
Journal of Machine Learning Research 24 (2023) 1-50 Submitted 8/22; Revised 4/23; Published 6/23

Interpretable and Fair Boolean Rule Sets via Column
Generation

Connor Lawless1 cal379@cornell.edu

Sanjeeb Dash2 sanjeebd@us.ibm.com

Oktay Günlük1 ong5@cornell.edu

Dennis Wei2 dwei@us.ibm.com
1 Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14850
2 IBM Research, Yorktown Heights, NY, 10598

Editor: Silvia Chiappa

Abstract

This paper considers the learning of Boolean rules in disjunctive normal form (DNF, OR-
of-ANDs, equivalent to decision rule sets) as an interpretable model for classification. An
integer program is formulated to optimally trade classification accuracy for rule simplic-
ity. We also consider the fairness setting and extend the formulation to include explicit
constraints on two different measures of classification parity: equality of opportunity and
equalized odds. Column generation (CG) is used to efficiently search over an exponential
number of candidate rules without the need for heuristic rule mining. To handle large
data sets, we propose an approximate CG algorithm using randomization. Compared to
three recently proposed alternatives, the CG algorithm dominates the accuracy-simplicity
trade-off in 8 out of 16 data sets. When maximized for accuracy, CG is competitive with
rule learners designed for this purpose, sometimes finding significantly simpler solutions
that are no less accurate. Compared to other fair and interpretable classifiers, our method
is able to find rule sets that meet stricter notions of fairness with a modest trade-off in
accuracy.

Keywords: Classification, Interpretability, Fair Machine Learning, Rule Sets, Integer
Programming

1. Introduction

In recent years, key decision making tasks in areas ranging from finance to driving have
been automated via machine learning (ML) tools. However, many ML techniques are “black
boxes” that do not provide the rationale behind their predictions. This aspect renders ML
unsuitable for making high stakes decisions in areas such as criminal justice and medicine,
where ML is mostly used as a support tool to complement human decision making. In
these areas, transparency is necessary for domain experts to understand, critique and con-
sequently trust the ML models. In decision making tasks with a large societal impact, a
natural question is whether or not the ML model is fair to all those affected. Recent papers

c©2023 Connor Lawless, Sanjeeb Dash, Oktay Günlük, and Dennis Wei.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0880.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0880.html


Lawless, Dash, Günlük, and Wei

(e.g. Mehrabi et al., 2021) have argued that popular ML algorithms can be racially biased
in applications as varied as facial identification in picture tagging to predicting criminal
recidivism. Designing ML algorithms that are accurate, fair AND interpretable is therefore
an important societal goal.

Many classification tasks can be expressed as mathematical optimization problems. Dis-
crete optimization is a natural tool for a variety of interpretable ML models that can be
represented by low-complexity discrete objects. Integer programming (IP), a technique
within discrete optimization, is widely used in many industrial applications such as produc-
tion planning, scheduling, and logistics. However, it is less widely used in ML applications
partly because of large data sets that lead to large-scale IPs that are computationally in-
tractable. However, recent algorithmic and hardware advances have led to IP being used
for certain ML problems such as optimal decision trees (Günlük et al., 2021; Bertsimas
and Dunn, 2017; Carrizosa et al., 2021), risk scores (Ustun and Rudin, 2019), and rule sets
(Wang and Rudin, 2015) amongst others.

1.1 Contributions

In this paper, we use discrete optimization to construct interpretable classifiers that can
include constraints on fairness. We focus on a well-studied interpretable class of ML models
for binary classification, namely rule sets in disjunctive normal form (DNF, ‘OR-of-ANDs’).
For example, a DNF rule set with two rules for predicting criminal recidivism could be[

(Priors ≥ 3) AND (Age ≤ 45) AND (Score Factor = TRUE)
]

OR[
(Priors ≥ 20) AND (Age ≥ 45)

]
where Priors, Age, and Score Factor are features related to the defendant. This rule set
has two rules, also known as clauses, each of which check certain conditions on the features
of the data. The fewer the rules or conditions in each rule, the more interpretable the rule
set. Our approach can also be used to learn rule sets in conjunctive normal form (CNF,
‘AND-of-ORs’).

In contrast to other interpretable model classes related to rule sets such as decision trees
(Breiman et al., 1984; Quinlan, 1993) and decision lists (Rivest, 1987), the rules within a
DNF rule set are unordered (i.e., do not need to be evaluated in a hierarchical structure)
and have been shown in a user study to require less effort to understand (Lakkaraju et al.,
2016). We summarize our main contributions as follows:

• We propose an IP formulation for Boolean rule (DNF) learning that aims to mini-
mize Hamming loss, a computationally efficient proxy for 0-1 classification loss. The
formulation includes explicit bounds on the complexity of the rule set to enhance
interpretability and prevent overfitting.

• Rather than mining rules, we use the technique of column generation (CG) to search
over the exponential number of all possible rules, without enumerating even a pre-
mined subset (which can be large).

2



Boolean Rule Sets via Column Generation

• We present an IP formulation for the Pricing Problem in CG to generate candidate
rules. For large data sets we present a greedy heuristic and sub-sampling schemes to
approximately solve the Pricing Problem.

• We extend the IP formulation to include controls on two forms of algorithmic fairness:
equality of opportunity and equalized odds.

• We present an empirical study on the performance of Hamming loss as a proxy for
0-1 loss.

• A numerical evaluation is presented using 16 data sets, including one from the FICO
Explainable Machine Learning Challenge (FICO), in the standard classification set-
ting, as well as 3 data sets for fair classification.

An initial version of this work was published in a conference proceeding (Dash et al.,
2018) that introduced our IP formulation and column generation framework. In this article,
we extend the formulation to the fairness setting and integrate two notions of classification
parity as constraints. In addition, we provide a deeper analysis of Hamming loss as a proxy
for 0-1 classification loss, proving a negative theoretical result and conducting a computa-
tional study of its performance in practice. Finally, we present new computational studies
that show the performance of our approach in the fairness setting, and the performance of
new computational heuristics.

1.2 Related Work

Our work builds upon a body of work related to learning rule sets, leveraging discrete
optimization for machine learning, and fair machine learning.

Rule Sets: The learning of Boolean rules and rule sets has an extensive history span-
ning multiple fields. DNF learning theory (e.g. Valiant, 1984; Klivans and Servedio, 2004;
Feldman, 2012) focuses on the ideal noiseless setting (sometimes allowing arbitrary queries)
and is less relevant to the practice of learning compact models from noisy data. Predomi-
nant practical approaches include a covering or separate-and-conquer strategy (Clark and
Niblett, 1989; Clark and Boswell, 1991; Cohen, 1995; Frank and Witten, 1998; Friedman
and Fisher, 1999; Marchand and Shawe-Taylor, 2002; Fürnkranz et al., 2014) of learning
rules one by one and removing “covered” examples, a bottom-up strategy of combining
more specific rules into more general ones (Salzberg, 1991; Domingos, 1996; Muselli and
Liberati, 2002), and associative classification in which association rule mining is followed
by rule selection using various criteria (Liu et al., 1998; Li et al., 2001; Yin and Han, 2003;
Wang and Karypis, 2005; Chen et al., 2006; Cheng et al., 2007). Broadly speaking, these
approaches employ heuristics and/or multiple criteria not directly related to classification
accuracy. Moreover, they do not explicitly consider model complexity, a problem that has
been noted especially with associative classification. Rule set models have been generalized
to rule ensembles (Cohen and Singer, 1999; Friedman and Popescu, 2008; Dembczyński
et al., 2010; Wei et al., 2019), using boosting and linear combination rather than logical
disjunction; the interpretability of such models is again not comparable to rule sets. Models
produced by logical analysis of data (Boros et al., 2000; Hammer and Bonates, 2006) from
the operations research community are similarly weighted linear combinations.

3



Lawless, Dash, Günlük, and Wei

Spurred by the recent demand for interpretable models, several papers have revisited
Boolean and rule set models and proposed methods that jointly optimize accuracy and
simplicity within a single objective function. These works restricted the problem and ap-
proximated its solution. In Lakkaraju et al. (2016); Wang et al. (2017); Wang and Rudin
(2015), frequent rule miners are first used to produce a set of candidate rules. A greedy
forward-backward algorithm (Lakkaraju et al., 2016), simulated annealing (Wang et al.,
2017), or integer programming (IP) (in an unpublished manuscript Wang and Rudin, 2015)
are then used to select rules from the candidates. The drawback of rule mining is that it
limits the search space while often still producing a large number of rules, which then have
to be filtered using criteria such as information gain. Wang and Rudin (2015) also pre-
sented an IP formulation (but no computational results) that jointly constructs and selects
rules without pre-mining. Su et al. (2016) developed an IP formulation for DNF and CNF
learning in which the number of rules (conjunctions or disjunctions) is fixed. The prob-
lem is then solved approximately by decomposing into subproblems and applying a linear
programming (LP) method (Malioutov and Varshney, 2013), which requires rounding of
fractional solutions.

Discrete optimization for machine learning: Beyond rule sets, the last few
years have seen a renewed interest in using discrete optimization to solve machine learning
problems (see Gambella et al., 2021, for an overview of recent work). Ustun and Rudin
used IP methods to create sparse linear integer models for classification (Ustun and Rudin,
2016) and risk scores (Ustun and Rudin, 2019). IP models to construct decision trees are
studied in Bennett and Blue (1996); Aghaei et al. (2019); Bertsimas and Dunn (2017);
Carrizosa et al. (2021); Günlük et al. (2021); Verwer and Zhang (2019); Hu et al. (2019);
Lin et al. (2020); Aglin et al. (2020). Most of these approaches aim to establish a certificate
of optimality at the expense of computational effort, requiring hours of computation time.
In contrast, our approach does not guarantee a certificate of optimality but uses column
generation with a time limit as a faster heuristic. We note that CG has been proposed
for other machine learning tasks such as boosting (Demiriz et al., 2002; Bi et al., 2004),
regression (Eckstein et al., 2017), prescriptive decision trees (Subramanian et al., 2022),
matrix factorization (Kovacs et al., 2021), support vector machines (Carrizosa et al., 2010),
and hash learning (Li et al., 2013).

