Journal of Machine Learning Research
The Journal of Machine Learning Research (JMLR), established in 2000, provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing. Final versions are published electronically (ISSN 1533-7928) immediately upon receipt. Until the end of 2004, paper volumes (ISSN 1532-4435) were published 8 times annually and sold to libraries and individuals by the MIT Press. Paper volumes (ISSN 1532-4435) are now published and sold by Microtome Publishing.
News
- 2023.01.20: Volume 23 completed; Volume 24 began.
- 2022.07.20: New special issue on climate change.
- 2022.02.18: New blog post: Retrospectives from 20 Years of JMLR .
- 2022.01.25: Volume 22 completed; Volume 23 began.
- 2021.12.02: Message from outgoing co-EiC Bernhard Schölkopf.
- 2021.02.10: Volume 21 completed; Volume 22 began.
- More news ...
Latest papers
- Bagging in overparameterized learning: Risk characterization and risk monotonization
- Pratik Patil, Jin-Hong Du, Arun Kumar Kuchibhotla, 2023.
[abs][pdf][bib]
- Operator learning with PCA-Net: upper and lower complexity bounds
- Samuel Lanthaler, 2023.
[abs][pdf][bib]
- Mixed Regression via Approximate Message Passing
- Nelvin Tan, Ramji Venkataramanan, 2023.
[abs][pdf][bib] [code]
- The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima
- Peter L. Bartlett, Philip M. Long, Olivier Bousquet, 2023.
[abs][pdf][bib]
- MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library
- Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang, Zhihui Li, Xiaojun Chang, Yaodong Yang, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Fast Expectation Propagation for Heteroscedastic, Lasso-Penalized, and Quantile Regression
- Jackson Zhou, John T. Ormerod, Clara Grazian, 2023.
[abs][pdf][bib] [code]
- Zeroth-Order Alternating Gradient Descent Ascent Algorithms for A Class of Nonconvex-Nonconcave Minimax Problems
- Zi Xu, Zi-Qi Wang, Jun-Lin Wang, Yu-Hong Dai, 2023.
[abs][pdf][bib]
- The Measure and Mismeasure of Fairness
- Sam Corbett-Davies, Johann D. Gaebler, Hamed Nilforoshan, Ravi Shroff, Sharad Goel, 2023.
[abs][pdf][bib] [code]
- Microcanonical Hamiltonian Monte Carlo
- Jakob Robnik, G. Bruno De Luca, Eva Silverstein, Uroš Seljak, 2023.
[abs][pdf][bib] [code]
- Prediction Equilibrium for Dynamic Network Flows
- Lukas Graf, Tobias Harks, Kostas Kollias, Michael Markl, 2023.
[abs][pdf][bib] [code]
- Nevis'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
- Jorg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan Chaudhry, Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuan Feng, Jiajun Shen, Sylvestre-Alvise Rebuffi, Kitty Stacpoole, Diego de las Casas, Will Hawkins, Angeliki Lazaridou, Yee Whye Teh, Andrei A. Rusu, Razvan Pascanu, Marc’Aurelio Ranzato, 2023.
[abs][pdf][bib] [code]
- Fast Screening Rules for Optimal Design via Quadratic Lasso Reformulation
- Guillaume Sagnol, Luc Pronzato, 2023.
[abs][pdf][bib] [code]
- Multi-Consensus Decentralized Accelerated Gradient Descent
- Haishan Ye, Luo Luo, Ziang Zhou, Tong Zhang, 2023.
[abs][pdf][bib]
- Continuous-in-time Limit for Bayesian Bandits
- Yuhua Zhu, Zachary Izzo, Lexing Ying, 2023.
[abs][pdf][bib]
- Two Sample Testing in High Dimension via Maximum Mean Discrepancy
- Hanjia Gao, Xiaofeng Shao, 2023.
[abs][pdf][bib]
- Random Feature Amplification: Feature Learning and Generalization in Neural Networks
- Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett, 2023.
[abs][pdf][bib]
- Pivotal Estimation of Linear Discriminant Analysis in High Dimensions
- Ethan X. Fang, Yajun Mei, Yuyang Shi, Qunzhi Xu, Tuo Zhao, 2023.
[abs][pdf][bib]
- Learning Optimal Feedback Operators and their Sparse Polynomial Approximations
- Karl Kunisch, Donato Vásquez-Varas, Daniel Walter, 2023.
[abs][pdf][bib]
- Sensitivity-Free Gradient Descent Algorithms
- Ion Matei, Maksym Zhenirovskyy, Johan de Kleer, John Maxwell, 2023.
[abs][pdf][bib]
- A PDE approach for regret bounds under partial monitoring
- Erhan Bayraktar, Ibrahim Ekren, Xin Zhang, 2023.
[abs][pdf][bib]
- A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning
- Arrasy Rahman, Ignacio Carlucho, Niklas Höpner, Stefano V. Albrecht, 2023.
[abs][pdf][bib] [code]
- Causal Bandits for Linear Structural Equation Models
- Burak Varici, Karthikeyan Shanmugam, Prasanna Sattigeri, Ali Tajer, 2023.
[abs][pdf][bib]
- High-Dimensional Inference for Generalized Linear Models with Hidden Confounding
- Jing Ouyang, Kean Ming Tan, Gongjun Xu, 2023.
[abs][pdf][bib]
- Weibull Racing Survival Analysis with Competing Events, Left Truncation, and Time-Varying Covariates
- Quan Zhang, Yanxun Xu, Mei-Cheng Wang, Mingyuan Zhou, 2023.
[abs][pdf][bib]
- Erratum: Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
- Louis-Philippe Vignault, Audrey Durand, Pascal Germain, 2023.
[abs][pdf][bib]
- Augmented Transfer Regression Learning with Semi-non-parametric Nuisance Models
- Molei Liu, Yi Zhang, Katherine P. Liao, Tianxi Cai, 2023.
[abs][pdf][bib]
- From Understanding Genetic Drift to a Smart-Restart Mechanism for Estimation-of-Distribution Algorithms
- Weijie Zheng, Benjamin Doerr, 2023.
[abs][pdf][bib]
- A Unified Analysis of Multi-task Functional Linear Regression Models with Manifold Constraint and Composite Quadratic Penalty
- Shiyuan He, Hanxuan Ye, Kejun He, 2023.
[abs][pdf][bib]
- Deletion and Insertion Tests in Regression Models
- Naofumi Hama, Masayoshi Mase, Art B. Owen, 2023.
[abs][pdf][bib]
- Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility
- Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, Francois Caron, 2023.
[abs][pdf][bib] [code]
- A New Look at Dynamic Regret for Non-Stationary Stochastic Bandits
- Yasin Abbasi-Yadkori, Andras Gyorgy, Nevena Lazic, 2023.
