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Abstract

We consider the problem of state estimation in general state-space models using varia-
tional inference. For a generic variational family defined using the same backward decom-
position as the actual joint smoothing distribution, we establish under mixing assumptions
that the variational approximation of expectations of additive state functionals induces
an error which grows at most linearly in the number of observations. This guarantee is
consistent with the known upper bounds for the approximation of smoothing distributions
using standard Monte Carlo methods. We illustrate our theoretical result with state-of-the
art variational solutions based both on the backward parameterization and on alternatives
using forward decompositions. This numerical study proposes guidelines for variational
inference based on neural networks in state-space models.

Keywords: Variational inference, State-space models, Smoothing, Backward decomposi-
tion, State inference

1. Introduction

When generative data models involve so-called hidden or latent states, providing statistical
estimates of the latter given observed data - also known as state inference - is the cornerstone
of many machine learning algorithms (Dempster et al., 1977; Kingma and Welling, 2014).
Traditional models usually introduce low-dimensional states having directly interpretable
meaning, while benefiting from accurate inference via exact or consistent Monte Carlo
methods. In contrast, modern latent-data machine learning models are rooted in the so-
called manifold hypothesis which views high dimensional data as originating from hidden

c©2024 Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-1392.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-1392.html


Chagneux Gassiat Gloaguen Le Corff

representations in an unknown space and via a complex nonlinear mapping. In the context
of unsupervised representation learning, state inference is a goal in itself. Due to the
intricacy and dimensionality of the inverse problems involved, most of these works resort
to a combination of deep neural networks (DNNs) and variational approximations which
allow tractable inference and serve as a principled proxy for maximum likelihood estimation
(MLE) (Higgins et al., 2017; Locatello et al., 2020).

The particular case of dependent data is of special importance as it guarantees iden-
tifiability results (Khemakhem et al., 2020), especially in the sequential setting (Gassiat
et al., 2020; Hälvä et al., 2021). This in turn renews interest in a more solid theoretical
understanding of the behaviour of sequential variational methods. In this work, we focus
on the case where the true generative model is assumed to be a state-space model (SSM).
In the general SSM litterature, theoretical analysis of the conditional distribution of the
states given the observations - commonly referred to as the smoothing distribution - has
been extensively conducted to derive efficient estimation algorithms with good convergence
properties. Among these works, a keystone in sequential inference is the computation of
expected values of additive state functionals under the smoothing distribution, known as
additive smoothing (Cappé et al. (2005), Chap. 4), and more precisely the control of the
additive smoothing error when the target expectations are approximated. Theoretical guar-
antees have been provided when the approximation is performed using a surrogate of the
true smoothing distribution provided by Sequential Monte Carlo (SMC) methods (Douc
et al., 2011; Dubarry and Le Corff, 2013; Olsson et al., 2017; Gloaguen et al., 2022). In
addition, in Gloaguen et al. (2022), a control has also been derived when the smoothed
expectations are computed under a biased joint distribution of the hidden states and the
observations.

In contrast, sequential variational methods rely on tractable approximations of the
smoothing distribution to compute these expectations. In the sequential context, a salient
aspect of these approaches is the parameterization of the approximations which is mostly
left as an implementation choice, despite the existing dependencies in the generative model.
Some works introduce structured variational families by considering a variational smooth-
ing distribution which is a product of approximate filtering distributions (e.g. Marino et al.
(2018)). In this setting, the posterior dependencies are therefore misspecified. Recently,
Bayer et al. (2021) highlighted the detrimental impact of misspecifyng dependencies on ob-
servations in the sequential setting. From a slightly different point of view, in the literature
of message passing, some authors do not focus on an explicit form for the variational poste-
rior, but rather propose a variational approximation of the distributions used in the classical
forward-backward recursions for state space models (Johnson et al., 2016; Lin et al., 2018),
leading to a fully conjugated framework giving promising results. In Krishnan et al. (2017),
the authors specify a structured variational posterior satisfying the actual dependencies of
the true smoothing distributions using a forward factorization, where a bi-directional re-
current neural network (RNN) is used to cover all temporal dependencies of the forward
factorization. More recently, Campbell et al. (2021) proposed a new variational family
which uses another factorization of the smoothing distributions, the backward factorization.
This factorization has the appealing property of involving a product of distributions of la-
tent variables that do not depend on future observations. We focus on the latter which
we view as the most theoretically grounded given the SSM litterature, as well as the most
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computationally appealing. Indeed, it is the only structured variational posterior satisfying
the dependencies of the actual smoothing distribution, but which is also prone to online
state estimation and parameter learning.

In this paper, we establish upper bounds for the error of the variational approximation
of additive smoothing in state-space-models (see in particular Proposition 1 and Proposi-
tion 3), when the target expectations are approximated by expectations under a variational
distribution satisfying the backward factorization of Campbell et al. (2021). The backward
factorization of the variational posterior allows the decomposition of the global error into a
sum of terms that can be controlled. To the best of our knowledge, these are the first theo-
retical results providing upper bounds on the state estimation error when using the latter,
or in fact any variational posterior approximation (mean field or involving dependencies)
in state-space models. This result is obtained in the context of a fixed sized sequence of
observations, but leads to open questions in the context of online learning.

These theoretical results are empirically validated with various numerical experiments
which also explore several choices of variational kernels. We consider linear and Gaussian
state spaces to illustrate the linear growth as the ground truth can be computed in this case.
We also use the backward variational approach in the case of nonlinear emission densities
and compare it to sequential Monte Carlo smoothers and other state-of-the-art variational
estimators. We finally explore the impact of the backward parametrization with nonlinear
hidden dynamics and non-Gaussian observation noise in the framework proposed by Zhao
et al. (2022).

In Section 2, we present the general background for SSMs and variational estimation
using backward decompositions. In Section 3, we prove that, in the case of strongly mixing
state hidden Markov models, the variational estimation error of smoothed additive func-
tional grows at most linearly with the number of observations. As a by-product, we also
obtain an upper-bound which is uniform in time for the estimation error of the marginal
smoothing expectations. In Section 4, we illustrate our theoretical results using a variety
of numerical implementations for backward variational smoothing distributions, which we
then illustrate for different generative models.

2. Background

Notations. Let Θ ⊂ Rq be a parameter space and consider a state-space model depending
on θ ∈ Θ where the hidden Markov chain in Rd is denoted by (Xk)k󰃍0. The distribution of
X0 has density χθ with respect to the Lebesgue measure µ and for all k 󰃍 0, the conditional
distribution of Xk+1 given X0:k has density mθ

k(Xk, ·), where au:v is a short-hand notation
for (au, . . . , av) for 0 󰃑 u 󰃑 v and any sequence (aℓ)ℓ󰃍0. In SSMs, it is assumed that this
state is partially observed through an observation process (Yk)0󰃑k󰃑n taking values in Rm.
The observations Y0:n are assumed to be independent conditionally on X0:n and, for all
0 󰃑 k 󰃑 n, the distribution of Yk given X0:n depends on Xk only and has density gθk(Xk, ·)
with respect to the Lebesgue measure.

In the following, for any measure ν on a measurable space (X,X ) and any measurable
function h on X, write νh =

󰁕
h(x)ν(dx). In addition, for any measurable spaces (X,X ) and

(Y,Y), any measure ν on (X,X ), any kernel K : (X,Y) → R+ and any measurable function
h on X × Y, write Kh : x 󰀁→

󰁕
h(x, y)K(x, dy) and νKh =

󰁕
h(x, y)ν(dx)K(x, dy). For
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simplicity, if for all x ∈ X, K(x, ·) has a density k(x, ·) with respect to a reference measure
ν, we write kh : x 󰀁→

󰁕
h(x, y)K(x, dy) =

󰁕
h(x, y)k(x, y)ν(dy). Let also 1 be the constant

function which equals 1 on Rd.

