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Abstract

Covariate measurement error in nonparametric regression is a common problem in nutri-
tional epidemiology and geostatistics, and other fields. Over the last two decades, this prob-
lem has received substantial attention in the frequentist literature. Bayesian approaches
for handling measurement error have only been explored recently and are surprisingly suc-
cessful, although there still is a lack of a proper theoretical justification regarding the
asymptotic performance of the estimators. By specifying a Gaussian process prior on the
regression function and a Dirichlet process Gaussian mixture prior on the unknown distribu-
tion of the unobserved covariates, we show that the posterior distribution of the regression
function and the unknown covariate density attain optimal rates of contraction adaptively
over a range of Hölder classes, up to logarithmic terms. We also develop a novel surrogate
prior for approximating the Gaussian process prior that leads to efficient computation and
preserves the covariance structure, thereby facilitating easy prior elicitation. We demon-
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strate the empirical performance of our approach and compare it with competitors in a
wide range of simulation experiments and a real data example.

Keywords: Approximated Gaussian processes, measurement error model, nonparametric
Bayes, smoothing and nonparametric regression, supersmooth errors

1. Introduction

The general formulation of a deconvolution problem assumes that the observations are the
true underlying variables contaminated with measurement error. In an errors-in-variables
regression problem, responses Yi’s are observed corresponding to evaluations of an unknown
regression function f0 on noise-contaminated covariates Wi’s as

Yi = f0(Xi) + ϵi, ϵi
i.i.d.∼ N(0, σ2),

Wi = Xi + ui, ui
i.i.d.∼ gu, Xi

i.i.d.∼ p0, i = 1, . . . , n,
(1)

where Xi’s are the unknown true covariates and we denote by p0 the marginal distribution
of the true covariate, and we write “i.i.d.” short for “identically and independently dis-
tributed”. In model (1), we consider the centered Gaussian error ϵi with unknown standard
deviation σ, and denote by gu the known measurement error distribution. The goal is to
recover the true regression function f0 and the true density function p0.

From a frequentist perspective, there is a rich literature addressing these problems. His-
torically, the density deconvolution problem was first addressed in Carroll and Hall (1988);
Fan (1991); Stefanski and Carroll (1990), where it was noted that the fundamental difficulty
in recovering the true density lies in the nature of the distribution of the measurement errors,
and a class of deconvolution kernel density estimators was proposed. In a nonparametric
regression setting Fan and Truong (1993) developed a globally consistent deconvolution
kernel type estimator. Later on, Ioannides and Alevizos (1997) generalized the estimator
while Delaigle and Meister (2007) extended the theory to the heteroscedastic case. Refer
to a review article (Delaigle, 2014) for a detailed discussion on kernel-based deconvolution
estimators. Other methods such as deconvolution estimators based on Fourier-techniques,
local linear and polynomial estimators are also popular, see Carroll et al. (1996, 1999); Cook
and Stefanski (1994); Delaigle and Hall (2008); Delaigle et al. (2006, 2009); Du et al. (2011);
Stefanski and Cook (1995).

It is well known that the optimal rate of convergence of deconvolution estimators can
be quite slow compared to the classical minimax rate for estimating smooth densities or
functions. The rate of convergence is controlled by the tail behavior of the characteristic
function of the measurement error density; faster decaying rate of the characteristic func-
tion leads to a slower convergence rate and vice versa. In particular, the optimal rate is
only of the logarithmic order when the measurement error distribution is a “supersmooth”
distribution, whose characteristic function decays exponentially in the tails. This includes
the Gaussian and the Cauchy densities. This slow rate of convergence renders estimation
practically infeasible unless the measurement error variance is allowed to be sufficiently
small (Carroll et al., 1999; Delaigle, 2008; Fan, 1992) with respect to the sample size. In
particular, it has been shown in Delaigle (2008); Fan (1992) that the optimal rate of con-
vergence in the “supersmooth” case is improved to n−β/(2β+1) for estimating a function in
a Hölder class with regularity level β if the error standard deviation of a Gaussian error
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density decreases to zero at the rate of n−1/(2β+1). This requirement on the error standard
deviation can be easily satisfied by generating replicates n1/(2β+1) times per data point.
In many applications, such as nutritional epidemiology, it is customary to collect multiple
recalls of dietary intake from the respondents which serve as the replicated proxies and can
boost the rate of convergence.

Another critical point regarding the performance of classical deconvolution estimators
is the choice of an appropriate kernel and associated bandwidth. Many effective bandwidth
selection procedures have been developed for practical purposes, refer to Delaigle and Gijbels
(2004a,b); Delaigle and Hall (2008). In absence of the knowledge of the true regularity
level, data-driven bandwidth selection procedures using the Lepski’s method are employed
(Comte and Lacour, 2013; Kappus and Mabon, 2014) with deconvolution kernel estimators,
obtaining adaptivity with respect to the smoothness of the underlying function or density.
Other types of the adaptive deconvolution estimator have been proposed, for instance,
the ridge deconvolution estimator (Hall and Meister, 2007) and the thresholding wavelet
deconvolution estimator (Fan and Koo, 2002).

On the other hand, Bayesian procedures are naturally suited for general nonparamet-
ric regression tasks because of their ability to adapt to the unknown smoothness and to
allow quantifications of uncertainty. For classical density estimation problems with no mea-
surement error, Bayesian nonparametric techniques including Dirichlet process Gaussian
mixture model (Escobar and West, 1995; Ferguson, 1973; Lo, 1984) have demonstrated suc-
cess in various applications, where the unknown density is modeled as a mixture of normals
with a Dirichlet process prior on the mixing distribution. For the errors-in-variables re-
gression estimation problem, Berry et al. (2002) were the first to develop a fully Bayesian
procedure for the nonparametric regression problem using smoothing splines and P-splines.
Variants of spline-based models are developed in Bayesian framework to approximate the
density function and/or variance function in the heteroscedastic case (Sarkar et al., 2014;
Staudenmayer et al., 2008). More recently, Cervone and Pillai (2015) developed a Bayesian
analysis for Gaussian processes with location errors using hybrid Monte-Carlo techniques.

Bayesian approaches have been demonstrated to be very successful numerically, how-
ever, there is a clear dearth of theoretical results justifying these approaches. Few existing
results for deconvolution density estimation are available recently in the Bayesian literature
such as Gao and van der Vaart (2016); Donnet et al. (2018); Rousseau and Scricciolo (2021).
To the best of our knowledge, a formal theoretical justification for the use of Bayesian pro-
cedures in the errors-in-variables regression problem is missing. As the main contribution
of this paper, we propose a fully Bayesian framework for the errors-in-variables regression
using a Gaussian process prior, and develop a new theoretical framework for studying its
frequentist properties including consistency and the quantification of posterior convergence
rates. As mentioned earlier, the optimal rate in the errors-in-variables problem with Gaus-
sian error distribution has been proved to be extremely slow, rendering inference infeasible
in applications. However, allowing the error variance to decrease to zero with sample size
at an appropriate rate plays a very important role in improving the rate of convergence
(Carroll et al., 1999; Fan, 1992). In this paper, we reexamine this situation from a Bayesian
perspective assuming that the measurement error standard deviation decays at the order of
of n−1/(2β+1) where β is the smoothness of the true covariate density. However, we intend
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to maintain adaptivity with respect to the smoothness level of the true function and the
true covariate density.

As the main contribution, we show that in the errors-in-variables regression problem,
when the Gaussian error variance decreases to zero at a certain rate, under appropriate
regularity conditions on the true marginal density and regression function, the posterior
distribution obtained from a suitably chosen hierarchical Gaussian process model with a
Dirichlet process Gaussian mixture prior on the marginal density of the covariates converges
to the ground truth at their respective minimax optimal rates, adaptively over a range of
Hölder classes. By viewing density deconvolution as an inverse problem (Knapik et al., 2011;
Ray, 2013), we follow the general recipe in Theorem 3.1 of Ray (2013) as sufficient conditions
for posterior convergence in our setting. However, the work of Knapik et al. (2011) is
restricted to conjugate priors, Ray (2013) considers only periodic function deconvolution
using wavelets, and substantial technical hurdles remain. To address these challenges, we
exploit the concentration properties of deconvolution kernel estimators to construct test
functions with exponentially small type-I and type-II error bounds for the testing problem

H0 : p = p0, vs HA : p ∈ {p : d(p, p0) > ξn}. (2)

Ray (2013) used concentration properties of thresholded wavelet based estimators based on
standard results on concentration of Gaussian priors. However, analogous results for kernel
density estimators suited to density deconvolution problems are lacking. One of our key
technical contributions is to develop sharp concentration inequalities of the deconvolution
kernel estimators to construct tests in (2).

On the computational side, although Bayesian spline models are quite successful in prac-
tice, the choice of knots as well as the number of basis functions are critical to obtain good
empirical performance. This stimulates the development of other Bayesian approaches for
modeling the unknown function of interest such as Gaussian process priors. Gaussian pro-
cesses are routinely used for function estimation in a Bayesian context. However, their use
in the context of measurement error in nonparametric regression models is limited, since
the unobserved values of covariates are involved in the prior covariance matrix of Gaussian
process and is no longer conditionally independent given the data. To alleviate this is-
sue in errors-in-variables regression problem, we develop an approximation to the Gaussian
process as a prior for the unknown regression function. The Gaussian process surrogate
is computationally efficient as it avoids repeated computation of the matrix inversion. In
addition to the appealing property of preserving the covariance kernel, we also show that
the resulting surrogate process converges weakly to the original Gaussian process. This
hints at the fact that the good properties of the original posterior distribution will be sub-
sequently inherited by the surrogate posterior. For implementation, in addition to standard
hyperparameters of a Gaussian process that control the smoothness of the sample paths, the
Gaussian process surrogate contains a truncation parameter. Our result on the accuracy of
such an approximation suggests that inference on the regression function is robust to the
choice of the truncation parameter as long as it is chosen to be appropriately large. Hence
the approximation retains all the potential advantages of a Gaussian process.
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1.1 Review on Nonparametric Regression with Errors in Variables

Consider the regression model with errors in variables defined in Equation (1), where
{(Yi,Wi), i = 1, . . . , n} are independent and identical draws from the joint unknown distri-
bution. Recall that Yi’s denote the observed responses andWi’s are contaminated covariates.
It is well known that in absence of any replicated proxy per data-point, the optimal rate for
a “supersmooth” error distribution is only of the logarithmic order, rendering the estimators
to be highly inefficient for practical purposes (Fan and Truong, 1993). In cases where the
error distribution remains unknown, it can be estimated from the repeated observations or
extra validation data (Hall and Ma, 2007; Johannes, 2009; Neumann, 2007). For the regular
deconvolution kernel estimator, the deconvolution kernel function is constructed based on
a suitable kernel function K(·) and the empirical estimator of the Fourier transform of the
marginal density p of covariates. One can derive the deconvolution kernel density estimator
(Fan and Truong, 1993) for both the marginal density p and the regression function f by

p̂n(x) =
1

nh

n∑
i=1

Kn{(x−Wi)/h}, (3)

f̂n(x) =
1

nh

n∑
i=1

Kn{(x−Wi)/h}Yi/p̂n(x), (4)

Kn(x) =
1

2π

∫
e−itx ϕK(t)

ϕu(t/h)
dt. (5)

Kn(·) is the deconvolution kernel function, ϕK(·) and ϕu(·) are the Fourier transforms of
the kernel function K(·) and the density of measurement error gu(·), respectively. Usually
ϕK(·) is assumed to be compactly supported to ensure that the deconvolution kernel Kn(·)
is well defined. Also, to achieve the rate optimality one requires that kernel function K(·)
is a kth-order kernel function where k represents the regularity level of the true density
function. However, in practice such deconvolution kernels typically do not admit closed-form
expressions, and the estimation could suffer from extra errors due to numerical integrations.

1.2 Bayesian Nonparametric Regression with Errors in Variables

In this article, we focus on the normal distribution N(0, δ2) with an unknown variance δ2 as
the measurement error distribution. We consider the following generic Bayesian hierarchical
model for the nonparametric regression with errors in variables:

Yi = f(Xi) + ϵi, ϵi ∼ N(0, σ2),

Wi = Xi + ui, ui ∼ N(0, δ2), Xi ∼ p, i = 1, . . . , n,

f ∼ Πf , p ∼ Πp, σ2 ∼ Πσ2 , δ2 ∼ Πδ2 .

(6)

We assume that Yi is conditionally independent of Wi given Xi, for i = 1, . . . , n. In
the Bayesian framework, we obtain the posterior distribution of unknown parameters θ =
(f, p, δ) given the observed values Dn = {(Yi,Wi), i = 1, . . . , n} via Bayes’ rule:

P (θ | Dn) =
P (Dn | θ)P (θ)

P (Dn)
.
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This posterior distribution P (θ | Dn) can then be used to conduct statistical inference on
marginal density p and regression function f , such as constructing point estimators and
their associated credible intervals or bands. Variants of the model defined in Equation
(6) are used in the context of Bayesian methods in errors-in-variables regression problem
(Berry et al., 2002; Sarkar et al., 2014). Although for practical purposes we assume a
prior distribution on δ2, in the theoretical investigation, to obtain the minimax-optimal
convergence rate results, we assume δ2 to be known and let δ2 decrease to 0 at a certain
rate depending on n. For practical purpose we assign an objective prior on σ2, the details of
which can be found in Appendix F. Whereas, for theoretical investigation we assume σ = 1
to simplify the analysis. Extension to general σ is straightforward.

By assigning proper priors on f and p, we show that the estimation of f and p can be
made adaptive, which means the prior does not demand any knowledge on the smoothness
of the true regression function, and yet a nearly optimal rate of posterior contraction can be
achieved as if the smoothness is known. Different from the deconvolution kernel estimator,
a Bayesian method does not require explicitly constructing a deconvolution kernel function
Kn(·), but the existence of such kernel is used for constructing the test function aforemen-
tioned in the introduction. The details of choosing specific priors for f and p are discussed
in the following section. We start describing the Gaussian process prior for f which requires
specifying a covariance kernel analogous to the kernel K(·).

1.3 Prior Specifications

We consider a Gaussian process prior (Rasmussen and Williams, 2006) as the prior Πf for
f , which is a distribution over a space of functions such that the joint distribution of any
finite evaluations of the random function is multivariate Gaussian. A Gaussian process is
completely defined by a mean function m(x) = E{f(x)} and a covariance kernel function
c(x, x′) = cov{f(x), f(x′)} for any x, x′ ∈ R. Therefore, any finite collection of random
observation points {y1(x1), . . . , yN (xN )} at locations x1, . . . , xN has a joint Gaussian dis-
tribution given by

{y1(x1), . . . , yN (xN )} ∼ N(m, τ2Σ),

where m = {m(x1), . . . ,m(xN )} and Σ is the N × N covariance matrix with the (i, j)th
element Σij = c(xi, xj). The mean function reflects the expected center of the realization,
and the covariance kernel function reflects its fluctuation and local dependence. The hyper-
parameter τ attached to the covariance kernel function controls the fluctuation magnitude.
We use the notation f(·) ∼ gp(m(·), c(·, ·)) to denote that function f follows a Gaussian
process with mean function m and covariance kernel function c. For the regular Gaussian
process regression in the noised case with noise level σ, the predictive formula (Rasmussen
and Williams, 2006) is

f(X∗) | X,Y,X∗ ∼ N(f̄∗, cov{f(X∗)}),
f̄∗ = c(X∗, X){c(X,X) + σ2I}−1Y,

cov{f(X∗)} = c(X∗, X∗)− c(X∗, X){c(X,X) + σ2I}−1c(X,X∗),

(7)

where X,Y are the given data, X∗ is a new data point, f(X∗) is the prediction at X∗ and
c(X∗, X) denotes the covariance matrix between X∗ and X. The posterior is a multivariate
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normal involved with the original data and the new data point. Refer to Rasmussen and
Williams (2006) for a detailed explanation of a Gaussian process. Choice of the covariance
kernel c is crucial to obtain a desirable functional estimation. A squared exponential covari-
ance or more generally, a Matérn covariance kernel are commonly used in practice. Also, the
covariance kernel is often associated with hyperparameters which control the smoothness of
the sample paths (Adler, 1990). We shall discuss specific choices in Section 2.2.

