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Abstract

In this note, we study how neural networks with a single hidden layer and ReLU activation
interpolate data drawn from a radially symmetric distribution with target labels 1 at the
origin and 0 outside the unit ball, if no labels are known inside the unit ball. With weight
decay regularization and in the infinite neuron, infinite data limit, we prove that a unique
radially symmetric minimizer exists, whose average parameters and Lipschitz constant grow
as d and

√
d respectively.

We furthermore show that the average weight variable grows exponentially in d if the
label 1 is imposed on a ball of radius ε rather than just at the origin. By comparison,
a neural networks with two hidden layers can approximate the target function without
encountering the curse of dimensionality.

Keywords: Deep learning, depth separation, Barron space, Radon-BV, compact support,
mollifier, weight decay, minimum norm solution, symmetry learning, explicit regularization,
curse of dimensionality, radial symmetry.

1. Introduction

Neural networks have revolutionized fields from computer vision (Krizhevsky et al., 2012) to
natural language processing (Vaswani et al., 2017). They are the driving force behind AIs
which play strategy games at superhuman levels of proficiency (Silver et al., 2016, 2017),
facilitated major advances in scientific problems such as protein folding (Tunyasuvunakool
et al., 2021; Jumper et al., 2021), and have been used for computer-assisted proofs in
applied mathematics by Wang et al. (2022). While empirical evidence indicates that they
often generalize well to previously unseen data when trained appropriately, there is little
rigorous understanding of how neural networks interpolate a function between known data
points.

In this article, we provide insight in the simple setting of infinitely wide ReLU networks
with a single hidden layer and data which are drawn from a radially symmetric distribution
on a Euclidean space Rd. The target function f∗ satisfies f∗(0) = 1 and f∗(x) = 0 for
|x| ≥ 1, where |·| denotes the Euclidean norm on Rd. We consider a loss functional composed
of an ℓ2-error and a weight decay regularizer. Despite the fact that neural networks with
a single hidden layer cannot represent compactly supported target functions exactly (He
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et al., 2018; Lu, 2021), there are such functions which can be approximated efficiently even
in high dimension. Here, we construct optimal infinitely wide networks, and show that the
weight decay regularizer grows only linearly in the dimension d of the data space, improving
on the quadratic upper bound established by Ongie et al. (2019).

While highly idealized, this setting allows us to study several important aspects of neural
network models:

1. Learning symmetries. The target function has two important symmetries:

• f∗ is radially symmetric on {0} ∪ (Rd \B1(0)). While it is impossible to fit this
symmetry exactly by finite networks, it can be attained asymptotically for highly
overparametrized networks. More precisely, one could ask whether regularized
risk minimization leads to symmetry learning. While we show that a unique
radially symmetric solution exists, it remains open whether other solutions exist
which do not exhibit radial symmetry.

• 0 ≤ f∗ ≤ 1 everywhere where we prescribe a value, i.e. everywhere on {0} ∪
(Rd \B1(0)). Unlike linear models, which necessarily output negative data even
if all training data labels are positive, but not constant, neural networks have the
capacity to respect this constraint. We show that the unique radial ‘minimum
norm interpolant’ of this prescribed data remains in [0, 1] everywhere on Rd.

2. Fitting random or perturbed data. It is known that overparametrized neural
networks can fit random data, but due to the great generality of the result, the
network weights may be prohibitively large for given data. The compactly supported
bump functions f∗

d can be used to obtain an upper bound on necessary increase in the
average size of weights if the labels yi at points xi are perturbed as ỹi = yi + εi. This
is of interest in particular if the true labels yi are generated by a target function f∗

which can be approximated well by shallow neural networks with at most moderately
large weights.

3. Depth separation and curse of dimensionality. We prove two complimentary
results:

• In dimension d, there exists an infinitely wide ReLU network with one hidden
layer f∗

d with weight decay regularizer ∼ d such that f∗
d (0) = 1 and f∗

d (x) = 0 if
|x| ≥ 1.

• If f∗
d,ε is an infinitely wide ReLU network with one hidden layer such that

f∗
d,ε(x) = 1 for |x| ≤ ε and f∗

d,ε(x) = 0 if |x| ≥ 1, then the average parame-

ter of f∗
d grows at least exponentially in magnitude as ε2d1/2(1− ε2)−

d+1
2 in the

dimension d of the data space.

The curse of dimensionality can be avoided in the second situation by using a neural
network with two hidden layers, for which the average square weight only grows as ∼
d1/3(1−ε)−1. This separation is perhaps not surprising – for instance x → max{0, 1−
xℓ1} is a compactly supported function which can be represented exactly by a ReLU
network with two hidden layers. Neural networks with two hidden layers are more
expressive in this fashion. See also (He et al., 2018) for a more detailed analysis.
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4. Effect of regularization. We consider the Barron norm of a neural network, a
measure of complexity based on the average size of the network weights see (3) and (4)
for details. The expression (4) is a generalization of the weight decay (or Tikhonov)
regularizer which is often added to loss functions in learning applications. Weight
decay regularization is often taken as a proxy for controlling the Lipschitz constant of
a neural network, as it can be computed more easily. In this highly symmetric setting,
we can compare two optimal solutions:

(a) The data is fitted optimally by the function f̂d(x) = max{1 − |x|, 0}, which
attains the minimal Lipschitz constant 1. The function cannot be represented by
a ReLU network with a single hidden layer and finite weights, even in the infinite
width limit (E and Wojtowytsch, 2020a, Example 5.19). It can be represented by
a neural network with two infinitely wide hidden layers and weight decay ∼

√
d.

(b) The Barron norm/weight decay regularizer of the optimal two-layer ReLU net-
work f∗

d grows like d, while its Lipschitz constant grows like
√
d.

5. Highly localized peaks. The target function can be seen as the prototypical ex-
ample of learning functions which take values y1, . . . , yN at isolated points x1, . . . , xN
which are separated as ‘islands’ in a ‘sea’ of points xN+1, . . . , xM with labels yN+1 =
· · · = yM = 0.

6. Mollification. The infinitely wide neural networks constructed in this note can be
used to establish approximation rates in function spaces for shallow neural networks
by mollification, if the mollification width ε is optimized to balance the competition
between approximation of the target function by the infinitely wide network and
approximation of the infinitely wide network by finite neural networks.

To the best of our knowledge, this is the first time that an optimal solution for fitting
data by neural networks has been computed in dimension d > 1. For technical reasons, we
focus on the case that d is odd. The optimal radial solution can be written as a finite sum

fd(x) =

n+1

i=0

µi



Sd−1

σ

νTx− bi


dHd−1(ν), n =

d− 1

2
, 0 = b0 < · · · < bn+1 = 1

for some coefficients µi ∈ R satisfying
n

i=0 |µi| = γn ∼ 3.7d.
The article is organized as follows. In the remainder of the Introduction, we briefly

review the context of this work in the literature and the notation we will use throughout
the article. In Section 2, we give a brief introduction to the function spaces associated to
two-layer ReLU networks with a weight decay regularizer (Barron or Radon BV spaces).
Sections 3 and 4 are dedicated to the statement and proof of our main results respectively.
Applications of our results can be found in Section 5. Numerical approximations of the
optimal solutions f∗

d can be found in Section 6. We conclude the article with a brief
summary and list of open problems in Section 7.

Further numerical experiments can be found in Appendix A. Some proofs from the main
part of the article are postponed to Appendix B, while proofs of results which are known
in similar form are postponed to Appendix C. Slight extensions of the main results can be
found in Appendix D.
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1.1 Previous Work

The complexity of a neural network is often measured by the number of its non-zero coef-
ficients (weights) (Louizos et al., 2017; Srinivas et al., 2017; Gribonval et al., 2022) or by a
measure of their magnitude. From a practical perspective, both are crucial pieces of infor-
mation: a neural network with an excessive number of non-zero connections is expensive to
store and evaluate, while a network with very large coefficients is likely to depend on subtle
cancellations at training data points and unlikely to generalize well to unseen data.

Barron (1993) realized that a large class of functions F can be approximated efficiently
by neural networks with a single hidden layer and any sigmoidal activation function while
keeping the outer layer coefficients bounded. The function class is defined in terms of a
spectral criterion and diverse enough that any linear method of approximation must face
the curse of dimensionality in it. More precisely, the Kolmogorov width of the unit ball
B1 = {f ∈ F : fF ≤ 1} in F decays as

sup
dim(V )=m

dist
L2

(0,1)d

F , V

= sup

dim(V )=m
sup
f∈B1

min
v∈V

f − v
L2

(0,1)d

 ≥ c̄

d
m−1/d

for a universal constant c̄. Intuitively, this means that for any m-dimensional function space
V , there exists f ∈ F such that f can only be approximated to accuracy ∼ fFm−1/d by
elements of V . For large d, the approximation error decays extremely slowly as m increases.
The function class F is essentially tailored to neural networks with complex exponential
activation, and the main result can be understood as a statement on what we call Barron
space associated to the Heaviside activation function instead of ReLU activation.

Subsequently, function approximation by ReLU networks with a single hidden layer and
bounded coefficients in both layers was studied by Bach (2017); E et al. (2019b,d); E and
Wojtowytsch (2020a). Optimal rates of approximation were obtained by Siegel and Xu
(2019, 2021b). A spectral criterion for this scenario in terms of the Fourier transform was
developed by Klusowski and Barron (2018), and a sharp criterion in terms of the Radon
transform by Ongie et al. (2019); Parhi and Nowak (2021). A detailed study of Fourier-like
criteria in this context is given by Caragea et al. (2020).

The norm in these function spaces is related to the popular explicit ‘weight decay’
regularizer (the ℓ2-norm of the network weights). It retains significance in the context of
implicit regularization, as Chizat and Bach (2020) showed that infinitely wide two-layer
ReLU networks converge to minimum norm/maximum margin classifiers with respect to
the weight decay norm, when trained by a gradient flow optimizer for binary classification
with logistic loss.

While the structure of the function spaces has been studied and many of their functional
analytic properties are understood (E and Wojtowytsch, 2020a; Parhi and Nowak, 2021;
Siegel and Xu, 2021b,a), explicit examples remain rare. Spectral criteria have been used
to show that functions in certain smoothness classes can be expressed as infinitely wide
two-layer networks with finite weight-decay norm. E and Wojtowytsch (2022) construct a
maximum margin classifier in a simple one-dimensional scenario. A structure theorem is
given by E and Wojtowytsch (2020a) to easily demonstrate that certain functions cannot
be expressed this way. Closest to the present work are those of Hanin (2021) and Boursier
and Flammarion (2023), where the minimum norm interpolants of a finite one-dimensional
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data set are studied in slightly different settings, depending on whether the magnitude of
bias variables is penalized or not.

Much of the work on ReLU-activated two-layer networks makes heavy use of the homo-
geneity of the activation function. Two-layer neural networks with arbitrary activation are
studied e.g. in Siegel and Xu (2020); Li et al. (2020). Partial (and different) extensions to
deeper neural networks can be found e.g. by Parhi and Nowak (2022); E and Wojtowytsch
(2020b), while residual neural networks of continuous depth (‘neural ODEs’) have been
studied from this perspective by E et al. (2019a,d,c).

1.2 Notation

We denote by

A the average integral over a set A which has finite measure for a measure

µ, i.e.

A f(x) dµx = 1

µ(A)


A f(x) dµx. By dµx we mean that we integrate with respect to

the (signed) measure µ in the variable x. In this article, µ will always be a measure (often
signed), while ν denotes the exterior normal vector field on a sphere.

The natural d − 1-dimensional area (Hausdorff) measure is denoted by Hd−1. In this
article, it will always refer to the (unnormalized) uniform distribution on a d−1-dimensional
sphere.

The total variation norm of a measure µ on a measurable space X is defined as µTV =
µ+(X) + µ−(X), where µ+, µ− is the Hahn decomposition of the signed measure µ.

In the following, g is always going to be a function of one variable and f is going to
be a radially symmetric function on Rd. By an abuse of notation, we will also consider
f : [0,∞) → R defined by f(r) = f(r · e1). We denote by

cd =
|Sd−2|
|Sd−1| =

1
 1
−1(1− s2)

d−3
2 ds

a quotient related to the area of hyperspheres in dimension d and d−1, and by γn a constant
related to the approximability of the function

√
s by polynomials of degree at most n in

L∞(0, 1), which also relates to the minimal value of the weight decay regularizer for fitting
data as above. The precise definition is given in Lemma 12.

The variables d and n are always related by n = d−1
2 , i.e. d = 2n+ 1.

2. Weight Decay and Barron Spaces

In this section, we briefly review the theory of infinitely wide ReLU networks with a single
hidden layer. Function spaces for this setting have been studied under the name F1 by
Bach (2017), Barron space by E et al. (2020, 2019d,c,b), Radon-BV by Parhi and Nowak
(2022, 2021) and the convex hull of the ReLU dictionary or the variation space of the
ReLU dictionary by Siegel and Xu (2021a,c). In this note, we refer to them as Barron
spaces in reference to the seminal work of Barron (1993). Some results presented below are
extensions of known results to the case where we consider a Barron semi-norm rather than
the full Barron norm, corresponding to a weight decay regularizer which does not control
the magnitude of the biases.
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A neural network with a single hidden layer and m ∈ N neurons can be represented as

fm(x) =

m

i=1

ai σ(w
T
i x+ bi) or fm(x) =

1

m

m

i=1

ai σ(w
T
i x+ bi) (1)

where (ai, wi, bi) ∈ R×Rd×R are the weights of the neural network. For networks in which
the size of the weights is controlled, this representation can be generalized to

fµ(x) =



R×Rd×R
aσ(wTx+ b) dµ(a,w,b) or fπ(x) =



R×Rd×R
aσ(wTx+ b) dπ(a,w,b) (2)

where µ is a measure on Rd+2 and π is a probability measure on Rd+2. More generally, due
to the symmetry aσ(wTx + b) = λ


(λ−1a)σ(wTx + b)


for λ ∕= 0, µ can be taken to be a

signed measure. Finite networks are contained in the general setting by setting

µm =

m

i=1

λi δ(λ−1
i ai,wi,bi)

and πm =
1

m

m

i=1

δ(ai,wi,bi)

respectively, where the parameters λi ∕= 0 can be chosen freely for a convenient representa-
tion. The integral is guaranteed to converge if the Barron norm

fB = inf
π



Rd+2

|a| ·

|w|+ |b|


dπ : f ≡ fπ


= inf

µ



Rd+2

|a| ·

|w|+ |b|


d|µ| : f ≡ fµ


.

