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Abstract
In supervised learning, the regularization path is sometimes used as a convenient theoreti-
cal proxy for the optimization path of gradient descent initialized from zero. In this paper,
we study a modification of the regularization path for infinite-width 2-layer ReLU neural
networks with nonzero initial distribution of the weights at different scales. By exploiting
a link with unbalanced optimal-transport theory, we show that, despite the non-convexity
of the 2-layer network training, this problem admits an infinite-dimensional convex coun-
terpart. We formulate the corresponding functional-optimization problem and investigate
its main properties. In particular, we show that, as the scale of the initialization ranges
between 0 and +∞, the associated path interpolates continuously between the so-called
kernel and rich regimes. Numerical experiments confirm that, in our setting, the scaling
path and the final states of the optimization path behave similarly, even beyond these
extreme points.
Keywords: gradient-descent training, regularization path, neural tangent kernel, Γ-
convergence, Hellinger–Kantorovich distance

1. Introduction

The mathematical theory of artificial neural networks (NNs) can be tackled from either a
dynamic or a static viewpoint1. In the dynamic approach, one considers a NN in combina-
tion with a training algorithm. Then, one studies the statistical properties of the NN along,
and at the end, of the training cycle. In the static approach, one studies NNs as a statistical
hypothesis (or candidate) space, independently of any training routine. This space is typ-
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ically endowed with a norm (or, more generally, a metric) in parameter space, which acts
as a regularizer (measure of complexity). Both approaches address distinct aspects. The
dynamic approach studies the objects that are the most relevant to practice, but faces the
difficulty that those are less tractable theoretically. Thus, much fewer statistical results are
known compared to static approaches.

Let us consider a parametric model φ : Rp → F , where Rp is the space of parameters and
F a space of functions, and let L : F → R be an objective function such as the empirical
risk. In the dynamic approach, a convenient object of study is the optimization path that
results from a gradient flow. This path (θt)t≥0 starts from a given initialization θ0 ∈ Rp
and solves

d

dt
θt = −∇L(φ(θt)), (1)

as well as the associated path φ(θt) in function space. Many refinements are of course
possible to make the model more realistic such as taking into account stochasticity (Li et al.,
2019; Pesme et al., 2021), large stepsizes (Wang et al., 2022), or momentum (Su et al., 2014).
As for static analyses, they often focus on the constrained path θ∗δ = arg min‖θ‖≤δ L(φ(θ))
or the regularization path

θ∗λ = arg min
θ

L(φ(θ)) + λ‖θ‖22. (2)

In the simple context of linear parameterizations, formalized as φ(θ) = θ>Φ for some Φ ∈ Fp
with the initial parameter θ0 = 0 for (1), the two approaches are tightly interconnected.
More precisely, one creates a close link between the optimization (dynamic) and the regular-
ization (static) paths (Suggala et al., 2018; Ali et al., 2020) by letting the tuning parameter
take the form λ = 1/(2t).

Scaling Path It is perhaps too optimistic to expect such a tight connection for nonlinear
NNs. Indeed, this connection breaks, for example, in the cases studied in (Razin and Cohen,
2020; Woodworth et al., 2020). Still, if the regularization path was to preserve some of the
key characteristics of optimization paths (such as certain asymptotic behaviors) this would
make the static approach relevant to a better understanding of practical NNs.

For the rest of this work, we notate L as the empirical risk associated with samples
(xk, yk) ∈ Rd×R, k = 1, . . . , n and some loss function L : Rd×R → [0,+∞]. To in-
clude the case of arbitrarily wide NNs, we replace the parameter space Rp with P2(Rp).
Accordingly, we shall denote the parametrization function of our regression problem by
φ[µ] =

∫
Rp φ(w) dµ(w).

A serious obstacle to the establishment of a link between (1) and (2) in the case of
NNs is that it is inconvenient to initialize the optimization from µ0 = δ0 since this is often a
stationary point of (1). As a remedy, one may instead initialize from the uniform distribution
µ0 on the sphere with radius α. Hence, we study a modification of the regularization path (2)
that takes this nonzero initialization and the generalization to measures into account. More
precisely, for fixed µ0 and λ > 0, we define the scaling path with scale α as

µ∗α = arg min
µ∈P2(Rp)

n∑
k=1

L
(
φ[µ](xk), yk

)
+ λRα(µ, µ0), (3)
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where the functional Rα(µ, µ0) = (1 + α2)W2(µ, Sα#µ0)
2 with Sα(w) = αw acts as our

scale-dependent regularizer. A first important observation is that 2-layer ReLU NNs are
covered within our framework if we choose

φReLU(w,x) = w1(w
T
2 x)+, w = (w1,w2) ∈ R×Rd . (4)

Further, the problem in (3) is convex, which allows the use of standard optimization tools.
In the context of 2-layer ReLU NNs with vanishing initialization scale α, we shall see in
Section 3 that (3) reduces (up to rescaling of λ) to the regularization path (2).

For our analysis, it is actually more convenient to study (3) from a functional perspective
by considering the resulting function f = φ[µ] : Rd → R. As different µ can lead to the same
network f , the regularizer Rα(·, µ0) needs to be replaced by a complexity measure Nα(f, µ0)
that takes the whole equivalence class into account. Essentially, Nα(f, µ0) describes the
distance of a particular NN f to some initialization µ0. With this notation, the scaling path
(3) now takes the form

arg min
f∈Netφ(Rd)

n∑
k=1

L
(
f(xk), yk

)
+ λNα(f, µ0), (5)

where Netφ(Rd) is a suitable space of functions. Our study of Nα(f, µ0) will reveal an
interesting link between (3) and the theory of unbalanced optimal transport. Based on
this link, we can prove our main result, namely, that the scaling path is Γ-convergent in
some suitably chosen metric space. In particular, this implies that the family of minimizing
networks f∗α ∈ C(Rd) depends continuously on α. For the limiting cases of vanishing and
infinite scales α in (3), we get convergence to two well-known settings from the literature,
which are discussed in the next paragraph.

Limits of the Scaling Path As the scale α in (3) vanishes (Sα#µ0 → δ0), our problem
turns into `2-weight regularization with

arg min
µ∈P2(Rp)

n∑
k=1

L
(
φ[µ](xk), yk

)
+ λ

∫
Rp
‖w‖2 dµ(w). (6)

This problem was thoroughly investigated (Rosset et al., 2007; Bach, 2017; Parhi and Nowak,
2021; Neumayer and Unser, 2023), and is known to admit sparse solutions; namely, mini-
mizers µ̂ that consist of few atoms δwk . In the case of ReLU networks with φReLU, these cor-
respond to functions of the form fµ =

∑n
k=1wk,1(w

T
k,2x)+. Further, (6) leads to predictors

with strong statistical properties, such as good adaptivity to anisotropic target functions.
Following (Woodworth et al., 2020), we refer to this formulation as the “rich regime”. This
formulation is known to capture end-of-training behavior of the gradient flow of 2-layer NNs
in certain contexts, such as with the logistic loss (Chizat and Bach, 2020; Lyu et al., 2021)
or with a small initialization (Boursier et al., 2022).