2.1 Latent data models and additive state functionals

In this context, for any 0 󰃑 k1 󰃑 k2 󰃑 n the joint smoothing distribution φθ
k1:k2

is the

conditional law of Xk1:k2 given Y0:n. For any function h from Rd×(n+1) to Rd, we define its
smoothed expectation when the model is parameterized by θ as:

φθ
0:nh = Eθ [h (X0:n) |Y0:n] (1)

= Lθn(Y0:n)
−1

󰁝
h(x0:n)χ

θ(x0)g
θ
0(x0, Y0)

n−1󰁜

k=0

ℓθk(xk, xk+1)µ(dx0:n) ,

where1

ℓθk(xk, xk+1) = mθ
k(xk, xk+1)g

θ
k+1(xk+1, Yk+1)

and Lθn(Y0:n) is the likelihood of the observations:

Lθn(Y0:n) =

󰁝
χθ(x0)g

θ
0(x0, Y0)

n−1󰁜

k=0

ℓθk(xk, xk+1)µ(dx0:n) . (2)

In the context of state-space models, additive state functionals are functions h0:n from
Rd×(n+1) to Rd satisfying:

h0:n : x0:n 󰀁→
n−1󰁛

k=0

h̃k(xk, xk+1) , (3)

where h̃k : Rd × Rd → Rd. Such functions are of great importance in many learning
tasks. For instance, when θ is known, marginal state inference often boils down to esti-
mate Eθ[Xk|Y0:n] which corresponds to h̃k(xk, xk+1) = xk and h̃ℓ(xℓ, xℓ+1) = 0 for ℓ ∕= k.
When θ is unknown, the MLE can be obtained through an Expectation Maximization (EM)
algorithm. This algorithm relies on the computation of the intermediate quantity

θ 󰀁→ Q(θ, θ′) = Eθ′

󰀥
n−1󰁛

k=0

log ℓθk(Xk, Xk+1)

󰀏󰀏󰀏󰀏󰀏Y0:n

󰀦
,

which is another additive smoothing example where h̃k(xk, xk+1) = log ℓθk(xk, xk+1). As an
alternative to EM, batch and recursive MLE (RMLE) methods express

∇θ log L
θ
n = Eθ

󰀥
n−1󰁛

k=0

∇θ log ℓ
θ
k(Xk, Xk+1)

󰀏󰀏󰀏󰀏󰀏Y0:n

󰀦

via Fisher’s identity under some regularity conditions (see Cappé et al. (2005), Chap. 10),
in which case h̃k(xk, xk+1) = ∇θ log ℓ

θ
k(xk, xk+1).

1. Note that the dependence of ℓθk on Yk+1 is omitted in the notation for better clarity.
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The challenge of computing (1) is twofold, i) the smoothing distribution is generally
intractable, ii) under this distribution, expectations are also intractable. A classical ap-
proach is to learn both the distribution and expectations using Markov chain or sequential
Monte Carlo methods, (see Chopin et al., 2020, Chapter 12, for a recent review of SMC
methods). In the case of additive functionals, more recent generic estimators based on SMC
have been designed (Mastrototaro et al., 2022; Martin et al., 2023), and their theoretical
properties (consistency, asymptotic variance and normality) have been studied (Gloaguen
et al., 2022). However, Monte Carlo methods show limitations when the dimension d of
the latent space is large, and alternatives using variational inference are appealing and
computationally efficient solutions.

2.2 Variational inference for sequential data

In variational approaches, instead of designing Monte Carlo estimators of φθ
0:nh (or of the

conditional distribution of the states given the observations), the conditional law φθ
0:n of

X0:n given Y0:n is approximated by choosing a candidate in a parametric family {qλ0:n}λ∈Λ,
referred to as the variational family, where Λ is a parameter set. Parameters are then
learned by maximizing the evidence lower bound (ELBO) defined as:

L(θ,λ) = Eqλ0:n

󰀗
log

pθ0:n(X0:n, Y0:n)

qλ0:n(X0:n)

󰀘
=

󰁝
log

pθ0:n(x0:n, Y0:n)

qλ0:n(x0:n)
qλ0:n(x0:n)µ(dx0:n) , (4)

where pθ0:n is the joint probability density function of (X0:n, Y0:n) when the model is parametrized
by θ. A critical point therefore lies in the form of the variational family. Motivated by the
sequential nature of the data, most works impose further structure on the variational family
via a factorized decomposition of qλ0:n over x0:n (Johnson et al., 2016; Krishnan et al., 2017;
Lin et al., 2018; Marino et al., 2018). Here, the natural strategy is to reintroduce part or
all of the conditional independence properties of the true generative model.

2.3 Backward factorization of the smoothing distribution

Under the true model, the filtering distribution at time k is defined as the distribution
of Xk given Y0:k, with density w.r.t the Lebesgue measure denoted by φθ

k. One known
factorization of φθ

0:n exists by further introducing the so-called backward kernels, that is, for
each 0 󰃑 k 󰃑 n − 1, the conditional distribution of Xk given (Xk+1, Y0:k) whose density is
proportional to xk 󰀁→ mθ

k(xk, xk+1)φ
θ
k(xk). A key result for SSMs is that, conditionally on

the observations, the reverse-time process (Xn−k)0󰃑k󰃑n is an inhomogeneous Markov chain
whose initial distribution is the filtering distribution at n, and whose transition kernels are
precisely the backward kernels. This allows the following backward factorization:

φθ
0:n(x0:n) = φθ

n(xn)

n󰁜

k=1

mθ
k−1(xk−1, xk)φ

θ
k−1(xk−1)󰁕

mθ
k−1(x, xk)φ

θ
k−1(x)µ(dx)

.

Since each backward kernel at time k only depends on observations up to time k, a major
practical advantage of this decomposition is to allow recursive estimation of the smoothing
distributions: when a new observation Yk+1 is processed, obtaining φθ

0:k+1 only amounts
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to computing φθ
k+1 and the associated backward kernel, while previous terms in the prod-

uct stay fixed. Recently, Campbell et al. (2021) proposed a related variational family by
introducing

qλ0:n(x0:n) = qλn(xn)

n󰁜

k=1

qλk−1|k(xk, xk−1) , (5)

where qλn (resp. qλk−1|k(xk, ·)) are user-chosen p.d.f. whose parameters typically would

depend on Y0:n (resp. Y0:k). Under (5), the ELBO (4) becomes an expectation of an
additive functional.

3. A control on backward variational additive smoothing

3.1 Assumption and main result

For all xk ∈ Rd and θ ∈ Θ, define Lθ
k(xk, ·) the kernel with density ℓθk(xk, ·) with respect to

the Lebesgue measure:

Lθ
k(xk, dxk+1) = mθ

k(xk, xk+1)g
θ
k+1(xk+1, Yk+1)µ(dxk+1) .

For additive functionals as in (3), the error between the target expectation φθ
0:nh0:n and its

approximation qλ0:nh0:n can be upper bounded by controlling the bias in the estimation of
Lθ
k by the approximated model, see for instance Gloaguen et al., 2022. In the context of

this paper, as the true model is defined by the forward distributions of Xk given Xk−1, and
the variational approximation is defined by the backward distributions of Xk−1 given Xk,
we reformulate the discrepancy between the true model and the variational one as follows.

For all sequences of probability densities {q̃k}0󰃑k󰃑n−1 with respect to µ, with the

condition q̃n = qλn with qλn defined in (5), let ν̃λk−1:k and φ̃θ
k−1:k be the distributions on

(Rd × Rd,B(Rd × Rd)) defined, for all bounded measurable functions h on Rd × Rd, by

ν̃λk−1:kh = q̃kq
λ
k−1|kh =

󰁝
q̃k(xk)q

λ
k−1|k(xk, xk−1)h(xk−1, xk)µ(dxk−1, dxk) ,

φ̃θ
k−1:kh =

q̃k−1L
θ
k−1h

q̃k−1L
θ
k−11

=

󰁝
q̃k−1(xk−1)ℓ

θ
k−1(xk−1, xk)h(xk−1, xk)󰁕

q̃k−1(uk−1)ℓ
θ
k−1(uk−1, uk)µ(duk−1, duk)

µ(dxk−1, dxk) .

The discrepancy between these sequences of joint distributions is then defined with:

c̃0(θ) =
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv
, and for all k 󰃍 1 c̃k(θ,λ) =

󰀐󰀐󰀐φ̃θ
k−1:k − ν̃λk−1:k

󰀐󰀐󰀐
tv

, (6)

where 󰀂·󰀂tv is the total variation norm, and for all bounded measurable function h, φθ
0h =

χθgθ0h/χ
θgθ01. Note that for k 󰃍 1, c̃k(θ,λ) depends on both q̃k and q̃k+1.

H1 There exist constants 0 < σ− < σ+ < ∞ such that for all k ∈ N, θ ∈ Θ, λ ∈ Λ and
(xk, xk+1) ∈ Rd × Rd,

σ− ≤ ℓθk(xk, xk+1) ≤ σ+

and
σ− ≤ qλk|k+1(xk+1, xk) ≤ σ+.
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Proposition 1 Assume that H1 holds. Then, for all n ∈ N, θ ∈ Θ, λ ∈ Λ, and all additive
functionals h0:n as in (3), and all probability densities q̃k, 0 󰃑 k 󰃑 n− 1, with the condition
q̃n = qλn,

󰀏󰀏qλ0:nh0:n − φθ
0:nh0:n

󰀏󰀏 ≤ 2
σ+
σ−

n−1󰁛

k=0

󰀐󰀐󰀐h̃k
󰀐󰀐󰀐
∞

×
󰀣
c̃0(θ) +

k󰁛

m=1

ρk−m+1c̃m(θ,λ) + c̃k+1(θ,λ) +

n󰁛

m=k+2

ρm−k−1c̃m(θ,λ)

󰀤
,

with ρ = 1−σ−/σ+, where σ− and σ+ are defined in H1, and c̃0(θ) and c̃m(θ,λ), 1 󰃑 m 󰃑 n
are defined in (6).