(3)

is finite, where |µ| = µ++µ− denotes the total variation measure of the signed measure µ =
µ+ − µ−. The infimum must be taken since the representation of a function in this fashion
is highly non-unique (E and Wojtowytsch, 2020a, Section 2.1). The two representations of
the norm coincide by (E and Wojtowytsch, 2020a, Section 2.4).

The norm in the parameter variable w is chosen dual to the norm in the data variable
x such that the inequality |wTx| ≤ |w| · |x| holds. In particular, if distances in the data
domain are measured in the ℓp-sense for p ∈ [1,∞], then distances in the parameter domain
are measured in the ℓq-sense for q = p

p−1 . For compatibility with radial symmetry, we focus

on the case p = p
p−1 = 2 in this note.

We refer to the space {f : fB < ∞} as Barron space B, or at times B(Rd) to indicate
dependence on dimension.

Due to the control over the bias, the Barron norm as defined by E et al. (2019d); E
and Wojtowytsch (2020a) is not invariant under translations in the data space, i.e. the
functions f and f(· + x̄) generally have a different norm for x̄ ∕= 0. By contrast, the
following Barron semi-norm is translation invariant and has useful properties which suffice
in many applications:

[f ]B = inf
π


1

2



Rd+2

|a|2 + |w|2 dπ : f ≡ fπ


= inf

µ


1

2



Rd+2

|a|2 + |w|2 d|µ| : f ≡ fµ


. (4)

We will address the convergence of the integrals in (2) without control over b in Proposition
1. This is more in line with the approach of Ongie et al. (2019); Parhi and Nowak (2021),
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where the magnitude of the bias is also not controlled. We opt for controlling |a|2 + |w|2
rather than |a| · |w| for convenience, but note that the classical Barron norm could be
defined in this fashion, too. The key observation is that the ReLU activation function
σ(z) = max{z, 0} is positively one-homogeneous, i.e. σ(λz) = λσ(z) for all λ > 0. In
particular

aσ(wTx+ b) = a


|w|
|a| σ


|a|
|w|w

Tx+


|a|
|w|b


,

i.e. we may normalize neurons (ai, wi, bi) to

a′i = ai


|wi|
|ai|

, w′
i =


|ai|
|wi|

wi s.t. |a′i|2 = |w′
i|2 = |ai| |wi|

without changing the output of the neural network. In particular |a|2 + |w|2 = 2|a| |w|,
indicating that we could define the Barron norm in the analogous fashion by squares. Indeed,
in the infinite limit it is even possible to assume that π is supported on the set |a| = |w| =

[f ]B. For a more technically rigorous discussion, see e.g. E and Wojtowytsch (2020a).

By a slight abuse of terminology, we will also refer to B0 as Barron space from now
on and to elements of B0 as Barron functions. If the two are to be distinguished, we call
B0 the homogeneous Barron space. Unlike the full Barron norm, the Barron semi-norm
is translation invariant and leads to spatial homogeneity. We briefly note the following
properties, which relate the Barron semi-norm and more well-established quantities.

Proposition 1. 1. If the integral in (4) is finite for π, then the integral defining fπ in
(2) exists for all x ∈ Rd if and only if it exists for x = 0. It may then be re-cast as

fπ(x) = fπ(0) +



Rd+2

a

σ(wTx+ b)− σ(b)


dπ.

This expression always converges if the integral in (4) is finite. The integral exists as a
Bochner integral with values in C0(K) for compact K ⊆ Rd or Lp(P) for a probability
distribution P on Rd+2 with finite p-th moments.

2. [f ]B is a norm on the homogeneous Barron space V0 = {f ∈ C0(Rd) : f(0) = 0, [f ]B <
∞}, which makes V0 a Banach space. Compared to classical Barron spaces, V0 ∕⊆
B(Rd).

3. [f ]B ≤ fB.

4. If f ∈ B, then f is Lipschitz-continuous and the Lipschitz-constant of f satisfies
[f ]Lip ≤ [f ]B.

All statements could be given in terms of a general signed measure µ instead of π. The
proof, along with other proofs from this section, can be found in Appendix C.

Functions in Barron spaces are defined by means of an explicit representation formula.
Paradoxically, this explicit characterization often makes it difficult to verify whether a given
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function is in Barron space. A more abstract framework was created by Ongie et al. (2019)
by the means of the Radon transform, based on the observation that

∆


m

i=1

aiσ(w
T
i ·+bi)


=

m

i=1

ai|wi| · Hd−1|Wi

D2


m

i=1

aiσ(w
T
i ·+bi)


=

m

i=1

ai|wi| ·
wi

|wi|
⊗ wi

|wi|
· Hd−1|Wi ,

i.e. the second spatial derivatives of a ReLU network with one hidden layer are superposi-
tions of measures concentrated on the hyperplanes Wi = {x : wT

i x+bi = 0}. This allows for
a characterization of Barron spaces in terms of second derivatives. The Radon transform
is used as a technical tool in order to dualize from hyperplanes to points. This convenient
characterization allows the construction of some examples of functions in Barron space.

Example 1. 1. Assume that f is a Lipschitz-continuous function and that the (possibly
non-integer) power (−∆)(d+1)/2f of the Laplacian in the distributional sense exists as
a measure. Then

[f ]B(Rd) ≤
1

2d−1πd/2−1Γ(d/2)
(−∆)(d+1)/2fTV ,

where  · TV denotes the total variation norm of ∆f (Ongie et al., 2019, Proposition
3).

2. If d is odd, the power of the Laplacian is integer. In particular, if f belongs to the
Sobolev space W d+1,1(Rd) ⊆ Cd+1(Rd) of functions whose first d + 1 (weak) partial
derivatives are L1-integrable, then f ∈ B(Rd) and

[f ]B ≤ cdfW d+1,1 .

for some constant cd > 0, which depends on the exact choice of the norm on W d+1,1.
In particular C∞

c (Rd) ⊆ B(Rd) (Ongie et al., 2019, Corollary 1).

3. If d ≥ 3 is an odd integer and fd,k : Rd → R is the radial bump function given by

fd,k(x) =


1− |x|2

k |x| ≤ 1

0 else
,

then fd,k ∈ B0(Rd) if k ≥ d+1
2 . For kd = d+1

2 + 2, the norm bound [fd,kd ]B(Rd) ≤
2d(d+ 5) holds according to (Ongie et al., 2019, Example 3).

Ongie et al. (2019) also claim a stronger version of the statement, including an if and
only if condition for k and a comparable lower bound for [fd,kd ]B(Rd). Those claims
are based on an error in the proof of (Ongie et al., 2019, Proposition 15), where
the erroneous claim is made that if


Rd |φ| dx = 1, then the integral of φ over any

hyperplane

H |φ| dHd−1 is bounded from above by 1.
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Based on the same intuition, we point out two observations. The first demonstrates that
the singular set Σ of a Barron function (i.e. the set where the functions is not differentiable)
is ‘straight’ and lower dimensional. This is a stronger version of Rademacher’s theorem,
which states that the singular set of a Lipschitz function is Lebesgue null, in the context of
Barron spaces. The following statement has the stronger implication that Σ is contained in
a countable union of affine subspaces of Rd and therefore has Hausdorff dimension ≤ d− 1.

Proposition 2. (E and Wojtowytsch, 2020a) Any function f ∈ B(Rd) can be written as a
countable sum f =

∞
i=0 fi where

1. f0 ∈ B(Rd) is C1-smooth,

2. fi(x) = gi(Pix+ bi) where

• Pi : Rd → Rki is an orthogonal projection for 1 ≤ ki ≤ d (i.e. PiP
T
i = Ik×k)

• gi ∈ B(Rki) is C1-smooth except at 0 ∈ Rki.

The fact that the singular set is straight has two immediate implications.

Corollary 3. 1. If f ∈ B(Rd) is radially symmetric, then f ∈ C1(Rd \ {0}).

2. If φ : Rd → Rd is a diffeomorphism such that f ∈ B(Rd) ⇒ f ◦ φ ∈ B(Rd), then φ is
an affine linear map (E and Wojtowytsch, 2020a, Theorem 5.18).

A brief inspection of the proof of (E and Wojtowytsch, 2020a, Theorem 5.18) reveals
that Proposition 2 and Corollary 3 remain valid for B0(Rd). A stronger result on radial
Barron functions is proved below in Lemma 10. Secondly, we recall a characterization of
one-dimensional Barron spaces, which is essentially the simpler one-dimensional case of
the Radon transform construction. A similar statement can also be found e.g. in (E and
Wojtowytsch, 2020a, Example 4.1) and (Li et al., 2020).

Proposition 4. φ ∈ B0(R) if and only if there exists a finite signed measure µ such that
φ′′ = µ, i.e. φ′(s) = µ


(−∞, s]


for all s ∈ R such that µ({s}) = 0 (in particular, all but

countably many). For all such φ and any a ∈ R, we can write

φ(z) = φ(a) + φ′(a)

σ(x− a)− σ(a− x)


+

 ∞

a
φ′′(s)σ(z − s) ds+

 a

−∞
φ′′(s)σ(s− z) ds.

Furthermore

[φ]B ≤ φ′′TV + 2 inf
a∈R

inf
v∈∂φ(a)

|v|

where

∂af = conv


v ∈ R : ∃ xn → a s.t.

f(xn)− f(a)

xn − a
→ v



is the convex hull of the set of approximate derivatives. Conversely

max


φ′′TV , sup

a∈R
inf

v∈∂φ(a)
|v|


≤ [φ]B.
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We believe that the upper bound is, in fact an identity. We now recall a property of
Barron spaces B0.

Proposition 5 (Direct approximation theorem). For every f ∈ B0 and every probability
measure P on Rd there exists fm as in (1) and c > 0 such that

f − fm − c2L2(P) ≤
[f ]2B
m

max
|ν|≤1



Rd

|νTx|2 dP

and

|ai| = |wi| =


fB
m

or |ai| = |wi| =


fB,

depending on the normalization in (1).

For the sake of completeness, we sketch a probablistic proof in Appendix C. This for-
mulation of the direct approximation theorem improves on known results in two major
ways:

1. The dependence on the data distribution P is only through the ‘projected second
moments’ M2,proj(P) := max|w|≤1


Rd |wTx|2 dP rather than the full second moments

M2(P) :=

Rd |x|2 dP. It is easy to see that

M2,proj(P) ≤ M2(P) =
d

i=1



Rd

|eTi x|2 dP ≤ d ·M2,proj(P)

for any probability measure P on Rd, and that equality is attained for any measure P
which is the product of d one-dimensional probability measures, e.g. a standard normal
distribution. The constant in the bound may therefore be significantly smaller in high
dimension.

2. The bound depends on the Barron semi-norm, but not the full Barron norm.

While the constants are improved in this formulation compared to e.g. E et al. (2019b,d);
E and Wojtowytsch (2020a), the result is not expected to be sharp in terms of the rate which
is achieved. An improvement from m−1/2 to m−1/2−3/2d in the classical setting was found
by Siegel and Xu (2021b) at the cost of a more involved proof.

Many of the results above are somewhat specific to ReLU activation as the proofs either
use positive homogeneity or the property that σ′′ = δ. Both are shared by leaky ReLU
activation.

Remark 6. Consider the leaky ReLU activation function σε(z) = max{εz, z} for ε ∈ (0, 1)
in addition to the classical ReLU activation σ = σ0. Since

σε(z) = σ(z)− ε σ(−z) and σ(z) =
1

1− ε2
σε(z) +

ε

1− ε2
σε(−z), (5)

any function which can be represented as a superposition of ReLUs can be represented as a
superposition of leaky ReLUs and vice versa. The entire construction of Barron space goes

10
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through as above, leading to two semi-norms [·]B and [·]ε on the same function class such
that [f ]ε ≤ (1 + ε)[f ]B and [f ]B ≤ 1+ε

1−ε2
[f ]ε = 1

1−ε [f ]ε by the explicit representation (5).
More compactly, we write this as

(1− ε) [f ]B ≤ [f ]ε ≤ (1 + ε) [f ]B ∀ f ∈ B0. (6)

Using positive one-homogeneity, it can be seen that the coefficients in the representations
(5) are in fact optimal and thus that (6) is sharp. The norms induced on Barron space
by ReLU and leaky ReLU activation are therefore equivalent, and all properties mentioned
above survive if σ is replaced by σε.

The more subtle statements which we prove below do not survive passing to an equivalent
norm. When minimizing [f ]ε under the constraints f(xi) = yi, the set of solutions Mε ⊆ B0

will generally depend on ε ∈ [0, 1). For example, consider the one-dimensional data set with
two points (x0, y0) = (0, 0) and (x1, y1) = (1, 1), which is fit exactly by σε for any ε. The
solution σε is norm-minimizing for [·]ε, but not for [·]B, where the norm-inequality is sharp
(and vice versa).