In contexts such as large initialization with square loss, the training of NNs behaves
instead according to the neural tangent kernel (NTK) theory (Jacot et al., 2018; Arora
et al., 2019; Bietti and Mairal, 2019). There, the kernel in general form is given by

K(x,x′) =

∫
Rp

(
∇wφ(w,x)

)T∇wφ(w,x′) dµ0(w) (7)
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P2(Rp) probability measures with finite second moments (equipped with 2-Wasserstein metric)
M+(Sp−1) positive measures on the sphere Sp−1

HK reproducing kernel Hilbert space corresponding to K
C(X) continuous functions on metric space X (equipped with supremum norm)
L2(Rd, µ0) square integrable functions with norm weighted by µ0

W 1,∞
loc (Rp) weakly differentiable functions with finite W 1,∞-norm on compact sets

Table 1: Function and measure spaces.

and depends on the initial distribution µ0 ∈ P2(Rp). In this kernel (a.k.a. lazy) regime, the
gradient flow in the large-time limit solves the associated kernel-ridge regression problem

arg min
f∈HK

n∑
k=1

L(f(xk), yk) + λ‖f‖2HK , (8)

which we identify as the limit of (3) as α → ∞. Note that the solution of this problem
can be written in the form f̂(x) =

∑n
k=1K(x,xk)ci with ci ∈ R. Equivalently, we can also

investigate the problem

arg min
T∈L2(Rp,µ0)

n∑
k=1

L
(〈
T,∇wφ(·,xk)

〉
L2(Rp,µ0)

, yk
)

+ λ‖T‖2L2(Rp,µ0) (9)

associated to the corresponding feature map (see (Berlinet and Thomas-Agnan, 2004) for
details), which leads to the same solution in function space. The underlying feature map
∇wφ(·,x) is related to the Taylor expansion of the NN parameterization function φ around
the initial parameters.

Outline To study the scaling path (3), we introduce and analyze the complexity measure
N(f, µ0) in Section 2. Based on the developed theory forN(f, µ0), we investigate in Section 3
the associated family of functional-optimization problems (3). As our main result, we prove
that the underlying family of functionals is Γ-convergent and that the rich regime (6) and
the kernel regime (8) are the limits for α → 0 and α → ∞, respectively. Our theoretical
results are illustrated in Section 4 by a simulation in which we compare the scaling path and
the final state of the optimization path for several scales α. Finally, we draw conclusions in
Section 5.

2. Infinite-Width Neural Networks

The function and measure spaces used throughout this manuscript are briefly introduced
in Table 1. In abstract form, we can parameterize infinite-width NNs using probability
measures with finite second-order moments µ ∈ P2(Rp), where Rp is the parameter space,
and a function φ : Rp×Rd → R that, in our case, satisfies the following properties.

• 2-homogeneity in w: φ(rw,x) = r2φ(w,x) for all (r,w,x) ∈ R+ × Rp x× Rd.

• Regularity in w: for every x ∈ Rd, φ(·,x) ∈ W 1,∞
loc (Rp) is twice continuously differen-

tiable on an open cone Cx ⊂ Rp with full Lebesgue measure λ, so that λ(Rp \Cx) = 0,
and ‖∇2

wφ(·,x)‖ is uniformly bounded on Cx.
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• Lipschitz regularity in x: For every w ∈ Rp, x 7→ φ(w,x) is Lipschitz-continuous, and
there exists a constant C > 0 such that Lip(φ(w, ·)) ≤ C‖w‖2.

Some of these conditions are similar to those of (Chizat and Bach, 2020). The first assump-
tion implies that

∫
Rp φ(w,x) dµ(w) < ∞ for all µ ∈ P2(Rp) and x ∈ Rd. The first two

assumptions together imply that ∇wφ(·,x) is (positively) 1-homogeneous in its first vari-
able on Cx, in the sense that ∇wφ(rw,x) = r∇wφ(w,x) for all (r,w) ∈ R+ × Cx. Hence,
φ(·,x) ∈ W 1,∞

loc (Rp) also implies that ∇wφ(·,x) ∈ L2(Rp, µ) for all µ ∈ P2(Rp) and x ∈ Rd.
Using the function φ, we define an associated space of infinite width NNs as

Netφ(Rd) =

{∫
Rp
φ(w, ·) dµ(w) : µ ∈ P2(Rp)

}
. (10)

Note that the parameterization µ of a NN f ∈ Netφ(Rd) is not necessarily unique.

Remark 1 One can readily verify that 2-layer ReLU NNs with parameterization function
φReLU(w,x) = w1(w

T
2 x)+, w = (w1,w2) ∈ Rd+1, fit into this abstract framework. Here,

w1 parameterizes the scalar output weights and w2 parameterizes the hidden layer. To allow
for bias vectors, we can pad the input vector x with a 1 at the end and treat the biases as
part of the weights w. Given an atomic measure µ =

∑n
k=1 δwk , the associated finite width

NN reads fµ =
∑n

k=1wk,1(w
T
k,2x)+. Finally, using the characteristic function χR+ of the

positive reals, the NTK of a 2-layer ReLU NN with initialization µ0 is given by

KReLU(x,x′) =

∫
Rd+1

(
(wT

2 x)+(wT
2 x
′)+ + w2

1x
Tx′χR+(wT

2 x)χR+(wT
2 x
′)
)

dµ0(w). (11)

Although 2-layer ReLU NNs are the most relevant choice of φ from a practical viewpoint,
we prefer to carry out our analysis for this general class of functions φ. For any x,y ∈ Rd
and f =

∫
Rp φ(w, ·) dµ(w) ∈ Netφ(Rd), it holds that

|f(x)− f(y)| ≤ C
∫
Rp
‖w‖2 dµ(w)‖x− y‖. (12)

Hence, all functions in Netφ(Rd) are Lipschitz-continuous. Therefore, Netφ(Rd) is a subset
of C(Rd). In Section 2.1, we construct a complexity measure that encodes the distance of
a given NN to a reference parameterization µ0 ∈ P2(Rp), which could be, for example, the
initialization of the NN before it is trained according to the gradient flow (1).

2.1 Measure of Complexity for Neural Networks

In the following, we rely heavily on optimal transport and, in particular, on the 2-Wasserstein
metric W2 (Ambrosio et al., 2005; Villani, 2009). Let µ0 ∈ P2(Rp) be a probability
measure with polar disintegration µ0(dr, dθ) = µ0(dr|θ)µ̂0(dθ), where µ̂0 ∈ M+(Sp−1)
and

∫
R+ r2µ0(dr|θ) = 1 for µ̂0-a.e. θ ∈ Sp−1. We then define the complexity measure

N(·, µ0) : Netφ(Rd)→ R+ as

N(f, µ0) = inf
µ∈P2(Rp)

{
W 2

2 (µ, µ0) : f =

∫
Rp
φ(w, ·) dµ(w)

}
. (13)
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Loosely speaking, N(f, µ0) encodes by how much the parameter µ needs to move away from
a reference measure µ0 in order to realize the NN f . Using the Monge formulation of optimal
transport, we obtain the upper bound

N(f, µ0) ≤ inf
T∈L2(Rp,µ0)

{
‖T − Id‖2L2(µ0)

: f =

∫
Rp
φ(w, ·) d[T#µ0](w)

}
, (14)

where T#µ0 = µ0(T
−1(·)) denotes the push-forward measure of µ under T . Because optimal

transport maps do not necessarily exist, the right-hand side of (14) is indeed an infimum
rather than a minimum. However, the equality of (13) and (14) holds when µ0 is absolutely
continuous with respect to the Lebesgue measure λ. This relation turns out to be useful for
the derivation of our main result in Section 3.

