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Abstract

The behavior of many Bayesian models used in machine learning critically depends on the
choice of prior distributions, controlled by some hyperparameters typically selected through
Bayesian optimization or cross-validation. This requires repeated, costly, posterior infer-
ence. We provide an alternative for selecting good priors without carrying out posterior
inference, building on the prior predictive distribution that marginalizes the model param-
eters. We estimate virtual statistics for data generated by the prior predictive distribution
and then optimize over the hyperparameters to learn those for which the virtual statistics
match the target values provided by the user or estimated from (a subset of) the observed
data. We apply the principle for probabilistic matrix factorization, for which good solu-
tions for prior selection have been missing. We show that for Poisson factorization models
we can analytically determine the hyperparameters, including the number of factors, that
best replicate the target statistics, and we empirically study the sensitivity of the approach
for the model mismatch. We also present a model-independent procedure that determines
the hyperparameters for general models by stochastic optimization and demonstrate this
extension in the context of hierarchical matrix factorization models.

Keywords: Bayesian modeling, prior specification, hyperparameter search, probabilistic
matrix factorization

1. Introduction

Bayesian machine learning (ML) builds on the idea of general-purpose hierarchical prob-
abilistic models, such as mixture models, topic models or matrix factorization techniques,
that can be used for various learning tasks. Often these models have a large number of
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latent variables, such as the cluster indicators for mixture models or the topic proportions
for topic models, for which the prior distributions are chosen predominantly on the basis of
computational convenience. The choice of the particular priors, as well as other hyperpa-
rameters, such as the number of factors or components, has notable impact on the overall
performance of these models, but cannot be determined by classical statistical modeling
principles: the priors may not have an intuitive interpretation and for complex hierarchi-
cal models the relationship between the priors and data is poorly understood, ruling out
subjective prior knowledge. For example, the behavior of the hierarchical Poisson matrix
factorization model of Gopalan et al. (2015) depends on seven hyperparameters (six for
defining the priors and one for the number of latent factors) in a non-trivial manner.

The hyperparameters are typically chosen heuristically or through an iterative process
that explicitly evaluates the quality of multiple choices. The search can be automated
with Bayesian optimization (Snoek et al., 2012), but evaluating the quality is costly. The
optimization is typically based on some proxy of the marginal likelihood, such as variational
lower bound or leave-one-out cross validation (Vehtari et al., 2017), or directly on the
performance in a downstream task, such as recommendation (Galuzzi et al., 2019). Both
require carrying out posterior inference for every considered set of hyperparameters, which
adds significant computational burden and increases the overall training time by orders of
magnitude. Furthermore, the result is only optimal for the chosen measure and inference
method, unnecessarily tying model specification with inference.

To overcome this, we turn our attention to the statistical literature on the prior predictive
distribution (PPD) – the marginal distribution of observables before seeing any data. The
PPD is routinely used in the statistical modeling pipeline in the form of prior predictive
checks, to qualitatively assess whether the model and the priors are reasonable (Schad et al.,
2019; Gabry et al., 2019; Gelman et al., 2020). PPD has also been used for prior elicitation,
to convert the knowledge an expert has on the properties of data into prior distributions
(Kadane et al., 1980; Akbarov, 2009; Hartmann et al., 2020; Mikkola et al., 2021). We turn
those ideas into a tool for automatic learning of hyperparameters, by directly optimizing
for a good match between virtual statistics of the PPD and statistics of the data1. The tool
can be used in two ways: (1) the target statistics are provided by the expert (user) as prior
knowledge on data, or (2) the target statistics are estimated from (a subset of) the actual
data. The former is related using PPD for prior elicitation (Kadane et al., 1980), extended
here for practical use with Bayesian ML models with a large number of latent variables,
whereas the latter is similar to empirical Bayes (Casella, 1985).

The proposed prior predictive matching approach, described in Section 3, finds good
hyperparameters without needing posterior inference. When the true data generating pro-
cess is within the assumed model family, the approach provides hyperparameters that are
optimal with respect to the selected statistics, and we show empirically that the method is
robust to small model misspecification. If the data fits poorly the assumed model family,
the approach may return unreasonable choices, which can be interpreted as sign of model
mismatch and a need for remodeling. For instance, we show how priors not accounting for
non-homogeneous row and column counts in recommender engine setups result in a clear

1. In order to distinguish from statistics of the observed data, we use the term virtual statistics to refer to
summary quantities calculated for hypothetical data sampled from PPD, inspired by the phrase virtual
counts used sometimes for the hyperparameters in count-data models.
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underestimation of the number of factors, which could be fixed by changing to a formulation
that is consistent with the observed margins (Yıldırım et al., 2021).

The principle of prior predictive matching is generally applicable for all statistical mod-
els used in machine learning that specify a sampling distribution. In this work, we introduce
prior predictive matching in the context of probabilistic matrix factorization models, focus-
ing in particular on models for count data. This provides a tangible technical context for
the work and enables showcasing how the specific instances of the general principle can
provide particularly elegant solutions for the practical models of interest. First, we consider
scenarios where certain moments of the PPD can be expressed analytically. We can then
compute the virtual statistics in closed form and analytically solve for optimal hyperpa-
rameters. The method can be interpreted as a specific instance of the method of moments
(Casella and Berger, 2001; Pawitan, 2001) since we determine the parameters by matching
the moments, but applied for learning the hyperparameters as an intermediate step in the
full modelling process, rather than directly as a means of approximate inference (once the
hyperparameters are fixed, we still want to perform standard posterior inference). The ap-
proach facilitates computationally efficient selection of the hyperparameters, demonstrated
in this work for count matrix factorization models for which we can set both the prior
parameters and the number of factors in closed form. Previously, the latent dimensionality
could be set automatically only for Gaussian matrix factorization, based on the analytic
marginal likelihood by Bouveyron et al. (2019). With our method, this can be done also
for count models, although based on selected statistics rather than the marginal likelihood.

Closed-form analytic expressions are computationally ideal, but their derivation is te-
dious already for fairly simple models. To address this, we also provide a model-independent
stochastic algorithm that uses sampling to compute the virtual statistics, and stochastic gra-
dient optimization to learn the hyperparameters. It only requires being able to sample from
PPD and is applicable for all models with reparameterizable priors (Figurnov et al., 2018;
Mohamed et al., 2020). The method is loosely related to several recent methods which
directly learn a prior for flexible neural network-based models (Tomczak and Welling, 2018;
Klushyn et al., 2019; Nalisnick and Smyth, 2018; Nalisnick et al., 2021; Du et al., 2019), but
our goal is specifically to determine the hyperparameters of existing priors and we obtain
the solution without considering the observed data. We also demonstrate the efficacy this
approach in the context of Bayesian matrix factorization models, this time considering a
more complex hierarchical model for which we do not have analytic expressions for the
moments.

2. Motivation: Priors for Bayesian Matrix Factorization

Bayesian matrix factorization (BMF) is an important class of Bayesian ML models used, e.g.,
in recommender engines (Salakhutdinov and Mnih, 2007), for dimensionality reduction (Bai
et al., 2013; Xu et al., 2003), in community detection (Psorakis et al., 2011), and modeling
relationships between data modalities (Klami et al., 2013). Importantly, it is a family for
which the prior distributions are difficult to specify, as will be clarified in Section 2.1. We
start by characterizing two concrete models building on Poisson distribution, for which the
effect is emphasized (Cemgil, 2009).
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Poisson Matrix Factorization (PMF) (Cemgil, 2009; Gopalan et al., 2014) with
latent dimensionality K specifies a generative model for a matrix Y = {Yij} ∈ RN×M , with
each entry Yij following a Poisson distribution with rate θikβjk, a product of latent factors
θik indexed by the rows and βjk indexed by the columns.

Each latent variable follows a prior F (µ, σ2), parameterized here using mean µ and
standard deviation σ

θik
iid∼ F (µθ, σ

2
θ), βjk

iid∼ F (µβ, σ
2
β),

Yij
iid∼ Poisson

(
K∑
k=1

θikβjk

)
. (1)

The majority of the PMF literature assumes the priors to be gamma distributions (using
shape-rate parameterization, F (µθ, σ

2
θ) = Gamma(a, b) and F (µβ, σ

2
β) = Gamma(c, d), with

µθ = a
b , σ2

θ = a
b2

, µβ = c
d and σ2

β = c
d2

) for efficient posterior inference, but we use the more
general notation to extend the analysis to all scale-location priors.

The priors and the number of factors K control the sparsity and magnitude of the latent
representation (Cemgil, 2009), via the expected mean and variance of the rates. However,
these effects are hard to separate from each other and many practitioners are unaware of
the implications of their choices. As a practical example, already the common choice of
independent priors for θ and β (used also in our work) encodes the prior assumption that
the rows (and, equivalently, the columns) are exchangeable and hence also that the margin
counts are equal in expectation. Allowing for vastly varying row (and/or column) sums
would hence require switching to a more general allocation models (Yıldırım et al., 2021;
Cemgil et al., 2019) or more structured priors. In practice, the quality of the prior choices
often becomes apparent for the practitioner only in the context of the observed data a
posteriori.

Compound Poisson Matrix Factorization (CPMF) (Basbug and Engelhardt, 2016;
Simsekli et al., 2013) extends PMF by incorporating an additive exponential dispersion
model (EDM) (Jorgensen, 1987) in the observation model, while keeping the Poisson-
Gamma factorization structure:

θik ∼ F (µθ, σ
2
θ), βjk ∼ F (µβ, σ

2
β)

Yij ∼ ED(w, κNij), Nij ∼ Poisson(
K∑
k=1

θikβjk), (2)

where we have p(Yij |Nij ;w, κ) = exp(Yijw − κNijψ(w))h(Yij , κNij), E[Yij |Nij ;w, κ] =
κNijψ

′(w) and V[Yij |Nij ;w, κ] = κNijψ
′′(w), and nui is a Poisson distributed latent count. 2

ED(w, κNij) represents a distribution from the family of exponential dispersion models,
with the natural parameter given by w and the dispersion given by κNij , and the par-
ticular distribution determined by the base log-partition function ψ(w) and base-measure
h(Yij , κNij). This model family includes Normal, Poisson, Gamma, Inverse-Gamma, and
many other distributions (see Table 1 in Basbug and Engelhardt, 2016).

2. We denote ψ′(w) = dψ
dw

, ψ′′(w) = d2ψ
dw2
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The data generating distribution is influenced by both the chosen EDM distribution and
the hyperparameters, now including also κ and w, and a precise a priori reasoning about
their joint effect is beyond feasible even for well-versed practitioners. An intuitive view
of this model is that it allows us to decouple the sparsity or dispersion from the response
model (controlled by the choice of distribution to be compounded). In this sense κ would
give an indication about the variability of the responses, while w would be related to the
natural parameterization of the response distribution. Determining specific values for these
parameters to achieve desired or expected characteristics for the data is, however, difficult.

Generic Bayesian Matrix Factorization is a generalized template model, represent-
ing the family of matrix factorization models with distributions for the priors F (µθ, σ

2
θ) and

F (µβ, σ
2
β), and observation model FY .

θik ∼ F (µθ, σ
2
θ), βjk ∼ F (µβ, σ

2
β)

Yij ∼ FY (
K∑
k=1

θikβjk), with E[Yij ] =

K∑
k=1

θikβjk. (3)

The choice of a specific parametric distribution for each part of the model leads spe-
cific instantiations of matrix factorization, for example if parameters and observations
are normally distributed, with FY = N , F (µθ, σ

2
θ) = N (µθ = 0, σ2

θ), and F (µβ, σ
2
β) =

N (µβ = 0, σ2
β), we obtain the classic probabilistic matrix factorization (Salakhutdinov and

Mnih, 2007); with Poisson distributed observations and Gamma distributed latent vari-
ables, FY = Poisson, F (µθ, σ

2
θ) = Gamma(a, b) and F (µβ, σ

2
β) = Gamma(c, d), we obtain

(PMF) (Cemgil, 2009; Gopalan et al., 2014). We use this generic formulation to obtain
results that are valid for any choice of parametric distributions for prior and observation
distributions.

2.1 On Priors for BMF

Despite the vast literature on BMF models and their inference algorithms, many of the
papers developing or applying BMF models treat the prior choice lightly and resort to
fairly heuristic choices. For example, Brouwer and Lio (2017) presents a compendium of
BMF models with a wide range of likelihoods and priors, but despite focusing on small
data applications still set the hyperparameters by either trying values from a regular grid
or setting them to fixed values based on claims of insensitivity. Similarly, Gopalan et al.
(2015) solved the problem of choosing the hyperparameters for hierarchical PMF by setting
all of them to 1 or 0.3 to encourage sparsity, and Basbug and Engelhardt (2016) used
a combination of empirically tested and heuristically chosen hyperparameter values for
CPMF. Finally, Tan and Fevotte (2013) optimized for the latent dimensionality K, but
used ah-hoc values for other hyperparameters. Importantly, we stress that these examples
should not be seen as weakness in these particular works, but rather as examples of a
common practice motivating our research – we have also published articles where we followed
the same convention. We also point out that some works do take the prior choice much
more seriously. In particular, Cemgil et al. (2019) discusses the prior choices in detail in
the context of a broader class of count allocation models and provides valuable information
not only for PMF but also for other models.
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We argue that the common practice of heuristic choices is not because BMF models are
particularly insensitive to the priors, but because selecting them is not easy. In many cases
the PMF model is considered as a generic model family that is not necessarily motivated
by a well-understood generative description for the data, which makes specifying subjective
prior knowledge difficult. For example, often the only prior information for setting the
variance parameters σ2 of Eq. (1) would be based on what kind of values have worked
before when applying the model on other data sets, rather than an expert being able to
somehow quantify a real subjective knowledge based on domain knowledge. Furthermore,
the hyperparameters are typically not even identifiable due to the latent variables relating
to data only via the product θTi βj . In general, this is a characteristic of hierarchical, high-
dimensional and complex Bayesian models, where the interplay between prior specification
and the final model properties is difficult to intuit aprioristically and can only be understood
in connection to the likelihood and the predictions that come from it, as is argued by Gelman
et al. (2017).

