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Abstract

The study of strategic or adversarial manipulation of testing data to fool a classifier has
attracted much recent attention. Most previous works have focused on two extreme situa-
tions where any testing data point either is completely adversarial or always equally prefers
the positive label. In this paper, we generalize both of these through a unified framework
by considering strategic agents with heterogenous preferences, and introduce the notion
of strategic VC-dimension (SVC) to capture the PAC-learnability in our general strategic
setup. SVC provably generalizes the recent concept of adversarial VC-dimension (AVC)
introduced by Cullina et al. (2018). We instantiate our framework for the fundamental
strategic linear classification problem. We fully characterize: (1) the statistical learnability
of linear classifiers by pinning down its SVC; (2) its computational tractability by pinning
down the complexity of the empirical risk minimization problem. Interestingly, the SVC of
linear classifiers is always upper bounded by its standard VC-dimension. This characteri-
zation also strictly generalizes the AVC bound for linear classifiers in (Cullina et al., 2018).
Finally, we briefly investigate the power of randomization in our strategic classification
setup. We show that randomization may strictly increase the accuracy in general, but will
not help in the special case of adversarial classification with zero-manipulation-cost.
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1. Introduction

In today’s increasingly connected world, it is rare that an algorithm will act alone. When
a machine learning algorithm is used to make predictions or decisions about others who
have their own preferences over the learning outcomes, it is well known (e.g., Goodhart’s
law) that gaming behaviors may arise—these have been observed in a variety of domains
such as finance (Tearsheet), online retailing (Hannak et al., 2014), education (Hardt et al.,
2016) as well as during the ongoing COVID-19 pandemic (Bryan and Crossroads; Williams
and Haire). In the early months of the pandemic, simple decision rules were designed for
COVID-19 testing (COVID) by the CDC. However, people had different preferences for
getting tested. Those with work-from-home jobs and leave benefits preferred to get tested
in order to know their true health status whereas some of the people with lower income, and
without leave benefits preferred not to get tested with fears of losing their income (Williams
and Haire). Policy makers sometimes prefer to make classification rules confidential (Citron
and Pasquale, 2014) to mitigate such gaming. However, this is not fool-proof in general since
the methods may be reverse engineered in some cases, and transparency of ML methods
is sometimes mandated by law, e.g., (Goodman and Flaxman, 2016). Such concerns have
led to a lot of interest in designing learning algorithms that are robust to strategic gaming
behaviors of the data sources (Perote and Perote-Peña, 2004; Dekel et al., 2010; Hardt et al.,
2016; Chen et al., 2018; Dong et al., 2018; Cullina et al., 2018; Awasthi et al., 2019); the
present work subscribes to this literature.

This paper focuses on the ubiquitous binary classification problem, and we look to design
classification algorithms that are robust to gaming behaviors during the test phase. We study
a strict generalization of the canonical classification setup that naturally incorporates data
points’ preferences over classification outcomes (which leads to strategic behaviors as we will
describe later). In particular, each data point is denoted as a tuple (x, y, r) where x ∈ X and
y ∈ {−1,+1} are the feature and label, respectively (as in classic classification problems),
and additionally, r ∈ R is a real number that describes how much this data point prefers
label +1 over −1. Importantly, we allow r to be negative, meaning that the data point may
prefer label −1. For instance, in the decision rules for COVID-19 testing, individuals who
prefer to get tested have r > 0, while those who prefer not to be tested have r < 0. The
magnitude |r| captures how strong their preferences are. For example, in the school choice
matching market, students have heterogeneous preferences over universities (Pathak, 2017;
Roth, 2008) and may manipulate their application materials during the admission process.
Let set R ⊆ R denote the set of all possible values that the preference value r may take.
Obviously, the trivial singleton set R = {0} corresponds to the classic classification setup
without any preferences. Another special case of R = {1} corresponds to the situation
where all data points prefer label +1 equally. This is the strategic classification setting
studied in several previous works (Hardt et al., 2016; Hu et al., 2019b; Miller et al., 2019).
A third special case is R = {−1, 1}. This encompasses the classification under evasion
attacks (Biggio et al., 2013; Goodfellow et al., 2015; Li and Vorobeychik, 2014; Cullina
et al., 2018; Awasthi et al., 2019), where any test data point (x, y) prefers the opposite of
its true label y, i.e., the “adversarial” assumption.

Our model considers any general preference set R. As we will show, this much richer
set of preferences may sometimes make learning more difficult, both statistically and com-
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putationally, but not always. Like Hardt et al. (2016); Dong et al. (2018); Goodfellow et al.
(2015); Cullina et al. (2018), our model assumes that manipulation is only possible to the
data features and happens only during the test phase. Specifically, the true feature of the
test data may be altered by the strategic data point. The cost of masking a true feature
x to appear as a different feature z is captured by a cost function c(z;x). Therefore, the
test data point’s decision needs to balance the cost of altering feature and the reward of
inducing its preferred label captured by r. As is standard in game-theoretic analysis, the
test data point is assumed a rational decision maker and will choose to alter to the feature
z that maximizes its quasi-linear utility [r · I(h(z) = 1) − c(z;x)]. This naturally gives
rise to a Stackelberg game (Von Stackelberg, 2010). We aim to learn, from i.i.d. drawn
(unaltered) training data, the optimal classifier h∗ that minimizes the 0-1 classification loss,
assuming any randomly drawn test data point (from the same distribution as testing data)
will respond to h∗ strategically. Notably, the data point’s strategic behavior will not change
its true label. Such behavior is referred to as strategic gaming, which crucially differs from
strategic improvement studied recently (Kleinberg and Raghavan, 2019; Miller et al., 2019).

1.1 Overview of Our Results

The Strategic VC-Dimension. We introduce the novel notion of strategic VC-dimension
SVC(H, R, c) which captures the learnability of any hypothesis class H when test data
points’ strategic behaviors are induced by cost function c and preference values from any
set R ⊆ R.

• We prove that any strategic classification problem is agnostic PAC learnable by
the empirical risk minimization paradigm with O

(
ϵ−2[d + log(1δ ))]

)
samples, where

d =SVC(H, R, c). Conceptually, this result illustrates that SVC correctly character-
izes the learnability of the hypothesis class H in our strategic setup.

• Our SVC notion generalizes the adversarial VC-dimension (AVC) introduced in (Cul-
lina et al., 2018) for adversarial learning with evasion attacks. Formally, we prove that
AVC equals precisely SVC(H, R, c) for R = {−1, 1} when data points are allowed to
move within region {z; c(z;x) ≤ 1} in the adversarial learning setup. However, for
general preference set R, SVC can be arbitrarily larger than both AVC and the stan-
dard VC dimension. Thus, complex strategic behaviors may indeed make the learning
statistically more difficult. Interestingly, to our knowledge, this is the first time that
adversarial learning and strategic learning are unified under the same PAC-learning
framework.

• We prove SVC(H, R, c)≤ 2 for any H and R when c is any separable cost function
(introduced by Hardt et al. (2016)). Invoking our sample complexity results above,
this also recovers a main learnability result of (Hardt et al., 2016) and, moreover,
generalizes their result to arbitrary agent preferences.

Strategic Linear Classification. As a case study, we instantiate our strategic classi-
fication framework in perhaps one of the most fundamental classification problems, linear
classification. Here, features are in Rd linear space. We assume the cost function c(z;x) for
any x is induced by arbitrary seminorms of the difference z − x. We distinguish between
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two crucial situations: (1) instance-invariant cost function which means the cost of altering
the feature x to x+∆ is the same for any x; (2) instance-wise cost function which allows
the cost from x to x + ∆ to be different for different x. Our results show that the more
general instance-wise costs impose significantly more difficulties in terms of both statistical
learnability and computational tractability.

• Statistical Learnability. We prove that the SVC of linear classifiers is ∞ for
instance-wise cost functions even when features are in R2; in contrast, the SVC is at
most d+1 for any instance-invariant cost functions and any R when features are in Rd.
This later result also strictly generalizes the AVC bound for linear classifiers proved
in (Cullina et al., 2018), and illustrates an interesting conceptual message: though
SVC can be significantly larger than AVC in general, extending from R = {−1, 1}
to an arbitrary strategic preference set R does not affect the statistical learnability of
strategic linear classification.

• Computational Tractability. We show that the empirical risk minimization prob-
lem for linear classifier can be solved in polynomial time only when the strategic
classification problem exhibits certain adversarial nature. Specifically, an instance is
said to have adversarial preferences if all negative test points prefer label +1 (but
possibly to different extents) and all positive test points prefer label −1. A strictly
more relaxed situation has essentially adversarial preferences — i.e., any negative test
point prefers label +1 more than any positive test point. We show that for instance-
invariant cost functions, any essentially adversarial instance can be solved in poly-
nomial time whereas for instance-wise cost functions, only adversarial instances can
be solved in polynomial time. These positive results are essentially the best one can
hope for. Indeed, we prove that the following situations, which goes slightly beyond
the tractable cases above, are both NP-hard: (1) instance-invariant cost functions
but general preferences; (2) instance-wise cost functions but essentially adversarial
preferences.

Randomization in Strategic Classification. We examine the power and limits of ran-
domization in our strategic classification setting. It is well-known that randomization does
not improve classification accuracy in the non-strategic case (see, e.g., (Braverman and
Garg, 2020)). We observe that this ceases to be true in strategic classification — there are
examples where randomized linear classifiers can achieve strictly better accuracy than any
deterministic linear classifier.1 Interestingly, however, we prove that randomization does not
improve accuracy for classification with zero-manipulation-cost adversaries, by leveraging
the special properties of the cost function in adversarial classification.

1.2 Related Works

(Brückner and Scheffer, 2011) is one of the first to consider the Stackelberg game formu-
lation of strategic classification, motivated by spam filtering; however they do not study
generalization bounds. Zhang and Conitzer (2021) provide the sample complexity result for

1. Similar result has been observed by Braverman and Garg (2020), but their work has focused on on
one-dimensional feature space
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strategic PAC-learning under the homogeneous preference setting and in particular study
the case under the incentive-compatibility constraints, i.e., subject to no data points will
misreport features. Both works assume the positive labels are always and equally preferred.
There has also been work on understanding the social implications of strategically robust
classification (Akyol et al., 2016; Milli et al., 2019; Hu et al., 2019b); these works show
that improving the learner’s performance may lead to increased social burden and unfair-
ness. Dong et al. (2018); Chen et al. (2020); Ahmadi et al. (2021) extend strategic linear
classification to an online setting where the data points come in an online manner. These
online learning setups do not have the notion of “training” and “testing” sets. Instead, all
their data points are contaminated. Our setting however is in the more canonical PAC-
learning setup but with more general agent preferences and thus crucially differs from them
in multiple aspects: (1) we assume access to uncontaminated training data whereas testing
data are contaminated (like classic strategic classification setups as in (Hardt et al., 2016;
Hu et al., 2019b; Zhang and Conitzer, 2021)); (2) data points in our setups have arbitrary
preferences and manipulation cost functions whereas these online learning setups all assume
homogeneous agent preferences and typically special class of cost functions like l2 distances
(Ahmadi et al., 2021) or positive homogeneous functions (Dong et al., 2018). Finally, all
these online setups have so far examined only linear classification whereas our strategic PAC
learning framework is general albeit with linear classification as an important case study.
To our knowledge, recent work by Tsirtsis et al. (2019) is the only work that considers
heterogeneous data point preferences. However, their work focuses purely on the compu-
tational problem of computing the optimal classification policy. Moreover, their study a
very different classification model with exponentially large discrete feature spaces, and thus
their complexity results are not comparable to ours. All these aforementioned works, in-
cluding the present work, consider gaming behaviors. A relevant but quite different line
of recent works study strategic improvements where the manipulation does really change
the inherent quality and labels (Kleinberg and Raghavan, 2019; Miller et al., 2019; Ustun
et al., 2019; Bechavod et al., 2020; Shavit et al., 2020). The question there is mainly to
design incentive mechanisms to encourage agents’ efforts or improvements. Most relevant to
ours is perhaps the strategic classification model studied by Hardt et al. (2016) and Zhang
and Conitzer (2021), where Hardt et al. (2016) formally formulated the strategic classi-
fication problem as a repeated Stackelberg game and Zhang and Conitzer (2021) studied
the PAC-learning problem and tightly characterized the sample complexity via “incentive-
aware ERM”. However, their model and results all assume homogeneous agent preferences,
i.e., all agents equally prefer label +1. Our model strictly generalizes the model of (Hardt
et al., 2016; Zhang and Conitzer, 2021) by allowing agents’ heterogeneous preferences over
classification outcomes. Besides the modeling differences, the research questions we study
are also quite different from (Hardt et al., 2016). Their positive results are derived under
the assumption of separable cost functions or its variants, which appear too restrictive and
somewhat unrealistic. For example, one consequence of separable cost functions is that for
any two features x, z, the manipulation cost from either x to z or from z to x must be 0.2