Fair machine learning: Quantifying fairness is not a straightforward task and a
number of metrics have been proposed in the fair machine learning literature. These met-
rics broadly fall into approaches for individual fairness (Dwork et al., 2011), which ensure
that ‘similar’ individuals with respect to the classification task have similar outcomes, or
group fairness, which ensures similar treatment for members of different protected groups
(i.e., race, gender, sexual orientation). Group fairness metrics can be further broken down
into three approaches: disparate treatment, classification parity, and calibration (Corbett-
Davies and Goel, 2018). The first measure, disparate treatment, ensures that predictions
are not being made based on sensitive attributes. It has been addressed in the literature by
excluding sensitive features (e.g., race, gender), or proxies of these sensitive attributes, from
the data. However removing sensitive attributes can lead to sub-optimal predictive perfor-
mance (Corbett-Davies and Goel, 2018). Classification parity, or group fairness, ensures
that some statistical measure of the predictions (ex. Type I/II error, accuracy) is equal
across all groups. Recent results have built fair classifiers around various related metrics

4



Boolean Rule Sets via Column Generation

including demographic parity (Agarwal et al., 2018; Calders and Verwer, 2010; Dwork et al.,
2011; Edwards and Storkey, 2016; Kamiran et al., 2012; Kamishima et al., 2012; Zafar et al.,
2017b; Celis et al., 2019), equalized odds (Agarwal et al., 2018; Hardt et al., 2016; Zafar
et al., 2017a; Celis et al., 2019), and equality of opportunity (Hardt et al., 2016; Zafar et al.,
2017a; Donini et al., 2018). The final measure, calibration, requires that conditioned on
the prediction, the actual outcomes are independent of the protected characteristics. For
example, among those given a 70% prediction of repeating a criminal offence, calibration
would require that Black and white offenders repeat crimes at a similar rate. Importantly,
recent impossibility results (Chouldechova, 2017; Kleinberg et al., 2017) have shown that
simultaneously attaining perfect calibration and certain measures of classification parity is
not possible. Thus, the goal of a fair classifier is to maximize predictive accuracy subject
to some requirement on fairness.

Our work focuses on explicitly integrating fairness considerations directly into the train-
ing of a classification model. Previous work in this area, referred to as in-processing (Agar-
wal et al., 2018; Calders and Verwer, 2010; Kamishima et al., 2012; Zafar et al., 2017b;
Celis et al., 2019; Zafar et al., 2017a; Donini et al., 2018; Berk et al., 2017; Wu et al., 2019;
Lohaus et al., 2020), has focused on adding either some form of fairness regularization to
the loss function (Kamishima et al., 2012; Berk et al., 2017; Zemel et al., 2013), or a con-
straint to the underlying optimization problem (Aghaei et al., 2019; Zafar et al., 2017b,a;
Donini et al., 2018). However many current approaches require the use of a relaxed version
of the fairness constraints (i.e., convex, linear) during optimization (Donini et al., 2018;
Wu et al., 2019; Zafar et al., 2017b,a), which have been shown to have sub-par fairness
on out-of-sample data (Lohaus et al., 2020). Similar to our approach, Aghaei et al. (2019)
formulate optimal decision trees subject to explicit constraints on fairness. However, unlike
our approach which addresses Boolean rules and uses heuristics to speed up the solve time,
their approach aims to solve the MIP formulation to optimality.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. Section 2 introduces our MIP formula-
tion for constructing optimal Boolean rule sets from training data. Section 3 extends this
framework to the two different notions of fairness that we consider. Section 4 describes the
column generation procedure to generate candidate rules. It also discusses computational
approaches to improve the speed and scalability of our framework as well as the optimality
guarantees in our framework. In Section 5 we present empirical results on testing data to
measure the performance of our approach using cross validation.

2. Classification Framework: Boolean Rule Sets

We consider the supervised binary classification setting where we are given a training data
set of n samples sampled from an underlying (unknown) distribution with d features (Xi, yi),
i ∈ I = {1, . . . , n} where Xi ∈ {0, 1}d and labels yi ∈ {−1, 1}. A sample i ∈ I is said to
have a feature j if Xij = 1 where Xij is the j-th element of Xi. Assuming the data to be
binary-valued is not a restrictive assumption in practice. For instance, categorical features
can be converted to binary features via a one-hot encoding scheme. Similarly, real valued
features can be converted to binary features by considering a sequence of thresholds (i.e.,

5



Lawless, Dash, Günlük, and Wei

creating new binary features Xij ≤ v for real valued feature j and different thresholds v).
Binarization of categorical and real-valued features does come at a cost to the dimensionality
of the data set (i.e., it may take multiple binary columns to represent a single categorical or
real-valued feature). A detailed discussion of how we deal with numerical and categorical
features is included in Section 5.

We focus on the problem of learning a Boolean classifier ŷ(X) in DNF (OR-of-ANDs).
When the features are binary each clause in a DNF corresponds to a conjunction of features
or their negation (i.e., A∧¬B ∧C for features A, B and C). If for every feature we assume
its negation is also included as a feature (i.e., for every feature A there exists a feature
¬A), then a clause simply corresponds to a conjunction of features, and a sample satisfies
a clause if it has all features contained in the clause (i.e., Xij = 1 for all such features j).
Since a DNF classifier is equivalent to a rule set, the terms clause, conjunction, and (single)
rule (within a rule set) are used interchangeably. As shown in (Su et al., 2016) using De
Morgan’s laws, the same formulation applies equally well to CNF learning by negating both
labels yi and features xi. The method can also be extended to multi-class classification in
the usual one-versus-rest manner.

Let K denote the set of all candidate rules and Ki ⊂ K be the set of rules satisfied by
data point i ∈ I. Furthermore, let K ⊆ K be a DNF rule set composed of candidate rules
selected from K. For a given DNF rule set K, the classifier ŷ(Xi) checks whether the data
point Xi satisfies at least one rule in K.

Definition 1 (DNF Classifier) Given a rule set K, the DNF classifier is defined as fol-
lows:

ŷ(Xi) =

{
1 if |Ki ∩K| > 0

−1 else

Note that not every possible rule may be included in the set of candidate rules. For
instance, there may be a limit on the number of features allowed in a candidate rule. In any
case, given d binary features, there can only be at most a finite number (2d− 1) of possible
decision rules. Therefore, in theory it is possible to enumerate all possible rules, though in
practice this may be computationally intractable, and then formulate a large scale integer
program (IP) to select a small subset of these rules that minimizes error on the training
data. In this framework, it is also possible to explicitly require the rule set to satisfy certain
properties such as fairness or interpretability. However, for most practical applications, such
an IP would be onerously large and computationally intractable. We introduce a column
generation framework to tackle this challenge in Section 4.

2.1 0-1 loss

When constructing a rule set, our ultimate aim is to minimize 0-1 classification error, which
is equivalent to maximizing the classification accuracy. Assume that the data points are
partitioned into two sets based on their labels:

P = {i ∈ I : yi = 1}, and N = {i ∈ I : yi = −1}.

We call P and N the positive and negative classes respectively. For data points from the
positive class (i.e., i ∈ P), the 0-1 loss is simply the indicator that the data point satisfies

6



Boolean Rule Sets via Column Generation

no rules in the rule set (i.e., |Ki ∩ K| = 0). For points in the negative class, the 0-1 loss
is the indicator of whether the data point satisfies at least one rule in the rule set (i.e.,
|Ki ∩ K| > 0). Putting both terms together, we get that the 0-1 loss for a data point
(Xi, yi) and rule set K is as follows:

Definition 2 (0-1 loss)

`01(Xi, yi,K) =

{
I(|Ki ∩K| = 0) if yi = 1

I(|Ki ∩K| > 0) if yi = −1

where I(E) is the indicator function (i.e., I(E) = 1 if E is true and 0 otherwise). Let
wk ∈ {0, 1} be a variable indicating if rule k ∈ K is selected in K; ζi ∈ {0, 1} be a variable
indicating if data point i ∈ P ∪N is misclassified. With this notation in mind, the problem
of identifying the rule set that minimizes 0-1 loss becomes

min
∑
i∈P

ζi +
∑
i∈N

ζi (1)

s.t. ζi +
∑
k∈Ki

wk ≥ 1, ∀i ∈ P (2)

wk ≤ ζi, ∀i ∈ N , k ∈ Ki (3)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P∪N| (4)

Any feasible solution (w̄, ζ̄) to (2)-(4) corresponds to a rule set K = {k ∈ K : w̄k = 1}.
Constraint (2) identifies false negatives by forcing ζi to take value 1 if no rule that is satisfied
by the point i ∈ P is selected. Similarly, constraint (3) identifies false positives by forcing
ζi to take a value of 1 if any rule satisfied by i ∈ N is selected. The objective forces ζi to
be 0 when possible, so there is no need to add constraints to track whether data point i
is classified correctly in this formulation. Note that there may be an exponential number
of rules with respect to the number of features d, and thus there may be an exponential
number of constraint (3) as there needs to be one constraint for each rule met by data point
i. We present and discuss an alternative version of this formulation with aggregated false
positive constraints in Appendix A.

2.2 Hamming loss

While our aim is to minimize the 0-1 loss, the corresponding IP formulation is prohibitively
large and hard to solve in practice. We instead minimize the Hamming loss of the rule set
as is also done in Su et al. (2016); Lakkaraju et al. (2016). For each incorrectly classified
sample, the Hamming loss counts the number of rules that have to be selected or removed
to classify it correctly. More precisely, it is equal to the number of samples with label 1
that are classified incorrectly (false negatives) plus the sum of the number of selected rules
that each sample with label -1 satisfies.

Definition 3 (Hamming loss)

`h(Xi, yi,K) =

{
I(|Ki ∩K| = 0) if yi = 1

|Ki ∩K| if yi = −1

7



Lawless, Dash, Günlük, and Wei

Notice that Hamming loss is asymmetric with respect to errors for the positive and negative
classes. Specifically, while the loss for a false negative remains the same as 0-1 loss, a false
positive may incur a loss greater than 1 if it is satisfies multiple rules.1 Using the same
notation as the previous IP formulation (1)—(4), the problem of finding the rule set that
minimizes Hamming loss is simply

min
∑
i∈P

ζi +
∑
i∈N

∑
k∈Ki

wk (5)

s.t. ζi +
∑
k∈Ki

wk ≥ 1, i ∈ P (6)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P| (7)

The objective is now Hamming loss where for each i ∈ N the second term adds up the
total number of selected rules satisfied by i. Compared to the 0-1 loss formulation, this
formulation does not have the large number of constraints (

∑
i∈N |Ki| constraints) needed

to track false positives. Note that the size of the set |Ki| can be exponentially large with
respect to the dimensionality of the feature space. While Hamming loss leads to a much more
compact formulation, we next observe that optimizing it might also lead to an arbitrarily
bad overestimation of the 0-1 loss.

Theorem 4 (Hamming loss vs. 0-1 loss) When evaluating the 0-1 loss on a data set
D, the rule set selected to minimize Hamming loss can perform arbitrarily worse than the
rule set selected to minimize 0-1 loss. Formally, for a data set D = [(Xi, yi)]

n
1 where

Xi ∈ {0, 1}d, let

K∗` = argmin
K⊆K

n∑
i=1

`(Xi, yi,K)

be the optimal DNF rule set for loss function ` using candidate rule set K. There does not
exist a global constant Ψ ∈ [1,∞) such that

Ψ

n∑
i=1

`01(Xi, yi,K
∗
`01) ≥

n∑
i=1

`01(Xi, yi,K
∗
`h

)

for all candidate rule sets K, data D.