For machine learning applications, various hyperparameters are today often chosen using
a global optimization routine, such as Bayesian optimization (Snoek et al., 2012) or a simple
grid search. Global optimization for BMF, howerer, is hard because (1) training/validation
split is non-trivial for structured data, (2) posterior inference is slow for large data, and (3)
the optimization surface is difficult. Figure 1 illustrates the last point for the PMF model by
evaluating the predictive quality of the mean-field variational approximation as measured
by PSIS-LOO (Vehtari et al., 2017) for a range of hyperparameter choices (see Section 7.2
for details). There are large regions of inappropriate choices and the sharp border between
those and the feasible region makes global optimization hard. Furthermore, as illustrated on
the rightmost bottom plot in Figure 1 (an example of a 1D slice plotted using three different
scalings for the y-axis), the optimization surface characteristics depend on the inspection
scale; the small neighborhood with optimal scores is lost at coarser scales and is difficult
to find with most optimization strategies. In particular, grid-based evaluation routines are
likely to miss the good hyperparameters completely.

In Section 4, we will describe an analytic solution for learning the hyperparameters
for this model by matching the virtual statistics of PPD with target values. The example
already illustrates how this method, which here does not require any computation besides
simple equations, finds a solution surface within the feasible region, selecting also the latent
dimensionality automatically. It does not give the optimal hyperparameters for this specific
evaluation metric and inference algorithm, nor should it as its intended purpose. Instead,
the result captures essential properties of the data with the PPD, resulting in an appropriate
starting point for posterior inference.

3. Prior Predictive Matching

Having illustrated the challenges with BMF, we now proceed to provide a new method
for determining hyperparameters of any Bayesian machine learning model, building on the
idea of matching virtual statistics of the prior predictive distribution as explained in detail
below. The principle is presented from the perspective of general Bayesian models, but in
this work it is demonstrated only in the context of matrix factorization.
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Figure 1: Illustration of difficulty of selecting good priors for Poisson matrix factoriza-
tion, evaluated by predictive quality of a variational approximation on the
hetrec-lastfm dataset. We show 2D (left) and 1D (right) slices of the loss
surface in the five-dimensional hyperparameter space, with all other values fixed
to prior optimal ones. The proposed prior predictive matching approach pro-
vides closed-form solution (indicated by ”prior optimal”), including the latent
dimensionality K (top right), within the area of reasonable values.

3.1 General Idea

Our goal is to select good hyperparameters λ for a probabilistic model p(Y,Z;λ), where
Z denotes actual model parameters and latent variables collectively, without directly com-
puting the posterior quality of any particular model fit. That is, we want to avoid costly
and potentially difficult global optimization requiring the selection of a specific evaluation
criterion for the quality of the final solution as well as training/validation split for the
data. Instead, we prefer to optimize an overall match between the model and the data
characteristics.

To achieve this, we consider the prior predictive distribution

p(Y ;λ) =

∫
p(Y |Z;λ)p(Z;λ)dZ,
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which integrates out the parameters, and we search for hyperparameters that matches the
data distribution well. PPD is typically used for validating prior and modeling choices as
part of the statistical modeling pipeline (Schad et al., 2019; Gelman et al., 2020), often by
visual comparison of prior predictive samples and the data, e.g., so that a large deviation
between the two is interpreted as an indication that the model should be modified (Gabry
et al., 2019). We extend the idea to automate the prior choice, by optimizing for λ for which
virtual statistics of PPD match sufficiently well with either prior knowledge of the user or
empirical statistics for the available data. Our goal is specifically to find a point estimate
for λ, to be used for defining the prior for subsequent posterior inference and additional
processing steps. In this work we ignore any potential direct prior information on λ itself,
assuming all choices are equally likely a priori.

Note that for some models, such as Gaussian processes with conjugate likelihoods, the
PPD can be expressed analytically and the optimal solution is then obtained by directly
maximizing the marginal likelihood for the observed data. This approach is, however,
restricted to exponential family models with conjugate priors, or requires significant model-
specific effort that does not generalize over even minor variants of the model; see Bouveyron
et al. (2019) for the derivation of marginal likelihood for a specific Gaussian MF model. Our
interest is in more general model classes where the PPD itself cannot be expressed in closed-
form. Instead, we assume only that we can either (a) compute some low-order statistics of
the PPD analytically, or (b) draw samples from the PPD. Our key contribution is providing
an automatic process for selecting the hyperparameters for these broader classes of models
in a computationally efficient manner. The practical method, described next, is related to
the method of moments (see Section 6 for more details), but is applied here for the purpose
of learning the hyperparameters as an intermediate step in the modelling workflow, rather
than as an alternative for posterior inference.

3.2 Method

The gist of our proposed method is to search for λ such that the PPD p(Y ;λ) and the
true data distribution p†(Y ) or user’s prior beliefs about p†(Y ) (when following strictly the
principles of Bayesian modeling framework) match as well as possible.3 We quantify the
match using a collection of statistics T that capture the essential properties of the data,
for example in the form of central moments. The goal is to find λ such that the virtual
statistics T̂λ of the PPD match some target statistics T∗. In the ideal case, we find the
optimal match where T̂λ = T∗. We use the phrase virtual statistic for T̂λ to emphasize
that it does not correspond to any particular observed data, but can instead be thought of
as the corresponding statistic computed for a hypothetical – or virtual – data set sampled
from PPD.

This general formulation depends on two elements: (1) the choice of the statistics T
(and associated discrepancy measure) used for evaluating the match, and (2) the choice of
the specific target statistic values T∗. Together they define the optimality. Importantly,
these two objects are fundamentally linked with each other. On the one hand, a richer set
of statistics T leads to the choice if hyperparameters likely to be good in the broader set

3. We use † to denote to the true distribution for clarity, but in practice only work on empirical estimates
of statistics computed from a sample Y or user-provided targets for the same statistics.
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of applications, but at the same time implies the need to be more careful when providing
the target values T∗, while often making computation more difficult as well. On the other
hand, very simple statistics, such as only the mean of the data, are typically not sufficient
for identifying a single optimal choice, but are already useful since they provide a surface
of equally good choices and help ruling out nonsensical options. Finally, let us note that
computational algorithms solving for λ are agnostic to how T∗ were obtained, but to clarify
the broad scope of the developed machinery we explain three common use-cases each with
a different way of defining T∗:

1. Principled statistician: Following the strict Bayesian principle, the target statis-
tics may be provided by a domain expert, in form of the expected values for the
statistics. When used in this form, the proposed method essentially becomes a prior
elicitation method; the expert provides subjective information on what is to be ex-
pected regarding the data, and this is used for indirectly defining the prior over the
model parameters, similar to e.g. Kadane et al. (1980) and Hartmann et al. (2020).
Importantly, the expert only needs to provide statistics of the data and not of the
model parameters, not necessarily needing to understand the whole role of the model
in detail.

2. Held-out validation: A somewhat more pragmatic approach is to use actual ob-
served statistics T of a separate validation data as the target values T∗. For example,
in the case of a recommender engine we might use a subset of the users and items
to estimate the target statistics T∗ and find λ for which the virtual statistics of the
PPD best match the observed ones. After this, this data subset is discarded and the
remaining data is used for posterior inference and possible further computation steps
with the hyperparameters fixed to the selected ones.

3. Automatic prior specification: Finally, the method can also be used in a fashion
where we use the observed statistics T of all available data Y as the targets T∗,
loosely following the concept of empirical Bayes (Casella, 1985). While this breaks
the fundamental idea of specifying the priors independent of the data, the statistics
we use in practice are of low dimensionality and only characterize the data on a rough
level. Consequently, we expect many practitioners to be comfortable in using the tool
also in this manner. Prior predictive checks are routinely used for manually tuning the
priors so that the support of the PPD roughly matches the data (Schad et al., 2019;
Gabry et al., 2019; Gelman et al., 2020), and our approach can be interpreted as an
automated procedure for this if using simple statistics like mean and variance. Note
that this reasoning would no longer hold if using very rich statistics, in the extreme
case directly using individual data entries so that T∗ = Y , but in this work we only
consider problems where T consists of a few low-order moments.

Throughout this work we use moments such as mean and variance as the statistics
T, since they lead to computationally efficient algorithms applicable for reasonably broad
model families, but the method would work for other choices like quantiles or extreme
values as well. In particular, we go through details of two practical algorithms for different
scenarios, demonstrated in the context of Bayesian MF models. In Section 4, we first look
at cases for which we can compute certain low-order moments of the PPD analytically
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and hence we can find a closed-form expression for λ corresponding to the optimal match
T̂λ = T∗. This is ideal in terms of computation, but restricted in scope to specific models
and statistics. Hence, in Section 5, we proceed to provide a general-purpose algorithm
applicable to a broader family of models and statistics, formulated as explicit optimization
of a discrepancy measure between the PPD and target statistics, using sampling-based
estimates for the virtual statistics and stochastic gradient-descent (SGD) optimization. The
method is applicable for all continuous hyperparameters and requires only ability to sample
from PPD, but alternative forms of optimization could be considered to extend support also
to discrete hyperparameters. We demonstrate this algorithm for hierarchical Bayesian MF
models, but it could be also applied outside matrix factorizations.

4. Matching Moments for PMF and CPMF

PMF as specified in Eq. (1) allows us to obtain an analytic expression for certain moments of
the PPD, to be used as virtual statistics. If we denote by Y a virtual data matrix following
the PPD, we can compute the mean E[Yij ;λ], the variance V[Yij ;λ], and the correlations
ρ[Yij , Ytl;λ] in closed form. Here the hyperparameters are λ = {K,µθ, σ2

θ , µβ, σ
2
β}, and we

drop the explicit depedency on λ, writing E[Yij ] := E[Yij ;λ]. The detailed derivations,
provided in the Appendix, build primarily on the laws of total expectation, variance and
covariace for marginalizing out θ and β.

Proposition 1 For any entry of the virtual data matrix Y = {Yij} ∈ RN×M , the mean
and variance is given by:

E[Yij ] = Kµθµβ (4)

V[Yij ] = K[µθµβ + (µβσθ)
2 + (µθσβ)2 + (σθσβ)2] (5)

Proposition 2 For any pair of entries Yij and Ytl of matrix Y, their correlation is given
by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

(6)

With ρ1 =
K(µβσθ)2

V[Yij ]
and ρ2 =

K(µθσβ)2

V[Yij ]
.

These results indicate exactly how the hyperparameters of the model directly affect the
virtual statistics calculated from the PDD, here denotated by E[Yij ], V[Yij ] and ρ[Yij , Ytl].
Given Propositions 1 and 2 and some target values for the moments, we can directly solve
e.g. for the number of latent factors K. Denoting τ = 1− (ρ1 + ρ2), we obtain:

K =
τ V[Yij ]− E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

. (7)
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We also obtain formulas for relationships between the means and standard deviations of
the priors that can be used to set e.g. the Gamma hyperparameters a, b, c and d.

a =
ρ2 V[Yij ]

τ V[Yij ]− E[Yij ]
(8)

c =
ρ1 V[Yij ]

τ V[Yij ]− E[Yij ]
(9)

bd =
E[Yij ]

V[Yij ]

√
ac

ρ1ρ2
. (10)

For the CPMF model we obtain the following result

K =
τ V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

(11)

for the latent factors and the following relationships for other terms:

σθσβ =
V[Yij ]

E[Yij ]κψ′(w)

√
ρ1ρ2

E[Yij ] = κψ′(w)Kµθµβ

V[Yij ] = κψ′′(w)Kµθµβ + [κψ′(w)]2K[µθµβ + (µβσθ)
2 + (µθσβ)2 + (σθσβ)2].

The derivations are provided in Appendix in Propositions 8, 9, 10 and 13.
The generic observation model Yij ∼ FY (

∑K
k=1 θikβjk), with E[Yij |θ, β] =

∑K
k=1 θikβjk

can be analyzed using the same techniques. In this case we obtain the following equation
for the dimensionality of the latent factors:

K =
τ V[Yij ]− E[V(Yij |θ, β)]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

. (12)

The term E[V(Yij |θ, β)] is model-dependent with each distinct choice of a distribution for the
observation model FY having a different functional form for conditional variance V(Yij |θ, β).
For example, in the case of probabilistic matrix factorization model with a Gaussian obser-
vation model Yij ∼ N (

∑K
k=1 θikβjk, σ

−1
Y ), we obtain E[V(Yij |θ, β)] = σ2

Y ; while in the case of

Poisson matrix factorization with observation model Yij ∼ Poisson(
∑K

k=1 θikβjk), we would
obtain E[V(Yij |θ, β)] = E[Yij ]. Therefore, we obtain different analytical formulas based on
Eq. 12 for each of these models. The analysis presented here can be applied to virtually any
matrix factorization models, with any combination of distributions for the priors F (µθ, σ

2
θ)

or F (µβ, σ
2
β), and observation model FY (with finite mean and non-zero variance).