2. A cost function c(z;x) is separable if there exists two functions c1, c2 : X → R such that c(z;x) =
max{c2(z)− c1(x), 0}. Since c(x;x) = 0, we have c2(x) ≤ c1(x) for any x. Therefore, c2(x) + c2(z)−
c1(x)−c1(z) ≤ 0. Consequently, either c2(x)−c1(z) ≤ 0 or c2(z)−c1(x) ≤ 0, yielding either c(z;x) = 0
or c(x;z) = 0.
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This appears unrealistic in reality. For example, a high-school student with true average
math grade 80 and true average literature grade 95 is likely to incur cost if she/he wants
to appear as 95 for math and 80 for literature, and vice versa. This is because different
students are good at different aspects. Our model imposes less assumptions on the cost
functions by allowing any cost functions induced by seminorms. Our characterization of
SVC equaling at most 2 under separable cost functions implies the PAC-learnability result
of (Hardt et al., 2016), which serves more as our case study. One of our main contribution
is the study of the novel concept of SVC, which does not appear in previous works. More-
over, we study the efficient learnability of linear classifiers with cost functions induced by
seminorms. This broad and natural class of cost functions is not separable, and thus the
results of (Hardt et al., 2016) does not apply to this case.
Our model also generalizes the setup of adversarial classification with evasion attacks, which
has been studied in numerous applications, particularly deep learning models (Biggio et al.,
2013, 2012; Li and Vorobeychik, 2014; Carlini and Wagner, 2017; Goodfellow et al., 2015;
Jagielski et al., 2018; Moosavi-Dezfooli et al., 2017; Mozaffari-Kermani et al., 2015; Ru-
binstein et al., 2009); however, most of these works do not yield theoretical guarantees.
Our work extends and strictly generalizes the recent work of (Cullina et al., 2018) through
our more general concept of SVC and results on computational efficiency. In a different
work, Awasthi et al. (2019) studied computationally efficient learning of linear classifiers
in adversarial classification with l∞-norm-induced δ-ball for allowable adversarial moves.
Our computational tractability results generalize their results to δ-ball induced by arbitrary
seminorms.3

Strategic classification has been studied in other different settings or domains or for differ-
ent purposes, including spam filtering (Brückner and Scheffer, 2011), online learning (Dong
et al., 2018; Chen et al., 2020), and understanding the social implications (Akyol et al.,
2016; Milli et al., 2019; Hu et al., 2019b). A relevant but quite different line of recent works
study strategic improvements (Kleinberg and Raghavan, 2019; Miller et al., 2019; Ustun
et al., 2019; Bechavod et al., 2020; Shavit et al., 2020). Finally, going beyond classification,
strategic behaviors in machine learning has received significant recent attentions, including
in regression problems (Perote and Perote-Peña, 2004; Dekel et al., 2010; Chen et al., 2018),
distinguishing distributions (Zhang et al., 2019a,b), and learning for pricing (Amin et al.,
2013; Mohri and Munoz, 2015; Vanunts and Drutsa, 2019). These works are similar in spirit
to ours, but study a completely different set of problems using different techniques. Their
results are not comparable to ours.

2. Model

Basic Setup. We consider binary classification, where each data point is characterized
by a tuple (x, y, r). Like classic classification setups, x ∈ X is the feature vector and y ∈
{+1,−1} is its label. The only difference of our setup from classic classification problems is
the additional r ∈ R ⊆ R, which is the data point’s (positive or negative) preference/reward
of being labeled as +1. The data point’s reward for label −1 is, without loss of generality,
normalized to be 0. A classifier is a mapping h : X → {+1,−1}. Our model is essentially

3. (Awasthi et al., 2019) also studied computational tractability of learning other classes of classifiers, e.g.,
degree-2 polynomial threshold classifiers, which we do not consider.
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the same as that of (Hardt et al., 2016; Miller et al., 2019), except that the r in our model
can be any real value from set R whereas the aforementioned works assume r = 1 for all
data points. Notably, we also allow r to be negative, which means some data points prefer
to be classified as label −1. This generalization is natural and very useful because it allows
much richer agent preferences. For instance, it casts the adversarial/robust classification
problem as a special case of our model as well (see discussions later). Intuitively, the set R
captures the richness of agents’ preferences. As we will prove, how rich it is will affect both
the statistical learnability and computational tractability of the learning problem.

Figure 1: Example illustration of our setup. The line is a linear classifier. Points x3,x4

have incentive to cross the boundary whereas x1,x2 do not. The dotted cycles contain
all manipulated features which have moving cost exactly 1 and they can be different for
different points (i.e., instance-wise costs).

The Strategic Manipulation of Test Data. We consider strategic behaviors during the
test phase and assume that the training data is unaltered/uncontaminated. An illustration
of the setup can be found in Figure 1. A generic test data point is denoted as (x, y, r). The
test data point is strategic and may shift its feature to vector z with cost c(z;x) where
c : X × X → R≥0. In general, function c can be an arbitrary non-negative cost function.
In our study of strategic linear classification, we assume the cost functions are induced
by seminorms. We will consider the following two types of cost functions, with increasing
generality.

1. Instance-invariant cost functions: A cost function c is instance-invariant if there
is a common function l such that c(z;x) = l(z − x) for any point (x, y, r).

2. Instance-wise cost functions: With instance-wise cost functions, each data point
is allowed to possess its own loss function. To capture this situation, we need to
augment each data point’s representation from (x, y, r) to (x, y, r, l), where l is a
function depending on x such that c(z;x) = l(z − x) for some semi-norm l. For
notational convenience, we often refer to function l associated with this data point as
lx though we emphasize that this is a slight abuse of notation because lx is determined
not just by the data point’s feature x but rather by the data point itself.4

4. The only places where this notational discrepancy needs to be recognized are the proof of Theorem 10
and the second situation of Theorem 14, during which we will point out this to avoid confusion.
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Both cases have been considered in previous works. For instance, the separable cost function
studied in (Hardt et al., 2016) is instance-wise, and the cost function induced by a seminorm
as assumed by the main theorem of (Cullina et al., 2018) is instance-invariant. We shall
prove later that the choice among these two types of cost functions will largely affect the
efficient learnability of the problem.

Given a classifier h, the strategic test data point (x, y, r) may shift its feature vector to
z and would like to pick the best such z by solving the following optimization problem:

Data Point Best Response: ∆c(x, r;h) = argmax
z∈X

[
I(h(z) = 1) · r − c(z;x)

]
. (1)

where I(S) is the indicator function and [I(h(z) = 1) · r − c(z;x)] is the quasi-linear utility
function of data point (x, y, r). We call ∆c(x, r;h) the manipulated feature. When there
are multiple best responses, we assume the data point may choose any best response and
thus will adopt the standard worst-case analysis. Note that the test data’s strategic be-
haviors do not change its true label. Such strategic gaming behaviors differ from strategic
improvements (see (Miller et al., 2019) for more discussions on their differences). We also
point out that the preference r is assumed to be known for any training data (though no
need to be known for testing data). While this may appear a strong assumption at the
first glance, we believe this parameter can be estimated in real applications (e.g., how much
it matters to someone for being admitted to a university, for receiving a loan or for being
tested COVID positive). An interesting future direction may be to understand how robust
the strategic classifier is to the estimation error of r in the training data.

2.1 The Strategic Classification (StraC) Problem

A StraC problem is described by a hypothesis class H, the set of preferences R and a ma-
nipulation cost function c. We thus denote it as StraC⟨H, R, c⟩. Adopting the standard
statistical learning framework, the input to our learning task is n uncontaminated training
data points (x1, y1, r1), · · · , (xn, yn, rn) drawn independently and identically (i.i.d.) from
distribution D. Given these training data, we look to learn a classifier h ∈ H which mini-
mizes the basic 0-1 loss, defined as follows:

Strategic 0-1 Loss of classifier h :

Lc(h;D) = Pr
(x,y,r)∼D

[
h(∆c(x, r;h)) ̸= y)

]
. (2)

Notably, the classifier h in the above loss definition takes the manipulated feature ∆c(x, r;h))
as input and, nevertheless, looks to correctly predict the true label y. For notational conve-
nience, we sometimes omit c when it is clear from the context and simply write ∆(x, r;h)
and L(h;D).

2.2 Notable Special Cases

Our strategic classification model generalizes several models studied in previous literature,
which we now sketch.

• Non-strategic classification. When R = {0} and c(z;x) > 0 for any x ̸= z, our
model degenerates to the standard non-strategic setting.
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• Strategic classification with homogeneous preference. When R = {1}, our
model degenerates to the strategic classification model studied in prior work (Hardt
et al., 2016; Hu et al., 2019b; Milli et al., 2019)—here all data points have the same
incentive of being classified as +1.

• Adversarial Classification. When R = {1,−1} (or {δ,−δ},δ ̸= 0), our model
encompasses the adversarial classification problem (Cullina et al., 2018; Awasthi et al.,
2019), where each data point can adversarially move to induce the opposite of its true
label — within the ball of radius 1 induced by cost function c. Our Proposition 6
provides formal evidence for this connection.

• Generalized Adversarial Classification. An interesting generalization of the
above adversarial classification setting is that r < 0 for all data points with true label
+1 and r > 0 for all data points with true label −1. This captures the situation where
each point has different “power” (decided by |r|) to play against the classifier. To our
knowledge, this generalized setting has not been considered before. Our results yield
new efficient statistical learnability and computational tractability for this setting.

3. VC-Dimension for Strategic Classification

In this section, we introduce the notion of strategic VC-dimension (SVC) and show that it
properly captures the behaviors of a hypothesis class in the strategic setup introduced above.
We then show the connection of SVC with previous studies on both strategic and adversarial
learning. Before formally introducing SVC, we first define the shattering coefficients in
strategic setups.

Definition 1 (Strategic Shattering Coefficients) The n-th shattering coefficient of any
strategic classification problem StraC⟨H, R, c⟩ is defined as

σn(H, R, c) = max
(x,r)∈Xn×Rn

|{(h(∆c(x1, r1;h)), · · · , h(∆c(xn, rn;h)) : h ∈ H}|,

where ∆c(xi, ri;h) defined in Eq. (1) is a best response of data point (xi, yi, ri) to classifier
h under cost function c.

That is, σn(H, R, c) captures the maximum number of classification behaviors/outcomes
(among all choices of data points) that classifiers in H can possibly induce by using manip-
ulated features as input. Like classic definition of shattering coefficient, the σn(H, R, c) here
does not involve the labels of the data points at all. In contrast, in the shattering coefficient
definition for adversarial VC-dimension of (Cullina et al., 2018), the “max” is allowed to be
over data labels as well. This is an important difference compared to our setting. Given the
definition of the strategic shattering coefficients, the definition of strategic VC-dimension is
standard.

Definition 2 The Strategic VC-dimension (SVC) for strategic classification problem
StraC⟨H, R, c⟩ is defined as

SVC(H, R, c) = sup{n ∈ N : σn(H, R, c) = 2n}. (3)
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We show that the SVC defined above correctly characterizes the learnability of any strategic
classification problem StraC⟨H, R, c⟩. We consider the standard Empirical risk minimiza-
tion (ERM) paradigm for strategic classification, but take into account training data’s ma-
nipulation behaviors. Specifically, given any cost function c, any n uncontaminated training
data points (x1, y1, r1), · · · , (xn, yn, rn) drawn independently and identically (i.i.d.) from
the same distribution D, the strategic empirical risk minimization (SERM) problem com-
putes a classifier h ∈ H that minimizes the empirical strategic 0-1 loss in Eq. (2). Formally,
the SERM for StraC⟨H, R, c⟩ is defined as follows:

SERM : argminh∈H Lc(h, {(xi, yi, ri)}ni=1) =
n∑

i=1

I
[
h(∆c(xi, ri;h)) ̸= yi

]
(4)

where Lc(h, {(xi, yi, ri)}ni=1) is the empirical loss (compared to the expected loss Lc(h,D)
defined in Eq. (2)). Unlike the standard (non-strategic) ERM problem and similar in spirit
to the ”incentive-aware ERM” in (Zhang and Conitzer, 2021), classifiers in the SERM
problem take each data point’s strategic response ∆c (xi, ri;h) as input, while not the
original feature vector xi.