[abs][pdf][bib]
- Universal Approximation Property of Invertible Neural Networks
- Isao Ishikawa, Takeshi Teshima, Koichi Tojo, Kenta Oono, Masahiro Ikeda, Masashi Sugiyama, 2023.
[abs][pdf][bib]
- Low Tree-Rank Bayesian Vector Autoregression Models
- Leo L Duan, Zeyu Yuwen, George Michailidis, Zhengwu Zhang, 2023.
[abs][pdf][bib] [code]
- Generic Unsupervised Optimization for a Latent Variable Model With Exponential Family Observables
- Hamid Mousavi, Jakob Drefs, Florian Hirschberger, Jörg Lücke, 2023.
[abs][pdf][bib] [code]
- A Complete Characterization of Linear Estimators for Offline Policy Evaluation
- Juan C. Perdomo, Akshay Krishnamurthy, Peter Bartlett, Sham Kakade, 2023.
[abs][pdf][bib]
- Community models for networks observed through edge nominations
- Tianxi Li, Elizaveta Levina, Ji Zhu, 2023.
[abs][pdf][bib] [code]
- Removing Data Heterogeneity Influence Enhances Network Topology Dependence of Decentralized SGD
- Kun Yuan, Sulaiman A. Alghunaim, Xinmeng Huang, 2023.
[abs][pdf][bib]
- Sparse Markov Models for High-dimensional Inference
- Guilherme Ost, Daniel Y. Takahashi, 2023.
[abs][pdf][bib]
- Distinguishing Cause and Effect in Bivariate Structural Causal Models: A Systematic Investigation
- Christoph Käding,, Jakob Runge,, 2023.
[abs][pdf][bib]
- Elastic Gradient Descent, an Iterative Optimization Method Approximating the Solution Paths of the Elastic Net
- Oskar Allerbo, Johan Jonasson, Rebecka Jörnsten, 2023.
[abs][pdf][bib] [code]
- On Biased Compression for Distributed Learning
- Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan, 2023.
[abs][pdf][bib]
- Adaptive Clustering Using Kernel Density Estimators
- Ingo Steinwart, Bharath K. Sriperumbudur, Philipp Thomann, 2023.
[abs][pdf][bib]
- A Continuous-time Stochastic Gradient Descent Method for Continuous Data
- Kexin Jin, Jonas Latz, Chenguang Liu, Carola-Bibiane Schönlieb, 2023.
[abs][pdf][bib]
- Online Non-stochastic Control with Partial Feedback
- Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou, 2023.
[abs][pdf][bib]
- Distributed Sparse Regression via Penalization
- Yao Ji, Gesualdo Scutari, Ying Sun, Harsha Honnappa, 2023.
[abs][pdf][bib]
- Causal Discovery with Unobserved Confounding and Non-Gaussian Data
- Y. Samuel Wang, Mathias Drton, 2023.
[abs][pdf][bib]
- Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
- Xiao-Tong Yuan, Ping Li, 2023.
[abs][pdf][bib]
- Dynamic Ranking with the BTL Model: A Nearest Neighbor based Rank Centrality Method
- Eglantine Karlé, Hemant Tyagi, 2023.
[abs][pdf][bib] [code]
- Revisiting minimum description length complexity in overparameterized models
- Raaz Dwivedi, Chandan Singh, Bin Yu, Martin Wainwright, 2023.
[abs][pdf][bib] [code]
- Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
- Dimitris Bertsimas, Ryan Cory-Wright, Nicholas A. G. Johnson, 2023.
[abs][pdf][bib] [code]
- On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
- Zejian Liu, Meng Li, 2023.
[abs][pdf][bib]
- Surrogate Assisted Semi-supervised Inference for High Dimensional Risk Prediction
- Jue Hou, Zijian Guo, Tianxi Cai, 2023.
[abs][pdf][bib]
- ProtoryNet - Interpretable Text Classification Via Prototype Trajectories
- Dat Hong, Tong Wang, Stephen Baek, 2023.
[abs][pdf][bib] [code]
- Distributed Algorithms for U-statistics-based Empirical Risk Minimization
- Lanjue Chen, Alan T.K. Wan, Shuyi Zhang, Yong Zhou, 2023.
[abs][pdf][bib]
- Minimax Estimation for Personalized Federated Learning: An Alternative between FedAvg and Local Training?
- Shuxiao Chen, Qinqing Zheng, Qi Long, Weijie J. Su, 2023.
[abs][pdf][bib]
- Nearest Neighbor Dirichlet Mixtures
- Shounak Chattopadhyay, Antik Chakraborty, David B. Dunson, 2023.
[abs][pdf][bib] [code]
- Learning to Rank under Multinomial Logit Choice
- James A. Grant, David S. Leslie, 2023.
[abs][pdf][bib]
- Scalable high-dimensional Bayesian varying coefficient models with unknown within-subject covariance
- Ray Bai, Mary R. Boland, Yong Chen, 2023.
[abs][pdf][bib] [code]
- Multi-view Collaborative Gaussian Process Dynamical Systems
- Shiliang Sun, Jingjing Fei, Jing Zhao, Liang Mao, 2023.
[abs][pdf][bib]
- Fairlearn: Assessing and Improving Fairness of AI Systems
- Hilde Weerts, Miroslav Dudík, Richard Edgar, Adrin Jalali, Roman Lutz, Michael Madaio, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Scalable Real-Time Recurrent Learning Using Columnar-Constructive Networks
- Khurram Javed, Haseeb Shah, Richard S. Sutton, Martha White, 2023.
[abs][pdf][bib] [code]
- Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
- Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, Danny Abraham, Tony Givargis, Alexandru Nicolau, Alexander Veidenbaum, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- skrl: Modular and Flexible Library for Reinforcement Learning
- Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, Nestor Arana-Arexolaleiba, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model
- Alexandra Sasha Luccioni, Sylvain Viguier, Anne-Laure Ligozat, 2023.
[abs][pdf][bib] [code]
- Adaptive False Discovery Rate Control with Privacy Guarantee
- Xintao Xia, Zhanrui Cai, 2023.
[abs][pdf][bib]
- Atlas: Few-shot Learning with Retrieval Augmented Language Models
- Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, Edouard Grave, 2023.
[abs][pdf][bib] [code]
- Convex Reinforcement Learning in Finite Trials
- Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, Marcello Restelli, 2023.
[abs][pdf][bib]
- Unbiased Multilevel Monte Carlo Methods for Intractable Distributions: MLMC Meets MCMC
- Tianze Wang, Guanyang Wang, 2023.