Observations: the above equations provide closed-form expressions that determine the
priors in terms of the virtual statistics of PPD matching the target statistics. They can
be computed instantaneously, bypassing the need for optimizing λ, and provide a compu-
tationally efficient way of automatically determining the number of factors for PMF and
CPMF. The result is not necessarily optimal for any particular task, especially when the
data does not follow the model well, but as illustrated experimentally in Section 7 tends to
be a good choice when there is small model mismatch and for the dataset analyzed.
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Algorithm 1: Empirical correlations ρ̃1 and ρ̃2 for a observed matrix Y = {yij} ∈
RN×M

input : observed matrix Y = {yi,j} ∈ RN×M , number of samples for the estimator
S

output: ρ̃1 and ρ̃2

Initialize arrays a = {ai,j} ∈ RS×2 and b = {bi,j} ∈ RS×2;
for s ∈ {1, · · · , S} do

Sample i ∼ Unif({1, · · · , N});
Sample j1 ∼ Unif({1, · · · ,M});
Sample j2 ∼ Unif({1, · · · ,M} \ {j1});
as,1 ← yi,j1 ;
as,2 ← yi,j2 ;
Sample j ∼ Unif({1, · · · ,M});
Sample i1 ∼ Unif({1, · · · , N});
Sample i2 ∼ Unif({1, · · · , N} \ {i1});
bs,1 ← yi1,j ;
bs,2 ← yi2,j ;

end
Calculate and return the Pearson correlation of columns of a and b;

4.1 Empirical Estimates for the Moments

As explained in Section 3.2, one way of using the method is based on matching the virtual
statistics with the true statistics of the observed data. For MF models, we only have a
single matrix representing one (often partial) observation, and hence need to estimate the
statistics by averaging over the rows and columns of one matrix instead of averaging over
multiple matrices. The mean and variance can be easily estimated over the independent
matrix entries, but how to compute the correlations is not immediate nor intuitive . One
remark is that there are two values of correlations, one for rows and another one for columns,
hence we can levarage this property of the model to make an estimator. To estimate the
correlation we derived an estimator, described in Algorithm 1, that samples two elements
from the same row or column and uses them to calculate the correlation of elements sharing
a row or column index, independent of the specific index.

5. Gradient-based Approach

Deriving analytic expressions for even simple models and moments is tedious, error-prone,
and often impossible. For users willing to give up the convenience and robustness of analytic
expressions, we next provide an optimization-based alternative that does not require model-
specific derivations. We will later demonstrate the effectiveness of this algorithm in the
context of a hierarhical variant of Poisson MF by Gopalan et al. (2015), as a concrete
example of a matrix factorization model for which analytic moments are not known.
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5.1 Formulation as an Optimization Problem

Instead of directly equating the target and virtual statistics, we solve for λ that minimizes
a discrepancy measuring the difference between the requested quantities T∗ (either expert’s
prior expectation or empirical estimate) and the virtual statistics T̂λ of the PPD

min
λ

d
(

T∗, T̂λ

)
, (13)

where for brevity we write T̂λ instead of the complete T̂ (E[g(Y );λ]). As before, T is a
collection of statistics (e.g. central moments) defining which aspects are used for learning the
hyperparameters. Intuitively, a richer set allows for a more accurate prior specification, but
requires more careful choice of discrepancy as well. For example, to match an expected value
E∗ and variance V∗ at the same time, we can use d := (E∗−E[Y ])2+(V∗−(E[Y 2]−E[Y ]2))2,
where g(Y ) = (Y, Y 2) and T̂(E1, E2) = (E1, E2 − E2

1). The result of the optimization
problem naturally depends on the choice of the discrepancy and – in the case of multiple
target statistics – the weighting of the different statistics. However, when the data follows
the assumed model and the target statistics are achievable, we can typically reach T̂λ = T
and the choice only influences the computational efficiency of the optimizer, not the result
itself. For other cases, the user needs to select an appropriate measure and weighting that
reflects their preferences.

The process builds on repeatedly drawing samples from PPD to estimate the virtual
statistics T̂λ, and solving for λ using some iterative algorithm. Importantly, this only
requires the model code providing the samples and the target statistics T∗, and hence
allows solving for the priors as part of the modeling pipeline without needing to consider
any particular data.

5.2 Differentiable Moments’ Estimators

We optimize Eq. (13) with stochastic gradient descent, using Monte Carlo approxima-
tion (Mohamed et al., 2020) for the prior predictive moments and automatic differentiation
with reparameterization gradients (Figurnov et al., 2018) wherever available and REIN-
FORCE (log derivative trick) (Williams, 1992) can be used elsewhere. For gradient-based
optimization we require that d(·) and T̂ are differentiable w.r.t their arguments, and that
we can propagate gradient ∇λ through E[g(Y )].

Even though our main interest is in BMF models, we directly derive the stochastic op-
timization for a somewhat more general family of hierarchical Bayesian models consisting
of L layers of latent variables Zl. The procedure is based on recursively applying the law of
total expectation. The unconditional expectation of g(Y ) can be obtained by integrating
out latent variables Z, but since an analytical form of it is not available, we proceed by
performing a numerical approximation, where each of the integrals over latent variables
Z1, . . . Zl . . . ZL is replaced by a sum over samples from respective (conditional) distribu-
tions. An estimate of the required gradient ∇λ E[g(Y )] is then obtained by propagating
estimates of the gradients ∇λ E[g(Y )|zl] and ∇λ log p(zl| . . . ;λ) backward through the com-
putation graph.

The detailed description and derivation of the algorithm for estimating the gradients,
which requires somewhat tedious notation and may not be of interest for readers primarily
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interested in BMF models, is provided in Supplement E. We then show in Supplement E.1
how both PMF and a hierarchical Poisson factorization (HPF) by Gopalan et al. (2015)
can be expressed as instances of this general structure. For the HPF model we do not have
analytic expressions for the moments and hence need this more general algorithm.

6. Related Work

The way we use the prior predictive distribution for hyperparameter optimization is, to the
best of our knowledge, novel. The technical elements and the overall goal are, however,
related to several seemingly distinct concepts, briefly outlined here.

Method of moments. Method of moments (MoM) refers to inferring model parame-
ters by equating (in our terminology) virtual moments with sample moments, as an alterna-
tive to maximum likelihood or Bayesian inference (Casella and Berger, 2001; Pawitan, 2001;
Knight, 1999). Even though our method involves similar expressions, the approaches are
fundamentally different in their goals. MoM is typically used for learning a point estimate
of the parameters (Z in our notation) of a probabilistic model based on observed data and
the theoretical moments for the model, whereas our goal is to set values of hyperparameters
λ and the formulation can be used for any statistics and targets that may not even be es-
timated from any data. Importantly, in our case we proceed to conduct standard Bayesian
inference for Z with the chosen λ. The practical algorithms are also different. MoM is
typically used either for simple models with easy analytic expression for the moments, or
as an generalized method of moments relying on asymptotic normality (Casella and Berger,
2001; Pawitan, 2001). Our derivations for PMF and CPMF are contributions for the MoM
literature in itself, providing equations for computing the virtual moments for a non-trivial
model class, and the model-independent algorithm using stochastic gradient optimization
may be useful also in other contexts.

Prior elicitation. By following the Bayesian paradigm, the choice of prior should
be conducted independently from the observed data (Garthwaite et al., 2005; O’Hagan
et al., 2006; Mikkola et al., 2021). When priors are difficult to specify, prior elicitation
can be used to convert expert opinions expressed e.g. using graphical interfaces to prior
distributions. This is often done by eliciting information about the parameters, but e.g.
Kadane et al. (1980) and Akbarov (2009) have studied prior elicitation using prior predictive
distributions. When the target statistics are provided by the user, our approach can be
seen as prior elicitation following their principles but using an specific type of user-specified
information. Furthermore, they could only elicit priors for over-simplistic models with
Gaussian likelihoods, whereas we provide tools for more general models with a potentially
large number of latent variables or hierarchical structure. More recently, Hartmann et al.
(2020) followed similar lines as our paper by developing model-independent prior elicitation
method based on PPD, but modelled directly the probability of the outcome data using a
Dirichlet process model, to focus on accounting for the expert uncertainty in the numerical
specification of the probability. The lack of sufficiently general algorithms for predictive
elicitation is one of the main limitations preventing practical use of prior elicitation Mikkola
et al. (2021), and our work may provide insights for improved general algorithms in that
field.
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Learning flexible priors. For highly flexible models, such as variational autoencoders
(VAE) or Bayesian neural networks (BNN), the question of the prior choice is more poorly
defined than for classic Bayesian models. Several authors have proposed directly learning a
flexible prior for such cases, typically by optimizing the same objective that is used for in-
ference. For instance, Tomczak and Welling (2018) and Klushyn et al. (2019) learnt mixture
priors for VAEs by optimizing the variational objective over the prior as well, and Nalisnick
and Smyth (2018) and Du et al. (2019) learnt parametric priors for BNNs to satisfy specific
properties (e.g. rotational invariance or monotonicity) for the model predictions. The most
closely related work in this direction is Nalisnick et al. (2021), who proposed predictive com-
plexity priors to learn a prior such that the model output best matches that of a reference
model. Their reference model can be interpreted as playing a role similar to our target
statistic, providing an alternative way for the analyst to provide subjective information on
how the model is expected to work. Their algorithm minimizing Kullback-Leibler diver-
gence between the outputs shares some commonalities with our model-independent solution
too.

Our approach has two main differences to these methods, which directly optimizing for
the prior. First of all, our primary interest is in determining hyperparameters for a specific
hierarhical Bayesian models with clearly defined priors, rather than learning an arbitrary
prior distribution to optimize the predictive performance. The more fundamental difference,
however, is that all of these approaches use the observed data itself while fitting the prior,
often by explicitly maximizing the final learning objective, whereas we only consider the
PPD of the model. Even if using the observed data to determine the target statistics T∗,
the process for determining the priors still does not involve posterior inference, in contrast
to these approaches.

Empirical Bayes. When the target statistics are computed directly from observed
data, rather than provided by the user based on domain expertise, the method resembles
empirical Bayes (EB) methods that use the data to form the prior (Casella, 1985). While
this is misaligned with rigorous Bayesian principles, EB is commonly used for simplifying
modeling tasks, e.g. by fixing hyperparameters to their maximum marginal likelihood val-
ues. Our approach shares the conceptual motivation and can be seen as practical extension
of EB to models for which classical EB would be difficult. In context of BMFs, Wang and
Stephens (2021) recently provided an EB solution for a variational approximation of the
model. This approach uses flexible prior families, but is focused on Gaussian likelihoods.

Global optimization. Our approach provides an alternative to global optimization of
hyper-parameters with techniques such as Bayesian optimization (Snoek et al., 2012). The
core difference is that they directly optimize for some specific criterion and posterior infer-
ence algorithm, and the result will not be optimal for other choices. Our result naturally
depends on the choice of the statistics (and the discrepancy measure), but is agnostic of the
eventual inference algorithm and the utility of the downstream task – it can be used for any
modeling task and thus better follows the Bayesian modeling paradigm. Global optimiza-
tion also has a clear computational disadvantage in requiring repeated posterior analysis,
although strategies for reducing the cost by using subsets of data have been developed
(Klein et al., 2017a). For models with an analytic solution our approach is immediate, but
also the model-independent algorithm in our experiments has been faster than any method
relying on posterior inference.
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Finally, we would like to emphasize that our method takes advantage of the fact that
generative models define a sampling distribution, and hence is restricted to such models.
That is, we can only carry out hyperparameter optimization for generative probabilistic
models, in contrast to Bayesian optimization that can be applied for determining hyperpa-
rameters of arbitrary machine learning models. Relying on this additional property is also
why we are able to outperform the more generic method.

Likelihood-free inference. Our approach also relates to likelihood-free inference (or
Approximate Bayesian Computation) for posterior inference in the case of models for which
the likelihood cannot be evaluated in closed form but can be sampled from (Marin et al.,
2012; Lintusaari et al., 2017). The prior predictive distribution has these properties, which
means our method can be interpreted as likelihood-free inference for the hyperparameters
and we can borrow suggestions for discrepancy measures from the literature in that field
(e.g. Beaumont 2010; Lintusaari et al. 2017). A core difference, however, is that we do not
seek for a distribution over the hyperparameters but instead prefer a point estimate; the
result will typically be used as input for subsequent modeling stages and we do not expect
the user to be willing to specify further hierarchical priors for these parameters. This allows
us to use direct gradient-based optimization, in constrast to model-based approximations
(Gutmann and Corander, 2016) or inefficient MCMC samplers (Marjoram et al., 2003) used
for likelihood-free inference.

Spectral methods. For various latent variable models, such as topic models, spectral
methods find globally optimal parameters by matching low-order moments of data while
integrating out the latent variables (Anandkumar et al., 2012). We also use low-order
moments (or other statistics) as inputs and search for point estimates – for hyperparameters
while marginalizing out the parameters – but otherwise the techniques are very different.
Spectral methods require as inputs accurate estimates for very fine-grained moments (e.g.
for topic models the joint probability of all possible triples of words, which already for a
vocabulary of 10,000 words corresponds to 1012 values), whereas we use a small number of
global moments – just four in case of PMF – that can be provided as crude estimates.

7. Experiments

Here we present two main experimental results demonstrating the potential of our method,
followed by a set of technical examinations illustrating its properties and behavior. in
Section 7.1 we first verify our approach by showing that for PMF the analytic solution
can retrieve the true generating prior for artificial data. Then, in Section 7.2 we com-
pare hyperparameters selected by prior predictive matching against the ones found by
Bayesian optimization applied directly for a posterior quality measure. Finally, Section
7.3 presents several technical illustrations, including an analysis of sensitivity of the ap-
proach to model mismatch or various kinds and a convergence study for the gradient-based
algorithm. Throughout the experiments we use capital letters to refer to different hyper-
parameter settings, defined in Tables 1, 2, 3 and 4 in Appendix. The code used for all
experiments is available in a public repository4.