It might appear on the surface that one can assume a parametric distribution for the
unknown X if the interest is solely on recovering the unknown function f . However as we
will show in the simulation studies and also observed in Sarkar et al. (2014), a parametric
distribution on X is not capable of recovering the unknown infinite dimensional parameters
f . As a flexible prior distribution on the density p, we propose to use a Dirichlet process
Gaussian mixture prior defined by

X ∼ g(·), g(·) =
∫

ϕ√
τ (· − µ)G(dµ, dτ), G ∼ dp(αG0). (8)

Here ϕ√
τ (·−µ) denotes the normal density function with mean µ and variance τ . dp(αG0)

denotes a Dirichlet process prior (Ferguson, 1973) with G0 as the base probability mea-
sure on R × R+ and α > 0 is a precision parameter. Given a probability space P, for
any P ∈ P we define the measure space (X ,Ω, P ) with Ω denoting the Borel sets of X ,
a Dirichlet process satisfies that for any finite and measurable partition B1, . . . , Bk on
X , {P (B1), . . . , P (Bk)} ∼ Dir{αG0(B1), . . . , αG0(Bk)}, where Dir{a1, . . . , ak} denotes the
Dirichlet distribution with parameters a1, . . . , ak. A Dirichlet process Gaussian mixture
prior is known to be a highly flexible nonparametric prior on the space of densities having
a common support as the base measure G0 (Escobar and West, 1995). It has thus become
a very popular Bayesian density estimation method which received considerable attention
over the last two decades both from computational (Kalli et al., 2011; Neal, 2000) and theo-
retical perspectives (Ghosal and van ver Vaart, 2007; Kruijer et al., 2010; Shen et al., 2013).
Recently, Dirichlet process mixture models have also been commonly used for studying
the posterior consistency and contraction rate for Bayesian deconvolution problem under
various settings (Gao and van der Vaart, 2016; Su et al., 2020; Rousseau and Scricciolo,
2021). In the next section, we shall discuss in detail that applying a Gaussian process prior
to recover the true regression combined with modeling the covariate density with a finite
approximation of the Dirichlet process Gaussian mixture prior, we can correct for the bias
due to the measurement error.

2. Posterior Contraction Properties

In this section, we study the frequentist large sample properties of the proposed Bayesian
errors-in-variables model. We begin with a description of notations used throughout the
rest of the paper in Section 2.1, then state assumptions on the true functions and priors in
Section 2.2. Section 2.3 contains our main result on the posterior contraction rate.

2.1 Notation and Preliminaries

Let ⌊x⌋ denote the greatest integer that is strictly less than or equal to x for all x ∈ R.
We define the L1 norm as ∥f∥1 =

∫
|f(x)|dx, and define the supremum norm as ∥f∥∞ =
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supx∈S |f(x)|, where S is the domain of function f . We say a sequence of measures Pn

converges weakly to a measure P , denoted by Pn ⇝ P if
∫
ϕdPn →

∫
ϕdP , for all bounded

continuous function ϕ. Denote by C[0, 1] the space of continuous functions defined on [0, 1]
and denote by Cβ[0, 1] the Hölder space of β-smooth functions f : [0, 1] → R satisfying

|f(x+ y)⌊β⌋ − f(x)⌊β⌋| ≤ L|y|β−⌊β⌋, (x, y) ∈ [0, 1],

for some constant L > 0. For any probability measure F on R, let pF,σ(x) =
∫
ϕσ(x −

z)dF (z) be the location mixture of normals induced by F . For any finite positive measure
α write ᾱ = α/α(R), where α(R) denotes a measure on R. Let dp(α) denote the Dirichlet
process with the base measure α. We denote the prior distribution by Π(·) and the posterior
distribution by Πn(· | Dn). For two positive sequences an, bn, we write an ≍ bn if an/bn can
be bounded from below and above by finite constants. In addition, we use “≲” (“≳”) to
indicate inequalities up to finite universal constants.

2.2 Assumptions

Assumption 1 The regression function f0 ∈ Cβ[0, 1] with β > 1/2. We also assume
∥f0∥∞ < A0 for some large enough constant A0.

We assume that β is unknown while fitting the model and our optimal convergence rate
results are adaptive for any choice of β > 1/2. This is achieved easily in a Bayesian paradigm
through a suitable prior on the smoothness parameter of the Gaussian process. The finite
upper bound assumption is common to achieve the adaptivity in the errors-in-variables
problem, similar assumptions can be found in Chesneau (2010); Chichignoud et al. (2017).
In practice, we can obtain a reasonable upper bound as a multiple of averaged responses
from additional validation data sets (Yang and Dunson, 2016). The lower bound on the
smoothness is also a common assumption in the random design regression problem, refer to
Baraud (2002); Birgé (1979); Brown et al. (2002) for further discussion on this topic.

Assumption 2 The marginal density p0 of the unobserved covariates X is in Cβ′
[0, 1] for

some β′ ≥ β, where β is defined in Assumption 1. Also, we assume there exists a finite
constant B > 0 such that infx∈[0,1] p0(x) ≥ B−1.

Smoothness assumptions and the lower bound assumption on the marginal density en-
sure a better control of the numerator and the denominator of the deconvolution kernel
estimator defined in Equation (4) separately. Analogous smoothness assumptions can be
found in Fan and Truong (1993), that the regression function and marginal density are as-
sumed to have the same smoothness level. Refer also to Delaigle and Meister (2007) where
f0 p0 and p0 are assumed to have same regularity level.

The assumption β′ > β in Assumption 2 requires discussion. From model (1), the de-
convolution density estimation problem for p0 can be reduced to a random design regression
function estimation problem for f0 by conditioning on a density p in the parameter space.
Hence the overall convergence rate will be determined by the slowest contraction rates for
estimating p0 and f0. Although our theory is derived for compactly supported p0, it can
be extended to the unbounded support case under desirable tail conditions (Kruijer et al.,
2010) on p0.
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In the Bayesian errors-in-variables model defined in Equation (6), we assign a cen-
tered and rescaled Gaussian process prior on f , denoted by gp(0, c;A), associated with the
squared exponential covariance kernel c(x, x′;A) = exp{−A2∥x − x′∥2} with the rescaled
random variable A satisfying the following Assumption 3. This choice is motivated by the
fact that a properly scaled squared exponential covariance kernel is known to lead to the
optimal rate of posterior convergence (van der Vaart and van Zanten, 2007, 2009). In ad-
dition, we consider a Dirichlet process Gaussian mixture prior on the marginal density p
defined as pF,σ̃, with F ∼ dp(α) and σ̃ ∼ G, where G satisfies Assumption 4 below.

Assumption 3 We assume the rescaled parameter A possesses a density m satisfying for
sufficiently large a > 0,

C1a
p exp (−D1a log

q a) ≤ m(a) ≤ C2a
p exp (−D2a log

q a),

for constants C1, C2, D1, D2 > 0 and p, q ≥ 0. We assume a conditional Gaussian process
prior on the sets of all functions A = {f ∈ C[0, 1] : ∥f∥∞ < A0}, for the same constant A0

in Assumption 1.

Assumption 3 includes the gamma density as a special case when q = 0. A similar assump-
tion appears in van der Vaart and van Zanten (2009). We restrict the Gaussian prior over
the set A based on Assumption 1.

Assumption 4 The Dirichlet process Gaussian mixture prior on the marginal density p(x)
defined by pF,σ̃ with F ∼ dp(α) and σ̃ ∼ G, satisfy the following conditions:

1− ᾱ[−x, x] ≤ exp(−b1x
τ1) for all sufficiently large x > 0,

G(σ̃−2 ≥ x) ≤ c1 exp(−b2x
τ2) for all sufficiently large x > 0,

G(σ̃−2 < x) ≤ c2x
τ3 for all sufficiently small x > 0,

G(s < σ̃−2 < s(1 + t)) ≤ c3s
c4tc5 exp(−b3s

1/2) for s > 0 and t ∈ (0, 1),

for positive constants τ1, τ2, τ3, b1, b2, b3, c1, . . . , c5.

The inverse-gamma density on σ̃ satisfies the above assumptions, whereas the inverse-
gamma density on σ̃2 does not. This is a fairly standard assumption in the Bayesian
asymptotics literature on the Dirichlet process mixture of Gaussians, for similar assump-
tions refer to the posterior convergence analysis for density estimation in Shen et al. (2013).

2.3 Main Theorem on Posterior Contraction

For the model defined in Equation (6), we first define the marginal likelihood of random
pairs {(Yi,Wi), i = 1, . . . , n} as gf,p(y, w) = (2πδ)−1

∫
ϕ1{y − f(x)}ϕδ(w − x) p(x) dx and

denote its distribution measure by Gf,p. Recall that we assume the noise level of the random
error σ = 1 to simplify the calculation. Based on the Baye’s rule, the posterior distribution
given n pairs of observations denoted by {Y1:n,W1:n} can be written as

Πn{(f, p) ∈ B | Y1:n,W1:n} =

∫
B Πn

j=1gf,p(Yj ,Wj)dΠ(f)dΠ(p)∫
P Πn

j=1gf,p(Yj ,Wj)dΠ(f)dΠ(p)
, (9)

where B is any measurable subset of P = {(f, p) : f ∈ C[0, 1]; p : [0, 1] → R,
∫
p(x)dx = 1}.
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Theorem 1 Suppose f0 and p0 satisfy Assumptions 1 and 2, respectively, and the prior Π
on (f, p) satisfies Assumptions 3 and 4. Then for some sufficiently large constant M > 0
and the standard deviation δn of normal measurement error,

Πn{(f, p) : ∥f − f0∥1 < M max(ϵn, δ
β
n), ∥p− p0∥1 < M max(ϵ′n, δ

β′
n ) | Y1:n,W1:n}

→ 1 almost surely in Gf0,p0 , as n → ∞,

where ϵn = n−β/(2β+1)(log n)t, ϵ′n = n−β′/(2β′+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), t′},
where t′ > (γ+1/β′)/(2+1/β′) for some γ > 2. When δn ≲ ϵ

1/β
n , the convergence rate for

recovering f0 is a multiple of ϵn.

It has been known that fixing δn ≡ 1 leads to a logarithmic minimax error rate for errors-in-
variables regression estimation. We remark that Theorem 1 does not yield the optimal rate
in this case, as the current method to deliver posterior contraction rate for nonparametric
models is sharp only up to logarithmic terms. However, when δn ≲ n−1/(2β+1), Theorem 1
shows that optimal rates for regression and density estimation under the EIV setting is the
same under the regular nonparametric setting without measurement errors, respectively.

The proof of Theorem 1 can be found in Appendix B. Existing contraction rate results
in the frequentist deconvolution literature (Fan and Truong, 1993) require the knowledge
of the smoothness of both the true covariate density and the regression function to achieve
the optimal convergence rate for the regression function. Theorem 1, on the other hand,
achieves minimax optimal rate of posterior convergence adaptively over all smoothness levels
(β′, β) for β, β′ defined in Assumptions 1 and 2, given the knowledge of decaying rate of the
error standard deviation δn (or the number of replications). To understand the implication
of the posterior convergence rate of f in Theorem 1 let us focus on the case where β = 1.
Since {f(X) − f0(X)} ≍ {f(W ) − f0(W )} + {f ′(W ) + f ′

0(W )}(X − W ), the convergence
rate for estimating f is limited by how fast the marginal density of X can be recovered
from observations W . This intuitively justifies the rate max(ϵn, ϵ

′
n, δ

β
n) in EIV model. We

remark that the rate results in Theorem 1 also hold for f, p even if β > β′. In that case, the
posterior of p always attains the near-minimax rate in recovering the true density, whilst
the best obtainable posterior rate for recovering f0 is limited to ϵ′n, which is slower than ϵn.

Analyzing the posterior distribution following the seminal work (Ghosal et al., 2000)
requires upper-bounding the numerator of the posterior defined in Equation (9) over some
set B of interest and lower-bounding the marginal likelihood. In our proof, the numerator
can be bounded above by constructing a sequence of test functions that is used to test
the true model against models outside a small neighborhood of the truth under proper
metric. As a key technical contribution, we obtain sharp bounds for Type I and Type II
errors of the constructed tests by developing large deviation bounds for the deconvolution
density estimator, which generalizes some results in Pati et al. (2015) for random design
regression to errors-in-variables problem. To bound the marginal likelihood from below, it
requires the priors assigned on the regression and covariate density assigning enough mass
around the truth. A component-wise Gaussian prior on the covariate cannot concentrate
enough over a small neighborhood of the true locations, simply because the concentration
of n-dimensional standard Gaussian vector cannot exploit the smoothness of the density
and hence cannot assign enough mass within a small neighborhood around the true density.
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On the other hand, a mixture of normals prior allows borrowing of information, naturally
exploits the smoothness and provides adequate concentration. A similar treatment to the
covariate density can also be found in recent Bayesian deconvolution literature (Gao and
van der Vaart, 2016; Donnet et al., 2018; Rousseau and Scricciolo, 2021).

3. Posterior Computation

In order to sample from the posterior distribution of (f, p, δ, σ), we employ a Gibbs sampler
and sample from each of the parameters given the others. Posterior sampling methods for
Bayesian density estimation using Dirichlet process Gaussian mixture prior is popular, re-
fer to the Pólya urn sampler (Escobar and West, 1995; MacEachern and Müller, 1998) and
blocked Gibbs sampler with stick-breaking representation (Ishwaran and James, 2001). In
this article, we use the finite approximation of the Dirichlet process Gaussian mixture prior
with the stick-breaking representation. The major bottleneck of the computation stems
from sampling the Gaussian process term f which requires a) inversion of n × n matrices
depending on the latent covariates and b) sampling from the conditional distribution of the
true covariates, which is intractable. Task a) makes the algorithm computationally ineffi-
cient and unstable specifically for the errors-in-variables regression problem, since it requires
evaluating the inverse of the covariance matrix repeatedly along with the updates of covari-
ates. To bypass O(n3) computation steps associated with inverting an unstructured n× n
covariance matrix, numerous powerful techniques have been proposed in the last decade;
fixed rank kriging (Banerjee et al., 2008; Finley et al., 2009), covariance tapering (Furrer
et al., 2006; Kaufman et al., 2008), composite likelihood methods (Guan, 2006; Heagerty
and Lele, 1998). In using these techniques, often the original covariance kernel itself is not
preserved, which means the covariance function of the approximate process differs from the
covariance function of the original process. More recently, Stroud et al. (2017) and Guinness
and Fuentes (2017) derived a fast algorithm of sampling from stationary Gaussian processes
on the large-scale lattice data, using the circulant embedding technique proposed in Wood
and Chan (1994). Such techniques typically require the assumption of equally spaced co-
variates. In the absence of equally spaced design, the idea is to define a larger lattice and
consider the prediction as missing data imputation (Guinness and Fuentes, 2017; Stroud
et al., 2017). However, it is not straightforward to translate these ideas to the errors-in-
variables regression problem as the true covariates are contaminated and the true marginal
distribution remains unknown. Instead, we propose using a lower dimensional mapping to
approximate the Gaussian process based on the random Fourier basis proposed by Rahimi
and Recht (2008a). And the random mapping to the Fourier domain preserves the covari-
ance kernel associated with the original Gaussian process. This also avoids computing the
inverse of covariance matrix by introducing moderate numbers of parameters associated
with the Fourier basis. Moreover, this is suitable in applications where practitioners have a
pre-conceived notion of using a particular covariance function and we require the approxi-
mated covariance to accurately reflect that prior opinion. The lower dimensional mapping
is chosen to approximate the original Gaussian process arbitrarily well; refer to Theorem 2.
We describe the approximate Gaussian process in the following Section 3.1.
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3.1 An Approximation of the Gaussian Process

The low-rank projection of a stationary covariance kernel on a random feature space is a
popular approach to scale up kernel-based regression methods (Rahimi and Recht, 2008a).
Theoretical properties of the random Fourier feature projection have been extensively stud-
ied in the last decade, mostly in terms of the approximation accuracy of the covariance
kernel function (Sutherland and Schneider, 2015; Sriperumbudur and Szabó, 2015), prop-
erties of the induced reproducing kernel Hilbert space (Rahimi and Recht, 2008b,c; Bach,
2017), and the expected risk bounds of an approximated kernel ridge regression estimator
based on random Fourier features and their variants (Avron et al., 2017; Li et al., 2019;
Zhang et al., 2019; Yang et al., 2021). For a detailed and categorized summary of exist-
ing results, one may refer to a recent work (Liu et al., 2021). In this section, we develop
a low-rank random Fourier basis projection as an approximate of a stationary zero-mean
Gaussian process gp(0, c), which can be represented as a Bayesian linear model. Such
a representation has been considered in Wilson et al. (2020) where they used a random
feature projection to approximate the original GP, and further approximated the obtained
posterior distribution to speed up posterior computation. In our case we study the exact
posterior distribution resulting from the approximated GP prior.

Denote by the corresponding spectral density ϕc(·) defined through c(h) =
∫
eihxϕc(x)dx.

For a suitably chosen large integer N , we define

f̃N (x) = (2/N)1/2
N∑
j=1

aj cos(wjx+ sj), (10)

where aj
i.i.d.∼ N(0, 1), wj

i.i.d.∼ ϕc and sj
i.i.d.∼ Unif [0, 2π] for j = 1, . . . , N . The random

process f̃N (x) is an N -dimensional approximation to a GP such that its covariance function
coincides with the kernel function of original GP. In addition, Theorem 2 shows that the
approximate also converges to the original Gaussian process gp(0, c) weakly.

