i ∈ [n] is defined as µ =
∑n

i=1 aiδxi ,
where δ· is the Dirac delta function and a = (a1, . . . , an) is the corresponding histogram
in Rn+. For two histograms a, b ∈ Rn+, we define the Kullback-Leibler divergence KL(a‖b)
between a and b by KL(a‖b) =

∑n
i=1 ai log(ai/bi)−ai+bi, where we adopt the standard con-

vention that 0 log(0) = 0. For a coupling matrix T ∈ Rn×n+ , its Shannon entropy is defined
as H(T) = −

∑
i,j Tij(log(Tij) − 1). We use ‖A‖2 to denote the spectral norm (i.e., maxi-

mal singular value) of a matrix A, and its condition number is defined as ‖A‖2/λmin(A),
where λmin(·) is the minimal singular value. For A and B of the same dimension, we de-
note their Frobenius inner product by 〈A,B〉 =

∑
i,j AijBij . For a vector x, we use ‖x‖p
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and ‖x‖∞ to represent its `p norm and infinity norm, respectively. For two non-negative

sequences (xn)n and (yn)n, we denote xn = Õ(yn) if there exist constants c, c′ > 0 such that
xn ≤ c′yn(log(n))c.

2.1 Optimal Transport Problem and Sinkhorn Algorithm

To begin with, we consider two empirical probability measures a ∈ ∆m−1 and b ∈ ∆n−1.
For brevity, we focus on the case of m = n in this paper, since the extension to unequal cases
is straightforward. The goal of the optimal transport problem is to compute the minimal
effort of moving the masses a and b onto each other, according to some ground cost between
the supports. Due to Kantorovich (1942), the modern OT formulation takes the form

OT(a, b) := min
T∈U(a,b)

〈T,C〉, (1)

where U(a, b) := {T ∈ Rn×n+ : T1n = a,T>1n = b} is the set of admissible transportation
plans, i.e., all joint probability distributions with marginals a, b, and C ∈ Rn×n+ is a given
cost matrix with bounded entries. The solutions to (1) are called the optimal transport
plan. When C is a pairwise distance matrix of the power p, Wp(·, ·) := OT(·, ·)1/p defines
the p-Wasserstein distance on ∆n−1.

A clear drawback of OT is that the computational cost of directly solving the problem (1)
is hugely prohibitive. Indeed, conventional methods require O(n3 log(n)) time (Brenier,
1997; Rubner et al., 1997; Benamou et al., 2002; Pele and Werman, 2009). Even the fastest
algorithms known to date for (1) have a computational complexity of at least O(n2.5 log(n))
(Lee and Sidford, 2014, 2015; Guo et al., 2020; An et al., 2022).

To approximate the solution to the OT problem efficiently, Cuturi (2013) introduced an
entropic penalty term to (1) and turned it into an entropy-regularized OT problem

OTε(a, b) := min
T∈U(a,b)

〈T,C〉 − εH(T), (2)

where the regularization parameter ε > 0 controls the strength of the penalty term. Let
T∗ε ∈ Rn×n be the solution to (2). It is known that when ε → 0, OTε(a, b) → OT(a, b);
when ε→∞, T∗ε → ab> (Peyré and Cuturi, 2019).

In general, the solution T∗ε is a projection onto U(a, b) of the kernel matrix K :=
exp(−C/ε). The (i, j)th entry of K is given by Kij = exp(−Cij/ε). Indeed, for two
(unknown) convergent scaling vectors u∗,v∗ ∈ Rn+, the unique solution T∗ε takes the form

T∗ε = diag(u∗)K diag(v∗). (3)

Based on the equation (3), T∗ε can be approximated by the celebrated Sinkhorn algorithm
using iterative matrix scaling (Sinkhorn and Knopp, 1967; Cuturi, 2013), requiring a com-
putational cost of the order O(Ln2). The pseudocode for the Sinkhorn algorithm is shown
in Algorithm 1, where the operator � denotes the element-wise division.

2.2 Unbalanced Optimal Transport Problem

When a, b ∈ Rn+ are two arbitrary positive measures such that their total mass does not
equal each other, the marginal constraints in the classical OT problem (1) are no longer
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Algorithm 1 SinkhornOT(K,a, b, δ)

1: Initialize: t← 0;v(0) ← 1n
2: repeat
3: t← t+ 1
4: u(t) ← a�Kv(t−1); v(t) ← b�K>u(t)

5: until ‖u(t) − u(t−1)‖1 + ‖v(t) − v(t−1)‖1 ≤ δ
6: Output: T∗ε = diag(u(t))K diag(v(t))

valid. To overcome such an obstacle, researchers extended the classical optimal transport
problem to the so-called unbalanced optimal transport (UOT) problem by relaxing the
marginal constraints. In the literature, there exist several different formulations of the
UOT problem; see Liero et al. (2016) and Chizat et al. (2018c) for reference. In this paper,
we focus on the static formulation that only involves a minor modification of the initial
linear program of OT. Specifically, the UOT problem between a and b is defined as

UOT(a, b) := min
T∈Rn×n+

〈T,C〉+ λKL(T1n‖a) + λKL(T>1n‖b). (4)

Here, λ > 0 is a regularization parameter that balances the trade-off between the trans-
portation effort and maintaining the global structure of input measures. Intuitively, mass
transportation increases with larger λ. Note that when ‖a‖1 = ‖b‖1 and λ→∞, the UOT
problem (4) degenerates to the classical OT problem (1).

One particular solution to the UOT problem is the so-called Wasserstein-Fisher-Rao
distance (Kondratyev et al., 2016; Chizat et al., 2018a; Liero et al., 2018). Such a distance
is associated with a cost matrix C = (Cij) such that Cij = − log

[
cos2

+ (dij/(2η))
]
, where

dij is a distance and cos+ : z 7→ cos (min (z, π/2)). Here, the parameter η controls the
sparsity level in the kernel matrix K, such that a smaller value of η is associated with a
sparser K. More precisely, when dij ≥ πη, it follows that Cij = ∞ and thus Kij = 0,
that is, the transportation between ai and bj is blocked. Hence, a smaller η causes more
elements in K to be truncated to zero, resulting in a sparser matrix. Moreover, a small η
leads to the diagonal or block-diagonal structure in K, resulting in a large rank of the kernel
matrix. The λ-Wasserstein-Fisher-Rao distance is defined as WFRλ(·, ·) := UOT(·, ·)1/2.
Such a distance has been widely applied in natural language processing (Wang et al., 2020),
earthquake location problems (Zhou et al., 2018), shape modification, color transfer, and
growth models (Chizat et al., 2018b).

Similar to the classical OT problem, the exact computation of the UOT problem is not
scalable in terms of the number of support points n. Inspired by the success of entropy-
regularized OT, we consider the entropic version of the UOT problem, defined as

UOTλ,ε(a, b) := min
T∈Rn×n+

〈T,C〉+ λKL(T1n‖a) + λKL(T>1n‖b)− εH(T), (5)

with given parameters λ, ε > 0. Similarly, we introduce the kernel matrix K = exp(−C/ε)
and solve the problem (5) by iterative matrix scaling. Algorithm 2 proposed by Chizat et al.
(2018b) is a straightforward generalization of the Sinkhorn algorithm from OT problems to
UOT problems. The output of Algorithm 2 is the unique solution to the problem (5). Note
that when λ→∞, we have λ/(λ+ε)→ 1 and thus Algorithm 2 degenerates to Algorithm 1.
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Algorithm 2 SinkhornUOT(K,a, b, λ, ε, δ)

1: Initialize: t← 0;u(0),v(0) ← 1n
2: repeat
3: t← t+ 1

4: u(t) ←
(
a�Kv(t−1)

)λ/(λ+ε)
; v(t) ←

(
b�K>u(t)

)λ/(λ+ε)

5: until ‖u(t) − u(t−1)‖1 + ‖v(t) − v(t−1)‖1 ≤ δ
6: Output: T∗λ,ε = diag(u(t))K diag(v(t))

3. Main Algorithm

In this section, we present our main algorithm called importance sparsification for the
Sinkhorn algorithm (Spar-Sink). The idea is first to apply element-wise subsampling on
the kernel matrix K to obtain a sparse sketch K̃. We then use K̃ as a surrogate for K
and use sparse matrix multiplication techniques to accelerate the iterations in the Sinkhorn
algorithm.

3.1 Matrix Sparsification and Importance Sampling

Given an input matrix A, element-wise matrix sparsification seeks to select (and rescale) a
small set of elements from A and produce a sparse sketch Ã, that can serve as a good proxy
for A. Pioneered by Achlioptas and Mcsherry (2007), previous research has been dedicated
to developing various sampling frameworks and probabilities to construct an effective Ã
(Arora et al., 2006; Candès and Tao, 2010; Drineas and Zouzias, 2011; Achlioptas et al.,
2013; Chen et al., 2014; Gupta and Sidford, 2018). Finding such a matrix Ã can not only
be used to accelerate matrix operations (Drineas et al., 2006; Mahoney, 2011; Gupta and
Sidford, 2018; Li et al., 2023), but also has broad applications in recovering data with
missing features, and preserving privacy when the data cannot be fully observed (Kundu
et al., 2017).

In this study, we implement the matrix sparsification via the Poisson sampling frame-
work following the recent work of Braverman et al. (2021). Poisson sampling looks at
each element and determines whether to include it in the subsample according to a specific
probability independently. Compared to the other commonly used subsampling technique,
sampling with replacement, Poisson sampling has a higher approximation accuracy in some
situations and is more convenient to implement in distributed systems; see Wang and Zou
(2021) for a comprehensive comparison.