Even though Hamming loss can theoretically lead to arbitrarily worse performance on
the 0-1 classification problem, we decide to use it in our formulation out of practicality.
Its compact formulation can be solved more efficiently than that of the 0-1 formulation,
leading to a more computationally tractable framework. Empirically, models trained with
Hamming loss perform comparably to those trained with 0-1 loss (as discussed in Section
5.2).

1. If using this framework for CNF rules with Hamming loss, the false positive loss remains the same and
the false negative loss is relaxed (i.e., may be higher than one).

8



Boolean Rule Sets via Column Generation

2.3 Master Integer Programming Formulation

In addition to the formulation presented in Section 2.2, we add an additional constraint on
the complexity of the rule set both to prevent over-fitting and to control interpretability.
For concreteness, we define the complexity of a rule to be one plus the number of conditions
in the rule; other affine functions can be handled equally well. We denote the complexity
of rule k by ck. The total complexity of a rule set is defined as the sum of the complexities
of its rules. It is possible to include an additional term in the objective function to penalize
complexity but we instead explicitly impose an upper bound on complexity of the rule set
by a given parameter C as it offers better control in applications where interpretable rules
are preferred. Clearly one can use both a constraint and a penalty term.

Building upon the previous Hamming loss IP formulation (5)—(7), the full formulation
for selecting an optimal rule set becomes

zMIP = min
∑
i∈P

ζi +
∑
i∈N

∑
k∈Ki

wk (8)

s.t. ζi +
∑
k∈Ki

wk ≥ 1 i ∈ P (9)

∑
k∈K

ckwk ≤ C (10)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P| (11)

Constraint (10) provides the bound on complexity of the final rule set. We call the integer
program (8)-(11) the Master Integer Program (MIP), and its associated linear relaxation
the Master LP (MLP) (obtained by replacing (11) with w ∈ [0, 1]|K|, ζ ∈ [0, 1]|P|). We
denote the optimal values of the MIP and MLP by zMIP and zMLP respectively.

While the MIP (8)—(11) optimizes for Hamming Loss, we also employed a minor en-
hancement described in detail in Appendix J that uses the 0-1 Loss. This enhancement,
which we call Pool Select, uses the fact that the mixed integer programming solver retains a
set of feasible integer solutions encountered while solving the restricted MIP. Selecting the
best of these feasible solutions with respect to 0-1 Loss, even while the solver is optimizing
for Hamming Loss, leads to a small increase in performance.

3. Fairness

We now consider the case when each data point also has an associated group (or protected
feature) gi ∈ G where G is a given discrete set. Some common examples of protected features
are gender, race, and social class. For each group g ∈ G we denote the data points that
have the protected feature g with

Ig = {i ∈ I : gi = g}

and let Pg = P ∩ Ig and Ng = N ∩ Ig. For simplicity, we describe the setting where
G = {1, 2} for the remainder of the paper and note that extending it to multiple groups is
straightforward and simply adds constraints that scale linearly with the number of groups.

9



Lawless, Dash, Günlük, and Wei

In this setting, the classifier is not only required to predict the labels well, but it is also
required to treat each group fairly. In particular, we will focus on two measures of group
fairness related to classification parity: equality of opportunity, and equalized odds.

3.1 Equality of Opportunity

Equality of opportunity requires the Type II error rate (i.e., false negative rate) to be equal
across groups by enforcing the following condition (Hardt et al., 2016):

P(ŷ(X) 6= Y | Y = 1, G = g) = P(ŷ(X) 6= Y | Y = 1) (12)

for all g ∈ G, where the probability P is taken with respect to the underlying data distri-
bution. Since the true distribution is unknown we approximate it with the empirical distri-
bution for the training data. Condition (12) requires the false negative rate of the classifier
to be independent of the group the data point belongs to. This fairness criterion may be
desirable when there is a much larger societal cost to false negatives than false positives,
making it particularly well-suited for applications such as loan approval or hiring decisions.
For example, in the context of hiring, it ensures qualified candidates would be offered a job
with equal probability, independent of their group membership (ex. male/female).

In a practical setting, it is unrealistic to expect to find classifiers that can satisfy the
above criterion exactly. In fact, in most non-trivial applications strong adherence to fairness
criteria comes at a large cost to accuracy (Kleinberg et al., 2017) and therefore one needs
to consider how much these conditions are violated as a measure of fairness. In the context
of equality of opportunity, the maximum violation can be used to measure the unfairness
of the classifier by the following expression:

∆(ŷ) = max
g,g′∈G

∣∣∣P(ŷ(X) 6= Y | Y = 1, G = g)− P(ŷ(X) 6= Y | Y = 1, G = g′)
∣∣∣

When training the classifier ŷ, one can then use the sample estimate of ∆(ŷ) in the
objective function as a penalty term or can explicitly require a constraint of the form
∆(ŷ) ≤ ε to be satisfied by the classifier ŷ. We will focus on the latter case as it allows for
explicit control over tolerable unfairness.

To incorporate the equality of opportunity criterion into the MIP, we bound the differ-
ence in the false negative rates between groups linearly as follows:

1

|P1|
∑
i∈P1

ζi −
1

|P2|
∑
i∈P2

ζi ≤ ε1 (13)

1

|P2|
∑
i∈P2

ζi −
1

|P1|
∑
i∈P1

ζi ≤ ε1 (14)

Constraints (13) and (14) bound the maximum allowed unfairness, denoted by ∆ above, by
a specified constant ε1 ≥ 0 that corresponds to an acceptable level of unfairness. If ε1 is
chosen to be 0, then the fairness constraint is imposed strictly.

10



Boolean Rule Sets via Column Generation

3.2 Equalized Odds

A stricter condition on the classifier is to require that both the Type I and Type II error
rates are equal across groups (Hardt et al., 2016). This requirement prevents possible
trade-off between false negative and false positive errors across groups and can be seen as a
generalization of the equality of opportunity criterion to include false positives. To achieve
equalized odds, together with equation (12), the following condition is also enforced:

P(ŷ(X) 6= Y | Y = −1, G = g) = P(ŷ(X) 6= Y | Y = −1)

for all g ∈ G.
Similar to our use of Hamming loss as a proxy for 0-1 loss for the negative class, we

use it as a proxy for equalized odds. Specifically, instead of bounding the difference in false
positive rates between groups we bound the difference in the Hamming loss terms for the
negative class. We call this Hamming loss proxy for equalized odds Hamming Equalized
Odds. Thus in conjunction with constraints (13) and (14), we also include the following
constraints in the formulation:

1

|N1|
∑
i∈N1

∑
k∈Ki

wk −
1

|N2|
∑
i∈N2

∑
k∈Ki

wk ≤ ε2 (15)

1

|N2|
∑
i∈N2

∑
k∈Ki

wk −
1

|N1|
∑
i∈N1

∑
k∈Ki

wk ≤ ε2, (16)

where ε2 ≥ 0 is a given constant. The tolerance parameter ε2 in (15) and (16) can be
set equal to ε1 in (13) and (14), or, alternatively, they can be chosen separately. Note
that we normalize the Hamming loss terms to account for the difference in group sizes and
positive response rates between groups. Unfortunately, similar to using Hamming loss in
the objective, Theorem 5 shows that the Hamming loss proxy for false positives can lead
to arbitrarily unfair classifiers with respect to the true equalized odds criterion (the proof
can be found in Appendix C). However once again, the Hamming loss proxy performs well
empirically and generates classifiers that meet the true fairness constraint.

Theorem 5 (Hamming Equalized Odds Proxy) A rule set satisfying Hamming Equal-
ized Odds can have an arbitrarily large gap in the false positive rate between groups. For-
mally, for a data set D = [(Xi, yi)]

n
1 where Xi ∈ {0, 1}d with group membership G, let

∆(K) = max
g,g′∈G

∣∣∣ 1

|Ng|
∑
i∈Ng

I(|K ∩ Ki| > 0)− 1

|Ng′ |
∑
i∈Ng′

I(|K ∩ Ki| > 0)
∣∣∣

be the maximum gap in false positive rates between groups for a DNF rule set K.
Let K∗ be a DNF rule set that satisfies Hamming Equalized Odds (i.e., constraints (13),

(14), (15) and (16)) with parameter ε. There does not exist a global constant Ψ ∈ [1,∞)
such that

∆(K∗) ≤ Ψε

for all candidate rule sets K, data D, and ε.

11



Lawless, Dash, Günlük, and Wei

Other fairness metrics: While we restrict our focus to equality of opportunity and
equalized odds, we note that our framework can be adapted for any notion of classification
parity (i.e., balancing false positive rates, overall accuracy, or demographic parity). The
only caveat is that for notions of fairness involving false positives our framework would
use the Hamming loss term for false positives (similar to equalized odds). As discussed
in Section 4, to solve our formulation an initial set of rules K are needed to make the
problem feasible. With the fairness criteria presented above, the empty set of rules gives a
trivial feasible solution (i.e., all points in P are misclassified, which is fair with respect to
equality of opportunity and equalized odds). However, this may no longer be the case for
other notions of fairness, such as ensuring similar Hamming loss or accuracy between the
two groups. In such cases, a two stage approach could be used to first generate a set of
candidate rules that are feasible for a given fairness criteria prior to optimizing for accuracy.

3.3 Base Formulation for Fairness Setting

In the IP formulation presented in Section 2, there is no need to track true positives (i.e.,
ensure ζi = 0 when point i ∈ P is correctly classified) as ζi = 0 in any optimal solutions
provided that

∑
k∈Ki

wk ≥ 1. However, this is not the case when fairness constraints are
added to the formulation. For example, a data point i could be correctly classified but
setting ζi = 1 preserves the feasibility of the solution with respect to the fairness constraint.
To modify our formulation for the fairness setting, we add additional constraints to correctly
track the error for the positive class P. Thus for the fairness setting we add the following
constraint to IP formulation (8)-(11):

Cζi +
∑
k∈Ki

βkwk ≤ C i ∈ P (17)

Constraint (17) ensures that ζi = 0 if any rules satisfied by i ∈ P are selected. Here
βk > 0 is any set of coefficients such that

∑
k∈Ki

βkwk ≤ C for all feasible solutions of
problem (8)-(11). A natural choice would be to set βk = ck to recover constraint (10),
however this leads to computational challenges during column generation (see Appendix D
for a detailed discussion). Instead we set βk = 2 as ck ≥ 2 for all k ∈ K.

4. Column Generation

It is not practical to solve the MIP (8)-(11) using standard branch-and-bound techniques
(Land and Doig, 1960) as it would require enumerating exponentially many rules. To
overcome this problem, we solve the LP relaxation of MIP using the column generation
technique (Gilmore and Gomory, 1961; Conforti et al., 2014) without explicitly enumerating
all possible rules. Once we solve the LP to optimality or near optimality, we then restrict our
attention to the rules generated during the process and pick the best subset of these rules
by solving a restricted MIP. We note that it is possible to integrate the column generation
technique with branch-and-bound to solve the MIP to provable optimality using the branch-
and-price approach (Barnhart et al., 1998). However, this would be quite time consuming
in practice.