Proof The proof is postponed to Appendix A.

Marginal smoothing distributions are also of utmost importance as they appear in many
applications for state estimation problems. These marginal smoothing expectations can be
obtained as special cases of expectations of additive functionals, i.e. cases where h̃j = 0 for
all j ∕= k󰂏, for some 0 󰃑 k󰂏 󰃑 n− 1.

Corollary 2 Assume that H1 holds. Then, for all n ∈ N, 1 󰃑 k󰂏 󰃑 n−1, θ ∈ Θ, λ ∈ Λ, all
bounded measurable functions h̃k󰂏 on Rd×Rd, and all probability densities q̃k, 0 󰃑 k 󰃑 n−1,
with the condition q̃n = qλn,

󰀏󰀏qλ0:nh̄k󰂏 − φθ
0:nh̄k󰂏

󰀏󰀏 ≤ 2
σ+
σ−

󰀐󰀐󰀐h̃k󰂏
󰀐󰀐󰀐
∞

×
󰀣
c̃0(θ) +

k󰁛

m=1

ρk−m+1c̃m(θ,λ)

+c̃k+1(θ,λ) +

n󰁛

m=k+2

ρm−k−1c̃m(θ,λ)

󰀤
,

with h̄k󰂏 : x0:n 󰀁→ h̃k󰂏(xk󰂏 , xk󰂏+1), ρ = 1− σ−/σ+, where σ− and σ+ are defined in H1, and
c̃0(θ) and c̃m(θ,λ), 1 󰃑 m 󰃑 n are defined in (6).

Note that if there exists c+ such that for all θ ∈ Θ, λ ∈ Λ, 0 ≤ m ≤ n, c̃m(θ,λ) ≤ c+(θ,λ),
by Corollary 2

󰀏󰀏qλ0:nh̄k󰂏 − φθ
0:nh̄k󰂏

󰀏󰀏 ≤ 4
σ+
σ−

󰀐󰀐󰀐h̃k󰂏
󰀐󰀐󰀐
∞
c+(θ,λ)

󰀕
1 +

ρ

1− ρ

󰀖
,

so that the marginal smoothing errors are uniformly bounded in time.
Proof The proof is postponed to Appendix A.

For all 1 󰃑 k 󰃑 n, let bθk−1|k be the backward kernel at time k, defined for all bounded

measurable functions h on Rd and all xk ∈ Rd, by

bθk−1|kh(xk) =

󰁕
mθ

k−1(xk−1, xk)φ
θ
k−1(xk−1)h(xk−1)µ(dxk−1)󰁕

mθ
k−1(x, xk)φ

θ
k−1(x)µ(dx)

.
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When the backward variational kernel is a sharp approximation of the true backward kernel,
Proposition 3 provides an explicit control of the smoothing error.

Proposition 3 Assume H1 holds. Let n ∈ N, θ ∈ Θ, λ ∈ Λ. Assume that there exists ε > 0

such that
󰀐󰀐qλn − φθ

n

󰀐󰀐
tv

󰃑 ε and for all 1 󰃑 k 󰃑 n, xk ∈ Rd,
󰀐󰀐󰀐qλk−1|k(xk, ·)− bθk−1|k(xk, ·)

󰀐󰀐󰀐
tv

󰃑
ε. Then, for all additive functionals h0:n as in (3),

󰀏󰀏qλ0:nh0:n − φθ
0:nh0:n

󰀏󰀏 ≤ 4
σ+
σ−

󰀕
1 + 2

ρ

1− ρ

󰀖 n−1󰁛

k=0

󰀐󰀐󰀐h̃k
󰀐󰀐󰀐
∞
ε ,

where ρ = 1 − σ−/σ+, with σ− and σ+ defined in H1. Therefore, in the case where
sup0󰃑k󰃑n−1󰀂h̃k󰀂∞ 󰃑 M for some M 󰃍 0, there exists c 󰃍 0 such that

󰀏󰀏qλ0:nh0:n − φθ
0:nh0:n

󰀏󰀏 ≤ cnε .

Proof The proof amounts to applying Proposition 1 with for all 0 󰃑 k 󰃑 n− 1, q̃k = φθ
k.

• c̃0(θ) =
󰀐󰀐q̃0 − φθ

0

󰀐󰀐
tv

= 0, as q̃0 = φθ
0.

• For all 1 󰃑 m 󰃑 n− 1,

c̃m(θ,λ) =
󰀐󰀐󰀐φ̃θ

m−1:m − ν̃λm−1:m

󰀐󰀐󰀐
tv

,

=

󰀐󰀐󰀐󰀐󰀐
q̃m−1L

θ
m−1

q̃m−1Lθ
m−11

− q̃mqλm−1|m

󰀐󰀐󰀐󰀐󰀐
tv

,

󰃑
󰀐󰀐󰀐󰀐󰀐
φθ
m−1L

θ
m−1

φθ
m−1L

θ
m−11

− φθ
mbθm−1|m

󰀐󰀐󰀐󰀐󰀐
tv

+
󰀐󰀐󰀐φθ

mbθm−1|m − φθ
mqλm−1|m

󰀐󰀐󰀐
tv

󰃑 ε ,

where the first term in last inequality is zero as φθ
m−1L

θ
m−1/φ

θ
m−1L

θ
m−11 and φθ

mbθm−1|m
are both equal to the probability density of (Xm−1, Xm) given Y0:m under the law of
the state-space model parameterized by θ.

• The last term is upper-bounded as follows:

c̃n(θ,λ) =
󰀐󰀐󰀐φ̃θ

n−1:n − ν̃λn−1:n

󰀐󰀐󰀐
tv

,

=

󰀐󰀐󰀐󰀐󰀐
q̃n−1L

θ
n−1

q̃n−1Lθ
n−11

− qλnq
λ
n−1|n

󰀐󰀐󰀐󰀐󰀐
tv

,

󰃑
󰀐󰀐󰀐󰀐󰀐
φθ
n−1L

θ
n−1

φθ
n−1L

θ
n−11

− φθ
nb

θ
n−1|n

󰀐󰀐󰀐󰀐󰀐
tv

+
󰀐󰀐󰀐φθ

nb
θ
n−1|n − φθ

nq
λ
n−1|n

󰀐󰀐󰀐
tv

+
󰀐󰀐󰀐φθ

nq
λ
n−1|n − qλnq

λ
n−1|n

󰀐󰀐󰀐
tv

󰃑 2ε ,

where the first term in last inequality is zero as φθ
n−1L

θ
n−1/φ

θ
n−1L

θ
n−11 and φθ

nb
θ
n−1|n

are both equal to the probability density of (Xn−1, Xn) given Y0:n under the law of
the state-space model parameterized by θ.
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Remark 4 By Proposition 1, if there exist h∞ and c+ such that for all 0 ≤ k ≤ n − 1,
󰀂h̃k󰀂∞ ≤ h∞ and for all θ ∈ Θ, λ ∈ Λ, 0 ≤ m ≤ n, c̃m(θ,λ) ≤ c+(θ,λ) then

󰀏󰀏qλ0:nh0:n − φθ
0:nh0:n

󰀏󰀏 ≤ 4
σ+
σ−

󰀕
1 +

ρ

1− ρ

󰀖
c+(θ,λ)h∞n . (7)

Remark 5 Proposition 1 provides a criterion for assessing the sharpness of a variational
approximation for φθ

0:n. Indeed, for such approximation, write

cinf(λ, θ) = inf
(q̃k)0≤k≤n

n−1󰁛

k=0

󰀣
c̃0(θ) +

k󰁛

m=1

ρk−m+1c̃m(θ,λ) + c̃k+1(θ,λ) +

n󰁛

m=k+2

ρm−k−1c̃m(θ,λ)

󰀤
.

Then, if there exists h∞ such that for all 0 ≤ k ≤ n − 1, 󰀂h̃k󰀂∞ ≤ h∞, by Proposition 1,
we have: 󰀏󰀏qλ0:nh0:n − φθ

0:nh0:n
󰀏󰀏 ≤ 2

σ+
σ−

cinf(θ,λ)h∞. (8)

Although difficult to compute in practice, this criterion might be the focus of future research.
An open question here is whether the optimal sequence (q̃k)0≤k≤n is given by the sequence
of true marginal smoothing distributions.