4. https://github.com/zehsilva/prior-predictive-specification
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Figure 2: Prior predictive matching provides estimates K̂ for each true latent factor di-
mensionality K and prior configurations (colored lines), as analytic expression
of empirical moments for both Poisson MF (left) and Compound Poisson MF
(right). The lines indicate the median over 30 replications and the shaded are
corresponds to 95% confidence intervals.
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Figure 3: Comparison of the latent factor dimensionality estimator K̂ for different choices
of prior distribution for PMF: Beta (left), Half-Normal (center) and Log-Normal
(right). The y-axis represent the estimated latent factor dimensionality K̂ with
95% confidence intervals around the median, and the x-asis represent the true
dimensionality K.

7.1 Analytic Solution for PMF and CPMF

7.1.1 Number of factors for count data

For PMF and CPMF, Eq. (7) and Eq. (11) provide analytic expressions for hyperparameters
given the target moments. We demonstrate them in an empirical Bayes scenario, where
estimates of the observed data are used as targets, to show that the results are robust
to estimation errors. We sample a data matrix (of size 103 × 103) from the model for 30
scenarios where the true hyperparameters (denoted by λ∗) are set at different values. We
repeat this for a range of values for the true K, and for each data compute the empirical
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Figure 4: Comparison of the latent factor dimensionality estimator K̂ for generic Bayesian
matrix factorization models, validated using different choices of observation mod-
els (Gumbel, Laplace and Normal) and different choices of prior distribution:
Log-Normal, Half-Normal, Beta and Gamma. The y-axis represent the estimated
latent factor dimensionality K̂ with 95% confidence intervals around the median,
and the x-asis represent the true dimensionality K.

estimates required for estimating the number of factors using Eq. (7) and Eq. (11). Figure 2
shows the estimates accurately match the ground truth when the data follows the model,

for both PMF and CPMF with observation model Yij ∼
∑Nij

i=1N (1, 1). For both cases we
used gamma distributions as the priors.

The formulation of the model in Eq. (1) allows for generic prior distributions with
hyperparameters mean µ and variance σ2, and the resultings equations are valid for multiple
choices of prior distribution consistent with the model constraints (for example of non-
negativity of the rate of the Poisson). We repeated the above analysis using different prior
distributions for PMF: Beta, Half-Normal and Log-Normal. For each prior distribution we
fixed a set of valid hyperparameters (the values used for each the configuration of prior
distribution are in Table 3). Figure 3 shows the results for these choices of priors, verifying
that the result holds irrespective of the prior.

7.1.2 Different observation models

To demonstrate the effectiveness of the method on other forms of observed data, we next
evaluate the analytic solutions of Eq. (12) for the latent dimensionality of the generic MF
model of Eq. (3). The empirical validation is performed using Gumbel, Laplace and Normal
distributions for the observation model, with Log-Normal, Half-Normal, Beta and Gamma
priors for each of observation distributions. The location parameters of the observation
distributions were set such that the conditional mean is linear with respect to the latent
factors E[Yij |θ, β] = ηij =

∑K
k=1 θikβjk, while the expected conditional variance is a hyper-

parameter of the model that is related to the scale parameters of the distribution (details in
Appendix A). For example, for the Gumbel distribution with location and scale parameters
µij and σ, we have Yij ∼ Gumbel(µij , σ), and given that E[Yij |θ, β] = ηij = µij + γσ, the
location parameter is set to µij = ηij−γσ, and the resulting conditional expected variance is

E[V(Yij |θ, β)] = π2

6 σ
2. The constant γ ≈ 0.577 used in the parameterization of the Gumbel

distributions is the Euler–Mascheroni constant.
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For each combination of observation and prior distributions, we vary the hyperparame-
ters (details in Appendix A and Table 3) and the true dimensionality of the latent vectors
K ∈ {50, 150, 250, 350}, with 20 runs for each unique configuration. We sample a data
matrix (of size 103×103) for the each configuration of the experiment, calculating empirical
estimates for the mean, variance and correlations, and using those estimates to estimate the
latent dimensionality K̂. Figure 4 shows the estimated dimensionality K̂ (in the y-axis) for
each true latent dimensionality K (aggregated over multiple runs and hyperparameters con-
figurations for each prior and observation distribution). The conclusion is that the method
retrieves the true latent dimensionality well irrespective of the likelihood and prior choices.

Figure 5 shows the relative error K̂−K
k of the latent dimensionality estimator, which allows

for a more detailed analysis of the effect of the prior and observation model choice. For some
combinations the variance of the estimator is higher than for others, even though all have
similar mean performance. In particular, the Log-Normal prior displays higher variability
in general, while the variability of the relative error for the Beta prior decreases with the
true latent dimensionality K.

7.2 Posterior Quality

The main use for the approach is as part of a modeling process where we eventually carry
out posterior inference using the selected hyperparameters. The quality of the solution can
hence only be evaluated by inspecting how the final model performs. We do this by fitting
a PMF model to the user-artists data of the hetrec-lastfm dataset (Cantador et al.,
2011)5, using an efficient implementation of coordinate ascent variational inference6 fitted
to randomly selected 90% subset of the data. We evaluate the quality of the model using
the PSIS-LOO criterion (Vehtari et al., 2017). PSIS-LOO is here considered as an example
of a typical task-agnostic metric a practitioner would be likely to use, but the experiment
is not sensitive to the specific choice.

Figure 1 already illustrated the quality surface via explicit enumeration of the hyperpa-
rameter choices in a regular grid, shown as slices of the five-dimensional surface where all
remaining parameters were fixed to the optimal ones provided by our method. Some prior
choices have better PSIS-LOO scores – for example, slightly smaller K would be better –
but the crucial observation is that prior predictive matching provides a sufficiently good
solution in an instant. It is also important to understand that these results depend on
the specific inference algorithm and evaluation metric used, and the optimal solution would
change – possibly by a lot – if the variational approximation was replaced, e.g., with MCMC
and PSIS-LOO by a another metric. Hence, exactly matching whatever choice happens to
be optimal here would not even be correct.

Figure 6 compares the solution with the alternative of running a global optimization
algorithm to figure out the hyperparameters, for the same model, data, inference algorithm
and evaluation metric as above. We optimize for λ using the robust Bayesian optimization
(RoBO) tool (Klein et al., 2017b) (with default options for parameters specified below), and
compare results of multiple runs with the one provided by our approach in an instant.

5. http://files.grouplens.org/datasets/hetrec2011
6. We extended http://github.com/dawenl/stochastic_PMF to support sparse data.
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Figure 5: Boxplots of the relative error K̂−K
K analyzing the latent factor dimensionality

estimator K̂ for generic Bayesian matrix factorization models, validated using
different choices of observation models (Gumbel, Laplace and Normal) and dif-
ferent choices of prior distribution: Log-Normal, Half-Normal, Beta and Gamma.
The y-axis represent relative error, displayed in a collection of boxplots showing
the median and quartiles, with color code for different true latent dimensionality
K ∈ {50, 150, 250, 350}, observation model in the x-axis and organized in rows
and colums for different priors (Log-Normal in top-left, Half-Normal in top-right,
Beta in bottom-left and Gamma and bottom-right).

BO requires specifying a bounding box of feasible values, which is not trivial for PMF
and has notable impact on the performance. For the fairly carefully selected search space
of µθ, σβ, σθ, σβ ∈ [10−4, 102] (optimized on logarithmic scale) and K ∈ {1..100}, BO is
typically able to improve on the result of prior predictive matching. However, this takes on
average roughly an hour even for this simplified scenario where efficient variational approx-
imation can be fit to the fairly small data (on average) in a minute, and again we remind
that BO is directly optimizing for this particular measure for the chosen inference algorithm.
For more complex models taking e.g. hours for posterior inference, BO would be unfeasible.
Even in the case of switching from analytic solutions to the model-independent algorithm
for prior predictive matching, experiments in Section 7.3.2 indicate that our approach is
still likely to be more efficient; for PMF the algorithm converged in seconds, which can be
directly compared with the times reported here for BO. Finally, we remark that the prior
optimal choice always outperforms the initial estimate of BO and BO typically requires tens
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Figure 6: Comparison between Bayesian optimization runs (BO; colored lines) and the pro-
posed method (dashed line) for optimization of five-dimensional hyperparameter
for Poisson MF. BO eventually provides better PSIS-LOO (by directly optimizing
for it), but even after an hour almost half of the runs are worse than our analytic,
immediate, solution (right).

of iterations to reach its quality, which suggests that it is also likely to outperform various
naive heuristics and default values for the hyperparameters.

7.3 Technical Validations

After demonstrating that our approach can be successfully applied for selecting hyperpa-
rameters and priors in practical scenarios, we proceed to technical experiments examining in
detail the sensitivity of the approach to violation of the model assumptions (Section 7.3.1)
and testing properties of the gradient-based algorithm (Sections 7.3.2). Additional technical
experiments on estimators and parameterization of the prior are provided in Appendices F
and G.

7.3.1 Sensitivity to Model Mismatch

In most applications, the data does not follow any model in the assumed model family.
Since we compute the virtual statistics conditional on the model, it is unclear how well the
approach works when the model mismatch is severe. We conducted three experiments to
evaluate this, by controlling the amount of mismatch on artificial data while assuming the
PMF model and using the analytic expression Eq. (7) for setting the number of factors K.

We first consider two forms of model mismatch that relate to the distribution of the indi-
vidual entries. For both experiments we generated data with K ∈ {25, 50, 75, 100, 125, 150}
for two hyperameter configurations and generated 20 realizations for each configuration,

and we summarize the results using relative error K̂−K
K of the estimates K̂ for different true

K.

Sparsity A typical mismatch with count-matrix models relates to sparsity; the data has
more zeroes than expected under the model. To investigate the effect of this, we indepen-
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Figure 7: Sensitivity to model mismatch on zero-inflated (left) and overdispersed (right)
data. For both cases increasing model mismatch (smaller pobs or r) increases the
error monotonically, implying the approach is robust for a small model mismatch
but may give misleading results if the assumed model family fits the data very

poorly. The y-axis represent the relative error K̂−K
K with 95% confidence intervals

around the median, and D and F refer to two different true hyperparameter
configurations.

dently sample for each entry Yij (sampled from PMF) a Bernoulli variable Xij ∼ Ber(pobs)
controlling whether the entry is observed, so that our final observation is given by Ỹij =
Xij ×Yij . Decreasing pobs increases model mismatch, and Figure 7 (left) shows this also in-
creases relative error in the estimate K̂, but the decline is graceful. For some configurations
(blue) the relative error stays below 25% even after dropping 10% of observations. Note
that for this kind of model mismatch the retrieved hyperparameter is consistently larger
than the true one; additional components are required to explain the increased variance
caused by the excess zeroes.

Overdispersion The second experiment considers another prototypical model mismatch,
a scenario where a too simple model class is used. We use PMF as the model, but generate
the data so that the Poisson likelihood is replaced with negative binomial (NB) with varying
rate of overdispersion that PMF cannot account for. More specifically, we sample data
from NB distribution so that the conditional mean is given by the MF, but the variance is
controlled with overdispersion parameter r, using the parameterization NB(r, p) where r is
the number of failures until the experiment is stopped and 1 − p is probability of failure.

Using the notation of Eq. 1, our data is hence generated by ηij =
(∑K

k=1 θikβjk

)
and Yij ∼

NB(r,
ηij
ηij+r

). This implies that E[Yij |ηij ; r] = ηij and V[Yij |ηij ; r] = ηij +
η2ij
r , so the smaller

the r, the more overdispersed the distribution is. We vary r ∈ {10, 50, 100, 500, 1000, 5000},
and Figure 7 (right) shows that again the procedure is relatively robust for the mismatch.

Both experiments indicate that the analytic expression for determining K is robust only
for a small model mismatch, and that the relative error grows drastically as a function of the
mismatch. Here both examples correspond to overdispersed data compared to the assumed
model – which is often the case – which results in overestimating the number of factors.
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In general, it is difficult to anticipate how specific kinds of model mismatches influence
the results, but as a general rule we suggest interpreting odd hyperparameters as signs of
potential mismatch worth investigating in more detail. For both of these examples the
problem could be solved by switching to an appropriate model, explicitly modeling missing
data in the first case and using negative binomial as likelihood in the latter. For both cases
we would also need to switch to formulas, adapting the general result of Eq. 12.

Inconsistent margins As mentioned in Section 2, placing independent priors on the
factors induces equal margin sums in expectation. More specifically, the expected row-sum
is E[

∑
i Yij ] = NKµβµθ and the expected column-sum is E[

∑
j Yij ] = MKµβµθ. Often the

margins of real data sets are, however, quite non-uniform. We already showed in Section 7.2
that the overall configuration of the hyperparameters can be good even in the recommender
engine setups that typically have very non-uniform margins, but it is worth studying the
sensitivity to this specific form of model mismatch also in scenarios that can be analysed
in more detail.

We consider a case where each row is consistently element-wise multiplied with a posi-
tive vector γ = [γ1, . . . , γM ], with γj ≥ 1, and again focus on the estimator for K. In this

case, given η = {ηij =
∑K

k=1 θikβjk}, the conditional mean and variance is E[Yij |θβ] =
V[Yij |θβ] = γjηij , and the marginal mean and variance E[Yij ] = ej = Kγjµθµβ and
V[Yij ] = vj = ej + γ2

j V[ηij ] with V[ηij ] = K((µβσθ)
2 + (µθσβ)2 + (σθσβ)2). We observe that

each column j have an expected sum controlled by γj , which also influences the degree of
overdispersion, and the parameter γj can be chosen to enforce a desired value the expected
column-sum. Furthermore, we can calculate the correlations between Yij and Ytl, resulting
in the following expressions for the non-trivial cases: for the fixed row i = t and differ-

ent columns ρ(Yij , Ytl) = ρ
(1)
jl =

Kγjγl√
vjvl

(µβσθ)
2, and for fixed columns j = l and different

rows ρ(Yij , Ytl) = ρ
(2)
j =

Kγ2j
vj

(µθσβ)2. In summary, the mismatch here corresponds to both

larger expectation and variance, as well as a distinct correlation structure and column-wise
variation which is not present in the PMF.