[abs][pdf][bib] [code]
- Improving multiple-try Metropolis with local balancing
- Philippe Gagnon, Florian Maire, Giacomo Zanella, 2023.
[abs][pdf][bib]
- Importance Sparsification for Sinkhorn Algorithm
- Mengyu Li, Jun Yu, Tao Li, Cheng Meng, 2023.
[abs][pdf][bib] [code]
- Graph Attention Retrospective
- Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, Aukosh Jagannath, 2023.
[abs][pdf][bib] [code]
- Confidence Intervals and Hypothesis Testing for High-dimensional Quantile Regression: Convolution Smoothing and Debiasing
- Yibo Yan, Xiaozhou Wang, Riquan Zhang, 2023.
[abs][pdf][bib]
- Selection by Prediction with Conformal p-values
- Ying Jin, Emmanuel J. Candes, 2023.
[abs][pdf][bib] [code]
- Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics
- Kamélia Daudel, Joe Benton, Yuyang Shi, Arnaud Doucet, 2023.
[abs][pdf][bib]
- Sparse Graph Learning from Spatiotemporal Time Series
- Andrea Cini, Daniele Zambon, Cesare Alippi, 2023.
[abs][pdf][bib]
- Improved Powered Stochastic Optimization Algorithms for Large-Scale Machine Learning
- Zhuang Yang, 2023.
[abs][pdf][bib]
- PaLM: Scaling Language Modeling with Pathways
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel, 2023.
[abs][pdf][bib]
- Leaky Hockey Stick Loss: The First Negatively Divergent Margin-based Loss Function for Classification
- Oh-Ran Kwon, Hui Zou, 2023.
[abs][pdf][bib] [code]
- Neural Q-learning for solving PDEs
- Samuel N. Cohen, Deqing Jiang, Justin Sirignano, 2023.
[abs][pdf][bib] [code]
- Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation in Contaminated Gaussian Models
- Ziyue Wang, Zhiqiang Tan, 2023.
[abs][pdf][bib] [code]
- MultiZoo and MultiBench: A Standardized Toolkit for Multimodal Deep Learning
- Paul Pu Liang, Yiwei Lyu, Xiang Fan, Arav Agarwal, Yun Cheng, Louis-Philippe Morency, Ruslan Salakhutdinov, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Strategic Knowledge Transfer
- Max Olan Smith, Thomas Anthony, Michael P. Wellman, 2023.
[abs][pdf][bib]
- Lifted Bregman Training of Neural Networks
- Xiaoyu Wang, Martin Benning, 2023.
[abs][pdf][bib] [code]
- Statistical Comparisons of Classifiers by Generalized Stochastic Dominance
- Christoph Jansen, Malte Nalenz, Georg Schollmeyer, Thomas Augustin, 2023.
[abs][pdf][bib]
- Sample Complexity for Distributionally Robust Learning under chi-square divergence
- Zhengyu Zhou, Weiwei Liu, 2023.
[abs][pdf][bib]
- Interpretable and Fair Boolean Rule Sets via Column Generation
- Connor Lawless, Sanjeeb Dash, Oktay Gunluk, Dennis Wei, 2023.
[abs][pdf][bib]
- On the Optimality of Nuclear-norm-based Matrix Completion for Problems with Smooth Non-linear Structure
- Yunhua Xiang, Tianyu Zhang, Xu Wang, Ali Shojaie, Noah Simon, 2023.
[abs][pdf][bib]
- Merlion: End-to-End Machine Learning for Time Series
- Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota, Gokulakrishnan Gopalakrishnan, Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho, Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Steven Hoi, Huan Wang, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Limits of Dense Simplicial Complexes
- T. Mitchell Roddenberry, Santiago Segarra, 2023.
[abs][pdf][bib]
- RankSEG: A Consistent Ranking-based Framework for Segmentation
- Ben Dai, Chunlin Li, 2023.
[abs][pdf][bib] [code]
- Conditional Distribution Function Estimation Using Neural Networks for Censored and Uncensored Data
- Bingqing Hu, Bin Nan, 2023.
[abs][pdf][bib] [code]
- Single Timescale Actor-Critic Method to Solve the Linear Quadratic Regulator with Convergence Guarantees
- Mo Zhou, Jianfeng Lu, 2023.
[abs][pdf][bib] [code]
- Multi-source Learning via Completion of Block-wise Overlapping Noisy Matrices
- Doudou Zhou, Tianxi Cai, Junwei Lu, 2023.
[abs][pdf][bib] [code]
- A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
- Wei-Fang Sun, Cheng-Kuang Lee, Simon See, Chun-Yi Lee, 2023.
[abs][pdf][bib] [code]
- Functional L-Optimality Subsampling for Functional Generalized Linear Models with Massive Data
- Hua Liu, Jinhong You, Jiguo Cao, 2023.
[abs][pdf][bib] [code]
- Adaptation Augmented Model-based Policy Optimization
- Jian Shen, Hang Lai, Minghuan Liu, Han Zhao, Yong Yu, Weinan Zhang, 2023.
[abs][pdf][bib]
- Random Forests for Change Point Detection
- Malte Londschien, Peter Bühlmann, Solt Kovács, 2023.
[abs][pdf][bib] [code]
- Least Squares Model Averaging for Distributed Data
- Haili Zhang, Zhaobo Liu, Guohua Zou, 2023.
[abs][pdf][bib]
- An Empirical Investigation of the Role of Pre-training in Lifelong Learning
- Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, Emma Strubell, 2023.
[abs][pdf][bib] [code]
- Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs with Applications
- Marcel Wienöbst, Max Bannach, Maciej Liśkiewicz, 2023.
[abs][pdf][bib] [code]
- An Inexact Augmented Lagrangian Algorithm for Training Leaky ReLU Neural Network with Group Sparsity
- Wei Liu, Xin Liu, Xiaojun Chen, 2023.
[abs][pdf][bib]
- Entropic Fictitious Play for Mean Field Optimization Problem
- Fan Chen, Zhenjie Ren, Songbo Wang, 2023.
[abs][pdf][bib]
- GFlowNet Foundations
- Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, Emmanuel Bengio, 2023.
[abs][pdf][bib]
- LibMTL: A Python Library for Deep Multi-Task Learning
- Baijiong Lin, Yu Zhang, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Minimax Risk Classifiers with 0-1 Loss
- Santiago Mazuelas, Mauricio Romero, Peter Grunwald, 2023.
[abs][pdf][bib]
- Augmented Sparsifiers for Generalized Hypergraph Cuts
- Nate Veldt, Austin R. Benson, Jon Kleinberg, 2023.