Theorem 2 Suppose f is the original Gaussian process gp(0, c) and f̃N is defined in Equa-
tion (10), we have

f̃N ⇝ f, as N → ∞.

Also, for any x, y ∈ R,

E {f̃N (x)} = 0; cov{f̃N (x), f̃N (y)} = c(x, y).

The proof of Theorem 2 is deferred to Appendix C. The construction f̃N is related to the
random feature mapping in the Fourier domain (Rahimi and Recht, 2008a), used to project
the kernel onto a lower-dimension space RN . It is straightforward to show that preservation
of the covariance kernel associated with the original Gaussian process for the proposed
process defined over the real area, due to the expression of Fourier features. However, the
weak convergence result of f̃N is non-trivial and the proof provides a framework to study
the asymptotic property of random processes constructed based on Fourier projection.

Theorem 2 validates the usage of f̃N to approximate a stationary GP in an asymptotic
manner. Allowing f̃N to be adaptive to the unknown smooth level of the true regression
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function, we now assume {ωj} are independently and identically generated from the spectral
measure of a rescaled squared exponential kernel function. The rescaling parameter is
unknown and endowed with the prior satisfying Assumption 3. Adopting the same notation
of a rescaled mean-zero Gaussian process f ∼ gp(0, cA) considered in Section 2 and the
rescaling A ∼ g(·) for some distribution g, analogously, we define a rescaled version of (10)
as

f̃A,N (x) = (2/N)1/2
N∑
j=1

aj cos(w
A
j x+ sj),

where {aj , sj} are same as in (10), and for any a > 0, wA
j |(A = a)

i.i.d.∼ ϕa
c for j = 1, . . . , N ,

recall that ϕa
c (λ) = a−1ϕc(λ/a) denotes the spectral density of GP associated with a squared

exponential kernel function indexed with the rescaling parameter a. It is straightforward to
show that Theorem 2 holds with A = a for any fixed a > 0. In addition, Theorem 3 below
verifies that the posterior of f̃A,N converges towards the true regression curve f0 at a near
minimax rate in the EIV regression problem as well, given an appropriate number of the
random Fourier features.

Theorem 3 Suppose f0 and p0 satisfy Assumptions 1 and 2, respectively, and Assumptions
3 and 4 hold. Then for some fixed large constant M > 0 and for the number of features
N satisfying N ≍ nϵ2n(log n)

t̃ for some constant t̃ > 0 which is free of n,N , and recall the
standard deviation δn of normal measurement error,

Πn

{
(f̃A,N , p) : ∥f̃A,N − f0∥1 < M max(ϵn, δ

β
n), ∥p− p0∥1 < M max(ϵ′n, δ

β′
n ) | Y1:n,W1:n

}
→ 1 almost surely in Gf0,p0 , as n → ∞,

where ϵn, ϵ
′
n are same as in Theorem 1. Again, when δn ≲ ϵ

1/β
n , the posterior contraction

rate of f̃A,N is a multiple of ϵn.

Theorem 3 provides an asymptotic result on the posterior distribution of approximated
GP, provided the rank of the random feature projection increases at a certain rate with the
sample size. To the best of our knowledge, this is the first theoretical result on low-rank
random feature projection of GPs in L1 norm under a Bayesian framework. This result
can be easily adapted to other regression/learning problems beyond the EIV context, such
as nonparametric regression with random designs. The proof of Theorem 3 is deferred
to Appendix, which follows a similar line of arguments as in the proof of Theorem 1.
Theorem 3 delineates a specific increasing rate of the number of random features in order
to attain the best rate. A minimum requirement on the number of random features has been
determined in literature on kernel ridge regression (KRR) estimator with random features,
which conveys the idea that larger is the number of the random features, the better is
the approximation with random Fourier features to the original KRR estimator. However,
when all {aj , ωj , sj} in (10) are treated as random parameters, the number of random
features N cannot increase too fast in order to retain a minimum prior concentration over
a small KL–neighborhood of the truth, due to the concentration of measure phenomenon
of high-dimensional Gaussian random vectors.
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To implement f̃A,N , it suffices to treat {aj , wj , sj} as unknown parameters endowed
with suitable independent priors. More details of the posterior computation is deferred to
Appendix F. We remark that the order of the the number of the features in Theorem 3 is
primarily of theoretical interest as the smoothness of the function is unknown. Although we
do not have adaptive results, in the empirical study, we find the Gaussian process surrogate
performs almost as well as the original Gaussian process when N is chosen within the range
(n/8, n/2) for data sets of moderate sizes.

4. Numerical Results

In this section, we empirically illustrate applications of the proposed Gaussian process
surrogate and its variants to Bayesian errors-in-variables model in the following synthetic
examples. We consider a uniform marginal distribution X ∼ Unif [−3, 3] and the regression
function: f(x) = sin(πx/2)/[1 + 2x2{sign(x) + 1}]. We consider three choices of sample
size n ∈ {100, 250, 500}, and consider additive normal regression errors independently and
identically drawn from N(0, σ2) with a fixed noise level σ = 0.2. We confine ourself to
the centered normal distribution N(0, δ2) for the measurement error with a sequence of
gradually increasing variances {δ2}, for the purpose of checking empirical performance of
proposed methods in the presence of measurement errors of varying degrees. Specifically,
for n = 100, 250, we consider δ2 ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 1}; for n = 500, we consider
δ2 ∈ {0.001, 0.005, 0.01, 0.1, 0.5, 1}. Under each setting, we compare the following methods:

1. gpeva: Approximated Gaussian process model described in Section 3.1 with a Dirich-
let process Gaussian mixture prior on the marginal density.

2. gpevf : Full scale Gaussian process model using the predictive formula in Equation
(7), with a Dirichlet process Gaussian mixture prior on the marginal density.

3. gpevn: Approximated Gaussian process model described in Section 3.1 with a uni-
variate normal prior on the covariate component-wise.

4. gp: Full scale Gaussian process model that ignores the measurement error.

5. decon: Deconvolution kernel method from https://github.com/TimothyHyndman/

deconvolve.

To implement gpeva and gpevn, we consider the following combinations of the sample size
n and the number of Fourier basis functions N : (n,N) ∈ {(100, 40), (250, 60), (500, 80)}.
We remark that the values of N are chosen based on preliminary numerical experiments.
We only present the numerical results for n = 100, 500 in this section, the result for n = 250
is similar and thus deferred to Appendix G. For Bayesian approaches, we ran the Gibbs
sampler with 2,000 iterations and discarded the first 1,500 iterations as a burn-in. The
derivation of a full conditional and detail on hyperparameter choices can be found in Ap-
pendix F. The investigation on the mixing behavior of the Gibbs sampler for estimated
marginal and regression functions as well as other diagnostic checks are deferred to Ap-
pendix G. For the Bayesian methods, the posterior mean denoted by f̂ , is our estimator of
the unknown regression function f and its pointwise 95% credible interval is obtained by
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constructing U(x) and L(x) such that

Πn{f(x) ∈ [L(x), U(x)] | Dn} = 0.95.

We also consider simultaneous credible bands centered at the posterior mean f̂ with level
γ ∈ (0, 1),

CBn(γ) =
{
f :

∥∥f − f̂
∥∥
∞ ≤ r

}
,

where the half length r is chosen so that posterior probability of f falling into the credible
band is γ,

Πn

{
f ∈ CBn(γ)

∣∣Dn

}
= γ.

A detailed construction of CBn(γ) can be found in Appendix F.

δ2

n Method 0·01 0·2 0·4 0·6 0·8 1

100

gpeva 0·58 (0·43) 1·82 (1·23) 3·89 (4·00) 4·64 (3·81) 5·88 (5·55) 6·31 (5·02)
gpevf 0·55 (0·41) 1·85 (1·22) 3·20 (2·83) 4·24 (3·19) 5·54 (5·21) 5·82 (4·96)
gpevn 0·60 (0·45) 4·82 (2·35) 10·98 (4·91) 15·29 (6·07) 19·26 (7·78) 20·98 (9·36)
gp 3·29 (0·31) 6·11 (1·39) 9·35 (2·34) 12·00 (2·99) 14·80 (3·54) 16·81 (3·94)
decon 1·18 (1·00) 5·07 (2·46) 10·46 (3·79) 14·72 (4·08) 18·25 (3·96) 20·59 (3·52)

δ2

n Method 0·001 0·005 0·01 0·1 0·5 1

500

gpeva 0·11 (0·04) 0·12 (0·04) 0·13 (0·04) 0·37 (0·21) 1·69 (1·20) 3·35 (3·27)
gpevf 0·10 (0·04) 0·11 (0·04) 0·12 (0·04) 0·35 (0·19) 1·59 (1·04) 3·94 (5·76)
gpevn 0·11 (0·04) 0·12 (0·05) 0·14 (0·05) 1·51 (0·44) 12·09 (2·02) 20·38 (4·12)
gp 1·78 (0·08) 1·80 (0·09) 1·80 (0·09) 2·57 (0·26) 8·45 (1·08) 14·37 (1·60)
decon 0·35 (0·21) 0·38 (0·26) 0·38 (0·26) 1·14 (0·46) 9·48 (1·55) 18·03 (1·53)

Table 1: Averaged mean squared errors (amse) defined as E [K−1
∑K

k=1{f̂(tk) − f(tk)}2 ]
(f̂(·) denotes the estimator of f , E(·) denotes taking average over replicates) on an evenly
spaced test grid {t1, . . . , tK} of size K = 100 over [−3, 3] with standard errors (×102) over
50 replicated data sets of sizes n = 100, 500.

Table 1 summarizes out-of-sample prediction results for all methods in terms of the
averaged mean squared errors (amse) given different values of δ2. The results show gpevf

performs the best among compared methods. However, we observe that the performance
of gpeva is very close to that of gpevf for all combinations of n and δ2. This observation
suggests that the approximation error of the proposed gp surrogate to the original gp is
almost negligible in out-of-sample prediction despite the magnitude of the measurement
error. We now investigate the performance of considered models in detail against the noise
level of measurement errors. When δ2 is small, all considered methods are robust to the
measurement error except the gp model, implying that ignoring measurement errors could
compromise the estimation significantly even though covariates are mildly contaminated.
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Figure 1: Boxplots of mean squared values for f(x) when n = 100 (the top row) and
n = 500 (the bottom row) over 50 replicated data sets. For n = 100, set δ2 = 0.01 (left
panel), δ2 = 0.6 (middle panel) and δ2 = 1 (right panel); for n = 500, set δ2 = 0.005
(left panel), δ2 = 0.1 (middle panel) and δ2 = 1 (right panel). In each panel the methods
displayed from left to right are gpeva, gpevf , gpevn, gp and decon.

As δ2 increases, the amses for gpeva and gpevf increase only by a relatively small margin,
whereas other methods have suffered a drastic increase in amse values. For instance, the
amse values obtained by gp and decon models are three times greater than those by gpeva

and gpevf when δ2 ≥ 0.6. The robustness of gpev-based models to large measurement
errors empirically justifies our theoretical claim that a dpmm prior is necessary for recovering
the covariate density and thus allows the regression recovery to be robust to measurement
errors.

Similar results can be also observed from the boxplots of mean squared error (mse) values
in Figure 1. The increasing amount of mses for all methods along with δ2 is due to that the
true covariate density p0 turns harder to recover when the errors in covariates become more
disturbing. On the other hand, this implies that increasing the number of replicates can
improve the performance significantly of the Bayesian estimator in practice. Beyond the
investigation on mses, the model fitting result in Figure 2 graphically displays the prediction
performance of compared methods over various values of δ2. In particular, one can observe
that when δ2 increases the performance of decon and gp deteriorates fast and both fail to
recover the curvature of the true function. On the contrary, even when δ2 = 1, the posterior
mean of gpeva aligns with the true curve closely and its 95% pointwise credible interval
contains the whole true function. A wider credible interval for larger values of δ2 is expected
due to an increasing amount of uncertainty in retrieving the covariate density. Overall, the
gpev-based models stand out among other competitors in terms of prediction.
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Figure 2: Out-of-sample predictions of f(x) with n = 100 (first row) and n = 500 (second
row). For n = 100, set δ2 = 0.01 (left panel), δ2 = 0.6 (middle panel) and δ2 = 1 (right
panel). For n = 500, set δ2 = 0.005 (left panel), δ2 = 0.1 (middle panel) and δ2 = 1 (right
panel). In each plot, the red solid line is the true function, the black dashed line stands for
the prediction based on gpeva, the blue dot-dashed line based on decon, the purple dotted
line based on gp. The darker and the lighter shades are the pointwise and simultaneous
95% credible intervals obtained with gpeva.

A careful inspection of our theory implies that placing a component-wise normal prior
on the covariate results in a slower posterior contraction rate in recovering both the true
covariate density and the true regression function. This is supported by the empirical
observation that much larger amse values are obtained by gpevn when δ2 becomes large.
Additional investigation regarding the recovery of covariate can be found in Figure 8 of
Appendix G. By comparing the posterior density function of covariates based on gpeva

and gpevn, one can see that a component-wise normal prior is unable to identify the true
covariate from the contaminated observations. In Figure 8 in Appendix G, we display a few
examples of the posterior marginal density function obtained by gpeva and gpevn, when
n = 500 and δ2 = 0.001, 0.1, 0.5, respectively. Recall that the true covariate distribution
is Unif[−3, 3] in our simulation setting. When δ2 = 0.001, both gpeva and gpevn recover
the true underlying density quite well, indicating that a DPMM prior on the marginal
density has a similar performance with independent normal priors on the locations. When
δ2 = 0.1, 0.5, the performance of both methods deteriorate dramatically in estimating the
marginal density function in Figure 8, which is expected since the best obtainable rate of
convergence becomes slower with large δ2. However, as δ2 increases, one can still notice
an improvement in estimating the covariate density using gpeva. The posterior density
function of the covariate obtained from gpevn is more erratic, suggesting that assigning
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independent normal priors on locations results in a poor recovery when the measurement
errors are more significant. In addition, we compared these two methods in terms of the
averaged mean squared error in recovering true locations in all cases of sample sizes in Table
3 in Appendix G, which tells a similar story regarding the performance of gpeva and gpevn.
In each iteration of the Gibbs sampler, we update the covariate values and update the rest
of parameters upon those, a better performance of recovering the true locations leads to a
better result in updating other parameters, which partially explains the outperformance of
gpeva in estimating the regression curve.

In addition to a comparable performance in prediction, gpeva is more computation-
ally efficient than gpevf . gpeva avoids repeated computation of the inverse of covariance
matrix associated with a full gp, at a price of updating hyperparameters of a relatively
moderate size (a fraction of sample size) related to Fourier basis functions. This is partic-
ularly beneficial for the errors-in-variables problem as covariates are treated as unknown
parameters and both covariates and the covariance matrices are updated in each iteration.
Also, for gp models, the choice of covariance kernel and treatment to the associated hyper-
parameters play an important role in the mixing of the Markov chains (Murray and Adams,
2010). To implement gpeva, we consider a squared exponential covariance kernel associated
witha bandwidth parameter, denoted by λ, which is treated as an unknown parameter. The
conjugate form of its spectral density induces a closed-form conditional of the bandwidth
parameter λ based on the Fourier basis representation. Figure 7 in Appendix G shows the
trace plots of posterior samples of the bandwidth parameter λ, where one can observe that
the mixing of the chain based on gpeva is much better than that based on gpevf . We also
remark that auto-correlation of the Markov chains obtained from gpeva and gpevf are
similar, which is from the boxplots of the effective sample sizes (ess) of estimated function
values based on gpeva and gpevf over training data points in Figure 9 of Appendix G. To
gauge the computational efficiency of gpev-based methods, we report that the computa-
tion time of gpeva, gpevn, gpevf for a single Markov chain iteration when n = 500 are
0.025, 0.022, 0.197 second separately, on an 8-Core Intel Core i9 computer with 32 GB RAM.
It is evident that implementing the proposed gp surrogate improves the computation speed
substantially and the improvement becomes more pronounced as the sample size increases.
In conclusion, gpeva stands out as a more robust and computationally efficient method for
tackling the errors-in-variables regression problem.