Remark 2 Recently, the idea of using an optimal-transport-based complexity measure for
NNs has also been pursued in (Chen et al., 2022, Section 5). In their simplest instance,
where the underlying function space is isomorphic to Rd and σ2 is the ReLU, they investigate
the same NNs as we in Remark 1. Albeit closely related, their complexity measure γ†2 differs
from ours since transport plans π are supported on R×Rd×Rd instead of Rd+1×Rd+1 and
the transport cost is only computed with respect to w2 ∈ Rd. Based on this choice, they are
able to derive Rademacher complexity bounds for γ†2, which lead to a posteriori generalization
error bounds for gradient-desecent-trained NNs depending on a notion of the length of the
optimization path (1). For our more specific 2-homogeneous setting, the aim is instead to
study fine properties of the scaling path (3) as α varies.

2.2 Properties of the Complexity Measure

First, we show that the complexity measure N satisfies a homogeneity property.

Lemma 3 (Homogeneity) For all f ∈ Netφ(Rd), α > 0, and µ0 ∈ P2(Rp), it holds with
Sα : Rp → Rp given by w 7→ αw that

α2N(f, µ0) = N(α2f, Sα#µ0). (15)

Proof Since f =
∫
Rp φ(w, ·) dµ(w) and φ is 2-homogeneous, we have that∫
Rp
φ(w, ·) d[Sα#µ](w) =

∫
Rp
φ(αw, ·) dµ(w) = α2f. (16)

The result then follows from W2(Sα#µ, Sα#µ0)
2 = α2W2(µ, µ0)

2.

The constraint in (13) has a very specific structure. Using the 2-homogeneous projection
operator Π2 : P2(Rp)→M+(Sp−1) characterized by∫

Sp−1

ϕ(θ) d[Π2(µ)](θ) =

∫
Rp
‖w‖2ϕ(w/‖w‖) dµ(w) (17)

for any ϕ ∈ C(Sp−1), we rewrite (13) as

f =

∫
Rp
φ(w, ·) dµ(w) =

∫
Sp−1

φ(θ, ·) d[Π2(µ)](θ). (18)
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Based on Π2, we are now in the position to introduce the distance Ŵ2 onM+(Sp−1) known as
the Hellinger–Kantorovich or the Wasserstein–Fisher–Rao distance (Liero et al., 2016; Kon-
dratyev et al., 2016; Chizat et al., 2018). We consider the formulation introduced by (Liero
et al., 2016), which is given for µ̂1, µ̂2 ∈M+(Sp−1) by

Ŵ 2
2 (µ̂1, µ̂2) = min

µ1,µ2∈P2(Rp)

{
W 2

2 (µ1, µ2) : Π2(µ1) = µ̂1,Π2(µ2) = µ̂2
}

(19)

= min
π∈H≤(µ̂1,µ̂2)

∫
(Rp)2
‖w1 −w2‖2 dπ(w1,w2) +

2∑
i=1

(
µ̂i −Π2(πi)

)
(Sp−1) (20)

= min
π∈M+((Sp−1)2)

2∑
i=1

KL(πi, µ̂i)− 2

∫
(Sp−1)2

log((θT1 θ2)
+) dπ(θ1,θ2), (21)

where H≤(µ̂1, µ̂2) = {π ∈ P2((Rp)2) : Π2(πi) ≤ µ̂i}, and πi denotes the respective marginal
of the plan. It holds that Ŵ2 is a metric onM+(Sp−1), which metrizes the weak convergence
(Liero et al., 2016, Thm. 3.6). Further, M+(Sp−1) equipped with this metric is complete,
and bounded sets are relatively compact. Finally, let us remark that

Π2

(
µ0(dr, dθ)

)
=

(∫
R+
r2 dµ0(r|θ)

)
µ̂0(dθ) = µ̂0(dθ). (22)

Based on these observations, we derive an equivalent formulation for N(f, µ0) under the
assumption that supp(µ̂0) ⊂ (Sp−1) covers a sufficiently large part of the space.

Proposition 4 (Compact-set formulation) Let µ0 ∈ P2(Rp) such that the correspond-
ing µ̂0 ∈M+(Sp−1) satisfies

max
θ1∈Sp−1

min
θ2∈supp(µ̂0)

dSp−1(θ1,θ2) <
π

2
. (23)

Then, any µ̂ ∈ M+(Sp−1) posseses a lift µ ∈ P2(Rp) such that Ŵ2(µ̂, µ̂0) = W2(µ, µ0).
Further, it holds for any f ∈ Netφ(Rd) that

N(f, µ0) = inf
µ̂∈M+(Sp−1)

{
Ŵ 2

2 (µ̂, µ̂0) : f =

∫
Sp−1

φ(θ, ·) dµ̂(θ)

}
. (24)

Proof First, recall that Π2(µ0) = µ̂0 due to (22). Based on some π̂ ∈ M+((Sp−1)2)
minimizing Ŵ 2

2 (µ̂, µ̂0) as in (21), we construct µ ∈ P2(Rp) satisfying Π2(µ) = µ̂ and
Ŵ2(µ̂, µ̂0) = W2(µ, µ0). To this end, we make use of the Lebesgue decompositions µ̂ =
σπ̂2 + µ̂⊥ and µ̂0 = σ0π̂1 + µ̂⊥0 . By (Liero et al., 2018, Thm. 6.3b) and (23), we actually
have that µ̂⊥ = 0.

Now, we define a measurable map Tθ1,θ2 : R2 → R2 via

Tθ1,θ2(r1, r2) =


(√

σ(θ1)
σ0(θ2)

r1, r2

)
if σ0(θ2) > 0,

(r1, r2) else.
(25)

Using Tθ1,θ2 and µ0(dr, dθ) = µ0(dr|θ)µ̂0(dθ), we define a lifted measure π ∈ P2((Rp)2) via

π(dr1,dθ1,dr2,dθ2) = σ0(θ2)Tθ1,θ2#

(
δr2(dr1)µ0(dr2|θ2)

)
π̂(dθ1, dθ2). (26)
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First, observe that the marginal π2 satisfies for any ϕ ∈ C(R+ × Sp−1) that∫
R+×Sp−1

ϕ(r2,θ2) dπ2(r2,θ2)

=

∫
(R+×Sp−1)2

ϕ(r2,θ2)σ0(θ2)Tθ1,θ2#

(
δr2(dr1)µ0(dr2|θ2)

)
π̂(dθ1,dθ2)

=

∫
(R+×Sp−1)2

ϕ(r2,θ2)σ0(θ2)δr2(dr1)µ0(dr2|θ2)π̂(dθ1, dθ2)

=

∫
R+×Sp−1

ϕ(r2,θ2)σ0(θ2)µ0(dr2|θ2)π̂2(dθ2), (27)

which implies that π2(dr, dθ) = σ0(θ)µ0(dr|θ)π̂2(dθ). Due to
∫
R r

2µ0(dr|θ) = 1 for µ̂0-a.e.
θ ∈ Sp−1, we further obtain that Π2(π2) = σ0π̂2. Again by (Liero et al., 2018, Thm. 6.3b),
there exists a Borel set A ⊂ supp(π2) with π2(X \ A) = 0 and σ0(θ) > 0 for all θ ∈ A.
Hence, we get for any ϕ ∈ C(Sp−1) that∫

Sp−1

ϕ(θ1) d[Π2(π1)](θ1)

=

∫
(R+×Sp−1)2

ϕ(θ1)r
2
1σ0(θ2)Tθ1,θ2#

(
δr2(dr1)µ0(dr2|θ2)

)
π̂(dθ1,dθ2)

=

∫
(R+×Sp−1)×(R+×{θ2:σ0(θ2)>0})

ϕ(θ1)r
2
1σ(θ1)δr2(dr1)µ0(dr2|θ2)π̂(dθ1,dθ2)