To solve the LP relaxation of the MIP, called the MLP, we start with a possibly empty
subset K̂ ⊂ K of all candidate rules and solve an LP restricted to the variables associated

12



Boolean Rule Sets via Column Generation

Generate
Initial

Columns

Solve
RMLP

Solve
Pricing
Problem

New
Columns?

Solve
RMIP

Time
Limit?

no yes

no

yes

Figure 1: Flowchart of column generation procedure.

with these rules only. Once this small LP is solved, we use its optimal dual solution to
identify a missing variable (rule) that has a negative reduced cost. The search for such a
rule is called the Pricing Problem and in our case this can be done by solving a separate
integer program. If a rule with a negative reduced cost is found, then K̂ is augmented
with the rule and the LP is solved again. This process is repeated until no such rule can
be found. This mimics how LPs are solved to optimality in practice using the revised
simplex method. For large problems, even solving the MLP to optimality is not always
computationally feasible. Out of practicality, we put an overall time limit on the column
generation process and terminate without a certificate of optimality if the limit is reached.
In Figure 1, we present a flowchart describing the column generation procedure.

4.1 Pricing Problem: Base Formulation without Fairness

Given a subset of rules K̂ ⊂ K, let the RMLP be the restriction of MLP to the rules in
K̂. In other words, RMLP is the restriction of MLP where all variables wk associated with
k ∈ K \ K̂ are fixed to 0. Let (µ, λ) be an optimal dual solution to RMLP, where dual

variables µ ∈ R|P|+ , λ ∈ R+ are associated with constraints (9) and (10) respectively. Using

this dual solution, the reduced cost of a variable wk associated with a rule k /∈ K̂ can be
expressed as

ρ̂k =
∑
i∈N

I(k ∈ Ki)−
∑
i∈P

µiI(k ∈ Ki) + λck (18)

where the first term simply counts the number of data points i ∈ N that satisfy the rule
k. If there exists a k ∈ K \ K̂ with ρ̂k < 0, then including variable wk in RMLP has the
potential of decreasing the objective function of the LP. Also note that ρ̂k ≥ 0 for all k ∈ K̂
as the dual solution at hand is optimal for RMLP.

We can now formulate an integer program to find a rule k ∈ K with the minimum
reduced cost ρ̂k. Let J = {1, . . . , d} be the set of binary-valued features and Xij be the
j-th feature value for data point Xi. Remember that a decision rule corresponds to a subset
of the binary features J and classifies a data point with a positive response if the point has
all the features selected by the rule. Let Si = {j ∈ J : Xij = 0} correspond to the zero-
valued features in sample i ∈ P ∪ N . Let variable zj ∈ {0, 1} for j ∈ J denote if the rule
includes feature j and let variable δi ∈ {0, 1} for i ∈ I denote if the rule is satisfied by data

13



Lawless, Dash, Günlük, and Wei

point i. Using these variables, the complexity of a rule can be computed as (1 +
∑

j∈J zj)
and the reduced cost of the rule becomes∑

i∈N
δi −

∑
i∈P

µiδi + λ
(

1 +
∑
j∈J

zj

)
. (19)

The full Pricing Problem thus simply minimizes (19) subject to the constraints:

Dδi +
∑
j∈Si

zj ≤ D i ∈ I− (20)

δi +
∑
j∈Si

zj ≥ 1 i ∈ I+ (21)

∑
j∈J

zj ≤ D (22)

z ∈ {0, 1}|J |, δ ∈ {0, 1}|I| (23)

where the set I− ⊆ I contains the indices of δi variables that have a negative coefficient
in the objective (i.e., −µi < 0, i ∈ P), and I+ = I \ I−. We denote the optimal value to
the Pricing Problem by zCG. Constraints (20) and (21) ensure that δi accurately reflects
whether the new rule classifies data point i with a positive label. Constraint (22) puts
an explicit bound on the complexity of any rule using the parameter D. This individual
rule complexity constraint can be set independently of C in the master problem or can be
relaxed by setting it to C − 1.

We also note that a naive implementation of the column generation procedure as pre-
sented above can be susceptible to cycling, the phenomenon where the Pricing Problem
repeatedly produces the same column. Cycling can stall the column generation procedure,
preventing it from finding new columns, and was observed in initial experiments with this
framework. An example of the phenomenon and strategies to mitigate the problem are
included in Appendix D.

We next formally show that the Pricing Problem is a difficult optimization problem.
The proof follows from a reduction of the minimum vertex cover (MVC) problem and is
included in Appendix E.

Theorem 6 The Pricing Problem (19)-(23) is NP Hard.

Given the hardness of the Pricing Problem it can be computationally intractable to
solve the MLP to optimality using column generation. For small data sets, defined loosely
as having less than a couple of thousand samples and less than a few hundred binary
(binarized) features, it is still computationally feasible to employ column generation with
the Pricing Problem IP formulation. However, to handle larger data sets within a time limit
of 10 or 20 minutes, one has to sacrifice the optimality guarantees of the framework. We
next describe our computational approach to deal with larger data sets, which can be seen
as an optimization-based heuristic.

We call a data set medium if it has more than a couple of thousand samples but less
than a few hundred binary features. We call it large if it has many thousands of samples
and more than several hundred binary features. The separation of data sets into small,

14



Boolean Rule Sets via Column Generation

medium and large is done based on empirical experiments to improve the likelihood that
the Pricing Problem can produce negative reduced cost solutions in practice.

For medium and large data sets, the number of non-zeros in the Pricing Problem (defined
as the sum of the numbers of variables appearing in the constraints of the formulation) is at
least 100,000 and solving this integer problem to optimality in a reasonable amount of time
is not always feasible. To deal with this practical issue, we terminate the Pricing Problem
if a fixed time limit is exceeded. If the solver can find one (or more) negative reduced
cost rules within the time limit, we add all the negative reduced cost rules returned by the
solver to the RMLP. As long as one such rule (variable) is obtained, the column generation
process continues. For large data sets, the solver typically fails to find any rule with negative
reduced cost within the time limit. In this case, we sub-sample both the training data points
and potential features to have on average 2000 rows and 100000 non-zeros in the Pricing
Problem. We then solve this reduced version of the Pricing Problem.

If the full Pricing Problem can be solved to optimality within the time limit and there are
no negative reduced cost solutions, then the current RMLP solves the MLP to optimality.
However, if it terminates without a negative reduced cost solution due to the time limit, or,
when we use sub-sampling, then we do not have a certificate of optimality. In this case, we
employ a fast heuristic algorithm, detailed in Section 4.2, to continue to search for negative
reduced cost solutions and continue the process.

4.2 Pricing Heuristic

To obtain good solutions to the Pricing Problem without solving the integer program we
use the following heuristic which employs beam search, starting with a list of single-feature
rules. For the best single feature rules, it attempts to expand each by adding another feature.
This process is then repeated for the best two-feature rules and so on, till we obtain up to
five-feature rules. The beam widths we use for one-feature rules up to five-feature rules are
50, 20, 6, 6, 5 respectively.

Consider the prediction function ŷ defined by a single rule. Then we can rewrite the
equation for the reduced cost (18) associated with the rule as

ρ̂ =
∑
i∈N

ŷ(Xi)−
∑
i∈P

µiŷ(Xi) + λĉ. (24)

The goal is to find a rule for which ρ̂ is as negative as possible. Now assume that a rule
consists of a single feature, say `. If we create a new rule by adding another feature to the
rule with associated prediction function ȳ, complexity c̄ and reduced cost ρ̄, then we have
ȳ(Xi) ≤ ŷ(Xi) for all i ∈ P ∪N . Therefore, we have∑

i∈P
µiȳ(Xi) ≤

∑
i∈P

µiŷ(Xi) and
∑
i∈N

ȳ(Xi) ≤
∑
i∈N

ŷ(Xi).

But we also have c̄ = 1 + ĉ. This means that if λĉ −
∑

i∈P µiŷ(Xi) is positive, it is
not possible to create a rule containing the feature ` with negative reduced cost. We use
this basic idea repeatedly. At the beginning, we mark all such features and rule them out
for inclusion in any rule. Then we take the remaining features and create single-feature
rules, and calculate (24) for each. We sort this list, and keep the best. Now for a given

15



Lawless, Dash, Günlük, and Wei

rule r, let P ′ and N ′ be calculated as before. If for any feature ` not in the rule, we have
λ(ĉ+ 1)−

∑
i∈P ′ µiȳ(Xi) > 0, then no rule that contains the features in r and the feature

` can yield a negative reduced cost. When we consider extended a rule by adding features,
we create a list of features that cannot be added to the rule by the above criterion. This
list is copied to every new rule containing r and additional features are added to the list.

Finally, once we have a list of negative reduced cost rules, we return a “diverse” subset
of them by limiting the number of rules that have the same first feature (assuming features
have an ordering) and the number of rules that have the same first two features and so on.

4.3 Pricing Problem: Fairness Setting

We now extend the Pricing Problem formulation to the fairness setting under both equality
of opportunity and equalized odds. In this setting, the master problem is augmented with
additional constraints that factor into the objective of the Pricing Problem.

Equality of opportunity: Under the equality of opportunity criterion, the master
problem is augmented with constraints (13), (14), and (17). Let (µ, α, λ, γ1, γ2) be an
optimal dual solution to RMLP, where variables γ1, γ2, α are associated with constraints
(13), (14), and (17). Using this dual solution, the reduced cost of a variable wk associated
with a rule k /∈ K̂ can be expressed as

ρ̂k =
∑
i∈N

I(k ∈ Ki)−
∑
i∈P

µiI(k ∈ Ki) +
∑
i∈P

2αiI(k ∈ Ki) + λck (25)

Note that variable wk does not appear in constraints (13) or (14) in RMLP and consequently
(25) does not involve variables γ1 or γ2. The full Pricing Problem thus becomes

zCG = min
∑
i∈N

δi +
∑
i∈P

(2α− µi)δi + λ

1 +
∑
j∈J

zj


s.t. (20)− (23),

where the set I− ⊆ I contains data points i ∈ P such that 2α − µi < 0, and I+ = I \ I−.
Note that while the dual values γ1, γ2 for the fairness constraints do not explicitly appear
in the Pricing Problem, this does not mean that the fairness constraints have no impact on
the column generation procedure. The inclusion of constraints (13) and (14) may lead to
different optimal solutions to the RMLP and by extension different values for the optimal
dual variables µ, α, λ involved in the pricing problem. In other words, the inclusion of the
fairness constraints implicitly changes the objective of the pricing problem and the rules
returned by it.