The equivalence of norms estimate degenerates at ε = 1, where the activation would
become linear. If ε < 0, a similar construction holds unless ε = −1, where any σε-Barron
function f would have to satisfy limt→∞ f(tx) = limt→−∞ f(tx).

We are finally ready to state (and prove) the main results of this article rigorously.

3. Statements of Main Results

Theorem 7. For every odd d ∈ N, there exists a unique radial function f∗
d ∈ B(Rd) such

that

f∗
d ∈ argmin

f∈F
[f ]B, F :=


f ∈ C(Rd) : f(0) = 1 and f ≡ 0 on Rd \B1(0)


.

Furthermore

1. f∗
d ∈ C

d−1
2 (Rd \ {0}).

2. The radial profile f̂∗
d : [0,∞) → R, f̂∗

d (r) = f∗
d (r · e1) is strictly monotone decreasing

in r in (0, 1). In particular, 0 ≤ f∗
d ≤ 1.

3. There exists rd > 0 such that f̂∗
d is a linear, strictly monotone decreasing function of

r on [0, rd].

As d → ∞, the norm of f∗
d increases linearly as

lim
d→∞, d odd

[f∗
d ]B(Rd)

d
= γ ≈ 3.6,

where γ is the inverse of the Bernstein constant.

The Bernstein constant is a quantity in classical numerical analysis and approximation
theory arising when approximating the function h(x) = |x| by polynomials in L∞(−1, 1),

11
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see e.g. (Trefethen, 2019). From the proof of Theorem 7, we obtain an algorithm to compute
f∗
d to arbitrary precision, which is implemented in Section 6.

The functions f∗
d are radially symmetric, compactly supported and non-negative. In

particular, they can serve as mollifiers to easily prove quantitative approximation results
for two-layer ReLU networks in general function classes. In an upcoming companion article
(Park et al., 2023), we prove that they are achieved as (radial averages of) empirical risk
minimizers with a weight decay regularizer.

Note that we do not exclude the possibility that other minimizers exist which are not
radially symmetric. From direct arguments, we can only conclude that the set of mini-
mizers is convex and invariant under coordinate rotations. The existence of at least one
radially symmetric minimizer follows relatively easily, while its uniqueness is established
below by construction. For any minimizer f̃d ∈ argminf∈F [f ]B, which may not not be
radially symmetric, the radial average

f̃d,av(x) =



SO(d)
f̃d(Ox)dHO

is a radially symmetric minimizer, i.e. f̃d,av ≡ f∗
d . Knowledge of the unique minimizer after

radial averaging allows us to study optimization algorithms for implicit bias and finding
global optima. This line of inquiry is pursued in upcoming work (Park et al., 2023).

We find it easier to deal with odd dimensions, as the function (1−s2)
d−1
2 is a polynomial

in this case. This is analogous to the observations of Ongie et al. (2019). We remark that,
if f : RD → R is a Barron function and d ≤ D, then

f : Rd → R, f(x) = f(x1, . . . , xd, 0, . . . , 0)

is also a Barron function and [ f ]B(Rd) ≤ [f ]B(RD), so the limit

lim
d→∞

inf

[f ]B(Rd) : f(0) = 1 and f ≡ 0 on Rd \B1(0)


≈ 3.6

remains valid if even dimensions are considered, as can be seen when sandwiching an even
integer d between d− 1 and d+ 1.

Using a reflection argument, any radially symmetric Barron function f : Rd → R can
be written as

f(x) = f(0) +



[0,∞)



Sd−1

σ(νTx− b)dHd−1 dµb (7)

for some measure µ on the space of biases. In this context, Theorem 7 can be understood as
a finite representer theorem, since the proof shows precisely that there exist n+2 = d+3

2 ∈ N
weights µ0, . . . , µn+1 and biases 0 = b0 < · · · < bn+1 = 1 such that

f∗
d (x) = 1 +

n+1

i=0

µi



Sd−1

σ(νTx− bi)dHd−1.

Finally, we note that the methods in the proof of Theorem 7 can also be used to show the
following extension.

12
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Theorem 8. For every ε ∈ (0, 1) and every odd d ∈ N, there exists a unique radial function
f∗
d,ε ∈ B(Rd) which minimizes the Barron semi-norm in the class

f∗
d,ε ∈ argmin

f∈Fε

[f ]B, Fε :=

f ∈ C(Rd) : f ≡ 1 on Bε(0) and f ≡ 0 on Rd \B1(0)


.

Furthermore

1. f∗
d,ε ∈ C

d−1
2 (Rd).

2. The radial profile f̂∗
d,ε : [0,∞) → R, f̂∗

d,ε(r) = f∗
d,ε(r·e1) is strictly monotone decreasing

on [ε, 1]. In particular, 0 ≤ f∗
d,ε ≤ 1.

In this case, the Barron norm grows exponentially in the dimension d. More precisely, there
exists D ∈ N independent of ε > 0 such that

f∗
d,εB(Rd) ≥

ε2
√
d

(1− ε2)
d+1
2

if d ≥ D.

We thus observe that the problem of approximating compactly supported bump func-
tions which are constant in a neighbourhood of the origin by shallow neural networks suffers
from the curse of dimensionality. We will argue below that this is not the case for ReLU
networks with at least two hidden layers.

Remark 9. Minimum norm interpolants in homogeneous spaces have been characterized
by different means for general finite data sets by Savarese et al. (2019) in one dimension
and by Boursier and Flammarion (2023) for the full Barron norm. Ardeshir et al. (2023)
show that the minimum norm solution for fitting labels yi ∈ {−1, 1} on the vertices of a
hypercube {x1, . . . , x2d} are generally not ridge functions, even if the data can be fit by a
ridge function.

4. Proofs of the Main Results

We begin by stating three lemmas in this section, which are used to prove the main theorems.
The proofs are given in Appendix B. By a slight abuse of notation, we denote f(r) = f(re1)
for a radially symmetric function f : Rd → R and by f ′ the radial derivative of f . We first
note a general result on radially symmetric Barron functions.

Lemma 10. Let f : Rd → R be a radially symmetric Barron function and d odd. Then

1. as a function of r, f is n := d−1
2 times continuously differentiable in Rd \ {0}. The

n+1-th radial derivative is bounded and measurable, and the n+2-th radial derivative
in the distributional sense is a bounded (Radon) measure.

2. for every ε > 0, there exists D ∈ N such that the Lipschitz bound

[f ]Lip ≤
1 + ε√
2πd

[f ]B0

holds for every d ≥ D.
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The following Lemma allows us to express radial symmetry and compact support for
Barron functions in odd dimensions in a one-dimensional fashion. It is based on an exchange
in the order of integration in (7).

Lemma 11. Assume that g ∈ B0(R) is a one-dimensional Barron function such that g(0) =
1, g ≡ 0 outside of (−1, 1) and

 1

−1
g(s) s2k ds = 0 for k = 1, . . . ,

d− 3

2
. (8)

Then the function f : Rd → R given by

f(x) =

 1
−1(1− s2)

d−3
2 g(|x|s) ds

 1
−1(1− s2)

d−3
2 ds

(9)

satisfies the following properties:

1. f(0) = 1,

2. f(x) = 0 if |x| ≥ 1,

3. f is radially symmetric, and

4. [f ]B(Rd) ≤ [g]B(R).

Conversely, if f : Rd → R is a radially symmetric Barron function which satisfies f(0) = 1
and f ≡ 0 on Rd\B1(0), then there exists g as above such that (9) holds, which is additionally
an even function and satisfies [f ]B(Rd) = [g]B(R).

Furthermore f ≡ 1 in Bε(0) if and only if g ≡ 1 in (−ε, ε) for the even representative
of the function class g.

We will show that such a Barron function g indeed exists for every odd d ≥ 3 and
compute the precise asymptotic growth of [g]B as d → ∞. The following Lemma is the
main technical tool in our proof.

Lemma 12. For n ∈ N, set

γn := min


µTV :

 1

0
s dµs = 1,

 1

0
s2k dµs = 0 for 0 ≤ k ≤ n


.

Then limn→∞
γn
n = γ ≈ 3.57 is the inverse of the Bernstein constant. The minimum is

attained by a unique measure µ =
n+1

i=0 µiδsi where

1. 0 = s0 < s1 < · · · < sn+1 = 1 are the n+ 2 distinct points in [0, 1] at which P (s)− s
is extremal in [0, 1], where P is the optimal even polynomial approximator of degree
≤ 2n for g(s) = s in L∞(0, 1).
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2. µ0, . . . , µn+1 ∈ R are parameters satisfying the alternation criterion µi+1µi < 0 for
i = 0, . . . , n and the generalized Vandermonde system





s0 s1 . . . sn+1

1 1 . . . 1
s20 s21 . . . s2n+1

s40 s41 . . . s4n+1
...

...
. . .

...
s2n0 s2n1 . . . s2nn+1








µ0
...

µn+1



 =





1
0
...
0




.

We are finally prepared to prove our main results. We begin with Theorem 7.

Proof Step 1. In this step, we construct g and f using Lemmas 11 and 12. Let d ≥ 3 be
an odd integer and n = d−1

2 . Let g : [0,∞) → R be the unique function such that

g(0) = 0, lim
z↗−1

g′(z) = 0, g′′ = µ,

in the distributional sense, where µ is the even reflection of the measure µn+1 described
in Lemma 12, i.e. µ(U) = µn+1(U ∩ [0,∞)) + µn+1(−U ∩ [0,∞)). Note that the origin is
counted twice. By construction, g is piecewise linear, g ≡ 0 on (−1, 1) and

g(s) =

 s

−1
(z − s) dµz ∀ s ≥ −1.

In particular, g(0) = 1 and g(s) = 0 for all s ≥ 1 due to the moment conditions

 1

0
1 dµs = 0,

 1

0
s dµs = 1.

Since g′′ = µ is even and g(−1) = g(1), we find that g is even. Due to Proposition 4, we
observe that [g]B = µTV = 2γn+1. Integrating by parts twice, we realize that

 1

−1
g(s) s2k ds =

 r

−r
g(s) s2k ds =

1

(2k + 2)(2k + 1)

 r

−r
g′′(s) s2k+2 ds = 0 (10)

for r > 1 and k = 0, . . . , n − 1 = d−3
2 , since g ≡ g′ ≡ 0 in a neighbourhood of r, so the

boundary terms vanish. The integration by parts is well-established for smooth functions
and can be justified in the piecewise case by mollification.

In particular, g satisfies the conditions of Lemma 11 and induces an admissible radially
symmetric function f ∈ B0(Rd).

Step 2. Assume for now that there exists a minimizer of the Barron semi-norm in F .
Since the Barron semi-norm is a a convex function on the convex function class F , and since
furthermore both F and [·]B are invariant under coordinate rotations, we note that the set
of minimal semi-norm elements in F is both convex and rotation invariant. In particular

f̂ ∈ argmin
f∈F

[f ]B ⇒ f̂O ∈ argmin
f∈F

[f ]B where f̂O(x) =



SO(d)
f̂(Ox) dHO
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is the average of f̂ with respect to all rotations. The measure H is the Haar measure on the
group SO(d), i.e. the d(d− 1)/2-dimensional Hausdorff measure induced by the Frobenius
norm on the space of d× d-matrices.

Thus, if a minimizer exists, then there is also a radially symmetric minimizer. In this
step, we illustrate that the function f = f∗

d associated to g as in Step 1 is in fact optimal.
In particular, we can conclude from the proof below that a minimizer does exist.

It is easy to see that (10) is both necessary and sufficient to imply the moment conditions
for g in Lemma 11. In particular

inf
f∈F

[f ]B = inf


[g]B : g(0) = 1, g ≡ 0 on [1,∞), g even and

 1

0
g′′(s) s2k ds = 0 for 0 ≤ k ≤ d− 1

2


,

with corresponding minimizers. As g′′ = µ is the unique solution to the minimization
problem on the right, f is the unique radial minimizer on the left.

In particular

lim
d→∞,d odd

[f∗
d ]B
d

= lim
d→∞,d odd

2γ(d−1)/2

d
= γ ≤ 3.6.

Step 3. We note that g is linear on the interval [0, s1], where s1 is as in Lemma 12. Thus

f(x) = cd

 1

−1
g(|x|s)


1− s2

 d−3
2 ds = cd

 1

−1


1− µ0|x| |s|


1− s2

 d−3
2 ds

= 1− |x|
µ0

 1
0 s


1− s2

 d−3
2 ds

 1
0


1− s2

 d−3
2 ds

is linear by the origin.

Step 4. In this step, we show that f is strictly decreasing in radial direction inside the
unit ball. As noted in Corollary 3, the function f is C1-smooth away at the origin. Since
f(0) = 1 and f(e1) = 0, it suffices to show that ∂rf(re1) ∕= 0 for r ∈ (0, 1). We compute

f(re1) = cd

 1

−1
g(rs)


1− s2

 d−3
2 ds, ∂rf(re1) = cd

 1

−1
g′(rs) s


1− s2

 d−3
2 ds.

We make the following claim: If g is an even piecewise linear function on [−1, 1] with at
most n+ 1 segments in [0, 1] and k ≤ n− 1, then the function

r →
 1

−1
g′(rs) s


1− s2

k
ds

has at most n− 2− k zeros in (0, 1).