[abs][pdf][bib] [code]
- Non-stationary Online Learning with Memory and Non-stochastic Control
- Peng Zhao, Yu-Hu Yan, Yu-Xiang Wang, Zhi-Hua Zhou, 2023.
[abs][pdf][bib]
- L0Learn: A Scalable Package for Sparse Learning using L0 Regularization
- Hussein Hazimeh, Rahul Mazumder, Tim Nonet, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- A Non-parametric View of FedAvg and FedProx:Beyond Stationary Points
- Lili Su, Jiaming Xu, Pengkun Yang, 2023.
[abs][pdf][bib]
- Multiplayer Performative Prediction: Learning in Decision-Dependent Games
- Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, Lillian J. Ratliff, 2023.
[abs][pdf][bib] [code]
- Variational Inverting Network for Statistical Inverse Problems of Partial Differential Equations
- Junxiong Jia, Yanni Wu, Peijun Li, Deyu Meng, 2023.
[abs][pdf][bib]
- Model-based Causal Discovery for Zero-Inflated Count Data
- Junsouk Choi, Yang Ni, 2023.
[abs][pdf][bib] [code]
- Q-Learning for MDPs with General Spaces: Convergence and Near Optimality via Quantization under Weak Continuity
- Ali Kara, Naci Saldi, Serdar Yüksel, 2023.
[abs][pdf][bib]
- CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges
- Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier Baro, Hugo Jair Escalante, Sergio Escalera, Tyler Thomas, Zhen Xu, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Contrasting Identifying Assumptions of Average Causal Effects: Robustness and Semiparametric Efficiency
- Tetiana Gorbach, Xavier de Luna, Juha Karvanen, Ingeborg Waernbaum, 2023.
[abs][pdf][bib] [code]
- Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data
- Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann, 2023.
[abs][pdf][bib] [code]
- Clustering and Structural Robustness in Causal Diagrams
- Santtu Tikka, Jouni Helske, Juha Karvanen, 2023.
[abs][pdf][bib] [code]
- MMD Aggregated Two-Sample Test
- Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton, 2023.
[abs][pdf][bib] [code]
- Divide-and-Conquer Fusion
- Ryan S.Y. Chan, Murray Pollock, Adam M. Johansen, Gareth O. Roberts, 2023.
[abs][pdf][bib]
- PAC-learning for Strategic Classification
- Ravi Sundaram, Anil Vullikanti, Haifeng Xu, Fan Yao, 2023.
[abs][pdf][bib]
- Insights into Ordinal Embedding Algorithms: A Systematic Evaluation
- Leena Chennuru Vankadara, Michael Lohaus, Siavash Haghiri, Faiz Ul Wahab, Ulrike von Luxburg, 2023.
[abs][pdf][bib] [code]
- Clustering with Tangles: Algorithmic Framework and Theoretical Guarantees
- Solveig Klepper, Christian Elbracht, Diego Fioravanti, Jakob Kneip, Luca Rendsburg, Maximilian Teegen, Ulrike von Luxburg, 2023.
[abs][pdf][bib] [code]
- Random Feature Neural Networks Learn Black-Scholes Type PDEs Without Curse of Dimensionality
- Lukas Gonon, 2023.
[abs][pdf][bib]
- The Proximal ID Algorithm
- Ilya Shpitser, Zach Wood-Doughty, Eric J. Tchetgen Tchetgen, 2023.
[abs][pdf][bib] [code]
- Quantifying Network Similarity using Graph Cumulants
- Gecia Bravo-Hermsdorff, Lee M. Gunderson, Pierre-André Maugis, Carey E. Priebe, 2023.
[abs][pdf][bib] [code]
- Learning an Explicit Hyper-parameter Prediction Function Conditioned on Tasks
- Jun Shu, Deyu Meng, Zongben Xu, 2023.
[abs][pdf][bib] [code]
- On the Theoretical Equivalence of Several Trade-Off Curves Assessing Statistical Proximity
- Rodrigue Siry, Ryan Webster, Loic Simon, Julien Rabin, 2023.
[abs][pdf][bib]
- Metrizing Weak Convergence with Maximum Mean Discrepancies
- Carl-Johann Simon-Gabriel, Alessandro Barp, Bernhard Schölkopf, Lester Mackey, 2023.
[abs][pdf][bib]
- Quasi-Equivalence between Width and Depth of Neural Networks
- Fenglei Fan, Rongjie Lai, Ge Wang, 2023.
[abs][pdf][bib]
- Naive regression requires weaker assumptions than factor models to adjust for multiple cause confounding
- Justin Grimmer, Dean Knox, Brandon Stewart, 2023.
[abs][pdf][bib]
- Factor Graph Neural Networks
- Zhen Zhang, Mohammed Haroon Dupty, Fan Wu, Javen Qinfeng Shi, Wee Sun Lee, 2023.
[abs][pdf][bib] [code]
- Dropout Training is Distributionally Robust Optimal
- José Blanchet, Yang Kang, José Luis Montiel Olea, Viet Anh Nguyen, Xuhui Zhang, 2023.
[abs][pdf][bib]
- Variational Inference for Deblending Crowded Starfields
- Runjing Liu, Jon D. McAuliffe, Jeffrey Regier, The LSST Dark Energy Science Collaboration, 2023.
[abs][pdf][bib] [code]
- F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
- Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, Hongyuan Zha, 2023.
[abs][pdf][bib]
- Comprehensive Algorithm Portfolio Evaluation using Item Response Theory
- Sevvandi Kandanaarachchi, Kate Smith-Miles, 2023.
[abs][pdf][bib] [code]
- Evaluating Instrument Validity using the Principle of Independent Mechanisms
- Patrick F. Burauel, 2023.
[abs][pdf][bib]
- Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity
- Kaiqing Zhang, Sham M. Kakade, Tamer Basar, Lin F. Yang, 2023.
[abs][pdf][bib]
- Posterior Consistency for Bayesian Relevance Vector Machines
- Xiao Fang, Malay Ghosh, 2023.
[abs][pdf][bib]
- From Classification Accuracy to Proper Scoring Rules: Elicitability of Probabilistic Top List Predictions
- Johannes Resin, 2023.
[abs][pdf][bib]
- Beyond the Golden Ratio for Variational Inequality Algorithms
- Ahmet Alacaoglu, Axel Böhm, Yura Malitsky, 2023.
[abs][pdf][bib] [code]
- Small Transformers Compute Universal Metric Embeddings
- Anastasis Kratsios, Valentin Debarnot, Ivan Dokmanić, 2023.
[abs][pdf][bib] [code]
- DART: Distance Assisted Recursive Testing
- Xuechan Li, Anthony D. Sung, Jichun Xie, 2023.