The key to success is how to construct an effective K̃ that leads to an asymptotically
unbiased solution with a relatively small variance. To achieve the goal, we develop sam-
pling probabilities based on the idea behind importance sampling, which is widely used for
variance-reduction in numerical integration (Liu, 1996, 2008). The importance sampling
technique can be described as follows: to approximate the summation µ =

∑N
i=1 fi with

fi ≥ 0, we assign each i ∈ [N ] a probability qi ≥ 0 such that
∑N

i=1 qi = 1, and then sample
a subset of size s(< N), {it}st=1, from [N ] based on the probabilities {qi}Ni=1. The summa-
tion then can be approximated by µ ≈

∑s
t=1 fit/(sqit). Kahn and Marshall (1953) showed

when fi’s are known, the optimal sampling probability qi in terms of variance-reduction
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is proportional to fi (Owen, 2013, Chap. 9). Despite the effectiveness, such a strategy is
not feasible when the values of fi are unknown or computationally expensive. Instead, a
popular surrogate is using a proper upper bound of fi, denoted by q′i (i ∈ [N ]), as the
(un-normalized) sampling probability, such that a higher value of fi is associated with a
larger value of q′i (Owen, 2013; Zhao and Zhang, 2015; Katharopoulos and Fleuret, 2018).

Following this line of thinking, we reveal a natural upper bound for the elements in the
unknown optimal transport plan, and such an upper bound could be used to construct the
sampling probability.

3.2 Importance Sparsification for OT Problems

Recall that our goal is to approximate the entropic OT “distance”1

OTε(a, b) = 〈T∗ε,C〉 − εH(T∗ε), (6)

where C is a given cost matrix and T∗ε is the unique solution to (2). To accelerate the
Sinkhorn algorithm (i.e., Algorithm 1, illustrated in the left panel of Fig. 1), we propose to
construct a sparse sketch K̃ from K, as shown in the right panel of Fig. 1, and compute
sparse matrix-vector multiplications, i.e., K̃v and K̃>u, in each iteration. According to
the principle of Poisson sampling, the K̃ is formulated as follows: given a subsampling
parameter s < n2 and a set of sampling probabilities {pij}(i,j)∈[n]×[n] such that

∑
i,j pij = 1,

we construct K̃ by selecting and rescaling a small fraction of elements from K and zeroing
out the remaining elements, i.e.,

K̃ij =

{
Kij/p

∗
ij with prob. p∗ij = min (1, spij)

0 otherwise.
(7)

The rescaling factor p∗ij ensures that the sparsified kernel matrix K̃ is unbiased w.r.t. K.

Note that E{nnz(K̃)} =
∑

i,j p
∗
ij ≤ s

∑
i,j pij = s, where nnz(·) denotes the number of

non-zero elements. Such an inequality indicates that s is an upper bound of the expected
number of non-zero elements in K̃.

Consider the sampling probabilities pij . Note that the transportation loss in (6) can be
written as a summation

〈T∗ε,C〉 =
∑
i,j

(T ∗ε )ijCij . (8)

According to (3), T∗ε and K enjoy the same sparsity structure, that is, (T ∗ε )ij = 0 if
Kij = 0, as shown in Fig. 1. Thus, sampling elements from K is equivalent to sampling the
corresponding terms from the summation (8). Following the idea of importance sampling,
the optimal sampling probability p+

ij for Kij should be proportional to (T ∗ε )ijCij from the

perspective of variance-reduction. However, (T ∗ε )ij is unknown beforehand, and thus p+
ij is

impractical. Fortunately, there exists a natural upper bound for such a sampling probability.
Based on the marginal constraints on T∗ε, we have (T ∗ε )ij ≤ ai and (T ∗ε )ij ≤ bj . Moreover,

1. Considering its distance-like properties, we employ the term “distance” for terminological consistency,
despite the fact that the (entropic) OT or UOT distance is not a proper distance.
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Figure 1: An illustration of the Sinkhorn algorithm (Left panel) and our Spar-Sink method
(Right panel). The non-zero elements of each matrix are labeled with colors.

we focus on the general scenario where the ground cost between supports is bounded, i.e.,
Cij ≤ c0 for some constant c0 > 0. Therefore, we have the upper bound

(T ∗ε )ijCij ≤ c0

√
aibj .

Such an inequality motivates us to use the sampling probability

pij =

√
aibj∑

1≤i,j≤n
√
aibj

, 1 ≤ i, j ≤ n. (9)

Algorithm 3 summarizes the proposed algorithm for OT problems.

Algorithm 3 Spar-Sink algorithm for OT

1: Input: a, b ∈ Rn+, K ∈ Rn×n+ , 0 < s < n2, ε, δ > 0

2: Construct K̃ according to (7) and (9)
3: Compute T̃∗ε = SinkhornOT(K̃,a, b, δ) by using Algorithm 1

4: Output: ÕTε(a, b) = 〈T̃∗ε,C〉 − εH(T̃∗ε)

3.3 Importance Sparsification for UOT Problems

For unbalanced problems, we aim to approximate the entropic UOT distance

UOTλ,ε(a, b) = 〈T∗λ,ε,C〉+ λKL(T∗λ,ε1n‖a) + λKL(T∗>λ,ε1n‖b)− εH(T∗λ,ε), (10)

where T∗λ,ε is the unique solution to (5). Again, we define u∗,v∗ as the convergent scaling
factors in Algorithm 2, such that T∗λ,ε = diag(u∗)K diag(v∗).

Similar to the former subsection, we apply the element-wise Poisson sampling to get an
unbiased sparsification of K. The formulation of K̃ is the same as the one in (7); however,
the marginal constraints no longer hold, and thus the sampling probability differs.

Recall that our goal is to find an upper bound of (T ∗λ,ε)ijCij . According to the iteration

steps in Algorithm 2, i.e., (u∗i )
(λ+ε)/λ(

∑n
j=1Kijv

∗
j ) = ai and (v∗j )

(λ+ε)/λ(
∑n

i=1Kiju
∗
i ) = bj ,

we have

(u∗i )
λ+ε
λ Kijv

∗
j ≤ ai, u∗iKij(v

∗
j )

λ+ε
λ ≤ bj ⇒ (u∗i )

2λ+ε
λ K2

ij(v
∗
j )

2λ+ε
λ ≤ aibj
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because scaling factors u∗,v∗ are non-negative. This follows that

(
T ∗λ,ε

)
ij

= u∗iKijv
∗
j ≤ (aibj)

λ
2λ+ε K

ε
2λ+ε

ij .

Under the scenario that Cij ≤ c0, such an upper bound motivates us to sample with the
probability

pij =
(aibj)

λ
2λ+εK

ε
2λ+ε

ij∑
1≤i,j≤n(aibj)

λ
2λ+εK

ε
2λ+ε

ij

, 1 ≤ i, j ≤ n. (11)

Note that when λ→∞, the sampling probability pij defined by (11) degenerates to the one
defined in (9). This is consistent with the fact that Algorithm 2 degenerates to Algorithm 1
when λ→∞. Algorithm 4 summarizes the proposed algorithm for UOT problems.

Algorithm 4 Spar-Sink algorithm for UOT

1: Input: a, b ∈ Rn+, K ∈ Rn×n+ , 0 < s < n2, λ, ε, δ > 0

2: Construct K̃ according to (7) and (11)
3: Compute T̃∗λ,ε = SinkhornUOT(K̃,a, b, λ, ε, δ) by using Algorithm 2

4: Output: ŨOTλ,ε(a, b) = 〈T̃∗λ,ε,C〉+ λKL(T̃∗λ,ε1n‖a) + λKL(T̃∗>λ,ε1n‖b)− εH(T̃∗λ,ε)

In this study, we further extend the Spar-Sink approach to approximate Wasserstein
barycenters, by noticing that our importance sparsification mechanism is also applicable for
accelerating the iterative Bregman projection algorithm (Benamou et al., 2015). Details for
this extension are provided in the Appendix.

4. Theoretical Results

This section shows that the proposed estimators w.r.t. entropic OT and UOT distances are
consistent under certain regularity conditions. All the proofs are detailed in the Appendix.
Without loss of generality, we assume the supports of a and b are identical2 and ε is
relatively small. Then, the cost matrix C is symmetric, and the resulting kernel matrix
K = exp(−C/ε) is positive definite.

Theorem 1 Under the regularity conditions (i) ‖K‖2 ≥ nα/c1 for constants 1/2 < α ≤ 1
and c1 > 0, and the condition number of K is bounded by c2 > 0, (ii) p∗ij ≥ c3s/n

2 for

c3 > 0, and (iii) s ≥ c4n
3−2α log4(2n) for c4 = 8/(c3 log4(1 + ε)) and ε > 0, as n→∞, the

following result holds with probability approaching one that

ÕTε(a, b) ≤ OTε(a, b) + c5ε
√
n3−2α/s, (12)

where c5 > 0 is a constant depending on c1, c2, c3, and c4 only.

2. This is because if a and b have two non-overlapping supports, denoted by {xi}ni=1 and {yi}ni=1, re-
spectively, one can construct the measures ã, b̃ ∈ ∆2n, such that ã = (a1, . . . , an, 0, . . . , 0), b̃ =
(0, . . . , 0, b1, . . . , bn). The measures ã and b̃ thus share the same support {x1, . . . ,xn,y1, . . . ,yn}.