=

∫
Sp−1×{θ2:σ0(θ2)>0}

ϕ(θ1)σ(θ1) dπ̂(θ1,θ2)

=

∫
Sp−1

ϕ(θ1)σ(θ1) dπ̂1(θ1), (28)

which implies that Π2(π1) = σπ̂1. Further, it holds that∫
(R+×Sp−1)2

r21 + r22 − 2r1r2θ
T
1 θ2 dπ(r1,θ1, r2,θ2)

=

∫
(Sp−1)2

σ(θ1) + σ0(θ2)− 2
√
σ(θ1)σ0(θ2)θ

T
1 θ2 dπ̂(θ1,θ2)

=

∫
(R+×Sp−1)2

r21 + r22 − 2r1r2θ
T
1 θ2 d

[(
σ(θ1)

1/2,θ1, σ0(θ2)
1/2,θ2

)
#
π̂
]
(r1,θ1, r2,θ2). (29)

By (Liero et al., 2018, Thm. 7.20iii), this implies that π is optimal for Ŵ2(µ̂, µ̂0) as in (20).
Next, note that the measure

π⊥(dr1, dθ1, dr2, dθ2) = δ0(dr1)µ0(dr2|θ2)µ̂
⊥
0 (dθ2) (30)

satisfies Π2(π
⊥
1 ) = 0, π⊥2 (dr, dθ) = µ0(dr|θ)µ̂⊥0 (dθ), and Π2(π

⊥
2 ) = µ̂⊥0 . Since∫

(R+×Sp−1)2
r21 + r22 − 2r1r2θ

T
1 θ2 dπ⊥(r1,θ1, r2,θ2) = µ̂⊥0 (Sp−1), (31)

8
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we get that π+ π⊥ is an optimal plan for Ŵ2(µ̂, µ̂0) as in (19) with the required properties.
For the second part, we conclude from (18) and (19) that

N(f, µ0) ≥ inf
µ̂∈M+(Sp−1)

{
Ŵ 2

2 (µ̂, µ̂0) : f =

∫
Sp−1

φ(θ, ·) dµ̂(θ)

}
. (32)

Due to the established existence of lifts µ ∈ P2(Rp), (32) is sharp and can be replaced by
an equality.

Using Proposition 4, which requires (23) to hold, we can prove the existence of minimizers
for (13), namely, that the complexity measure is realized by some µ ∈ P2(Rp).

Lemma 5 (Minimizing element) Let f ∈ Netφ(Rd) and µ0 ∈ P2(Rp) satisfy (23). Then,
there exists µ ∈ P2(Rp) with N(f, µ0) = W2(µ, µ0)

2 and f =
∫
Rp φ(w, ·) dµ(w).

Proof By Proposition 4, it suffices to show existence for (24) since optimal lifts to P2(Rp)
do exist. Let {µ̂k}k∈N ⊂ M+(Sp−1) be a minimizing sequence. As any such sequence lies
in a relatively compact set, we can extract a weakly convergent subsequence with limit
µ̂ ∈ M+(Sp−1). Since Ŵ 2

2 (·, µ̂0)2 is weakly continuous and φ(·,x) ∈ C(Sp−1), we get, by
definition of the weak convergence, that µ̂ is a minimizing element.

To conclude this section, we prove some additional properties of N .

Lemma 6 (Variational properties) The complexity measure N has the following prop-
erties.

i) For any f ∈ Netφ(Rd) and µ0, ν0 ∈ P2(Rp) it holds that∣∣√N(f, µ0)−
√
N(f, ν0)

∣∣ ≤W2(ν0, µ0). (33)

ii) Let µ0 ∈ P2(Rp). For any {fk}k∈N ⊂ C(Rd) with fk → f ∈ C(Rd) pointwise, it holds
N(f, µ0) ≤ lim infk→∞N(fk, µ0).

iii) For any µ0 ∈ P2(Rp), the functional N(·, µ0) is convex. If µ0 is absolutely continuous
with respect to the Lebesgue measure λ and satisfies (23), then N(·, µ0) is strictly
convex.

iv) For all f ∈ Netφ(Rd) and x ∈ Rd, it holds that

N(f, δ0) ≥
f(x)

‖φ(·,x)‖C(Sp−1)
. (34)

Proof i) Let µ ∈ P2(Rp) with f =
∫
Rp φ(w, ·) dµ(w). By definition of N , we get that√

N(f, µ0) ≤W2(µ, µ0) ≤W2(µ, ν0) +W2(ν0, µ0). (35)

Taking the infimum over all such µ, we get that
√
N(f, µ0) ≤

√
N(f, ν0)+W2(ν0, µ0) which,

by symmetry of W2, implies (33).

9
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ii) First, we can assume that {N(fk, µ)}k∈N has a bounded subsequence (the statement
is trivial otherwise). Let {µ̂k}k∈N ⊂M+(Sp−1) be a sequence with fk =

∫
Sp−1 φ(θ, ·) dµ̂k(θ)

and N(fk, µ0) + 1/k ≥ Ŵ 2
2 (µ̂k, µ̂0)

2. Hence, there exists a weakly convergent subsequence
{µ̂kj}j∈N with lim infk→∞N(fk, µ0) = limj→∞ Ŵ

2
2 (µ̂kj , µ̂0)

2. Since Ŵ 2
2 (·, µ̂0)2 is weakly

continuous and φ(·,x) ∈ C(Sp−1), we further get that its limit µ̂ ∈ M+(Sp−1) satisfies
that Ŵ 2

2 (µ̂, µ̂0)
2 ≤ lim infk→∞N(fk, µ0) and f =

∫
Sp−1 φ(θ, ·) dµ̂(θ). Hence, it holds that

N(f, µ0) ≤ lim infk→∞N(fk, µ0).
iii) Let λ ∈ (0, 1), f1, f2 ∈ Netφ(Rd), and ε > 0. Then, there exist µ1, µ2 ∈ P2(Rp)

with fi =
∫
Rp φ(w, ·) dµi(w) and W 2

2 (µi, µ0) ≤ N(fi, µ0) + ε. Further, it is well-known that
W 2

2 (·, µ0) is convex. Consequently, we get that

N
(
λf1 + (1− λ)f2, µ0

)
≤W 2

2

(
λµ1 + (1− λ)µ2, µ0

)
≤ λN(f1, µ0) + (1− λ)N(f2, µ0) + ε. (36)

Convexity follows by taking ε → 0. If µ0 is absolutely continuous with respect to λ and
if (23) holds, then we can choose ε = 0 and the result follows similarly as before due to the
strict convexity of W 2

2 (·, µ0) in this setting.
iv) Let µ ∈ P2(Rp) satisfy f(x) =

∫
Rp φ(w,x) dµ(w). Then, we estimate

f(x) =

∫
Rp
φ(w/‖w‖2, x)‖w‖22 dµ(w) ≤ ‖φ(·,x)‖C(Sp−1)

∫
Rp
‖w‖22 dµ(w). (37)

Hence, we conclude that W2(µ, δ0)
2 ≥ f(x)/‖φ(·,x)‖C(Sp−1) and the claim follows.