[abs][pdf][bib]
- Inference on the Change Point under a High Dimensional Covariance Shift
- Abhishek Kaul, Hongjin Zhang, Konstantinos Tsampourakis, George Michailidis, 2023.
[abs][pdf][bib]
- Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start
- Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo, 2023.
[abs][pdf][bib] [code]
- A Parameter-Free Conditional Gradient Method for Composite Minimization under Hölder Condition
- Masaru Ito, Zhaosong Lu, Chuan He, 2023.
[abs][pdf][bib]
- Robust Methods for High-Dimensional Linear Learning
- Ibrahim Merad, Stéphane Gaïffas, 2023.
[abs][pdf][bib]
- A Framework and Benchmark for Deep Batch Active Learning for Regression
- David Holzmüller, Viktor Zaverkin, Johannes Kästner, Ingo Steinwart, 2023.
[abs][pdf][bib] [code]
- Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
- Gavin Zhang, Salar Fattahi, Richard Y. Zhang, 2023.
[abs][pdf][bib]
- Flexible Model Aggregation for Quantile Regression
- Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani, 2023.
[abs][pdf][bib] [code]
- Multivariate Soft Rank via Entropy-Regularized Optimal Transport: Sample Efficiency and Generative Modeling
- Shoaib Bin Masud, Matthew Werenski, James M. Murphy, Shuchin Aeron, 2023.
[abs][pdf][bib] [code]
- Infinite-dimensional optimization and Bayesian nonparametric learning of stochastic differential equations
- Arnab Ganguly, Riten Mitra, Jinpu Zhou, 2023.
[abs][pdf][bib]
- Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees
- Hamid Reza Feyzmahdavian, Mikael Johansson, 2023.
[abs][pdf][bib]
- Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the in the O(epsilon^(-7/4)) Complexity
- Huan Li, Zhouchen Lin, 2023.
[abs][pdf][bib] [code]
- Integrating Random Effects in Deep Neural Networks
- Giora Simchoni, Saharon Rosset, 2023.
[abs][pdf][bib] [code]
- Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
- Jonathan Brophy, Zayd Hammoudeh, Daniel Lowd, 2023.
[abs][pdf][bib] [code]
- Consistent Model-based Clustering using the Quasi-Bernoulli Stick-breaking Process
- Cheng Zeng, Jeffrey W Miller, Leo L Duan, 2023.
[abs][pdf][bib] [code]
- Selective inference for k-means clustering
- Yiqun T. Chen, Daniela M. Witten, 2023.
[abs][pdf][bib] [code]
- Generalization error bounds for multiclass sparse linear classifiers
- Tomer Levy, Felix Abramovich, 2023.
[abs][pdf][bib]
- MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning
- Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen, Runzhe Wu, Ying Wen, Yaodong Yang, Yong Yu, Jun Wang, Weinan Zhang, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning
- Titouan Vayer, Rémi Gribonval, 2023.
[abs][pdf][bib]
- Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave Min-Max Problems with PL Condition
- Zhishuai Guo, Yan Yan, Zhuoning Yuan, Tianbao Yang, 2023.
[abs][pdf][bib]
- Stochastic Optimization under Distributional Drift
- Joshua Cutler, Dmitriy Drusvyatskiy, Zaid Harchaoui, 2023.
[abs][pdf][bib]
- Off-Policy Actor-Critic with Emphatic Weightings
- Eric Graves, Ehsan Imani, Raksha Kumaraswamy, Martha White, 2023.
[abs][pdf][bib] [code]
- Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
- Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang, 2023.
[abs][pdf][bib] [code]
- Escaping The Curse of Dimensionality in Bayesian Model-Based Clustering
- Noirrit Kiran Chandra, Antonio Canale, David B. Dunson, 2023.
[abs][pdf][bib]
- Large sample spectral analysis of graph-based multi-manifold clustering
- Nicolas Garcia Trillos, Pengfei He, Chenghui Li, 2023.
[abs][pdf][bib] [code]
- On Tilted Losses in Machine Learning: Theory and Applications
- Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith, 2023.
[abs][pdf][bib] [code]
- Optimal Convergence Rates for Distributed Nystroem Approximation
- Jian Li, Yong Liu, Weiping Wang, 2023.
[abs][pdf][bib] [code]
- Jump Interval-Learning for Individualized Decision Making with Continuous Treatments
- Hengrui Cai, Chengchun Shi, Rui Song, Wenbin Lu, 2023.
[abs][pdf][bib] [code]
- Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games
- Ben Hambly, Renyuan Xu, Huining Yang, 2023.
[abs][pdf][bib]
- Asymptotics of Network Embeddings Learned via Subsampling
- Andrew Davison, Morgane Austern, 2023.
[abs][pdf][bib] [code]
- Implicit Bias of Gradient Descent for Mean Squared Error Regression with Two-Layer Wide Neural Networks
- Hui Jin, Guido Montufar, 2023.
[abs][pdf][bib] [code]
- Dimension Reduction in Contextual Online Learning via Nonparametric Variable Selection
- Wenhao Li, Ningyuan Chen, L. Jeff Hong, 2023.
[abs][pdf][bib]
- MARS: A Second-Order Reduction Algorithm for High-Dimensional Sparse Precision Matrices Estimation
- Qian Li, Binyan Jiang, Defeng Sun, 2023.
[abs][pdf][bib]
- Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
- Benjamin Jakubowski, Sriram Somanchi, Edward McFowland III, Daniel B. Neill, 2023.
[abs][pdf][bib] [code]
- Generalized Linear Models in Non-interactive Local Differential Privacy with Public Data
- Di Wang, Lijie Hu, Huanyu Zhang, Marco Gaboardi, Jinhui Xu, 2023.
[abs][pdf][bib]
- A Rigorous Information-Theoretic Definition of Redundancy and Relevancy in Feature Selection Based on (Partial) Information Decomposition
- Patricia Wollstadt, Sebastian Schmitt, Michael Wibral, 2023.
[abs][pdf][bib]
- Combinatorial Optimization and Reasoning with Graph Neural Networks
- Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, Petar Veličković, 2023.
[abs][pdf][bib]
- A First Look into the Carbon Footprint of Federated Learning
- Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro P. B. Gusmao, Yan Gao, Daniel J. Beutel, Taner Topal, Akhil Mathur, Nicholas D. Lane, 2023.
[abs][pdf][bib]
- An Eigenmodel for Dynamic Multilayer Networks
- Joshua Daniel Loyal, Yuguo Chen, 2023.
[abs][pdf][bib] [code]
- Graph Clustering with Graph Neural Networks
- Anton Tsitsulin, John Palowitch, Bryan Perozzi, Emmanuel Müller, 2023.