10



Importance Sparsification for Sinkhorn Algorithm

We discuss the regularity conditions in Theorem 1. Condition (i) is naturally established
when ε is relatively small. Indeed, non-diagonal entries of K go to zero quickly as the cost
or distance increases, thus yielding a numerically sparse kernel matrix with a diagonal-like
structure. Condition (ii) requires pij to be of the order O(1/n2), which can always be
satisfied by combining the proposed sampling probability and uniform sampling probability
linearly. Such a shrinkage strategy is common in subsampling literature, and we refer to
Ma et al. (2015) and Yu et al. (2022) for more discussion. Condition (iii) implies that the
subsample size should be large enough, especially when the signal in K is weak (i.e., α is
small). Under the condition (iii), the upper bound of approximation error in (12) tends

to zero in probability, which leads to the consistency of ÕTε(a, b) w.r.t. the entropic OT
distance. Moreover, consider a general case that ‖K‖2 = O(n), i.e., α = 1, condition (iii)
indicates us to select s = Õ(n) elements to construct the sparse sketch.

To analyze the UOT problem, we first normalize the kernel matrix K such that 1>nK1n/n
2

are bounded by 1/4. This requirement can be naturally satisfied by rescaling the optimiza-
tion problem (10) because 1>nK1n/n

2 ≤ 1. Then, the following result holds.

Theorem 2 Suppose the regularity conditions (i)—(iii) in Theorem 1 hold. Also suppose
that (iv) ε/λ ≤ c6 and λ ≤ c7n

−c6 for some constants c6, c7 > 0, and (v) a>1n + b>1n ≤
ε/(2c7). As n→∞, the following result holds with probability approaching one that

ŨOTλ,ε(a, b) ≤ UOTλ,ε(a, b) + c8ε
√
n3−2α/s, (13)

where c8 > 0 is a constant depending on c1, c2, c3, and c4 only.

Consider the additional conditions in Theorem 2. Condition (iv) naturally holds when
λ = o(1) and ε = O(λ). Condition (v) can also be satisfied by rescaling the finite measures.

Theorem 2 shows the consistency of ŨOTλ,ε(a, b) w.r.t. the entropic UOT distance, and

also requires s to be at least of the order Õ(n).
The following theorem shows that the proposed Spar-Sink algorithm has the same

number of iteration bound as the classical Sinkhorn algorithm up to a constant, for both
OT and UOT problems. This result is a straightforward extension of the iteration bounds
presented in Altschuler et al. (2017) and Pham et al. (2020).

Theorem 3 Suppose the Sinkhorn algorithm and Spar-Sink algorithm have the same set-
tings of parameters. Under the conditions of Theorem 1 (resp. Theorem 2), both Algorithm 1
and Algorithm 3 (resp. Algorithm 2 and Algorithm 4) converge approximately within the
same order of iterations in probability.

5. Simulations

In this section, we evaluate the performance of our proposed method (Spar-Sink) in both
OT and UOT problems using synthetic data sets. We compare Spar-Sink with state-of-
the-art variants of Sinkhorn regarding approximation accuracy and computational time,
including: (i) Greenkhorn (Altschuler et al., 2017); (ii) Screenkhorn (Alaya et al.,
2019); (iii) Nys-Sink (Altschuler et al., 2019); (iv) the naive random element-wise subsam-
pling method in the Sinkhorn algorithm (Rand-Sink), which is similar to the proposed

11
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Spar-Sink method, except that the sampling probabilities for all the elements are equal to
each other.

We set the stopping threshold δ = 10−6 for all the algorithms considered in the exper-
iments. The maximum number of iterations is set to be 5n for Greenkhorn and to be
103 for all other methods. The decimation factor in Screenkhorn is taken as 3. Other
parameters are set by default according to the Python Optimal Transport toolbox (Flamary
et al., 2021). All experiments are implemented on a server with 251GB RAM, 64 cores In-
tel(R) Xeon(R) Gold 5218 CPU and 4 GeForce RTX 3090 GPU. The implementation code
is available at this link: https://github.com/Mengyu8042/Spar-Sink.

5.1 Approximation Performance

For the OT problem, the goal is to estimate the entropic OT distance between two empirical
probability measures a, b ∈ ∆n−1, i.e., OTε(a, b) defined in (2). These two measures share
the same support points {xi}ni=1, where xi ∈ Rd, n = 103 and d ∈ {5, 10, 20, 50}. We use
the squared Euclidean cost matrix C such that Cij = ‖xi − xj‖22 for 1 ≤ i, j ≤ n, and we
take ε ∈ {10−1, 10−2, 10−3}. In addition, we consider three scenarios for generating a, b and
{xi}ni=1 as follows:

C1. a, b are empirical Gaussian distributions N(1
3 ,

1
20) and N(1

2 ,
1
20), respectively; xi’s are

generated from multivariate uniform distribution over (0, 1)d, i.e., xi ∼ U(0, 1)d;

C2. a, b are same to those in C1; xi’s are generated from multivariate Gaussian distribu-
tion, i.e., xi ∼ N(0d,Σ) with Σjk = 0.5|j−k| for (j, k) ∈ [d]× [d];

C3. a, b are empirical t-distributions with 5 degrees of freedom t5(1
3 ,

1
20) and t5(1

2 ,
1
20),

respectively; xi’s are same to those in C1.

We first compare the subsampling-based approaches: Nys-Sink, Rand-Sink, and Spar-
Sink (i.e., Algorithm 3). For the Rand-Sink and Spar-Sink methods, we set the expected
subsample size s = {2, 22, 23, 24} × s0(n) with s0(n) = 10−3n log4(n), where s0(n) is set in
the light of Theorem 1. For a fair comparison, we select r = ds/ne columns in K for the
Nys-Sink approach, such that the selected elements for the subsampling-based methods
are roughly at the same size. To compare the approximation performance, we calculate the
empirical relative mean absolute error (RMAE) for each estimator based on 100 replications,
i.e.,

RMAE(OT) =
1

100

100∑
i=1

|ÕT
(i)

ε −OT
(i)
ε |

OT
(i)
ε

,

where ÕT
(i)

ε represents the estimator in the ith replication, and OT
(i)
ε is calculated using

the classical Sinkhorn algorithm (i.e., Algorithm 1).

The results of RMAE(OT) versus different subsample sizes s are shown in Fig. 2. From
Fig. 2, we observe that all the estimators result in smaller RMAE(OT) as s increases, and the
proposed Spar-Sink method consistently outperforms the competitors. We also observe
that Spar-Sink decreases faster than others in most cases, which indicates the proposed
method has a relatively high convergence rate.

12
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Figure 2: Comparison of subsampling-based methods w.r.t. RMAE(OT) versus increasing s
(in log-log scale). Each row represents a different data generation pattern (C1—
C3), and each column represents a different ε. Different methods are marked by
different colors, respectively, and each line type represents a different dimension
d. Vertical bars are the standard errors.

For the UOT problem shown in (5), we set the total mass of a and b to be 5 and 3,
respectively. The regularization parameters are set to be ε = 0.1 and λ = 0.1. Other choices
of parameters lead to similar results and are relegated to Appendix. Empirical results show
the performance of the proposed method is robust to these parameters. The goal is to
approximate the Wasserstein-Fisher-Rao distance, where the cost function is defined as
Cij = − log

{
cos2

+ (dij/(2η))
}

with Euclidean distance dij = ‖xi − xj‖2. Recall that the
parameter η controls the sparsity level of the kernel matrix K, and a smaller η is associated
with a sparser K. We take different values of η such that there are around 70%, 50%,
and 30% non-zero elements in K, and these scenarios are denoted by R1, R2, and R3,
respectively. Other settings are the same as those in OT problems.

For comparison, we calculate the empirical RMAE of approximating UOTλ,ε(a, b) based
on 100 replications, i.e.,

RMAE(UOT) =
1

100

100∑
i=1

|ŨOT
(i)

λ,ε −UOT
(i)
λ,ε|

UOT
(i)
λ,ε

,

where ŨOT
(i)

λ,ε represents the estimator in the ith replication, and UOT
(i)
λ,ε is calculated using

the unbalanced Sinkhorn algorithm (i.e., Algorithm 2). The results of RMAE(UOT) versus
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Figure 3: Comparison of subsampling-based methods w.r.t. RMAE(UOT) versus increasing
s (in log-log scale). Each row represents a different data generation pattern (C1—
C3), and each column represents a different sparsity ratio (R1—R3). Different
methods are marked by different colors, respectively, and each line type represents
a different dimension d. Vertical bars are the standard errors.

different s are shown in Fig. 3, from which we observe that RMAE(UOT) of both Rand-Sink
and Nys-Sink methods decrease slowly with the increase of s, while Spar-Sink converges
much faster. In general, the proposed Spar-Sink significantly outperforms the competitors
under all circumstances. Such an observation indicates the proposed algorithm can select
informative elements for the Sinkhorn algorithm, resulting in an asymptotically unbiased
result with a relatively small estimation variance.

We now include the methods without subsampling, Greenkhorn and Screenkhorn,
to comparison and fix the subsample parameter as s = 8s0(n) for above subsampling-based
approaches. We show their RMAE(OT) versus increasing sample size n under C1 in Fig. 4,
where n ∈ {22, 23, . . . , 27}×102. We omit the result of Screenkhorn in the case of ε = 10−3

as it fails to output a feasible solution when ε is relatively small in our setup. From Fig. 4,
we observe the proposed Spar-Sink method yields comparable errors to Greenkhorn and
Screenkhorn for a relatively large ε, and its advantage turns prominent when ε becomes
small. Additionally, the approximation error of Spar-Sink converges asymptotically as n
increases, which is consistent with Theorem 1. We also show the convergence of RMAE(UOT)

versus increasing n in the Appendix, and the results are in good agreement with Theorem 2.

14



Importance Sparsification for Sinkhorn Algorithm

Figure 4: Comparison of different methods w.r.t. RMAE(OT) versus log10(n) under C1.
Each subfigure represents a different ε, and each color marks a specific method.
Vertical bars are the standard errors.