Equalized odds: In this case we further augment the RMLP from the Equality
of Opportunity setting with constraints (15) and (16). Note that unlike (13) and (14),
constraints (15) and (16) do involve variables wk. Let (µ, α, λ, γ1, γ2, γ3, γ4) be an optimal
dual solution to RMLP, where variables γ3 and γ4 are associated with fairness constraints
(15) and (16), respectively. Using this dual solution, the reduced cost of a variable is similar
to the expression in (25), except it has the following 4 additional terms:

16



Boolean Rule Sets via Column Generation

∑
i∈N1

γ3
|N1|

I(k ∈ Ki)−
∑
i∈N1

γ4
|N1|

I(k ∈ Ki)−
∑
i∈N2

γ3
|N2|

I(k ∈ Ki) +
∑
i∈N2

γ4
|N2|

I(k ∈ Ki)

Consequently, the Pricing Problem becomes

zCG =min

(
1 +

γ3 − γ4
|N1|

) ∑
i∈N1

δi +

(
1 +

γ4 − γ3
|N2|

) ∑
i∈N2

δi

+
∑
i∈P

(2α− µi)δi + λ

1 +
∑
j∈J

zj


s.t. (20)− (23),

where the set I− contains data points i ∈ P such that 2α − µi < 0, i ∈ N1 such that
(1 + γ3−γ4

|N1| ) < 0, and i ∈ N2 such that (1 + γ4−γ3
|N2| ) < 0.

Note that the Pricing Problem heuristic introduced in Section 4.2 can be adapted to the
fairness setting by simply changing the condition for which a feature ` is no longer considered
to extend a rule r. Instead of the original condition λ(ĉ + 1) −

∑
i∈P µiȳ(Xi) > 0, we use

λ(ĉ+ 1) +
∑

i∈P(2αi − µi)ȳ(Xi) > 0 to incorporate dual values coming from the additional
fairness constraint (17). The adjustment is the same for both the equality of opportunity
and equalized odds formulations as the additional constraints for the latter model only
impact the reduced cost formula with respect to data points in N which does not appear
in the condition.

4.4 Optimality Guarantees and Bounds

When the column generation framework described above is repeated until zCG ≥ 0, none of
the variables missing from the RMLP have a negative reduced cost and the optimal solution
of the MLP and the RMLP coincide. In addition, if the optimal solution of the RMLP turns
out to be integral, then it is also an optimal solution to the MIP and therefore the MIP is
solved to optimality. If the optimal solution of the RMLP is fractional, then one may have to
use column generation within an enumeration framework to solve MIP to optimality. This
approach is called branch-and-price (Barnhart et al., 1998) and is quite computationally
intensive. However, even when the optimal solution to the MLP is fractional or the MLP is
not solved to optimality, the following proposition gives a valid lower bound for the value
of the MIP (the proof can be found in Appendix F).

Proposition 7 (Lower Bound for zMIP ) At the conclusion of column generation, the
following is a valid lower bound for the optimal value of the MIP:⌈

zRMLP + min((C/2)zCG, 0)
⌉

where zRMLP is the objective value of the last RMLP solved to optimality, and zCG is the
(lower bound for the) optimal value of the final Pricing Problem solved.

17



Lawless, Dash, Günlük, and Wei

This lower bound can be compared to the cost of any feasible solution to MIP. If the
latter equals the lower bound in Proposition 7, then, once again, MIP is solved to optimality.
As one example, a feasible solution to the MIP could be obtained by solving the Restricted
MIP obtained by imposing (11) on the variables present in the RMLP. More generally, any
heuristic method can generate feasible solutions to the MIP.

5. Numerical Evaluation

To demonstrate the performance of our approach we present a suite of numerical results.
We start with describing the data sets, experimental setup, and computational environment
that we used. In Section 5.2, we present an empirical study aimed at understanding the
effect of using Hamming loss as a proxy for 0-1 loss. We benchmark our approach against
state-of-the-art algorithms in both the traditional classification setting (Section 5.3), and
the fairness setting (Section 5.4). We also showcase sample rule sets in both sections to
demonstrate their simplicity and intuitive appeal.

5.1 Experiment Details

Evaluations were conducted on 15 classification data sets from the UCI repository (Dua and
Karra Taniskidou, 2017) that have been used in recent works on rule set/Boolean classifiers
(Malioutov and Varshney, 2013; Dash et al., 2014; Su et al., 2016; Wang et al., 2017). In
addition, we used data from the FICO Explainable Machine Learning Challenge (FICO).
It contains 23 numerical features of the credit history of 10, 459 individuals (9871 after
removing records with all entries missing) for predicting repayment risk (good/bad). The
domain of financial services and the clear meanings of the features make this data set a good
candidate for a rule set model. We benchmark the performance of our column generation
approach with fairness constraints on three standard fair machine learning data sets: adult,
compas, and default. For all three data sets we include the sensitive attribute as a feature
for prediction as their exclusion is both not enough to ensure fairness and may lead to worse
fairness outcomes (see Corbett-Davies and Goel, 2018, for a discussion).

For all the data sets presented in this Section we used standard “dummy”/“one-hot”
coding to binarize categorical variables into multiple Xj = x indicators, one for each cate-
gory x, as well as their negations Xj 6= x. For numerical features, we compare the original
feature values with a sequence of thresholds, again including negations (e.g., Xj ≤ 1, Xj ≤ 2
and Xj > 1, Xj > 2). For these experiments, as also recommended in Wang et al. (2017);
Su et al. (2016), we use sample deciles as thresholds. The binarized data was used in all
experiments and classifiers. More details about each data set and how missing and special
values were treated can be found in Appendix G

Test performance on all data sets is estimated using 10-fold stratified cross-validation
(CV). Unless otherwise stated, all hyperparameters were tuned using nested 10-fold cross-
validation. All tables in this section are grouped by problem size in increasing order (i.e.,
first section corresponds to small data sets, the second to medium and large data sets).

18



Boolean Rule Sets via Column Generation

5.2 Hamming loss

To analyze the empirical performance of using Hamming loss instead of 0-1 loss we ran a
sequence of experiments where we evaluated the 0-1 loss of rule sets trained under both
objectives, each with a 300s time limit. For each experiment we used the same pool of
candidate rules generated by running Random Forests with different hyperparameters and
extracting rules by looking at the leaf nodes of each tree following the procedure of Birbil
et al. (2020). We emphasize that no column generation was performed in these experiments.
We then solved the Restricted MIP under both objectives and evaluated accuracy of the
resulting rule sets on both training and testing data.

For these experiments we ran the 0-1 formulation with the aggregated false positive con-
straints outlined in Appendix A as it performed better empirically than the dis-aggregated
version. All results in this section were obtained on a personal computer with a 3 GHz
processor and 16 GB of RAM. All the linear and integer programs were solved using Gurobi
9.0 (Gurobi Optimization, 2020).

In Table 1 we present the average computation time for both formulations together
with accuracy of the resulting rule sets on training and testing data over 100 random
train/test (90%-10%) splits of each data set (recall that maximizing accuracy is equivalent
to minimizing 0-1 loss). Each model used 5-fold cross-validation on the training data to
tune C. These experiments establish that Hamming loss is an effective proxy for 0-1 loss
while being computationally efficient. Results for other data sets can be found in Appendix
H and show a similar trend. Figure 2 shows the distribution of accuracy for three different
UCI machine learning data sets without fairness constraints. The left (right) side of each
figure is a violin plot that shows the distribution of the accuracy values from minimizing
Hamming loss (0-1 loss) during training over 100 random splits of the data set (each black
dot represents an accuracy for a single split). We can see that Hamming loss and 0-1 loss
have practically indistinguishable performance in terms of both train and test set accuracy.

Table 1: Performance of Hamming loss vs. 0-1 loss with respect to computation time,
training, and test set accuracy (standard deviation over 100 random train/test
splits in parenthesis). Rows below the divider are for the fair setting under an
equality of opportunity constraint of ε = 0.025.

IP Solve Time (s) Train Accuracy Test Accuracy
Hamming 0-1 Hamming 0-1 Hamming 0-1

adult 1.9 (0.8) 278.5 (67.8) 83.1 (0.0) 83.0 (0.0) 82.8 (0.0) 82.8 (0.0)
bank-mkt 0.7 (0.2) 165.6 (126.5) 90.2 (0.0) 90.2 (0.0) 90.0 (0.0) 90.0 (0.0)
gas 24.4 (16.4) 190.7 (94.4) 97.3 (0.0) 97.3 (0.0) 96.9 (0.0) 97.0 (0.0)
FICO 6.2 (5.8) 214.2 (123.1) 72.08 (0.9) 72.08 (0.6) 71.0 (1.8) 71.2 (1.3)
magic 7.0 (3.7) 270.4 (54.7) 84.1 (0.0) 84.2 (0.0) 83.4 (0.0) 83.6 (0.0)
mushroom 0.1 (0.0) 0.1 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
musk 0.6 (0.4) 1.2 (0.6) 96.8 (0.0) 96.8 (0.0) 95.9 (0.0) 95.9 (0.0)

adult 35.5 (48.6) 546.0 (101) 81.9 (0.3) 82.1 (0.3) 81.7 (0.3) 81.7 (0.3)
compas 4.0 (3.5) 11.4 (6.5) 64.8 (0.3) 65.1 (0.2) 64.5 (0.4) 64.4 (0.5)
default 3.5 (0.8) 12.3 (6.1) 78.0 (0.0) 78.0 (0.0) 77.7 (0.0) 77.7 (0.0)

19



Lawless, Dash, Günlük, and Wei

Train Test

banknote

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005
A

cc
u

ra
cy

Train Test

heart

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Train Test

pima

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

Hamming Loss 0-1 Loss

Figure 2: Distribution of train and test set accuracy of rule sets obtained under different
objectives over 100 random splits of each data set.

We also use Hamming loss as a proxy for 0-1 error to bound the false positive error rate
in the equalized odds constraints (15) and (16). Figure 3 plots the epsilon used to constrain
the Hamming loss proxy for equalized odds on the x-axis, versus the true equalized odds
of the resulting rule set on both the training and testing data for three UCI data sets. We
compare the Hamming Loss proxy against the 0-1 formulation with exact constraints on
equalized odds (for full details see Appendix I). In these experiments we see that rule sets
trained with the Hamming loss constraint do not have true equalized odds larger than the
prescribed ε for the training data. Compared to the 0-1 model, the Hamming loss proxy
appears to be overly conservative on the compas data set but has nearly indistinguishable
performance to the exact 0-1 formulation on the remaining two data sets. Moreover, the
Hamming loss proxy generalizes well to unseen data. This establishes that the Hamming
loss version of the fairness constraint is an effective proxy for the true constraint.