To prove the claim, start with k = 0. Then

 1

−1
g′(rs) s ds =

1

r2

 1

−1
g′(rs) rs r ds =

2

r2

 r

0
g′(z) z dz.
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As g′ is constant in the interval [0, s1] by the origin, ∂rf is constant (and non-zero) in [0, s1],
meaning that ∂rf cannot have a zero in [0, s1]. In any interval (si, si+1) where g

′ is constant,
the function

r →
 r

0
g′(z) z dz =

 si

0
g′(z) z dz +

 r

si

g′(z) z dz

is monotone, since g′(z) · z does not change sign. In particular:

1. There is no zero in the first interval [s0, s1] = [0, s1].

2. There is at most one zero in [si, si+1].

3. The zero in the final interval [sn, sn+1] = [sn, 1] is attained at s = 1.

Thus there are at most n−2 zeros in (0, 1), which proves the claim for k = 0. Now consider
k ≥ 1. Note that
 1

0
g′(rs) s(1−s2)k ds = r−(2+k)

 1

0
g′(rs) rs


r2−(rs)2

k
r ds = r−(2+k)

 r

0
g′(z)


r2−z2

k
dz

In particular, the term on the left is zero if and only if the integral on the right is zero. If
there are two points r1, r2 on the right where the integral vanishes (and k ≥ 1), then by
Rolle’s theorem in between there exists a point r ∈ (r1, r2) at which

0 = 2r

 r

0
g′(z) z


r2 − z2

k−1
dz = rk−2

 1

−1
g′(rs) s(1− s2)k−1 ds

The integral also vanishes at zero, where we are integrating over the empty set. We note
that for any k ≥ 0 the integral

 1
−1 g

′(rs) s(1 − s2) ds vanishes at r = 0 and r = 1. If, for
k ≥ 1 it vanishes at N interior points, then for k − 1 it must vanish at N + 1 points: 0,
1, and at least once in each interval. In particular, for k ≥ 1, there are at most n − 2 − k
interior vanishing points.

Step 5. We finally note that the Lipschitz bound follows directly from the Barron norm
bound on f∗

d and Lemma 10.

Example 2. Let us consider the case d = 3, i.e. n = d−1
2 = 1. The n + 2 = 3 points

s0, s1, s2 are given by the equi-oscillating points of the best approximation of the function
f(s) = s on [0, 1] by elements of the space spanned by {s0, s2, . . . , s2n} = {1, s2}.

The best approximation of s by even quadratic polynomials in L∞(0, 1) is P (s) = s2+ 1
8 ,

which attains maximal distance at s = 0, 1/2, 1. This can easily be verified as P (s)− s is a
polynomial of degree 2 inside (0, 1), so if P (0) = P (1), then P (s) = α+ β(s− 1/2)2, so the
most distant points are in {0, 1/2, 1}. By Kolmogorov’s equi-oscillation theorem, all three
are points of largest error. It is now easy to solve for the coefficients of P .

We can find the measure µ = µ0δ0 + µ1δ1/2 + µ2δ1 for the second derivative g′′ = µ by
solving the linear system of moment conditions




1 1 1
0 1/2 1
0 1/4 1








µ0

µ1

µ2



 =




0
1
0



 ⇔




µ0

µ1

µ2



 =




−3
4
−1



 . (11)
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So g is the even continuous piecewise linear function satisfying g(0) = 1 and

g′(s) =






µ0 s ∈ (0, 1/2)

µ0 + µ1 s ∈ (1/2, 1)

µ0 + µ1 + µ2 s > 1

⇒ g(s) =






1− 3s s ∈ [0, 1/2]

−1 + s s ∈ [1/2, 1]

0 s ≥ 1.

Finally, since d−3
2 = 0, we find that (1− s2)

d−3
2 ≡ 1 and thus

f(re1) =

 1
−1 g(rs) ds 1

−1 1 ds
=

 1

0
g(rs) ds =

1

r

 r

0
g(s) ds =

1

r






r − 3
2r

2 0 ≤ r ≤ 1/2
r2

2 − r + 1
2 1/2 ≤ r ≤ 1

0 r ≥ 1

=






1− 3
2r 0 ≤ r ≤ 1/2

r
2 − 1 + 1

2r 1/2 ≤ r ≤ 1

0 r ≥ 1

.

In particular, we observe that f ≥ 0 and that f ∈ C1(0,∞). It is easy to see that the first
derivative of f

f ′(r) =
1

2


−3 · χ(0,1/2](r) +


1− 1

r2


· χ(1/2,1](r)



is a continuous function, the second

f ′′(r) =
1

r3
· χ(1/2,1)

is a bounded and measurable function, and the third (distributional) derivative

f ′′′(r) = 8 · δ1/2 −
3

r4
· L|(1/2,1) − δ1

is a finite measure, where δx denotes a Dirac delta located at the point x and LU denotes
the one-dimensional Lebesgue measure of the open set U .

We now give the proof of Theorem 8.
Proof The existence of a radial minimizer f∗

d,ε is proved as in Theorem 7. By Lemma 10, we

find that f∗
d,ε ∈ C

d−1
2 (Rd \ {0}), and since f∗

d,ε is constant in a neighbourhood of the origin,

we find that f∗
d,ε ∈ C

d−1
2 (Rd). The uniqueness follows as in Theorem 7 by considering the

optimal measure µ on [ε, 1] satisfying the moment conditions, using again Lemma 11. The
main difference lies in the greater ability to uniformly approximate the function f(s) = s
by even polynomials on [ε, 1] compared to [0, 1].

We claim the following: Let ε > 0, n ∈ N and µn a measure on [ε, 1] such that

 1

ε
s dµn = 1,

 1

ε
s2k dµn = 0 ∀ k = 0, . . . , n.

Then for every c < 1 there exists N ∈ N independent of ε such that

µn ≥ c
ε2
√
πn

(1− ε2)n+1
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if n ≥ N .
The claim is proved in Appendix B. Inserting the lower bound in (21), the statement is

proved.

5. Applications

5.1 Fitting Values on a Finite Data Set

Let (xi, yi)
N
i=1 be a finite data set in Rd × R. For each i, define ri = minj ∕=i |xj − xi| to be

the minimal distance between the point xi and the closest data point to it. Then

f(x) =

N

i=1

yi f
∗
d


x− xi
ri



is a Barron function such that

1. f(xi) = yi for all i and

2. fB ≤ 2γ(d+1)/2

N
i=1

|yi|
ri
.

In most practical data sets, the minimum ℓ2-distance between data points is lower
bounded as Ω(1) or even Ω(

√
d), meaning that the Barron norm only grows as ∼ dN or

even
√
dN . Using the direct approximation theorem for Barron functions (Proposition 5)

in L2(Pn) for Pn = 1
n

n
i=1 δxi , for every m ∈ N there exists a shallow neural network fm

with m neurons (and one constant shift) such that

1

n

n

i=1

f(xi)− yi
2 ≤

f2B max|ν|=1 〈
n

i=1(xi − x̄), ν〉2

m

where x̄ = 1
n

n
i=1 xi. Often, the labels y lie in a bounded set, at least with high probabil-

ity. The projected and centered second moments may well be independent of the ambient
dimension d, leading to a realistic, even somewhat pessimistic, expectation that

Lλ(a,W, b) =
1

n

n

i=1

f(a,W,b)(xi)− yi
2 + λ

m

i=1


a2i + |wi|2ℓ2


≲ d2n2

m
+ λdn

for data sets which do not heavily concentrate at a single point or exhibit heavy tail behavior.
While the data can generally be fit exactly if m > n as explained by Llanas and Sainz (2006)
this estimate also controls the size of the weights of the neural network needed.

Similarly, this estimate can be used to bound the additional size of the Barron norm
which is required to fit values y′i = yi + ε, assuming that the Barron norm required to fit yi
is already known. In particular, if the labels are perturbed slightly, it remains possible to fit
these by f̃ = f∗+

n
i=1 εi f

∗
d ((x−xi)/ri) where ri = minj ∕=i |xi−xj |. The perturbed function

f̃ coincides with the true target function f∗ except on
n

i=1Bri(xi) and only exceeds its
Barron norm by a controlled amount [f∗

d ]B
n

i=1
εi
ri
. Bartlett et al. (2020) and Kornowski

et al. (2023) study the situation of benign overfitting where a learned model generalizes well
despite fitting noisy labels perfectly see also (Bubeck and Sellke, 2021) for a link between
overparametrization and stable interpolation.
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5.2 Mollification and Density

Since f∗
d is a compactly supported, non-negative function, it can serve as a mollifier. Namely,

for ε > 0 and u ∈ L1
loc(Rd), denote

ηε(z) =
f∗
d (z/ε)

f∗
dL1(Rd)ε

d
, uε(x) = (u ∗ ηε)(x) =



Rd

u(z) ηε(x− z) dz.

It is well-known that uε → u in L1(K) for any compact set K ⊆ Rd (Dobrowolski, 2010,
Lemma 4.22). In many situations, rates can be obtained, either in the L1-topology or a
stronger topology, under the assumption that u lies in a space of more regular functions
(e.g. a Hölder or Sobolev space). We consider the following scenario:

Assume that u ∈ X, where X ⊆ L1(Rd) is a space of functions u : Rd → R for which
it is known that uε − uL2(U) ≤ CuXεα for a given domain U ⊆ Rd and some universal
constants C,α > 0 (which may depend on U). If u is naturally defined only on U and not
the entire space, extension theorems can often be used to extend u in the same regularity
class, see e.g. (Dobrowolski, 2010, Chapter 6).

Note furthermore that uε is a continuous superposition of Barron functions in x. Since
B0 is a Banach space, uε is a Barron function with norm at most

[uε]B ≤ uL1(Rd)ηεB =
uL1(Rd) [f

∗
d ]B

f∗
dL1(Rd) ε

d+1
.

In particular, due to the direct approximation theorem for Barron functions (Proposition
5), there exists a neural network fm with one hidden layer, ReLU activation, m neurons
(and an affine shift) such that

fm − uεL2(U) ≤ [uε]B meas(U) diam(U)m−1/2

and thus

fm−uL2(U) ≤ fm−uεL2(U)+uε−uL2(U) ≤
uL1(Rd) [f

∗
d ]B diam(U)meas(U)

f∗
dL1(Rd) ε

d+1m1/2
+CuXεα

Balancing the scaling of terms ε−(d+1)m−1/2 = εα, we find that it is optimal to choose

ε ∼ m
− 1

2(d+1+α) , which leads to an approximation order of εα ∼ m
− α

2(d+1+α) . We note that
not only the rate, but also the constants exhibit the curse of dimensionality. Observe that
it is generally impossible to approximate functions in classical function spaces by functions
of low norm from any function class in which the unit ball has low Rademacher complexity,
so the curse of dimensionality cannot be avoided here (E and Wojtowytsch, 2021).

Since f∗
d ≤ 1 and f∗

d ≡ 0 outside the unit ball, we find that f∗
dL1 ≤ ωd ∼ 1√

πd


2πe
d

d/2
.

The true L1-norm is likely even much smaller, as f∗
d appears to decay rapidly close to the

unit sphere. Nevertheless, we find this an easy way to obtain an explicit rate with little
effort.

20



Optimal Bump Functions for Shallow ReLU networks

Example 3. If X is the space of Lipschitz-continuous functions on Rd, then the approxi-
mation property holds as

uε(x)− u(x)
 =




Rd


u(z)− u(x)


η(x− z) dz

 ≤


Bε(0)
ηε(z)|u(x+ z)− u(x)| dz

≤ [u]Lip

 ε
0 ηε(r) r

d dr ε
0 ηε(r) rd−1 dr

≤ [u]Lipε.

The conditions above are therefore met with α = 1.

5.3 Depth Separation

We have seen that any function which satisfies f ≡ 1 in Bε(0) and f ≡ 0 outside of B1(0)
has Barron semi-norm which is exponentially large in the dimension d of the data space (for
fixed ε ∈ (0, 1)).

By comparison, the function

f(x) =






1 |x| ≤ ε

1− |x|−ε
1−ε ε ≤ |x| ≤ 1

0 |x| ≥ 1

can be represented as the composition f = f1 ◦ f2 of two Barron functions f2 : Rd → R and
f1 : R → R

f2(x) =
|x|− ε

1− ε
, f1(z) = max


{0,min{1− z, 1}


= σ(1− z)− σ(−z)

with norm

[f2]B =
1

1− ε


Sd−1 1 dHd−1


Sd−1 σ(ν1) dHd−1

ν

∼ 2
√
d

1− ε
, [f1]B = 2.

The second norm estimate be easily obtained by Proposition 4, whereas the second can
be obtained as in the second step in the proof of 10 in Appendix B—see also (E and
Wojtowytsch, 2020a, Section 4).

In particular, by the direct approximation theorem for Barron functions (Proposition 5),
it is possible to approximate f2 with parameters whose magnitude does not exceed C(1 −
ε)d−1/2. When written as a neural network with two hidden layers, the initial linear layer
of f1 and terminal linear layer of f2 are concatenated into a single linear map. Balancing
the magnitude of coefficients equally over all layers, we find that the parameters scale only
like d1/6(1− ε)−1/3, so the weight decay regularizer grows as d1/3(1− ε)−2/3. Observe that
weight decay does not induce a norm for deeper ReLU networks due to the mismatch in
homogeneities.

Theorem 8 thus serves to illustrate the following depth separation phenomenon: A
function f : Rd → R which takes values 1 on Bε(0) and 0 on Rd \ B1(0) is much easier
to approximate by ReLU networks with two hidden layers than with one. While depth
separation phenomena are well established by Eldan and Shamir (2016); Telgarsky (2016);
Safran and Shamir (2017), this is a particularly easy criterion. The target function is neither
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highly oscillatory nor discontinuous as the data can be fit with Lipschitz-constant (1−ε)−1.
The fact that compositions of Barron functions correspond to certain neural networks with
two hidden layers has been observed e.g. by E and Wojtowytsch (2020a); Parhi and Nowak
(2022). For further observations on the occurrence or non-occurrence of depth separation
phenomena, see also Safran et al. (2019); Safran and Lee (2022). In particular, Safran
et al. (2019); Venturi et al. (2022) indicate that depth separation depends intricately on
how separation is defined and measured.