(a) CPU time (in seconds) for estimating
the Wasserstein distance under C1.

(b) CPU time (in seconds) for estimat-
ing the WFR distance under C1, R2.

Figure 5: Comparison of different methods w.r.t. computational time. Different methods
are marked by different colors. Each line type represents a different value of ε.

5.2 Computational Cost and CPU Time

Consider the computational cost of Algorithm 3. Constructing the sketch K̃ requires O(n2)
time, and such a step can be naturally paralleled. The matrix K̃ contains at most s
non-zero elements, and thus calculating K̃v and K̃>u takes O(s) time. Therefore, the
overall computational cost of Algorithm 3 is at the order of O(n2 + Ls), which becomes
O(n2 + Ln) when s = Õ(n). Similarly, the computational cost of Algorithm 4 is at the
order of O(nnz(K) + Ln), where nnz(·) denotes the number of non-zero elements.

We compare the CPU time of the classical Sinkhorn algorithm and the variants of
Sinkhorn for both OT and UOT problems in Fig. 5. The Rand-Sink method has similar
computing time to Spar-Sink and is omitted for clarity. We choose s = 8s0(n) for Spar-
Sink and r = ds/ne for Nys-Sink with n ∈ {23, 24, . . . , 28} × 102.

In Fig. 5, we observe that Spar-Sink speeds up the Sinkhorn algorithm hundreds of
times and also computes much faster than Greenkhorn and Screenkhorn, especially
when n is large enough. We also observe that a smaller value of ε leads to a longer CPU time
for the Sinkhorn algorithm. Such an observation is consistent with the results in Altschuler
et al. (2017) and Pham et al. (2020), which showed the number of iterations for Sinkhorn
increases as ε decreases. In contrast, the effect of ε on the CPU time is less significant
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Figure 6: Echocardiogram videos data set visualization. Two basic periods, diastole and
systole, form a cardiac cycle.

for Spar-Sink. These observations indicate that the proposed algorithms are suitable for
dealing with large-scale OT and UOT problems.

6. Echocardiogram Analysis

Echocardiography has been widely used to visualize myocardial motion due to its fast
image acquisition, relatively low cost, and no side effects. Previous study has developed
various echocardiology-based techniques to determine the ejection fraction (Ouyang et al.,
2020), prognosticate cardiovascular disease (Zhang et al., 2021b), screen the cardiotoxicity
(Bouhlel et al., 2020), among others. One fundamental task in echocardiogram data analysis
is cardiac circle identification, which is necessary and crucial for downstream analysis. The
cardiac cycle is the performance of the human heart from the beginning of one heartbeat
to the beginning of the next. A single cycle consists of two basic periods, diastole and
systole (Fye, 2015). Owing to the variation in cardiac activity caused by changes in loading
and cardiac conditions, it is recommended to consider multiple cycles rather than only one
representative cycle to perform measurements. However, this is not always done in clinical
practice, given the tedious and laborious nature of human labeling. To obviate the heavy
work for cardiologists, we propose an optimal transport method to automatically identify
and visualize multiple cardiac cycles.

We consider an echocardiogram videos data set (Ouyang et al., 2020) containing 10,030
apical-four-chamber echocardiogram videos, each of which ranges from 24 to 1,002 frames
with an average of 51 frames per second. A single frame is a gray-scale image of 112× 112
pixels. Each video is annotated with two separate time points representing the end-systole
(ES) and the end-diastole (ED). Figure 6 gives a clip example of the echocardiogram videos
data set.

We propose identifying cardiac cycles using pairwise distances between the frames in
an echocardiogram video. In particular, we use the normalized pixel gray levels of each
frame as a mass distribution supported on R2, such that a lighter color is associated with a
larger mass. We then use the Wasserstein-Fisher-Rao distance to measure the dissimilarity
between each pair of frames. Compared to the Wasserstein distance, the WFR distance
prevents long-range mass transportation and thus can achieve a balance between global
transportation and local truncation. Intuitively, such a distance is more consistent with
the characteristics of myocardial motion that the cardiac muscle would not move largely.
To identify the cardiac cycles of an individual, we first compute the pairwise WFR dis-
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Figure 7: (From left to right) Each column is associated with an individual corresponding
to a specific state of cardiac function, i.e., health, heart failure, and arrhythmia,
respectively. (Top row) Input echocardiogram videos. (Middle row) Normalized
WFR distance matrices computed by the Spar-Sink algorithm. (Bottom row)
MDS in 2D: each point corresponds to a frame and is colored by the corresponding
time iteration.

tance matrix of his/her video, and then conduct a multidimensional scaling (MDS) for the
distance matrix. However, computing the full WFR distance matrix using the classical
Sinkhorn algorithm for a video of 200 frames requires nearly a hundred days. To alleviate
the computational burden, we sample every other two frames (sampling period of 3) and
then use our proposed Spar-Sink algorithm to approximate the pairwise WFR distances
of the downsampled videos. The parameters are set to be ε = 0.01, λ = 1, η = 15, and
s = 8s0(n). Empirical results show the performance is not sensitive to these parameters.
Our CPU implementation requires only a few hours to calculate the distance matrix for one
video. Further acceleration using GPU implementation is left for future research.

Figure 7 visualizes the distance matrices and the MDS results w.r.t. three individuals,
respectively. Each dot in the MDS result represents a single frame, and the time points w.r.t.
frames are denoted by different colors. By connecting the dots sequentially according to the
time points, the cyclical nature of cardiac activities is clearly recovered. Moreover, we can
make a preliminary assessment of one’s cardiac function from the pattern of these cardiac
circles. For instance, by comparing with the first individual from the control group, we can
see that the circle size differs in different cycles for the third individual with arrhythmia.

Beyond the intuitive visualization aforementioned, we are also interested in the accuracy
of cycle prediction. Therefore, we consider the task of ED time point prediction. Specifically,
for each video, we use the manually annotated ES and ED time points, tES and tED, as the
ground truth, and we aim to predict tED using tES . Intuitively, in one cardiac cycle, the
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(a) Original scale (n = 112× 112).

s = s0(n) s = 2s0(n) s = 22s0(n) s = 23s0(n) n2

Nys-Sink
Error 0.49±0.23 0.44±0.27 0.31±0.28 0.32±0.22 -
Time 370.30 522.37 662.71 831.01 -

Robust-NysSink
Error 0.47±0.34 0.41±0.25 0.34±0.18 0.33±0.17 -
Time 376.01 509.58 664.50 838.61 -

Rand-Sink
Error 0.21±0.14 0.13±0.08 0.11±0.08 0.09±0.06 -
Time 181.26 226.32 251.68 314.56 -

Spar-Sink
Error 0.09±0.06 0.07±0.05 0.06±0.05 0.06±0.04 -
Time 210.69 262.89 302.9 357.46 -

Sinkhorn
Error - - - - 0.06±0.05

Time - - - - 15649.31

(b) Mean-pooling with 2× 2 filters and stride 2 (n = 56× 56).

s = s0(n) s = 2s0(n) s = 22s0(n) s = 23s0(n) n2

Nys-Sink
Error 0.78±0.21 0.64±0.26 0.55±0.27 0.45±0.26 -
Time 40.51 46.97 51.46 59.54 -

Robust-NysSink
Error 0.79±0.31 0.61±0.27 0.50±0.24 0.43±0.22 -
Time 40.75 46.11 50.08 56.20 -

Rand-Sink
Error 0.38±0.29 0.35±0.32 0.28±0.27 0.16±0.13 -
Time 22.56 23.73 25.38 27.45 -

Spar-Sink
Error 0.30±0.21 0.14±0.11 0.11±0.09 0.11±0.09 -
Time 24.34 27.24 28.59 32.43 -

Sinkhorn
Error - - - - 0.11±0.10

Time - - - - 668.81

Table 1: Average errors (with standard deviations presented in footnotes) and CPU time
(in seconds) for predicting the ED time point.

ED frame is the one that is most dissimilar to the ES frame. Following this line of thinking,
we calculate the WFR distances between the ES frame and the other frames, respectively,
within one cardiac cycle, and the predicted ED frame is the one that yields the largest WFR
distance. After obtaining the prediction t̂ED, we define its error as

Error =

∣∣∣∣1− t̂ED − tES
tED − tES

∣∣∣∣ .
A smaller error implies the prediction is closer to the ground truth.

We calculate the WFR distances using the Sinkhorn algorithm, as well as three sub-
sampling algorithms, i.e., Rand-Sink, Nys-Sink, and the proposed Spar-Sink algorithm,
under different subsample sizes. Considering the potential outliers in real data, we also
include a robust variant of Nys-Sink (Robust-NysSink) proposed by Le et al. (2021) for
comparison. The results for 100 randomly selected videos are reported in Table 6. From
panel (a) in Table 6, we observe that all these subsampling algorithms yield significantly
less CPU time than the classical Sinkhorn algorithm. In addition, Spar-Sink is as accurate
as Sinkhorn, while (Robust-)Nys-Sink and Rand-Sink yield much larger errors.
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Another interesting question is how the proposed algorithm compares with pooling tech-
niques, which are widely used in computer vision to accelerate computation (Boureau et al.,
2010; Gong et al., 2014; Xu and Cheng, 2022). To answer this question, we reduce the size
of the images from 112× 112 to 56× 56 using mean-pooling with 2× 2 filters and stride 2.
We then compute the WFR distances on these pooled images. The results are provided in
panel (b) of Table 6, from which we observe that all the algorithms require significantly less
CPU time for the pooled images; however, the error increases. Again, the proposed Spar-
Sink algorithm is the only one that yields the same error as the Sinkhorn algorithm. We
also observe that compared to the Sinkhorn algorithm for pooled images (i.e., Sinkhorn in
panel b), the Spar-Sink for original images (i.e., Spar-Sink in panel a) requires a shorter
CPU time and yields more minor errors. Such an observation indicates that the proposed
algorithm could be a better alternative for pooling strategy when calculating transport dis-
tances between large-scale images. In addition, one can also combine the pooling strategy
with the proposed algorithm to further reduce CPU time without loss of accuracy.