5.3 Classification

For comparison with our column generation (CG) algorithm, we considered three alternative
methods that also aim to control rule complexity: Bayesian Rule Sets (BRS) (Wang et al.,
2017) and the alternating minimization (AM) and block coordinate descent (BCD) algo-
rithms from Su et al. (2016). Additional comparisons include the WEKA (Frank et al., 2016)
JRip implementation of RIPPER (Cohen, 1995), a rule set learner that is still state-of-the-
art in accuracy, and the scikit-learn (Pedregosa et al., 2011) implementations of the decision
tree learner CART (Breiman et al., 1984) and Random Forests (RF) (Breiman, 2001). The
last is an uninterpretable model intended as a benchmark for accuracy. Appendix M in-
cludes further comparisons to logistic regression (LR) and support vector machines (SVM).
The parameters of BRS and FPGrowth (Borgelt, 2005), the frequent rule miner that BRS
relies on, were set as recommended in Wang et al. (2017) and the associated code (see Ap-
pendix K details). For AM and BCD, the number of rules was fixed at 10 with the option to
disable unused rules; initialization and BCD updating are done as in Su et al. (2016). While

20



Boolean Rule Sets via Column Generation

0.02 0.04 0.06 0.08 0.10
Training Equalized Odds Fairness Constraint ( )

0.02

0.04

0.06

0.08

0.10
O

bs
er

ve
d 

Fa
irn

es
s (

M
ax

(T
PR

,T
NR

) G
ap

)
Adult

0.02 0.04 0.06 0.08 0.10
Training Equalized Odds Fairness Constraint ( )

0.00

0.02

0.04

0.06

0.08

0.10

O
bs

er
ve

d 
Fa

irn
es

s (
M

ax
(T

PR
,T

NR
) G

ap
)

Compas

0.005 0.010 0.015 0.020 0.025 0.030
Training Equalized Odds Fairness Constraint ( )

0.000

0.005

0.010

0.015

0.020

0.025

0.030

O
bs

er
ve

d 
Fa

irn
es

s (
M

ax
(T

PR
,T

NR
) G

ap
)

Default
Data
Test
Train
Constraint
EqOd
HEqOd
Y=X

Figure 3: Generalization of equalized odds constraint. X-axis plots the ε used to constrain
both the Hamming loss proxy and true equalized odds constraints. Y-axis is the
realized unfairness (i.e., maximum of gaps in false positive and false negative rates
between groups). Blue line shows fairness on training data, orange line shows
fairness on testing data, and grey is the diagonal. Solid lines indicate model
training using the 0-1 objective and true equalized odds constraint. Dotted lines
indicate Hamming loss objective and Hamming equalized odds constraint.

both Su et al. (2016) and our method are equally capable of learning CNF rules, for these
experiments we restricted both to learning DNF rules only. We also experimented with code
made available by the authors of Lakkaraju et al. (2016). Unfortunately, we were unable to
execute this code with practical running time when the number of mined candidate rules
exceeded 1000. Appendix M includes partial results from (Lakkaraju et al., 2016) that are
inferior to those from the other methods. All results in this section were obtained using a
single 2.0 GHz core of a server with 64 GB of memory (only a small fraction of which was
used). All linear and integer programs were solved using CPLEX 12.7.1 (Cplex, 2009).

We first evaluated the accuracy-simplicity trade-offs achieved by our CG algorithm as
well as BRS, AM, and BCD, methods that explicitly perform this trade-off. For CG, we used
an overall time limit of 300 seconds for training and a time limit of 45 seconds for solving
the Pricing Problem in each iteration. Low time limits were chosen partly due to practical
considerations of running the algorithm multiple times (e.g., for CV) on many data sets,
and partly to demonstrate the viability of IP with limited computation. For each algorithm,
the parameter controlling model complexity2 is varied, resulting in a set of complexity-test
accuracy pairs. A sample of these plots is shown in Figure 4 with the full set in Appendix L.
Line segments connect points that are Pareto efficient, i.e., not dominated by solutions that
are more accurate and at least as simple or vice versa. CG outperforms the other algorithms
in 8 out of 16 data sets in the sense that its Pareto front is consistently higher; it nearly
does so on a 9th data set (tic-tac-toe) and on a 10th (banknote), all algorithms are very
similar. BRS, AM, and BCD each achieve (co-)dominance only one or two times, e.g., in
Figure 4(d) for AM. Among cases where CG does not dominate are the highest-dimensional
data sets (musk and gas, although for the latter CG does attain the highest accuracy given
sufficient complexity) and ones where AM and/or BCD are more accurate at the lowest

2. Bound C in (10), the regularization parameter θ, and multiplier κ in prior hyperparameter βl = κ|Al|
control complexity for our approach, Su et al. (2016), and Wang et al. (2017) respectively.

21



Lawless, Dash, Günlük, and Wei

0 20 40 60 80 100 120
complexity

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0
%

 a
cc

ur
ac

y

CG
BRS
AM
BCD

(a) Heart Disease

0 20 40 60 80 100 120 140
complexity

69

70

71

72

73

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(b) FICO

0 20 40 60 80 100 120 140
complexity

65

70

75

80

85

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(c) MAGIC gamma telescope

0 20 40 60 80 100 120 140
complexity

84

86

88

90

92

94

96

98

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(d) Musk molecules

Figure 4: Rule complexity-test accuracy trade-offs on 4 data sets. Pareto efficient points
are connected by line segments. Horizontal and vertical bars represent standard
errors in the means. Overall, the proposed CG algorithm dominates the others
on 8 of 16 data sets (see Appendix L for the full set)

complexities. BRS solutions tend to cluster in a narrow range despite varying κ from 10−3

to 103.

In a second experiment, nested CV was used to select values of C for CG and θ for AM,
BCD to maximize accuracy on each training set. The selected model was then applied to
the test set. In these experiments, CG was given an overall time limit of 120 seconds for
each candidate value of C and the time limit for the Pricing Problem was set to 30 seconds.
To offset the decrease in the time limit, we performed a second pass for each data set,
solving the restricted MIP with all the rules generated for all possible choices of C. Mean
test accuracy (over 10 partitions) and rule set complexity are reported in Tables 2 and 3.
For BRS, we fixed κ = 1 as optimizing κ did not improve accuracy on the whole (as can
be expected from Figure 4). Tables 2 and 3 also include results from RIPPER, CART, and
RF. We tuned the minimum number of samples per leaf for CART and RF, used 100 trees
for RF, and otherwise kept the default settings. The complexity values for CART result

22



Boolean Rule Sets via Column Generation

Table 2: Mean test accuracy (%, standard error in parentheses). Bold: Best among inter-
pretable models; Italics: Best overall.

data set CG BRS AM BCD RIPPER CART RF

banknote 99.1 (0.3) 99.1 (0.2) 98.5 (0.4) 98.7 (0.2) 99.2 (0.2) 96.8 (0.4) 99 .5 (0.1)
heart 78.9 (2.4) 78.9 (2.4) 72.9 (1.8) 74.2 (1.9) 79.3 (2.2) 81.6 (2.4) 82 .5 (0.7)
ILPD 69.6 (1.2) 69.8 (0.8) 71 .5 (0.1) 71 .5 (0.1) 69.8 (1.4) 67.4 (1.6) 69.8 (0.5)
ionosphere 90.0 (1.8) 86.9 (1.7) 90.9 (1.7) 91.5 (1.7) 88.0 (1.9) 87.2 (1.8) 93 .6 (0.7)
liver 59.7 (2.4) 53.6 (2.1) 55.7 (1.3) 51.9 (1.9) 57.1 (2.8) 55.9 (1.4) 60 .0 (0.8)
pima 74.1 (1.9) 74.3 (1.2) 73.2 (1.7) 73.4 (1.7) 73.4 (2.0) 72.1 (1.3) 76 .1 (0.8)
tic-tac-toe 100 .0 (0.0) 99.9 (0.1) 84.3 (2.4) 81.5 (1.8) 98.2 (0.4) 90.1 (0.9) 98.8 (0.1)
transfusion 77.9 (1.4) 76.6 (0.2) 76.2 (0.1) 76.2 (0.1) 78 .9 (1.1) 78.7 (1.1) 77.3 (0.3)
WDBC 94.0 (1.2) 94.7 (0.6) 95.8 (0.5) 95.8 (0.5) 93.0 (0.9) 93.3 (0.9) 97 .2 (0.2)

adult 83.5 (0.3) 81.7 (0.5) 83.0 (0.2) 82.4 (0.2) 83.6 (0.3) 83.1 (0.3) 84 .7 (0.1)
bank-mkt 90 .0 (0.1) 87.4 (0.2) 90 .0 (0.1) 89.7 (0.1) 89.9 (0.1) 89.1 (0.2) 88.7 (0.0)
gas 98.0 (0.1) 92.2 (0.3) 97.6 (0.2) 97.0 (0.3) 99.0 (0.1) 95.4 (0.1) 99 .7 (0.0)
FICO 71.7 (0.5) 71.2 (0.3) 71.2 (0.4) 70.9 (0.4) 71.8 (0.2) 70.9 (0.3) 73 .1 (0.1)
magic 85.3 (0.3) 82.5 (0.4) 80.7 (0.2) 80.3 (0.3) 84.5 (0.3) 82.8 (0.2) 86 .6 (0.1)
mushroom 100 .0 (0.0) 99.7 (0.1) 99.9 (0.0) 99.9 (0.0) 100 .0 (0.0) 96.2 (0.3) 99.9 (0.0)
musk 95.6 (0.2) 93.3 (0.2) 96 .9 (0.7) 92.1 (0.2) 95.9 (0.2) 90.1 (0.3) 86.2 (0.4)

Table 3: Mean complexity (# rules + total # conditions, standard error in parentheses)

data set CG BRS AM BCD RIPPER CART

banknote 25.0 (1.9) 30.4 (1.1) 24.2 (1.5) 21.3 (1.9) 28.6 (1.1) 51.8 (1.4)
heart 11.3 (1.8) 24.0 (1.6) 11.5 (3.0) 15.4 (2.9) 16.0 (1.5) 32.0 (8.1)
ILPD 10.9 (2.7) 4.4 (0.4) 0.0 (0.0) 0.0 (0.0) 9.5 (2.5) 56.5 (10.9)
ionosphere 12.3 (3.0) 12.0 (1.6) 16.0 (1.5) 14.6 (1.4) 14.6 (1.2) 46.1 (4.2)
liver 5.2 (1.2) 15.1 (1.3) 8.7 (1.8) 4.0 (1.1) 5.4 (1.3) 60.2 (15.6)
pima 4.5 (1.3) 17.4 (0.8) 2.7 (0.6) 2.1 (0.1) 17.0 (2.9) 34.7 (5.8)
tic-tac-toe 32.0 (0.0) 32.0 (0.0) 24.9 (3.1) 12.6 (1.1) 32.9 (0.7) 67.2 (5.0)
transfusion 5.6 (1.2) 6.0 (0.7) 0.0 (0.0) 0.0 (0.0) 6.8 (0.6) 14.3 (2.3)
WDBC 13.9 (2.4) 16.0 (0.7) 11.6 (2.2) 17.3 (2.5) 16.8 (1.5) 15.6 (2.2)

adult 88.0 (11.4) 39.1 (1.3) 15.0 (0.0) 13.2 (0.2) 133.3 (6.3) 95.9 (4.3)
bank-mkt 9.9 (0.1) 13.2 (0.6) 6.8 (0.7) 2.1 (0.1) 56.4 (12.8) 3.0 (0.0)
gas 123.9 (6.5) 22.4 (2.0) 62.4 (1.9) 27.8 (2.5) 145.3 (4.2) 104.7 (1.0)
FICO 13.3 (4.1) 23.2 (1.4) 8.7 (0.4) 4.8 (0.3) 88.1 (7.0) 155.0 (27.5)
magic 93.0 (10.7) 97.2 (5.3) 11.5 (0.2) 9.0 (0.0) 177.3 (8.9) 125.5 (3.2)
mushroom 17.8 (0.3) 17.5 (0.4) 15.4 (0.6) 14.6 (0.6) 17.0 (0.4) 9.3 (0.2)
musk 123.9 (6.5) 33.9 (1.3) 101.3 (11.6) 24.4 (1.9) 143.4 (5.5) 17.0 (0.7)

from a straightforward conversion of leaves to rules (for the simpler of the two classes) and
are meant only for rough comparison.