On the other hand, the result is a weaker version of a depth separations statement
than others. We do not claim that the number of neurons required to approximate such a
function f to a certain accuracy grows exponentially in dimension, but rather that either
the number of neurons or the magnitude of the parameters does. From a practical point of
view, both are prohibitive.

6. Finding Optimal Bump Functions

In this section, we compute numerical approximations of the optimal bump functions which
were constructed in Theorem 7 for different odd dimensions d ∈ N beyond the case d = 3
considered in Example 2. As previously, denote n = d−1

2 , i.e. d = 2n+1. For simplicity, we
exploit that three tasks are equivalent: Approximating |s| in L∞(−1, 1) by polynomials of
degree at most 2n (or 2n + 1), approximating

√
s in L∞(0, 1) by polynomials of degree at

most n, and approximating s in L∞(0, 1) by even polynomials of degree 2n. We proceed in
three steps:

1. Find the optimal approximation of s →
√
s by polynomials of degree n in L∞(0, 1),

and find the n+2 points t0, . . . , tn+1 at which the error is maximal. Take the optimal
points si = t2i for the approximation of f(s) = s by even polynomials.

2. Solve the linear system (19) to obtain the measure µ =
n+1

i=0 µiδsi . Compute the
piecewise linear function g by g′′ = µ in (0, 1], g(0) = 1 and g′(0) = µ0.

3. Obtain f from g by numerically integrating (9).

In our implementation, the first step is solved by the Remez algorithm (Trefethen, 2019):

(i) Initialize s0, . . . , sn+1 ⊆ [0, 1], e.g. as equi-distant points such that s0 = 0 and s1 = 1.

(ii) Solve the system
n

j=0 αjs
j
i =

√
s+ (−1)ie, 0 ≤ i ≤ n+ 1 for the coefficients αj and

the equi-oscillation parameter e.

(iii) Update s0, . . . , sn+1 such that s0 = 0, sn+1 = 1 and for i = 1, . . . , n, si is a point at
which the unsigned error function

√
s−

n
j=0 αjs

j has a local extremum.

(iv) Iterate (ii) and (iii) until after the final update we have approximately reached equi-
oscillating points of largest error:

max0≤i≤n+1


√
si −

n
j=0 αjs

j
i



min0≤i≤n+1


√
si −

n
j=0 αjs

j
i


< 1.001.
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We solve the linear system in step 2 in the iteration scheme by LU factorization. The
non-linear system is solved by two nested interval constructions:

• Given 0 = s0 < · · · < sn+1 = 1 such that
√
si−

n
j=0 αjs

j
i = (−1)ie, we conclude that

for all i = 0, . . . , n, there exists ti ∈ (sj , sj+1) such that

√
ti −

n

j=0

αjt
j
i = 0, i = 0, . . . , n

by the Intermediate Value Theorem. In particular, the n+1 points 0 < t0 < · · · < tn <
1 are distinct and ordered. We approximate ti by the bisection method to accuracy
< 10−12. Note that e ∕= 0, since the approximating polynomial cannot match the
objective function at n+ 2 points by the same argument as in the proof of Theorem
7.

• Given t0, . . . , tn, we find that there for i = 1, . . . , n there exists ξi ∈ (ti−1, ti) such that

d

ds


s=ξi



√
s−

n

j=0

αjs
j



 = 0, i = 1, . . . , n

by Rolle’s Theorem. Again, we approximate ξi by the bisection method to accuracy
< 10−12. By construction, all ξi are distinct. We update

{s0, s1, . . . , sn, sn+1} → {s0, ξ1, . . . , ξn, sn+1}.

The nested interval construction is more numerically stable than Newton-Raphson iter-
ation, as a Newton solver tends to find the same ξi multiple times starting at different roots
si, si′ from the previous iteration.

The linear step (2) is solved by LU factorization. The integral in (3) is evaluated using
a composite Simpson rule and 1,001 integration points. A sample implementation of the
algorithm can be found in a google colab notebook by Wojtowytsch (2022).

We note that the linear system (19) can be solved for any choice of distinct points
0 ≤ s0 < · · · < sn+1 ≤ 1. To explore the importance of using the optimal points found
using the Remez algorithm, we compare g and f for the optimal choice of sample points
and other, more classic and explicit choices si in Figures 1 and 2 respectively. The Barron
norm grows slowly and linearly for optimal break points and faster than linearly for other
explicit choices of break points, as can be seen in the rightmost image in Figure 3. In the
left and middle plot of Figure 3, we also display the known profiles of Barron functions
due to Ongie et al. (2019) as well as profiles of Barron functions which are constant in a
neighbourhood of the origin.

For any choice of break points which include zero, the function f is a ‘wizard’s hat’
function: Monotone decreasing, flat away from the origin, monotone decreasing and convex,
non-smooth at the origin. It is thus qualitatively different from previously known radial
profiles due to Ongie et al. (2019).

Additional empirical results relating to the optimal construction can be found in Ap-
pendix A.
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Figure 1: We compute the piecewise linear function g satisfying the moment conditions (19)
for three different choices of n + 2 = d+3

2 break points si: Optimal points found
by the Remez algorithm (left), equi-distant points si = i/(n+1) (middle) and the
roots of Chebyshev polynomials of the second kind si = 1/2+ cos (iπ/(n+ 1)) /2
(right). For the optimal choice of si, we empirically observe that the collection of
points {(si, gd(si)) : d ∈ 2N+1} concentrates on a line ℓi parallel to the horizontal
axis. For equi-distant nodes, the oscillations become larger as d increases, whereas
they become smaller for Chebyshev nodes.

Figure 2: We compare the functions f computed by (9) for the piecewise linear functions g
in Figure 1 associated to three different choices of break points si: Optimal (left),
equi-distant (middle), Chebyshev (right). The break points and curves agree
for d = 3 (blue curve) and are qualitatively similar for all d ≥ 3, in particular
non-negative, monotone-decreasing and convex. The curves are steeper at the
origin in higher dimensions, most noticeably for Chebyshev nodes. The curve
with optimal break points appears to make the slowest transition from f = 1 to
f ≈ 0.
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Figure 3: Left: The radial profiles of the known Barron bump functions f(|x|) = (1 −
|x|2)

d−1
2 of Ongie et al. (2019) are smooth at the origin and non-convex in the

radial direction. They are thus geometrically distinct from the profiles associated
to piecewise linear functions g as depicted in Figure 2. Middle: The functions f
associated to piecewise linear functions g with break points at equidistant points
si = 0.1 + 0.9 · i/(n + 1) in [0, 1] are C1-smooth, monotone decreasing and non-
negative, but not convex in the radial direction. Right: The Barron semi-normn+1

i=0 |µi| of functions f associated to g with different break points si grows slow-
est (and linearly) for optimal the optimal choice of points and fastest for break
points at Chebyshev nodes. All growth rates are ostensibly polynomial of em-
pirical degree 1.1 (optimal points), 1.4 (equi-distant points) and 1.6 (Chebyshev
nodes) as determined by least squares fitting. By comparison, the norm growth
for the choice of equi-distant nodes in [0.1, 1] in the middle figure is exponentially
large in d and is not pictured for better readability of the plots.
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7. Conclusion and Open Problems

We have provided an explicit construction for how neural networks optimally interpolate
certain radially symmetric data with respect to a weight decay regularizer in the infinite
parameter limit. While we do not prove that the optimal interpolant is radially symmetric,
the radial average of all interpolants coincides with the solution constructed in this article.
We show that its weight decay regularizer grows as d and its Lipschitz constant grows at
most as

√
d. In contrast, we identify a slight modification which necessitates exponential

growth. A number of important questions remain open, even for shallow neural networks
and the simple case of rotational symmetry. Deeper networks appear to be out of reach for
our methodology.

• Is the radially symmetric minimizer the only one? A uniqueness statement
would allow us to establish that regularized risk minimization does in fact lead to
symmetry learning, at least in a toy example, and would allow us to prove stronger
convergence results in the companion article (Park et al., 2023). We give further
heuristic consideration to this question in Appendix D.

• What happens if we modify the constraints? For example, it is not clear
from the proof of Theorem 8 whether the constraint f ≥ 1 on Bε(0) induces the
curse of dimensionality as the constraint f ≡ 1 on Bε(0) does. Similarly, it may be
interesting to study the case where the boundary condition f ≡ 0 is imposed on a
shell {1 ≤ |x| ≤ R} rather than the entire exterior domain. We recover the problem
studied in this article in the limit R → ∞, whereas the optimal solution in the case
R = 1 would be f(x) = 1 − |x|. Furthermore, a modified minimization problem is
required to find optimal mollifiers:

Find f̃∗
d ∈ argmin

f∈ F

[f ]B
fL1

, F =

f ∈ B0(Rd) ∩ Cc(B1(0)) : f ≥ 0


.

It appears that subtle differences may make the difference between a solvable data
fitting problem and one where we encounter the curse of dimensionality.

• What more can we say about the optimal function f∗
d? For example, we do

not provide a lower bound on the Lipschitz constant of f∗
d , nor do we study the decay

of f∗
d (r) for fixed r ∈ (0, 1) or fL1(Rd) rigorously. We conjecture that both decay at

least exponentially in d, and that both sequences are monotone in d. Limited evidence
is provided in Appendix D.

Finally, the fact that the extrema of g = gn lie on straight lines parallel to the horizontal
axis as we vary n appears too specific to be random. It is not clear to us how to interpret
this observation.

Acknowledgements

The author would like to thank Jonathan Siegel and Rahul Parhi for inspiring conversations.

26



Optimal Bump Functions for Shallow ReLU networks

Figure 4: We plot the radial profile of f1,n : R3 → R as in (12) for various choices of n = d−1
2

break points. The points are chosen optimally (for dimension d = 2n+ 1) on the
left, equi-distant in [0, 1] in the middle plot and equidistant in [0.1, 1] on the right.
Notably, the functions are neither monotone nor non-negative if d > 3, and the
number of local extrema increases as n grows.

Appendix A. Further Plots

We note the following: If g is a piecewise linear function with n break points which satisfies
the n + 2 linear moment conditions (16), then it also satisfies the same linear moment
conditions for any m ≤ n. In particular, the function

fm,n : R2m+1 → R, fm,n(x) =

 1
−1 g


|x|s


(1− s2)

m−3
2 ds

 1
−1(1− s2)

m−3
2 ds

(12)

is a Barron function such that fm,n(0) = 1 and fm,n ≡ 0 on Rk \B1(0) for k ≤ n. We plot
fm,n for m = 1 (i.e. 2m+1 = 3) and various choices of n and various choices of break points
in Figure 4. In Figure 5 we fix n = 10 instead and consider the influence of varying m.

The larger the discrepancy between m and n, the more oscillatory the function fm,n is.
This is reminiscent of observations from Step 4 in the proof of Theorem 7.

In Figure 6, we numerically investigate the decay of f∗
d as d varies, both pointwise in r

and integrated. Since f∗
d is

√
d-Lipschitz and f∗

d (0) = 1, we see that the one-dimensional

integral
 1
0 f∗

d (r) dr is bounded from below by Ω(d−1/2). This indeed appears to be the
dominant term, and for fixed r > 0, we observe empirically that f∗

d (r) decays to zero
exponentially in d.

Appendix B. Postponed Proofs

Recall the co-area formula, which allows us to integrate over a Riemannian manifold M
by ‘slicing’ the domain into the level sets of a function φ : M → N , where N is another
Riemannian manifold (Burago and Zalgaller, 2013, Theorem 13.4.2). In the case of slicing
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Figure 5: We plot fm,n as in (12) corresponding to low dimension d ∈ {3, 5, 7}, m = d−1
2

and n = 10. and various choices of break points: Optimal for n = 10 (left),
equidistant in [0, 1] (middle) and equi-distant in [0.1, 1] (right). The radial profiles
of the Barron functions are neither monotone nor non-negative. The number of
local extrema of the profiles is larger if the dimension d is small compared to
the number of break points. The oscillations are smallest for the optimal choice
of break points and largest for break points which are bounded away from the
origin.

the sphere into level sets of a coordinate projection φ(x) = x1, the formula reads as



Sd−1

f(x) dHd−1
x =

 1

−1



Sd−1∩{x1=s}
f(x) dHd−2

x


(1− s2)−1/2 ds

since 1−x21 = |∇φ|2 is the modulus of the tangential gradient of φ, which measures volume
distortions. This can be considered a curvinlinear version of Fubini’s theorem. If f only
depends on x1, the formula further simplifies to



Sd−1

f(x) dHd−1
x = (d− 1)ωd−1

 1

−1
f(s, 0, . . . , 0) (1− s2)(d−3)/2 ds (13)

since Sd−1 ∩ {x1 = s} is a d− 2-dimensional Euclidean sphere of radius
√
1− s2. Here ωd−1

denotes the volume of the d − 1-dimensional unit ball and (d − 1)ωd−1 the volume of the
d− 2-dimensional Euclidean unit sphere.

The first proof we give in this Section is for Lemma 10.