We perform an experimental validation by setting the scaling matrix γ = [1, . . . , γmax] ∈
RM+ and varying γmax ∈ {1, . . . , 8}. We use K = 50, executing 5 runs of the experiment for
each prior (Beta, Gamma, Half-Normal and Log-Normal) with different configurations of
their respective hyperparameters (detailed in appendix Table 3), while using the standard
equations for PMF to estimate the necessary quantities. Figure 8 shows that the equation
for K consistently underestimates the true value, with worse results as γmax increases.
This is expected, since we added multiple sources of deviation from the original model
assumptions, resulting in equations for the moments that are varying with each column
index for mean and variance, and each pair of columns for the correlations.

It is worth noting that this particular form of mismatch could be corrected for by deriving
a new estimator for K, using the values for E[Yij ], V[Yij ] and ρ(Yij , Ytl) described above,
and new empirical estimates of those quantities. Alternatively, it is possible to recover
the original terms of the equations derived for PMF by rescaling the observations with

the formulas Ŷ
(1)
ij =

Yij
γj

and Ŷ
(2)
ij =

Yij
γ2j

, and calculated adjusted empirical estimates for

the mean E[Ŷ
(1)
ij ], variance V[Ŷ

(1)
ij ] − E[Ŷ

(2)
ij ] + E[Ŷ

(1)
ij ] and covariance Cov(Y

(1)
ij , Y

(1)
tl ). In
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Figure 8: Sensitivity of the estimated latent dimensionality K̂ when each row of the la-
tent rate matrix η = {ηij =

∑K
k=1 θikβjk} ∈ RN×M+ is consistently multiplied

element-wise by [1, . . . , γmax]. This procedure induces a resulting count-matrix
with distinct column-sum counts, where higher column-index display higher val-
ues. Each graph was generated using a fixed true dimensionality K = 50, and
different prior distributions: Beta (top left), Gamma (top right), Half-Normal
(bottom left) and Log-Normal (bottom right). Results represent median over 5
runs for each prior configuration and its 95% confidence interval.

the Appendix H these estimates are discussed in more detail, and we show an example of
adjusting for model mismatch in this case of column-wise multiplicative factors.

7.3.2 Stochastic Algorithm Convergence

The stochastic algorithm of Section 5 can be used for richer model families, but as an iter-
ative algorithm, it requires more careful analysis. We study its properties via convergence
speed and sensitivity to initial conditions for two models in the prior elicitation scenario
(target values provided by the user), and illustrate an important property regarding sce-
narios where the target values cannot be satisfied.

Before demonstrating the method in practice, we note that the algorithm itself relies
on Monte Carlo estimates for the virtual statistics. The statistics are not necessarily accu-
rate. Hence, we empirically evaluate the bias and variance of estimators in Appendix G,
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Figure 9: Convergence of the model independent algorithm for PMF (left and middle) and
HPF (right) starting from different initializations.

showing that for estimating the mean the bias is typically negligible but that for the vari-
ance estimator the bias can be large for small values of V[Y ]. Furthermore, convergence
of gradient-based optimization algorithms depends on how the optimization space is struc-
tured. Therefore, we compare two alternative parametrizations for PMF in Appendix F,
showing that good model parametrization (e.g. in terms of means and variances) may
simplify the solved optimization problem.

We first apply the algorithm for PMF, to demonstrate we can replicate the behavior of
the analytic solution (but using fixed K = 25, since the algorithm currently does not support
discrete hyperparameters). Figure 9 (left) shows convergence plots for two target values for
the mean Ê[Y ] and seven initial values (Table 1 in the Appendix), demonstrating that we
find the optimal solution typically in seconds and even for intentionally bad initializations
(scenario ”A” starts with orders of magnitude too large mean) in minutes. The optimization
was carried out in location-scale parameterization, using the Adam optimizer with a learning
rate of 0.1 and estimating Ê[Y ] with Sy = 3 samples of the observed variable for each of
S1 = 100 samples of the latent variables.

Figure 9 (right) shows similar convergence curves for hierarchical PMF (Gopalan et al.,
2015), optimizing for both mean and variance targets provided by the user with d = (Ê[Y ]−
10)2 + (V̂[Y ] − 100)2, illustrating that the algorithm works for more complex MF models
and discrepancies as well. Again, we find the solution irrespective of the initial value
(Table 2 in the Appendix), but convergence is naturally slower due to higher dimensionality
(2 more hyperparameters) and the hierarchical structure. The convergence of the optimizer
is highly insensitive to the relative weighting of the two statistics, resulting only in minor
speed differences (not shown here).

Finally, Figure 9 (middle) demonstrates the behavior of the algorithm for two PMF cases
optimized for mean and variance, one with feasible and one with infeasible target moments.
Besides users specifying contradicting goals in the prior elicitation case, the latter case can
also happen in the empirical Bayes scenario if the data does not exactly match the model.
For PMF we must have V[Yij ] ≥ E[Yij ] and hence here the target (E∗,V∗) = (100, 10)
cannot be reached. The algorithm correctly handles this, by converging to the border of
the feasible region and returning a non-zero discrepancy, providing valuable feedback for
the user on possible model mismatch or poorly specified targets. The weighting of the two
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statistics determines what kind of compromise the algorithm makes and allows freedom for
the user to indicate e.g. reliability of their given targets.

8. Discussion and Conclusion

The hyperparameters of Bayesian machine learning models are often overlooked and chosen
based on vague intuitions instead of more rigorous practices, e.g., gamma priors with small
mean and large variance are used to induce sparsity. This is understandable as the strict
Bayesian paradigm requires specifying the prior independently of the data (Garthwaite
et al., 2005; O’Hagan et al., 2006), whereas standard optimization procedures require fitting
the model on some data to evaluate the quality. Even if accepting that priors are to be
adapted based on available data (which is admissible for latent-variable models whose priors
do not really encode subjective prior knowledge), optimizing for the hyperparameters is
challenging since the posterior inference is slow and the optimization surface can be difficult.

We provided a framework for selecting hyperparameters for Bayesian models that: (a)
better fits within the Bayesian paradigm by only relying on simple data summaries or by
entirely ignoring the data and only using expected moments provided by a user; (b) is
efficient in contrast to the traditional alternatives by avoiding posterior inference when
specifying priors. The framework builds on the prior predictive distribution, previously
used for prior predictive elicitation (Kadane et al., 1980) and model checking (Schad et al.,
2019; Gelman et al., 2020), converted here into a tool for ML practitioners working with
large models. From another perspectice, the approach generalizes methods of moments and
maximum marginal likelihood.

We demonstrated the effectiveness of the approach for Bayesian matrix factorization
models, for which the choice of priors and hyperparameters is difficult. For Poisson MF
(Cemgil, 2009) and Compound PMF (Basbug and Engelhardt, 2016) we derived analytic ex-
pressions that provide immediate solutions (i.e., hyperparameters optimal in terms of PPD
matching the desired statistics) and, in particular, we now have an analytic expression for
determining the number of latent factors. Finally, we presented a model-independent opti-
mization algorithm that was here tested on a hierarchical MF model (Gopalan et al., 2015),
but can be applied for a more general class of models. In this work, we only demonstrated
the effectiveness of the approach in the context of matrix factorization to keep the scope
of the paper more limited, but the algorithm applies to any probabilistic model as long
as we can sample from the model in a differentiable manner. Empirical evaluation of the
approach in context of other model families remains an interesting future direction.

The overall methodology is generic, supporting in principle an arbitrary choice of the
statistics and discrepancy measures and not taking any stance on how the values for the
target statistics are determined. Such a flexibility means the method requires some care
when used. We believe that as long as the set of statistics are limited to a few low-order
moments it is safe to estimate the target values directly from data, but cannot say in detail
what would happen if using considerably higher order moments or other more detailed
statistics. Our practical recommendation is to start with the obvious statistics of mean and
variance, and then add additional ones if this is considered relevant for the problem or if
the solution is still too undetermined. Besides correlation, which is considered in this work,
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we see potential in using kurtosis, skewness, extreme values and selected quantiles of the
data distribution, already used in prior elicitation protocols.

Perhaps the most important aspect requiring expertise from the user concerns model
mis-spefication. We empirically studied three different forms of mis-specification to highlight
varying degrees of robustness. For instance, for PMF the approach is robust for minor over-
dispersion and zero-inflation, but suggests a too low number of factors for cases where the
margin counts do not follow the prior assumption of uniformity. However, it can still work
well in practice even in such cases, as demonstrated by good the performance in posterior
quality comparisons on real recommender engine data with clearly non-uniform margins.
In general, the results for models that fit the data very poorly are not valid. Our best
recommendation here is for practitioners to use this results as a starting point for the
prior specification in the modeling workflow, but not to necessarily directly rely on the
solution. For example, if our method suggests using only a few factors for a recommender
engine task commonly modeled with dozens of factors, our recommendation is to carefully
consider whether the specific probabilistic model matches the particular data at hand or
whether, e.g., changing the likelihood or model structure would be in order. Alternatively,
the solution can be used as an initial point for Bayesian optimization.

Our results demonstrate the practical feasibility of the idea, but further improvements
would help make it a routine part of the Bayesian ML development pipeline. Promising
directions for improving the model-independent algorithm include: (1) more careful analysis
of the moment and discrepancy measure choices, possibly building on the existing work done
for approximate Bayesian computation, (2) automatic choice of good parameterization for
the hyperparameter space, possibly along the lines of Gorinova et al. (2020), to support
generic probabilistic programs, (3) better empirical estimators for the gradients (Mohamed
et al., 2020) to reduce optimization noise, (4) support for discrete hyperparameters, and
(5) better means for identifying failure modes without relying on external validation or
theoretical analysis.
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Appendix A. Setup of the experiments

Tables 1 and 2 contain the configurations used in experiments with respectively PMF and
HPF. The legends in Figures 7, 11 and 12 refer to these letters.
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da Silva, Kuśmierczyk, Hartmann and Klami

Table 1: Considered sets of initial PMF hyperparameters.
a b c d µθ σθ µβ σβ E[Y ] V[Y ]

A 10 1 10 1 10.0 3.16 10.0 3.16 2500.00 55000.00
B 10 2 10 2 5.0 1.58 5.0 1.58 625.00 3906.25

C 0.001 0.01 0.01 0.1 0.1 3.16 0.1 1.0 0.25 253.00
D 0.1 1 0.1 1 0.1 0.32 0.1 0.32 0.25 0.55

E 0.1 0.1 0.1 0.1 1.0 3.16 1.0 3.16 25.00 3025.00
F 1 1 0.1 0.1 1.0 1.0 1.0 3.16 25.00 550.00
G 1000 1000 1000 1000 1.0 0.03 1.0 0.03 25.00 25.05

Table 2: Considered sets of initial HPF hyperparameters.
a a′ b′ c c′ d′ E[Y ] V[Y ]

K 1.0 100.0 10.0 1.0 100.0 10.0 0.26 0.26
L 0.1 100.0 1.0 1.0 100.0 1.0 2.55 8.25
M 50.0 5000.0 10.0 1.0 5000.0 1.0 125.05 781.42
N 1.0 100.0 1.0 10.0 10.0 1.0 280.57 15309.26
O 450.0 4500.0 100.0 10.0 400.0 1.0 1128.10 9833.55
P 50.0 50.0 1.0 1.0 50.0 1.0 1301.71 146074.01

Table 3 shows the configurations of the priors used in the experiments with multiple
priors. For each prior distribution of the parameters, θ and β, hyperparam 1 and hy-
perparam 2 represent the location and scale, according to the standard parameterization
used in the implementation of the numpy7 library. Table 4 shows what is the location and
scale parameterization of each distribution, corresponding to the values of hyperparam 1
and hyperparam 2, with its respective mean and variance. Table 4 includes also the dis-
tributions used in the experiment with different observations models, namely Gumbel,
Laplace and Normal distribution. In this experiment the location parameter was set to
the conditional mean E[Yij |θ, β] =

∑K
k=1 θikβjk and the scale (for each distribution) with

values {0.5, 1.0, . . . , 3.5, 4.0, 4.5, . . . , 7.5, 8.0}, leading to the expected conditional variance
E[V(Yij |θ, β)] having values according to the formulas for the variance in Table 4 (for Gum-
bel, Laplace and Normal distributions).