Given the definition of strategic VC-dimension and the SERM framework, we state the
sample complexity result for PAC-learning in our strategic setup:

Definition 3 (PAC-Learnability) In a strategic classification problem StraC⟨H, R, c⟩,
the hypothesis class H ⊆ (X −→ {+1,−1}) is Probably Approximately Correctly (PAC)
learnable by an algorithm A if there is a function mH,R,c : (0, 1)

2 −→ N such that ∀(δ, ϵ) ∈
(0, 1)2, for any n ≥ mH,R,c(δ, ϵ) and any distribution D for (x, y, r), with at least probability
1− δ, we have Lc(h

∗,D) ≤ ϵ where h∗ is the output of the algorithm A with n i.i.d. samples
from D as input. The problem is agnostic PAC learnable if Lc(h

∗,D)− infh∈H Lc(h,D) ≤ ϵ.

Theorem 4 Any strategic classification instance StraC⟨H, R, c⟩ is agnostic PAC learn-
able with sample complexity mH,R,c(δ, ϵ) ≤ Cϵ−2[d+log(1δ )] by the SERM in Eq. (4), where
d = SV C(H, R, c) is the strategic VC-dimension and C is an absolute constant.

Proof Let Y = {+1,−1}. Define another binary hypothesis class H̃ = {κc(h) : h ∈
H}, where κc : (X −→ Y) −→ (X × R −→ Y) is a mapping such that κc(h)(x, r) =
h(∆c(x, r;h)), ∀(x, r) ∈ X × R. Note that the input of classifier κc(h) consists of both
the feature vector x and the preference r. By the definition of SVC, we have
VC(H̃) =SVC(H, R, c) = d.

Given any distribution D, cost function c, and h ∈ H, the strategic 0-1 loss of h is

Lc(h,D) = E(x,y,r)∼D

[
I
[
κc(h)(x, r) ̸= y

]]
= L(κc(h),D), where L(h̃,D) is the standard

expected risk of the newly defined h̃ ∈ H̃ under the distribution D in the non-strategic
setting. Therefore, studying the PAC sample complexity upper bound for H under the
strategic setting ⟨R, c⟩ is equivalent to studying the sample complexity for H̃ in the non-
strategic setting. The latter problem can be addressed by employing the standard PAC
learning analysis. From the Fundamental Theorem of Statistical Learning (Theorem 6.8 in
(Shalev-Shwartz and Ben-David, 2014)), we know H̃ is agnostic PAC learnable with sample
complexity O(ϵ−2(VC(H̃) + log 1

δ )), meaning that there exists a constant C such that for

10
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any (δ, ϵ) ∈ (0, 1)2 and any distribution D for (x, y, r), as long as n ≥ C ·ϵ−2(VC(H̃)+log 1
δ ),

with at least probability 1− δ, we have

L(h̃∗,D)− inf
h̃∈H̃

L(h̃,D) ≤ ϵ,

where h̃∗ is the solution of ERM with n i.i.d. samples from D as input. Let h∗ be the
solution of the corresponding SERM conditioned on the same n i.i.d. samples from D.
By the definition of H̃ and Lc, we have Lc(h

∗,D) = L(h̃∗,D), and infh∈H Lc(h,D) =
inf h̃∈H̃ L(h̃,D). Therefore, with probability 1− δ, we have

Lc(h
∗,D)− inf

h∈H
Lc(h,D) ≤ ϵ,

which implies StraC⟨H, R, c⟩ is agnostic PAC learnable with sample complexity O(ϵ−2[d+
log(1δ )]) by the SERM.

Next, we illustrate how SVC connects to previous literature, particularly the two most
relevant works by (Cullina et al., 2018) and (Hardt et al., 2016).

3.1 SVC generalizes Adversarial VC-Dimension (AVC)

We show that SVC generalizes the adversarial VC dimension (AVC) introduced by (Cullina
et al., 2018). We give an intuitive description of AVC here, and refer the curious reader to
Appendix 6 for its formal definition. At a high level, AVC captures the behaviors of binary
classifiers under adversarial manipulations. Such adversarial manipulations are described
by a binary nearness relation B ⊆ X × X and (z;x) ∈ B if and only if a data point with
feature x can manipulate its feature to z. Note that there is no direct notion of agents’
utilities or costs in adversarial classification since each data point simply tries to ruin the
classifier by moving within the allowed manipulation region (usually an δ-ball around the
data point). Nevertheless, our next result shows that AVC with binary nearness relation
B always equals to SVC as long as the set of strategic manipulations induced by the data
points’ incentives is the same as B. To formalize our statement, we need the following
consistency definition.

Definition 5 Given any binary relation B and any cost function c, we say B, c are r-
consistent if B = {(z;x) : c(z;x) ≤ r}. In this case, we also say B [resp. c] is r-consistent
with c [resp. B].

By definition any cost function c is r-consistent with the natural binary nearness relation
it induces Bc = {(z;x) : c(z;x) ≤ r}. Conversely, any binary relation B is r-consistent (for
any r > 0) with a natural cost function that is simply an indicator function of B defined as
follows

cB(z;x) =

{
∞, if (z;x) ∈ B
0, if (z;x) ̸∈ B

. (5)

Note that, B and c may be r-consistent for infinitely many different r, as shown in the above
example with B and cB.

11
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Proposition 6 For any hypothesis class H and any binary nearness relation B, let AVC(H,B)
denote the adversarial VC-dimension defined in (Cullina et al., 2018). Suppose B and c are
r-consistent for some r > 0, then we have AVC(H,B) =SVC(H, {+r,−r}, c).

For readability, we defer the complete proof for some of the results to the appendix,
while only provide their proof sketches in the main paper. The full proof of Proposition 6 is
deferred to Appendix A.1. To reveal this relationship, we directly examine the definitions
of AVC and SVC and demonstrate that the former captures a special case of the latter. As
a corollary of Proposition 6, we know that SVC is in general larger than or at least equal to
AVC when the strategic behaviors it induces include B. This is formalized in the following
statement.

Corollary 7 Suppose a cost function c is r-consistent with binary nearness relation B and
±r ∈ R, then we have

SV C(H, R, c) ≥ AV C(H,B).

Corollary 7 illustrates that for any cost function c, the SVC with a rich preference set R
is generally no less than the corresponding AVC under the natural binary nearness relation
that c induces. One might wonder how large their gap can be. Our next result shows that
for a general R the gap between SVC and AVC can be arbitrarily large even in natural
setups. The intrinsic reason is that a general preference set R will lead to different extents
of preferences (i.e., some data points strongly prefer label 1 whereas some slightly prefers it).
Such variety of preferences gives rise to more strategic classification outcomes and renders
the SVC larger than AVC, and sometimes significantly larger, as shown in the following
proposition.

Proposition 8 For any integer n > 0, there exists a hypothesis class H with point classi-
fiers, an instance-invariant cost function c(z;x) = l(z−x) for some metric c and preference
set R such that SV C(H, R, c) = n but V C(H) = AV C(H,Bc(r)) = 1 for any r ∈ R where
Bc(r) = {(x, z) : c(z;x) ≤ r} is the natural nearness relation induced by c and r > 0.

In the proof we construct an instance with a universe set X = [n] ∪ S where [n] =
{1, 2, · · · , n} is the set of n elements and S be the power set of [n]. The hypothesis class H is
the set of all the point classifiers with points from S. We then design an instance-invariant
cost function which leads to the desired VC dimension bounds. The detailed proof can be
found in Appendix A.3.

3.2 SVC under Separable Cost Functions

Not only restricting the set R of preference values can reduce the SVC. This subsection
shows that restricting to special classes of cost functions can also lead to a small SVC. One
special class of cost functions studied in many previous works is the separable cost functions
(Hardt et al., 2016; Milli et al., 2019; Hu et al., 2019a). Formally, a cost function c(z;x) is
separable if there exists function c1, c2 : X → R such that c(z;x) = max

{
c2(z)− c1(x), 0

}
.
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The following Proposition 9 shows that when the cost function is separable, SVC is at
most 2 for any hypothesis class H and any class of preference set R.5 Therefore, separable
cost function essentially reduces any classification problem to a problem in lower dimension.
Together with Theorem 4, Proposition 9 also recovers the PAC-learnability result of (Hardt
et al., 2016) in their strategic-robust learning model (specifically, Theorem 1.8 of (2016))
and, moreover, generalizes their learnability from homogeneous agent preferences to the
case with arbitrary agent preference values.

Proposition 9 For any hypothesis class H, any preference set R satisfying 0 ̸∈ R, and any
separable cost function c(z;x), we have SVC(H, R, c) ≤ 2.

The key idea of the proof is to show that the “manipulation regions” A,B,C of three
arbitrary points can be ordered so that they must without loss of generality satisfy A ⊆
B ⊆ C. Consequently, these points cannot be shattered. We defer the full proof to appendix
A.4. The assumption 0 ̸∈ R implies that each agent must strictly prefer either label +1
or −1. This assumption is necessary since if 0 ∈ R, SVC will be at least the classic VC
dimension of H and thus Proposition 9 cannot hold. We remark that the above SVC
upper bound 2 holds for any hypothesis class H. This bound 2 is tight for some classes of
hypothesis, e.g., linear classifiers.

4. Strategic Linear Classification

This section instantiates our previous general framework in one of the most fundamental
special cases, i.e., linear classification. We will study both the statistical and computational
efficiency in strategic linear classification. Naturally, we will restrict X ⊆ Rd in this section.
Moreover, the cost functions are always assumed to be induced by seminorms.6 A linear
classifier is defined by a hyperplane w · x + b = 0; feature vector x is classified as +1 if
and only if w · x + b ≥ 0. With slight abuse of notation, we sometimes also call (w, b)
a hyperplane or a linear classifier. Let Hd denote the hypothesis set of all d-dimensional
linear classifiers. For linear classifier (w, b), the data point’s best response can be more
explicitly expressed as:

∆c(x, r;w, b) = argmax
z

[
I(w · z + b ≥ 0) · r − c(z;x)

]
.

4.1 Strategic VC-Dimension of Linear Classifiers

We first study the statistical learnability by examining the strategic VC-dimension (SVC).
Our first result is a negative one, showing that SVC can be unbounded in general even
for linear classifiers with features in R2 (i.e., X ⊂ R2) and with simple preference set
R = {+1,−1}.

5. The model of (Hardt et al., 2016) corresponds to the case R = {1} in our model. For that restricted
situation, the proof of Proposition 9 can be simplified to prove SVC = 1 when R = {1}. It turns out
that arbitrary preference set R only increases the SVC by at most 1.

6. A function l : X → R≥0 is a seminorm if it satisfies: (1) triangle inequality: l(x + z) ≤ l(x) + l(z) for
any x,z ∈ X ; and (2) homogeneity: l(λx) = |λ|l(x) for any x ∈ X , λ ∈ R.
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Theorem 10 Consider strategic linear classification StraC⟨Hd, R, c⟩. There is an instance-
wise cost function c(z;x) = lx(z−x) where each lx is a norm, such that SV C(Hd, R, c) = ∞
even when X ⊂ R2 and R = {1}.

Proof Let X = R2, and consider the linear hypothesis class on X : H = {h = sgn(w ·
x + b) : (w, b) ∈ R3,x ∈ X}. We show that for any n ∈ Z+ and R = {+1}, there exist n
points {xi}ni=1 ∈ X n and corresponding cost functions {ci}ni=1, such that the n’th shattering
coefficients σn(H, R, {ci}ni=1) = 2n (see Definition 1 for σn). Note that the cost function is
instance-wise. Note that our construction here will use different cost functions even though
each data point i is at the same location (0, 0).

Let xi = (0, 0),∀i ∈ [n] be the set of data points. The main challenge of the proof is a
very careful construction of the cost function for each data point. To do so, we first pick a
set of 2n different points S = {sj}2

n

j=1 lying on the unit circle, i.e., S ⊂ {(x, y) : x2+y2 = 1}.
The number 2n is not arbitrarily chosen — indeed, we will map each point sj to one of
the 2n subsets of [n] in a bijective manner so that each sj corresponds to a unique subset
of [n]. What are these 2n different points will not matter to our construction neither it
matters which point is mapped to which subset so long as it is a bijection. Since we have
the freedom to pick the locations of elements in S, we will pick any S such that S̄ ∩ S = ∅,
where S̄ = {(−x,−y) : (x, y) ∈ S} is the set that is origin-symmetric to S. We emphasize
that S̄ is chosen to “symmetrize” our construction in order to obtain a norm and it does
not need to have any interpretation. For any xi, we now define its cost function ci through
the following steps :

1. Let Si = {s ⊆ [n] : i ∈ s} ⊂ S contain all the 2n−1 subsets of [n] that include the
element i.

2. Let S̄i = {(−x,−y) : (x, y) ∈ Si} ⊆ S̄ be the set that is origin-symmetric to Si.

3. Let Gi be the convex, origin-symmetric polygon with the vertex set being Si ∪ S̄i.

4. The cost function of xi is defined as ci(z;x) = ∥x−z∥Gi , where ∥·∥Gi = inf{ϵ ∈ R≥0 :
x ∈ ϵGi} is a norm derived from polygon Gi (note the origin-symmetry of Si ∪ S̄i and
thus Gi).