3.2 Comments on Proposition 1 and H1

Proposition 1 provides an upper-bound for the smoothing error for additive functionals
which is linear in the number of observations. The sharpness of this bound depends on our
ability to find a sequence of distributions (q̃k)0󰃑k󰃑n−1, so that each ck(θ,λ), i.e., the total

variation distance between (xk−1, xk) 󰀁→ q̃k(xk)q
λ
k−1|k(xk, xk−1) and the probability density

proportional to (xk−1, xk) 󰀁→ q̃k−1(xk−1)ℓ
θ
k−1(xk−1, xk), is small.

First, it is worth noting that if qλn is the true filtering distribution at time n and (qλk−1|k)k󰃍1

are the true backward distributions, then the unique sequence (q̃k)k󰃍1 achieving c̃k(θ,λ) = 0
for all k is the sequence of true filtering distributions.
However, in generic cases (i.e. non linear gaussian cases), this joint minimization over
this sequence of distributions appears to be an open challenge. In Section 4.2, we discuss
empirically how the backward qλk−1|k(xk, xk−1) can be parameterized by the user, depending

on the form of ℓθk−1(xk−1, xk) (see the experiments related to the results of Figure 2a).
Obtaining theoretical guarantees on the variational approximations remains of course

an open problem but we believe that Proposition 1 provides a first result in this direction.
About H1. This assumption is rather strong, but typically satisfied in models where

the state space is compact. This assumption is classic in the SMC literature in order to
obtain quantitative bounds for errors or variance of estimators in the context of smoothing,
(see Douc et al., 2011; Dubarry and Le Corff, 2013; Olsson et al., 2017; Gloaguen et al.,
2022. It is worth noting that in the context of approximating the filtering distributions,
weaker assumptions exist (see Chigansky and Liptser, 2004; Douc et al., 2009), but the
extension of these results to the smoothing context remains an open challenge.
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Data set: We use ”data set” rather than ”dataset”. d by the filtering recursions, from
which the backward kernels are derived. In contrast, a recursion for (qλk )k≥0 is neither a
priori defined by the factorization 5 nor easily derived from it. Suppose however that we
want to recursively build (qλ0:k)k≥0 with observations (Yk)k≥0.

4. Numerical experiments

We now present some practical examples of implementations of the backward variational
factorization on which we validate our theoretical results.

4.1 Linear Gaussian SSMs

A first interesting case is when the variational family contains the true model. This is
in particular possible when the latter is a linear and Gaussian SSM, i.e. when χθ (resp.
mθ

k(Xk, ·) and gθk(Xk, ·)) are densities of Gaussian distributions with mean A0 (resp. AXk

and BXk) and variance Q0 (resp. Q and R), such that θ = (A0, Q0, A,Q,B,R). If we define
a similar ”mirror” model described with another set of parameters λ = (Ā0, Q̄0, Ā, Q̄, B̄, R̄),
we can choose qλn ∼ N (µn,Σn) where (µn,Σn) are provided by the Kalman filtering recur-
sions, and qλk−1|k(xk, xk−1) ∼ N (Ak−1|kxk + bk−1|k,Σk−1|k) where (Ak−1|k, bk−1|k,Σk−1|k)

are obtained through Kalman smoothing steps. In this case, qλ0:n is of the same form as φθ
0:n

and qλ0:n = φθ
0:t when λ = θ.

When the latter case is reached, Section 3.2 shows that ck(θ,λ) = 0 for all k, suggesting
that the additive error vanishes. In this section, we study the case where the parameter θ is
known, d = 5 and λ is trained on a set of sequences of n = 50 observations. The evolution of
the ELBO is given in Figure 1a. In Figure 1b, we depict the controlled term of Proposition 1
in the case of state estimation, i.e. for h0:n : x0:n 󰀁→

󰁓n
k=0 xk. This evaluation is performed

on J = 50 evaluation sequences (Y j
0:n)1≤j≤J of length n = 500 sampled from the generative

model. Each plot clearly illustrates the linear dependency on the number of observations.
We also find that the error rates can vary greatly between parameters λ1 ∕= λ2, even when
|L(θ,λ1)−L(θ,λ2)| is small. This is observed by computing the errors for different stopping
points of the optimization. Additionally, for a given λ, slopes vary across sequences, which
highlights the dependency of (ck(θ,λ))0≤k≤n on the observations.

In the appendix, we provide more implementation details, as well as additional figures
for the errors on the marginal distributions.

4.2 Nonlinear SSMs

The primary motivation to use variational inference is when φθ
0:n cannot be computed

analytically, which generally happens when the generative model contains nonlinearities
and/or non-Gaussian noises. In this case - contrary to the previous section - there is no
obvious choice for the form of the kernels in qλ0:n and many options exist to balance the
amount of approximation with the computational complexity. In the next subsections, we
revisit some of the literature on sequential variational inference in the backward context to
illustrate our theoretical result.
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(a) Lθn (dotted line) and λ 󰀁→ L(θ,λ) over epochs (full line).

(b)
󰀏󰀏qλ0:nh0:n−φθ

0:nh0:n

󰀏󰀏 for h̃k(xk, xk+1) = xk. The solid lines display the mean over the 50 indepen-
dent replicates, the transparent filling is the standard deviation, shaded lines are the all sequences.
Values are normalized by the state-space dimension.

Figure 1: ELBO during the training of λ (left). Additive smoothing error for a linear
Gaussian variational model at successive stopping points of the optimization on
50 different sequences (right)
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4.2.1 Nonlinearity in the emission distribution

We first consider a generative model where the prior distribution and transition kernels are
still linear, but gθk(Xk, ·) is the Gaussian probability density with mean dθ(Xk) and variance
R, dθ being a nonlinear mapping commonly referred to as the decoder. In this setting, Hälvä
et al. (2021) showed for the first time that no assumptions are required on dθ for identifiable
state estimation. In particular dθ need not to be an injective mapping and therefore we use
an unconstrained and arbitrary multi layer perceptron (MLP).

In this context, Hälvä et al. (2021) obtained promising results via a parameterization
of the factors in qλ0:n which relies entirely on Gaussian conjugation and can be analytically
marginalized, therefore allowing fast inference. A central element of their approximation is
the idea from Johnson et al. (2016), which consists in mapping each observation yk to a set of
valid natural parameters (κk,Πk) for some Gaussian distribution, using an encoder network
rλ such that (κk,Πk) = rλ(yk). By defining (as in Section 4.1) some additional parameters
(Ā0, Q̄0, Ā, Q̄) for kernels χλ

0 ,m
λ
k (i.e. similar to the generative model but parameterized by

λ) the authors design qλ0:n using forward-backward recursions (see (Cappé et al., 2005, section
3.2.1)) where the forward and backward variables are updated analytically by Gaussian

conjugation with the exponential factors xk 󰀁→ e〈rλ(yk),tN (xk)〉, tN (xk) = (xk, xkx
⊤
k ) being

the set of sufficient statistics for a Gaussian distribution in xk. This algorithm is a special
form of two-filter smoothing, which is rather rooted in the alternate forward decomposition
of the joint smoothing distribution, that is qλ0:n(x0:n) = qλ0 (x0)

󰁔n−1
k=1 q

λ
k|k−1(xk−1, xk) where

each factor depends on the entire sequence of observations y0:n and is built using the so-
called backward variables (which are non-normalized quantities distinct to the backward
kernels). However, the core idea can be reframed under the backward factorisation very
easily by defining a sequence of distributions (qλk )k≤n which are updated from qλk−1 to qλk
via:

• q̄λk (xk) = Eqλk−1

󰀅
mλ

k(·, xk)
󰀆
similarly to a Kalman predict step

• ηk = rλ(yk)+η̄λk where ηk and η̄k are the natural parameters of qλk and q̄λk , respectively.

and by defining the backward kernels with qλk−1|k(xk, xk−1) ∝ qλk−1(xk−1)m
λ
k(xk−1, xk), such

that their parameters are derived analytically at each time step from ηk−1 and the param-
eters of mλ

k . We refer to the models of Johnson et al. (2016) as the Conjugate Forward
variational model and to the backward adaptation as the Conjugate Backward model.

These solutions are computationally very efficient because they allow closed-form up-
dates of the factors with DNN-predicted encodings which are already Gaussian parameters.
Under the backward factorization, more general implementations are possible that still al-
low analytical marginalisation by keeping the factors in (5) conjugated. For example, one
may use a recurrent neural network which updates an internal state (sk)k≤n from which the
backward kernels and the terminal distribution and built analytically via an intermediate
linear-Gaussian kernel mλ

k as before, e.g.

• sk = RNNλ(sk−1, yk) and qλk ∼ N (µk,Σk) where (µk,Σk) = MLPλ(sk)

• qλk−1|k(xk, xk−1) ∝ qλk−1(xk−1)m
λ
k(xk−1, xk) from which parameters of qλk−1|k are de-

rived analytically.
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We implement such version with a Gated Recurrent Unit (GRU) for the RNN, and refer
to it as the GRU Backward implementation.