Besides the application in echocardiogram analysis, we evaluate the Spar-Sink approach
in two common machine learning applications: color transfer and generative modeling. The
experimental results are presented in the Appendix, which provides additional evidence of
the effectiveness of our proposed method.

7. Concluding Remarks

Realizing the natural upper bounds for unknown transport plans in (unbalanced) optimal
transport problems, we propose a novel importance sparsification method to accelerate the
Sinkhorn algorithm, approximating entropic OT and UOT distances in a unified framework.
Theoretically, we show the consistency of proposed estimators under mild regularity condi-
tions. Experiments on various synthetic data sets demonstrate the accuracy and efficiency
of the proposed Spar-Sink approach. We also consider an echocardiogram video data set
to illustrate its application in cardiac cycle identification, which shows our method offers a
great trade-off between speed and accuracy.

Inspired by the work of Xie et al. (2020), Spar-Sink can be combined with the inex-
act proximal point method to approximate unregularized OT and UOT distances; further
analyses are left to our future work. To handle potential outliers in practical applications,
we also plan to extend the Spar-Sink method to the robust optimal transport framework
(Le et al., 2021) in the future.
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Appendix A. Importance Sparsification for Wasserstein Barycenters

In this section, we extend the Spar-Sink method to approximate fixed-support Wasserstein
barycenters, which have been widely used in the machine learning community (Rabin et al.,
2011; Benamou et al., 2015; Montesuma and Mboula, 2021).

A.1 Wasserstein Barycenters

Given a set of probability measures {b1, . . . , bm} ⊂ ∆n−1 and weights w ∈ ∆m−1, a Wasser-
stein barycenter is computed by

min
q∈∆n−1

m∑
k=1

wk OT(q, bk), (14)

where OT(q, bk) is defined in (1), associated with a prespecified distance matrix Ck ∈ Rn×n+

of the power p, for k ∈ [m]. Following the success of Cuturi (2013), the solution to (14) can
also be approximated via entropic smoothing (Cuturi and Doucet, 2014); that is, replacing
OT(·) with OTε(·) defined in (2) and leading to

q∗ε := arg min
q∈∆n−1

m∑
k=1

wk OTε(q, bk). (15)

By introducing kernel matrices Kk := exp(−Ck/ε), the problem (15) can be rewritten as a
weighted KL projection problem,

min
T1,...,Tm∈Rn×n+

m∑
k=1

wkεKL(Tk‖Kk) s.t. T>k 1n = bk, k ∈ [m] and T11n = · · · = Tm1n.

Here, the barycenter q is implied in the row marginals of transport plans as Tk1n = q for
k ∈ [m]. The authors of Benamou et al. (2015) proposed an iterative Bregman projection
(IBP) algorithm, shown in Algorithm 5, to solve (15) effectively. In Algorithm 5, the
notations � and � represent element-wise multiplication and division, respectively.

Algorithm 5 IBP({Kk}mk=1, {bk}mk=1,w, δ)

1: Initialize: t← 0; q(0) ← 1n/n;u
(0)
k ← 1n, for k ∈ [m]

2: repeat
3: t← t+ 1
4: for k = 1 to m: v

(t)
k ← bk �K>k u

(t−1)
k ; u

(t)
k ← q(t−1) �Kkv

(t)
k

5: q(t) ← (K1v
(t)
1 )w1 � · · · � (Kmv

(t)
m )wm

6: until ‖q(t) − q(t−1)‖1 ≤ δ
7: Output: q(t)

A.2 Proposed Algorithm

As a generalized Sinkhorn algorithm, the IBP algorithm needs to compute matrix-vector
multiplications w.r.t. K1, . . . ,Km at each iteration. Analogous to the idea of Spar-Sink,
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we approximate the dense kernel matrices with sparse sketches K̃1, . . . , K̃m and propose a
new Spar-IBP algorithm.

Recall that K̃k is defined by

K̃k,ij =

{
Kk,ij/p

∗
k,ij with prob. p∗k,ij = min (1, spk,ij)

0 otherwise.
(16)

According to the principle of importance sampling, the sampling probability pk,ij should

be proportional to
√
q∗ε,ibk,j . Unfortunately, such a probability depends on the unknown

barycenter. To bypass the obstacle, we propose to replace the unknown q∗ε with the initial
value q(0) = 1n/n, which implies the elements in the same column of K̃k have the equal
probability to be selected. Such a procedure is reasonable considering it is common that
the prior information of the barycenter is inaccessible.

Algorithm 6 Spar-IBP algorithm for Wasserstein barycenters

1: Input: {Kk}mk=1 ⊂ Rn×n+ , {bk}mk=1 ⊂ ∆n−1, w ∈ ∆m−1, 0 < s < n2, δ > 0

2: For k ∈ [m], construct K̃k according to (16) with

pk,ij =

√
bk,j

n
∑n

j=1

√
bk,j

, 1 ≤ i, j ≤ n

3: Compute q̃∗ε = IBP({K̃k}mk=1, {bk}mk=1,w, δ) by using Algorithm 5
4: Output: q̃∗ε

Algorithm 6 details the proposed Spar-IBP algorithm for approximating Wasserstein
barycenters. Compared to Algorithm 5, it reduces the computational complexity of each
iteration from O(mn2) to O(ms).

Appendix B. Technical Details

In this appendix, we provide technical details of the theoretical results stated within the
manuscript.

B.1 Proof of Theorem 1

Recall that Sinkhorn algorithm aims to solve the following optimization problem

T∗ε = min
T∈U(a,b)

〈T,C〉 − εH(T). (17)

The dual problem of (17) is

max
α∈Rn,β∈Rn

f(α,β) := a>α+ b>β − ε(eα/ε)>Keβ/ε + ε, (18)

where K = exp(−C/ε) is the kernel matrix, and α,β ∈ Rn are dual variables. As been
defined in Section 3.2, T̃∗ε is the sparsification counterpart to (17), and the corresponding
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dual problem becomes

max
α∈Rn,β∈Rn

f̃(α,β) := a>α+ b>β − ε(eα/ε)>K̃eβ/ε + ε, (19)

which replaces K in (18) with its sparse sketch K̃.
To prove the Theorem 1, we first introduce several lemmas.

Lemma 4 Suppose both K and K̃ are positive definite. Further suppose the condition
number of K and K̃ are bounded by c2 and c′2, respectively. Let (α∗,β∗) be the solution to
(18), and (ᾱ, β̄) be the solution to (19). It follows that

|f(α∗,β∗)− f(ᾱ, β̄)| ≤ ε

c2 + c′2

∣∣∣∣∣1− ‖K̃−K‖2
‖K‖2

∣∣∣∣∣
−1
 ‖K̃−K‖2

‖K‖2
, (20)

where ‖ · ‖2 denotes the spectral norm (i.e., the maximal singular value) of a matrix.

Proof First, we establish the following inequality:

|f(α∗,β∗)− f(ᾱ, β̄)| ≤ |f(α∗,β∗)− f̃(α∗,β∗)|+ |f̃(ᾱ, β̄)− f(ᾱ, β̄)|. (21)

By the definitions of α∗,β∗, ᾱ, β̄, it holds that

f̃(ᾱ, β̄) ≥ f̃(α∗,β∗), f(α∗,β∗) ≥ f(ᾱ, β̄).

We consider the following two cases:

Case 1. f(α∗,β∗) ≥ f̃(ᾱ, β̄);

Case 2. f(α∗,β∗) < f̃(ᾱ, β̄).

For Case 1, it holds that 0 ≤ f(α∗,β∗) − f̃(ᾱ, β̄) ≤ f(α∗,β∗) − f̃(α∗,β∗), and thus
|f(α∗,β∗) − f̃(ᾱ, β̄)| ≤ |f(α∗,β∗) − f̃(α∗,β∗)|, which leads to (21) by combining the
triangle inequality

|f(α∗,β∗)− f(ᾱ, β̄)| ≤ |f(α∗,β∗)− f̃(ᾱ, β̄)|+ |f̃(ᾱ, β̄)− f(ᾱ, β̄)|.

For Case 2, (i) when f(ᾱ, β̄) ≤ f̃(α∗,β∗), it holds that 0 ≤ f̃(α∗,β∗)−f(ᾱ, β̄) ≤ f̃(ᾱ, β̄)−
f(ᾱ, β̄), and thus |f̃(α∗,β∗) − f(ᾱ, β̄)| ≤ |f̃(ᾱ, β̄) − f(ᾱ, β̄)|, which leads to (21) by
combining the triangle inequality

|f(α∗,β∗)− f(ᾱ, β̄)| ≤ |f(α∗,β∗)− f̃(α∗,β∗)|+ |f̃(α∗,β∗)− f(ᾱ, β̄)|.

(ii) When f(ᾱ, β̄) > f̃(α∗,β∗), we have |f(α∗,β∗) − f(ᾱ, β̄)| ≤ |f(α∗,β∗) − f̃(α∗,β∗)|;
then (21) establishes because |f̃(ᾱ, β̄)− f(ᾱ, β̄)| ≥ 0.