3. Interpolating Between the Rich and Kernel Regimes

As discussed in Section 1, it is known that in specific settings the gradient flow (1) con-
verges to the rich regime (6) for small initializations and to the kernel regime (8) for large
initializations. In this section, we show that the scaling path (3) interpolates continuously
between these two endpoints as α varies from 0 to +∞. To this end, we assume that we are
given training samples (xk, yk) ∈ Rd×R, k = 1, . . . , n, such that ∇wφ(·,xk) ∈ L2(Rp, µ0),
k = 1, . . . , n, are linearly independent. For the choice φReLU from Remark 1, this is, for
example, the case if the locations xk of the training samples are distinct. Then, we can
formulate a corresponding regularized learning problem

arg min
f∈C(Rd)

n∑
k=1

L
(
f(xk), yk

)
+ λ(1 + α2)N(f, Sα#µ0), (38)

where α ∈ [0,∞) is an interpolation parameter, λ > 0 is a regularization parameter, and
the loss L(·, yk) is proper, convex, and lower-semicontinuous for every k = 1, . . . , n.

Remark 7 All of the results in this section remain true if we investigate

arg min
f∈C(Rd)

n∑
k=1

L
(
f(xk), yk

)
s.t. (1 + α2)N(f, Sα#µ0) ≤ δ (39)

with L strictly convex. If L is only convex, then the uniqueness results do not hold.

10
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For instance, Problem (38) includes classification problems with yk ∈ {−1, 1} and

arg min
f∈C(Rd)

N(f, Sα#µ0) s.t. ykf(xk) ≥ 1 ∀k = 1, . . . , n, (40)

as well as interpolation problems with yk ∈ R and

arg min
f∈C(Rd)

N(f, Sα#µ0) s.t. f(xk) = yk ∀k = 1, . . . , n (41)

as special cases. When L is the square loss, the interpolation problem (41) can be interpreted
as the endpoint of the modified regularization path (3) as λ → 0. Instead of (38), we can
also investigate the equivalent parameter-space problems

arg min
µ∈P2(Rp)

n∑
k=1

L

(∫
Rp
φ(w,xk) dµ(w), yk

)
+ λ(1 + α2)W 2

2 (µ, Sα#µ0) (42)

and

arg min
µ̂∈M+(Sp−1)

n∑
k=1

L

(∫
Sp−1

φ(θ,xk) dµ̂(θ), yk

)
+ λ(1 + α2)Ŵ 2

2

(
µ̂, α2µ̂0

)
. (43)

These reformulations are essential to prove the continuity of the optimal solutions f∗α for (38)
with respect to α in Theorem 13. First, however, we establish the existence of minimizers
for (38).

Lemma 8 Assume that (38) is feasible. Then, there exists a minimizer. If, additionally,
µ0 is absolutely continuous with respect to the Lebesgue measure λ and satisfies (23), then
the minimizer is unique for α > 0.

Proof Let {fk}k∈N be a minimizing sequence, which implies that the corresponding se-
quence {N(fk, Sα#µ0)}k∈N is bounded. Similarly as in the proof of Lemma 6ii), we can
extract a subsequence {fkj}j∈N such that there exists a µ ∈ P2(Rp) with N(fkj , Sα#µ0)→
W 2

2 (µ, µ0) and fkj → f =
∫
Rp φ(w, ·) dµ(w) point-wise. However, this readily implies

that
∑n

l=1 L(f(xl), yl) ≤ lim infj→∞
∑n

l=1 L(fkj (xl), yl) and further that N(f, Sα#µ0) ≤
limj→∞N(fkj , Sα#µ0). Hence, we get that f is a minimizer. If the additional assumptions
hold, uniqueness follows by strict convexity (see Lemma 6).

Remark 9 A similar statement also holds for the formulations (42) and (43).

Now, we investigate the behavior of the functional in (43) as α varies. To this end, we
rely on the concept of Γ-convergence (see (Braides, 2002) for a detailed exposition). Let X
be a topological space. Recall that {Jk}k∈N with Jk : X → [0,∞] is said to Γ-converge to
J : X→ [0,∞] if the following two conditions are fulfilled for every x ∈ X:

i) it holds that J(x) ≤ lim infk→∞ Jk(xk) whenever xk → x;

ii) there is a sequence {xk}k∈N with xk → x and lim supk→∞ Jk(xk) ≤ J(x).

11
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The importance of Γ-convergence is captured by Theorem 10. Recall that a family of func-
tionals Jk : X→ R is equicoercive if it is bounded from below by a coercive functional.

Theorem 10 (Theorem of Γ-convergence (Braides, 2002)) Let {Jk}k∈N be an equi-
coercive family of functionals Jk : X→ R. If Jk Γ-converges to J , then it holds that

• the optimal functional values converge limk→∞ infx∈X Jk(x) = infx∈X J(x);

• all accumulation points of the minimizers of Jk are minimizers of J .

Although, Theorem 10 and the next two paragraphs on Γ-convergence of the functional in
(43) might appear quite abstract at first glance, they will ultimately enable us to prove
continuity of the optimal solutions f∗α for (38) with respect to α in our main Theorem 13.

Rich Regime Using Γ-convergence, we first investigate α→ α∗ 6=∞ and equipM+(Sp−1)
with the usual weak topology.

Proposition 11 For α→ α∗ 6=∞, we have Γ-convergence of the functionals in

min
µ̂∈M+(Sp−1)

n∑
k=1

L

(∫
Sp−1

φ(θ,xk) dµ̂(θ), yk

)
+ λ(1 + α2)Ŵ 2

2

(
µ̂, α2µ̂0

)
. (44)

Furthermore, the family of functionals in (44) is equicoercive.

Proof We first note that the functionals in (44) are equicoercive since

(1 + α2)Ŵ 2
2

(
µ̂, α2µ̂0

)
≥
(
Ŵ2(µ̂, 0)− Ŵ2

(
0, α2µ̂0

))2
=
(
Ŵ2(µ̂, 0)− α

√
µ̂0(Sp−1)

)2 (45)

and L maps into [0,∞]. For the lim inf inequality, let {µ̂k}k∈N and {αk}k∈N be sequences
with limits µ̂ and α∗, respectively. Since φ(·,xl) is continuous, this directly implies that∫
Sp−1 φ(θ,xl) dµ̂k(θ)→

∫
Sp−1 φ(θ,xl) dµ̂(θ) for all l = 1, . . . , n. Then, since

(1 + α2
k)Ŵ

2
2

(
µ̂k, α

2
kµ̂0
)
≥ (1 + α2

k)
(
Ŵ2

(
µ̂k, α

2
∗µ̂0
)
− Ŵ2

(
α2
∗µ̂0, α

2
kµ̂0
))2

(46)

≥ (1 + α2
k)
(
Ŵ2

(
µ̂k, α

2
∗µ̂0
)
−
√
|α2
∗ − α2

k|µ̂0(Sp−1)
)2
, (47)

the claim follows by the continuity of Ŵ2 and the lower-semicontinuity of L(·, yl). Finally,
the lim sup inequality follows if we let the recovery sequence be constant.

Note that for α = 0, problem (44) can be rewritten as

min
µ̂∈M+(Sp−1)

n∑
k=1

L

(∫
Sp−1

φ(θ,xk) dµ̂(θ), yk

)
+ λTV(µ̂). (48)

12
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Kernel Regime Next, we want to discuss the case α → ∞ and show that we approach
the NTK problem (9) with feature maps x 7→ ∇wφ(·,x) if we reformulate (43) accordingly.

Proposition 12 Let µ0 be absolutely continuous with respect to the Lebesgue measure and∫
Rp φ(w, ·) dµ0(w) = 0. Further, let L(·, yk), k = 1, . . . , n, be either left- or right-continuous
in every point of its domain. Then, for α → ∞, we have Γ-convergence of the functionals
in

arg min
T∈L2(Rp,µ0)

n∑
k=1

L

(∫
Rp
φ
(
αw + α−1T (w),xk

)
dµ0(w), yk

)
+ λ

α2 + 1

α2
‖T‖2L2(Rp,µ0), (49)

which is a reformulation of (43) using transport maps, to the one in

arg min
T∈L2(Rp,µ0)

n∑
i=k

L
(〈
T,∇wφ(·,xk)

〉
L2(Rp,µ0)

, yk
)

+ λ‖T‖2L2(Rp,µ0) (50)

with respect to the weak topology in L2(Rp, µ0). Further, the functionals in (49) are equico-
ercive.