Appendix B. Derivation of Analytic Solution for Poisson Matrix
Factorization

We consider the model defined in Eq. (1). We reinstate that for the sake of notational

convenience we will adopt the following notation λ
def
={µθ, σ2

θ , µβ, σ
2
β}. We are interested in

computing E[Yij ;λ], V[Yij ;λ], Cov[Yij , Ytl;λ] and ρ[Yij , Ytl;λ] denotating here the virtual
statistics derived from PDD. We want to marginalize out the latent variables to be able to
calculate a mathematical relation between the hyperparameters and the virtual statistics.8

7. https://numpy.org/doc/stable/

8. For notation brevity assume the hyperparameter λ implicitily, for example E[Yij ]
def
= E[Yij ;λ] =∫

Yijp(Yij |
∑
k θikβjk)

∏
k p(θik;λ)p(βjk;λ)dθikdβjkdYij .
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Table 3: Set of hyperparameters configurations for the experiments with multiple priors.
θ hyperparam 1 θ hyperparam 2 β hyperparam 1 β hyperparam 2 prior

1.0 1.0 1.0 1.0 gamma
10.0 1.0 10.0 1.0 gamma
1.0 10.0 1.0 10.0 gamma
0.1 1.0 1.0 0.1 gamma

1.0 1.0 1.0 1.0 beta
1.0 2.0 1.0 1.0 beta
1.0 2.0 1.0 2.0 beta
1.0 2.0 2.0 1.0 beta

0.0 1.0 0.0 1.0 halfnorm
0.0 2.0 0.0 2.0 halfnorm
0.5 2.0 1.0 2.0 halfnorm
0.5 0.5 2.0 1.0 halfnorm

1.0 1.0 0.0 1.0 lognorm
1.0 2.0 0.0 2.0 lognorm
1.0 2.0 0.5 0.5 lognorm
1.0 0.5 0.5 2.0 lognorm

Table 4: Parameterization of different distributions
distribution location, scale E V
Gamma(a, b) a, b (shape and scale) ab ab2

Beta(a, b) a, b a
a+b

ab
(a+b)2(a+b+1)

HalfNormal(µ, σ) µ, σ µ+ σ
√

2
π σ2(1− 2

π )

LogNormal(µ, σ) µ, σ exp(µ+ σ2

2 ) (exp(σ2)− 1)exp(2µ+ σ2)

Gumbel(µ, σ) µ, σ µ+ γσ π2

2 σ
2

Laplace(µ, b) µ, σ µ π2

2 σ
2

Normal(µ, σ2) µ, σ µ σ2

Poisson(η) η η η

B.1 Preliminaries

We will make use of Total Expectation Law, Total Variance Law and Total Covariance Law
and the following propositions without proofs:
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E[Y ] = E[E[Y |X]] (14)

V[Y ] = E[V[Y |X]] + V[E[Y |X]] (15)

Cov[X,Y ] = E[Cov[X,Y |Z]] + Cov[E[X|Z],E[Y |Z]] (16)

V[XY ] = E[X2]E[Y 2]− E[X]2 E[Y ]2 if X and Y are independent (17)

V[XY ] = E[X]2 V[Y ] + E[Y ]2 V[X] + V[X]V[Y ] if X and Y are independent (18)

E[X2] = V[X] + E[X]2 (19)

V[
∑
k

Xk] =
∑
k

V[Xk] + 2
∑
k<k′

Cov[Xk, Xk′ ]. (20)

These relations will be useful in the task of marginalizing out the latent parameters of
the hierarchical model, as we shall see in the following section.

B.2 Intermediate results

We will start by providing some intermediate results that will be useful in different steps to
obtain the final results.

Proposition 3 For any combination of valid values for the indexes i,j,t and l, if the latent
indexes k 6= k′, then Cov[θikβjk, θtk′βlk′ ] = 0.

Proof By definition of the covariance

Cov[θikβjk, θtk′βlk′ ] = E[θikβjkθtk′βlk′ ]− E[θikβjk]E[θtk′βlk′ ].

Given that k 6= k′, this implies (for any combination of the other indices) E[θikβjkθtk′βlk′ ] =
E[θikβjk]E[θtk′βlk′ ].

Proposition 4 For any combination of valid values for the indexes i,j and k the following
equations hold:

1. E[
∑

k θikβjk] = Kµθµβ;

2. V[
∑

k θikβjk] = K[(µβσθ)
2 + (µθσβ)2 + (σθσβ)2];

3. Cov[
∑

k θikβjk,
∑

k θtkβlk] = K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(σθσβ)2)].

Proof :

1. For the first equation we apply the summation property of the expected value and the
fact that θik and βjk are independent.

2. For V[
∑

k θikβjk], we start by using Eq. 20, thus resulting in V[
∑

k θikβjk] =
∑

k V[θikβjk]+
2
∑

k<k′ Cov[θikβjk, θik′βjk′ ]. However, from Proposition 3 we know the covariance
terms where the indexes k and k′ are not the same should be zero, resulting in
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V[
∑

k θikβjk] =
∑

k V[θikβjk]. Now using Eq. (18) for the variance of the product
of random variables we obtain

V[θikβjk] = E[θik]
2 V[βjk] + E[βjk]

2 V[θik] + V[θik]V[βjk]

= µ2
θσ

2
β + µ2

βσ
2
θ + σ2

βσ
2
θ

⇒ V[
∑
k

θikβjk] = K[(µβσθ)
2 + (µθσβ)2 + (σθσβ)2].

3. For the last equation we start with the definition of covariance:

Cov[
∑
k

θikβjk,
∑
k

θtkβlk] = E[
∑
k,k′

θikβjkθtk′βlk′ ]− E[
∑
k

θikβjk]E[
∑
k′

θtk′βlk′ ]

=
∑
k,k′

E[θikβjkθtk′βlk′ ]− E[θik]E[βjk]E[θtk′ ]E[βlk′ ]︸ ︷︷ ︸
Cov[θikβjk,θtk′βlk′ ]

.

Considering Proposition 3, we know that only the shared indices k are non zero, thus
simplyfiying to

Cov[
∑
k

θikβjk,
∑
k

θtkβlk] =
∑
k

E[θikβjkθtkβlk]− E[θik]E[βjk]E[θtk]E[βlk] (21)

=
∑
k

Cov[θikβjk, θtkβlk].

Now, we can calculate Cov[θikβjk, θtkβlk] for four different cases:

(a) if i 6= t & j 6= l: because of independence of all variables, we obtain

Cov[θikβjk, θtkβlk] = 0;

(b) if i = t & j 6= l:

Cov[θikβjk, θikβlk] = E[θ2
ikβjkβlk]− E[θik]

2 E[βjk]E[βlk]

= E[θ2
ik]E[βjk]E[βlk]− E[θik]

2 E[βjk]E[βlk]

= E[βjk]E[βlk](E[θ2
ik]− E[θik]

2) = µ2
βσ

2
θ ;

(c) if i 6= t & j = l:

Cov[θikβjk, θtkβjk] = E[β2
jk]E[θik]E[θtk]− E[βjk]

2 E[θik]E[θtk] = µ2
θσ

2
β;

(d) if i = t & j = l:

Cov[θikβjk, θikβjk] = V[θikβjk] = (µβσθ)
2 + (µθσβ)2 + (σθσβ)2.

Putting all together using Kronecker delta for the indices in the different cases we
obtain

Cov[θikβjk, θtkβlk] = δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(σθσβ)2). (22)
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We obtain the final results combining Eq. (21) and Eq. (22)

⇒ Cov[
∑
k

θikβjk,
∑
k

θtkβlk] = K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(σθσβ)2)].

B.3 Expected values and variance

We can now proceed to calculate the prior predictive expected value and variance.

Proposition 5 For any combination of valid values for the indexes i,j and the following
equations hold:

1. E[Yij ] = Kµθµβ;

2. V[Yij ] = K[µθµβ + (µβσθ)
2 + (µθσβ)2 + (σθσβ)2].

Proof By the law of total expectation, E[Yij ] = E[E[Yij |
∑

k θikβjk]] = E[
∑

k θikβjk],
already calculated in Proposition 4. For the second equation we use the law of total variance
(Eq. (15)) V[Yij ] = E[V[Yij |

∑
k θikβjk]]+V[E[Yij |

∑
k θikβjk]], and because we have a Poisson

likelihood we know that V[Yij |
∑

k θikβjk] = E[Yij |
∑

k θikβjk] =
∑

k θikβjk. Now putting
both together and using Proposition 4 we obtain

V[Yij ] = E[
∑
k

θikβjk] + V[
∑
k

θikβjk] = K[µθµβ + (µβσθ)
2 + (µθσβ)2 + (σθσβ)2].

B.4 Covariance and correlation

Finally, combining the previous results we can obtain the covariance and correlation for the
prior predictive distribution

Proposition 6 The prior predictive covariance is given by

Cov[Yij , Ytl] = K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)].

Proof Using the law of total covariance (Eq. (16)):

Cov[Yij , Ytl] = E[Cov[Yij , Ytl|θi., βj., θt., βl.]] + Cov[E[Yij |θi., βj.],E[Ytl|θt., βl.]]
= E[δitδjl V[Yij |θi., βj.]] + Cov[

∑
k

θikβjk,
∑
k

θtkβlk]

= E[δitδjl
∑
k

θikβjk] +K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(σθσβ)2)]

= K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)].
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Proposition 7 The prior predictive correlation is given by

ρ[Yij , Ytl] =
δit(µβσθ)

2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)

µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2

or alternatively

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1 =
(µβσθ)2

µθµβ+(µβσθ)2+(µθσβ)2+(σθσβ)2
, if i = t & j 6= l

ρ2 =
(µθσβ)2

µθµβ+(µβσθ)2+(µθσβ)2+(σθσβ)2
, if i 6= t & j = l

.

Proof From the definition of correlation we have

ρ[Yij , Ytl] =
Cov[Yij , Ytl]√
V[Yij ]V[ytlj ]

=
Cov[Yij , Ytl]√

V[Yij ]2

=
δit(µβσθ)

2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)

µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2
.

B.5 Finding the hyperparameters given the moments

Proposition 8 Given that we know K, E[Yij ], V[Yij ], ρ1 and ρ2 the following equations
hold and can be used for determining the hyperparameters:

σθσβ =
V[Yij ]

E[Yij ]

√
ρ1ρ2 (23)(

σβ
µβ

)2

= K
V[Yij ]

E[Yij ]2
ρ2 (24)(

σθ
µθ

)2

= K
V[Yij ]

E[Yij ]2
ρ1 (25)

ρ1

(
σβ
µβ

)2

= ρ2

(
σθ
µθ

)2

. (26)

Proof We can rewrite the columns correlation ρ1 and row correlation ρ2 equations from
Proposition 7 as

ρ1
V[Yij ]

K
= (µβσθ)

2 (27)

ρ2
V[Yij ]

K
= (µθσβ)2. (28)
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Multiplying them together we obtain

ρ1ρ2

(
V[Yij ]

K

)2

= (µβµθ)︸ ︷︷ ︸
E[Yij ]
K

2(σβσθ)
2

=⇒ ρ1ρ2

(
V[Yij ]

E[Yij ]

)2

= (σβσθ)
2. (29)

Taking the root of Eq. (29) completes the proof for Eq. (23).

Now, using Eq. (29), Eq. (27) and Eq. (28), we will obtain the value of
(σβσθ)2

(µβσθ)2
and

(σβσθ)2

(µθσβ)2
:

(σβσθ)
2

(µβσθ)2
=
σ2
β

µ2
β

= ρ1ρ2

(
V[Yij ]

E[Yij ]

)2 K

ρ1 V[Yij ]
= ρ2K

V[Yij ]

E[Yij ]2
(30)

(σβσθ)
2

(µθσβ)2
=
σ2
θ

µ2
θ

= ρ1ρ2

(
V[Yij ]

E[Yij ]

)2 K

ρ2 V[Yij ]
= ρ1K

V[Yij ]

E[Yij ]2
. (31)

Finally, dividing Eq. (27) by Eq. (27) we obtain the last result that completes the proof.

Proposition 9 Given that we know E[Yij ], V[Yij ], ρ1 and ρ2, we can obtain the number of
latent factors K and coefficient of variation (σµ) of the priors of the Poisson factorization
model that would generate data to match those moments:

K =
(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

(32)(
σθ
µθ

)2

=
(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ2 V[Yij ]
(33)(

σβ
µβ

)2

=
(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ1 V[Yij ]
. (34)

Proof From Proposition 5, we can rewrite the expression for the variance as

V[Yij ] = E[Yij ] +K(µθσβ︸ ︷︷ ︸)2

ρ2
V[Yij ]
K

+K(µβσθ︸ ︷︷ ︸)2

ρ1
V[Yij ]
K

+K(σθσβ).

Now, using Eq. (27) and Eq. (27) to substitute in the previous equation we obtain:

V[Yij ] = E[Yij ] + (ρ1 + ρ2)V[Yij ] +K(σθσβ)2.
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Using the squared version of Eq. (23) from Proposition 8, we know that K(σθσβ)2 =

K
(
V[Yij ]
E[Yij ]

)2
ρ1ρ2. This results in

K

(
V[Yij ]

E[Yij ]

)2

ρ1ρ2 = (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

=⇒ K =
(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

. (35)

The remaining results are obtained by substituting Eq. (35) in Eq. (27) and Eq. (28).

B.5.1 Gamma priors

For gamma priors parameterized with shape (a,c) and rate (b,d) we have:

µθ =
a

b
;σ2

θ =
a

b2
;µβ =

c

d
;σ2

β =
c

d2

and the cofficient of variation is given by

σ2
θ

µ2
θ

=
a

b2
b2

a2
=

1

a
(36)

σ2
β

µ2
β

=
d2

c2

c

d2
=

1

c
. (37)

Thus, Eq. (36) and Eq. (36) establish a closed-form relationship between the shape hy-
perparameters of Gamma distributed latent variables in Poisson MF and moments of the
marginal distribution of the data. This means that any assumption that the expert might
have about those moments on the data can be readily translated into appropriate values
for the prior specification.

In conclusion, given the chosen moments, the prior especification of Gamma-Poisson MF
model reduces to one degree of freedom, given that the latent dimensionality, and shape
hyperparameters are determined. The only two hyperparameters left are the rate/scale,
although they would be restriced to be obey a relationship with functional form

b ∝ 1

d
.

Proposition 10 Given that we know the moments E[Yij ], V[Yij ], ρ1 and ρ2, we can ob-
tain the scale parameters of the Gamma priors speficied as F (µθ, σ

2
θ) = Gamma(a, b) and

F (µβ, σ
2
β) = Gamma(c, d) in the Gamma-Poisson factorization model such that the prior

predictive moments would match those given moments.