Consequently, we conclude the inequality (21) by combining Cases 1 and 2.
Next, we provide an upper bound for the right-hand side of (21). Simple calculation

yields that

|f(α∗,β∗)− f̃(α∗,β∗)| =|ε〈eα∗/ε, (K̃−K)eβ
∗/ε〉|

=ε|tr{(eα∗/ε)>(K̃−K)K−1Keβ
∗/ε}|. (22)
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As (α∗,β∗) is the optimal solution to f(α,β), the first order condition implies that

tr{Keβ
∗/ε(eα

∗/ε)>} = (eα
∗/ε)>Keβ

∗/ε = 1.

Moreover, one can find that

‖(K̃−K)K−1‖2 ≤ ‖K̃−K‖2/λmin(K),

where λmin(K) is the minimal eigenvalue of K. For notation simplicity, denote G = (K̃ −
K)K−1 and H = Keβ

∗/ε(eα
∗/ε)>. Let hj be the jth column of H, and ej be the unit vector

with jth element being one. Simple linear algebra yields that

|tr(GH)| ≤
n∑
j=1

e>j |Ghj | ≤
n∑
j=1

‖G‖2‖hj‖2,

where the last equation comes from the Cauchy-Schwarz inequality. Also note that H is a
rank-one matrix; therefore, (22) can be bounded by

|f(α∗,β∗)− f̃(α∗,β∗)| ≤ ε‖K̃−K‖2|tr{Keβ
∗/ε(eα

∗/ε)>}|/λmin(K)

= ε‖K̃−K‖2/λmin(K)

≤ εc2‖K̃−K‖2/‖K‖2. (23)

Using the same procedure, we obtain that

|f(ᾱ, β̄)− f̃(ᾱ, β̄)| =|ε〈eᾱ/ε, (K̃−K)eβ̄/ε〉|

=ε|〈eᾱ/ε, (K̃−K)K̃−1K̃eβ̄/ε〉|

≤ε‖(K̃−K)K̃−1‖2|tr{K̃eβ̄/ε(eᾱ/ε)>}|. (24)

As (ᾱ, β̄) is the optimal solution to f̃(α,β), the first order condition implies that

tr{K̃eβ̄/ε(eᾱ/ε)>} = (eᾱ/ε)>K̃eβ̄/ε = 1.

Furthermore, simple calculation yields that

‖(K̃−K)K̃−1‖2 ≤ ‖K̃−K‖2/λmin(K̃)

≤ c′2‖K̃−K‖2/‖K̃‖2

= c′2
‖K̃−K‖2
‖K‖2

‖K‖2
‖K̃‖2

≤ c′2
‖K̃−K‖2
‖K‖2

‖K‖2
|‖K‖2 − ‖K̃−K‖2|

= c′2
‖K̃−K‖2
‖K‖2

∣∣∣∣∣1− ‖K̃−K‖2
‖K‖2

∣∣∣∣∣
−1

,
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where the last inequality comes from the triangle inequality. Therefore, (24) satisfies that

|f(ᾱ, β̄)− f̃(ᾱ, β̄)| ≤ εc′2
‖K̃−K‖2
‖K‖2

∣∣∣∣∣1− ‖K̃−K‖2
‖K‖2

∣∣∣∣∣
−1

. (25)

Combining (21), (23), and (25), the result follows.

Now we show that under some mild conditions, our subsampling procedure yields a
relatively small difference between K̃ and K.

Lemma 5 Suppose the regularity conditions (i)—(iii) in Theorem 1 hold. For any ε > 0
and n > 76, we have

P

‖K̃−K‖2
‖K‖2

≥ 2
√

2(2 + ε)c1

√
n3−2α

c3s

 < 2 exp

(
−16

ε4
log4(n)

)
. (26)

Proof By the definition of K, one can find that Kij ≤ 1 for any i, j = 1, . . . , n. Simple
calculation yields that

E
(
‖K‖−1

2 K̃ij

)
= ‖K‖−1

2 Kij ,

Var
(
‖K‖−1

2 K̃ij

)
<

K2
ij

p∗ij‖K‖22
≤ 1

p∗ij‖K‖22
≤ n2

c3s‖K‖22
.

Also note that ‖K‖−1
2 K̃ij lies between 0 and (p∗ij‖K‖2)−1 for any (i, j)th entry. Thus,

‖K‖−1
2 K̃ij takes the value in an interval of length not larger than L, with

L :=
n2

c3s‖K‖2
≤

√
n3−2α

2c3s
×

√
n2

c3s‖K‖22
×
√

2n

≤
(

log(1 + ε)

2 log(2n)

)2

×

√
n2

c3s‖K‖22
×
√

2n,

where L is defined according to the condition (ii), and the last inequality holds under the
condition (iii). Therefore, by applying Theorem 3.1 in Achlioptas and Mcsherry (2007) on
‖K‖−1

2 K̃, we have

P

(
‖K̃−K‖2
‖K‖2

≥ 2(2 + ε)

√
2n3

c3s‖K‖22

)
< 2 exp

(
−16

ε4
log4(n)

)
. (27)

Further, combining (27) with the condition (i) results in the inequality (26).

Finally, we prove the Theorem 1 in the manuscript.

Proof From Lemma 5, it is straightforward to see that ‖K‖−1
2 K̃→ ‖K‖−1

2 K in probability.

Thus, K̃ tends to be positive definite since K is a positive definite kernel matrix, and it
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holds that c′2 → c2. Note that n3−2α/s→ 0 as n→∞, it is easy to see that when n is large
enough, we have

c′
√
n3−2α/s ≤ 1/2 with c′ = 2

√
2(2 + ε)c1/

√
c3,

and this implies (1 + |1 − c′
√
n3−2α/s|−1) ≤ 3. Combining Lemmas 4 and 5, the result

follows.

B.2 Proof of Theorem 2

Now we focus on the entropy-regularized UOT problem, whose dual problem is

max
α∈Rn,β∈Rn

fu(α,β) := a>1n − λa>e−α/λ + b>1n − λb>e−β/λ − ε(eα/ε)>Keβ/ε. (28)

Let

max
α∈Rn,β∈Rn

f̃u(α,β) := a>1n − λa>e−α/λ + b>1n − λb>e−β/λ − ε(eα/ε)>K̃eβ/ε (29)

be the sparsification counterpart to (28), which replaces K in (28) with its sparse sketch
K̃. Apparently, it is the dual problem for the entropic UOT problem with kernel K̃. The
following lemma holds by similar procedures as in Lemma 4.

Lemma 6 Suppose the regularity conditions (iv) and (v) in Theorem 2 hold. Further sup-
pose both K and K̃ are positive definite, their condition numbers are respectively bounded
by c2 and c′2, and 1>n (K− K̃)1n/n

2 ≤ 1/4. Let (α∗,β∗) be the solution to (28), and (ᾱ, β̄)
be the solution to (29). It follows that

|fu(α∗,β∗)− fu(ᾱ, β̄)| ≤ ε

c2 + c′2

∣∣∣∣∣1− ‖K̃−K‖2
‖K‖2

∣∣∣∣∣
−1
 ‖K̃−K‖2

‖K‖2
.

Proof The proof is similar to that of Lemma 4. By the definitions of α∗,β∗, ᾱ, β̄ and the
triangle inequality, it holds that

|fu(α∗,β∗)− fu(ᾱ, β̄)| ≤ |fu(α∗,β∗)− f̃u(α∗,β∗)|+ |f̃u(ᾱ, β̄)− fu(ᾱ, β̄)|. (30)

For the first term in the right-hand side of (30), simple calculation yields that

|fu(α∗,β∗)− f̃u(α∗,β∗)| =|ε〈eα∗/ε, (K̃−K)eβ
∗/ε〉|

≤ε‖(K̃−K)‖2tr{Keβ
∗/ε(eα

∗/ε)>}/λmin(K). (31)

Considering that (α∗,β∗) is the optimal solution to (28), it holds that fu(α∗,β∗) ≥
fu(qn, qn) for qn = (−ε log(n), . . . ,−ε log(n))> ∈ Rn. That is to say

ε〈eα∗/ε,Keβ
∗/ε〉 ≤ λnc6a>1n + λnc6b>1n + ε1>nK1n/n

2
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by combining with the condition (iv), and this implies

〈eα∗/ε,Keβ
∗/ε〉 ≤ c7(a>1n + b>1n)/ε+ 1>nK1n/n

2 < 1. (32)

The last inequality in (32) comes from the condition (v). Therefore, we conclude that (31)
is bounded by εc2‖K̃−K‖2/‖K‖2.

Under the condition 1>n (K− K̃)1n/n
2 ≤ 1/4, we can further obtain that

〈eᾱ/ε, K̃eβ̄/ε〉 ≤ 1>n (K̃−K)1n/n
2 + 1>nK1n/n

2 + c7(a>1n + b>1n)/ε ≤ 1.

Thus, applying the same techniques to Lemma 4, we conclude that

|fu(ᾱ, β̄)− f̃u(ᾱ, β̄)| ≤ εc′2
‖K̃−K‖2
‖K‖2

∣∣∣∣∣1− ‖K̃−K‖2
‖K‖2

∣∣∣∣∣
−1

. (33)

Combining (30), (31), and (33) leads to the inequality in Lemma 6.

At last of this subsection, we provide the proof of Theorem 2.

Proof By Lemma 5, one can see that

‖K̃−K‖2 ≤ 2
√

2(2 + ε)

√
n3

c3s

holds in probability. It follows that

1>n (K− K̃)1n
n2

=
‖1>n (K− K̃)1n‖2

n2
(34)

≤ ‖K− K̃‖2‖1n‖22
n2

(35)

=
‖K− K̃‖2

n

≤ 2
√

2(2 + ε)

√
n

c3s
with probability approaching one,

where the equality in (34) comes from the fact that the spectral norm of a scalar in R
equals the scalar itself, and the inequality in (35) is by the sub-multiplicative property.
Then, it holds that 1>n (K − K̃)1n/n

2 = oP (1) according to the condition (iii), and this
implies 1>n (K− K̃)1n/n

2 ≤ 1/4 holds in probability. Hence, Theorem 2 is a direct result of
Lemmas 5 and 6.