The favorable performance of CG compared to BRS, AM, and BCD is carried over
into Table 2, especially for larger data sets (bottom partition in the table). Compared to
RIPPER, which is designed to maximize accuracy, CG is very competitive. The head-to-
head “win-loss” record is nearly even and on no data set is CG less accurate by more than
1%, whereas RIPPER is worse by ∼ 2% on ionosphere, liver, and tic-tac-toe. Moreover on

23



Lawless, Dash, Günlük, and Wei

larger data sets, CG tends to learn significantly simpler rule sets that are nearly as or even
more accurate than RIPPER, e.g., on bank-marketing, magic, and FICO. CART on the
other hand is less competitive in this experiment. Tic-tac-toe is notable in admitting an
exact rule set solution, corresponding to all positions with three x’s or or’s in a row. CG
succeeds in finding this rule set whereas the other algorithms including RF cannot quite do
so.

Given the performance of our approach, a relevant question is whether certifiably optimal
or near optimal solutions to the Master IP are obtained in practice. As previously discussed
in Section 4.4, for medium and large data sets where the pricing problem cannot be solved to
optimality or sub-sampling is employed we cannot compute a strong lower bound. However,
for small data sets our approach is able to obtain optimal or near optimal solutions to the
training problem. For example, for transfusion, we can certify that the optimality gap is at
most 0.7% when the bound on the complexity of the rule set C is set to 15.

To give a sense for the interpretability of DNF rules, we present some sample rule
sets learned by CG. The following rule set, trained in the standard classification setting,
maximizes accuracy on the FICO data with two simple rules:

(
NumSatTrades ≥ 23

)
AND

(
ExtRiskEstimate ≥ 70

)
AND

(
NetFracRevolvBurden ≤ 63

)
OR(

NumSatTrades ≤ 22
)
AND

(
ExtRiskEstimate ≥ 76

)
AND

(
NetFracRevolvBurden ≤ 78

)
.

According to the data dictionary provided with the FICO challenge (FICO), “NumSat-
Trades” is the number of satisfactory accounts, “ExtRiskEstimate” is a consolidated version
of some risk markers, and “NetFracRevolvBurden” is the ratio of revolving balance to credit
limit. The rules thus identify two groups, one with more accounts and less revolving debt,
the other with fewer accounts and somewhat more revolving debt. A slightly higher (better)
“ExtRiskEstimate” is required for the second, riskier group. This rule set won the FICO
interpretable machine learning challenge in 2018 (FICO).

One limitation that has been documented in other work on interpretable models (Guidotti
and Ruggieri, 2019; Semenova et al., 2022) is that the rule sets output by our method are
sensitive to small changes in the training data (see Appendix N for an example), as with
other rule-based models. It remains an open question on how to adapt the training of an
interpretable rule set to be robust to changes in the training data.

5.4 Fairness

We compared the performance of our formulation under fairness constraints against four
other methods for fair binary classification: those of Zafar et al. (2017a), denoted Zafar, and
Hardt et al. (2016), denoted Hardt, and the exponential gradient method included in the
Fairlearn package (Agarwal et al., 2018), denoted Fair Learn. The first method builds a fair
logistic regression classifier which we regard as interpretable, formulating the problem as
a constrained optimization model and using a convex relaxation of the fairness constraint.
The method of Hardt et al. (2016) is a post-processing approach that achieves fairness by

24



Boolean Rule Sets via Column Generation

Table 4: Mean test accuracy and fairness results with no fairness constraints (standard
deviation in parenthesis). Equality of opportunity and equalized odds refer to the
amount of unfairness between the two groups under each fairness metric.

Fair CG Zafar Hardt Fair Learn

Adult
Accuracy 82.5 (0.5) 85.2 (0.5) 83.0 (0.4) 82.4 (0.4)
Equality of Opportunity 7.6 (0.5) 11.9 (3.7) 18.2 (4.8) 11.5 (4.6)
Equalized Odds 7.6 (0.5) 11.9 (3.7) 18.2 (4.8) 11.5 (4.6)

Compas
Accuracy 67.6 (1.1) 64.6 (1.9) 65.9 (2.7) 65.8 (2.9)
Equality of Opportunity 23.8 (5.3) 42.8 (5.4) 23.7 (6.4) 21.7 (7.1)
Equalized Odds 24.1 (5.1) 47.6 (5.8) 27.0 (5.2) 24.9 (4.5)

Default
Accuracy 82.0 (0.7) 81.2 (0.8) 77.9 (1.7) 77.9 (1.7)
Equality of Opportunity 1.3 (0.6) 2.7 (1.9) 0 (0) 0 (0)
Equalized Odds 1.9 (0.5) 4.2 (2.5) 0 (0) 0 (0)

Table 5: Average (standard deviation) complexity of rule sets under Equality of Opportu-
nity fairness constraints over 10 folds.

ε Adult Compas Default

0.01 59.9 (4.8) 11.2 (1.8) 11.4 (2.1)

0.1 60.1 (5.1) 10.9 (0.5) 9.3 (0.9)

0.5 50.5 (3.1) 9.2 (0.8) 9.3 (1.0)

selecting different discrimination thresholds for the sensitive groups; we choose the classi-
fier to be logistic regression again. The exponential gradient method from Fairlearn works
by solving a sequence of cost-sensitive classification problems to construct a randomized
classifier with low error and the desired fairness. The framework works with any classifier,
however for our experiments we chose to use a decision tree as the base learner to provide
the best comparison to our rule set approach. We also experimented with the publicly
available code for Fair CORELS (Aı̈vodji et al., 2021), another fair rule-based method.
Unfortunately, we were unable to replicate the reported performance of Fair CORELS with
the publicly available implementation. Appendix P includes results from our experiments
with the publicly available code for Fair CORELS that compare unfavorably to the other
methods. All results in this section were run on a personal computer with a 3 GHz pro-
cessor and 16 GB of RAM. All the linear and integer programs were solved using Gurobi
9.0 (Gurobi Optimization, 2020). We also employed the Pool Select heuristic outlined in
Appendix J.

To establish a baseline, we first compared the predictive accuracy of these algorithms
without fairness considerations. Table 4 shows the 10-fold mean and standard deviation
accuracy for each algorithm without fairness criteria (i.e., ε = 1). While the algorithms are
not trained to consider fairness, we report the average test set ‘unfairness’ of each algorithm

25



Lawless, Dash, Günlük, and Wei

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Unfairnesss (TPR Gap)

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Adult

FairCG
Zafar
Hardt
Fair Learn (Exp. Grad)

0.00 0.02 0.04 0.06 0.08 0.10
Unfairnesss (Max(TPR, TNR) Gap)

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Adult

FairCG
Zafar

Hardt
Fair Learn (Exp. Grad)

0.00 0.01 0.02 0.03 0.04 0.05
Unfairnesss (TPR Gap)

0.78

0.79

0.80

0.81

0.82

A
cc

ur
ac

y

Default

FairCG
Zafar
Hardt
Fair Learn (Exp. Grad)

0.00 0.01 0.02 0.03 0.04 0.05
Unfairnesss (Max(TPR, TNR) Gap)

0.78

0.79

0.80

0.81

0.82

A
cc

ur
ac

y

Default

FairCG
Zafar

Hardt
Fair Learn (Exp. Grad)

0.00 0.02 0.04 0.06 0.08 0.10
Unfairnesss (TPR Gap)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

A
cc

ur
ac

y

Compas

FairCG
Zafar
Hardt
Fair Learn

0.00 0.02 0.04 0.06 0.08 0.10
Unfairnesss (Max(TPR, TNR) Gap)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

A
cc

ur
ac

y

Compas

FairCG
Zafar
Hardt
Fair Learn

Figure 5: Test Accuracy Fairness Frontier for Fair CG and other interpretable fair classifiers
with respect to equality of opportunity (left column) and equalized odds (right
column).

as a baseline for the amount of discrimination that happened in the absence of controls on
fairness. On two of the three data sets (compas and default), our rule sets (FairCG) have
the strongest predictive performance. However, on the adult data set the rule sets were
outperformed by the two logistic regression based classifiers (Zafar and Hardt). We note that
for the Default data set, Hardt and FairLearn are unable to find non-trivial classifiers (i.e.,
do more than predict the majority class) resulting in 0 unfairness. Note that despite having
the same base classifier, logistic regression, Zafar and Hardt use different optimization
procedures (Zafar uses convex-concave programming instead of standard logistic regression),
resulting in different base performance.

We next consider the effect of varying the parameter ε that controls the allowable unfair-
ness of the rule set. We varied the hyperparameters in all the algorithms, performing 10-fold
cross validation for each hyperparameter, to generate accuracy fairness trade-offs. Figure

26



Boolean Rule Sets via Column Generation

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Training Equality of Opportunity Fairness Constraint (ε)

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

O
b

se
rv

ed
F

al
se

P
os

it
iv

e
R

at
e

(F
P

R
)

Compas

Train G1

Test G1

Train G2

Test G2

Figure 6: Effect of relaxing the equality of opportunity fairness constraint on both train
and test set true positive rate for each group (G1, G2).

5 plots the accuracy fairness trade-offs under both notions of fairness. Fair CG generated
classifiers that performed well, dominating all other fair classifiers on two of the three data
sets. Our algorithm performs especially well under strict fairness requirements. Specifically,
we dominate all other algorithms in regimes where unfairness is restricted to less than 2.5%
with either fairness criterion. Furthermore, our fair rule sets remain simple with low com-
plexity as shown in Table 5. Overall these results show that our framework is able to build
interpretable models that have competitive accuracy and substantially improved fairness.
Moreover, our algorithm allows for especially fine control over unfairness. Figure 6 shows
the effect of relaxing the fairness constraint on the false positive rate of both groups for the
compas data set. We emphasise that the allowed unfairness level during training practically
translates to the same observed unfairness level in testing, thus establishing the robustness
of our approach. For the remainder of our results, and more specifics on our experimental
framework we refer you to Appendix O.