5. A Case Study

We re-analyzed the real data set studied in Berry et al. (2002) using the proposed gpev
method. As described in Berry et al. (2002), the data set was collected from a randomized
study where the actual content is not allowed to be disclosed. Basically, the data contains
a treatment group and a control group. In each group we have the surrogate measurement
W evaluated at baseline, and the observed response Y evaluated at the end of study. We
know smaller values of W and Y indicate a worse case in the study. As discussed in Berry
et al. (2002), the quantity of interest is the change from the baseline ∆(X) = f(X) − X.
We assume a normal zero-mean measurement error with two choices of variance, 1) a fixed
variance δ2 = 0.35, adopting the estimated value from the study; and 2) an unknown
variance δ2 which will be treated as an unknown parameter in the model. To implement
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the gpeva model, we choose N = 60 based on the simulation results, and consider an
exponential prior exp (λ0) with hyperparameter λ0 = 1.5 on the bandwidth parameter λ
associated with the squared exponential kernel. Besides, we treat the response error variance
σ2 as unknown and we consider an objective prior for σ2, namely, Π(σ2) ∝ 1/σ2, allowing
the data to update the parameter. To update σ2, we refer to Step 7 of the Gibbs sampler in
Appendix F. For both cases of δ2, we ran the Gibbs sampler with 1, 500 iterations with the
first 1, 000 being discarded as a burn-in. We consider the posterior mean as our Bayesian
estimator and report the 95% pointwise credible interval.

Figure 3 shows the prediction results of the changes by gpeva with δ2 = 0.35. We ob-
serve that for both the treatment and control groups, the change from the baseline increases
first and then decreases as the true baseline score increases, which coincides with the results
presented in Berry et al. (2002). In Figure 4, we compare the estimated changes by gpeva

with fixed δ2 and unknown δ2 for both groups. We observe that for both treatment and
control groups, an objective prior on δ2 results in a similar prediction of ∆(X) as that with
fixed δ2. Since the true regression and true covariates are unknown, we compute the mean
squared error as mse = 1

n

∑n
i=1{(f̂(x̂i)− yi)

2}, where {yi} are observed responses and {x̂i}
denote the posterior mean of covariates obtained by gpeva. The defined mse value accounts
for randomness in the responses and errors in estimating the regression function and the
covariates. Although this MSE value does not directly reflect the accuracy of predicting
the true function, it provides some insights when comparing the performance of various
methods. For the treatment group, the mse values for gpeva with δ2 = 0.35, gpeva with
unknown δ2 and the decon method are 4.35, 4.54, and 8.23 separately; and for the control
group, the mse for the three competitors are 3.87, 4.35 and 5.18, respectively. Theoretical
results have shown that with relatively large δ2, all methods may obtain an extremely slow
rate of convergence (Fan, 1991; Fan and Truong, 1993), which explains the large mse val-
ues. However, MSE values for gpeva are smaller than those of decon for both control and
treatment data, despite of knowledge of the measurement error variance, showing a superior
performance to decon in the real data example. The diagnostic results show the mixing of
Markov chains for {wj , sj , xj} are good in both scenarios for the gpeva model, refer to Fig-
ure 10 in Appendix G for more details on trace plots and density plots of posterior samples
of selected subsets of {ai, ωj , sj}.

6. Discussion

The article revisits error-in-variables regression problem from a Bayesian framework and
addresses two fundamental challenges. Theoretical guarantees on the convergence of the
posterior are established for the first time in a Bayesian framework. More specifically, opti-
mal rates of posterior convergence are obtained simultaneously for the regression function
as well as the covariate density. From a computational perspective, we provide a new Gaus-
sian process approximation which facilitates posterior sampling and avoids costly matrix
operations associated with a standard Gaussian process framework.

In addition to showing weak convergence of the approximate Gaussian process to the
original ones, we have also shown that when it is employed as a prior process, the resultant
posterior maintains same contraction results as those of original GPs in recovering both the
regression curve and covariate density function in EIV problem. As the procedure can be
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Figure 3: Estimate of ∆(X) on an evenly spaced test grid over [−2, 2] with δ2 = 0.35. The
solid line indicates the treatment group with the darker shade as its 95% pointwise credible
interval and the dashed line indicates the control group with the lighter shade as its 95%
pointwise credible interval.

Figure 4: Estimate of ∆(X) on an evenly spaced test grid over [−2, 2] with different choices
of δ2. The left panel indicates the treatment group and the right panel indicates the control
group. In both panels, the black lines stand for the posterior mean with δ2 = 0.35 with the
dark shades as 95% pointwise credible intervals, the blue lines stand for the posterior mean
with unknown δ2 with the light shades as 95% pointwise credible intervals.
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easily generalized to other nonparametric setting, this result implies some statistical guaran-
tee of the predictive performance of projection technique with the random Fourier features
under a Bayesian framework, which is a new addition to the theoretical investigations of
the random Fourier features.
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Appendix A. Technical Results

Section A.1 introduces notations used throughout the rest of the paper and some background
knowledge on the Gaussian process prior and its associated reproducing kernel Hilbert space.
Section A.2 collects all auxiliary results used to prove Theorem 1.

A.1 Notations and Backgrounds

We first introduce some notations used in the proofs. Denote by EX the marginal expecta-
tion with respect to random variable X; denote Pf,p

X,Y as the probability measure of random
pair (X,Y ) which has a joint density denoted by (f, p). Let ∗ denote the convolution, say,
for two functions f and g we define f ∗ g(·) =

∫
f(· − t)g(t) dt. Denote the Kullback–

Leibler divergence between functions f and g with respect to the Lebesgue measure µ by
KL(f, g) =

∫
f log(f/g) dµ and denote the second moment of the Kullback–Leibler diver-

gence by V (f, g) =
∫
f{log(f/g)}2 dµ. Define the ϵ-Kullback–Leibler neighborhood around

f0 as Bf0(ϵ) = {f : KL(f0, f) ≤ ϵ2, V (f0, f) ≤ ϵ2}. We also define the Hellinger distance
between two densities f and g as H(f, g) = {

∫
(
√
f − √

g)2dµ}1/2. And define the L2-

norm as ∥f∥2 =
√∫

f(x)2dx. Let 1C(·) denote the indicator function on any set C ⊂ R.
For two sets A,B, we denote their Cartesian product by A ⊗ B, the set contains all pairs
(x, y), where x ∈ A and y ∈ B. For two positive sequences an, bn, we write an = O(bn) if
limn→∞(an/bn) = c for some constant c > 0, and an = o(bn) if limn→∞(an/bn) = 0. At
last, we define a kth order kernel function K(·) that satisfies,∫

K(u) du = 1,

∫
K2(u) du < ∞,

∫
u⌊β⌋K(u) du ̸= 0,∫

ui−1K(u) du = 0, for i = 1, . . . , ⌊β⌋ − 1, β ≥ 2. (11)

Now we briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian
process prior; a detailed review can be found in van der Vaart and van Zanten (2008). A
Borel measurable random element W with values in a separable Banach space denoted by
(B, ∥·∥), for instance, the space of continuous functions C[0, 1], is called Gaussian if the
random variable b∗W is normally distributed for any element b∗ ∈ B∗, the dual space of
B. The reproducing kernel Hilbert space H attached to a zero-mean Gaussian process W
is defined as the completion of the linear space of functions t 7→ EW (t)H relative to the
inner product

⟨E(W (·)H1); E(W (·)H2)⟩H = E(H1H2),

where H,H1 and H2 are finite linear combinations of the form
∑

i aiW (si) with ai ∈ R and
si in the index set of W .

Let W = (Wt : t ∈ R) be a Gaussian process associated with a squared exponential
covariance kernel, which is

C(t, t′) = e−(t−t′)2 .
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The spectral measure mw of W is absolutely continuous with respect to the Lebesgue
measure λ on R with the Radon-Nikodym derivative given by

dmw

dλ
(x) =

1

(2π)1/2
e−x2/4.

Define a scaled Gaussian process W a = (Wat : t ∈ [0, 1]), viewed as a map in C[0, 1]. Let
Ha denote the reproducing kernel Hilbert space of W a, with the corresponding norm ∥·∥Ha .
The unit balls in reproducing kernel Hilbert space and in the Banach space are denoted by
Ha

1 and B1, respectively.
Next we describe the construction of the sieve Pn on the parameter space of (f, p), the

parameter space of p. For fixed constants m,σ, σ̄ > 0 and integer H ≥ 1. Let

F =

{
pF,σ̃ = ϕσ̃ ∗ F : F =

∞∑
h=1

πhδzh , zh ∈ [−m,m], h ≤ H,
∑
h>H

πh < ϵn, σ ≤ σ̃ < σ̄

}
.

Set Pn = B̃n ⊗F , where B̃n = Bn ∩ A with Bn = MnHan
1 + ϵnB1 and A as in Assumption

3.

A.2 Auxiliary Results

In this section, we collect auxiliary results that are needed for the proofs of main theorems.
The proofs of Lemmata 5-8 are deferred to Appendix E.

Lemma 5 Suppose Assumptions 1, 2, 3 and 4 hold, by taking Mn = an = ϵ
−1/β
n , H ≲

nϵ2n,m
τ1 ≲ n, σ ≲ n−1/2τ2 and σ̄2τ3 ≲ en, we have Π(Pc

n) ≤ e−nϵ2n with ϵn = n−β/(2β+1)(log n)t,
where t = max {(2 ∨ q)β/(2β + 1), 1}.

Lemma 6 For model (1), p̂n and f̂n defined in Equations (3) and (4) and f, p ∈ Pn for
any small constant ϵ0 > 0,

P p
W,X(||p̂n − p||∞ > ϵ0) ≤ e−C1nϵ0h2

n , (12)

P p
W,X(||p̂n − p||1 > ϵn) ≤ e−nϵ2n , (13)

P f,p
Y,W,X(||f̂n p̂n − f p||1 > ϵn) ≤ e−nϵ2n , (14)

where hn ≍ ϵ
1/β
n , ϵn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1} and some

constant C1 > 0.

Lemma 7 Suppose Assumptions 2, 3 and 4 hold, then Π{KL(p0, ϵn)} ≥ e−nϵ2n, where
ϵn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1}.

Lemma 8 Under the conditions in Theorem 1 and suppose Lemma 7 hold, for sufficiently
large n,

Π
{
B(f0,p0)(ϵn)

}
≥ e−nϵ2n ,

where B(f0,p0)(ϵn) is defined in (16) and ϵn = n−β/(2β+1)(log n)t with
t = max {(2 ∨ q)β/(2β + 1), 1}.
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Lemma 9 (Theorem 7.3 in Bousquet 2003) Suppose G is a countable set of functions g :
X → R and assume all functions g ∈ G are measurable, squared-integrable and satisfy
E{g(Xk)} = 0. Assume supg∈G ess sup g is bounded and define Z = supg∈G

∑n
k=1 g(Xk).

Let σG be a positive real number such that nσ2
G ≥

∑n
k=1 supg∈G E{g2(Xk)}, then for all

t > 0 with ν = nσ2
G + 2E(Z), we have

P

{
Z ≥ E(Z) + (2tν)1/2 +

t

3

}
≤ e−t.

Lemma 10 (Borell’s inequality in Adler 1990) Let {f(x) : x ∈ [0, 1]} be a centered Gaus-
sian process and denote ∥f∥∞ = supx∈[0,1] f(x) and σ2

f = supx∈[0,1]E{f2(x)}. Then
E(∥f∥∞) < ∞ and for any t > 0,

P (|∥f∥∞ − E∥f∥∞| > t) ≤ 2e−
1
2
t2/σ2

f .

Appendix B. Proof of Theorem 1

In this section, we provide the proof of Theorem 1. Given ϵn, ϵ
′
n in Theorem 1, define

Un = {f, p : ||f−f0||1 < Mϵn, ||p−p0||1 < Mϵ′n}, our goal is to show Πn(U
c
n | Y1:n,W1:n) → 0

almost surely in Gf0,p0 as n → ∞. To that end, note that

Πn(U
c
n | Y1:n,W1:n)

≤ Πn(f, p : ||f − f0||1 > Mϵn | Y1:n,W1:n) + Πn(p : ||p− p0||1 > Mϵ′n | W1:n) := S1 + S2.
(15)

It suffices to estimate S1 and S2 in the preceding separately. We shall analyze term S1 in
detail and only provide a brief discussion about bounding term S2 as it can be considered
as an immediate application of existing results.

Bounding term S1 in Equation (15). Define the ϵn-Kullback–Leibler neighborhood around
(f0, p0) as

Bf0,p0(ϵn) =

{∫
gf0,p0 log

gf0,p0
gf,p

≤ ϵ2n,

∫
gf0,p0

(
log

gf0,p0
gf,p

)2

≤ ϵ2n

}
. (16)

The following Theorem provides sufficient conditions showing S1 → 0 almost surely as
n → ∞. A sketch of the proof is provided in the following.

Theorem 4 (Contraction Theorem) Consider model (1) and under the conditions in The-
orem 1, let Un = {||f − f0||1 > Mϵn}. If there exist a sequence of ϵn → 0 and nϵ2n → ∞
and a sequence of sieve Pn ⊂ P, and a sequence of test functions ϕn = 1{||f̂n−f0||1>(M−1)ϵn}
satisfying the following conditions,

Gf0,p0 ϕn ≤ e−(C+4)nϵ2n , sup
(f,p)∈Pn∩ Un

Gf,p (1− ϕn) ≤ e−(C+4)nϵ2n , (17)

Π
{
Bf0,p0(ϵn)

}
≥ e−nϵ2n , (18)

Π(Pc
n) ≤ e−(C+4)nϵ2n , (19)

for some constant C > 0, then Πn(Uc
n | Y1:n,W1:n) → 0 almost surely in Gf0,p0, for the

constant M same as in Theorem 1.
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Proof (Sketch) Define the set

Cn =

{∫
Πn

j=1gf,p (Yj ,Wj)

Πn
j=1gf0,p0 (Yj ,Wj)

dΠ(f)dΠ(p) ≥ e−(C+3)nϵ2n Π
{
Bf0,p0(ϵn)

}}
.

Under the conditions in Theorem 1, from Lemma 8.1 in Ghosal et al. (2000), it follows
Gf0,p0(Cn) ≥ 1 − 1/(C ′nϵ2n), for some constant C ′ > 0. Hence for any sequence of test
functions {ϕn},

Πn(Uc
n | Y1:n,W1:n) ≤ Gf0,p0ϕn +Gf0,p0{(Cc

n) +Gf0,p0Π(Pc
n | Y1:n,W1:n)1Cn}

+Gf0,p0{Π(Un ∩ Pn | Y1:n,W1:n) (1− ϕn)1Cn}.

We suppress the term “almost surely” in the following argument. According to Conditions
(18) and (19), the third term in the above display goes to 0. From Conditions (17) and
(18), the first and the fourth terms in the preceding go to 0. Then we have shown S1 → 0
as n → ∞.

We now verify three conditions in Theorem 4 under the conditions in Theorem 1, based
on the auxiliary results summarized in Appendix A.2. The main steps are

• Condition (18) of Theorem 4: Follows from Lemma 8 under the conditions of Theorem
1.

• Condition (19) of Theorem 4: Follows from Lemma 5 under the conditions of Theorem
1.

• Condition (17) of Theorem 4: For model (1), recall p̂n and f̂n defined in Equations

(3) and (4), and f, p ∈ Pn, it suffices to estimate P f0,p0
Y,W,X(||f̂n − f0||1 > ϵn) and

P f,p
Y,W,X(||f̂n − f ||1 > ϵn). Following a similar line of argument in Meister (2009),

for any marginal density p0 satisfying Assumption 2, for any p ∈ Pn ∪ p0 define
∆p = (p̂n − p)/p, then for any f ∈ Pn ∪ f0 we have

|f̂n − f | ≤ |f̂np̂n − fp|
|p|

(
|∆p|

|∆p+ 1|
+ 1

)
+ |f | |∆p|

|∆p+ 1|
.

By Assumption 2, p0 is lower-bounded by some constant B−1 > 0. Then applying
the Equantion (12) in Lemma 6, for any constant ϵ0 > 0 we have ||p̂n − p||∞ < ϵ0
with probability at least 1 − e−nϵ0h2

n . Define the set Aϵ = {p : ||p̂n − p||∞ < ϵ0}.
Thus for p ∈ Pn ∩ Aϵ, ||p − p0||∞ ≤ ||p̂n − p0||∞ + ||p̂n − p||∞ ≤ 2ϵ0. Then ||p||∞ ≥
||p0||∞ − ||p − p0||∞ ≥ B1, for some constant B1 > 0 by choosing ϵ0 < B−1/2. Thus
for f ∈ Pn ∪ f0 and p ∈ Pn ∩ Aϵ, we have

||f̂n − f ||1 ≤
1

B1
||f̂np̂n − fp||1

(∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
∞

+ 1

)
+ ||f ||∞

∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
1

. (20)

Since ∥|∆p||∞ ≤ ϵ0/B1, choosing ϵ0 such that ϵ0/B1 ≤ 1/2, then we have ||∆p/(∆p+
1)||∞ ≤ 1 and 1/2 ≤ ||∆p + 1||∞ ≤ 3/2 and therefore 1/||∆p + 1||∞ ≤ 2. Thus we

25



Zhou, Pati, Wang, Yang and Carroll

have, ∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
1

≤ 1

||∆p+ 1||∞||p||∞

∫ 1

0
|p̂n(x)− p(x)|dx ≤ 2

B1
||p̂n − p||1.