Next we show that for any label pattern L ∈ {+1,−1}n, there exists some linear classifier
h ∈ H2 such that (h(∆c1(x1,+1;h)), · · · , h(∆cn(xn,+1;h))) = L.

With slight abuse of notation, let sL = {i ∈ [n] : Li = +1} ∈ S be the point in S that
corresponds to the set of the indexes of L with Li = 1. Let hL be any linear classifier whose
decision boundary intersects the unit circle centered at xi and strictly separates sL from
all the other elements in S ∪ S̄. We will use hL to denote both the linear classifier and its
decision boundary (i.e., a line in R2) interchangeably. Due to the convexity of Gi, such hL
must exist. We further let hL give prediction result +1 for the half plane that contains sL
and −1 for the other half plane. Figure 2 illustrates the geometry of this example.

We now argue that hL induces the given label pattern L for instances {(xi, 1, ci)}ni=1.
To see this, we examine hL(∆ci(xi, 1;h)) for each i:
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Figure 2: Left: If i ∈ sL, hL intersects with Gi, and xi can manipulate its feature within Gi

to cross hL. Right: If i /∈ sL, hL and Gi are disjoint; xi cannot manipulate its feature within
Gi to cross hL. Given any label pattern L ∈ {+1,−1}n, Gi is the convex, origin-symmetric
polygon associated with xi’s cost function. The linear classifier hL is chosen to separate sL
from all other elements in S̄ ∪S and classifies sL as +1. The left/right panel shows the two
situations, depending on i ∈ sL or i ̸∈ sL.

1. If i ∈ sL, then sL ∈ Si and xi can move to sL with cost ci(sL;xi) < 1. This is because
Gi is convex and there exists a point x′

i on hL such that ci(x
′
i;xi) < ci(sL;xi) = 1 = ri

(e.g., choose x′
i as the intersection point of the segment [xi, sL] and hL). Therefore,

hL will classify xi as positive. This case is shown in the left panel of Figure 2.

2. If i /∈ sL, then sL /∈ Si and Gi does not intersect hL. In this case, hL(x) = −1, and
moving across hL always induces a cost strictly larger than 1. Therefore, the best
response for xi is to stay put and hL will classify xi as negative. This case is shown
in the right panel of Figure 2.

Now we have shown that the n’th shattering coefficients σn(H, {+1,−1}, {ci}ni=1) = 2n.
Since n can take any integer, we conclude the strategic VC-dimension in this case is +∞.

In the study of adversarial VC-dimension (AVC) by (Cullina et al., 2018), the feature
manipulation region of each data point is assumed to be instance-invariant. As a corollary,
Theorem (10) implies that AVC also becomes ∞ for linear classifiers in R2 if each data
point’s manipulation region is allowed to be different.

It turns out that the ∞-large SVC above is mainly due to the instance-wise cost func-
tions. Our next result shows that under instance-invariant cost functions, the SVC will
behave nicely and, in fact, equal to the AVC for linear classifiers despite the much richer
data point manipulation behaviors. This result also strictly generalizes the characterization
of AVC by (Cullina et al., 2018) for linear classifiers and shows that linear classifiers will
be no harder to learn statistically despite allowing richer manipulation preferences of data
points.
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Theorem 11 Consider an instance of strategic linear classification StraC⟨Hd, R, c⟩. For
any instance-invariant cost function c(z;x) = l(z − x) where l is a seminorm, we have
SVC(Hd, R, c) = d + 1 − dim(Vl) for any bounded R, where Vl is the largest linear space
contained in the ball B = {x : l(x) ≤ 1}.

In particular, if l is a norm (i.e., l(x) = 0 iff x = 0), then dim(Vl) = 0 and SVC(H, R, c) =
d+ 1.

Proof The following lemma is well-known in algebra and will be useful for our analysis.

Lemma 12 For any seminorm l : Rd −→ R≥0, and the cost function c(z;x) = l(z − x)
induced by l, the minimum manipulation cost for x to move to the hyperplane w ·x+ b = 0
is given by the following:

min
x′

{c(x′;x) : w · x′ + b = 0} =
|w · x+ b|

l∗(w)

where l∗(w) = supz∈B{w ·z} ∈ R≥0∪{+∞}, and B = {z : l(z) ≤ 1} is the unit ball induced
by l.

The proof has the following two parts. The first part is the more involved one.

Proof of SVC(Hd, R, c) ≤ d+ 1− dim(Vl):

It suffices to show that for any n > d + 1 − dim(Vl) and n data points (xi, ri) ∈
Rd×R,∀i = 1, · · · , n, there exists a label pattern L ∈ {+1,−1}n, such that for any h ∈ Hd

it cannot induce L, i.e.,

(h(∆c(x1, r1;h), · · · , h(∆c(xn, rn;h))) ̸= L.

The first step of our proof derives a succinct characterization about the classification
outcome for a set of data points. For any seminorm l, it is known the set B = {x : l(x) ≤ 1}
is nonempty, closed, convex, and origin-symmetric. Let l∗(w) = supz∈B{w · z}. We have
l∗(w) > 0 for all w ̸= 0 since 0 is an interior point of B. According to Lemma 12, for any
x ∈ Rd and any linear classifier h = (w, b) ∈ Hd, the minimum manipulation cost for x to
move to the decision boundary of h is |w · x+ b|/l∗(w). Note that we may w.l.o.g. restrict
to w’s such that l∗(w) = 1 since the sign function sgn(w · x + b) does not change after
re-scaling. For any data point (x, r) ∈ X × R and linear classifier h ∈ Hd, we define the
signed manipulation cost to the classification boundary as

δ(h,x) = h(x) · |w · x+ b|
l∗(w)

= w · x+ b,

using the condition l∗(w) = 1. We claim that h(∆c(x, r;h)) = 2I(w ·x+ b ≥ −r)− 1. This
follows a case analysis:

1. If r ≤ 0, then h(∆c(x, r, h)) = 1 if and only if h(x) = 1 and x cannot move across
the decision boundary of h within cost |r| = −r. This implies h(∆c(x, r;h)) =
2I(w · x+ b ≥ −r)− 1.
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2. If r > 0, then h(∆c(x, r, h)) = −1 if and only if h(x) = −1 and x cannot move across
the decision boundary of h within cost r. In this case, h(∆c(x, r;h)) = −(2I(−(w ·
x+ b) > r)− 1) = 2I(w ·x+ b ≥ −r)− 1. Note that the first inequality holds strictly
because we assume h always gives +1 for those x on the decision boundary.

For a set of samples (X, r) where X = (x1, · · · ,xn), r = (r1, · · · , rn), define the set of all
possible vectors (over the choice of linear classifiers (w, b) ∈ Hd) of signed manipulation
costs as

D(Hd,X) = {(w · x1 + b, · · · ,w · xn + b) : h ∈ Hd}, (6)

there is a h ∈ Hd that achieves a label pattern L on (X, r) if and only if there exists an
element in D(Hd,x) + r with the corresponding sign pattern L.

Recall that a linear classifier is described by (w, b) ∈ Rd+1. The second step of our proof
rules out “trivial” linear classifiers under strategic behaviors, and consequently allows us to
work with only linear classifiers in a linear space of smaller dimension. Let B = {x : l(x) ≤
1} and Vl be the largest linear space contained in B. We argue that it suffice to consider
only linear classifiers (w, b) with w ⊥ Vl. This is because for any w that is not orthogonal
to the subspace Vl, we can find z̄ ∈ Vl such that c(z̄;x) = 0 and w · z̄ → ∞ since Vl is
a linear subspace. This means any data point can induce its preferred label sgn(r) with 0
cost, by moving to z̄ if sgn(r) = + and −z̄ otherwise. Any such linear classifier will result
in the same label pattern, simply specified by sgn(r). As a consequence, we only need to
focus on linear classifiers (w, b) with w ⊥ Vl. Let H̃d = {(w, b) : w ⊥ Vl} denote all such
linear classifiers.

Next, we argue that when restricting to the non-trivial class of linear classifiers H̃d,
the D(H̃d,X) defined in Equation (6) lies in a linear subspace with dimension at most
d + 1 − dim(Vl). Consider the linear mapping GX : H̃d → Rn determined by the data
features X, defined as

GX(w, b) = (w · x1 + b, · · · ,w · xn + b), ∀(w, b) ∈ H̃d.

Since w ⊥ Vl, w is from a linear subspace of d− dim(Vl). Linear mapping will not increase
the dimension of the image space, therefore D(H̃d,X) lies in a space with dimension at
most d+ 1− dim(Vl).

Finally, we prove that there must exist label patterns that cannot be induced by linear
classifiers whenever the number of data points n > d + 1 − dim(Vl). Let span

(
D(H̃d,X)

)
denote the smallest linear space that contains D(H̃d,X). Since span

(
D(H̃d,X)

)
has dimen-

sion at most d + 1 − dim(Vl) < n but span
(
D(H̃d,X)

)
⊂ Rn, there must exist a non-zero

vector ū ∈ Rn such that: (1) ū ̸= 0; (2) ū ⊥ span
(
D(H̃d,X)

)
(i.e., ū · v = 0,∀v ∈

span
(
D(H̃d,X)

)
); and (3) ū · r ≤ 0 (if ū · r ≥ 0, simply takes its negation). Note that this

implies ū · v ≤ 0,∀v ∈ span
(
D(H̃d,X)

)
+ r.

We argue that the sign pattern of the vector ū, denoted as sgn(ū), and the sign pattern
of all negatives (L = (−1, · · · ,−1)) cannot be achieved simultaneously by H̃d. Suppose
sgn(ū) can be achieved by H̃d, then there must exist v1 ∈ span(D(H̃d,X)) + r such that
sgn(ū) = sgn(v1) and ū · v1 ≤ 0. Since sgn(ū) = sgn(v1) also implies ū · v1 ≥ 0, we thus
have ū · v1 =

∑
j=1 ūjv

1
j = 0. We claim that there must exist j such that ūj > 0. First

of all, we cannot have ūj < 0 for any j since that implies v1j < 0 (only strictly less v1j ’s
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will be assigned −1 pattern due to our tie breaking rule) and consequently, ū · v1 < 0, a
contradiction. Also note that ū ̸= 0, so there exists j ∈ [n] such that ūj > 0.

Utilizing the above property of ū, we show that the sign pattern L = (−1, · · · ,−1)
cannot be achieved by H̃d. Suppose, for the sake of contradiction, that this is not true.
Then there exists another v2 = (v21, · · · , v2n) ∈ span

(
D(H̃d,X)

)
+ r with all its elements

being strictly negative. Now consider v = v1 − v2 ∈ span(D(H̃d,X)), we have ū · v =
ū · v1 − ū · v2 = 0 − ū · v2 > 0. Here the inequality holds because ūj ≥ 0, v2j < 0 for all j
and there exists some j such that ūj > 0. Therefore, we draw a contradiction to the fact
that ū · v = 0 for any v ∈ span(D(H̃d,X)).

Now we proved that sgn(ū) and L = (−1, · · · ,−1) cannot be achieved simultaneously by
non-trivial classifiers H̃d, and the only achievable sign pattern for trivial classifiers is sgn(r).
Note that r ∈ span

(
D(H̃d,X)

)
+ r, sgn(r) is thus also achievable by H̃d. Therefore, the

trivial classifier has no contributions to the shattering coefficient, and we conclude at least
one of sgn(ū) and L = (−1, · · · ,−1) cannot be achieved by Hd.

Proof of SVC(Hd, R, c) ≥ d+ 1− dim(Vl):

The second step of the proof shows SVC(H, R, c) ≥ d+1−dim(Vl) by giving an explicit
construction of (X, r) that can be shattered by Hd. Let x0 = 0, and (x1, · · · ,xt) be a
basis of the subspace orthogonal to Vl, (xt+1, · · · ,xd) be a basis of the subspace Vl, where
t = d− dim(Vl).