Proof Step 1. Symmetrization. Let f : Rd → R be a radially symmetric Barron
function. Then in particular f(x) is the same as the average over f(Ox) for O in SO(d)
and the average is taken with respect to the Haar measure H (which coincides with the
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Figure 6: Left: We plot f∗
d (x) as a function of d for fixed x in a logarithmic scale together

with exp(α(x)d+β(x)), where α,β are chosen depending on x as the least squares
fit for the function log(f∗

d (x)). The graphs suggest that the decay is exponential

in d and thus comparable to explicit solutions f̃d(x) = (1 − |x|2)
d+3
2 of Ongie

et al. (2019). Middle: We graphically compare the decay of the normalized
d-dimensional integral of


B1(0)

fd(x) dx for different choices of break points.
Despite graphical differences around the origin, the values of the integrals are very
similar and decay roughly as exp(−4.7 − 0.75 ∗ d). In dimension three, all three
functions fd coincide, while their difference close to the origin becomes negligible
in high dimension, where almost all measure concentrates by the boundary of the
unit ball. Right: We graphically compare the decay of the 1-dimensional integral 1
0 fd(r · e1) dr of the function fd associated to piecewise linear g with n = d−1

2
break points in (0, 1) for different choices of break points. The integral empirically
decays as 0.3 · d−0.49 for optimal points, like 0.29 · d−0.45 for equidistant points
and like 0.64 · d−1.02 for Chebyshev points. The order of decay was established
by a least squares regression.

29



Wojtowytsch

d(d−1)
2 -dimensional Hausdorff measure on SO(d) with respect to the Frobenius norm), i.e.

f(x) =



SO(d)
f(Ox) dHO

=



SO(d)



Rd+2

σ(wTOx+ b) dµ(w,b) dHO

=



Rd+2



SO(d)
σ

(OTw)Tx+ b) dHO dµ(w,b)

=



Rd+2

|w|


Sd−1

σ


νTx+

b

|w|


dHd−1

ν dµ(w,b)

since for any w ∈ Sd−1, the map SO(d) → Sd−1, O → Ow pushes the Haar measure
forward to the uniform distribution on Sd−1. Thus f can be written as a continuous linear
combination of the elementary radially symmetric Barron functions

fb(x) =



Sd−1

σ

νTx− b) dHd−1

ν and f∞(x) ≡ 1.

On the other hand, every function of this type is a radially symmetric Barron function.
Finally, we note that

fb(x)− f−b(x) =



Sd−1

σ

νTx− b)− σ


νTx+ b) dHd−1

ν

=



Sd−1

σ

− νTx− b)− σ


νTx+ b) dHd−1

ν

=



Sd−1

νTx+ b dHd−1
ν

= b,

since the uniform distribution is invariant under the substitution ν → −ν in the first term.
In particular, every radially symmetric Barron function can be written as

f(x) = f(0) +



[0,∞)
fb(x) dµb (14)

for some measure µ on [0,∞) and [f ]B = µTV , since fb(0) = 0 for any b > 0.
Step 2. Gradient bound. We note that [fb]B = 1 for any b by definition and

∇fb(x) =



Sd−1

σ′νTx− b) ν dHd−1
ν =



Sd−1

1{νT x>b}ν dHd−1
ν .

Due to radial symmetry, the gradient points in direction x, i.e.

∇fb(x) =


Sd−1 1{ν1>b/|x|}ν1 dHd−1

ν
Sd−1 1 dHd−1

ν

x

|x|

The gradient is largest as |x| → ∞, and

sup
x∈Rd

|∇fb(x)| =

Sd−1 1{ν1>0}ν1 dHd−1

ν
Sd−1 1 dHd−1

ν

=


Sd−1 1{ν1>0}ν1 dHd−1

ν

2

Sd−1 1{ν1>0} dHd−1

ν

=

 1
0 s(1− s2)

d−3
2 ds

2
 1
0 (1− s2)

d−3
2 ds
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independently of b. In the last step, we used the coarea formula (13). It is now possible to
evaluate the gradient

 1
0 s(1− s2)

d−3
2 ds

2
 1
0 (1− s2)

d−3
2 ds

=
1

d−1

√
π
Γ

(d−1)/2



Γ(d/2)

=
Γ(d/2)

√
π (d− 1)Γ


(d− 1)/2

 ∼ 1√
2πd

in the sense that

lim
d→∞

√
d

 1
0 s(1− s2)

d−3
2 ds

2
 1
0 (1− s2)

d−3
2 ds

=
1√
2π

.

Consequently, for a general radially symmetric Barron function as in (14) and sufficiently
large d ∈ N, we find that

[f ]Lip = sup
x∈Rd

∇f(x)
 ≤



[0,∞)
∇fbL∞ d|µ|b ≤

1 + ε√
2πd

µTV =
1 + ε√
2πd

[f ]B.

Step 3. Higher regularity. By Corollary 3, any radially symmetric Barron function
is C1-smooth except at the origin. This establishes the claim in the case d = 3.

Note that if f : (0,∞) → R is Ck-smooth, then the same is true for F : Rd → R given
by F (x) = f(|x|) by the chain rule and product rule. It thus suffices to analyze the radial
profile f of F . In the following, we will denote both functions as f by a slight abuse of
notation. Consider the radial profile of the function

fb(r) = cd

 1

0
σ(sr − b) (1− s2)

d−3
2 ds, cd =

1
 1
−1(1− s2)

d−3
2 ds

for b > 0. We can compute the first two derivatives of fb by exchanging differentiation and
integration

f ′
b(r) = cd

 1

0
σ′(sr − b) s(1− s2)

d−3
2 ds

f ′′
b (r) = cd

 1

0
σ′′(sr − b) s2(1− s2)

d−3
2 ds =

cd
r


b/r

2
max


1−


b/r

2
, 0
 d−3

2
,

where the second formula must be justified by approximation, as the derivative d2

dr2
σ(sr −

b) = 1
r · δb/r (considered as a ‘function’ of s) is not regular. For b > 0, it is easy to see

that fb ≡ 0 is C∞-smooth in [0, b), and as a polynomial in 1/r also C∞-smooth on (b,∞).
Clearly f ′′

b and all its derivatives vanish at infinity. If d = 3, f ′′
b is continuous except at

r = b, where it has a jump discontinuity. If d ≥ 5, the function

f ′′
b (r) = cd r

−db2(r2 − b2)
d−3
2 = cdb

2 r−d(r − b)
d−3
2 (r + b)

d−3
2

vanishes as (r−b)
d−3
2 at r = b and thus has d−5

2 additional derivatives which vanish at r = b.

We find fb ∈ C
d−1
2 for any odd dimension d. The d+1

2 -th derivative of fb is bounded and

continuous except at r = b, and the d+3
2 -th derivative of f ′′

b is a finite measure associated
to the regular part of the derivative in (b,∞) and the jump at r = b.
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It remains to show that a general radial Barron function

f(r) = f(0) +



[0,∞)
fb(r) dµb

has the same regularity as its components fb, at least away from the origin. To simplify the
presentation, we focus on the case d ≥ 5. Let ε > 0 and observe that

f(r) = f(0) + µ({0}) f0(r) +


(0,ε]
fb(r) dµb +



(ε,∞)
fb(r) dµb.

Clearly, the affine linear component f(0)+µ({0}) f0(r) is C∞-smooth except at the origin.
Secondly, we note that for any b > 0, the identity fb(r) = b f1


r/b


holds. In particular,

dk

drk



(ε,∞)
fb(r) dµb =



(ε,∞)
b1−k f

(k)
1

r
b


dµb

where the integrals converge uniformly for k ≤ d−1
2 due to the L∞-bound on the k + 1-th

derivative of fb. Similarly, the d+1
2 -th derivative converges in Lp for all p < ∞ due to the

bound on the measure-valued d+3
2 -th derivative. Finally, for k = d+3

2 , the integral converges
weakly in the sense of Radon measures, i.e. in the weak-* sense, when we consider the space
of (Radon) measures as dual to the space of continuous functions.

For the first integral, we prove convergence assuming that r ≥ ε. Note that f ′′
b (r) =

r−1 P (b/r) for some polynomial P and r ≥ ε ≥ b. By induction we see that f
(k)
b (r) =

r1−kPk(b/r) for all k ≥ 2, where Pk is another polynomial. This is easily seen since

d

dr


r1−kPk(b/r)


= (1− k) r−k Pk(b/r) + r1−k P ′

k(b/r)


− b

r2



= r−k


(1− k)Pk(b/r)−

b

r
P ′
k(b/r)


.

Hence, as before,

dk

drk



(0,ε]
fb(r) dµb =



(0,ε]
r1−kPk(b/r) dµb = r1−k



(0,ε]
Pk(b/r) dµb.

The integral converges since b/r ∈ [0, 1] and Pk is a continuous function.

We now come to the proof of Lemma 11.

Proof First claim. Assume that g : R → R is a function with the properties outlined
above and f is defined by (9). Then f is radially symmetric by definition and

f(0) =

 1
−1(1− s2)

d−3
2 g(0) ds

 1
−1(1− s2)

d−3
2 ds

= 1.
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Furthermore, if r = |x| ≥ 1 and c̃d :=
 1
−1(1− s2)

d−3
2 ds, then

c̃d f(x) =

 1

−1
(1− s2)

d−3
2 g(rs) ds

= r2−d

 1

−1
(r2 − (rs)2)

d−3
2 g(rs) r ds

= r2−d

 r

−r
(r2 − z2)

d−3
2 g(z) dz

= r2−d

 1

−1
(r2 − z2)

d−3
2 g(z) dz

since g ≡ 0 outside of (−1, 1). The integral vanishes by (8) if d ≥ 3 is odd, since (r2−z2)
d−3
2

is an even polynomial of degree at most d− 3 for all r.

It remains to show that f is a Barron function. Take any measure µ such that

g(x) =

 ∞

−∞
σ(x+ b) dµb

as in Proposition 4 and compute that

 ∞

−∞



Sd−1

σ(νTx+ b) dHd−1 dµb =



Sd−1

 ∞

−∞
σ(νTx+ b) dµb dHd−1

ν (15)

=



Sd−1

g(νTx) dHd−1
ν

=
|Sd−2|
|Sd−1|

 1

−1
g(s) (1− s2)

d−3
2 ds = f(x)

by the co-area formula (13). The fact that the normalizing constant is exactly

c̃d =
|Sd−2|
|Sd−1| =

 1

−1
(1− s2)

d−3
2 ds

can be justified by the same co-area integration. Finally, we note that the left hand side of
(15) is clearly a radially symmetric Barron function satisfying [f ]B ≤ µTV . Taking the
infimum over all µ representing g, we find that [f ]B(Rd) ≤ [g]B(R).

Second claim. Assume on the other hand that f is a radially symmetric Barron
function. If we denote by µ the Haar measure on the special orthogonal group SO(d), then
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due to radial symmetry

f(x) =



SO(d)
f(Ox) dµO

= f(0) +



SO(d)



Rd+1

σ(wTOx+ b) dµ(w,b) dµO

= f(0) +



Rd+1



SO(d)
σ

(OTw)Tx+ b


dµO dµ(w,b)

= f(0) +



Rd+1

|w|


Sd−1

σ


νTx+

b

|w|


dHd−1

ν dµ(w,b)

= f(0) +

 ∞

−∞



Sd−1

σ

νTx+ b′


dHd−1

ν dµ̂b′

where µ̂ = Φ(|w| · µ) for the map

Φ : Rd+1 → R, Φ(w, b) =
b

|w| .

It is now possible to reverse the calculations from Step 1 by setting

g : R → R, g(x) =



R
σ(x− b) dµ̂b.

Taking the infimum over µ representing f , we find that [g]B(R) ≤ [f ]B(Rd). Clearly, both
s → g(s) and s → g(−s) induce the same function f by (9) due to symmetry, and so does
the even representative s →


g(s) + g(−s)


/2.

It remains to show that g ≡ 0 outside of (−1, 1) and that the moment conditions (16)
hold. Assuming that g ≡ 0 outside (−1, 1), we find that

0 =

 1

−1
(1− s2)

d−3
2 g(rs) ds = r2−d

 1

−1


r2 − (rs)2

 d−3
2 g(rs) r ds

= r2−d

 1

−1
(r2 − z2)

d−3
2 g(z) dz

for all r ≥ 1, as the integral over (−r,−1) ∪ (1, r) vanishes. The moment conditions follow
easily as

dk

drk

 1

−1
(r2 − z2)

d−3
2 g(z) dz =

dk

drk

(d−3)/2

j=0


(d− 3)/2

j


rd−3−2j

 1

−1
g(z) z2j dz ≡ 0

for r ∈ [1,∞) and k ≥ 1. Taking k = d−3
2 derivatives, we find that g is L2-orthogonal to

z0. Lowering the order of the derivative inductively, we find that g is L2-orthogonal to all
even polynomials of degree at most d− 3.

Thus we only need to show that g ≡ 0 outside (−1, 1). First consider the case d = 3,
i.e. n = 0 and thus

f(r) =

 1

−1
g

rs

ds.
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Then for r ≥ 1, we have

0 = f(r) =
1

r

 1

−1
g

rs

r ds =

1

r

 1

−1
g(z) dz+

1

r

 r

1
g(z)+ g(−z) dz =

1

r

 r

1
g(z)+ g(−z) dz

since
 1
−1 g(s) ds = f(1) = 0. As g is an even function, we conclude that

 r
1 g(s) ds = 0 for

all r ≥ 1 and thus g(s) = 0 for all s > 1. We now proceed inductively: Assume that n ≥ 1
is such that

r−(n+1)

 r

−r
g(z)(r2−z2)n dz = r−(n+1)

 1

−1
g(rs)(r2−(rs)2)nr ds =

 1

−1
g(rs)(1−s2)n ds = 0

for all r ≥ 1. Then also

0 ≡
 r

−r
g(z)(r2 − z2)n dz ⇒ 0 ≡ d

dr

 r

−r
g(z)(r2 − z2)n dz = 2r

 r

−r
g(z)(r2 − z2)n−1 dz

since the boundary term vanishes for n ≥ 1. In particular, we conclude that

 1

−1
g(rs)(1− s2)n ds ≡ 0 ⇒

 1

−1
g(rs)(1− s2)n−1 ds ≡ 0

for r ≥ 1 and n ≥ 1. Since d is odd, we can reduce the integer exponent n = d−3
2 inductively

until n = 0. Then, by the same consideration as in the case d = 3, the result is proved.