Similarly for p = p0 ∈ Aϵ, we bound ||∆p/(∆p + 1)||1 ≤ 2B||p̂n − p0||1. Combining
the above results and the result in Equation (20), we obtain,

P (||f̂n − f ||1 > ϵn) ≤ P (||f̂n · p̂n − f · p||1 > B1ϵn/4)

+ P{||p̂n − p||1 > B1ϵn/(4||f ||∞)}
+ P (||p̂n − p||∞ > ϵ0).

Since we assume f0 and f ∈ Pn are bounded, applying Lemma 6 verifies Condition
(17).

Bounding term S2 in Equation (15). To estimate S2, we apply an inversion inequality built
upon a special kernel function (the sinc kernel) considered in Donnet et al. (2018), then
apply the existing posterior contraction result for the direct density problem. Recall the
Fourier transform of the error density ϕ̂δn(t) ≍ δne

−π2δ2nt
2
. Then with a careful inspection

of the proof of Proposition 1 in Donnet et al. (2018), one can obtain the inversion inequality

∥p− p0∥22 ≲ δ2β
′
+ ∥ϕδn ∗ p− ϕδn ∗ p0∥21 ×

∫
|t|≤1/δ

|ϕ̂δn |−2dt

≲ δ2β
′

n + ∥ϕδn ∗ p− ϕδn ∗ p0∥21, (21)

where β′ denotes the regularity level of p0. The last inequality in Equation (21) holds by
choosing δ ≍ δn and the fact that

∫
|t|≤1/δ |ϕ̂δn |−2dt ≲ (δn/δ)e

2π2(δn/δ)2 = O(1). Denote the
observed density and the true density of W by fW = ϕδn ∗ p and f0W = ϕδn ∗ p0 separately.

By Cauchy-Schwarz inequality, Equation (21) implies ∥p− p0∥1 ≲ max{δβ
′

n , ∥fW − f0W ∥1}.
Then under the Assumptions 2 and 4, for δn, ϵ

′
n defined in Theorem 1, one can easily show

S2 = o(1), by applying posterior contraction results for direct density estimation problem
from the seminal work (Ghosal and van Der Vaart, 2001; Shen et al., 2013), which leads
to the error rate ϵ′n = n−β′/(2β′+1)(log n)t

′
with t′ > (γ + 1/β′)/(2 + 1/β′) for some γ > 2

under Assumption 2.

Combining above results for terms S1 and S2 completes the proof of Theorem 1, and let-
ting ϵn = n−β/(2β+1)(log n)t, ϵ′n = n−β′/(2β′+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), t′}
yields the desired rates in Theorem 1.

Appendix C. Proof of Theorem 2

In this section, we provide a proof of Theorem 2. In Part I, we shall first show the weak
convergence of f̃N to the original Gaussian process; in Part II, we derive expressions of
expectation and covariance of f̃N .
Part I. We now show f̃N weakly converges to the Gaussian process f . Based on Theorem
1.5.7 in van der Vaart and Wellner (1996), it suffices to show the marginal weak convergence
and asymptotical tightness of f̃N .
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First, we show the marginal weak convergence. For any finite sequence {x1, . . . , xk}
in [0, 1] of size k where k is arbitrary positive integer, applying multivariate central limit
theorem with the expectation and covariance of f̃N derived in Part II, one can easily show
that as N → ∞,

{f̃N (x1), . . . , f̃N (xk)} → N(0, ck,k),

in distribution, where ck,k = (cij) is a k × k covariance matrix with the (i, j)th element
cij = c(xi, xj).

Next, we show the asymptotic tightness of f̃N . By definition, it suffices to verify the
following three conditions. First, it is straightforward that [0, 1] is totally bounded. Second,
for any fixed x0 ∈ [0, 1], we shall show the tightness of f̃N (x0). It is equivalent to show, by
definition, for any ϵ > 0, there exists a compact set K such that,

P{f̃(x0) ∈ K} > 1− ϵ. (22)

For any x0 ∈ [0, 1], we bound f̃N (x0) from above as

|f̃N (x0)| ≤ (2/N)1/2
N∑
i=1

|aj |,

where aj
i.i.d.∼ N(0, 1), j = 1, . . . , N . It is well-known that |aj | is a sub-gaussian random

variable for j = 1, . . . , N . For any t > 0, we have

P{|f̃N (x0)| ≥ t} ≤ P

{
(2/N)1/2

N∑
i=1

|aj | ≥ t

}
≤ 2 exp(−ct2),

for some constant c > 0. For any ϵ > 0, we choose t = {2 log(1/ϵ)}1/2 and the set K =
{|f̃(x0)| ≤ t}, then Equation (22) holds, thus we show the tightness of f̃N (x0) for any
x0 ∈ [0, 1].

Third, we shall show f̃N is asymptotically uniformly eqicontinuous with respect to the
Euclidean norm, which is defined as d(x, y) = |x− y|, for x, y ∈ R. It suffices to show that
for any ϵ, η > 0, there exists some δ > 0 such that

lim sup
N→∞

P

{
sup

d(x,y)<δ
|f̃N (x)− f̃N (y)| > ϵ

}
< η. (23)

Without loss of the generality, we assume 0 ≤ x ≤ y ≤ 1. Then

sup
|x−y|≤δ

|f̃N (x)− f̃N (y)| = sup
|x−y|≤δ

∣∣∣∣ 1√
N

N∑
j=1

aj{cos(wjx+ uj)− cos(wjy + uj)}
∣∣∣∣

≤ sup
θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ δ.
The inequality in the preceding holds by applying the mean-value theorem, namely, there
exists a sequence {θ1, . . . , θN} such that we have θj ∈ (x, y) satisfying cos(wjx + uj) −
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cos(wjy + uj) = −wj sin(wjθj + uj)(x − y) for j = 1, . . . , N . To show Equation (23), it
remains to show

lim sup
N→∞

P

{
sup

θ∈[0,1]N

∣∣∣∣ 1N
N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ > ϵ/δ

}
< η.

For any fixed λ > 0, recall that wj
i.i.d.∼ N(0, 2/λ), for j = 1, . . . , N . Then (λ/2)

∑N
j=1w

2
j

is a chi-square random variable with the degree of freedom N . Let K = c
√
2/λ with some

constant c ∈ (1, 2), then by the sub-exponential tail bound of a chi-square random variable,
we have

P

(
1

N

N∑
j=1

w2
j > K

)
≤ exp(−NK2/8). (24)

Now define the set A = {w ∈ RN : (1/N)
∑N

j=1w
2
j ≤ K} and define the truncated

variable w̃ = w1A(w) over the set A, the density function of w̃ follows as Πw̃(·) =
N(·; 0, 2/λ)1A(·)/P (w ∈ A). For any fixed N ,

P

(
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ > ϵ/δ

)

≤ P

({
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ > ϵ/δ

}
∩ A

)
+ P (Ac). (25)

By Equation (24), we see that limN→∞ P (Ac) = 0. Now we estimate the first term on the
right hand side of Equation (25). First, we consider

P

({
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ > ϵ/δ

}
∩ A

)

= Ew̃,u

{
Pa|w̃,u

(
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj w̃j sin(w̃jθj + uj)

∣∣∣∣ > ϵ/δ | w̃, u
)}

.

With fixed {w̃j , uj}, define the set of indexes JN = {1 ≤ j ≤ N : ajw̃j ≥ 0}, then

sup
θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj w̃j sin(w̃jθj + uj)

∣∣∣∣ ≤ 1√
N

∣∣∣∣ JN∑
j′=1

aj′ w̃j′

∣∣∣∣. (26)

Then

Pa|w̃,u

(
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj w̃j sin(w̃jθj + uj)

∣∣∣∣ > ϵ/δ | w̃, u
)

≤ Pa|w̃,u

(∣∣∣∣ JN∑
j′=1

aj′ w̃j′

∣∣∣∣ > ϵ
√
N/δ | w̃, u

)

≤ 2 exp

(
− cNϵ2

2δ2
∑JN

j′=1 w̃
2
j′

)
≤ 2 exp

(
− c ϵ2

2Kδ2

)
,
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where c > 0 is some constant. The first inequality in the preceding applies the bound in
Equation (26); the second inequality holds by applying the general Hoeffding’s inequality
for independent Gaussian random variables; the third inequality is due to the fact that
JN ≤ N for any fixed N . Therefore we have

lim sup
N→∞

P

({
sup

θ∈[0,1]N

∣∣∣∣ 1√
N

N∑
j=1

aj wj sin(wjθj + uj)

∣∣∣∣ > ϵ/δ

}
∩ A

)
≤ 2 exp

(
− c ϵ2

2Kδ2

)
.

Combining the above result with the bound for P (Ac), we show that for any ϵ, η > 0, Equa-
tion (23) holds by choosing δ =

√
cϵ2/{K log(1/η)}. Therefore, we have verified that f̃N is

asymptotically uniformly eqicontinuous with respect to Euclidean norm. Then we complete
the proof of weak convergence of f̃N to the original Gaussian process.

Part II. Now we compute the expectation and covariance of f̃N . For any x ∈ R,

E{f̃N (x)}

= (2/N)−1/2
N∑
j=1

∫ ∫
1

2π
cos(wjx+ sj)ϕc(wj) dwj dsj

= (2/N)−1/2
N∑
j=1

∫
1

2π

{
cos(wjx)

∫ π

−π
cos sjdsj − sin(wjx)

∫ π

−π
sin sjdsj

}
ϕc(wj) dwj = 0.

For any x, y ∈ R,

cov{f̃N (x), f̃N (y)}

= (2/N)

N∑
j=1

cov{cos(wjx+ sj), cos(wjx+ sj)} = 2Ew,s cos(xw + s)2

=
1

2π

∫
w

∫ π

−π
[cos{(x+ y)w + 2s}+ cos{(x− y)w}]ϕc(w)dsdw

=
1

2π

∫
w

(∫ π

−π
[cos{(x+ y)w} sin(2s) + sin{(x+ y)w} cos(2s)] ds+ cos{(x− y)w}

)
ϕc(w) dw

=
1

2π

∫
w
cos{(x− y)w}ϕc(w) dw = c(x, y).

We now have completed the proof of Theorem 2.

Appendix D. Proof of Theorem 3

To prove Theorem 3, it suffices to prove Theorem 4 by verifying Conditions (17), (18),
and (19). As the line of argument is similar to the proof of Theorem 1, below we only
highlight different steps. We use bold letters a,ω, s to denote the vector form of parameters
{aj}, {ωj}, {sj}, respectively.

First we define the sequence of sieves for parameters {aj , ωj , sj}Nj=1 in f̃N as

DN =
{
(ai, ωj , sj) : aj ∈ [−

√
nϵn,

√
nϵn], ωj ∈ [−nϵ2n, nϵ

2
n], sj ∈ [0, 2π], j = 1, . . . N.

}
,

(27)
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for any fixed positive integer N > 0 and ϵn is defined in Theorem 1. Denote D̃N = DN∩ÃN ,
where ÃN = {(ai, ωj , sj) : ∥f̃N∥∞ ≤ A0, j = 1, . . . N.} for the same constant A0 defined in
Assumption 3.

We now start from verifying Condition (18), which suffices to show Lemma 8 for f̃N .
Define the set B̃(f0,p0)(ϵn) as the KL–neighborhood of f̃N centered at (f0, p0), by replacing

f with f̃N in the definition of B(f0,p0)(ϵn) in (16). It suffices to lower bound

Π
{
B̃(f0,p0)(ϵn)

}
≥

∫ r1

r0

Π
{
B̃(f0,p0)(ϵn) | A = a

}
g(a)da, (28)

for arbitrary fixed constants r0, r1 > 0. Then, following a same argument in the proof of
Lemma 8 leads to

Π
{
B̃(f0,p0)(ϵn) | A = a

}
≥ Π(∥f̃A,N − f0∥∞ ≤ ϵn | A = a)Π(KL(p0, p) ≤ ϵ2n).

It suffices to lower bound the first probability term on the right hand side of the preceding.
For simplicity, we use the shorthand f̃a,N for f̃A,N conditioning on A = a. For any a > 0,
recall an original Gaussian process f ∼ gp(0, ca(·, ·)) and apply the triangular inequality
that ∥f̃a,N − f0∥∞ ≤ ∥f̃a,N − f∥∞ + ∥f − f0∥∞ ≤ ∥f̃a,N∥∞ + ∥f∥∞ + ∥f − f0∥∞. Then one
obtains

Π(∥f̃a,N − f0∥∞ ≤ ϵn) ≥ Π(∥f̃a,N∥∞ + ∥f∥∞ + ∥f − f0∥∞ ≤ ϵn)

≥ Π(∥f̃a,N∥∞ ≤ ϵn/3)Π(∥f∥∞ ≤ ϵn/3)Π(∥f − f0∥∞ ≤ ϵn/3). (29)

In van der Vaart and van Zanten (2009), it is shown that Π(∥f∥∞ ≤ ϵn/3) ≳ e−cnϵ2n and
Π(∥f − f0∥∞ ≤ ϵn/3) ≳ e−c′nϵ2n for some constants c, c′ > 0. Then to bound (29), it suffices
to bound

Π(∥f̃a,N∥∞ ≤ ϵn/3) = Π

(∥∥∥∥(2/N)1/2
N∑
j=1

aj cos(wjx+ sj)

∥∥∥∥
∞

≤ ϵn/3

)

≥ Π

(
(2/N)1/2

N∑
j=1

|aj | ≤ ϵn/3

)
≥ Π

(
∥a∥2 ≤ ϵ2n/18

)
,

where ∥a∥2 =
∑N

j=1 a
2
j ∼ χ2

N , which is a centered chi-square random variable with the
degree of freedom N . Further, we have

Π
(
∥a∥2 ≤ ϵ2n/18

)
=

∫ ϵ2n/18

0
2−N/2{Γ(N/2)}−1xN/2−1 exp(−x/2)dx

≥ (ϵ2n/36)
N/2

√
2πN(N/2)−N/2 exp(−ϵ2n/36)

≥ {ϵn/(C
√
N)}N ≍ exp{−N log(C

√
N/ϵn)} ≳ exp(−cnϵ2n),

by choosingN such thatN log(
√
N/ϵn) ≲ nϵ2n. Notice that the above bound holds uniformly

for all a > 0. Also by Assumption 3, we can show for any fixed constants 0 < r0 < r1

P (r0 ≤ A ≤ r1) ≥ (r1 − r0)C1r
p
0 exp(−D1r0 log

q r0). (30)
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Then, invoke the above results in (28) and (29), we have Π{B̃(f0,p0)(ϵn)} ≳ e−c1nϵ2nP (r0 ≤
A ≤ r1) ≳ e−c2nϵ2n for some constants c2 > c1 > 0. Then, we have verified Condition (18).

Next, we verify Condition (19), it suffices to show the desired bound for Π(D̃c
N ). Note

that Π(D̃c
N ) = Π(Dc

N | ÃN ) ≤ Π(Dc
N )/Π(ÃN ). Similar to the proof of Theorem 1, it is easy

to show that

Π(ÃN ) ≥
∫ r1

r0

Π(∥f̃a,N∥∞ ≤ A0)g(a)da

≥ Π

(
(2/N)1/2

N∑
j=1

|aj | ≤ A0

)
P (r0 < A < r1) ≥ c′ exp{−N log(C ′√N)}, (31)

for some constants c′, C ′ > 0. Again, the second inequality holds by the fact that
Π(∥f̃a,N∥∞ ≤ A0) ≤ Π{(2/N)1/2

∑N
j=1 |aj | ≤ A0} universally for all a > 0, and the last

inequality uses the result in (30). Next we have

Π(Dc
N ) ≤ 2

[
Πa,N

({
∩N
j=1 [−

√
nϵn,

√
nϵn]

}c)
+Πω,N

({
∩N
j=1 [−nϵ2n, nϵ

2
n]
}c)]

. (32)

Recall aj
i.i.d.∼ N(0, 1) for j = 1, . . . , N . First, we can show that

Πa,N

({
∩N
j=1 [−

√
nϵn,

√
nϵn]

}c)
= Πa,N

(
max

1≤j≤N
|aj | ≥

√
nϵn

)
≤ Πa,N

(
max

1≤j≤N
|aj | − E max

1≤j≤N
|aj | ≥

√
nϵn/2

)
≤ exp(−nϵ2n/8). (33)

The inequality holds by the known result that Emax1≤j≤N |aj | ≤ cσ2
max

√
2 logN for {aj}

are independent centered Gaussian random variables with σ2
max = maxj{var(aj)} = 1.