We claim that the t+ 1 = d+ 1− dim(Vl) data points in {0, 1, · · · , t} can be shattered
by Hd. In particular, for any given subset S ⊆ {0, 1, · · · , t}, consider the linear system


xi ·wS + bS = 1, if i ∈ S

xi ·wS + bS = −1, if i ≤ t, and i /∈ S

xi ·wS = 0, t+ 1 ≤ i ≤ d.

Because (x1, · · · ,xd) has full rank, the solution (wS , bS) must exist. Therefore, the
half-plane h = wS · x + bS separates S and {x0, · · · ,xd}/S. Now consider the case when
each xi has a strategic preference ri ∈ R. Since wS is chosen to be orthogonal to Vl, wS ·xi

is bounded when xi ∈ {z : c(z;xi) ≤ ri}. Let δS = max0≤i≤t{sup{wS · (z−xi) : c(z;xi) ≤
ri}}, and δ = max(1, 2δS). Then the data set {δx0, · · · , δxt} can be shattered by Hd for
any given c,R, because the classifier (δwS , δbS) separates the subset S and the other points
regardless their strategic responses.

4.2 The Complexity of Strategic Linear Classification

In this subsection, we turn our attention to the computational efficiency of learning. The
standard ERM problem for linear classification to minimize the 0-1 loss is already known
to be NP-hard in the general agnostic learning setting (Feldman et al., 2012). This implies
that agnostic PAC learning by SERM is also NP-hard in our strategic setup. Therefore,
our computational study will focus on the more interesting realizable PAC-learning case,
that is, assuming there exists a strategic linear classifier that perfectly separates all the
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data points. In the non-strategic case, the ERM problem can be solved easily by a linear
feasibility problem.

It turns out that the presence of gaming behaviors does make the resultant SERM
problem significantly more challenging. We prove essentially tight computational tractabil-
ity results in this subsection. Specifically, any strategic linear classification instance can
be efficiently PAC-learnable by the SERM when the problem exhibits some “adversarial
nature”. However, the SERM problem immediately becomes NP-hard even when we go
slightly beyond such adversarial situations. We start by defining what we mean by “adver-
sarial nature” of the problem.

Definition 13 (Essentially Adversarial Instances) For any strategic classification prob-
lem StraC⟨H, R, c⟩, let

min− = min{r : (x, y, r) with y = −1} and

max+ = max{r : (x, y, r) with y = +1}
(7)

be the minimum reward among all −1 points and the maximum reward among all +1 points,
respectively. We say the instance is “ adversarial” if min− ≥ 0 ≥ max+ and is “ essentially
adversarial” if min− ≥ max+.

In other words, an instance is “adversarial” if each data point would like to move to the
opposite side of its label though with different magnitudes of preferences, and is “essentially
adversarial” if any negative data point has a stronger preference to move to the positive
side than any positive data point. Many natural settings are essentially adversarial, e.g.,
all the four examples in Subsection 2.2.

Our first main result of this subsection (Theorem 14) shows that when the strategic
classification problem exhibits the above adversarial nature, linear strategic classification
can be efficiently PAC-learnable by SERM. The second main result Theorem 15 shows that
the SERM problem becomes NP-hard once we go slightly beyond the adversarial setups
identified in Theorem 14. These results show that the computational tractability of strategic
classification is primarily governed by the preference set R. Interestingly, this is in contrast
to the statistical learnability results in Theorem 10 and 11 where the preference set R did
not play much role.

Theorem 14 Any separable strategic linear classification instance StraC⟨Hd, R, c⟩ is ef-
ficiently PAC-learnable by the SERM in polynomial time in the following two situations:

1. The problem is essentially adversarial (min− ≥ max+) and cost function c(z;x) =
l(z − x) is instance-invariant and induced by a seminorm l.

2. The problem is adversarial (min− ≥ 0 ≥ max+) and the instance-wise cost function
c(z;x) = lx(z − x) is induced by seminorms {lx}.

Proof For any data point (x, y, r), let the manipulation cost for the data point be c(z;x) =
lx(z−x) where lx is any seminorm. Since the instance is separable, there exists a hyperplane
h : w · x + b = 0 that separates the given n training points (x1, y1, r1), · · · , (xn, yn, rn)
under strategic behaviors. The SERM problem is thus a feasibility problem, which we
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now formulate. Utilizing Lemma 12 about the signed distance from xi to hyperplane h
under cost function c(z;xi) = lxi(z − xi), we can formulate the SERM problem under the
separability assumption. Concretely, we would like to find a hyperplane h : w · x + b = 0
such that it satisfies the following for any (xi, yi, ri):

1. If yi = 1 and ri ≥ 0, we must have either w · xi + b ≥ 0 or w · xi + b ≤ 0 and
−(w·x+b)
l∗xi

(w) ≤ ri;

2. If yi = 1 and ri ≤ 0, we must have w·x+b
l∗xi

(w) ≥ −ri (this implies w · xi + b ≥ 0);

3. If yi = −1 and ri ≤ 0, we must have either w · xi + b ≤ 0 or w · xi + b > 0 and
w·x+b
l∗xi

(w) < −ri;

4. If yi = −1 and ri ≥ 0, we must have −(w·x+b)
l∗xi

(w) > ri (this implies w · xi + b < 0);

Note that we classify any point on the hyperplane as +1 as well, which is why the strict
inequality for Case 3 and 4. Case 1 can be summarized as w·x+b

l∗xi
(w) ≥ −ri. Similarly, Case 3

can be summarized as w·x+b
l∗xi

(w) < −ri. To impose the strict inequality for Case 3 and 4, we

may introduce an ϵ slack variable. These observations lead to the following formulation of
the SERM problem.

find w, b, ϵ > 0

subject to w·xi+b
l∗xi

(w) ≥ −ri, for points (xi, yi, ri) with yi = 1.
w·xi+b
l∗xi

(w) ≤ −ri − ϵ, for points (xi, yi, ri) with yi = −1.

(8)

We now consider the two settings as described in the theorem statement. We first
consider Situation 1, i.e., the essentially adversarial case with min− ≥ max+ and an
instance-invariant cost function induced by the same seminorm l, i.e., c(z;x) = l(x−z) for
any x. In this case, System (8) is equivalent to the following

find w, b, ϵ > 0
subject to w · xi + b ≥ −ri, for points (xi, yi, ri) with yi = 1.

w · xi + b ≤ −(ri + ϵ), for points (xi, yi, ri) with yi = −1.
l∗(w) = 1

(9)

This system is unfortunately not a convex feasibility problem. To solve System (9), we
consider the following optimization program (OP), which is a relaxation of System (9) by
relaxing the non-convex constraint l∗(w) = 1 to the convex constraint l∗(w) ≤ 1.

maximize ϵ
subject to w · xi + b ≥ −ri, for points (xi, ri) with label 1.

w · xi + b ≤ −ri − ϵ, for points (xi, ri) with label -1.
l∗(w) ≤ 1

(10)

Note that OP (10) is a convex program because the objective and constraints are either
linear or convex. Therefore, OP (10) can be efficiently solved in polynomial time.7 Note

7. Note that without additional assumptions on the objective and constraints, convex programs can only
be solved up to precision ϵ in poly(1/ϵ) time (Nesterov et al., 2018). In this case, we simply say it can
be “solved” efficiently.
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that this relaxation is not tight in general as we will show later that solving System (9) is
NP-hard in general.

Our main insight is that under the assumption of min− ≥ max+, the above relaxation is
tight — i.e., there always exists an optimal solution to the above problem with l∗(w) = 1.
This solution is then a feasible solution to System (9) as well, thus completing our proof.
Concretely, given any optimal solution (w∗, b∗, ϵ∗) to OP (10), we construct another solution
(w̄, b̄, ϵ̄) as follows:

w̄ =
w∗

α
, b̄ =

b∗

α
+ (

1

α
− 1)

min−+max+

2
, ϵ̄ =

ϵ∗

α
, where α = l∗(w∗) ≤ 1.

We claim that the constructed solution above remains feasible to OP (10). Note that for

data point with label 1, we have: (1) min− +max+

2 ≥ ri by assumption ri ≤ max+ ≤ min−;
(2) xi ·w∗ + b∗ ≥ −ri by the feasibility of (w∗, b∗, ϵ∗). Therefore

xi ·
w∗

α
+

b∗

α
≥ −ri

α

=⇒ xi ·
w∗

α
+

b∗

α
+ (

1

α
− 1)

min−+max+

2
≥ −ri

α
+ (

1

α
− 1)ri

⇐⇒ xi · w̄ + b̄ ≥ −ri

This proves that the constructed solution is feasible for data points with label 1. Similar
argument using the inequality min− +max+

2 ≤ ri for any negative label data point shows that
it is also feasible for negative data points. It is easy to see that the solution quality is as
good as the optimal solution ϵ∗ since α ≤ 1. This proves the optimality of the constructed
solution.

Finally, we consider the Situation 2 where the instance is adversarial, i.e, min− ≥ 0 ≥
max+. In this case, ri in the first constraint of System (8) is always non-positive whereas
ri in the second constraint is always non-negative. After basic algebraic manipulations, the
SERM problem becomes the following optimization problem.8

find w, b, ϵ > 0
subject to w · xi + b ≥ (−ri) · l∗xi

(w), for points (xi, yi, ri) with ri ≤ 0.
−(w · xi + b) ≥ (ri + ϵ) · l∗xi

(w), for points (xi, yi, ri) with ri ≥ 0.
(11)

This is again not a convex feasibility problem due to the non-convex term (ri+ϵ)·l∗xi
(w),

however for any fixed ϵ > 0 both constraints are convex. Moreover, if the system is feasible
for some ϵ0 > 0 then it is feasible for any 0 < ϵ ≤ ϵ0. Therefore, we can determine the
feasibility of the (convex) system for any fixed ϵ and then binary search for the feasible ϵ.
Therefore, the feasibility problem in System (8) can be solved in polynomial time.

Our next result shows that the positive claim in Theorem (14) are essentially the best one
can hope for. Indeed, the SERM immediately becomes NP-hard if one goes slightly beyond
the two tractable situations in Theorem (14). Note that our results did not rule out the
possibility of other computationally efficient learning algorithms other than the SERM. We
leave this as an intriguing open problem for future works.

8. The l∗xi
function in the program should be viewed as depending on the data point while not just the

feature xi. However, this will not affect the proof correctness.
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Theorem 15 Suppose the strategic classification problem is linearly separable, then the
SERM Problem for linear classifiers is NP-hard in the following two situations:

1. Preferences are arbitrary and the cost function is instant-invariant and induced by the
standard l2 norm, i.e., c(z;x) = ∥x− z||2.

2. The problem is essentially adversarial (min− ≥ max+) and the cost function is
instance-wise and induced by norms.

Proof We start with Situation 1, i.e., the preferences are arbitrary but the cost function
is c(z;x) = ∥x − z||22. We will show later that the second situation can be reduced from
the first. In the first situation, the feasibility problem is System (9) with l as the l2 norm.
Our reduction starts by reducing this system to the following optimization problem (OP)

maximize ||w||22
subject to xi ·w + b ≥ −ri, for points (xi, ri) with label +1.

xi ·w + b ≤ −ri − ϵ, for points (xi, ri) with label −1.
||w||22 ≤ 1

(12)

Formally, we claim that for any fixed ϵ, system (9) is feasible if and only if OP (12) has
optimal objective value 1. The “if” direction is simple. That is, if OP (12) has optimal
objective value 1, then the optimal solution (w∗, b∗) is automatically a feasible solution
to System (9) because ||w∗||2 = 1. For the “only if” direction, let (w̄, b̄) be any feasible

solution to System (9), then it is easy to verify w∗ = w̄
||w||2 and b∗ = b̄

||w||2 must also be

feasible to System (9). Moreover, it is an optimal solution to OP (12) with objective value
1, as desired.

We now prove that determining whether the optimal objective value of OP (12) equals
1 or not is NP-complete. We reduce from the following well-known NP-complete problem
called the partition problem:

Given d positive integers c1, · · · , cd, decide whether there exists a subset S ⊂ [d] such that∑
i∈S ci =

∑
i ̸∈S ci

We now reduce the above partition problem to solving OP (12). Given any instance of
partition problem, construct the following SERM instance.