In the nonlinear setting, since the true smoothing distribution φθ
0:n has no analytic form,

we use the particle-based Forward Filtering Backward Simulation (FFBSi) algorithm as a
surrogate for this ground truth. The FFBSi outputs trajectories approximately sampled
from the true target smoothing distributions using sequential importance sampling and
resampling steps. This algorithm is also based on a forward-backward decomposition of the
smoothing distributions (see Douc et al., 2014, Chapter 11, for details). We choose the case
d = 10, where a high number of particles for the FFBSi (10000 for the bootstrap filtering,
2000 for the backward smoothing) to consider it as a proper ground truth.

We compare the additive error with respect to the FFBSi (i.e. the left hand term of
equation (7)) for h0:n : x0:n 󰀁→

󰁓n
k=0 xk). In appendix, we report the quality of the FFBSi

estimator in the form of the sample mean and variance of its error against the true states,
which establishes the error made by the oracle reference estimator considered as ground
truth.

In Figure 2a, we plot the evolution of the additive error against this oracle. As predicted
by our theoretical result, all backward methods have a linear dependency in the number of
observations n. Interestingly, we observe that the Conjugate Forward model also shares this
property, which suggests that our main theoretical result is also valid for other factorizations.
However, while the two-filter formulation brings similar results using the same amount of
parameters, it is much less convenient computationally because it requires to compute the
entire sequence of backward variables for any new observation.

One hidden aspect of the fully conjugate models is that the natural parameters given by
rλ(yk) implicitly model the distribution of xk given yk (unconditionnally on the dynamics),
yet this distribution is likely to admit several modes (especially if dθ is strongly injective on
some portions of the support). We observe a slight performance gain for the GRU Backward
model in this context. In this model, the parameters of the intermediate distributions qλk
are updated without any intermediate Gaussian approximation which might explain the
better performance.

In Figure 2b, we provide the marginal errors over time in the same setting. The results
coincide with the time-uniform bound presented in Corollary 2.

4.2.2 Nonlinear hidden dynamics with a non-Gaussian observation noise

We now consider a model introduced in Zhao et al. (2022), wheremθ
k(xk−1, ·) is the density of

N (xk−1 + δ [γW tanh(xk−1)− xk−1] /τ, Q) and gθk is the density of a Student-t distribution
with mean xk, ν degrees of freedom and scale R. We start by reproducing this chaotic
recurrent neural network setting as in Campbell et al. (2021), Section 5.2. That is, we
fit the parameter λ on a given sequence y0:n and we evaluate the performance on the
same sequence. To assess the variability of the performance, we train and evaluate on

J = 50 sequences (y
(j)
0:n)1≤j≤J , each drawn from a different model with parameter θ(j), on

which we learn a different variational parameter λ(j). In Figure 4, we plot the evolution
of the error with d = 5 and n = 500 for both the Conjugate Forward and Conjugate
Backward models together with the state-of-the-art online backward smoother of Campbell
et al. (2021). Once again, all models show a linear dependency on the observations, which
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(a) Smoothing errors
󰀏󰀏qλ0:nh0:n − φθ

0:nh0:n

󰀏󰀏 for h̃k(xk, xk+1) = xk. The thick solid lines display the
mean over the 10 independent replicates for both approaches, shaded lines are single sequences.

(b) Marginal errors
󰀃󰀏󰀏qλ0:nhm

0:n − φθ
0:nh

m
0:n

󰀏󰀏󰀄
m≤n

, i.e. for h̃m
k (xk, xk+1) = xk1k=m. The thick solid

lines display the mean over the 10 independent replicates for both approaches, the filling is the
standard deviation

Figure 2: Additive and marginal errors in the setting of section 4.2.1 where φθ
0:n is obtained

by the FFBSi algorithm. All values are normalized by the dimension of the state
space. Experiments are produced on 10 independent sequences.
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Figure 3: Additive (top) and marginal (bottom) errors against FFBSi estimates on the
chaotic data with the Conjugate Backward model on three types of function-
als, from left to right: (i) h̃k(xk−1, xk) = ||xk||1 (ii) h̃k(xk−1, xk) = xTk xk (iii)
h̃k(xk−1, xk) = xTk−1xk.

supports our main theoretical claim. In Figure 3, we provide a more thorough analysis of
the additive smoothing performance on other moments for the Conjugate Backward model
by generating more sequences under a single θ and training for more epochs. Again, in this
case, the estimates obtain using the FFBSi considered are considered as ground truth. For
all moments, we observe the linearity of the additive smoothing error and the uniform bound
on the marginal error. We also observe the dependency of ||hk||∞ through the increased
slopes and higher error values for the additive and marginal errors, respectively.

This experiment also highlights an interesting aspect on the impact of the parameteriza-
tion choices. In the previous sections, training was performed on multiple sequences of fixed
length, therefore multiple learning signals are available to learn the terminal distribution
qλn (i.e. terminal observations of the sequences in the training set). In the setting of this
section, on the contrary, only one data point is available at n. For the offline setting, we
therefore do not expect the distributions qλk to be good terminal laws of the subsequences
(y0:k)k<n under (5). Indeed, except for k = n, the parameters of these distributions only ap-
pear indirectly during optimization (via their relationship with the backward kernels) when
optimization of the joint ELBO is performed at a fixed length n. In contrast, the solution
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Figure 4:
󰀏󰀏qλ0:nh0:n − φθ

0:nh0:n
󰀏󰀏 for h̃k(xk, xk+1) = xk in the setting of section 4.2.2. The

solid lines display the mean over the 5 independent replicates which are shown in
shaded lines.

of Campbell et al. (2021) explicitly performs gradient-descent on a new set of parameters
λk at each timestep such that qλk = qλk

k is always a good terminal law for y0:k. Interest-
ingly, the results for the Conjugate Forward and Conjugate Backward models - which do
not have such regularisation - are only slightly worse than the state-of-the-art, albeit at
a much lighter computational cost. Indeed, in practice, Figure 4 is obtained simply by
using the distributions qλk as terminal laws for k ≤ n. This suggests that the associated
parameterizations may provide good variational filtering distributions through the laws qλk
as a byproduct of the smoothing objective qλ0:n with no additional regularisation. In section
5.3, we discuss more extensively the link between our theoretical results and the choice of
parameterizations for the variational kernels.

On the contrary, the GRU Backward model has a different behaviour. In Figure 5, the
dotted blue curve shows that a good approximation of qλ0:n is obtained by fitting on y0:n,
however the associated parameter λ does not provide a good approximation of (qλ0:k)k<n.
If we instead learn λ by computing the gradient of the ELBO for increasingly large subse-
quences (y0:k)k≤n - i.e. mimicking the training scheme of Campbell et al. (2021) - we obtain
a different type of approximation, which is suitable for k < n, even though this additional
constraint results in slightly worse performance for k = n. In this case, the results are
comparable with those of Campbell et al. (2021).
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Figure 5:
󰀏󰀏qλ0:nh0:n − φθ

0:nh0:n
󰀏󰀏 for h̃k(xk, xk+1) = xk when training the GRU Backward

model in two different ways, alongside the solution of Campbell et al. (2021)
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5. Discussion

We have provided the first bound on the additive smoothing error in the context of sequential
variational inference using a backward factorization. We have empirically presented cases
to illustrate these results. We have also shown that some existing ideas from litterature
on message passing or conjugate graphical models can be reframed to be used under the
backward factorization. We believe that our theoretical result sheds light on important
properties of sequential variational methods and provides perspectives for future research
which we detail in this section.

5.1 Assumptions

The proposed strong mixing assumptions are classical to obtain theoretical guarantees in
nonlinear smoothing problems. Weaker assumptions have been proposed in the literature
to control filtering distributions. Although these results cannot be extended to smoothing
distributions easily, obtaining similar upper bounds as in our contribution with weaker
assumptions is an interesting perspective for future works. Our numerical experiments do
not restrict to models satisfying these assumptions, suggesting that some relaxations of
these classical hypothesis should be investigated.

5.2 Additional theoretical guarantees

• Recently, Tang and Yang (2021) proposed a general theoretical framework for an-
alyzing the excess risk associated with empirical Bayes variational Auto Encoders,
covering both parametric and nonparametric cases. The authors study the statistical
properties of the VAE estimator using M-estimation theory. In our context of time
series, extending the M-estimation theory requires to first analyze the asymptotic be-
havior of the ELBO. We believe this is another appealing property of the backward
decomposition of the variational family, as in this case thee ELBO writes

1

n
Ln(θ,ϕ) =

1

n
ℓn(θ) +

1

n
Eqλ0:n

󰀗
log

φθ,n(Xn)

qλn(Xn)

󰀘
+

1

n

n󰁛

s=1

Eqλ0:n

󰀥
log

bθ,s−1|s(Xs−1, Xs)

qλs−1|s(Xs−1, Xs)

󰀦
,

where φθ,n is the filtering distribution at time n, (bθ,s−1|s)1≤s≤n are the backward

kernels of the true model and ℓn(θ) is the loglikelihood of the observations. Using
this decomposition and additional assumptions, the limiting behavior of the ELBO
can be derived to extend the results of Tang and Yang (2021) to state-space models.
However, this requires to obtain the asymptotic behavior of various terms which relies
on many technicalities and this is therefore left for future work.