Given the chosen N , it is obvious that Emax1≤j≤N |aj | < nϵ2n/2. The last inequality uses
the tail bound for the maximum of independent Gaussian random variables.

For any fixed a > 0, denote ωj |(A = a) by ωa
j

i.i.d.∼ N(0, a2) for j = 1, . . . , N . Similarly,
we can show

Πω,N

({
∩N
j=1 [−nϵ2n, nϵ

2
n]
}c | A = a

)
= Π

(
max

1≤j≤N
|ωa

j | ≥ nϵ2n

)
≤ Π

(
max

1≤j≤N
|ωa

j | − E max
1≤j≤N

|ωa
j | ≥ nϵ2n/2

)
≤ exp

{
− (nϵ2n)

2/8a2
}
. (34)

The last inequality holds due to facts that Emax1≤j≤N |ωj | ≤ c′a
√
2 log(2N) for some

constant c′ > 0 and choosing Rn ≍
√
nϵn, and an application of the concentration bound of

the maximum of independent Gaussian random variables.
Then we have for some Rn > 0 that depends on n,

Πω,N

({
∩N
j=1 [−nϵ2n, nϵ

2
n]
}c) ≤ ∫ Rn

0
Πωa,N

({
∩N
j=1 [−nϵ2n, nϵ

2
n]
}c)

g(a)da+ P (A > Rn).

Based on the final bound in (34), the second term on the right hand of the preceding can
be upper bounded by∫ Rn

0
exp

{
− (nϵ2n)

2/8a2
}
g(a)da ≤ exp

{
− (nϵ2n)

2/8R2
n

}
≍ exp(−c′nϵ2n),
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for some constant c′ > 0. Choosing Rn ≍
√
nϵn leads to the final bound in the preceding.

And we have P (A > Rn) ≲ e−c̃nϵ2n for some constant c̃ > 0 based on Lemma 4.9 of van der
Vaart and van Zanten (2009). Then invoking these results in (32) combined with the result
in (33) leads to the desired result that Π(D̃c

N ) ≲ e−c3nϵ2n for some constant c3 > 0, by
choosing N such that N logN ≲ nϵ2n.

At last, we verify Condition (17). First, we estimate the entropy of the sieves. For
arbitrary two parameter vectors θ = (a,ω, s) and θ′ = (a′,ω′, s′) ∈ D̃N and θ ̸= θ′, denote
f̃N , f̃ ′

N associated with θ, θ′, respectively. Then

∥f̃N − f̃ ′
N∥∞ =

√
2

N

∥∥∥ N∑
j=1

aj cos(ωjx+ sj)−
N∑
j=1

a′j cos(ω
′
jx+ s′j)

∥∥∥
∞

≤
√

2

N

[∥∥∥ N∑
j=1

(aj − a′j) cos(ωjx+ sj)
∥∥∥
∞

+
∥∥∥ N∑

j=1

a′j{cos(ωjx+ sj)− cos(ωjx+ sj)}
∥∥∥
∞

]

≤
√

2

N

{
∥a− a′∥1 +

√
nϵn(∥ω − ω′∥1 + ∥s− s′∥1)

}
.

We now consider the partition Sn of length ϵn/
√
N on the interval [−

√
nϵn,

√
nϵn] for

each of {aj} for all j and the partition On of length 1/
√
nN on the interval [−nϵ2n, nϵ

2
n] for

{ωj} and the partition Mn of length 1/
√
nN on the interval [0, 2π] for {sj}. For any f̃N ∈

DN , we can always find {a′j , ω′
j , s

′
j} with a′j ∈ Sn, ω

′
j ∈ On and s′j ∈ Mn for j = 1, . . . , N ,

such that f̃ ′
N (x) =

√
2/N

∑N
j=1 a

′
j cos(ωjx+ sj) satisfies ∥f̃N − f̃ ′

N∥∞ ≤ ϵn. By definition,

it is obvious that N(ϵn, D̃N , ∥ · ∥∞) ≤ N(ϵn,DN , ∥ · ∥∞). Then, it suffices to bound

N(ϵn,DN , ∥ · ∥∞) ≤
[
2
√
nϵN/

(
ϵn/

√
N
)
+ 1

]N ×
[
2nϵ2n/

(√
nN

)−1
+ 1

]N ×
(
4π

√
nN

)N
≲ (n3/2N1/2ϵ2n)

N .

It is easy to see that logN(ϵn,DN , ∥ · ∥∞) ≲ N log n ≲ nϵ2n by choosing N such that
N log n ≲ nϵ2n. Therefore we have verified the entropy condition.

Based on a same argument of verifying Condition (17) in the proof of Theorem 1, to
complete the proof, it suffices to verify that Lemma 6 holds for all f̃N ∈ D̃N . For any
f̃N ∈ D̃N , it is easy to show that Proposition 12 holds since ∥f̃N∥∞ ≤ A0 and f̃N is in-
finitely differentiable, which are key points to verify equations (28) and (29). Then we
can verify equations (12), (13), and (14) and complete the proof of Lemma 6. Putting all
pieces together, we have shown Theorem 4 for f̃N , leading to the desired result in Theorem 3.

Appendix E. Proof of Auxiliary Results

In this section, we provide the proof of Lemmata 5, 6, 7 and 8 consecutively.
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E.1 Proof of Lemma 5

Based on the definition of sieves Pn, one has Pc
n = (Bc

n ⊗F) ∪ (Bn ⊗Fc) ∪ (Bc
n ⊗Fc) and

Π(Pc
n) ≤ 2{Π(Bc

n) + Π(Fc)}. We first bound Π(Fc). Under Assumptions 3 and 4,

Π(Fc) ≤ Hᾱ([−m,m]c) + P (σ̃ ̸∈ [σ, σ̄]) + P

( ∑
h>H

πh > ϵ

)

≤ He−b1mτ1
+ c2σ̄

−2τ3 + c1e
−b2σ−2τ2

+

(
e|α|
H

log
1

ϵ

)H

.

Choosing mτ1 ≲ n, σ ≲ n−1/2τ2 and σ̄2τ3 ≲ en with ϵ = ϵn for ϵn defined in Theorem 1, the
first three terms on the right hand side of second line in the preceding can be bounded by
a multiple of e−n, and by taking H ≲ nϵ2n the last term in the same line can be bounded
from above by,(

e|α|
H

log
1

ϵ

)H

≲ e−H log(H logn) ≲ e−
1

2α+1
n1/(2α+1)(logn)2t+1

≲ e−c4n1/(2α+1)(logn)2t .

Thus Π(Fc) ≲ e−c4nϵ2n for every c4 > 0.
Now we bound Π(B̃c

n). By definition, Π(B̃c
n) = Π(Bc

n | A) ≤ Π(Bc
n)/P (A), with A de-

fined in Assumption 3. Based on the facts that E(||f ||∞) < ∞ and σ2
f = supx∈[0,1]E{f(x)}2 <

∞, applying Borell’s inequality in Lemma 10, we have P (A) = P (||f ||∞ < A0) ≥ 1 −
e−A2

0/2σ
2
f ≥ a0, for some A0 > 0 and a0 ∈ (0, 1). Thus Π(B̃c

n) ≲ Π(Bc
n) ≲ e−nϵ2n with

M2
n ≲ nϵ2n and a2n ≲ nϵ2n. More details can be found in the proof of Theorem 3.1 in van der

Vaart and van Zanten (2009).

E.2 Proof of Lemma 6

To prove Lemma 6, we will prove the inequality in Equation (14) in detail and only mention
the key elements in the proof of results in Equations (12) and (13) since they all follow
the similar line of argument. The key elements of the proof are applications of Talagrand’s
inequality stated in Lemma 9, bounded L1-norm of the deconvolution kernel Kn and tight
bounds on the bias terms of deconvolution estimators based on the construction in Equations
(3) and (4). The last two results are stated in the following Proposition 11 and Proposition
12.

Proposition 11 For any kernel function K satisfying conditions in Equation (11) and Kn

defined in Equation (5), we have ||Kn||1 < C1, for some constant C1 > 0.

Proof There exists a symmetric and integrable kernel function K such that Equation
(11) hold and the Fourier transform ϕK(t) = 1[−1,1]/(2π), which is symmetric, real-valued,
bounded infinitely smooth function with a compact support. We remark that one example
of kernels that satisfy the above conditions is the sinc kernel. For any fixed positive constant
a,

∫
|Kn(s)| ds =

∫
|s|≤a |Kn(s)| ds+

∫
|s|>a |Kn(s)| ds. We have

|Kn(s)| ≤
∫

|e−its| |ϕK(t)|
|ϕδ(t/hn)|

dt ≤
∫ 1

−1

|ϕK(t)|
|ϕδ(t/hn)|

dt ≲ exp(δ2n/2h
2
n),
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thus
∫
|s|≤a |Kn(s)| ds ≲ exp(δ2n/2h

2
n) = O(1). For |s| > a, by Cauchy-Schwarz inequality,∫

|s|>a
|Kn(s)|ds ≤

(∫
|s|>a

1

s4
ds

)1/2{∫
|s|>a

s4Kn(s)
2ds

}1/2

.

By Parseval’s theorem,
∫
{s2Kn(s)}2 ds =

∫
{g′′(t)}2 dt with

g(t) = ϕK(t)/ϕδ(t/hn) =
1

2π
e−t2δ2/(2h2

n) 1[−1,1].

Since g′′(t) is the Fourier transform of (is)2Kn(s), also g(t), g′(t), g′′(t) are continuous and
therefore bounded on [−1, 1]. Thus

∫
{s2Kn(s)}2 ds is bounded and so is

∫
|s|>a 1/s

4 ds,

which yields the result that
∫
|Kn(s)| ds is bounded.

The following Proposition provides tight bounds on the bias terms of p̂n and f̂np̂n
separately.

Proposition 12 For p̂n and f̂n defined in Equation (3) and Equation (4) and for any
f, p ∈ Pn we have

||EW,X(p̂n)− p||1 ≲ ϵn, and ||EY,W,X(f̂np̂n)− fp||1 ≲ ϵn,

with ϵn defined in Theorem 1.

Proof By Fourier inversion theorem, it is easy to show that EW,X(p̂n) = Khn ∗ p(x) and

EY,W,X(f̂np̂n) = Khn ∗ (fp) with Khn = K(·/hn)/hn. First for any p = ϕσ̃ ∗ F , by Cauchy-
Schwarz inequality we have ||Khn ∗ p− p||1 ≤ ||Khn ∗ p− p||2. Recall the Fourier transform
of the kernel function K is denoted by ϕK(t), applying Parseval’s theorem again,

||Khn ∗ p− p||22 =
∫

|2πϕK(hnt)− 1|2|p̂(t)|2dt =
∫
|t|>1/hn

|F̂ (t)|2|ϕ̂σ̃(t)|2dt

≤
∫
|t|>1/hn

|ϕ̂σ(t)|2dt ≤ (hn/σ
2)e−(σ/hn)2/2

≲ h−1
n (log n)−t3e−K2(logn)2t3/2 ≲ ϵ2n,

for all σ̃ ≥ σ. Let hn ≍ ϵ
1/β
n with ϵn defined in Theorem 1 and by Lemma 5 we have

σ ≲ n−1/(2τ2), where τ2 is chosen such that σ = Khn(log n)
t3 for some constants K, t3

satisfying K2/2 > 1 and t3 > 1/2.
Now we bound the bias term of f̂np̂n. By triangle inequality,

||Khn ∗ (fp)− fp||1 ≤ ||Khn ∗ (fp)− pKhn ∗ f ||1 + ||pKhn ∗ f − fp||1. (35)

By Cauchy-Schwarz inequality, the first term of the right hand side of Equation (35) can
be bounded as

||Khn ∗ (fp)− pKhn ∗ f ||1 =
∫ ∫

|Khn(x− y){p(y)− p(x)}f(y) dy| dx

≤ ||Khn ∗ p− p||2 ||f ||2 ≲ ||Khn ∗ p− p||2, (36)
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since ||f ||2 ≤ ||f ||∞ ≤ A0 under Assumption 3. The second term on the right hand side of
Equation (35) can be bounded

||pKhn ∗ f − fp||1 ≤ ||p||1||Khn ∗ f − f ||∞ = ||Khn ∗ f − f ||∞ ≲ ϵn. (37)

The last inequality in the preceding holds based on the properties of higher order kernel as
in Lemma 4.3 of van der Vaart and van Zanten (2009).

Proof of Equation (14). Now we are ready to prove the inequality in Equation (14). By
triangle inequality,

||f̂np̂n − fp||1 ≤ ||f̂np̂n − EY,W |X(f̂np̂n)||1 + ||EY,W |X(f̂np̂n)− EY,W,X(f̂np̂n)||1
+ ||EY,W,X(f̂np̂n)− f · p||1 := I1,n + I2,n + I3,n. (38)

First we estimate P (I1,n > ϵn/2) for I1,n in Equation (38). By definition,

f̂np̂n − EY,W |X(f̂np̂n)

=
1

2πnhn

n∑
j=1

∫
e−

itx
hn

{
eitWj/hnYj − EW |X

(
eitWj/hn

)
EY |X(Yj)

}
ϕK(t)

ϕu(t/hn)
dt

=
1

2πnhn

n∑
j=1

∫
e−

it(x−Wj)

hn
ϕK(t)

ϕu(t/hn)
dt {Yj − EY |X(Yj)}

+
1

2πnhn

n∑
j=1

∫
e−

itx
hn

{
eitWj/hn − EW |X

(
eitWj/hn

)} ϕK(t)

ϕu(t/hn)
dt EY |X(Yj)

:= T1,n + T2,n. (39)

First, we estimate P (||T2,n||1 > ϵn/2) with T2,n defined in Equation (39). By Hahn-Banach
Theorem, there exists a bounded linear functional T such that T (h) =

∫
T2,n(x)h(x)dx for

all h ∈ L∞[0, 1], namely, for all h(x) such that supx∈[0,1] |h(x)| < ∞. And ||T2,n||1 = ||T ||F1

where ||T ||F1 = suph∈F1
|T (h)| and F1 is a countable and dense subset of L∞[0, 1]. Thus

we have

K =

{
k(u, v) : (u, v) 7→ 1

hn

∫ 1

0

[
Kn

(
x− u

hn

)
− EW |X

{
Kn

(
x−W

hn

)}]
f(v)h(x)dx,

for all h ∈ F1

}
,

and ||nT2,n||1 = supk∈K |
∑n

j=1 k(Wj , Xj)|. To apply Lemma 9, we need to estimate the fol-

lowing quantities, supk∈K ||k(u, v)||∞, σ2
K = EW |X{sup k2(W,X)} and E{supk∈K k(W,X)}.

Based on the Assumptions 3 and 4 we have ||f ||∞ ≤ C0 and ||h||∞ ≤ 1, then for any k ∈ K,

|k(u, v)| ≤ C2

hn

[ ∫ 1

0

∣∣∣∣Kn

(
x− u

hn

)∣∣∣∣dx+

∫ 1

0

∣∣∣∣EW |X

{
Kn

(
x−W

hn

)}∣∣∣∣dx],
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for some constant C2 > 0. For any u, by change of variables s = (x − u)/hn, for any
fixed positive constant a, one has

∫ 1
0 |Kn{(x− u)/hn}/hn| dx ≤

∫
|Kn(s)|ds ≤ C ′ for some

constant C ′. The second inequality holds by Proposition 11. Given W | X ∼ N(X, δ2n),

EW |X

{
Kn

(
x−W

hn

)}
=

1

2π

∫
EW |X

(
e−it[{x−X−(W−X)}/hn]

)
ϕK(t)

ϕu(t/hn)
dt

=
1

2π

∫
e−it(x−X/hn)ϕK(t)dt = K{(x−X)/hn}.

Again by change of variables r = (x−X)/hn, we have
∫ 1
0 EW |X [K{(x−W )/hn}/hn] dx =∫

|K(r)|dr = 1. There exists a constant K1 such that ||k||∞ ≤ K1 for any k ∈ K, then
supk∈K ∥k∥∞ ≲ max{1, exp(δ2n/2h2n)}. Next we estimate the term σ2

K. For any k ∈ K and
W | X ∼ N(X, δ2n),

k(W,X)2 =
1

h2n

(∫ 1

0

[
Kn

(
x− u

hn

)
− EW |X

{
Kn

(
x−W

hn

)}]
f(X)h(x)dx

)2

≲
1

h2n

{∫ 1

0
Kn

(
x− u

hn

)
dx

}2

+
1

h2n

{∫ 1

0
EW |XKn

(
x−W

hn

)
dx

}2

≲ max{1, exp(δ2n/h2n)}.