The Constructed Hard SERM Instance for Situation 1: We will have n = 2d + 3
data points with feature vectors from Rd. For convenience, we will use ei to denote the
basis vector in Rd whose entries are all 0 except that the i’th is 1. For each i ∈ [d], there
is a data point (x, y, r) = (2

√
d · ei, 1, 4) as well as a data point (

√
d · ei,−1, 1 − ϵ). The

remaining three data points are (c, 1, 2), data point (2c,−1, 2− ϵ), and data point (3c, 1, 2).
We claim that OP (12) instantiated with the above constructed instance has an optimal

objective value 1 if and only if the answer to the given partition problem is Yes. We first
prove the “if” direction. If the partition problem is a Yes instance, then there exists an S
such that

∑
i∈S ci −

∑
i ̸∈S ci = 0. We argue that the following construction is an optimal

solution to OP (12) with optimal objective value 1:

b∗ = −2, wi =
1√
d
∀i ∈ S, wi = − 1√

d
∀i ̸∈ S.
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Clearly, ||w∗||22 = 1. We only need to prove feasibility of (w∗, b∗). For any label 1 point
(x, r) = (2

√
d·ei, 4), we have x·w∗+b∗ = 2

√
dei·w∗−2 = −4 ≥ −r, as desired. Similarly, for

any label −1 point (x, r) = (
√
d·ei, 1−ϵ), we have x·w∗+b∗ =

√
dei ·w∗−2 = −1 ≤ −r−ϵ.

The feasibility of point (c, 2) with label 1 is argued as follows: x ·w∗+ b∗ = c ·w∗−2 = −r.
Feasibility of (2c, 2− ϵ) and (3c, 2) are similarly verified.

We now prove the “only if” direction. In particular, we prove that that if OP (12) has
some optimal solution (w∗, b) with ||w∗||22 = 1, then the partition instance must be Yes.

Let us first examine the feasibility of OP (12).

1. By the constraints with respect to positive-label data points (2
√
d · ei, 4), we have

2
√
dei ·w + b ≥ −4 or equivalently wi

√
d ≥ − b

2 − 2.

2. By the constraints with respect to negative-label data points (
√
d · ei, 1− ϵ), we have√

dei ·w + b ≤ −1 or equivalently wi

√
d ≤ −b− 1.

3. By the constraints with respect to data point (c, 2) with label 1, we have c·w+b ≥ −2,
or equivalently −2− b ≤ c ·w.

4. By the constraints with respect to data point (2c, 2 − ϵ) with label -1, we have 2c ·
w + b ≤ −2, or equivalently −2− b ≥ 2c ·w.

5. By the constraints with respect to data point (3c, 2) with label 1, we have 3c ·w+b ≥
−2, or equivalently −2− b ≤ 3c ·w.

Point 3–5 implies 2c ·w ≤ −2− b ≤ min{c ·w, 3c ·w}. This must imply c ·w = 0 as any
non-zero c ·w cannot satisfy 2c ·w ≤ min{c ·w, 3c ·w}. As a consequence, the only feasible
b value is b = −2. Plugging b = −2 into Point 1 and 2, we have

− 1√
d
≤ wi ≤

1√
d
.

Since the optimal objective value is 1 =
∑d

i=1(w
∗
i )

2, it is easy to see that this optimal
objective is achieved only when each w∗

i equals either − 1√
d
or 1√

d
. Now define S = {i :

w∗
i = 1√

d
} to be the set of i such that w∗

i is positive. It is easy to verify that S will be

a solution to the partition problem, implying that it is a Yes instance. This proves the
NP-hardness for Situation 1 stated in the theorem.

Finally, we consider Situation 2 which can be reduced from the first situation. In
particular, the constructed hard instance above has reward preferences all being positive
(in fact, drawn from only three possible values {1, 2, 4}), but do not satisfy the essentially
adversarial condition. However, if we are allowed to use instant-wise cost functions, we
can simply scale down the reward preference for point with label 1 but propositionally
scale down its cost function so that the right-hand-side of the first constraint in System (9)
remains the same. Concretely, we now modify our constructed instance above to be the
follows.

The Constructed Hard SERM Instance for Situation 2: We still have n = 2d+3 data
points with feature vectors from Rd. For each i ∈ [d], there is a data point (x, y, r) = (2

√
d ·

ei, 1, 0.5) with cost function c(z;x) = 1
8∥z − x||22 as well as a data point (

√
d · ei,−1, 1− ϵ)
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with cost function c(z;x) = ∥z−x||22. The remaining three data points are: (1) data point
(c, 1, 0.5) with cost function c(z;x) = 1

4∥z − x||22; (2) data point (2c,−1, 2 − ϵ) with cost
function c(z;x) = ∥z−x||22; (3) data point (3c, 1, 0.5) with cost function c(z;x) = 1

4∥z−x||22.
It is easy to verify that the above instance satisfy situation 1 in the theorem statement

and is equivalent to the instance we constructed for the second situation and thus is also
NP-hard.

Remark 16 Theorem 11, Theorem 14 and Theorem 15 together imply that for strategic
linear classification:
(1) the problem is efficiently PAC-learnable (both statistically and computationally) when
the cost function is instance-invariant and preferences are essentially adversarial;
(2) SERM can be solved efficiently but SVC is infinitely large when the cost function is
instance-wise and preferences are adversarial;
(3) the problem is efficiently PAC learnable in a statistical sense, but SERM is NP-hard
when the cost function is instance-invariant and preferences are arbitrary.

5. The Power and Limits of Randomization

It is well-known that randomization over the classifiers does not contribute to a strictly
smaller loss in standard classification. Interestingly, it turns out that randomization can
be helpful in strategic classification, which is reported by Braverman and Garg (2020).
However, their entire work was based on a simplified setting in the sense that they only
considered one-dimensional feature space and homogeneous strategic preference. In this
section, we study the power and limits of randomized linear classifiers in our generalized
strategic setting. First, we define randomized classifiers as follows.

Definition 17 (Randomized Binary Classifiers) A binary classifier H is called a ran-
domized classifier over any hypothesis class H (not necessarily linear classifiers) if there
exists a set of deterministic classifiers {h1, . . . , hk} ⊆ H, and a probability vector p =
{p1, . . . , pk} with

∑
j pj = 1, such that for any input feature x, H(x) = hj(x) with proba-

bility pj.

The capital H notation distinguishes randomized classifiers from deterministic ones
and can be viewed as a random variable. Since we always focus on binary classification,
we simply say randomized classifiers henceforth. Note that randomized classifiers should
not be confused with classification methods like logistic regression or ensemble methods
(e.g., random forest), which ultimately still output a deterministic label. The following
proposition, whose proof is deferred to Appendix B.1, shows that randomization can help
in strategic linear classification. We remark that an interesting question is whether each
data point can efficiently identify its best response against a general randomized (even
linear) classifier in polynomial time. Due to the combinatorial nature of different possible
responses, this is a non-trivial open question. However, its answer shall not affect our
following result since our constructed classifier only randomizes over two linear classifiers,
to which the best response is straightforward to compute.
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Proposition 18 There are strategic classification instances that are perfectly separable by
a randomized linear classifier but not by any deterministic linear classifier. This claim is
valid even when all data points have the same reward value r.

We remark that the constructed example for Proposition 18 is in the 2-dimension Eu-
clidean space. If the same preference r is not required, there exist simpler examples in 1-d
(see Appendix B.2), though it is interesting to figure out whether there is a 1-d example
satisfying the full statement of Proposition 4.

The advantages of randomized classifiers over deterministic classifiers fundamentally
come from the strategic data points’ tradeoff between two factors: (a) manipulation cost;
(b) the gain from classification outcomes. Interestingly, if any of these two factors is absent,
randomization will not be beneficial. First, if there is no gain from the classification outcome
(i.e., r = 0 for any data point), the data points naturally have no benefit to move and thus
will stay put. This is precisely the classic classification setup. Second, our following result
shows that if data points have no moving cost, randomization does not help either in the
separable case. Formally, we consider a special type of strategic classification where each
data point is constrained to move within a designated region which can be arbitrary (even
can be unconnected) and has no moving cost, i.e., c(z;x) = 0 for any feasible move. We
term this the zero-manipulation-cost strategic classification. Note that the adversarial or
robust classification setup falls into this case (Cullina et al., 2018; Awasthi et al., 2019).
The following proposition shows that under the zero-manipulation-cost case, randomization
over classifiers does not help that much.

Proposition 19 Consider zero-manipulation-cost strategic classification. For any hypoth-
esis class H, if there is a randomized classifier over H that perfectly separates the positive
points from the negative (i.e., achieving 0 loss), then there must exist a deterministic clas-
sifier in H that achieves so as well.

Proof Consider any strategic classification instance StraC⟨H, R, c⟩ where the cost func-
tion is a zero-manipulation cost function, i.e., each data point has a designated feasible
region to move around with cost 0. Let D be any distribution over data points and sup-
pose randomized classifier H, defined by H(x) = hj(x) ∈ H with probability pj for any
j = 1, · · · , k, achieves perfectly separates the positive points from the negative. Assume a
classifier h that randomizes over k hyperplanes h1, · · · , hk and achieves zero loss. We claim
that any deterministic classifier hj will also achieve zero loss and thus the randomization is
not needed.

Consider any data point (x, y, r) ∼ D. Given H, let ∆c(x, r;H) denote the optimal
manipulated feature that the data point will be moving to. By assumption of zero loss, we
know that for any j ∈ [k], hj will classify ∆c(x, r;H) correctly, meaning hj(∆c(x, r;H))
equals the true label of y. This however did not prove our result yet since after deploying the
deterministic classifier hj , the optimal manipulated feature should have been ∆c(x, r;hj)
while not the ∆c(x, r;H).

We now prove hj(∆c(x, r;hj)) = hj(∆c(x, r;H)) = y. Suppose, for the sake of contra-
diction, that hj(∆c(x, r;hj)) ̸= y. Since both ∆c(x, r;hj),∆c(x, r;H) are feasible moves
for the data point, the reason that the data point now strictly prefers ∆c(x, r;hj) over
∆c(x, r;H) must because hj(∆c(x, r;hj)) = sgn(r) and hj(∆c(x, r;H)) = −sgn(r), which
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equals y. Since H achieves perfect classification, all hj ’s must classify ∆c(x, r;H) as the
same label −sgn(r). That means, the move of the data point’s feature from x to ∆c(x, r;H)
leads to the data point being classified as the label −sgn(r) that it does not prefer. This
however conflicts with the assumption that ∆c(x, r;H) is an optimal manipulated feature
since moving to ∆c(x, r;hj) instead would at least lead to the data point being classified
as sgn(r) by hj . Therefore, we must have hj(∆c(x, r;hj)) = hj(∆c(x, r;H)) = y for any j,
concluding the proof.

In adversarial classification, it is usually assumed that each data point can move within
a δ-ball around it with no cost. An immediate corollary of Theorem 19 is the following.

Corollary 20 Randomization does not help in any perfectly separable adversarial classifi-
cation problems.

We remark that perfectly separable assumption in Theorem 19 is necessary. That is,
even for zero-manipulation-cost strategic classification problem, there are non-separable
examples where randomized linear classifier can achieve strictly larger accuracy than any
deterministic linear classifier, as shown in the following proposition with proof deferred to
Appendix B.3.

Proposition 21 There exists zero-manipulation-cost non-separable strategic classification
instances in R2 where the minimum risk of any deterministic linear classifier is strictly
larger than some randomized linear classifier.

6. Summary

In this work, we propose and study a general strategic classification setting where data points
have different preferences over classification outcomes and different manipulation costs. We
establish the PAC-learning framework for this strategic learning setting and characterize
both the statistical and computational learnability result for linear classifiers. En route, we
generalize the recent characterization of adversarial VC-dimension (Cullina et al., 2018) as
well as computational tractability for learning linear classifiers by (Awasthi et al., 2019).
Our conclusion reveals two important insights. First, the additional intricacy of having
different preferences harms the statistical learnability of general hypothesis classes, but not
for linear classifiers. Second, learning strategic linear classifiers can be done efficiently only
when the setup exhibits some adversarial nature and becomes NP-hard in general.

Our learnability result for linear classifiers applies to cost functions induced by semi-
norms. A future direction is to generalize the theory to cost function induced by asymmet-
ric seminorms or even any metrics. We also note that the strategic classification model we
consider is under the full-information assumption, i.e., the cost function and the strategic
preferences are transparent. This is analogous to the evasion attack in the adversarial ma-
chine learning literature, where the training data is supposed to be uncontaminated and
the manipulation only happens during testing. What if we cannot observe the strategic
preferences during training or do not know the adversaries’ cost function? This can be re-
formulated as online learning through repeated Stackelberg games and has been studied in
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(Dong et al., 2018), but it does not apply to classifiers with 0-1 loss. It is still interesting to
understand the behavior of the optimal classifier in the partial information strategic setting.