Proof Equicoercivity of the functionals in (49) holds since ‖T‖2L2(Rp,µ0) is a lower bound
for all of them. Due to the absolute continuity with respect to the Lesbegue measure, we
can use the equivalent formulation (14) of the complexity measure in (13) to obtain

min
µ∈P2(Rp)

n∑
k=1

L

(∫
Rp
φ(w,xk) dµ(w), yk

)
+ λ(1 + α2)W 2

2 (µ, Sα#µ0)

= min
T∈L2(Rp,µ0)

n∑
k=1

L

(∫
Rp
φ
(
w,xk

)
d
[
(Sα + α−1T )#µ0

]
(w), yk

)
+ λ

α2 + 1

α2
‖T‖2L2(Rp,µ0)

= min
T∈L2(Rp,µ0)

n∑
k=1

L

(∫
Rp
φ
(
αw + α−1T (w),xk

)
dµ0(w), yk

)
+ λ

α2 + 1

α2
‖T‖2L2(Rp,µ0). (51)

Now, since φ is twice continuously differentiable on Cxk , we get, for any w ∈ Cxk , that

φ(w + h,xk) = φ(w,xk) +
(
∇wφ(w,xk)

)T
h +R(w,h,xk). (52)

As t 7→ φ(w + th,xk) is absolutely continuous, the remainder R(w,h,xk) can be estimated
for any w ∈ Cxk and h ∈ Rp by

|R(w,h,xk)| ≤ max
w̃∈B(w,‖h‖)

∥∥∇wφ(w̃,xk)−∇wφ(w,xk)
∥∥‖h‖. (53)

If additionally h ∈ B(w, ε), where the radius ε depends on w and xi, we can use differen-
tiability to even get

|R(w,h,xi)| ≤ sup
w̃∈B(w,ε)

‖∇2
wφ(w̃,xi)‖‖h‖2. (54)

13
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By defining the function

Rxi,α(T ) :=

∫
Rp
R(αw, T (w)/α,xi) dµ0(w), (55)

we rewrite (49) for the following Γ-convergence discussion as

min
T∈L2(Rp,µ0)

n∑
k=1

L
(〈
T,∇wφ(·,xk)

〉
L2(Rp,µ0)

+Rxi,α(T ), yk

)
+ λ

α2 + 1

α2
‖T‖2L2(Rp,µ0). (56)

For the lim inf inequality of Γ-convergence, let {Tk}k∈N and {αk}k∈N be (weakly) con-
vergent sequences with limits T and ∞, respectively. Since weakly convergent sequences
are bounded, we get that ‖Tk‖L2(Rp,µ0)/αk → 0. Hence, we can drop to a subsequence
that satisfies Tk(w)/αk → 0 for µ0-a.e. w ∈ Rp, and there exists g ∈ L2(Rp, µ0) with
|Tk(w)/αk| ≤ g(w) for µ0-a.e. w ∈ Rp. Now, observe that

|Rxl,αk(Tk)| ≤
∫
Rp

max
w̃∈B(αkw,g(w))

‖∇wφ(w̃,xl)−∇wφ(αkw,xl)‖
‖Tk‖
αk

dµ0(w)

≤
(∫

Rp
max

w̃∈B(w,
g(w)
αk

)

‖∇wφ(w̃,xl)−∇wφ(w,xl)‖2 dµ0(w)

)1/2

‖Tk‖L2(Rp,µ0).

(57)

Here, the integrand converges pointwise to 0 for every w ∈ Cxl , and can be bounded by

max
w̃∈B(w,g(w)/αk)

‖∇wφ(w̃,xl)−∇wφ(w,xl)‖

≤ max
w̃∈B(w,g(w)/αk)

‖w̃‖
∥∥∥∇wφ

( w̃

‖w̃‖
,xl

)∥∥∥+ ‖w‖
∥∥∥∇wφ

( w

‖w‖
,xl

)∥∥∥
≤
(

2‖w‖+
g(w)

αk

)
max
w̃∈Sp

‖∇wφ(w̃,xl)‖. (58)

From the dominated-convergence theorem, one has thatRxl,αk(Tk)→ 0. Given that Tk ⇀ T ,
the lim inf inequality now follows as

n∑
l=1

(〈
T,∇wφ(·,xl)

〉
L2(µ0)

, yl
)

+ λ‖T‖2L2(Rp,µ0)

≤ lim inf
k→∞

n∑
l=1

L
(〈
Tk,∇wφ(·,xl)

〉
L2(Rp,µ0)

+Rxl,αk(Tk), yl
)

+ λ
α2
k + 1

α2
k

‖Tk‖2L2(Rp,µ0). (59)

For the lim sup inequality, we can assume that T has finite energy. Further, we use a
dual basis Dl ∈ L2(Rp, µ0), l = 1, . . . , n, of the feature maps ∇wφ(·,xl). Then, we define
h(w) := |T (w)|+

∑n
l=1 |Dl(w)| and

Ml,k =

(∫
Rp

max
w̃∈B(w,h(w)/α2

k)
‖∇wφ(w̃,xl)−∇wφ(w,xl)‖2 dµ0(w)

)1/2

‖h‖L2(Rp,µ0). (60)
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Now, set sl = 1 if L(·, yl) is right-continuous in 〈T,∇wφ(·,xl)〉L2(Rp,µ0) and sl = −1 if it is
left-continuous. Finally, we pick Tk = T +

∑
l slMl,kDl as recovery sequence.

As in the first part of the proof, we can show that Ml,k → 0 for k → ∞. Hence, we
can estimate as in (57) and obtain that Rxl,αk(Tk)→ 0 for k →∞. In the right-continuous
case, it holds that〈

Tk,∇wφ(·,xl)
〉
L2(Rp,µ0)

+Rxl,αk(Tk) ≥
〈
T,∇wφ(·,xl)

〉
L2(Rp,µ0)

. (61)

For the left-continuous case, we get that〈
Tk,∇wφ(·,xl)

〉
L2(Rp,µ0)

+Rxl,αk(Tk) ≤
〈
T,∇wφ(·,xl)

〉
L2(Rp,µ0)

. (62)

Hence, we have for l = 1, . . . , n that 〈Tk,∇wφ(·,xl)〉L2(Rp,µ0) → 〈T,∇wφ(·,xl)〉L2(Rp,µ0) from
the required direction, which concludes the proof.

Implications for Netφ(Rd) Assume that µ0 is absolutely continuous with respect to the
Lebesgue measure. Observe that Proposition 11 and Theorem 10 directly imply that the
family of measures µ̂∗α, α ∈ (0,∞), determined by (43) is continuous in the Ŵ2 metric.
Further, for α → 0, these measures converge to some optimal solution µ̂∗0 of (48). Finally,
Proposition 12 and Theorem 10 imply that the the solutions T ∗α of (49) converge to an opti-
mal solution of (50) in the weak L2-topology. Equivalently, we can state these observations
in terms of the optimal NNs as

f∗α =

∫
Sp−1

φ(θ, ·) dµ̂∗α(θ) =

∫
Rp
φ
(
wθ + α−1T ∗α(w), ·

)
dµ0(w), α <∞ (63)

and
f∗∞(x) =

〈
T ∗∞,∇wφ(·,x)

〉
L2(Rp,µ0)

, (64)

where µ∗α, T ∗α, and T ∗∞ solve (43), (49), and (50), respectively.