[abs][pdf][bib] [code]
- Euler-Lagrange Analysis of Generative Adversarial Networks
- Siddarth Asokan, Chandra Sekhar Seelamantula, 2023.
[abs][pdf][bib] [code]
- Statistical Robustness of Empirical Risks in Machine Learning
- Shaoyan Guo, Huifu Xu, Liwei Zhang, 2023.
[abs][pdf][bib]
- HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
- Weijie J. Su, Yuancheng Zhu, 2023.
[abs][pdf][bib]
- Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
- Brian R. Bartoldson, Bhavya Kailkhura, Davis Blalock, 2023.
[abs][pdf][bib]
- Minimal Width for Universal Property of Deep RNN
- Chang hoon Song, Geonho Hwang, Jun ho Lee, Myungjoo Kang, 2023.
[abs][pdf][bib]
- Maximum likelihood estimation in Gaussian process regression is ill-posed
- Toni Karvonen, Chris J. Oates, 2023.
[abs][pdf][bib]
- An Annotated Graph Model with Differential Degree Heterogeneity for Directed Networks
- Stefan Stein, Chenlei Leng, 2023.
[abs][pdf][bib]
- A Unified Framework for Optimization-Based Graph Coarsening
- Manoj Kumar, Anurag Sharma, Sandeep Kumar, 2023.
[abs][pdf][bib] [code]
- Deep linear networks can benignly overfit when shallow ones do
- Niladri S. Chatterji, Philip M. Long, 2023.
[abs][pdf][bib] [code]
- SQLFlow: An Extensible Toolkit Integrating DB and AI
- Jun Zhou, Ke Zhang, Lin Wang, Hua Wu, Yi Wang, ChaoChao Chen, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Learning Good State and Action Representations for Markov Decision Process via Tensor Decomposition
- Chengzhuo Ni, Yaqi Duan, Munther Dahleh, Mengdi Wang, Anru R. Zhang, 2023.
[abs][pdf][bib]
- Generalization Bounds for Adversarial Contrastive Learning
- Xin Zou, Weiwei Liu, 2023.
[abs][pdf][bib]
- The Hyperspherical Geometry of Community Detection: Modularity as a Distance
- Martijn Gösgens, Remco van der Hofstad, Nelly Litvak, 2023.
[abs][pdf][bib] [code]
- FLIP: A Utility Preserving Privacy Mechanism for Time Series
- Tucker McElroy, Anindya Roy, Gaurab Hore, 2023.
[abs][pdf][bib]
- A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
- Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi, 2023.
[abs][pdf][bib] [code]
- Dimensionless machine learning: Imposing exact units equivariance
- Soledad Villar, Weichi Yao, David W. Hogg, Ben Blum-Smith, Bianca Dumitrascu, 2023.
[abs][pdf][bib]
- Bayesian Calibration of Imperfect Computer Models using Physics-Informed Priors
- Michail Spitieris, Ingelin Steinsland, 2023.
[abs][pdf][bib] [code]
- Risk Bounds for Positive-Unlabeled Learning Under the Selected At Random Assumption
- Olivier Coudray, Christine Keribin, Pascal Massart, Patrick Pamphile, 2023.
[abs][pdf][bib]
- Concentration analysis of multivariate elliptic diffusions
- Lukas Trottner, Cathrine Aeckerle-Willems, Claudia Strauch, 2023.
[abs][pdf][bib]
- Knowledge Hypergraph Embedding Meets Relational Algebra
- Bahare Fatemi, Perouz Taslakian, David Vazquez, David Poole, 2023.
[abs][pdf][bib] [code]
- Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
- Mu Niu, Zhenwen Dai, Pokman Cheung, Yizhu Wang, 2023.
[abs][pdf][bib]
- Sparse Training with Lipschitz Continuous Loss Functions and a Weighted Group L0-norm Constraint
- Michael R. Metel, 2023.
[abs][pdf][bib]
- Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments
- Haixu Ma, Donglin Zeng, Yufeng Liu, 2023.
[abs][pdf][bib]
- Inference for Gaussian Processes with Matern Covariogram on Compact Riemannian Manifolds
- Didong Li, Wenpin Tang, Sudipto Banerjee, 2023.
[abs][pdf][bib]
- FedLab: A Flexible Federated Learning Framework
- Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, Zenglin Xu, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Connectivity Matters: Neural Network Pruning Through the Lens of Effective Sparsity
- Artem Vysogorets, Julia Kempe, 2023.
[abs][pdf][bib]
- An Analysis of Robustness of Non-Lipschitz Networks
- Maria-Florina Balcan, Avrim Blum, Dravyansh Sharma, Hongyang Zhang, 2023.
[abs][pdf][bib] [code]
- Fitting Autoregressive Graph Generative Models through Maximum Likelihood Estimation
- Xu Han, Xiaohui Chen, Francisco J. R. Ruiz, Li-Ping Liu, 2023.
[abs][pdf][bib] [code]
- Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and Over-parameterization
- Jianhao Ma, Salar Fattahi, 2023.
[abs][pdf][bib]
- Statistical Inference for Noisy Incomplete Binary Matrix
- Yunxiao Chen, Chengcheng Li, Jing Ouyang, Gongjun Xu, 2023.
[abs][pdf][bib]
- Faith-Shap: The Faithful Shapley Interaction Index
- Che-Ping Tsai, Chih-Kuan Yeh, Pradeep Ravikumar, 2023.
[abs][pdf][bib]
- Decentralized Learning: Theoretical Optimality and Practical Improvements
- Yucheng Lu, Christopher De Sa, 2023.
[abs][pdf][bib]
- Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption
- Lihu Xu, Fang Yao, Qiuran Yao, Huiming Zhang, 2023.
[abs][pdf][bib]
- Recursive Quantile Estimation: Non-Asymptotic Confidence Bounds
- Likai Chen, Georg Keilbar, Wei Biao Wu, 2023.
[abs][pdf][bib]
- Outlier-Robust Subsampling Techniques for Persistent Homology
- Bernadette J. Stolz, 2023.
[abs][pdf][bib] [code]
- Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs
- Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar, 2023.
[abs][pdf][bib] [code]
- Dimension-Grouped Mixed Membership Models for Multivariate Categorical Data
- Yuqi Gu, Elena E. Erosheva, Gongjun Xu, David B. Dunson, 2023.
[abs][pdf][bib]
- Gaussian Processes with Errors in Variables: Theory and Computation
- Shuang Zhou, Debdeep Pati, Tianying Wang, Yun Yang, Raymond J. Carroll, 2023.
[abs][pdf][bib]
- Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
- George Stepaniants, 2023.