Therefore supk∈K EW |X{k(W,X)2} ≲ max{1, exp(δ2n/h2n)}.
Finally, we move to bound EW |X(supk∈K |

∑n
j=1 k(Wj , Xj)|). By Cauchy-Schwarz in-

equality,

EW |X

(
sup
k∈K

∣∣∣∣ n∑
j=1

k(Wj , Xj)

∣∣∣∣)

≤
[
EW |X

{
sup
k∈K

∣∣∣∣ n∑
j=1

k(Wj , Xj)

∣∣∣∣}2 ]1/2

≲

(
1

h2n

n∑
j=1

EW |X

[ ∫ ∣∣∣∣Kn

(
x−Wj

hn

)
− EW |X

{
Kn

(
x−Wj

hn

)}∣∣∣∣ dx ]2)1/2

≲ n1/2max{1, exp(δ2n/2h2n)}.

To apply the Lemma 9, we choose δn ≍ hn and same ϵn in Theorem 1, we have exp(δ2n/2h
2
n) =

O(1). By choosing t = nϵ2n, we have n1/2 + {2(n+ n1/2)nϵ2n}1/2 + nϵ2n/3 ≲ nϵn.
We now discuss bounding the probability P (∥T1,n∥1 > ϵn/2) with T1,n defined in Equa-

tion (39). Recall that

nT1,n =

n∑
j=1

Kn{(x−Wj)/hn}(Yj − EY |XYj)/hn =

n∑
j=1

Kn{(x−Wj)/hn}Ỹj/hn,

with Ỹj ∼ N(0, 1) i.i.d. for j = 1, . . . , n, given Yj | Xj ∼ N(f(Xj), 1) for j = 1, . . . , n. Again
by Hahn-Banach theorem, there exists a countable and dense subset T ∈ L∞[0, 1] and a
class of bounded linear functionals on L∞[0, 1],

Q =

{
q =

n∑
j=1

q̃(uj), q̃(u) =

∫ 1

0

n∑
j=1

Kn

(
x− u

hn

)
(Yj − EY |XYj) t(x) dx, t ∈ T

}
,
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and ∥nT1,n∥1 = supq∈Q ∥q∥∞.
We now proceed to estimate σ2

Q = supq∈QEY |X{
∑n

j=1 q̃(Wj)}2 and EY |X(supq∈Q ∥q∥∞)

in order to apply Lemma 10. We first estimate σ2
Q. Again, by change of variables and the

fact ∥t∥∞ ≤ 1 we have

EY |X

{ n∑
j=1

q̃(Wj)

}2

=
1

h2n

n∑
j=1

{∫ 1

0
Kn

(
x−Wj

hn

)
t(x) dx

}2

≤ 1

h2n

n∑
j=1

{∫ 1

0
Kn

(
x−Wj

hn

)
dx

}2

≤
n∑

j=1

(∫
|Kn(u)|du

)2

≲ nmax{1, exp(δ2n/h2n)}.

Next we estimate EY |X(supq∈Q ∥q∥∞), using the generalized Minkowski inequality, we ob-
tain

EY |X sup
q∈Q

∥q∥∞ = EY |X(∥nT1,n∥1) ≤ {EY |X(∥nT1,n∥21)}1/2

≤ ∥[EY |X{(nT1,n)
2}]1/2 ∥1

=

∫ {
1

h2n

n∑
j=1

Kn

(
x−Wj

hn

)2}1/2

dx.

The last equation in the preceding holds because Yj ’s are independent. By Jensen’s in-
equality and change of variables it can be bound by

∑n
j=1

∫
Kn{(x−Wj)/hn}2dx}1/2/hn =

n1/2{
∫
Kn(u)

2du}1/2/hn. Fixed any constant a′ > 0, one has∫
Kn(u)

2du ≤
∫
|u|>a′

(u4/a′4)Kn(u)
2 du+

∫
|u|≤a′

Kn(u)
2du.

It has been shown in the proof of Proposition 11 that
∫
u4Kn(u)

2du ≲ exp(δ2n/h
2
n), and it

is easy to see that
∫
Kn(u)

2du ≲ max{1, exp(δ2n/h2n)}. Thus we have EY |X(supq∈Q ∥q∥∞) ≲

n1/2 max{1, exp(δ2n/h2n)}/
√
hn. Then applying Borell’s inequality in Lemma 10 by choosing

x = nϵn, δn ≍ hn ≍ ϵ
1/β
n , where ϵn is defined in Theorem 1, we have shown that P (∥T1,n∥1 >

ϵn/2) < e−nϵ2n/8.
We now estimate the probability P (I2,n > ϵn/2), recall that I2,n is defined in Equation

(38). By definition, I2,n = EY,W |X(f̂np̂n)−EY,W,X(f̂np̂n), then with simple calculation one

can show that EY,W |X(f̂np̂n) =
∑n

j=1K{(x − Xj)/hn}f(Xj)/(nhn). Similarly, by Hahn-
Banach theorem, there exists a countable and dense set H1 ∈ L∞[0, 1] such that we can
construct a class of bounded linear functionals

L =

{
l(u) : u 7→

∫ [
K

(
x− u

hn

)
f(u)− EX

{
K

(
x−X

hn

)
f(X)

}]
h1(x) dx, h1 ∈ H1

}
,

and we have ∥nI2,n∥1 = supl∈L ∥
∑n

j=1 l(Xj)∥∞. To apply the Talagrand’s inequality,

we first bound supl∈L |l(u)∥∞ ≤ [
∫
|K{(x − Xj)/hn}/hn| dx]∥f∥∞. Since

∫
|K(u)|du ≤
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K3 for some constant K3 > 0, by change of variables and Assumption 3 one can show
supl∈L ∥l(u)∥∞ ≤ K4, for some constant K4 > 0.

Second, we bound supl∈LEX{l(X)}2. For any l ∈ L,

EX{l(X)}2 ≤ 2EX

({∫ ∣∣∣∣K(
x−X

hn

)∣∣∣∣dx}2

+ 2

[ ∫
EX

{
K

(
x−X

hn

)}
dx

]2)
∥f∥2∞/h2n

≤ K5,

for some constant K5 > 0. Thus we show that supl∈LEX{l(X)2} ≤ K5.
At last, we have

EX sup
l∈L

∣∣∣∣ n∑
j=1

l(Xj)

∣∣∣∣
≤

{
EX

(
sup
l∈L

∣∣∣∣ n∑
j=1

l(Xj)

∣∣∣∣)2}1/2

≤ 1

hn

(
2n

[
EX

{∫
K

(
x−X

hn

)
dx

}2

+

{∫
EXK

(
x−X

hn

)
dx

}2])1/2

∥f∥∞

≲ (n/hn)
1/2.

Choosing hn ≍ ϵ
1/β
n with ϵn defined in the Theorem 1, then applying Talagrand’s inequality

yields the result P (I2,n > ϵn/2) ≤ e−nϵ2n/8.
Finally, for I3,n defined in Equation (38), it is easy to see I3,n ≤ ϵn by Proposition 12.

Combining the results of I1,n, I2,n and I3,n, we prove the inequality in Equation (14).

Proof of Equation (13). Inequality in Equation (13) can be obtained directly from Equation
(14), as it can be seen as a special case of Equation (14) by letting the regression function
f(x) ≡ c for some constant c > 0.

Proof of Equation (12). The proof of inequality (12) follows a same line of arguments in
the proof of Equation (14) and we omit some details. Let P1,n = p̂n − EW |X(p̂n), P2,n =
EW |X(p̂n)−EW,X(p̂n) and P3,n = EW,X(p̂n)−p. First, we estimate P (∥P1,n∥∞ > ϵ0/2). The
difference is that we consider the empirical process directly in ∥ · ∥∞. Since the function
Kn(x) is continuous and bounded on [0, 1], by the separability of C[0, 1], there exists a
countable and dense set T over [0, 1] and consider the class,

M =

{
mx(u) : u 7→

∫
e−itx/hn

{
eitu/hn − EW |X

(
eitW/hn

)}
ϕK(t)

ϕu(t/hn)
dt, x ∈ T

}
,

then ∥nP1,n∥∞ = supx∈T |
∑n

j=1mx(Wj)|. Also we can show

sup
x∈T

∥mx∥∞ ≲ h−1
n exp(δ2n/2h

2
n),

sup
x∈T

EW |X [mx(W )]2 ≲ h−2
n exp(δ2n/h

2
n),

EW |X sup
x∈T

|
n∑

j=1

mx(Wj)| ≲ n1/2h−1
n exp(δ2n/h

2
n).
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Therefore choosing δn = o(hn) and hn = o(ϵn) with same ϵn in Theorem 1. For any ϵ0 > 0,
take t = ϵ0nh

2
n, one has

n1/2h−1
n exp(δ2n/2h

2
n)

+ {2nh−2
n exp(δ2n/h

2
n) + 4n1/2h−1

n exp(δ2/2h2n)}1/2 (nϵ0h2n)1/2 + ϵ0nh
2
n

< nϵ0.

By applying Lemma 9, one can show P (∥p̂n − EW |X(p̂n)∥∞ > ϵ0) ≤ e−ϵ0nh2
n . Similarly,

for P2,n one can write P2,n = EW |X(p̂n)− EW,X(p̂n) =
∑n

j=1 g̃x(Xj)/(nhn), where g̃x(u) =
K{(x− u)/hn)}−EX [K{(x−X)/hn}] for any x ∈ T . Construct the class G = {g̃x, x ∈ T}
with the countable and dense set T over [0, 1], with same calculation by choosing t = nϵ0h

2
n,

δn = o(hn) and hn = o(ϵn), another application of Talagrand’s inequality shows P (P2,n >

ϵ0) ≤ e−ϵ0nh2
n . Combining the above results for P1,n, P2,n and applying Proposition 12 to

P3,n completes the proof of Equation (12).

E.3 Proof of Lemma 7

The Kullback–Leibler neighborhood around f0 has been studied extensively in Baysian
literature. We give a brief argument mentioning the difference in our case, refer to Shen
et al. (2013) for extended proof. Under the Assumption 2, p0 is compactly supported and
lower-bounded. From Theorem 3 in Shen et al. (2013), there exists a density function hσ
supported on [−a0, a0] satisfying H(p0, ϕσ ∗ hσ) ≲ σβ, for some constant a0 > 0. Fix σβ =
ϵ̃n{log(1/ϵ̃n)}−1 and find b′ > max (1, 1/(2β)) such that ϵ̃b

′
n {log(1/ϵ̃n)}5/4 ≤ ϵ̃n. By Lemma

2 of Ghosal and van ver Vaart (2007) there is a discrete probability measure F ′ =
∑N

j=1 pjδzj
with at most N ≤ Dσ−1{log(1/σ)}−1 support points on [−a0, a0], and F ′ satisfies H(ϕσ ∗
hσ, ϕσ ∗ F ′) ≤ ϵ̃b

′
n {log(1/ϵ̃n)}1/4. We construct the partition {U1, . . . , UM} in the flavor of

cσϵ̃b
′
n ≤ α(Uj) ≤ 1 for j = 1, . . . ,M , where M ≲ ϵ̃

1/β
n {log(1/ϵ̃n)}1+1/β. Further denote the

set SF of probability measure F with
∑M

j=1 |F (Uj) − pj | ≤ 2ϵ̃2b
′

n and min1≤j≤M F (Uj) ≥
ϵ̃4b

′
n /2 for sufficiently large n. Then Π(SF ) ≳ exp[−ϵ̃

−1/β
n {log(1/ϵ̃n)}2+1/β]. For each F ∈

SF ,

H(p0, pF,σ) ≤ H(p0, ϕσ ∗ hσ) +H(ϕσ ∗ hσ, ϕσ ∗ F ′) +H(ϕσ ∗ F ′, pF,σ)

≲ σβ + ϵ̃b
′
n {log(1/ϵ̃n)}1/4 + ϵ̃b

′
n ≲ σβ.

Also we can show that for every x ∈ [−a0, a0], pF,σ/p0 ≥ A4ϵ̃
b′
n /σ for some constant A4 > 0,

which leads to log ∥p0/pF,σ∥∞ ≲ log(1/ϵ̃n).

E.4 Proof of Lemma 8

To prove Lemma 8, by the definition of the Kullback–Leibler neighborhood defined in
Equation (16), it suffices to bound the Kullback–Leibler divergence and the second moment
of Kullback–Leibler divergence between gf0,p0 and gf,p from above, respectively. Based on
Lemma 5.3 in van der Vaart and van Zanten (2009) and Lemma 5 in Appendix A.2, we have
Π{KL(p0, p) ≤ ϵ2n} ≥ e−nϵ2n and Π(∥f − f0∥∞ < ϵn) ≥ e−nϵ2n . Then using the convexity of
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the Kullback–Leibler divergence with respect to both arguments, we have

KL(gf0,p0 , gf,p)

= KL

(
1

2πδn

∫
e
− 1

2
{y−f0(x)}2− 1

2δ2n
(w−x)2

dP0,
1

2πδn

∫
e
− 1

2
{y−f(x)}2− 1

2δ2n
(w−x)2 p

p0
dP0

)
≤

∫
KL

(
1

2πδn
e
− 1

2
(y−f0(x))2− 1

2δ2n
(w−x)2

,
1

2πδn
e
− 1

2
{y−f(x)}2− 1

2δ2n
(w−x)2 p

p0

)
dP0

=

∫ ∫
1

2πδn
e
− 1

2
{y−f0(x)}2− 1

2δ2n
(w−x)2

log

(
e−

1
2
{y−f0(x)}2

e−
1
2
{y−f(x)}2

p0
p

)
dy dw dP0

=

∫
[KL{N(y; f0, 1),N((y; f, 1)}+ log(p0/p)] dP0

≲ ∥f0 − f∥2∞ +KL(p0, p) ≲ ϵ2n,

where P0 denotes the distribution measure associated with p0. Next, we decompose the
second moment of the Kullback–Leibler divergence into,∫

gf0,p0

(
log

gf0,p0
gf,p

)2

=

∫
An

gf0,p0

(
log

gf0,p0
gf,p

)2

+

∫
Ac

n

gf0,p0

(
log

gf0,p0
gf,p

)2

=: I1 + I2, (40)

where An = {y ∈ R : |y| ≤ γ′/ϵn} for some constant γ′ > 0.
We first bound term I1 in Equation (40), apply the inequality∫

An

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 2H2(gf0,p0 , gf,p)(1 + log ∥(gf0,p0/gf,p)1An∥∞)2.

It is well known that H2(gf0,p0 , gf,p) ≤ KL(gf0,p0 , gf,p), then to estimate I1 it remains to
estimate the term ∥(gf0,p0/gf,p)1An∥∞. By definition,∣∣∣∣gf0,p0(y, w)gf,p(y, w)

∣∣∣∣1An

≤
∣∣∣∣

∫
An

e−
1
2
(y−f0(x))2e

− 1

2δ2n
(w−x)2

p(x)dx∫
An

e−
1
2
(y−f0(x))2 [e−

1
2
(y−f(x))2/e−

1
2
(y−f0(x))2 ] e

− 1

2δ2n
(w−x)2

p(x) dx

∣∣∣∣ · ∣∣∣∣∣∣∣∣ p0p
∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣e− 1

2
(y−f0)2

e−
1
2
(y−f)2

1An

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣p0p
∣∣∣∣∣∣∣∣
∞
.

Based on the Assumption 1, f0 is a β-smooth function supported on [0, 1] and hence there
exists some constant B′

0 > 0 such that ∥f0∥∞ ≤ B′
0. For y ∈ An, we have

e−
1
2
{y−f(x)}2

e−
1
2
{y−f0(x)}2

= e{f(x)−f0(x)}{y−f0(x)}−{f(x)−f0(x)}2/2

≥ e−∥f−f0∥∞(|y|+∥f0∥∞)−{f(x)−f0(x)}2/2

≥ e−ϵn(γ′/ϵn+B′
0)−ϵ2n/2 ≥ e−2γ′

.
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Thus ∥e−(y−f0)2/2/e−(y−f)2/21An∥∞ ≤ e2γ
′
. Based on Lemma 5, for any x ∈ [0, 1] and

p ∈ Pn, we have log ∥p0/p∥∞ ≲ log(1/ϵn). Therefore, we have shown

I1 =

∫
An

gf0,p0{log(gf0,p0/gf,p)}2 ≤ 2ϵ2n log
2(1/ϵn). (41)

Next we estimate the term I2 in Equation (40). For all y ∈ Ac
n and for any fixed x ∈ [0, 1],

we choose γ′ > 1 such that |y − f0(x)| ≥ |y| − ∥f0∥∞ > γ′/ϵn − B′
0 ≥ 1/ϵn. By Fubini’s

theorem,∫
|y|>1/ϵn

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 1

2πδn

∫ 1

0

∫
|y−f0(x)|>1/ϵn

e−
1
2
{y−f0(x)}2e

− 1

2δ2n
(w−x)2

·

log

∫
e−

1
2
(y−f0)2e

− 1

2δ2n
(w−x)2

p0(x) dx∫
e−

1
2
{y−f(x)}2e

− 1

2δ2n
(w−x)2

p(x) dx

2

dy dw p0(x) dx

≤ 1√
2π

∫ 1

0

∫
|y−f0(x)|>1/ϵn

e−
1
2
{y−f0(x)}2

(
log

∣∣∣∣∣∣∣∣e−(y−f0)2/2

e−(y−f)2/2

∣∣∣∣∣∣∣∣
∞

+ log

∣∣∣∣∣∣∣∣p0p
∣∣∣∣∣∣∣∣
∞

)2

dy p0(x) dx.