We now prove the abstract statement about measures on the unit interval given in
Lemma 12.
Proof Lower bound. Let µ be a finite signed measure satisfying the moment conditions

 1

0
s dµs = 1,

 1

0
s2k dµs = 0 ∀ 0 ≤ k ≤ n− 1 (16)

Then

 1

0
s dµs =

 1

0


s−

n

k=0

aks
2k


dµs ≤

s−
n

k=0

aks
2k


L∞(0,1)

|µ|([0, 1]) (17)

by definition. Taking the infimum over the parameters a0, . . . , an on the right, we find that

1 =

 1

−1
s dµs ≤ distL∞(0,1)


s → s, span{1, s2, . . . , s2n}


· µ

i.e.

µ ≥ 1

distL∞(0,1)


s → s, span{1, s2, . . . , s2m}

 =
1

distL∞(−1,1)


s → |s|, span{1, s, . . . , s2m}

 .

The asymptotics of

βn := distL∞(−1,1)


s → |s|, span{1, s, . . . , s2m}
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are known due to Bernstein (1912) and Varga and Carpenter (1985) who proved that
limn→∞ nβn =: β ≈ 0.28, so

lim inf
n→∞

γn
n

≥ lim inf
n→∞

1

nβn
=

1

β
≈ 3.57.

Upper bound: Step 0. Note that due to compactness, there exist parameters
a0, . . . , an such that

s−
n

k=0

aks
2k


L∞(0,1)

= distL∞(0,1)


s → s, span{1, s2, . . . , s2m}


.

We fix a0, . . . , an accordingly. Further note that equality is attained in (17) if the measure
µ is supported on the set of points

Θ :=


s ∈ [0, 1] :

s−
n

k=0

aks
2k

 = max
r∈[0,1]

r −
n

k=0

akr
2k





and the measure

µ =


s−

n

k=0

aks
2k


· µ (18)

which has density s −
n

k=0 aks
2k with respect to µ is non-negative, i.e. µ has “the right

sign” at all points. If such a µ exists, it therefore serves as a matching upper bound
and the Lemma is proved. It is, however, not immediately clear whether there exists a
signed measure µ supported on Θ which satisfies the moment conditions (16) and positivity
condition (18). In the following, we will prove that µ indeed does exist.

Step 1. Due to compactness, Θ is a non-empty subset of [0, 1]. Additionally

Θ ⊆ {0, 1} ∪

s ∈ R : 2

n

k=1

kak s
2k−1 = 1



since the function s → s −
n

k=0 aks
2k is either maximal or minimal at s ∈ Θ. By the

fundamental theorem of algebra, Θ = {s1, . . . , sN} is thus a finite subset of [0, 1]. In this
step, we prove that 0, 1 ∈ Θ and Θ ∩ (0, 1) = n.

Note that
n

k=1 aks
2k is also an optimal polynomial approximation of the function

h(s) = |s| in C0[−1, 1] in the space P2n+1 of polynomials of degree at most 2n+1, since the
optimal approximation is an even polynomial. By Chebyshev’s equi-oscillation Theorem
(Kincaid et al., 2009, Section 6.9), there exist N ≥ 2n+3 distinct points t1 < · · · < tN such
that the error

e(s) = |s|−
n

k=0

aks
2k

satisfies

|e(ti)| = max
s∈[−1,1]

|e(s)| ∀ i = 1, . . . , N and e(ti)e(ti+1) < 0 ∀ i = 1, . . . , N − 1,
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i.e. there are N ≥ 2n + 3 distinct points where the deviation from the target function is
largest, and the oscillation around the target function at consecutive points ti, ti+1 goes in
opposite directions.

Clearly, if e is maximal at s ∈ [−1, 0] if and only if it is maximal at (−s) ∈ [0, 1].
Therefore, there exist at least ⌈N/2⌉ = ⌈(2n+3)/2⌉ = n+2 points in Θ = [0, 1]∩argmax e.
Rounding up is required since 2n+3 is odd, and the point 0 counts fully towards Θ ⊂ [0, 1].
Thus |Θ| ≥ n+ 2.

It remains to show that |Θ| ≤ n + 2. We prove this only if n ≥ 1, as the case n = 0
of approximation by constant functions can be solved explicitly by direct inspection by the
constant polynomial a0 = 1/2.

Assume for a contradiction that |Θ| ≥ n + 3. Then there exist at least n + 1 distinct
points in Θ ∩ (0, 1). Since e is either maximal at s ∈ Θ ∩ (0, 1), we conclude that e′(s) = 0
for every s ∈ Θ ∩ (0, 1). By Rolle’s Theorem, between any two points s, s′ such that
e′(s) = e′(s′), there exists s∗ ∈ (s, s′) such that e′′(s∗) = 0. In particular, e′′ has at least
n distinct zeros in (0, 1). Since e′′ is even, it follows that e′′ has at least 2n distinct zeros.
But, since e′′ is a polynomial of degree 2n − 2, it follows that e′′ ≡ 0 and thus that e is a
quadratic polynomial on (0, 1). On the other hand, we have seen that there exist at least
n + 1 points in Θ ∩ (0, 1), meaning that there are n + 1 > 1 points in (0, 1) at which e′

vanishes. We conclude that e′ ≡ 0, i.e. e is a linear polynomial on (0, 1). It is easy to see
that this is not optimal in terms of approximation.

Step 2. We claim that the (n+ 2)× (n+ 2)-Vandermonde type matrix

V =





s0 s1 . . . sn+1

1 1 . . . 1
s20 s21 . . . s2n+1

s40 s41 . . . s4n+1
...

...
. . .

...
s2n0 s2n1 . . . s2nn+1





is invertible for any distinct n+ 2 points 0 ≤ s0 < · · · < sn+1 ≤ 1. This is true by classical
results of Lundeng̊ard (2017) for the (n+ 1)× (n+ 1) Vandermonde submatrix

V =





1 . . . 1
s20 . . . s2n
...

. . .
...

s2n0 . . . s2nn





since the points s20, . . . , s
2
n are distinct. It remains to show that the first row is linearly inde-

pendent from the others, i.e. there exist no coefficients a0, . . . , ak such that s =
n

k=0 aks
2k

at (n+2) distinct points in [0, 1]. Assume the contrary. Then there are n+2 distinct points
s0 < · · · < sn+1 ∈ [0, 1] such that

0 = s−
n

k=0

aks
2k, s ∈ {s0, . . . , sn+1}.
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By Rolle’s theorem, between two such points si, si+1 there exists ξi such that

0 =
d

ds


s=ξi


s−

n

k=0

aks
2k


.

The contradiction follows as in Step 1 of this proof.
Step 3. Combining the results of the second and third step of this proof, we can choose

{s0, . . . , sn+1} = Θ and find a unique vector ν ∈ Rd+2 such that

V ν = (1, 0, 0, . . . , 0)T (19)

The measure under consideration is now

µ =

n+1

i=0

µiδsi such that

 1

0
s2k dµs =


(V ν)1 k = 0

(V ν)k+2 k ≥ 1
= 0,

 1

0
s2k dµs = (V ν)2 = 1

by construction. Thus the moment conditions are met. It remains to show that µi ·
s−

n
k=0 aks

2k

does not change sign in order to ensure that equality is attained in Hölder’s

inequality. Using Chebyshev’s equi-oscillation theorem again, it suffices to show that µi and
µi+1 have opposite signs for all i.

For any i ∈ {0, . . . , n}, consider the unique even polynomial P of degree n such that
P (sj) = 0 for 0 ≤ j ≤ n + 1 except j ∈ {i, i + 1}. Then, since P is an even polynomial of
degree ≤ 2n

0 =

 1

0
P (s) dµs = µiP (si) + µi+1P (si+1), (20)

but since P has 2n zeros at ±sj for i /∈ {i, i+1}, we find that P (s) ∕= 0 for any s ∈ [si, si+1].
Thus P (si) and P (si+1) have the same sign. In order to satisfy (20), we therefore find that
µi and µi+1 must have different signs.

It remains to establish the claim in the proof of Theorem 8.
Proof To see this, we use the lower bound

µ ≥ 1

distL∞(ε,1)


s, span{1, s2, . . . , s2n}

 (21)

from (17). By replacing the variable s by s2, we find that

distL∞(ε,1)


s, span{1, s2, . . . , s2n}


= distL∞(ε2,1)

√
s, span{1, s, . . . , sn}


.

Recall that the function
√
s is an analytic function on the interval [ε2, 1] and

√
s = 1 +

∞

n=1

(−1)n+1

n
k=1(2k − 1)

2n n!
(s− 1)n = 1− 1√

π

∞

n=1

Γ(n+ 1/2)

Γ(n+ 1)
(1− s)n.

The coefficients decay asymptotically as n−1/2 since

lim
n→∞

√
n
Γ(n+ 1/2)

Γ(n+ 1)


= 1,
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so for every δ > 0, there exists N ∈ N which is independent of ε such that the L∞-distance
of the function s →

√
s from the space Pn of polynomials of degree ≤ n is at most

distL∞(ε2,1)

√
s, Pn


≤ max

s∈[ε2,1]


√
s− 1− 1√

π

n

k=1

Γ(k + 1/2)

Γ(k + 1)
(1− s)k



≤ 1 + δ√
πn

∞

k=n+1

(1− ε2)k

= (1 + δ)
(1− ε2)n+1

√
πn ε2

.

Appendix C. Brief Proofs of Known Results

In this appendix, we merely sketch the proofs of known results. For a more detailed intro-
duction, we recommend e.g. (E and Wojtowytsch, 2020a). We begin by sketching a proof
of Proposition 1, where we establish general properties of Barron functions.
Proof First claim. We note that, assuming existence of the integrals and for fixed x ∈ Rd,
we have

fπ(0) =



Rd+2

aσ(b) dπ

|fπ(x)− fπ(0)| =



Rd+2

a

σ(wTx+ b)− σ(b)


dπ

 ≤


Rd+2

|a| |wTx| dπ

≤ |x|
2



Rd+2

|a|2 + |w|2 dπ.

If the first integral exists, then also the integral defining fπ(x) exists as the integrand is
continuous and grows at most linearly. Then

fπ(x) = fπ(x)− fπ(0) + fπ(0) =



Rd+2

a

σ(wTx+ b)− σ(b)


dπ + fπ(0).

Measurability is not an issue for fixed x due to the continuity of the integrand. For the
sake of brevity, denote h(a,w,b)(x) = a


σ(wTx + b) − σ(b)


. More generally, we note that

the Bochner-integral

f = c+



Rd+2


x → h(a,w,b)(x)


dπ(a,w,b)

converges in C0(K) for compact sets K and in Lp(P) for 1 ≤ p < ∞ and probability
distributions P with finite p-th moments in x, i.e. the function (a,w, b) → h(a,w,b) is Bochner
integrable with respect to π when considered as a function with values in either C0(K) or
Lp(P). To see this, consider step functions

h̃i =


j

1Qijh(aij ,wij ,bij), f̃i =



Rd+2

h̃i dπ
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where Qij are (d + 2)-dimensional cubes of side length 2−i whose union is


j Qij =

[−2i, 2i]d+2 and (aij , wij , bij) ∈ Wij . If (a,w, b) ∈ Qij , then

|h(a,w,b)(x)−h(aij ,wij ,bij)(x)| ≤ |a− aij | |σ(wTx+ b)|+ |aij |
σ(wTx+ b)− σ(wT

ijx+ bij


≤ |a− aij | |wTx+ b|+ |aij |

|w − wij | |x|+ |b− bij |



≤ C


|a− aij |2 + |w − wij |2 + |b− bij |2

ε
+ ε


|a|2 + |w|2|x|2 + |b|2



for any ε > 0. Fixing ε to be the square root of the side-length of Qij , we find that
f̃i(x) → fπ(x) pointwise for all x. Furthermore, f̃i is Lipschitz continuous in x uniformly in
i, so f̃i converges to a limit in C0(K) by the compact embedding of Lipschitz functions in
C0, which coincides with the pointwise limit fπ. In other words, the Bochner integral exists
in C0. The argument follows in Lp(P) by the dominated convergence theorem considering
|f̃i|(x) ≤ 2(1 + [f ]B|x|) for all x ∈ Rd.

Second claim. In this step, we show that V0 is a Banach space and illustrate that B
and B0 are different spaces. The fact that V0 is a Banach space follows as (Siegel and Xu,
2021a, Lemma 1) from the previous claim, where we have shown the existence of f ∈ B0

as a Bochner integral in L2(P), i.e. as a continuous convex combination not only pointwise,
but in a function space.

To see that B ∕= B0, observe that any f ∈ B can be decomposed into a positively one-
homogeneous and a bounded part due to (E and Wojtowytsch, 2020a, Corollary 5.3). On
the other hand, in one dimension, the function f(x) = log(1+x2) satisfies f(0) = f ′(0) = 0

and has an integrable second derivative f ′′(x) = 2 1−x2

(1+x2)2
. By Proposition 4, we find that

f ∈ B0. Since f is not bounded but grows sub-linearly, we conclude that B ⊆ B0 ∕⊆ B. The
first inclusion follows from the fact that [f ]B ≤ fB as shown next.

Third claim. The claim that [f ]B ≤ fB is self-evident by definition, as the full
Barron norm also limits the magnitude of the bias.

Fourth claim. Finally, we note that f ∈ B0 is Lipschitz-continuous, since

|fπ(x)− fπ(x
′)| =




Rd+2

a

σ(wTx+ b)− σ(wTx′ + b)


dπ(a,w,b)



≤


Rd+2

|a| |wT (x− x′)| dπ(a,w,b) ≤ |x− x′|


Rd+2

|a| |w| dπ(a,w,b).