In addition, the backward factorization offers a suitable framework (combined with
strong mixing assumptions and regularity conditions on the state-space model) to
satisfy Condition A of Tang and Yang (2021). In an offline learning setting, with
fixed n, this provides an interesting perspective to control the total variation distance
between the true distribution of the observations and

y0:n 󰀁→
󰁝 󰀣

1

N

N󰁛

i=1

qλ0:n(z0:n|yi0:n)
󰀤

n󰁜

k=1

gθk(zk, yk)dz0:n ,
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where yi0:n, 1 ≤ i ≤ N , are i.i.d. sequences with distribution parameterized by θ.
These extensions are the focus on the ongoing work Gassiat and Le Corff (2023).

• The linear growth with the number of observations matches the results obtained when
the true smoothing distributions are replaced by ”skewed” or Monte Carlo estimators.
Indeed, using for instance (Gloaguen et al., 2022, Theorem 4.10), we can show that
even if the smoothing expectation is computed under the true model but not with the
true parameter, the estimation error of the smoothing expectation grows linearly in
the number of observations:

󰀏󰀏φθ′
0:nh0:n − φθ

0:nh0:n
󰀏󰀏 ≤ c(θ′, θ)n .

Therefore, even if the variational family contains the true model, if the minimization
of the ELBO does not recover the true parameter, we recover the upper bound linear
in the number of observations.

• Obtaining lower bounds for the estimation error of joint smoothing expectation is an
open problem, especially in a variational inference framework. This is also an open
problem in variational inference for state-space models. We believe that it also relies
on important theoretical results which have not been developed yet for the analysis
of variational inference of state space models.

5.3 Variational kernels parameterization

We do not provide constructive assumptions on the variational model, i.e. further works
may provide more explicitly the form of the optimal variational factors when the variational
kernels belong to a parametric family. Obtaining specific conditions on the variational
kernels to optimize the upper bound in Proposition 3 is also an open problem. This leaves a
lot of room for implementation choices, even when restricted to the backward factorization.
As we did however explore several implementations, we now discuss qualitatively their
possible impact on performance and the link with our theoretical results.

Amortization. In Section 3, we deliberately do not specify explicitly what λ is. In the
offline setting with sequences of fixed length n, our results hold in these two cases.

• λ = (λ0, . . . ,λn) is directly the set of all parameters of the kernels, where λk denotes
the parameters of the variational terms involved at k (e.g the parameters for the k-th
backward kernel, and for k = n, the parameters of the terminal distribution qλn). This
corresponds to non-amortized inference.

• λ is the global (temporally-shared) parameter of a function fλ which itself outputs
the (local) parameters of the variational kernels from observations, i.e. fλ(y0:n) =
(λ1, . . . ,λn). This is usually referred to as amortized inference.

One example of non-amortized setting is the implementation of Campbell et al. (2021),
while both the Conjugate Backward, Conjugate Forward, GRU Backward are amortized
implementations. While experiments all show the linear behaviour of the additive error,
some elements may be discussed with respect to the assumptions involved in the theoretical
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results. In particular, in Proposition 3, the sharpness of the bound on the additive error
is linear in ε, where ε is an upper bound for the error between the variational kernels
and their counterparts under the true model. As such, minimizing these local distances
with a small ε is key to obtaining a low additive error. In the non-amortized scenario, the
parameters of the kernels can be individually tuned during minimization of the joint ELBO
and independently of each other. Intuitively, this leaves the highest flexibility to minimize
local distances 󰀂qλn

n −φθ
n󰀂tv and 󰀂qλk

k−1|k(xk, ·)−bθk−1|k(xk, ·)󰀂tv for all k ≤ n, xk ∈ Rd, under
chosen parameteric families for these kernels. One perspective of this work that remains is
to analyse quantitatively how these two types of implementation differ in terms of the local
distances recalled above, which is not direct since such distances are not readily available
explicitely.

Recursions for parameters of the variational kernels. Under the true model, re-
cursions exist that relate the filtering distributions and the backward kernels explicitly, and
approximating these recursions is at the core of sequential Bayesian inference algorithms.
One question that remains in our study of backward variational methods is whether repro-
ducing similar recursions to build the variational kernels leads to better practical solutions.
Again, our results hold irrespective of the dependencies between the parameters of the
variational kernels, but experimentally we explored many scenarios. In that respect, ex-
periments of Section 4.2.2 are somehow informative. Indeed, we observe, for example, that
the Conjugate Backward exhibits the linear additive behaviour for any k ≤ n when using
the (qλk )k≤n to build the terminal distributions, even when trained on a sequence of fixed
length n. Contrarily, the GRU Backward does not. In the former implementation, de-

noting ψλ
k : xk 󰀁→ e〈rλ(yk),tN (xk)〉, one has, for all k ≤ n, qλk ∝ ψλ

k

󰁕
mλ

kq
λ
k−1 and qλk−1|k ∝

qλk−1m
λ
k , which is similar to the true model where φθ

k(·) ∝ gθk(·)
󰁕
mθ

k(xk−1, ·)φθ
k−1(dxk−1)

and bθk−1|k(xk, ·) ∝ φθ
k−1(·)mθ

k(·, xk). On the contrary, for the GRU Backward, no such link
can be made.

Relating the distributions {q̃λk}k<n with implementation choices. The previous
discussion is tightly linked to the practical existence and meaning of distributions qλk for
k < n in the offline setting that we studied. Indeed, the theoretical study only prescribes
implementing explicitly a term for k = n. The proof of Proposition 3 suggests that when this
terminal distribution qλn is the last term of a sequence (qλk )k≤n where qλk = φθ

k for k < n, then
it only remains to have the variational backward kernels closest to the true ones to reduce
the additive smoothing error. However it is unclear whether this is the optimal scenario
in the sense of Proposition 1, i.e. the discrepancies c̃k may be lower for some sequence
(q̃k)k≤n which is not an approximation of the sequence of true filtering distributions, and
an implementation of this optimum might not yield - as is the case for some of our models
- good approximations of the latter as a byproduct.

Nonetheless, coincidentally, standard implementations of the backward factorization us-
ing DNNs involve recursions on some running quantity (i.e. the RNN states (sk)k≥0 in the
GRU Backward case). In the offline setting, the parameters of qλn are obtained as a trans-
formation of such quantity applied at k = n only. In practice, the latter transformation can
always be applied for k < n to yield a sequence of distributions (qλk )k≤n from which qλn is the
terminal term. Therefore, intermediate distributions appear naturally both when deriving
the theoretical bound of Proposition 1 and in efficient implementations. An interesting
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perspective of this work would be to more clearly relate these aspects, which are currently
distinct. In the general case, this falls back on the mathematical problem of computing the
infimum over {q̃λk}k<n to gain insight on which sequence should be implemented in prac-
tice. Another approach would be to derive a result under the additional assumption that
qλk−1|k ∝ qλk−1m

k
parvec for all k ≤ n, given some sequence (qλk )k≤n which is implemented in

practice - and which explicitly affects the overally joint distribution qλ0:t through the back-
ward kernels - as is the case in the Conjugate Backward implementation. While this would
yield less general theoretical results, it is more approachable mathematically, as one may
adapt the proof of Proposition 1 to this setting.
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Appendix A. Proofs of the main results

A.1 Proof of Proposition 1

Following Gloaguen et al. (2022), write

qλ0:nhn − φθ
0:nhn =

n−1󰁛

k=0

󰀓
qλ0:nh̄k|n − φθ

0:nh̄k|n

󰀔
, (9)

where, for each k ∈ {0, n− 1}, h̄k|n is defined on (Rd)n+1 by

h̄k|n : x0:n 󰀁→ h̃k(xk, xk+1) . (10)