We also find that the randomization over linear classifiers can strictly enhance the
accuracy compared to deterministic ones. This observation is interesting because simple
randomization over a set of classifiers is not helpful in standard classification problems
in general. It might suggest that the difficulties of learning under standard and strategic
settings differ by nature. Another interesting follow-up question is how we can efficiently
compute the optimal randomized linear classifier for strategic classification. It is challenging
because it is unclear how to compute the best response of a data point against such a
randomized classifier. We identify it as an intriguing future direction.
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Appendix A. Omitted Proofs from Section

A.1 Proof of Proposition 6

Proof The adversarial VC-dimension defined in (Cullina et al., 2018) relies on an auxil-
iary definition of corrupted classifier h̃ = κR(h) of any classifier h for the standard non-
adversarial setting such that h̃(x) = h(x) if all the points in N(x) have the same label as x
and otherwise, h̃(x) =⊥. Recall that N(x) = {z ∈ X : (z;x) ∈ B} = {z ∈ X : c(z;x) ≤ r}
denotes the set of all possible adversarial features x can move to. Given this auxiliary def-
inition, the adversarial VC-dimension is defined as AVC(H,B) = sup{n : σn(F ,B) = 2n},
where

σn(F ,B) = max
(x,y)∈Xn×{+1,−1}n

|{(f(x1, y1;h), . . . , f(xn, yn;h)) : h ∈ H}| (13)

is the shattering coefficient, and f(xi, yi) = I(h̃(xi) ̸= yi) is the loss function of the cor-
rupted classifier h̃ = κR(h).

Since B and c are r-consistent, we have B = {(z;x) : c(z;x) ≤ r}. Let R = {+r,−r}.
We now prove the proposition by arguing

sup{n ∈ N : σn(H, R, c) = 2n} = sup{n : σn(F ,B) = 2n}. (14)

1. If sup{n ∈ N : σn(H, R, c) = 2n} = n, by Definition 1, there exists (x′
i, r

′
i) ∈ X×R, i =

1, · · · , n such that |{(h(∆c(x
′
1, r

′
1;h)), · · · , h(∆c(x

′
n, r

′
n;h)) : h ∈ H}| = 2n. Since

Definition 1 does not rely on the true labels of x′
i, we may let the true labels of x′

i

be y′i = −r′i/r for any i. In this case, each x′
i’s strategic preference is against its true

label, which corresponds to the loss function f in Equation (13) for the adversarial

27



Sundaram, Vullikanti, Xu and Yao

setting. Therefore, taking (xi, yi) = (x′
i, y

′
i) in Equation (13) gives σn(F ,B) = 2n.

This implies sup{n ∈ N : σn(H, R, c) = 2n} ≤ sup{n : σn(F ,B) = 2n}.

2. Conversely, if sup{n : σn(F ,B) = 2n} = n, from Equation (13), there exists (xi, yi) ∈
X × R, i = 1, · · · , n such that |{(f(x1, y1), . . . , f(xn, yn)) : f ∈ F}| = 2n. Similarly,
taking ri = −ryi ∈ R gives σn(H, R, c) = 2n, which implies sup{n ∈ N : σn(H, R, c) =
2n} ≥ sup{n : σn(F ,B) = 2n}.

Therefore, we have AVC(H,B) =SVC(H, {+r,−r}, c) for any r-consistent pair (B, c).

A.2 Proof of Corollary 7

Proof Since {+r,−r} ⊆ B, we have σn(H, R, c) ≥ σn(H, {+r,−r}, c) by Definition 1. As
a result, SVC(H, R, c) ≥SVC(H, {+r,−r}, c). Then by applying Proposition 6 we have
SVC(H, R, c) ≥SVC(H, {+r,−r}, c) =AVC(H,B).

A.3 Proof of Proposition 8

Given any positive integer n, let [n] denotes {1, 2, · · · , n}, and S be the power set of [n],
i.e., the set that contains all the subsets of [n]. Let X = [n] ∪ S be the sample space of
size n + 2n, and the hypothesis class H is the set of all the point classifiers with points
from S, i.e., H = {hs : s ∈ S}, where point classifier hs only classifies the point s ∈ S as
positive. The cost function c(z;x) is a metric defined as follows. Since metric is symmetric,
i.e., c(z;x) = c(x; z), we will use the notation c(x, z) instead throughout this proof.

c(x, z) =



x, if x ∈ [n], z ∈ S, x ∈ z

x+ 1, if x ∈ [n], z ∈ S, x /∈ z

c(z, x), if x ∈ S, z ∈ [n]

x+ z, if x, z ∈ [n], x ̸= z

1, if x, z ∈ S, x ̸= z

0, if x = z,

(15)

and R is set to be [−n,−1] ∪ [1, n].

First, we verify that c(·, ·) is indeed a metric. Given definition (15), it is easy to see
that c(x, z) = 0 iff x = z, and c(x, z) = c(z, x),∀x, z ∈ X . It remains to check the triangle
inequality, i.e., for any x, y, z ∈ X , c(x, y)+ c(y, z) ≥ c(x, z). Consider the case when x, y, z
are different elements in X . By enumerating all the possibility that whether each x, y, z is
in [n] or S, it suffices to discuss the following 8(= 23) cases:

1. if x, y, z ∈ [n], c(x, y) + c(y, z) = x+ y + y + z > x+ z = c(x, z).

2. if x, y, z ∈ S, c(x, y) + c(y, z) = 2 > 1 = c(x, z).

3. if x, z ∈ [n], y ∈ S, then c(x, y) ≥ x, c(y, z) ≥ z. =⇒ c(x, y)+ c(y, z) ≥ x+ z = c(x, z).
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4. if x, y ∈ [n], z ∈ S, we need to show that c(x, y) ≥ c(x, z)−c(y, z). Conditioned on the
relationship between x, y and set z, the maximum value of c(x, z)− c(y, z) is x− y+1
when y ∈ z, x /∈ z. Therefore, c(x, y) = x+ y ≥ x− y + 1 ≥ c(x, z)− c(y, z).

5. if x, z ∈ S, y ∈ [n], then c(x, y) + c(y, z) ≥ y + y > 1 ≥ c(x, z).

6. if x, y ∈ S, z ∈ [n], then the maximum value for c(x, z)− c(y, z) is z+1− z = 1 when
z /∈ x, z ∈ y. Therefore, c(x, y) ≥ 1 ≥ c(x, z)− c(y, z).

7. if x ∈ S, y, z ∈ [n], it is equivalent to case 4.

8. if y, z ∈ S, x ∈ [n], it is equivalent to case 6.

Next, we show VC(H) = 1, AVC(H,Bc(r)) = 1, and SVC(H, R, c) ≥ n. Observe that
VC(H) = 1 follows easily since no point classifier hs ∈ H can generate the label pattern
(+1,+1) for any pair of distinct data points.

Next we prove AVC(H,Bc(r)) = 1. We first show AVC(H,Bc(r)) ≤ 1 by arguing that
under binary nearness relation Bc(r) = {(z;x) : c(z, x) ≤ r} with r ≥ 1, any two elements
x1, x2 in X cannot be shattered by H.

1. If at least one of r1, r2 equals −r, e.g., r1 = −r, we show that x1 can never be classified
as +1 by contradiction. Suppose some hs ∈ H classifies (x1,−r) as +1: if x1 ̸= s,
since r1 = −r < 0, x1 will not manipulate its feature and be classified as −1; if x1 = s,
x1 can move to any z ∈ S with cost 1 ≤ r, and will also be classified as −1. Therefore,
(x1, x2) can not be shattered.

2. If r1 = r2 = r, consider the following two cases:

(a) If at least one of x1, x2 belongs to S, e.g., x1 ∈ S, then x1 can move to any s ∈ S
as c(x1, s) = 1 ≤ r for any s ∈ S. Therefore x1 can never be classified as −1 by
any point classifier in H.

(b) if x1, x2 ∈ [n], we may w.l.o.g. assume x1 < x2, i.e., x1 + 1 ≤ x2. Observe that
when r < x1, any hs ∈ H will classify x1 as -1 because c(x1, s) = x1 > r,∀s ∈ S;
when r ≥ x1 + 1, any hs ∈ H will classify x1 as +1 because c(x1, s) = x1 + 1 ≤
r, ∀s ∈ S. Therefore, in order to shatter (x1, x2), r must lie in the interval
[x1, x1 + 1) ∩ [x2, x2 + 1) = ∅, which draws the contradiction.

To see that AVC(H,Bc(r)) ≥ 1, for any x ∈ [n] with r > 0, it can be classified as either
+1 or −1 as long as r ∈ [x, x+ 1). We thus have AVC(H, c) = 1.

Finally, we prove that SVC(H, R, c) = n. Consider the subset [n] ⊂ X of size n,
with each element i equipped with a strategic preference ri = i. For any label pattern
L ∈ {+1,−1}n, let sL = {i ∈ [n] : Li = +1} be an element in S. We claim that hsL ∈ H
gives exactly the label pattern L on [n]. To see this, consider any i ∈ [n]:

1. If i ∈ sL, i will move to sL ∈ S and be classified as +1, as the cost c(i, sL) = i ≤ ri = i.

2. If i /∈ sL, i will not move to sL ∈ S and be classified as −1, as the cost c(i, sL) =
i+ 1 > ri = i.
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Therefore, any label pattern L ∈ {+1,−1}n can be achieved by some hsL ∈ H. This
implies SVC(H, R, c) ≥ n. On the other hand, it’s easy to see H cannot shatter n + 1
points, because any subset of size n + 1 must contain an element s0 in S, and no matter
what strategic preference s0 has, it will either be classified as +1 by all hs ∈ H, or be
classified as +1 by only one classifier in H, i.e., hs0 . Either case renders the shattering for
n+ 1 points impossible.

A.4 Proof of Proposition 9

Proof Define the adversarial region for an adversary (x, r) as N(x, r) = {z ∈ X : c2(z) ≤
c1(x)+ |r|} ⊇ {x}. Since staying with the same feature has no cost, this implies c(x;x) = 0
or equivalently c2(x) ≤ c1(x) for any x ∈ X . Then, the best response function for (x, r)
can be characterized by

1. if h(x) = sgn(r), then h(∆(x, r;h)) = sgn(r);

2. if h(x) = −sgn(r), then

h(∆(x, r;h)) =

{
−sgn(r), ∀z ∈ N(x, r) : h(z) = −sgn(r)

sgn(r), ∃z ∈ N(x, r) : h(z) = sgn(r)
(16)

Suppose there are three points {(xi, ri)}3i=1 that can be shattered by H. Let bi =
c1(xi) + ri and w.l.o.g. let b1 ≤ b2 ≤ b3. From b1 ≤ b2 ≤ b3, we have N(x1, r1) ⊆
N(x2, r2) ⊆ N(x3, r3).

By Pigeonhole principle, there must exists two elements in {r1, r2, r3} which have the
same sign. Suppose these two elements are r1, r2 and consider the following two cases:

1. r1 > 0, r2 > 0. From Equation 16, for any h ∈ H, h(∆(x2, r2;h)) = −1 means
h(z) = −1,∀z ∈ N(x2, r2). Note that N(x1, r1) ⊆ N(x2, r2), we also have h(z) =
−1,∀z ∈ N(x1, r1). As a result, h(∆(x1, r1;h)) = −1, meaning the sign pattern
{+,−} cannot be achieved by any h ∈ H for {(x1, r1), (x2, r2)}.

2. r1 < 0, r2 < 0. From Equation 16, for any h ∈ H, h(∆(x2, r2;h)) = 1 means
h(z) = 1,∀z ∈ N(x2, r2). Similarly, from N(x1, r1) ⊆ N(x2, r2) we conclude h(z) =
1,∀z ∈ N(x1, r1) and h(∆(x1, r1;h)) = 1, meaning the sign pattern {−,+} cannot
be achieved by any h ∈ H for {(x1, r1), (x2, r2)}.

Therefore, {(xi, ri)}3i=1 cannot be shattered by H, which implies SVC(H, R, c) ≤ 2.

Appendix B. Omitted Proofs in Section 5

B.1 Proof of Proposition 18

Consider an example with data points as depicted in Figure 3. Both plots show exactly the
same strategic classification instance. Here, all solid points have positive labels, whereas
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all other points have negative labels. Three data points are of interest in our analysis, i.e.,
point A,B,C, and they are on the same line. The left plot draws the optimal determin-
istic classifier, and the right plot draws a randomized classifier that picks hyperline h1, h2
uniformly at random. The cost function here is the Euclidean distance c(z;x) = ∥x− z∥2.
Let r =

√
2 for all the data points.