Theorem 13 Assume that µ0 is absolutely continuous with respect to the Lebesgue measure.
Then, the family f∗α : Rd → R, α ∈ [0,∞), of optimal solutions for (38) is continuous with
respect to the uniform norm on any compact set K ⊂ Rd. Further, for α→∞, we have that
f∗α → f∗∞ pointwise.

Proof Let αk → α ∈ [0,∞) with αk 6= 0. From (63) and the weak convergence of the
µ̂∗αk , we get that the sequence f∗αk is pointwise-convergent. Further, recall that all f∗αk are
Lipschitz-continuous with constant Cµ̂∗αk(Sp−1). Since weakly convergent sequences have
bounded measures, the f∗αk are uniformly Lipschitz-continuous. Hence, we conclude that
‖f∗αk − f

∗
α‖C(K) → 0 for any compact set K ⊂ Rd. For the case αk → ∞, we have already

shown in the proof of Proposition 12 that the sequence f∗αk converges pointwise to f∗∞.
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Figure 1: Data for Problem (66) (crosses corresponds to yk = −1, circles to yk = 1).

4. Path Comparison at Final States

To illustrate our theoretical observations, we investigate a 2D interpolation problem with
samples (x̃k, yk) ∈ [−1, 1]2×{−1, 1}, k = 1, . . . , 10, which are depicted in Figure 1. Note that
we have chosen to investigate an interpolation problem as it describes the end states of both
the static and the dynamic paths. As discussed in Remark 1, we modify the x-component
of these samples to xk = (x̃k, 1) ∈ R3 in order to use a 2-homogeneous infinite-width 2-layer
ReLU NN model with parameterization function φReLU : R4×R3 → R given by

φReLU(w,x) = w1ReLU(wT
2 x), (65)

where w = (w1,w2) ∈ R×R3. Now, our goal is to find a probability measure µ ∈ P2(R4)
such that ∫

R4
φReLU

(
w,xk

)
dµ(w) = yk, k = 1, . . . , n. (66)

By the use of atomic measures, any finite-width 2-layer ReLU NN Ψ(x) =
∑n

k=1wk(v
T
k x)+

with wk ∈ R and vk ∈ R3 is covered by this formulation. Further, (66) can be recast as
the search for a measure µ̂ ∈ M+(S3) (see (18)). But, even then, (66) is in general under-
determined and we need to employ some kind of explicit or implicit regularization in order
to ensure nice solutions.

4.1 Scaling Path

First, we look into the solution of the variational problem (43) which, for the described
interpolation setting, reads

arg min
µ̂∈M+(S3)

Ŵ 2
2

(
µ̂, α2µ̂0

)
s.t.

∫
S3
φReLU(θ,xk) dµ̂(θ) = yk, k = 1, . . . , 10, (67)

with θ = (θ1,θ2) ∈ S3 ⊂ R4. The initialization µ̂0 is chosen as the uniform measure on P =
{±1/

√
2} × S2/

√
2 ⊂ S3. The choice of a uniform measure on P instead of S3 is motivated,

on the one hand, by the training dynamics and, on the other hand, by the initialization
of the dynamic viewpoint based on the gradient flow (1) investigated in Section 4.2. To
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compute Ŵ 2
2 , we make use of the formulation (21). More precisely, this corresponds to the

unbalanced optimal transport

Ŵ2(µ̂1, µ̂2)
2 = min

γ∈M+(S3×S3)

∫
S3×S3

cdγ +
2∑
i=1

KL(πi]γ, µ̂i), (68)

where

c(θ1,θ2) =

{
−2 log(θT1 θ2) if θT1 θ2 > 0,

∞ else.
(69)

Problem (67) is an infinite-dimensional convex-optimization problem. To make it compu-
tationally tractable, we discretize the spheres S2 in P using a Fibonacci grid F with 2502

points (Swinbank and James Purser, 2006). The corresponding discrete version of P and
the measure µ̂0 are denoted by P and µ̂0, respectively. Additionally, we discretize the search
space for µ based on the Fibonacci grid F as

Q =

{
1

7
√

2

(
±k,

(
98− k2

)1/2
x
)

: 1 ≤ k ≤ 9,x ∈ F

}
⊂ S3. (70)

The coarser discretization in the first coordinate of the set Q is motivated by the fact that
φReLU((w1,w2),x) = φReLU((w1/|w1|,w2|w1|),x), namely, that the model is considerably
over-parameterized. This choice also ensures that P ⊂ Q. Now, we obtain a discrete convex
problem involving the unbalanced optimal-transport distance Ŵ2, which is still computation-
ally challenging due to its large size. Therefore, we resort to an entropy-regularized distance
Ŵ2,ε (see (Feydy et al., 2019)) instead of the original formulation (68). The divergence
Ŵ2,ε can be computed efficiently through the Sinkhorn algorithm, and its’ gradients can
be computed using algorithmic differentiation. For small regularization parameters such as
ε = 1 · 10−2, the approximation Ŵ2,ε is reasonably close to the original Ŵ2 distance (Feydy
et al., 2019; Neumayer and Steidl, 2021). Finally, we arrive at the fully discrete problem

arg min
µ̂∈M+(Q)

Ŵ 2
2,ε

(
µ̂, α2µ̂0

)
s.t.

∫
Q
φReLU(θ,xk) dµ̂(θ) = yk, k = 1, . . . , 10, (71)

which amounts to the minimization of a differentiable convex objective subject to linear
equality constraints. Such problems can be solved, for example, with the forward-backward
splitting (Combettes and Wajs, 2005). To ensure fast convergence, we couple this method
with a spectral step-size predictor and an Armijo linesearch to ensure convergence as detailed
in (Goldstein et al., 2014). To evaluate Ŵ 2

2,ε

(
·, α2µ̂0

)
and its gradients, we make use of the

geomloss package2. Our numerical results for various values of α (including the limiting cases
α = 0 and α =∞) are depicted in Figure 2. We clearly observe that a larger regularization
scale α leads to smoother solutions. Additionally, we observe that the f∗α converge visually
for α → 0 and α → ∞, as predicted by Corollary 13. The corresponding functional values
multiplied by the correct scaling 1 + α2 can be found in Table 2. For the NTK setting,
the optimal value corresponding to (50) is 2.83 · 102. Again, we observe convergence of
(1 + α2)Ŵ 2

2,ε

(
µ̂∗α, α

2µ̂0

)
, as predicted by Propositions 11 and 12, and Theorem 10.

2. https://www.kernel-operations.io/geomloss/
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α = 0 α = 10−1 α = 100

α = 101 α = 102 α =∞

Figure 2: Solutions of (71) for several values of α. The range is clipped to [−2, 2].

Remark 14 In principal, (66) is still over-parameterized, even in the form (18). Essen-
tially, it suffices to considerM+({±1/

√
2} × S2/

√
2) ⊂M+(S3) in (18) to realize any NN.

This has the advantage that we only need to optimize over two 2D measures instead of a 3D
one, which considerably reduces the computation time. Unfortunately, there is no theoretical
guarantee that the optimal measures µ̂∗α must be supported on P. However, we observed
numerically that the assumption that supp(µ̂∗α) ⊂ P leads essentially to the same results
(Figure 2 and Figure 3). Therefore, we propose to replace M+(Q) by M+(P) in (71) to
decrease the computational cost.