[abs][pdf][bib] [code]
- Doubly Robust Stein-Kernelized Monte Carlo Estimator: Simultaneous Bias-Variance Reduction and Supercanonical Convergence
- Henry Lam, Haofeng Zhang, 2023.
[abs][pdf][bib]
- Online Optimization over Riemannian Manifolds
- Xi Wang, Zhipeng Tu, Yiguang Hong, Yingyi Wu, Guodong Shi, 2023.
[abs][pdf][bib] [code]
- Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
- William J. Wilkinson, Simo Särkkä, Arno Solin, 2023.
[abs][pdf][bib] [code]
- Iterated Block Particle Filter for High-dimensional Parameter Learning: Beating the Curse of Dimensionality
- Ning Ning, Edward L. Ionides, 2023.
[abs][pdf][bib]
- Fast Online Changepoint Detection via Functional Pruning CUSUM Statistics
- Gaetano Romano, Idris A. Eckley, Paul Fearnhead, Guillem Rigaill, 2023.
[abs][pdf][bib] [code]
- Temporal Abstraction in Reinforcement Learning with the Successor Representation
- Marlos C. Machado, Andre Barreto, Doina Precup, Michael Bowling, 2023.
[abs][pdf][bib]
- Approximate Post-Selective Inference for Regression with the Group LASSO
- Snigdha Panigrahi, Peter W MacDonald, Daniel Kessler, 2023.
[abs][pdf][bib]
- Towards Learning to Imitate from a Single Video Demonstration
- Glen Berseth, Florian Golemo, Christopher Pal, 2023.
[abs][pdf][bib]
- A Likelihood Approach to Nonparametric Estimation of a Singular Distribution Using Deep Generative Models
- Minwoo Chae, Dongha Kim, Yongdai Kim, Lizhen Lin, 2023.
[abs][pdf][bib]
- A Randomized Subspace-based Approach for Dimensionality Reduction and Important Variable Selection
- Di Bo, Hoon Hwangbo, Vinit Sharma, Corey Arndt, Stephanie TerMaath, 2023.
[abs][pdf][bib]
- Intrinsic Persistent Homology via Density-based Metric Learning
- Ximena Fernández, Eugenio Borghini, Gabriel Mindlin, Pablo Groisman, 2023.
[abs][pdf][bib] [code]
- Inference for a Large Directed Acyclic Graph with Unspecified Interventions
- Chunlin Li, Xiaotong Shen, Wei Pan, 2023.
[abs][pdf][bib] [code]
- How Do You Want Your Greedy: Simultaneous or Repeated?
- Moran Feldman, Christopher Harshaw, Amin Karbasi, 2023.
[abs][pdf][bib] [code]
- Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
- Simon Bartels, Wouter Boomsma, Jes Frellsen, Damien Garreau, 2023.
[abs][pdf][bib] [code]
- Optimizing ROC Curves with a Sort-Based Surrogate Loss for Binary Classification and Changepoint Detection
- Jonathan Hillman, Toby Dylan Hocking, 2023.
[abs][pdf][bib] [code]
- Distributed Nonparametric Regression Imputation for Missing Response Problems with Large-scale Data
- Ruoyu Wang, Miaomiao Su, Qihua Wang, 2023.
[abs][pdf][bib] [code]
- Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
- Eliezer de Souza da Silva, Tomasz Kuśmierczyk, Marcelo Hartmann, Arto Klami, 2023.
[abs][pdf][bib] [code]
- Posterior Contraction for Deep Gaussian Process Priors
- Gianluca Finocchio, Johannes Schmidt-Hieber, 2023.
[abs][pdf][bib]
- Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule
- Nikhil Iyer, V. Thejas, Nipun Kwatra, Ramachandran Ramjee, Muthian Sivathanu, 2023.
[abs][pdf][bib] [code]
- Fundamental limits and algorithms for sparse linear regression with sublinear sparsity
- Lan V. Truong, 2023.
[abs][pdf][bib] [code]
- On the Complexity of SHAP-Score-Based Explanations: Tractability via Knowledge Compilation and Non-Approximability Results
- Marcelo Arenas, Pablo Barcelo, Leopoldo Bertossi, Mikael Monet, 2023.
[abs][pdf][bib]
- Monotonic Alpha-divergence Minimisation for Variational Inference
- Kamélia Daudel, Randal Douc, François Roueff, 2023.
[abs][pdf][bib]
- Density estimation on low-dimensional manifolds: an inflation-deflation approach
- Christian Horvat, Jean-Pascal Pfister, 2023.
[abs][pdf][bib] [code]
- Provably Sample-Efficient Model-Free Algorithm for MDPs with Peak Constraints
- Qinbo Bai, Vaneet Aggarwal, Ather Gattami, 2023.
[abs][pdf][bib]
- Topological Convolutional Layers for Deep Learning
- Ephy R. Love, Benjamin Filippenko, Vasileios Maroulas, Gunnar Carlsson, 2023.
[abs][pdf][bib]
- Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
- Yan Shuo Tan, Roman Vershynin, 2023.
[abs][pdf][bib]
- Tree-AMP: Compositional Inference with Tree Approximate Message Passing
- Antoine Baker, Florent Krzakala, Benjamin Aubin, Lenka Zdeborová, 2023.
[abs][pdf][bib] [code]
- On the geometry of Stein variational gradient descent
- Andrew Duncan, Nikolas Nüsken, Lukasz Szpruch, 2023.
[abs][pdf][bib]
- Kernel-based estimation for partially functional linear model: Minimax rates and randomized sketches
- Shaogao Lv, Xin He, Junhui Wang, 2023.
[abs][pdf][bib]
- Contextual Stochastic Block Model: Sharp Thresholds and Contiguity
- Chen Lu, Subhabrata Sen, 2023.
[abs][pdf][bib]
- VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit Feedback
- Kirthevasan Kandasamy, Joseph E Gonzalez, Michael I Jordan, Ion Stoica, 2023.
[abs][pdf][bib]
- Necessary and Sufficient Conditions for Inverse Reinforcement Learning of Bayesian Stopping Time Problems
- Kunal Pattanayak, Vikram Krishnamurthy, 2023.
[abs][pdf][bib]
- Online Change-Point Detection in High-Dimensional Covariance Structure with Application to Dynamic Networks
- Lingjun Li, Jun Li, 2023.
[abs][pdf][bib]
- Convergence Rates of a Class of Multivariate Density Estimation Methods Based on Adaptive Partitioning
- Linxi Liu, Dangna Li, Wing Hung Wong, 2023.
[abs][pdf][bib]
- Reinforcement Learning for Joint Optimization of Multiple Rewards
- Mridul Agarwal, Vaneet Aggarwal, 2023.