Let z = y−f0(x), we can show that for any x ∈ [0, 1], e−{y−f0(x)}2/2+{y−f(x)}2/2 ≤ eϵn|z|+ϵ2n/2.
Then∫

Ac
n

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 4(2π)−1/2

∫ 1

0

(∫
|z|≥1/ϵn

e−
1
2
z2(ϵnz)

2 dz +

∫
|z|≥1/ϵn

e−
1
2
z2 log2(1/ϵn)dz

)
p0(x) dx

≤ 4(2π)−1/2E0

{
ϵ2n

∫
t>1/ϵ2n

e−t/2t1/2 dt+ log2(1/ϵn)P (|Z| ≥ 1/ϵn)

}
≤ 4(2π)−1/2E0

{
ϵ2n

∫
t>1/ϵ2n

e−t/4 dt+ log2(1/ϵn)e
−ϵ−2

n /8

}
≲ e−ϵ−2

n /8+log log(1/ϵn) < ϵ2n,

where Z ∼ N(0, 1) and E0(·) denotes taking expectation with respect to the measure as-
sociated with the density p0. The third line in the preceding uses the change of variables
letting t = z2.

Combining the above result for I2 and the result in Equation (41) for I1, we have shown∫
gf0,p0(log gf0,p0/gf,p)

2 ≲ ϵ2n. And further we have{∫
gf0,p0 log

gf0,p0
gf,p

≲ ϵ2n,

∫
gf0,p0

(
log

gf0,p0
gf,p

)2

≲ ϵ2n

}
⊃ {∥f − f0∥∞ ≤ ϵn, KL(p0, p) ≤ ϵ2n},

which yields the conclusion in Lemma 8.
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Appendix F. Posterior Computation: A Gibbs Sampler

In the following, we develop a Gibbs sampler to generate a Markov chain which will even-
tually converge to the posterior distribution. We focus on the Gaussian process associated
with a squared exponential kernel as an illustration (in practice the algorithm can be ap-
plied to other kernels as long as they are symmetric). The squared exponential kernel is
denoted by c(x, x′) = exp{−(x − x′)2/λ} associated with a bandwidth parameter λ. The-
orem 2 enforces the prior distributions wj ∼ N(0, 2/λ), sj ∼ Unif [0, 2π] and aj ∼ N(0, 1)
i.i.d. for j = 1, . . . , N . To ensure the conditional conjugacy, we place a gamma distribution
Ga(a0, b0) on the bandwidth λ with a shape parameter a0 and a scale parameter b0. We
place a Dirichlet process mixture of normals prior defined in Equation (8) over the covariate
density, given more precisely by

Xi ∼
∞∑
h=1

πhN(µh, τ
−1
h ), (µh, τh) ∼ N(µh;µ0, κ0τ

−1
h )Ga(τh; aτ , bτ ), (42)

for i = 1, . . . , n. The prior on πh is expressed as πh = νh
∏

l<h(1−νl) where νl ∼ Beta(1, α).
Here we let α = 1. Denote the cluster label of Xi by Si ∈ {1, . . . ,K} indicating that
Xi is associated with Sith component in the Dirichlet process Gaussian mixture prior for
i = 1, . . . , n. Then Equation (42) can be also written as

Xi | Si, µ, τ ∼ N(µSi , τ
−1
Si

), (µSi , τSi) ∼ N(µSi ;µ0, κ0τ
−1
Si

)Ga(τSi ; aτ , bτ ),

i = 1, . . . , n.

In both simulation studies and the real application, we set the hyperparameters µ0 = 0, κ0 =
1, aτ = 1, bτ = 1, and we choose a0 = 5, b0 = 1 for the hyperprior Ga(a0, b0). We remark
that these hyperparameter choices are based on our preliminary numerical experiments. In
addition, recall that we assume σ = 0.2 in simulation studies and we treat σ2 as an unknown
parameter endowed with an objective prior in real application.

As below we provide a complete updating scheme of the Gibbs sampler. We use bold
symbols to distinguish the vectors a,w, s,µ, τ ,π,S,X,Y,W accordingly. Then the joint
posterior distribution of {a,w, s, λ,X} given observations {Y,W} can be factorized as

[a,w, s, λ,X | Y,W ] ∝ [Y | X,a,w, s, λ ]× [W | X]× [w | λ]× [λ]× [a]× [s]× [X].

The updating scheme runs as follows:

1. Update [w | −] in a block by sampling [wj | −] ∝ [Y | X,a,w, s, λ] N(wj ; 0, 2/λ)
independently using Metropolis-Hasting algorithm for j = 1, . . . , N .

2. Update [ s | −] in a block by sampling [sj | −] ∝ [Y | X,a,w, s, λ] Unif [0, 2π] inde-
pendently using Metropolis-Hasting algorithm for j = 1, . . . , N .

3. Update [a | −] from a multivariate normal distribution N(µ̃, Σ̃), with the mean
vector µ̃ = Σ̃ΦT Y/σ2, and the covariance matrix Σ̃ = (ΦTΦ/σ2 + IN )−1, where Φ
is a n × N Fourier basis matrix with (i, j)th element Φij = (2/N)1/2 cos(wjxi + sj)
for i = 1, . . . , n, j = 1, . . . , N . And IN denotes a N ×N identity matrix.
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4. Update the parameters [S,µ, τ ,π | −] associated with the Dirichlet process Gaussian
mixture prior as in Ishwaran and James (2001) with the number of mixture compo-
nents truncated at 20.

5. Update [X | −] in a block by sampling

[Xi|Si, X−i,−] ∝ N(Yi;Φ
T
i a, σ

2)N(Wi;Xi, δ
2)N(Xi;µSi , τSi)

using Metropolis-Hasting algorithm for i = 1, . . . , n. Here ΦT
i denotes the ith row of

the matrix Φ defined in Step 3.

6. Update [λ | −] from a gamma distribution Ga(â, b̂) with â = a0 and b̂ = b0/(1 +
b0

∑n
j=1w

2
j/4).

7. Update [σ2 | −] from a inverse-gamma distribution IG(aσ, bσ) with aσ = n/2 and
bσ = (Y−Φ1N )T(Y−Φ1N )/2, where 1N denotes a n× 1 vector of ones. (This step
will be implemented only in the real example of Section 5.)

In particular, in Metropolis-Hasting algorithm used for updating {wj} in Step 1, we con-
sider a random walk proposal wprop

j ∼ N(wcur
j , 1/4) for j = 1, . . . , N , where wcur

j denotes
the current state and the proposal variance is tuned to obtain average pointwise acceptance
rate around 0.7. In Metropolis-Hasting algorithm used for updating {si} in Step 2, we
consider the independence proposal spropi ∼ Unif [0, 2π] for i = 1, . . . , n. We note that the
averaged pointwise acceptance rate for si is around 0.6. Finally, to update {xi} in Step 5,
we use an adaptive proposal xpropi ∼ N(Wi/δ

2 +µSiτSi , 1/(1/δ
2 + τSi)) for i = 1, . . . , n with

the averaged acceptance rate around 0.8.

Construction of spontaneous credible bands. We provide one example of construct-
ing the spontaneous credible bands (CB) with γ = 0.95 for out-of-sample prediction of
some model f(x, θ) evaluated at a test data set xtest of size nt, based on L number of
posterior samples {θ(l), l = 1, . . . L} of parameter θ associated with the model f . Denote
by f (l)(x) = f(x; θ(l)) for l = 1, . . . , L and let f̂(x) = (1/L)

∑n
l=1 f(x; θ

(l)) denote the
posterior estimate of the function. Then, for each l = 1 . . . , L, we first calculate the maxi-
mum distance between the functions f̂(x) and f (l)(x) over the test data points, defined as
dl = maxi=1,...,nt |f (l)(xtest,i) − f̂(xtext,i)|. To find the simultaneous CB, we find the 95%
quantile of {dl} denoted by d95% and take d95% as the half range of the simultaneous CB.
Then we define the spontaneous 95% credible band as [f̂(xtext)− d95%, f̂(xtext) + d95%].

Appendix G. Additional Numerical Results

In this section, we provide additional numerical results for n = 250 under the same setting
in Section 4, refer to Table 2, Figure 5 and Figure 6. We include the amse values for
estimating the true locations for gpeva and gpevn in Table 3 under all three settings of
sample sizes. We also collect diagnostic summaries under the settings in Section 4 including
the mixing of the Markov chain of hyperparameter associated with covariance kernel in
Figures 7, marginal posterior density plot of covariate based on gpeva (Figure 8) and
effective sample sizes for estimated function values over training data points for gpeva
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and gpevf in Figure 9. At last, we provide trace plots and density plots of parameters
associated with gpeva (Figure 10) for the real application in Section 5.

δ2

n Method 0·01 0·2 0·4 0·6 0·8 1

250

gpeva 0·23 (0·07) 0·86 (0·51) 2·10 (2·33) 3·44 (4·83) 3·60 (4·86) 4.·86 (6·21)
gpevf 0·21 (0·07) 0·78 (0·46) 1·62 (0·98) 2·80 (2·84) 2·94 (3·44) 4·26 (4·91)
gpevn 0·24 (0·09) 4·24 (1·25) 10·41 (2·78) 14·43 (3·61) 18·28 (4·72) 20·23 (4·77)
gp 2·31 (0·15) 4·44 (0·62) 7·38 (1·13) 10·06 (1·50) 12·28 (1·72) 14·29 (1·85)
decon 0·48 (0·27) 2·99 (0·94) 7·45 (1·62) 11·91 (2·01) 15·57 (1·99) 18·17 (1·77)

Table 2: Averaged mean squared errors (amse) defined as E [K−1
∑K

k=1{ f̂(tk) − f(tk) }2]
(f̂(·) denotes the proposed estimator of f , E(·) denotes taking average over replicates) on
an evenly spaced grid (t1, . . . , tK) of size K = 100 over the interval [−3, 3] and standard
errors (×102) over 50 replicated data sets of size n = 250.

δ2

n Method 0·01 0·2 0·4 0·6 0·8 1

100
gpeva 0·92 (0·13) 13·27 (2·04) 26·41 (4·85) 37·88 (6·11) 47·68 (8·93) 57·79 (10·41)
gpevn 0·94 (0·13) 12·86 (2·12) 34·17 (4·97) 50·73 (7·76) 64·25 (11·2) 76·86 (10·57)

250
gpeva 0·89 (0·09) 12·36 (1·52) 23·70 (2·95) 33·56 (4·11) 42·98 (5·16) 52·07 (6·38)
gpevn 0·91 (0·09) 15·95 (1·59) 33·10 (3·41) 48·49 (4·47) 62·64 (5·80) 74·40 (6·54)

δ2

n Method 0·001 0·005 0·01 0·1 0·5 1

500
gpeva 0·098 (0·006) 0·46 (0·03) 0·88 (0·05) 6·54 (0·53) 28·04 (2·28) 50·63 (4·36)
gpevn 0·098 (0·006) 0·47 (0·03) 0·89 (0·05) 7·61 (0·68) 40·26 (2·90) 74·42 (5·69)

Table 3: Averaged mean squared errors (×102) with standard errors (×102) in estimating
the true locations defined as E [n−1

∑n
k=1( x̂k − x∗k )

2], where {x̂k} denote the posterior
estimate (mean) of covariates and {x∗k} denote the true locations, and E(·) denotes taking
average over replicates. The amse values and standard deviations are averaged over 50
replicated data sets of size n = 100, 250, 500 separately.
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Figure 5: Boxplots of mean squared errors for compared methods in Section 4 over 50
replicated data sets of size n = 250 with δ2 = 0.01 (left panel), δ2 = 0.6 (middle panel) and
δ2 = 1 (right panel). In each panel the compared methods from left to right are gpeva,
gpevf , gpevn, gp and decon.

Figure 6: Out-of-sample predictions of f(x) for δ2 = 0.01 (left panel), δ2 = 0.6 (middle
panel) and δ2 = 1 (right panel) with sample size n = 250. The red solid line stands for
the true function, the black dashed line stands for the predictive curve based on gpeva,
the blue dot-dashed line is based on decon and the purple dotted dashed line is based on
gp. The darker and the lighter shades are the pointwise and simultaneous 95% credible
intervals of gpeva, respectively.
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Figure 7: Trace plots of posterior samples of λ from gpeva (first row) and gpevf (second
row) with sample size n = 100. In each row, the values of δ2 are 0.01 (left panel), 0.6
(middle panel) and 1 (right panel).

Figure 8: Marginal posterior density plots of the covariate based on gpeva (red) and gpevn

(green) with n = 500. The values of δ2 are 0.001 (left panel), 0.1 (middle panel), 0.5 (right
panel).
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Figure 9: Boxplots of effective sample sizes of function value estimated over training data
points based on gpeva and gpevf over replicated data sets of sizes n = 100 (left panel),
n = 250 (middle panel), and n = 500 (right panel). The effective sample sizes are averaged
over 50 replicates with δ2 = 0.01 for n = 100, 250 and δ2 = 0.001 for n = 500.

Figure 10: Trace plots and density plots of the 500 posterior samples of a subset of
{wj , sj , xj} from treatment group with δ2 = 0.35 (left panel) and with unknown δ2 (right
panel) in the data example in Section 5.
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Bharath Sriperumbudur and Zoltán Szabó. Optimal rates for random fourier features.
Advances in neural information processing systems, 28, 2015.

John Staudenmayer, David Ruppert, and John P Buonaccorsi. Density estimation in the
presence of heteroscedastic measurement error. Journal of the American Statistical As-
sociation, 103(482):726–736, 2008.

Leonard A Stefanski and Raymond J Carroll. Deconvolving kernel density estimators.
Statistics, 21(2):169–184, 1990.

52



Gaussian Processes with Errors in Variables

Leonard A Stefanski and James R Cook. Simulation-extrapolation: the measurement error
jackknife. Journal of the American Statistical Association, 90(432):1247–1256, 1995.

Jonathan R Stroud, Michael L Stein, and Shaun Lysen. Bayesian and maximum likelihood
estimation for Gaussian processes on an incomplete lattice. Journal of Computational
and Graphical Statistics, 26(1):108–120, 2017.

Ya Su, Anirban Bhattacharya, Yan Zhang, Nilanjan Chatterjee, and Raymond J Carroll.
Nonparametric Bayesian deconvolution of a symmetric unimodal density. arXiv preprint
arXiv:2002.07255, 2020.

Danica J Sutherland and Jeff Schneider. On the error of random fourier features. arXiv
preprint arXiv:1506.02785, 2015.

Aad W van der Vaart and Harry van Zanten. Bayesian inference with rescaled Gaussian
process priors. Electronic Journal of Statistics, 1:433–448, 2007.

Aad W van der Vaart and J Harry van Zanten. Reproducing kernel Hilbert spaces of
Gaussian priors. In Pushing the limits of contemporary statistics: contributions in honor
of Jayanta K. Ghosh, pages 200–222. Institute of Mathematical Statistics, 2008.

Aad W van der Vaart and J Harrys van Zanten. Adaptive Bayesian estimation using a
Gaussian random field with inverse Gamma bandwidth. Annals of Statistics, 37(5B):
2655–2675, 2009.

Aad W van der Vaart and Jon Wellner. Weak Convergence and Empirical Processes: with
Applications to Statistics. Springer Science & Business Media, 1996.

James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc
Deisenroth. Efficiently sampling functions from gaussian process posteriors. In Interna-
tional Conference on Machine Learning, pages 10292–10302. PMLR, 2020.

Andrew TA Wood and Grace Chan. Simulation of stationary Gaussian processes in [0, 1]d.
Journal of Computational and Graphical Statistics, 3(4):409–432, 1994.

Yun Yang and David B Dunson. Bayesian manifold regression. Annals of Statistics, 44(2):
876–905, 2016.

Zitong Yang, Yu Bai, and Song Mei. Exact gap between generalization error and uniform
convergence in random feature models. In International Conference on Machine Learning,
pages 11704–11715. PMLR, 2021.

Jian Zhang, Avner May, Tri Dao, and Christopher Ré. Low-precision random fourier fea-
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