4.2 Dynamic Viewpoint Based on Gradient Descent

Next, we illustrate the implicit regularizing effect of gradient descent training for the loss

10∑
k=1

∣∣∣∣ 1

2 · 2502

2·2502∑
l=1

β2φReLU(wl,xk)− yk
∣∣∣∣2, (72)

with wl = (w1,l,w2,l) ∈ R4. To make a link with our approach in Section 4.1, the wl are
initialized as the points from P. Depending on the initialization scale β in (72), gradient-
descent training leads to very different results, as discussed in (Chizat et al., 2019; Wood-
worth et al., 2020). For all parameters β, we have chosen a sufficiently small stepsize and
iterated gradient descent until convergence. The obtained empirical measure corresponding
to the scale β is denoted by ν̂∗β .

A natural question is to investigate how the solutions induced by ν̂∗β compare to the
ones induced by µ̂∗α. A visual comparison is provided in Figure 3. For larger values of α
and β, the solutions corresponding to the same values are very similar. As predicted by
our theory, the solutions induced by µ̂∗α indeed approach f∗∞ associated to the kernel for-
mulation (50) for α→∞. The same behavior was predicted for the solutions corresponding
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α = β = 1 α = β = 3.3 α = β = 6.6

VP

GD

α = β = 1 · 101 α = β = 1.6 · 101 α = β = 2.4 · 101

VP

GD

α = β = 4.2 · 101 α = β = 4.8 · 101 α = β = 6.6 · 101

VP

GD

Figure 3: Optimization paths for gradient-descent training (GD) and the solutions of (71)
(VP) restricted toM+(P). The plots are clipped to [−2, 2].
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Figure 4: Heat map of Ŵ 2
2,ε(ν̂

∗
β, α

2µ̂0)− Ŵ 2
2,ε(µ̂

∗
α, α

2µ̂0).

to ν̂∗β in (Chizat et al., 2019). Although the solutions start to differ for decreasing values
of α and β, the path itself remains similar. The path becomes significantly different only
for small values of α and β. However, for increasing width, the limits α → 0 and β → 0
both lead to solutions of (48). Aside from this visual analysis, we can also examine the
values of Ŵ 2

2,ε(ν̂
∗
β, α

2µ̂0)− Ŵ 2
2,ε(µ̂

∗
α, α

2µ̂0). A heat map is provided in Figure 4, and the
exact values are given in Table 2. Although not necessarily contained in the optimiza-
tion domain M+(P) of (71), the gradient-descent-based solutions ν̂∗α usually have higher
functional values than their variational counterparts µ̂∗α. Moreover, the minimal value of
Ŵ 2

2,ε(ν̂
∗
β, α

2µ̂0)− Ŵ 2
2,ε(µ̂

∗
α, α

2µ̂0) for large and fixed α is always obtained for β = α. For
smaller initialization scales α, the values are very close and β = α is close to being optimal.

5. Conclusions

In this paper, we have introduced the scaling path of a neural network. It involves the
Hellinger–Kantorovich distance (a.k.a. Wasserstein–Fisher–Rao distance) and depends on an
initialization scale. As main contribution, we have shown that the solutions of these paths
depend continuously on the initialization scale, which makes them well-behaved objects
amendable to further theoretical analyses. The relevance of the scaling path is demonstrated
by a small-scale numerical example, in which we observed that the scaling path can be indeed
qualitatively related to the training dynamics of gradient descent at large times, namely, the
endpoint of the optimization path.
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α 1 · 10−1 3.3 · 10−1 6.6 · 10−1 1 3.3 6.6

Min. of (71) 7.50 · 101 7.44 · 101 9.64 · 101 1.26 · 102 4.47 · 102 7.73 · 102

β = 1 · 10−1 9.36 · 101 9.87 · 101 1.20 · 102 1.58 · 102 6.19 · 102 1.41 · 103

β = 3.3 · 10−1 8.44 · 101 8.88 · 101 1.08 · 102 1.41 · 102 5.33 · 102 1.17 · 103

β = 6.6 · 10−1 8.73 · 101 9.18 · 101 1.11 · 102 1.45 · 102 5.43 · 102 1.12 · 103

β = 1 9.18 · 101 9.66 · 101 1.17 · 102 1.53 · 102 5.70 · 102 1.12 · 103

β = 3.3 9.45 · 101 9.93 · 101 1.20 · 102 1.57 · 102 5.66 · 102 9.68 · 102

β = 6.6 1.07 · 102 1.13 · 102 1.37 · 102 1.79 · 102 6.43 · 102 9.60 · 102
β = 1 · 101 1.39 · 102 1.47 · 102 1.80 · 102 2.37 · 102 8.95 · 102 1.41 · 103

β = 1.6 · 101 2.70 · 102 2.88 · 102 3.57 · 102 4.77 · 102 2.05 · 103 4.36 · 103

β = 2.4 · 101 5.82 · 102 6.27 · 102 7.89 · 102 1.06 · 103 5.14 · 103 1.36 · 104

β = 4.2 · 101 1.77 · 103 1.92 · 103 2.45 · 103 3.36 · 103 1.77 · 104 5.57 · 104

β = 4.8 · 101 2.31 · 103 2.51 · 103 3.21 · 103 4.41 · 103 2.37 · 104 7.62 · 104

β = 6.6 · 101 4.38 · 103 4.78 · 103 6.12 · 103 8.44 · 103 4.66 · 104 1.56 · 105

α 1 · 101 1.6 · 101 2.4 · 101 4.2 · 101 4.8 · 101 6.6 · 101

Min. of (71) 7.27 · 102 4.60 · 102 3.38 · 102 2.88 · 102 2.84 · 102 2.79 · 102

β = 1 · 10−1 3.39 · 103 2.39 · 104 1.63 · 105 2.08 · 106 3.74 · 106 1.47 · 107

β = 3.3 · 10−1 3.03 · 103 2.38 · 104 1.66 · 105 2.10 · 106 3.74 · 106 1.48 · 107

β = 6.6 · 10−1 2.69 · 103 2.20 · 104 1.59 · 105 2.06 · 106 3.71 · 106 1.46 · 107

β = 1 2.47 · 103 2.04 · 104 1.52 · 105 2.02 · 106 3.65 · 106 1.45 · 107

β = 3.3 1.79 · 103 1.72 · 104 1.40 · 105 1.95 · 106 3.55 · 106 1.42 · 107

β = 6.6 1.07 · 103 1.22 · 104 1.20 · 105 1.83 · 106 3.36 · 106 1.37 · 107

β = 1 · 101 9.50 · 102 6.78 · 103 9.27 · 104 1.64 · 106 3.06 · 106 1.29 · 107

β = 1.6 · 101 4.37 · 103 7.66 · 102 3.51 · 104 1.16 · 106 2.30 · 106 1.07 · 107

β = 2.4 · 101 2.01 · 104 1.70 · 104 5.74 · 102 5.65 · 105 1.31 · 106 7.63 · 106

β = 4.2 · 101 1.03 · 105 1.73 · 105 1.86 · 105 3.31 · 102 8.28 · 104 2.50 · 106

β = 4.8 · 101 1.45 · 105 2.62 · 105 3.31 · 105 6.36 · 104 3.08 · 102 1.40 · 106

β = 6.6 · 101 3.16 · 105 6.40 · 105 1.01 · 106 1.01 · 106 7.44 · 105 2.87 · 102

Table 2: Values of (1+α2)Ŵ 2
2,ε(ν̂

∗
β, α

2µ̂0) in terms of the scale β of gradient-descent training.
The diagonal α = β is highlighted in bold.
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