Under the squared Euclidean distance cost function and the condition that r =
√
2 is the

same for all data points, any deterministic linear classifier is “strategically” equivalent to
another linear classifier in the following sense: the classification outcome for linear classifier
h in the strategic setup is identical to the classification outcome for linear classifier h′ in
the non-strategic setup where h′ is obtained by shifting h towards the negative direction
by r =

√
2. It is easy to see that no linear classifier can strictly separate the positive

points from the negatives in the truthful setting, and thus this impossibility also holds in
the strategic setting. As a result, the best deterministic linear classifier makes at least one
mistake. One such optimal deterministic linear classifier is the hyperplane h as depicted
in the left plot of Figure 3 which is parallel to line ABC but just above line ABC by 1.5.
As a result, to move to the positive side of the classifier, point A,B,C need to suffer a
cost 1.5 >

√
2 which does not balance the benefit they gain. Therefore, all data points will

remain truthful, and the classifier makes one mistake at data point A.
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Figure 3: A strategic classification instance where randomized linear classifier beats any
deterministic classifier. Cost function c(z;x) = ∥x − z∥2 is the Euclidean distance. Left:
an optimal deterministic classifier. Right: a randomized classifier with perfect precision
which picks hyperplane h1, h2 uniformly at random.

Next, we show that the optimal randomized classifier makes no mistakes and thus is
strictly better. The randomized classifier is depicted in the right plot of Figure 3 with
carefully chosen parameters r, α and it randomizes over h1, h2 uniformly at random. The
geometry of the constructed randomized classifier is as follows. Data points A,B,C lie on
the same line, and the length of segment AB and AC both equal d. The angle between line
ABC and line h1 is α and h1 is tangent to the circle centered at point A with radius l. Note
that these two conditions uniquely determine the position of the line h1. The parameters
d, α, ρ will be determined later. Similarly, line h2 also rotates from line ABC with angle α
and is tangent to the same circle. h1 and h2 intersect at point D. Note that D is outside
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the circle. The projection of point B to line h1 is E whereas the projection of point C to
h1 is F .

We start with some geometric calculation. First, the angle between ABC and h1 is
α. Therefore, their normal vectors must also have angle α, which is precisely the angle
between AD and the normal vector of h1, as depicted in the left plot. As a consequence,
the length |AD| equals ρ

cosα . Since |AB| = |AC|, we know that |BE|+|CF | = 2ρ. Moreover,
|CF | − |BE| = 2d · sinα. This yields |BE| = ρ − d sinα and |CF | = ρ + d sinα. For our
construction, we will select parameters to satisfy the following conditions

|AD| = ρ

cosα
<

√
2

|BE| = ρ− d sinα >
√
2/2

|CF | = ρ+ d sinα >
√
2. (17)

d > l

There are many ways to pick the parameters to satisfy Equation (17). For example, it can
be verified that ρ = 1.38, α = 0.05π and d = 2.23 will satisfy all these constraints.

We now claim that the randomized classifier with any parameters satisfying the above
constraints will make a perfect prediction. In particular, point A has the incentive to
manipulate its feature to point D (or slightly beyond) because the point suffers a cost less
than

√
2 by the first constraint in Equation (17), but now is able to make both classifiers to

predict it with a positive label, increasing the prediction utility by
√
2. Moreover, point B

does not have any incentive to manipulate its feature. This is due to the following reason.
To get one of the classifiers to classify B with label 1, the manipulation cost is at least |BE|,
which is strictly greater than

√
2/2 whereas the expected utility from prediction is

√
2/2

since only half of the time the randomized classifier will classify B as 1. On the other hand,
to get the randomized classifier to always classify B as positive, the manipulation cost of
B is at least the distance of B from h2, which equals |CF | >

√
2 by symmetry, whereas the

benefit from classification outcome is only
√
2. As a consequence, point B does not have

any incentive to manipulate its feature. Similarly, point C will not manipulate its feature as
well. Overall, the randomized classifier makes a perfect prediction due to the manipulation
of point A.

B.2 An Additional 1-d Example for Proposition 18

Now we present an additional example in 1-d without the requirement of the same r. We
have four data points A = −1.0, B = −0.8, C = 0.8, D = 1.0 as depicted in Figure 4. Let
r = 0 for B,C, r = 1.2 for A, and r = −1.2 for D. The cost function here is the Euclidean
distance c(z;x) = |x−z|. Both plots show exactly the same strategic classification instance,
and all solid points have positive labels, whereas all other points have negative labels. The
left plot draws the optimal deterministic classifier h = 2I[x ≥ 0]−1, and the right plot draws
a randomized classifier that picks hyperline h1 = 2I[x ≥ −0.3] − 1, h2 = 2I[x ≥ 0.3] − 1
uniformly at random.

First of all, we argue that any deterministic classifier cannot perfectly separate {A,B,C,D}.
Otherwise, there exists an h that makes no mistake, which implies that it must have the
form h = 2I[x ≥ θ]−1, θ ∈ (−0.8, 0.8], as it can separate B and C perfectly. However, when
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θ ∈ (−0.8, 0.8], the distance between h’s decision boundary and one of A and D is at most
1.0 < r = 1.2. Therefore, at least one point in {A,D} wants to move across the decision
boundary of h and the classification result cannot be perfect.

Figure 4: A strategic classification instance where randomized linear classifier beats any
deterministic classifier. Cost function c(z;x) = |x − z| is the Euclidean distance. Left: an
optimal deterministic classifier. Right: a randomized classifier with perfect precision which
picks hyperplane h1, h2 uniformly at random.

Next, we show that the randomized classifier {(h1, 0.5), (h2, 0.5)} shown in the right
panel of Figure 4 makes no mistakes and thus is strictly better. First, it is obvious that
{(h1, 0.5), (h2, 0.5)} outputs the true labels for data points B,C who do not have any incen-
tive to deviate. For points A,D, their situations are symmetric when facing the classifier
so we only need to show that A does not have enough incentive to manipulate its feature
without loss of generality. In order to gain a positive utility, A needs to move across at least
one decision boundary of the randomized classifier. However, since the distance between
0.3 and A = −1.0 exceeds 1.2, A can only move across −0.3. When A move across −0.3,
it yields an expected utility of 0.6 = 0.5× 1.2 which is less than the minimum moving cost
0.7 = −0.3− (−1.0). As a result, A will stay put and accept the true classification result.

B.3 Proof of Proposition 21

The problem instance is constructed as follows. There are five labeled data points on R2,
defined as (x0,x1,x2,x3,x4) = ((0, 0), (1, 1), (−1, 1), (−1,−1), (1,−1)), (y0, y1, y2, y3, y4) =
(−1,+1,+1,−1,−1). x1,x2,x3,x4 are non-strategic while x0 prefers to be labeled as +1
and can move within the region B = {(x, y) : x ∈ {−2, 2}, y ∈ [−2, 1]}, as shown in Figure
5.

First, we prove that any h ∈ H that perfectly separate {(xi, yi)}4i=1 must incorrectly
classify x0, so that the minimum empirical risk on H is at least 1

5 . Suppose h = 2I(ax+by+
c ≥ 0)− 1 is a linear classifier that perfectly separate {(xi, yi)}4i=1. Since x1,x4 and x2,x3

both have opposite labels, ax+ by + c = 0 must intersect with both segments [x1,x4) and
[x2,x3) (with a slight abuse of notation, we use the notation [xi,xj) to represent the segment
formed by endpoints xi, xj with xj excluded). Assume the two intersection points are (1, p)
and (−1, q), where p, q ∈ (−1, 1]. Thus, h can be written as 2I((p− q)x−2y+p+ q ≥ 0)−1
and h intersects the two lines x = −2, x = 2 at z1 = (−2, −p+3q

2 ) and z2 = (2, 3p−q
2 ). We

claim that at least one of z1, z2 lies in B, because:

1. p, q ∈ (−1, 1], we have −p+3q
2 > −2, 3p−q

2 > −2.

2. note that −p+3q
2 + 3p−q

2 = p+ q ≤ 2, at least one of −p+3q
2 , 3p−q

2 is not greater than 1.
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Thus, at least one of −p+3q
2 , 3p−q

2 falls in (−2, 1], meaning at least one of z1, z2 lies in
B. Suppose z1 ∈ B, as shown in Figure 5a. Consequently, x0 can always move to z1 and
be classified as +1 against its true label. Therefore, any h ∈ H makes at least one mistake
on the data set {(xi, yi)}4i=0, and we conclude that the minimum empirical risk on H is at
least 1

5 .

Next, we construct a randomized classifier H ∈ H̃ and show that H attains an empirical
risk smaller than 1

5 . Let h1 = 2I(4x+7y−2 ≥ 0)−1, h2 = 2I(−4x+7y−2 ≥ 0)−1, and H =
{(h1, 0.5), (h2, 0.5)}, as shown in Figure 5b. It’s easy to see that H still perfectly separates
x1,x2,x3,x4, and x0 can manipulate its feature to mislead either h1 or h2. However, since
the region {(x, y) : h1(x, y) = 1, h2(x, y) = 1} does not intersect with B, x0 cannot alter
its feature to mislead both h1 and h2. This implies H will correctly classify x0 as −1 with
probability 0.5. Thus, the empirical risk of H is 1

5 ·
1
2 = 1

10 < 1
5 , which concludes the proof.

(a) Any deterministic linear classifier
that perfectly separates {x1, x2, x3, x4}
must intersect with x0’s manipulation
region B. As a result, x0 can always
move to a point in B and thus be mis-
classified.

(b) We can construct a randomized clas-
sifier H = {(h1, 0.5), (h2, 0.5)} such
that H not only correctly separates
x1,x2,x3,x4 but also classifies x0 to its
true label (+1) with probability 0.5.

Figure 5: A zero-manipulation-cost strategic classification instance where a randomized clas-
sifier beats all deterministic classifiers. Data points x1, x2 have true label +1 and x0, x3, x4
have true label −1. x0 is the only strategic point and its manipulation region B contains two
segments marked with dashed lines. Left: any deterministic classifier incurs an empirical
risk at least 1

5 . Right: there exists a randomized classifier that obtains a better empirical
risk 1

10 .
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In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 8676–8686, 2020.

Tearsheet. Gaming the system: Loan applicants are reverse engineering the online lend-
ing algorithms. https://tearsheet.co/data/gaming-the-system-online-loan-applicants-are-
reverse-engineering-the-algorithms/.

Stratis Tsirtsis, Behzad Tabibian, Moein Khajehnejad, Adish Singla, Bernhard Schölkopf,
and Manuel Gomez-Rodriguez. Optimal decision making under strategic behavior. arXiv
preprint arXiv:1905.09239, 2019.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages
10–19, 2019.

Arsenii Vanunts and Alexey Drutsa. Optimal pricing in repeated posted-price auctions
with different patience of the seller and the buyer. In Advances in Neural Information
Processing Systems, pages 939–951, 2019.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business
Media, 2010.

Jane Williams and Bridget Haire. Why some people don’t want to take a covid-19
test. https://theconversation.com/why-some-people-dont-want-to-take-a-covid-19-test-
141794.

Hanrui Zhang and Vincent Conitzer. Incentive-aware pac learning. AAAI 2021, 2021.

Hanrui Zhang, Yu Cheng, and Vincent Conitzer. Distinguishing distributions when samples
are strategically transformed. In Advances in Neural Information Processing Systems,
pages 3193–3201, 2019a.

Hanrui Zhang, Yu Cheng, and Vincent Conitzer. When samples are strategically selected.
In International Conference on Machine Learning, pages 7345–7353, 2019b.

38


	Introduction
	Overview of Our Results
	Related Works

	Model
	The Strategic Classification (StraC) Problem
	Notable Special Cases 

	VC-Dimension for Strategic Classification
	SVC generalizes Adversarial VC-Dimension (AVC)
	SVC under Separable Cost Functions

	Strategic Linear Classification
	Strategic VC-Dimension of Linear Classifiers
	The Complexity of Strategic Linear Classification

	The Power and Limits of Randomization
	Summary
	Omitted Proofs from Section 
	Proof of Proposition 6
	Proof of Corollary 7
	Proof of Proposition 8 
	Proof of Proposition 9

	Omitted Proofs in Section 5 
	Proof of Proposition 18 
	An Additional 1-d Example for Proposition 18 
	Proof of Proposition 21 