B.3 Proof of Theorem 3

First, we provide a lemma that is used to establish the iteration bound for Algorithm 4,
i.e., Spar-Sink for UOT.
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Lemma 7 Suppose that (ᾱ, β̄) is the solution to (29). Under the conditions of Theorem 2,
the infinity norms of ᾱ and β̄ are bounded by

max
{
‖ᾱ‖∞, ‖β̄‖∞

}
≤ λR′.

Here, R′ = max{‖ log(a)‖∞, ‖ log(b)‖∞}+ log(n) + max{log(n) + c9, ‖C‖∞/ε}, where c9 is
a constant only depending on c3 and c4.

Proof This proof follows the proof of Lemma 3 in Pham et al. (2020). According to Lemma
1 in Pham et al. (2020), it holds that

ᾱi
λ

= log(ai)− log
(∑n

j=1
e(ᾱi+β̄j)/εK̃ij

)
. (36)

Denote S = {(i, j) ∈ [n] × [n]|K̃ij > 0} and Si = {j ∈ [n]|K̃ij > 0} for i ∈ [n]. By

introducing a matrix C̃ ∈ Rn×n with

C̃ij =

{
Cij + ε log(p∗ij) if (i, j) ∈ S
0 otherwise,

then (36) can be rewritten as

ᾱi
λ

= log(ai)− log
(∑

j∈Si
e(ᾱi+β̄j−C̃ij)/ε

)
,

which can be further reorganized as

ᾱi

(
1

λ
+

1

ε

)
= log(ai)− log

(∑
j∈Si

e(β̄j−C̃ij)/ε
)
. (37)

According to the properties of the log-sum-exp function, the second term in the right-hand
side of (37) has the lower bound

log
(∑

j∈Si
e(β̄j−C̃ij)/ε

)
≥ log(|Si|) + min

j∈Si

{
β̄j − C̃ij

ε

}
≥ −‖β̄‖∞

ε
− ‖C̃‖∞

ε
,

and it has the upper bound

log
(∑

j∈Si
e(β̄j−C̃ij)/ε

)
≤ log(|Si|) + max

j∈Si

{
β̄j − C̃ij

ε

}
≤ log(n) +

‖β̄‖∞
ε

+
‖C̃‖∞
ε

.

Combining these two bounds together yields that∣∣∣log
(∑

j∈Si
e(β̄j−C̃ij)/ε

)∣∣∣ ≤ log(n) +
‖β̄‖∞
ε

+
‖C̃‖∞
ε

.

Therefore, we have

|ᾱi|
(

1

λ
+

1

ε

)
≤ | log(ai)|+ log(n) +

‖β̄‖∞
ε

+
‖C̃‖∞
ε

. (38)
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By the definition of C̃ and conditions (ii)—(iii), we have

Cij − ε log(n/(c3c4)) ≤ C̃ij ≤ Cij for (i, j) ∈ S,

which follows that

‖C̃‖∞ ≤ max{‖C‖∞, ε log(n/(c3c4))}.

Hence, (38) can be further bounded by

|ᾱi|
(

1

λ
+

1

ε

)
≤ | log(ai)|+ log(n) +

‖β̄‖∞
ε

+ max

{
log(n)− log(c3c4),

‖C‖∞
ε

}
.

By choosing an index i such that |ᾱi| = ‖ᾱ‖∞ and noting the fact that | log(ai)| ≤
max{‖ log(a)‖∞, ‖ log(b)‖∞}, we have

‖ᾱ‖∞
(

1

λ
+

1

ε

)
≤ ‖β̄‖∞

ε
+R′.

Without loss of generality, assume that ‖ᾱ‖∞ ≥ ‖β̄‖∞. Then, the result in Lemma 7 fol-
lows.

Now, we prove the Theorem 3 in the manuscript.

Proof (I) We first show that Spar-Sink has the same order of iterations to Sinkhorn in
OT problems. Suppose L1 (resp. L2) represents the number of iterations in the Sinkhorn
algorithm (resp. Spar-Sink algorithm) such that ‖u(t) − u(t−1)‖1 + ‖v(t) − v(t−1)‖1 ≤ δ.
From Lemmas 2—4 and the proof of Theorem 2 in Altschuler et al. (2017), one can conclude
that L1 is bounded by

L1 ≤ 4δ−2(OTε(a, b)− f(0,0)) ≤ 4δ−2 log(q/l)

when Algorithm 1 is adopted, where q =
∑

i,jKij and l = mini,jKij .
Using the same techniques, we have

L2 ≤ 4δ−2(ÕTε(a, b)− f(0,0))

when Algorithm 3 is adopted. According to Theorem 1, we obtain that

ÕTε(a, b)− f(0,0) = OTε(a, b)− f(0,0) + r ≤ log(q/l) + r (39)

with r = ÕTε(a, b) − OTε(a, b) = oP (1) under the regularity conditions in Theorem 1.
Hence, we conclude that L2 ≤ O(δ−2 log(q/l)) in probability, which has the same order to
L1.

(II) Next, we focus on the UOT problems. Theorem 2 in Pham et al. (2020) shows that
when ε = ε/U and the number of iterations in the Sinkhorn algorithm achieves

L′1 := 1 +

(
λU

ε
+ 1

)[
log(8εR) + log(λ(λ+ 1)) + 3 log

(
U

ε

)]
, (40)
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the output of Algorithm 2 is an ε-approximation (see Definition 1 in Pham et al. (2020)
for a detailed definition) of the optimal solution of the UOT problem (4). The quantities
in (40) are defined as follows:

R = max {‖ log(a)‖∞, ‖ log(b)‖∞}+ max

{
log(n),

‖C‖∞
ε
− log(n)

}
,

U1 =
‖a‖1 + ‖b‖1

2
+

1

2
+

1

4 log(n)
,

U2 =

(
‖a‖1 + ‖b‖1

2

)[
log

(
‖a‖1 + ‖b‖1

2

)
+ 2 log(n)− 1

]
+ log(n) +

5

2
,

U = max

{
U1 + U2, 2ε,

4ε log(n)

λ
,
4ε(‖a‖1 + ‖b‖1) log(n)

λ

}
.

By using the same procedures but replacing Lemma 3 in Pham et al. (2020) with

Lemma 7 above, and combining with the result that ŨOTλ,ε(a, b)−UOTλ,ε(a, b) = oP (1)
under the conditions of Theorem 2, we can conclude that when ε = ε/U and the number of
iterations in the Spar-Sink algorithm achieves

L′2 := 1 +

(
λU

ε
+ 1

)[
log(8εR′) + log(λ(λ+ 1)) + 3 log

(
U

ε

)]
,

the output of Algorithm 4 is also an ε-approximation of the optimal solution of (4) in
probability. Due to the fact that R′ = O(R), we obtain that L′1 and L′2 are of the same
order.

Appendix C. Additional Numerical Results

In this appendix, we provide extra experimental results to show the robustness and asymp-
totic convergence of the proposed algorithm.

C.1 Sensitivity Analysis

We have shown that the proposed Spar-Sink algorithm is not sensitive to the entropic
regularization parameter ε. In this section, we show that the robustness also holds for the
marginal regularization parameter λ in UOT problems.

We set λ ∈ {0.1, 1, 5}, with the remaining settings being the same as those in Section 5.1.
The results are presented in Fig. 8, which depicts the comparison of estimation errors among
various methods w.r.t. the classical Sinkhorn algorithm, represented as RMAE(UOT), versus
increasing subsample sizes. We observe that Spar-Sink performs the best in all cases, and
its estimation error becomes smaller as η decreases, i.e., from R1 to R2 and R3. Such
an observation indicates the proposed method can fully exploit the sparsity of the kernel
matrix, leading to superior estimation accuracy.
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Figure 8: Comparison of subsampling-based methods w.r.t. RMAE(UOT) versus increasing
s (in log-log scale). Each row represents a different sparsity ratio (R1—R3), and
each column represents a different λ. Different methods are marked by different
colors, respectively, and each line type represents a different dimension d. Vertical
bars are the standard errors.

C.2 Asymptotic Convergence

To demonstrate the asymptotic convergence of our proposed method, we display the estima-
tion error RMAE(OT) versus increasing sample sizes n in Fig. 9, where n ∈ {20, 21, . . . , 26}×
102, s = 8s0(n), and ε = 0.1. Other choices of ε yield similar results and thus are omitted
here. In Fig. 9, the Spar-Sink algorithm always yields a smaller estimation error than
competitors. Notably, when d is relatively large (e.g., d ≥ 10), RMAE(OT) of Spar-Sink
decreases substantially faster than that of Nys-Sink, which indicates a higher convergence
rate.

Figure 10 displays the results of RMAE(UOT) versus increasing n and s = 8s0(n), under
ε = 0.1 and λ = 0.1. As shown in Fig. 10, the estimations of both Rand-Sink and Nys-
Sink methods become worse as n grows, while Spar-Sink converges significantly faster
with the increase of n.

C.3 Approximation of Wasserstein Barycenters

Experiments on synthetic data. We compare the proposed Spar-IBP method with the
classical IBP method, as well as two subsampling-based methods, Nys-IBP and Rand-
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Figure 9: Comparison of different methods w.r.t. RMAE(OT) versus increasing n (in log-log
scale). Each column represents a different data generation pattern (C1—C3).
Vertical bars are the standard errors.