[abs][pdf][bib]
- On the Convergence of Stochastic Gradient Descent with Bandwidth-based Step Size
- Xiaoyu Wang, Ya-xiang Yuan, 2023.
[abs][pdf][bib]
- A Group-Theoretic Approach to Computational Abstraction: Symmetry-Driven Hierarchical Clustering
- Haizi Yu, Igor Mineyev, Lav R. Varshney, 2023.
[abs][pdf][bib]
- The d-Separation Criterion in Categorical Probability
- Tobias Fritz, Andreas Klingler, 2023.
[abs][pdf][bib]
- The multimarginal optimal transport formulation of adversarial multiclass classification
- Nicolás García Trillos, Matt Jacobs, Jakwang Kim, 2023.
[abs][pdf][bib]
- Robust Load Balancing with Machine Learned Advice
- Sara Ahmadian, Hossein Esfandiari, Vahab Mirrokni, Binghui Peng, 2023.
[abs][pdf][bib]
- Benchmarking Graph Neural Networks
- Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson, 2023.
[abs][pdf][bib] [code]
- A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
- Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zachary Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan, 2023.
[abs][pdf][bib] [code]
- Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data
- Shaowu Pan, Steven L. Brunton, J. Nathan Kutz, 2023.
[abs][pdf][bib] [code]
- On Batch Teaching Without Collusion
- Shaun Fallat, David Kirkpatrick, Hans U. Simon, Abolghasem Soltani, Sandra Zilles, 2023.
[abs][pdf][bib]
- Sensing Theorems for Unsupervised Learning in Linear Inverse Problems
- Julián Tachella, Dongdong Chen, Mike Davies, 2023.
[abs][pdf][bib]
- First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems
- Michael I. Jordan, Tianyi Lin, Manolis Zampetakis, 2023.
[abs][pdf][bib]
- Label Distribution Changing Learning with Sample Space Expanding
- Chao Xu, Hong Tao, Jing Zhang, Dewen Hu, Chenping Hou, 2023.
[abs][pdf][bib]
- Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopically Rational Followers?
- Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan, 2023.
[abs][pdf][bib]
- Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
- Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Gap Minimization for Knowledge Sharing and Transfer
- Boyu Wang, Jorge A. Mendez, Changjian Shui, Fan Zhou, Di Wu, Gezheng Xu, Christian Gagné, Eric Eaton, 2023.
[abs][pdf][bib] [code]
- Labels, Information, and Computation: Efficient Learning Using Sufficient Labels
- Shiyu Duan, Spencer Chang, Jose C. Principe, 2023.
[abs][pdf][bib]
- Attacks against Federated Learning Defense Systems and their Mitigation
- Cody Lewis, Vijay Varadharajan, Nasimul Noman, 2023.
[abs][pdf][bib] [code]
- HiClass: a Python Library for Local Hierarchical Classification Compatible with Scikit-learn
- Fábio M. Miranda, Niklas Köhnecke, Bernhard Y. Renard, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
- XuranMeng, JeffYao, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- The SKIM-FA Kernel: High-Dimensional Variable Selection and Nonlinear Interaction Discovery in Linear Time
- Raj Agrawal, Tamara Broderick, 2023.
[abs][pdf][bib]
- Generalization Bounds for Noisy Iterative Algorithms Using Properties of Additive Noise Channels
- Hao Wang, Rui Gao, Flavio P. Calmon, 2023.
[abs][pdf][bib]
- Discrete Variational Calculus for Accelerated Optimization
- Cédric M. Campos, Alejandro Mahillo, David Martín de Diego, 2023.
[abs][pdf][bib] [code]
- Calibrated Multiple-Output Quantile Regression with Representation Learning
- Shai Feldman, Stephen Bates, Yaniv Romano, 2023.
[abs][pdf][bib] [code]
- Lower Bounds and Accelerated Algorithms for Bilevel Optimization
- Kaiyi ji, Yingbin Liang, 2023.
[abs][pdf][bib]
- Regularized Joint Mixture Models
- Konstantinos Perrakis, Thomas Lartigue, Frank Dondelinger, Sach Mukherjee, 2023.
[abs][pdf][bib] [code]
- An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization
- Le Thi Khanh Hien, Duy Nhat Phan, Nicolas Gillis, 2023.
[abs][pdf][bib] [code]
- Learning Mean-Field Games with Discounted and Average Costs
- Berkay Anahtarci, Can Deha Kariksiz, Naci Saldi, 2023.
[abs][pdf][bib]
- Globally-Consistent Rule-Based Summary-Explanations for Machine Learning Models: Application to Credit-Risk Evaluation
- Cynthia Rudin, Yaron Shaposhnik, 2023.
[abs][pdf][bib] [code]
- Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions
- Jon Vadillo, Roberto Santana, Jose A. Lozano, 2023.
[abs][pdf][bib] [code]
- Python package for causal discovery based on LiNGAM
- Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Learning-augmented count-min sketches via Bayesian nonparametrics
- Emanuele Dolera, Stefano Favaro, Stefano Peluchetti, 2023.
[abs][pdf][bib]
- Optimal Strategies for Reject Option Classifiers
- Vojtech Franc, Daniel Prusa, Vaclav Voracek, 2023.
[abs][pdf][bib]
- A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees
- Michael J. O'Neill, Stephen J. Wright, 2023.
[abs][pdf][bib]
- Sampling random graph homomorphisms and applications to network data analysis
- Hanbaek Lyu, Facundo Memoli, David Sivakoff, 2023.
[abs][pdf][bib] [code]
- A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
- Radu I. Bot, Michael Sedlmayer, Phan Tu Vuong, 2023.
[abs][pdf][bib]
- On Distance and Kernel Measures of Conditional Dependence
- Tianhong Sheng, Bharath K. Sriperumbudur, 2023.
[abs][pdf][bib]
- AutoKeras: An AutoML Library for Deep Learning
- Haifeng Jin, François Chollet, Qingquan Song, Xia Hu, 2023. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Cluster-Specific Predictions with Multi-Task Gaussian Processes
- Arthur Leroy, Pierre Latouche, Benjamin Guedj, Servane Gey, 2023.
[abs][pdf][bib] [code]
- Efficient Structure-preserving Support Tensor Train Machine
- Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner, 2023.
[abs][pdf][bib] [code]
- Bayesian Spiked Laplacian Graphs
- Leo L Duan, George Michailidis, Mingzhou Ding, 2023.
[abs][pdf][bib] [code]
- The Brier Score under Administrative Censoring: Problems and a Solution
- Håvard Kvamme, Ørnulf Borgan, 2023.
[abs][pdf][bib]
- Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search
- Benjamin Moseley, Joshua R. Wang, 2023.
[abs][pdf][bib]
| © JMLR 2023. |