1

a
=

(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ2 V[Yij ]
(38)

1

c
=

(1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ1 V[Yij ]
(39)
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Proof Immediate from Proposition 9 and the parameterization of Gamma distribution
discussed.

Also we can rewrite Eq. 23 with Gamma parameterization to obtain

a

b2
c

d2
= σ2

θσ
2
θ =

(
V[Yij ]

E[Yij ]

)2

ρ1ρ2

=⇒ (bd)2 =

(
E[Yij ]

V[Yij ]

)2 ac

ρ1ρ2

=⇒ bd =
E[Yij ]

V[Yij ]

√
ac

ρ1ρ2
. (40)

Appendix C. Derivation of Analytic Solution for Compound Poisson
Matrix Factorization

We will work with the Exponential Dispersion models (EDM) family of observation that
makes Compound Poisson matrix factorization models. Keeping the same notation of the
previous section, but adding variable Nui as a Poisson distributed latent count factor of
the ED model. With abuse of notation, for example this model allow for observations of

the type Yij =
∑Nij

i=1N (1, 1), where Nij is a Poisson random variable, extending Poisson
factorization to the domain of real valued observations. Also, from the additive properties

Jorgensen (1987); Basbug and Engelhardt (2016) of EDM models, Yij =
∑Nij

i=1 Yijk with

Yijk
iid∼ ED(w, κ) is equivalent to Yij ∼ ED(w, κNij). Thus, the Compound Poisson Matrix

Factorization (CPMF) model we use is defined as

Yij ∼ ED(w, κNij)

Nij ∼ Poisson(
∑
k

θikβjk)

θik ∼ F (µθ, σ
2
θ)

βjk ∼ F (µβ, σ
2
β),

where p(Yij |Nij ;w, κ) = exp(Yijw − κNijψ(w))h(Yij , κNij), E[Yij |Nij ;w, κ] = κNijψ
′(w)

and V[Yij |Nij ;w, κ] = κNijψ
′′(w).

C.1 Mean, variance, covariance and correlation

Proposition 11 For any combination of valid values for the indexes i,j, the following
equations hold:

1. E[Yij ] = κψ′(w)Kµθµβ;

2. V[Yij ] = κψ′′(w)Kµθµβ + (κψ′(w))2K[µθµβ + (µβσθ)
2 + (µθσβ)2 + (σθσβ)2].

Proof By the law of total expectation and the properties of the mean of ED family, E[Yij ] =
E[κψ′(w)Nij ], which simplifies to E[Yij ] = κψ′(w)E[Nij ] and from Proposition 5 we know
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the expected value of the latent Poisson count Nij , concluding that E[Yij ] = κψ′(w)Kµθµβ.
Using the law of total variance V[Yij ] = E[V[Yij |Nij ]] + V[E[Yij |Nij ], that simplifies to

V[Yij ] = κψ′′(w)E[Nij ] + [κψ′(w)]2 V[Nij ],

and again substituting Proposition 5 completes the proof.

Proposition 12 The prior predictive correlation is given by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

,

with

ρ1 =
K[κψ′(w)]2

V[Yij ]
(µβσθ)

2

ρ2 =
K[κψ′(w)]2

V[Yij ]
(µθσβ)2.

Proof Starting with the covariance, we apply the law of total covariance to obtain

Cov[Yij , Ytl] = δitδjlκψ
′′(w)E[Nij ] + [κψ′(w)]2 Cov[Nij , Ntl]. (41)

When all the indices coincide this will be equal to the variance, thus leading to a correlation
of 1, when all the indices are different this will lead to correlation of zero. This means that
the main difference between the prior predictive correlation structure of CPMF and PMF
will be where there is rows and columns correlation, that we will be able to calculate because
we know the covariance Cov[Nij , Ntl] from Proposition 6, namely

ρ1 =
[κψ′(w)]2 Cov[Nij , Nil]

V[Yi,j ]
=
K[κψ′(w)]2(µβσ

2
θ)

V[Yi,j ]
,

ρ2 =
[κψ′(w)]2 Cov[Nij , Ntj ]

V[Yi,j ]
=
K[κψ′(w)]2(µθσ

2
β)

V[Yi,j ]
.

C.2 Finding the hyperparameters given the moments

Proposition 13 For Compound Poisson MF, given that we know E[Yij ], V[Yij ], ρ1 and
ρ2, we can obtain the number of latent factors K of the model that would generate data to
match those moments:

K =
(1− (ρ1 + ρ2))V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

. (42)
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Proof We will start by showing that

σθσβ =
V[Yij ]

E[Yij ]κψ′(w)

√
ρ1ρ2. (43)

Take ρ1 and ρ2 and multiply them to obtain:

ρ1ρ2 =

(
K[κψ′(w)]2

V[Yij ]

)2

(µθµβ)2(σθσβ)2.

From Proposition 11, we know Kµθµβ =
E[Yij ]
κψ′(w) , so we can substitute that on the previous

equation obtaining

ρ1ρ2 =

(
[κψ′(w)]2

V[Yij ]

)2( E[Yij ]

κψ′(w)

)2

(σθσβ)2 = [κψ′(w)]2
(
E[Yij ]

V[Yij ]

)2

(σθσβ)2.

Now let us turn our attention to V[Yij ] and re-write it using the previous results together
with Proposition 12 for the correlations, and Proposition 11 for the mean:

V[Yij ] = ψ′′(w)κKµθµβ︸ ︷︷ ︸
E[Yij ]
ψ′(w)

+K[κψ′(w)]2µθµβ︸ ︷︷ ︸
κψ′(w)E[Yij ]

+K[κψ′(w)]2[(µβσθ)
2 + (µθσβ)2 + (σθσβ)2]

=

(
ψ′′(w)

ψ′(w)
+ κψ′(w)

)
E[Yij ] +K[κψ′(w)]2(µβσθ)

2︸ ︷︷ ︸
ρ1 V[Yij ]

+K[κψ′(w)]2(µθσβ)2︸ ︷︷ ︸
ρ2 V[Yij ]

+K[κψ′(w)]2(σθσβ)2

=

(
ψ′′(w)

ψ′(w)
+ κψ′(w)

)
E[Yij ] + (ρ1 + ρ2)V[Yij ] +K[κψ′(w)]2(σθσβ)2︸ ︷︷ ︸

ρ1ρ2

(
V[Yij ]]
E[Yij

)2

=

(
ψ′′(w)

ψ′(w)
+ κψ′(w)

)
E[Yij ] + (ρ1 + ρ2)V[Yij ] +Kρ1ρ2

(
V[Yij ]]

E[Yij

)2

.

Reorganizing the terms and isolating K we obtain the final formula

K =
(1− (ρ1 + ρ2))V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

.
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Appendix D. Generic Probabilistic Matrix Factorization

Consider the model defined in Eq. 3, with priors F (µθ, σ
2
θ) and F (µβ, σ

2
β), and observation

model FY , defined as:

θik ∼ F (µθ, σ
2
θ), βjk ∼ F (µβ, σ

2
β)

Yij ∼ FY (
K∑
k=1

θikβjk), with E[Yij ] =
K∑
k=1

θikβjk.

Proposition 14 For any entry of the matrix Y = {Yij}, the mean and variance is given
by:

E[Yij ] = Kµθµβ (44)

V[Yij ] = E[V[Yij |θ, β]]

+K[(µβσθ)
2 + (µθσβ)2 + (σθσβ)2] (45)

Proof The equation for E[Yij ] is obtained from the same steps shown for the case PMF

and CPMF, and the fact that E[Yij ] =
∑K

k=1 θikβjk by definition of the model.
The equation for V[Yij ] is obtained also from the same steps shown before, but with

the additional restriction that E[V[Yij |θ, β]] is model dependent and can not be simplified
further, once we apply the law of total variance.

Proposition 15 For any pair of entries Yij and Ytl of the matrix Y, their correlation is
given by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

(46)

with ρ1 =
K(µβσθ)

2

V[Yij ]

ρ2 =
K(µθσβ)2

V[Yij ]

Proof Using the law of total covariance:

Cov[Yij , Ytl] = E[Cov[Yij , Ytl|θ, β]] + Cov[E[Yij |θ, β],E[Ytl|θ, β]]

= δitδjl E[V[Yij |θ, β]] + Cov[
∑
k

θikβjk,
∑
k

θtkβlk]

= δitδjl E[V[Yij |θ, β]] +K[δit(µβσθ)
2 + δjl(µθσβ)2 + δitδjl(σθσβ)2].

Analyzing this expression for the different cases we obtain:
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• i 6= t & j 6= l: Cov[Yij , Ytl] = 0

• i = t & j = l: Cov[Yij , Ytl] = Cov[Yij , Yij ] = V[Yij ]

• i = t & j 6= l: Cov[Yij , Ytl] = K(µβσθ)
2

• i 6= t & j = l: Cov[Yij , Ytl] = K(µθσβ)2

Applying the definition of correlation ρ[Yij , Ytl] =
Cov[Yij ,Ytl]√
V[Yij]V[Ytl]

=
Cov[Yij ,Ytl]

V[Yij]
we obtain

the final equation in the proposition.

Given Propositions 14 and 15 and some target values for the moments, we can directly
solve for the number of latent factors K. Denoting τ = 1 − (ρ1 + ρ2), we obtain our main
result

Theorem 16

K =
τ V[Yij ]− E[V(Yij |θ, β)]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

. (47)

Proof We can rewrite the expression of variance using the terms ρ1 and ρ2 resulting in

V[Yij ] = E[V[Yij |θ, β]] + (ρ1 + ρ2)V[Yij ] +K(σθσβ)2

And given that K(σθσβ)2 == Kρ1ρ2

(
V[Yij ]
E[Yij ]

)2
and τ = 1− (ρ1 + ρ2) we obtain

Kρ1ρ2

(
V[Yij ]

E[Yij ]

)2

= (1− (ρ1 + ρ2))V[Yij ]− E[V[Yij |θ, β]]

=⇒ K =
τ V[Yij ]− E[V[Yij |θ, β]]

ρ1ρ2

(
E[Yij ]

V[Yij ]

)2

Appendix E. Differentiable Moment’s Estimators for Hierarchical
Bayesian Models

This appendix provides the details on how to compute the gradients for the gradient-based
approach described in Section 5. To optimize Eq. (13) with stochastic gradient descent, we
require that d(·) and T̂ are differentiable w.r.t their arguments, and that we can propagate
gradient ∇λ through E[g(Y )]. Next we show how this can be done for a rather general
structure of hierarchical Bayesian models with outputs Y and latent variables Z. See Fig-
ure 10 for a conceptual illustration of the assumed model structure and the procedure for
computing the gradient. The procedure is based on recursively applying the law of total ex-
pectation. The unconditional expectation of g(Y ) can be obtained by integrating out latent
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Bayesian model Gradient computation

∇λE[g(Y )]

Z1 • • • ∇λE[g(Y )|Z1]∇λlog(p(Z1))

...
...

... · · ·

ZL−1 • • ∇λE[g(Y )|ZL−1]∇λlog(p(Zl))

ZL • • • ∇λE[g(Y )|ZL]∇λlog(p(ZL))

Y ∇λg(Y )

Figure 10: Conceptual illustration of how the gradients for arbitrary moments can be esti-
mated for Bayesian models with hierarchical structure of latent variables.

variables Z, but since an analytical form of it is not available, we proceed by performing a
numerical approximation, where each of the integrals over latent variables Z1, . . . Zl . . . ZL is
replaced by a sum over samples from respective (conditional) distributions. An estimate of
the required gradient ∇λ E[g(Y )] is then obtained by propagating estimates of the gradients
∇λ E[g(Y )|zl] and ∇λ log p(zl| . . . ;λ) backward through the computation graph.

Top level variables. Assuming all the remaining variables Z−1 integrated out, the
expectation of g(Y ) can be expressed by conditioning only on variables Z1 having no parents,
i.e., latent variables being on top in the hierarchy of such a Bayesian model. For discrete
Z1

E[g(Y )] =
∑
z1∈Z1

E[g(Y )|z1]︸ ︷︷ ︸
f1λ(Y,z1)

·p(z1;λ) (48)

where we named f1
λ(Y, z1) ≡ E[g(Y )|z1] to emphasize that the expectations here behave like

ordinary functions. The gradient of the expectation is then given as

∇λ E[g(Y )] =
∑
z1∈Z1

∇λf(Y, z1) · p(z1;λ) + f(Y, z1) · ∇λp(z1;λ).

Whenever the number of possible discrete values, i.e., |Z1|, is too large or infinite (like for
example, for Poisson distribution), the exact sum over all possible outcomes in Eq. (48) is
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replaced with a set of samples

E[g(Y )] ≈ 1

S1

∑
z1∼p(z1;λ)

f1
λ(Y, z1) · p(z1;λ), (49)

where S1 denotes number of samples. Then, log derivative trick in (e.g., the DiCE in-
carnation by Foerster et al. 2018) is used to obtain unbiased estimates for the gradient

∇λ E[g(Y )] ≈ 1

S1

∑
z1∼p(z1;λ)

∇λf(Y, z1) · p(z1;λ) + f(Y, z1) · ∇λ log p(z1;λ)︸ ︷︷ ︸
log derivative trick

, (50)

The second term may incurr large variance of the gradient estimator but (even though
we do not account for it in our experiments) this can be helped by variance reduction
techniques (Mnih and Gregor, 2014; Mnih and Rezende, 2016; Tucker et al., 2017).