Define, for each n ∈ N and m ∈ {0, n}, the kernel

Lθ
m,n(x

′
0:m, dx0:n) := δx′

0:m
(dx0:m)

n−1󰁜

ℓ=m

Lθ
ℓ(xℓ, dxℓ+1) (11)

on (Rd)n+1 × B((Rd)n+1), with the convention
󰁔n−1

ℓ=n f(ℓ) = 1 . We have the following
decomposition:

qλ0:nh̄k|n − φθ
0:nh̄k|n =

n󰁛

m=1

󰀣
q̃0:mLθ

m,nh̄k|n
q̃0:mLθ

m,n1
−

q̃0:m−1L
θ
m−1,nh̄k|n

q̃0:m−1Lθ
m−1,n1

󰀤

+
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

,

where for all 1 ≤ m ≤ n, q̃0:m = q̃m
󰁔m

k=1 q
λ
k−1|k, q̃0:0 = q̃0, and since χθgθ0L

θ
0,nh̄k|n/χ

θgθ0L
θ
0,n1 =

φθ
0:nh̄k|n. For each n ∈ N, define Lλ,θ

0,n(x
′
0, dx0:n) := δx′

0
(dx0)

󰁔n−1
ℓ=0 Lθ

ℓ(xℓ, dxℓ+1) and for
m ∈ {1, n},

Lλ,θ
m,n(x

′
m, dx0:n) := δx′

m
(dxm)

m−1󰁜

ℓ=0

qλk|k+1(xℓ+1, dxℓ)

n−1󰁜

ℓ=m

Lθ
ℓ(xℓ, dxℓ+1), (12)

on Rd × B((Rd)n+1). As for all m ∈ {1, n} and measurable function h, q̃0:mLθ
m,nh =

q̃mLλ,θ
m,nh,

q̃0:mLθ
m,nh̄k|n

q̃0:mLθ
m,n1

−
q̃0:m−1L

θ
m−1,nh̄k|n

q̃0:m−1Lθ
m−1,n1

=
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

.

Therefore,

qλ0:nh̄k|n − φθ
0:nh̄k|n =

n󰁛

m=1

󰀣
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

󰀤

+
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

. (13)

22



Additive smoothing error in backward variational inference for state-space models

By Lemma 6,

󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

σ+
σ−

󰀂h̃k󰀂∞ .

Consider now the error term at time m > 0 in (13). Define the kernel

L̃λ,θ
m,n(x

′
m−1, x

′
m, dx0:n) := δx′

m−1
(dxm−1)

m−2󰁜

ℓ=0

qλℓ|ℓ+1(xℓ+1, dxℓ)δx′
m
(dxm)

n−1󰁜

ℓ=m

Lθ
ℓ(xℓ, dxℓ+1),

(14)
on (Rd)2 × B((Rd)n+1) so that for all xm−1, xm ∈ Rd,

L̃λ,θ
m,nh̄k|n(xm−1, xm) =

󰀻
󰁁󰀿

󰁁󰀽

qλm−2|m−1 . . . q
λ
k|k+1h̃k(xm−1)L

θ
m,n1(xm) if k ≤ m− 2 ,

h̃k(xm−1, xm)Lθ
m,n1(xm) if k = m− 1 ,

Lθ
m,nh̃k(xm) if k ≥ m.

Then, write

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mqλm−1|mL̃λ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1L

θ
m−1L̃

λ,θ
m,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

.

Let 1 ≤ m ≤ n and x∗m−1 and x∗m be arbitrary elements in Rd. For k ∕= m− 1, define

L∗,λ,θ
m,n h̄k|n(xm−1, xm) =

L̃λ,θ
m,nh̄k|n(xm−1, xm)

L̃λ,θ
m,n1(xm−1, xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

L̃λ,θ
m,n1(x∗m−1, x

∗
m)

, (15)

=
L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

and for k = m− 1, L∗,λ,θ
m,n h̄k|n(xm−1, xm) = h̃k(xm−1, xm). By Lemma 7,

󰀐󰀐󰀐L∗,λ,θ
m,n h̄k|n

󰀐󰀐󰀐
∞

can

be upper bounded and note that

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

q̃mLλ,θ
m,n1

−
q̃m−1L

θ
m−1

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

q̃m−1Lλ,θ
m−1,n1

.
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By definition of the normalized measure φ̃θ
m−1:m,

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

q̃mLλ,θ
m,n1

−
φ̃θ
m−1:m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

φ̃θ
m−1:mL̃λ,θ

m,n1

=
q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲
− φ̃θ

m−1:m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

φ̃θ
m−1:mL̃λ,θ

m,n1

+
q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

q̃mLλ,θ
m,n1

󰀣
φ̃θ
m−1:mL̃λ,θ

m,n1− q̃mLλ,θ
m,n1

φ̃θ
m−1:mL̃λ,θ

m,n1

󰀤
.

Then, using that

󰀏󰀏󰀏󰀏󰀏󰀏

q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

q̃mLλ,θ
m,n1

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑

󰀐󰀐󰀐L∗,λ,θ
m,n h̄k|n

󰀐󰀐󰀐
∞

,

and the fact that ν̃λm−1:m = q̃mqλm−1|m,

󰀏󰀏󰀏󰀏󰀏
φ̃θ
m−1:mL̃λ,θ

m,n1 − q̃mLλ,θ
m,n1

φ̃θ
m−1:mL̃λ,θ

m,n1

󰀏󰀏󰀏󰀏󰀏 󰃑
󰀐󰀐󰀐φ̃θ

m−1:m − ν̃λm−1:m

󰀐󰀐󰀐
tv

󰀐󰀐󰀐L̃λ,θ
m,n1

󰀐󰀐󰀐
∞

φ̃θ
m−1:mL̃λ,θ

m,n1
,

and

󰀏󰀏󰀏󰀏󰀏󰀏

q̃mqλm−1|m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲
− φ̃θ

m−1:m

󰁱
L∗,λ,θ
m,n h̄k|nL̃λ,θ

m,n1
󰁲

φ̃θ
m−1:mL̃λ,θ

m,n1

󰀏󰀏󰀏󰀏󰀏󰀏

󰃑
󰀐󰀐󰀐φ̃θ

m−1:m − ν̃λm−1:m

󰀐󰀐󰀐
tv

󰀐󰀐󰀐L∗,λ,θ
m,n h̄k|n

󰀐󰀐󰀐
∞

󰀐󰀐󰀐L̃λ,θ
m,n1

󰀐󰀐󰀐
∞

φ̃θ
m−1:mL̃λ,θ

m,n1
,

yields

󰀏󰀏󰀏󰀏󰀏
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
󰀐󰀐󰀐φ̃θ

m−1:m − ν̃λm−1:m

󰀐󰀐󰀐
tv

󰀐󰀐󰀐L∗,λ,θ
m,n h̄k|n

󰀐󰀐󰀐
∞

󰀐󰀐󰀐L̃λ,θ
m,n1

󰀐󰀐󰀐
∞

φ̃λ
mL̃λ,θ

m,n1
.

Note also that by H1,
φ̃θ
m−1:mL̃λ,θ

m,n1 󰃍 σ−µL
θ
m+1,n−11 ,

and for all xm ∈ Rd,
L̃λ,θ
m,n1(xm) 󰃑 σ+µL

θ
m+1,n−11 .
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Therefore,
󰀏󰀏󰀏󰀏󰀏
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
σ+
σ−

󰀐󰀐󰀐φ̃θ
m−1:m − ν̃λm−1:m

󰀐󰀐󰀐
tv

󰀐󰀐󰀐L∗,λ,θ
m,n h̄k|n

󰀐󰀐󰀐
∞

.

The proof is completed using Lemma 7.

A.2 Proof of Corollary 2

It is enough to introduce the same decomposition as the one used in Proposition 1:

qλ0:nh̄k󰂏|n − φθ
0:nh̄k󰂏|n =

n󰁛

m=1

󰀣
q̃mLλ,θ

m,nh̄k󰂏|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k󰂏|n

q̃m−1Lλ,θ
m−1,n1

󰀤

+
q̃0L

θ
0,nh̄k󰂏|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k󰂏|n

χθgθ0L
θ
0,n1

.

Each term is then controlled similarly as in the proof of Proposition 1. By Lemma 6,
󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k󰂏|n

q̃0Lθ
0,n1

−
φθ
0L

θ
0,nh̄k󰂏|n

φθ
0L

θ
0,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2c0(θ)
σ+
σ−

󰀂h̃k󰀂∞ .

On the other hand, the error term at time m > 0 is upper bounded by
󰀏󰀏󰀏󰀏󰀏
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
σ+
σ−

cm(θ,λ)
󰀐󰀐󰀐L∗,λ,θ

m,n h̄k|n

󰀐󰀐󰀐
∞

.

The proof is completed using Lemma 7.

Appendix B. Technical results

Lemma 6 Assume that H1 holds. Then for all, θ ∈ Θ, λ ∈ Λ, n ≥ 1, k ∈ {0, n − 1},
bounded and measurable function h̃k,

󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

󰀏󰀏󰀏󰀏󰀏 ≤ 2
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

σ+
σ−

󰀂h̃k󰀂∞ ,

where h̄k|n is defined in (10).