Taking the infimum over π (and optionally noting that 2|a| |w| ≤ |a|2 + |w|2), we find that
|f(x)− f(x′)| ≤ [f ]B|x− x′|.

Proposition 2 is proved in (E and Wojtowytsch, 2020a, Theorem 5.18) and Corollary 3
follows from it directly. Let us sketch how the structure of one-dimensional Barron functions
described in Proposition 4 can be understood.
Proof Upper bound. Let a ∈ R and f ∈ C2(R) be such that f ′′ ∈ L1(R). Then for
x > a we have

f(x) = f(a) +

 x

a
f ′(s) · 1 ds = f(a) + f ′(a) (x− a)−

 x

a
f ′′(s) (s− x) ds

= f(a) + f ′(a)σ(x− a) +

 ∞

a
f ′′(s)σ(x− s) ds
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and for x < a

f(x) = f(a)−
 a

x
f ′(s) · 1 ds = f(a)− f ′(a) (a− x)−

 x

a
f ′′(s) (s− x) ds

= f(a)− f ′(a)σ(a− x) +

 ∞

a
f ′′(s)σ(x− s) ds.

Noting that the σ terms in the first expression vanish for when x < a and vice versa, we
find that

f(x) = f(a)+f ′(a)

σ(x−a)−σ(a−x)


+



R
f ′′(s)


σ(x−s) 1(a,∞)(s)+1(−∞,a)(s)σ(s−x)


ds.

Consequently, f = fµ for a measure

µ = f ′(a)

δ(1,a) − δ(−1,a)


+ f ′′(b) ·


H1|{w=1,b>a} +H1|{w=−1,b<a}



where δ denotes the atomic point measure of mass one and H1 denotes the one-dimensional
Hausdorff measure, restricted to half-lines {w = 1, b > a} and {w = −1, b < a}. and hence

[f ]B = inf
f=fµ

µTV ≤ 2 inf
a∈R

|f ′(a)|+


R
|f ′′(s)| ds.

By approximation, the same is true if f /∈ C2 and f ′′ is merely a measure.
Lower bound direction. The bound

[f ]B ≤ [f ]Lip = sup
a∈R

max
v∈∂f(a)

|v| = sup
a∈R

|f ′(a)|

follows from Proposition 1 and the Rademacher Theorem on the differentiability of Lipschitz
functions. For the second form of the lower bound, let f ∈ B0, i.e. there exists a measure µ
on R2 such that

f(x) =



R2

σ(wTx+ b)dµ(w,b) =



{w=0}
σ(b)dµ(w,b) +



R2

|w|σ

w/|w|x+ b/|w|


dµ(w,b).

The second expression can be written as

f(x) = c+ f+(x) + f−(x) = c+



R
σ(x+ b) dµ+

b +



R
σ(−x+ b) dµ+

b

where
µ± = ψ


|w| · 1{±w>0} · µ


, ψ(w, b) = b/|w|,

i.e. µ± is the push-forward of the measure which has density |w| with respect to µ onto the
real line. If φ ∈ C∞

c (R) is any function, then by exchanging the order of integration and
integrating by parts, we find that

 ∞

−∞
f+(x)φ′′(x) dx =

 ∞

−∞
φ′′(x)



R
σ(x+ b) dµ+

b dx

=



R

 ∞

−b
φ′′(x) (x+ b) dx dµ+

b

= −


R

 ∞

−b
φ′(x) dx dµ+

b

=



R
φ(b) dµ+

b
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we find that (f+)′′ = µ+ in the distributional sense, and thus f ′′ = µ+ + µ−. In particular,

f ′′TV = µ+ + µ−TV ≤ inf
µ

µ+TV + µ−TV ≤ inf
µ



R2

|w| d|µ|(w,b) = [f ]B.

We sketch a proof of the direct approximation theorem for Barron spaces (Proposition
5).
Proof Step 1. Consider the Hilbert space L2(P) and observe that h(a,w,b) ∈ H defined by

h(a,w,b)(x) = a

σ(wTx+ b)− σ(b)} has norm at most

h(a,w,b)2H =



Rd

a2

σ(wTx+ b)− σ(b)

2
dP ≤ a2



Rd

|wTx|2 dP.

We use Proposition 1 to write f ∈ B0 as

f(x) = f(0) +



Rd+2

h(a,w,b)(x) dπ(a,w,b).

Step 2. Using the homogeneity relation σ(z) = λ−1σ(λz), the distribution π can be
normalized such that

|a|2 = |w|2 = 1

2



Rd+2

|a′|2 + |w′|2 dπ(a′,w′,b′)

almost surely by considering the push-forward of π along the map

T : Rd+2 → Rd+2, T (a,w, b) =


a


|w|
|a| , w


|a|
|w| , w


|a|
|w|



if a,w ∕= 0 and T (a,w, b) = 0 otherwise, which satisfies fTπ ≡ fπ. Thus for any ε > 0,
f − f(0) is in the H-closed convex hull of the family

GfB+ε = {h(a,w,b) : |a| = |w| ≤ fB + ε}.

Step 3. By the Maurey-Barron-Jones Lemma (Barron, 1993, Lemma 1), for every
m ∈ N and every ε′ > 0, there exist h(ai,wi,bi) ∈ GfB+ε such that

f − f(0)− 1

m

m

i=1

h(ai,wi,bi)


H

≤ fB + ε√
m

+ ε′.

As the vectors (ai, wi, bi) are constrained to a compact domain of Rd+2 and the map Rd+2 →
H, (a,w, b) → h(a,w,b) is continuous, we can set ε, ε′ → 0 and obtain the result without
constant by an appropriate subsequence.

Finally, we write c = f(0)+ 1
m

m
i=1 aiσ(bi) for compatibility with the original notation.
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Appendix D. Further Results

D.1 On the Decay of f∗
d (x) for x ∕= 0

Numerical experiments in Appendix A suggest that f∗
d (x) decays to zero exponentially fast

for x ∕= 0. While we cannot prove this in full generality, we show that

0 ≤ f∗
d (x) ≤ C d3/2


1− |x|2

|x|

 d−3
2

for a constant C > 0 which is independent of d. In particular, f∗
d (x) → 0 exponentially fast

in d if |x| > 0.62. To see this, observe that

f∗
d (r) = cd

 1

−1
g(rs) (1− s2)

d−3
2 ds = 2cd r

1−d
2

 r

0
g(z)(r2 − z2)

d−3
2 dz

= −2cd r
1−d
2

 1

r
g(z)(r2 − z2)

d−3
2 dz

for r < 1 since g is L2(0, 1)-orthogonal to the polynomial (r2 − z2)
d−3
2 . Since gL∞(0,1) ≤

γ d−1
2
, we may estimate

|f∗
d (r)| ≤ 2cd r

1−d
2 γd (1− r2)

d−3
2 =

2cdγ d−1
2

r


1− r2

r

 d−3
2

.

The pre-factor grows as d3/2 since γd ∼ d and

cd =
1

 1
−1(1− s2)

d−3
2 ds

=
Γ (d/2)

√
π Γ


d−1
2

 ∼


d

2π
.

Finally, we note that (1− r2)/r < 1 holds for positive r if and only if r >
√
5−1
2 ≈ 0.618.

D.2 Non-radial Minimum Norm Interpolants

In this note, we constructed

f∗
d ∈ argmin

f∈F
[f ]B, F =


f ∈ B0(Rd) : f(0) = 1 and f ≡ 0 on Rd \B1(0)


. (22)

Since both the Barron semi-norm and the class F are convex and invariant under rotations
of the data domain, we find that there exists at least one minimizer which is radially
symmetric. By direct construction, we saw that this minimizer

f∗
d (x) = 1 +

d+1
2

i=0

µi



Sd−1

σ(νTx− bi) dHd−1
ν

is unique, at least if d is odd. The biases 0 = b0 < · · · < b(d+1)/2 = 1 and weights µi ∕= 0
are given by the optimization process. Our proof does not exclude the existence of other
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minimizers, which are not radially symmetric. In fact, assume that φi ∈ L∞(Sd−1) for
i = 0, . . . , d+1

2 are functions such that

fφ(x) =

d+1
2

i=0



Sd−1

σ(νTx− bi)φi(ν) dHd−1
ν = 0 ∀ |x| ≥ 1. (23)

Then trivially also fφ(0) = 0 since bi ≥ 0, and thus

(f∗
d + εfφ)(x) = 1 +

d+1
2

i=0



Sd−1


µi + εφi(ν)


σ(νTx− bi) dHd−1

ν =


1 x = 0

0 |x| ≥ 1
.

Since f∗
d is the unique radial solution, we can average in the radial direction and observe

that

Sd−1 φi(ν) = 0 for all i = 0, . . . , d+1

2 . The Barron norm of the combined solution is

(d+1)/2

i=0

µi + εφiL1(Sd−1)

Hd−1(Sd−1)
=

(d+1)/2

i=0

|µi|

if ε is so small that εφiL∞ ≤ |µi| for all i, since the function µi + εφi does not change
signs in this case, and the integral of φi averages to zero. In particular, if (φ0, . . . ,φ(d+1)/2)

exist such that fφ is supported in B1(0) and fails to be radial, then a non-radial minimizer
exists.

By considering the behavior of fφ at infinity, we establish two conditions:
(d+1)/2

i=0 φi ≡
0 in order to have fφ bounded, and

(d+1)/2
i=0 biφi ≡ 0 in order to have limx→∞ fφ(x) = 0.

Lemma 13. Assume there exist d+3
2 measures µ̄i on Sd−1 such that

fµ̄(x) :=

d+1
2

i=0



Sd−1

σ(νTx− bi) dµ̄i = 0

for all |x| ≥ 1 and fµ̄(x) ∕≡ 0. Then there exists a minimizer f̂d ∈ F of the Barron semi-

norm which is not radially symmetric. Without loss of generality, we may assume that f̂d
is radially symmetric with respect to (x2, . . . , xd).

Proof Step 1. Assume for now that fµ̄ is identically zero. Let ψδ be a C∞-probability
density on the group of rotations SO(d) which is supported in an δ-neighbourhood of the
unit matrix, and let H be the Haar measure on SO(d). Define the radial mollification

fµ̄,δ(x) =



SO(d)
ψδ(O) fµ̄(O

Tx) dHO

=

d+1
2

i=0



Sd−1



SO(d)
ψδ(O)σ((Oν)Tx− bi) dHO


dµ̄i,ν

=

d+1
2

i=0



Sd−1

σ(νTx− bi) dµ̃i
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where

µ̃i,δ(B) =



SO(d)
ψδ(O) µ̄i(O ·B) dHO.

We make three observations.

1. fµ̄,δ(x) = 0 if x = 0 or |x| ≥ 1.

2. fµ̄,δ → fµ̄ as δ → 0 (pointwise and locally uniformly), so fµ̄,δ cannot be identically
zero for sufficiently small δ > 0.

3. µ̃i is absolutely continuous with respect to the uniform distribution on the sphere
since

|µ̃i|(B) ≤ ψδL∞µ̄iTV .

Due to the uniform estimate, the Radon-Nikodym derivative φi,δ :=
dµ̃i,δ

dHd−1 is an

L∞(Sd−1)-function.

We now fix ε, δ small enough, write φi = φi,δ and note that f∗
d + εfφ is also a solution

to (22). In particular, fφ cannot be radially symmetric since f∗
d is the unique radially

symmetric minimizer.

Step 2. Take fφ to be non-trivial as implied by step 1. Then there exists at least
one direction ν̄ such that fφ(tν̄) ∕≡ 0. Without loss of generality, we may take ν̄ = e1.

We can now average over all rotations which leave e1 fixed. The resulting function f̂φ is
radially symmetric in all components orthogonal to e1, i.e. in (x2, . . . , xd). Since we only
average over rotations which leave the e1-direction fixed, we have f̂φ(te1) = fφ(te1) ∕≡ 0. In
particular, we may assume that fφ has the desired symmetry.

The question whether there exists µ̄ = (µ̄0, . . . , µ̄(d+1)/2) such that fµ̄ ≡ 0 on Rd \B1(0)

but fµ̄ ∕≡ 0 on Rd can be rephrased in terms of functional analysis. Namely, if we understand
µ̄ as an element of the dual space Z∗ of Z := C0(Sd−1;R(d+3)/2) and we associate to x ∈ Rd

the function hx ∈ Z given by ν →

σ(νTx− b0), . . . ,σ(ν

Tx− b(d+1)/2)

, then we can write

fµ̄(x) = 〈µ̄, hx〉Z∗,Z as a duality product.

In particular, we consider two subspaces V1, V2 ⊆ Z:

V1 = span{hx : x ∈ Rd}, V2 = span{hx : |x| ≥ 1}. (24)

Obviously V2 ⊆ V1. We note the following: If V2 ∕= V1, then by the Hahn-Banach theorem
there exists µ ∈ Z∗ such that 〈µ, v〉 = 0 for all v ∈ V2 but not all v ∈ V1. It is easy to see by
contradiction that there exists in particular hx with |x| < 1 such that fµ(x) = 〈µ, hx〉Z∗,Z ∕=
0. Note that x ∕= 0 since fµ(0) = 0 for any µ by design.

We have thus proved the following.

Corollary 14. Denote Z := C0(Sd−1;R(d+3)/2) and hx ∈ Z defined by hx(ν) =

σ(νTx −

b0), . . . ,σ(ν
Tx − b(d+1)/2)


. Consider the subspaces V1, V2 of Z as in (24). There exists a

non-radial solution f of the minimization problem (22) if and only if V1 ∕= V2.
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