For continuous Z1 the expectation is approximated using MC

E[g(Y )] ≈ 1

S1

∑
z1∼p(z1;λ)

f1
λ(Y, z1) (51)

and the gradient can be estimated by reparameterizing z1 := z1(ε1, λ), i.e., expressing
samples z1 as a deterministic function of λ and another random variable ε1 coming from a
zero-parameter distribution p0. The estimate is then

∇λ E[g(Y )] ≈ ∇λ

 1

S1

∑
ε1∼p0(ε1)

f1
λ (Y, z1(ε1, λ))

 =
1

S1

∑
ε1∼p0(ε1)

∇λf1
λ (Y, z1(ε1, λ)) (52)

where we omit the change-of-variables Jacobian for brevity. Even though the technical
implementations of the path-wise (reparametrized) gradients (Figurnov et al., 2018) may
differ from the conceptual presentation above, it does not affect our reasoning – usually the
details are hidden by interface of an automatic-differentation library.

Inner latent variables. For both of the above cases (Z1 discrete and continous) we
need to be able to calculate the inner gradients of the conditional expectations ∇λf(Y, z1) ≡
∇λ E[g(Y )|z1], and in general, for any intermediate latent variables Zl we need ∇λf(Y, zl) ≡
∇λ E[g(Y )|zl]. It can be obtained by further expanding the expectations. For each l,
we unwrap recursively the expectation by conditioning on variables’ Zl parents Zl−1. In
particular, for discrete Zl we again have

E[g(Y )|zl−1] =
∑
zl∈Zl

E[g(Y )|zl]︸ ︷︷ ︸
f lλ(Y,zl)

·p(zl|zl−1;λ). (53)

where Eq. (53) corresponds and has the same form as Eq. (48) and therefore the gradient
∇λ E[g(Y )|zl−1] can be obtained similar as in Eq. (50) (with the exception that the prob-
ability mass function p(zl|zl−1;λ) depends here also on samples zl−1 of the parents Zl−1).
Respectively, for continuous Zl:

E[g(Y )|zl−1] ≈ 1

Sl

∑
zl∼p(zl;λ)

E[g(Y )|zl]︸ ︷︷ ︸
f lλ(Y,zl)

=
1

Sl

∑
εl∼p0

E[g(Y )|zl(εl, λ, zl−1)], (54)
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where Eq. (54) corresponds and has the same form as Eq. (51) and allows obtaining its gra-
dient similar as in Eq. (52). The only notable difference is again that the reparametrization
zl := zl(εl, λ, zl−1) depends also on zl−1.

Direct parents of observed variables. By recursively exploring the computation
graph, we eventually arrive at the expectation of g(Y ) conditioned directly on its parents.
For discrete Y it takes an exact form of

E[g(Y )|zL] =
∑
y∈Y

g(y)︸︷︷︸
fLλ (y)

·p(y|zL;λ), (55)

where again we find the same structure as in Eq. (48) and Eq. (53), and the gradient can be
obtained similar to Eq. (50). Note however that here ∇λfLλ (y) = ∇λg(y) where we assume
∇λg(y) to be a known function. For continuous outputs Y , we again resort to the MC
approximation

E[g(Y )|zL] ≈ 1

Sy

∑
εy∼p0

g(y(εy, λ, zL)), (56)

where differentiability w.r.t λ is achieved by reparametrizing y := y(εy, λ, zL). Sy is a
number of MC samples and p0 is a simple distribution free of hyperparameters λ. Finally,
the reparametrized gradient similar to Eq. (52) is given as

∇λ E[g(Y )|zL] ≈ 1

Sy

∑
εy∼p0

∇λg(y(εy, λ, zL)).

Mixed-type variables. If the set of variables denoted by Zl consist of both contin-
uous and discrete nodes, the above expressions need to be combined by summing over (or
sampling from) the discrete variables and using MC approximation for the continuous ones.

E.1 Example: Derivation for PMF and HPF

To demonstrate the rather generic presentation above and to link it to the BMF use-case,
we show as an example the MC estimate for the expectation E[Yij ] of the PMF model

E[Y ] ≈ 1

Sθ · Sβ
∑
εθ∼p0

∑
εβ∼p0

E[Y |θ(εθ, λ)Tβ(εβ, λ)], (57)

where we reparametrize both β and θ. For clarity, we also dropped indices i and j in Yij ,
θi and βj . The internal conditional expectation in Eq. (57) we expand as

E[Y |θTβ] ≈ 1

C

∑
y∼Poisson(θT β)

y · Poisson(y|θTβ), (58)

where we applied Eq. (49) and Poisson denotes Poisson probability mass distribution. Sim-
ilarly, variance of Y we estimate with V[Y ] = E[Y 2]− E[Y ]2, where the estimator of E[Y 2]
we obtain by substituting y with y2 in Eq. (58).

To demonstrate the flexibility of the model-independent algorihm we also apply it on
hierarchical Poisson factorization (HPF) model of Gopalan et al. (2015), for which we do
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Figure 11: PMF (K = 25) parametrization using concentrations a, c and rates b, d vs.
means µθ, µβ and variances σ2

θ , σ
2
β: 1D and 2D projections of the optimization

surface for matching V[Y ] = 100 in neighborhood of the optimal point (a = 0.16,
b = 0.4, c = 0.4, d = 0.4).

not have closed-form expressions for the moments. This model adds one level of hierarchy
to PMF, and hence matches our general formulation:

θ ∼ Gamma(a, ξ), ξ ∼ Gamma(a′, a′/b′)

β ∼ Gamma(c, η), η ∼ Gamma(c′, c′/d′),

where the new continuous variables ξ, η we reparametrize (and sample) as follows:

θ := θ(εθ, a, ξ), ξ := ξ(εξ, a
′, a′/b′)

β := β(εβ, c, ξ), η := η(εη, c
′, c′/d′),

Then, for HPF, Eq. (57) takes the form

E[Y ] ≈ 1

Sξ · Sη
∑
εξ∼p0

∑
εη∼p0

1

Sθ · Sβ
∑
εθ∼p0

∑
εβ∼p0

E[Y |θ(εθ, λ, η(εη, λ))Tβ(εβ, λ, η(εη, λ))]

︸ ︷︷ ︸
E[Y |ξ,η]

,

Appendix F. Parametrization of PMF

The performance of the stochastic optimization algorithm depends on the model parametriza-
tion, i.e., structure of the associated optimization space. Figure 11 compares two alternative
parametrizations for PMF, one in terms of concentrations (a, c) and rates (b, d) and the
other in terms of means (µθ, µβ) and variances (σ2

θ , σ
2
β). In this case, the latter results in

diagonal Fisher information matrix and reduced correlations between the hyperparameters.
This makes optimization easier, seen also as smoother optimization surface.

The question of optimal parameterization for general cases is clearly non-trivial problem,
as it is for all optimization problems. One direction for improved parameterization of the
prior distributions could build on the approach of Hartmann and Vanhatalo (2019), Tang
and Ranganath (2019) and Gorinova et al. (2020), going towards a generic invariant to the
parameterization of probabilistic programming models such as in Ollivier et al. (2017).
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Figure 12: Biases and variances of the expected value (left) and variance (right) estimators
for PMF (K = 25) with different hyperparameters’ configurations (Table 1). SZ
denotes the number of latent variable samples and Sy is the number of samples
of observed variable.

Appendix G. Bias and Variance of Generic Estimators

The model-independent stochastic algorithm relies on Monte Carlo estimates for the virtual
statistics as explained in Section 5, instantiated for example cases in Eq. 19 and 20. Such
estimates are not necessarily accurate, and hence we evaluate the bias and variance of the
estimators against the closed-form solutions of Eq. 3 and 4, based on 103 independent runs.

Figure 12 compares variances and biases for the mean Ê[Y ] (top) and the variance V̂[Y ]
(bottom) estimators for a range of hyperparameter configurations (Tables 1 and 2 in the
Appendix), analyzing the effect of the number of samples used for estimating the statistics.
We fix the total number of samples at SZ×Sy = 104, but vary the ratio between the number
of samples for the latent variables (SZ) and for the observed ones (Sy). Both variance and
bias are minimized when more computational resources are spent on sampling the latent
variables, suggesting the use of SZ × Sy := 103 × 10.

The mean estimator has slight bias which is noticeable only for very small values (E[Y ] <
1), and the variance is usually lower than 50% of the mean estimate.

The variance estimator, however, may have significant bias and variance for values of
V[Y ], potentially disturbing the convergence for initializations C, D and G and raising a
question regarding better estimators.

Appendix H. Adjustment for model mismatch

The model used in the experiment of Figure 8 in Section 7.3.1 has elements for each column
controlled by a parameter, which is used to induce each columns to sum to a certain number.
This model has a multiplicative factor γj for each latent rate that can be adjusted to induced
the desired sum, which can be interprested as allocation factors controlling how much the
latent rates are allocated to each column. The original equations for PMF are not applicable
in this case, but it is possible to adjust the estimators for empirical mean, variance and
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covariance, such that we could still use the original equations obtained for PMF. In this
section we show details about this result, as well as a simple experiment validating the
approach.

Define Yij ∼ Poisson(ηij) with ηij =
∑K

k=1 θikβjk as the original PMF matrix, and Ỹij ∼
Poisson(γjηij) with γ = [γ1, . . . , γM ] as the modified PMF model with the multiplicative
factors. The conditional mean and variance of the modified PMF is E[Ỹij |θβ] = V[Ỹij |θβ] =
γjηij = γj E[Yij |θβ]. The marginal expected and variance are obtained using the previous
results resulting in E[Ỹij ] = ej = Kγjµθµβ = γj E[Yij ] and V[Yij ] = vj = ej + γ2

j V[ηij ] =

γj E[Yij ] + γ2
j V[ηij ].

Furthermore we can calculate the correlations between Ỹij and Ỹtl , and obtain a similar
correlation structure that is zero when all the indices are different (ρ(Yij , Ytl) = 0) and
1 when all indices are the same (ρ(Ỹij , Ỹij) = 1), but a column varying correlation for

the remaining cases: for the fixed row i = t and different columns ρ(Ỹij , Ỹtl) = ρ
(1)
jl =

Kγjγl√
vjvl

(µβσθ)
2 = γjγl

Cov(Yij ,Ytl)√
vjvl

, and for fixed columns j = l and different rows ρ(Ỹij , Ỹtl) =

ρ
(2)
j = γ2

j
Cov(Yij ,Ytl)

vj
. Making empirical estimates of these moments are challenging, specially

if we intend to use a single observation matrix to estimate those quantities. It is possible to
recover the original terms of the equations for PMF by observing the relationship between
the obtained formulas and the moments for PMF.

Define Ŷ
(1)
ij =

Ỹij
γj

and Ŷ
(2)
ij =

Ỹij
γ2j

. Now, E[Ŷ
(1)
ij ] = ê = E[Yij ] = Kµθµβ which is the

equation for the original PMF. Similarly we observe that for PMF, V[Yij ] = E[Yij ] +V[ηij ],
while in the modified model we obtain V[Ỹij ] = γj E[Yij ] + γ2

j V[ηij ], which implies that

V[Ŷ
(1)
ij ] =

V[Ỹij ]

γ2j
=

E[Yij ]
γj

+ V[ηij ]. Since E[Ŷ
(2)
ij ] =

E[Yij ]
γj

, we can write V[Ŷ
(1)
ij ] − E[Ŷ

(2)
ij ] =

V[ηij ], which is one of the terms in the original PMF equation for the variance, as well as
being a term that does not vary with the column index. Furthermore, combining with the

expected value E[Ŷ
(1)
ij ] we obtain the result v̂ = V[Ŷ

(1)
ij ]−E[Ŷ

(2)
ij ] +E[Ŷ

(1)
ij ] = E[Yij ] +V[ηij ]

which is precisely the equation for V[Yij ] in the PMF model.

Given the bilinearity of the covariance, we have Cov(Y
(1)
ij , Y

(1)
tl ) =

Cov(Ỹij ,Ỹtl)
γjγl

, which

cancels with the terms γjγl in the numerator when applied to the calculate the correlation

coefficients. Finally, we obtain the original correlation of PMF using
Cov(Y

(1)
ij ,Y

(1)
tl )

v̂ . We can

now use this equations to obtain empirical estimator using Ŷ
(1)
ij and Ŷ

(2)
ij , and apply those

in the same formula of the latent dimensionality K obtained for PMF.

The empirical validation setup consist of fixed priors Gamma(1, 10) and Gamma(1, 0.5),
latent dimensionality K ∈ {100, 250, 500, 750, 1000}, and 10 repeated runs for each K. In
each run, we sample a matrix {Yij} ∈ R1000×1000 using the PMF model and another matrix
{Ỹij} ∈ R1000×1000 with the multiplicative factors γ = [1, . . . , γmax] (γmax = 3.5), using the
same prior distribution (but resampling the latent factor for each case) and K. For the
PMF matrix {Yij} we can directly calculate empirical estimates of the mean, variance and
correlations, and estimate the latent dimensionality K̂ using Eq. (7). For the matrix {Ỹij}
of the modified model we calculate Ŷ

(1)
ij =

Ỹij
γj

and Ŷ
(2)
ij =

Ỹij
γ2j

, and use empirical estimates of

variance, expected value and covariance (that is used to calculate the correlations) according
to the equations presented in the previous paragraph, finally calculating the estimated latent
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Figure 13: Comparing the estimated latent dimensionality K̂ for PMF and the modified
PMF with multiplicative factors, using the adjusted empirical estimates for vari-
ance, expected value and correlation (median over 10 runs, with CI=95%)

dimensionality K̂ using the same Eq. (7). Figure 13 compares the results and shows that
in both cases the estimate K̂ recover the true K with similar degree of variability.
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