Proof Consider the following decomposition of the first term:

q̃0L
θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

=
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

,

=
q̃0L

θ
0,nh̄k|n − φθ

0L
θ
0,nh̄k|n

q̃0Lθ
0,n1

+
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

φθ
0L

θ
0,n1 − q̃0L

θ
0,n1

q̃0Lθ
0,n1

,
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where φθ
0 the filtering distribution at time 0, i.e the law defined as φθ

0h = χθgθ0h/χ
θgθ0. Note

that
󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k|n − φθ

0L
θ
0,nh̄k|n

q̃0Lθ
0,n1

󰀏󰀏󰀏󰀏󰀏 ≤
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

󰀂Lθ
0,nh̄k|n󰀂∞
q̃0Lθ

0,n1
≤

󰀐󰀐󰀐q̃0 − φθ
0

󰀐󰀐󰀐
tv

󰀂Lθ
0,n1󰀂∞󰀂h̄k|n󰀂∞

q̃0Lθ
0,n1

and, using that φθ
0L

θ
0,nh̄k|n/φ

θ
0L

θ
0,n1 ≤ 󰀂h̄k|n󰀂∞,

󰀏󰀏󰀏󰀏󰀏
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

φθ
0L

θ
0,n1 − q̃0L

θ
0,n1

q̃0Lθ
0,n1

󰀏󰀏󰀏󰀏󰀏 ≤
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

󰀂Lθ
0,n1󰀂∞󰀂h̄k|n󰀂∞

q̃0Lθ
0,n1

Then, 󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

󰀂Lθ
0,n1󰀂∞󰀂h̄k|n󰀂∞

q̃0Lθ
0,n1

.

By H1, for all x0 ∈ Rd,

Lθ
0,n1(x0) =

󰁝
ℓ0,θ(x0, x1)µ(dx1)L

θ
1,n1(x1) 󰃑 σ+

󰁝
µ(dx1)L

θ
1,n1(x1)

and

q̃0L
θ
0,n1 =

󰁝
q̃0(dx0)ℓ0,θ(x0, x1)µ(dx1)L

θ
1,n1(x1) 󰃍 σ−

󰁝
µ(dx1)L

θ
1,n1(x1) ,

which yields 󰀏󰀏󰀏󰀏󰀏
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
φθ
0L

θ
0,nh̄k|n

φθ
0L

θ
0,n1

󰀏󰀏󰀏󰀏󰀏 󰃑 2
󰀐󰀐󰀐q̃0 − φθ

0

󰀐󰀐󰀐
tv

σ+
σ−

󰀂h̃k󰀂∞ .

Lemma 7 Assume that H1 holds. Then for all n ∈ N, θ ∈ Θ, λ ∈ Λ, m ∈ {1, n},
k ∈ {0, n− 1}, xm−1, xm, x∗m−1, x

∗
m in Rd, bounded and measurable function h̃k,

󰀏󰀏󰀏L∗,λ,θ
m,n h̄k|n(xm−1, xm)

󰀏󰀏󰀏 ≤

󰀻
󰀿

󰀽

󰀂h̃k󰀂∞ρm−k−1 if k ≤ m− 2 ,

󰀂h̃k󰀂∞ if k = m− 1 ,

󰀂h̃k󰀂∞ρk−m+1 if k ≥ m.

where ρ = 1− σ−/σ+ and h̄k|n is defined in (10) and L∗,λ,θ
m,n h̄k|n is defined in (15).

Proof The proof is adapted from (Gloaguen et al., 2022, Lemma D.3) and given here for
completeness. Assume first that k ≤ m− 2. Then,

L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

= qλm−2|m−1 . . . q
λ
k|k+1h̃k(xm−1)
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Therefore,

L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

= (δxm−1 − δx∗
m−1

)qλm−2|m−1 . . . q
λ
k|k+1h̃k .

By H1, the Dobrushin coefficient of the variational backward kernels is upper-bounded by
1− σ−/σ+ so that

󰀏󰀏󰀏󰀏󰀏
L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

󰀏󰀏󰀏󰀏󰀏 󰃑
󰀕
1− σ−

σ+

󰀖m−k−1 󰀐󰀐󰀐h̃k
󰀐󰀐󰀐
∞

.

In the case where k = m− 1,

L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

= h̃k(xk, xk+1) ,

so that the result is straightforward. Assume now first that k ≥ m. Note that

L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

=
Lθ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

=
F θ
m|n . . . F

θ
k|nh̄k|n(xm) · Lθ

m,n1(xm)

Lθ
m,n1(xm)

,

where the forward kernel Fθℓ|n is given by

Fθℓ|nh(xℓ) =
Lθ
ℓ(hL

θ
ℓ+1,n−11)(xℓ)

Lθ
ℓ,n−11(xℓ)

.

By H1,

Fθℓ|nh(xℓ) 󰃍
σ−
σ+

µℓ|nh ,

with µℓ|nh = µ(hLθ
ℓ+1,n−11)(xℓ)/µL

θ
ℓ+1,n−11. Therefore, the Dobrushin coefficients of the

kernels F θ
ℓ|n are also upper-bounded by 1− σ−/σ+. On the other hand,

L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

= (λm|n − λ′
m|n)F

θ
m|n . . .F

θ
k|nh̄k|n,

where λm|nh = δxmhL
θ
m,n1/δxmL

θ
m,n1 and λ′

m|nh = δx′
m
hLθ

m,n1/δx′
m
Lθ
m,n1. This yields

󰀏󰀏󰀏󰀏󰀏
L̃λ,θ
m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ
m,nh̄k|n(x

∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

󰀏󰀏󰀏󰀏󰀏 󰃑
󰀕
1− σ−

σ+

󰀖k−m+1 󰀐󰀐󰀐h̃k
󰀐󰀐󰀐
∞

,

which concludes the proof.
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Figure 6: Smoothing errors
󰀏󰀏qλ0:nh0:n−φθ

0:nh0:n
󰀏󰀏 for h̃k(xk, xk+1) = xk at n = 500, when φθ

0:n

is given via Kalman smoothing with the true parameters θ and qλ0:n is given via
Kalman smoothing with parameters λ selected at epochs 110,140 and 170. Each
plot is generated from the J = 50 sequences (Y j

0:n)1≤j≤J drawn from pθ

Appendix C. Experimental details

C.1 Hardware configuration

We ran all experiments on a machine with the following specifications.

• CPUs: 4x Intel(R) Xeon(R) Gold 6154 (total 72 cores, 144 threads).

• RAM: 260 Go.

C.2 Linear Gaussian models

We provide here additional figures for the experiments of Section 4.1. Figure 6 shows the
accuracy of the optimal Kalman smoothing (with true parameters θ) w.r.t the true states,
as well as the numerical values for the smoothing errors at the three stopping points of
the optimization. We also provide examples of smoothed states for the fully fitted models
against the ground truth Kalman smoother which uses the true parameters θ.

C.3 Nonlinear models

Here we provide additional details on the experiments of section 4.2.
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Figure 7: Example of smoothed states when the dimension of the state space is 5 and the
observations is 5. Left column: component-wise (from top to bottom) smoothed
states with true parameters θ. Right column: same thing with learnt parameters
λ. The dashed fillings are the 95% confidence intervals. The horizontal axis is
the time axis.
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Figure 8: Smoothing errors
󰀏󰀏h0:n(x∗0:n) − φθ

0:nh0:n
󰀏󰀏 for h̃k(xk, xk+1) = xk, where x∗0:n is the

true sequence of hidden states and φθ
0:n is obtained by the FFBsi algorithm. All

values are normalized by the dimension of the state space. Experiments are
produced on 10 independent sequences. The thick solid lines display the mean
over the 10 independent replicates for both approaches, shaded lines are single
sequences.
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• For the nonlinear emission function dθ of the data model, we used a single-layer
perceptron with a ReLU activation function (which induces non-injectivty on some
portions of the support).

• For the Conjugate Forward and Conjugate Backward methods, the encoder rλ is a
multi-layer perceptron (MLP) and a tanh activation function. The activation function
is not applied to the output layer to ensure that the values can exceed values outside
the range [−1, 1], being natural parameters of Gaussian distributions. The output of
the network is split into two natural parameters η1 and η2, the latter being constrained
to strictly negative values by applying the softplus function x 󰀁→ − log(1 + ex). We
use Xavier initialization for the matrix parameters, and random normal initialisation
for the bias parameters.

• For GRU Backward model, Hλ is a Deep GRU as implemented in the Haiku library
from the JAX ecosystem.

For the experiments of section 4.2, we use small networks with two hidden layers of size
8 (both for rλ and the GRU in the corresponding models). For the experiments of section
4.2.2, we use configurations similar to that of Campbell et al. (2021) for fair comparison,
i.e. neural networks with a single hidden layer of size 100.

In Figure 8, we plot the evolution of the additive error of the FFBSi oracle against the
true states.
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