Figure 10: Comparison of different methods w.r.t. RMAE(UOT) versus increasing n (in log-
log scale). Each column represents a different sparsity ratio (R1—R3). Vertical
bars are the standard errors.

IBP, which are direct extensions of Nys-Sink and Rand-Sink to approximate Wasserstein
barycenters, respectively.

The input probability measures b1, b2, b3 ∈ ∆n−1 are generated as:

• b1 is an empirical Gaussian distribution N(1
5 ,

1
50);

• b2 is an empirical Gaussian mixture distribution 1
2N(1

2 ,
1
60) + 1

2N(4
5 ,

1
80);

• b3 is an empirical t-distribution with 5 degrees of freedom t5(3
5 ,

1
100).

After generating the measures as above, we add 10−2 maxi∈[n] bk,i to each component of bk
and then normalize it such that

∑
i∈[n] bk,i = 1, for k ∈ [m]. Suppose the measures and their

barycenter share the same support points {xi}ni=1, where xi’s are randomly and uniformly
located over (0, 1)d, with n = 103 and d ∈ {5, 10, 20}. Then, the cost matrices C1 = C2 =
C3 are defined by squared Euclidean distances. We set w = 1m/m, ε ∈ {5, 50, 5−1} × 10−2

and s = {5, 10, 15, 20} × s0(n) with s0(n) = 10−3n log4(n). For comparison, we calculate
the approximation error of each estimator based on 100 replications, i.e.,

Error =
1

100

100∑
i=1

‖q̃∗(i)ε − q∗(i)ε ‖1,

where q̃
∗(i)
ε represents the estimator in the ith replication, and q

∗(i)
ε is obtained by the IBP

algorithm. The results are shown in Fig. 11, from which we observe the proposed Spar-IBP
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Figure 11: Comparison of different methods w.r.t. log10(Error) versus increasing s/s0(n)
under different levels of ε. Each color marks a specific method, and each line
type represents a different dimension d. Vertical bars are the standard errors.

Figure 12: (Top row) For each digit, 8 out of the 15 rescaled and translated images are
randomly chosen for illustration. (Middle row) Barycenters approximated by
the IBP method. (Bottom row) Barycenters approximated by the Spar-IBP
method.

method outperforms competitors in most circumstances, with its advantage becoming more
prominent as the value of ε decreases. The comparison of CPU time has similar pattern to
Fig. 5 and is omitted here.

Experiments on MNIST. Further, we evaluate our Spar-IBP algorithm on the MNIST
data set (LeCun et al., 1998) following the work of Cuturi and Doucet (2014). For each digit
from 0 to 9, we randomly select 15 images from the data set, and uniformly rescale each
image between half-size and double-size of its original scale at random. After that, each
image is normalized such that all pixel values add up to 1. Then, the images are translated
randomly within a 64 × 64 grid, with a bias towards corners. Given the reshaped images
with equal weights (i.e., w = 1m/m), we compute their Wasserstein barycenter. We also
include the performance of the IBP algorithm for comparison. The images and results are
shown in Fig. 12. The regularization parameter is set to be ε = 10−3 for both methods,
and the subsample parameter is taken as s = 20s0(n) for Spar-IBP.

In Fig. 12, we observe the approximate barycenters generated by Spar-IBP are almost
as clear as those obtained by IBP. Furthermore, with an average CPU time of 27.50s to
compute one barycenter, Spar-IBP is considerably more efficient than IBP, which requires
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(a) Source and
target images.

(b) Transferred images with source content and target color, re-
spectively achieved by Sinkhorn, Nys-Sink, Robust-NysSink, and
Spar-Sink (ours).

Figure 13: Comparison of different methods on color transfer. Subfigure (b): (Top row)
Transferred images. (Bottom row) The corresponding point clouds in RGB
space. The color of the dot represents each point’s RGB value.

340.29s. Such results demonstrate the effectiveness and efficiency of our Spar-IBP method
for approximating Wasserstein barycenters.

Appendix D. Applications

Following the recent work of Le et al. (2021) and Li et al. (2022), we evaluate the perfor-
mance of our proposed Spar-Sink method in two applications, color transfer and generative
modeling.

D.1 Color Transfer

The objective is to transfer the color of an ocean sunset image to an ocean daytime image,
as depicted in Fig. 13(a). The pixels of each image can be represented as point clouds
in the three-dimensional RGB space. Due to the large number of pixels in each image,
which is nearly a million, we follow the preprocessing step in Ferradans et al. (2014) and
Le et al. (2021) to randomly downsample n = 5000 pixels from each image, resulting in
{xi}ni=1, {yj}nj=1 ⊂ R3 and use discrete uniform distributions to define a, b ∈ ∆n−1. We
construct the cost matrix C using pairwise squared Euclidean distances, that is, Cij =
‖xi−yj‖22. To generate a new image with source content and target color, we compute the
optimal transportation plan between a and b and extend the plan to the entire image using
the nearest neighbor interpolation proposed by Ferradans et al. (2014).

To approximate the optimal transportation plan, we compare various methods, includ-
ing the Sinkhorn, Nys-Sink, and Spar-Sink in classical OT formulations, as well as the
Robust-NysSink from the robust OT framework (Le et al., 2021). In this experiment,
we set ε = 10−2 and λ = 10, where λ is the marginal regularized parameter in Robust-
NysSink. For subsampling-based approaches, we take s = 8s0(n) for Spar-Sink, and
r = ds/ne for Nys-Sink and Robust-NysSink.
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The results of the transferred images generated by these methods are presented in
Fig. 13(b). Among the evaluated methods, we observe that Spar-Sink produces a trans-
ferred image that closely resembles the result of Sinkhorn, and its corresponding RGB
scatter diagram is also similar to that of Sinkhorn. In terms of computational efficiency, the
CPU time of computing the plan is 60.45s (Sinkhorn), 12.92s (Nys-Sink), 27.74s (Robust-
NysSink), and 3.15s (Spar-Sink), respectively. These results demonstrate the effectiveness
of our method on this common computer vision application.

D.2 Generative Modeling

In this section, we introduce a new variant of the Sinkhorn auto-encoder (SAE) (Patrini
et al., 2020), named Spar-Sink auto-encoder (SSAE), by using the proposed Spar-Sink
approach. Specifically, we employ Spar-Sink to approximate the Sinkhorn divergence
(Genevay et al., 2018, 2019; Feydy et al., 2019) between the latent prior distribution and
the expected posterior distribution during the training of auto-encoders. We assess the
efficacy of this newly proposed generative model in several image generation tasks and
compare it with the original SAE.

Assume f (resp. g) is an encoder (resp. decoder) parameterized by a neural network,
and pZ is a prior distribution on the latent space. Given a set of samples from a data
distribution, i.e., x1, . . . , xN ∼ pX , the objective of SAE is formulated as

min
f,g

1

N

N∑
i=1

c (xi, g(f(xi))) + γS (f#pX , pZ) ,

where f# denotes the push-forward operator, c(·, ·) represents the reconstruction loss, and
S(·, ·) is a regularizer with weight γ > 0 defined by Sinkhorn divergence, that is,

S (f#pX , pZ) = OTε (f#pX , pZ)− 1

2
(OTε (f#pX , f#pX) + OTε (pZ , pZ)) . (41)

The objective of SSAE replaces OTε(·, ·) in (41) with its approximation, ÕTε(·, ·), computed
using Algorithm 3.

We train auto-encoders to embed the MNIST data (LeCun et al., 1998) into a 10-
dimensional latent space. The auto-encoding architecture is identical to that used in Kolouri
et al. (2019). We use the Euclidean distance as the distance between samples, the binary
cross entropy plus `1 loss as the reconstruction loss, the standard Gaussian distribution
as pZ , and Adam (Kingma and Ba, 2014) as the optimizer. For fairness, both SAE and
SSAE employ the same hyperparameters: the regularization parameters are γ = 0.05 and
ε = 0.01; the number of epochs is 40; the batch size n = 500; the learning rate is 0.001; other
parameters are set by default. Additionally, we set the subsample parameter s = 10s0(n)
for SSAE.

We compare SAE and SSAE w.r.t. Fréchet inception distance (FID) (Heusel et al., 2017)
between 10, 000 test samples and 10, 000 randomly generated samples, and also record their
running time on an RTX 3090 GPU. The comparison is conducted based on 100 replications,
and the results are presented in Table D.2, which shows that the proposed SSAE generator
achieves a smaller FID in just half the time compared to SAE. Moreover, we provide image
interpolation and reconstruction results obtained by SSAE in Fig. 14, further highlighting
the capability of our proposed method in generative modeling tasks.
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Methods FID Time

SAE 24.72±0.13 125.87
SSAE 23.65±0.06 64.81

Table 2: Comparisons on learning image generators w.r.t. average FID score (with stan-
dard deviations presented in footnotes) and running time (in seconds) of an epoch
iteration.

(a) Digit interpolation. (b) Digit reconstruction.

Figure 14: The performance of SSAE on digit interpolation and reconstruction tasks. In
the subfigure (b), odd rows correspond to real images.
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and Gabriel Peyré. Interpolating between optimal transport and MMD using Sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, vol-
ume 89, pages 2681–2690. PMLR, 2019.

38



Importance Sparsification for Sinkhorn Algorithm
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International Conference on Machine Learning, volume 139, pages 9344–9354. PMLR,
2021.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh
Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin
Brumbaugh, Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and
Eric S. Lander. Optimal-transport analysis of single-cell gene expression identifies devel-
opmental trajectories in reprogramming. Cell, 176(4):928–943, 2019.
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