The following are sample rule sets to predict criminal recidivism on the compas data set
with and without fairness constraints. We trained each rule set on one train/test split of
the data set, and report the rule set as well as its out of sample accuracy and fairness. A
sample rule set without any fairness constraints is:

Predict repeat offence if:

[
(Score Factor=True) AND (Misdemeanor=False)

]
OR[

(Race 6=Black) AND (Score Factor=True) AND (Misdemeanor=True)
AND (Age<45) AND (Gender=’Male’)

]
OR[

(Race=Black) AND (Score Factor=True) AND (Priors≥ 10)
AND (Age<45) AND (Gender=’Male’)

]
27



Lawless, Dash, Günlük, and Wei

This rule set has a test set accuracy of 67.2%, but a 20% gap in the false negative rate,
and 22% gap in the false positive rate between the two groups respectively (i.e., 22% unfair
with respect to equalized odds). Adding an equalized odds constraint with ε1 = 0.05 yields:

Predict repeat offence if:

[
(Race 6=Black) AND (Score Factor=True) AND (Age < 45)

]
OR[

(Race=Black) AND (Score Factor=True) AND (Misdemeanor=True)
AND (Age<45) AND (Gender=’Male’)

]
The fair rule set is less accurate with a test set accuracy of 65.1%, but it now has a

1% gap in the false negative rate and 3.4% gap in the false positive rate between the two
groups respectively. Both rule sets are arguably quite interpretable as they have a small
number of rules, each with a small number of conditions.

One omission of both rule sets is that they never predict a repeat offence if the offender
is a Black woman. This is a consequence of the relatively low rate of Black women re-
offenders in the data set (3 percent of the overall data). In fact, the error rate for Black
women (30 percent) is below the average error rate in the test data (37 percent). However,
the false negative error rate is 100 percent and thus could present fairness violations under
equalized odds. This is a well documented problem in the fair machine learning literature
that arises from considering gender and race separately rather than simultaneously, an
approach known as intersectional fairness (Foulds et al., 2020). To account for this, our
formulation can easily be extended for intersectional fairness by including both race and
gender as sensitive attributes (i.e., one group for Black men, Black women, white men,
and white women respectively) and adding additional fairness constraints to bound the
discrepancy between each pair of groups.

6. Conclusion

In this paper we introduced a column generation algorithm for learning interpretable DNF
or CNF classification rules that efficiently searches the space of rules. Experiments have
borne out the superiority of the accuracy-rule simplicity trade-offs achieved. In the fairness
setting, experimental results on classic fair machine learning data sets validated that our
algorithm is competitive with the state of the art; dominating popular fair classifiers on 2 of
3 data sets, and remaining unbeaten in regimes of strict fairness. Overall, our algorithm CG
provides a powerful tool for practitioners that need simple, interpretable, and fair models
for machine learning in socially sensitive settings.

Acknowledgments

This work was generously supported by Office of Naval Research (ONR) Grant N00014-21-
1-2575.

28



Boolean Rule Sets via Column Generation

Appendix A. 0-1 Aggregated Formulation

In this section we present a formulation for the 0-1 loss model where the false positive
constraints are aggregated, and compare it to the Hamming Loss formulation.

In the presence of a cardinality constraint on the wk (i.e., a limit on the total number
of rules that can be used), the set of constraints (3) in model (1)-(4) for each data point
can be aggregated together as follows:∑

k∈Ki

wk ≤Mζi (26)

where M is a suitably large constant (i.e., the maximum number of rules in a rule set). De-
spite the original dis-aggregated formulation being stronger (i.e., it will yield tighter bounds
in a branch and bound algorithm), many modern solvers have heuristics that leverage the ag-
gregate constraint to generate dis-aggregated constraints on the fly whenever constraints are
violated by current feasible solutions, leading to much better practical performance (Con-
forti et al., 2014). Given that this formulation now only has |N | constraints, as opposed
to
∑

i∈N |Ki| constraints in the dis-aggregated formulation, a natural question is whether
this formulation is competitive with the Hamming Loss formulation introduced in Section
2.2. However, this aggregated formulation uses big-M constraints which are known to lead
to weak linear relaxations. In practice, we noted that although the aggregated formulation
led to better practical performance than the dis-aggregated model, it still under-performed
the Hamming Loss formulation (as shown in Section 5.2).

Appendix B. Proof of Theorem 4

Proof For a given even integer d ≥ 6, let t = d/2. We construct the set P by taking all
distinct 0-1 vectors in {0, 1}d that have zeros in the last two components, and exactly t ones
in the first d− 2 components. We let N consist of the following two data points in {0, 1}d:
the first point has a zero in the last component and ones in the remaining components,
whereas the second one has a zero in the (d − 1)th component and ones in the remaining
components. Then n =

(
d−2
t

)
+ 2.

The set of candidate rules K consists of conjunctions that have exactly d/2 out of the
first d − 2 features. Then each rule correctly classifies exactly one point from P and mis-
classifies the two points in N . When optimizing for 0-1 loss, it is clear that the optimal rule
set includes all the rules in K which results in an expected loss of 2

n−2 . However, the asym-
metry in Hamming loss means that including any one rule, and by extension classifying any
one point in P correctly incurs a cost of 2. Thus the optimal solution when optimizing for
Hamming loss is the empty rule set giving an expected 0-1 loss of n−2

n . Clearly no constant
Ψ exists such that Ψ 2

n ≥
n−2
n for all n, proving the desired claim.

Appendix C. Proof for Theorem 5

Proof For a given even integer d ≥ 6, let t = d/2. Consider a data set D where all points
belong in N and there exists two groups G1 and G2. We construct G1 by taking all distinct

29



Lawless, Dash, Günlük, and Wei

0-1 vectors in {0, 1}d that have zeros in the last component, and exactly t ones in the first
d− 1 components. We let G2 consist of the following

(
d−2
t

)
data points in {0, 1}d: the first

point has ones in all components, whereas the remaining
(
d−2
t

)
− 1 points have zeros in all

components. Then n = 2
(
d−2
t

)
, and |G1| = |G2| =

(
d−2
t

)
.

The set of candidate rules K consists of conjunctions that have exactly d/2 out of the
first d−1 features. Then each rule misclassifies exactly one point from G1 and the first point
in G2. Consider a solution that includes all the candidate rules (i.e., K = K). We first show
that such a solution satisfies Hamming Equalized odds with ε = 0. Since P = ∅ constraints
(14) and (15) are met trivially, it just remains to show that constraints (17) and (18) are
met. Consider G1, since each data point meets exactly one rule in K the corresponding
Hamming version of the false positive rate is:

1

|N1|
∑
i∈N1

∑
k∈Ki

wk =
1

|G1|
∑
i∈G1

1 = 1

For G2 only one point is misclassified, however it is misclassified by all rules in K. By
construction |K| = |G1| and thus the Hamming version of the false positive rate for G2 is:

1

|N2|
∑
i∈N2

∑
k∈Ki

wk =
1

|G2|
|K| = |G1|

|G2|
= 1

The hamming version of the false positive rate for both groups are equal, and thus con-
straint (17) and (18) are met for ε = 0. However, the actual false positive rates between the
two groups can be arbitrarily large. The false positive rate of G1 is 1, but the false positive
rate for G2 is 1

n . Clearly no constant Ψ exists such that (1− 1
n) ≤ Ψε for all n, proving the

desired claim.

Appendix D. Cycling During Column Generation

A naive implementation of the column generation procedure as presented above can be
susceptible to cycling, the phenomenon where the Pricing Problem repeatedly produces
the same column. Take a simple example with four data points with two binary features:
X1 = X2 = (1, 0), with label y1 = y2 = 1, X3 = (0, 1) with y3 = 1, and X4 = (0, 0)
with y4 = −1. Solving the initial master LP with the empty rule set (K̂ = ∅) returns the
following dual values ((9)-i refers to constraint (9) for data point i ∈ P = {1, 2, 3}):

Constraint (9)-1 (9)-2 (9)-3 (10)

Dual Value µ1 = 1 µ2 = 1 µ3 = 1 λ = 0

Table 6: Dual Values for Cycling Example.

Solving the Pricing Problem with these dual values returns a rule that checks if the
first feature is 1 and has a reduced cost of −2. However re-solving the master LP with
this rule gives identical dual values which prompts the column generation process to cycle.
Meanwhile, the rule that checks if the second feature is 1 has a reduced cost of −1, meaning

30



Boolean Rule Sets via Column Generation

that cycling prevents the column generation procedure from finding this rule and therefore
learning the optimal rule set. The reason for cycling in this example is due to the fact that
modern optimization solvers implicitly add the upper bound on binary decision variables
(i.e., wk ≤ 1), causing an additional term in the formula for the reduced cost that is not
accounted for in the objective of the Pricing Problem (18). In this simple example, if we
explicitly add the upper bound wk ≤ 1 to the RMLP, we see that it has an associated dual
value of −2, giving the rule for the first feature a reduced cost of 0 in the Pricing Problem.
To avoid this issue one can add explicit constraints to the Pricing Problem to prevent it
from generating existing columns. This however is computationally challenging and makes
the Pricing Problem harder to solve. We instead simply remove the upper bound wk ≤ 1
when solving the RMLP (i.e., we allow a rule to be included multiple times in a rule set).
Despite removing the constraint, during our experiments we did not observe any instances
where wk > 1 for an optimal solution.

The risk of cycling also informed the construction of constraint (17) in the master
problem. In principle, a tight formulation for the constraint would replace the co-efficient
of 2 for every wk with ck. However, this complicates our column generation procedure,
turning the Pricing Problem into a quadratic integer program. One possible approach to
circumventing this problem would be to solve the Pricing Problem with a co-efficient of 2
(i.e., the formulation presented), and then substitute the true complexity into the master
problem (i.e., use ck instead of 2 when solving the RMLP). However this approach runs the
risk of cycling as the objective of the Pricing Problem does not capture the true reduced
cost correctly.

Appendix E. Proof of Theorem 6

Proof The proof is by reduction from the minimum vertex cover (MVC) problem, which is
one of Karp’s 21 NP-complete problems. Remember that a vertex cover V ′ of an undirected
graph G = (V,E) is a subset of V such that {u, v} ∩ V ′ 6= ∅ for all {u, v} ∈ E. The MVC
problem seeks a minimum cardinality vertex cover. Given an instance of the MVC problem,
we construct an instance of the Pricing Problem by taking P = ∅ and D = |J | which makes
constraints (20) and (22) redundant. Then, for each edge {u, v} ∈ E, we create an i ∈ N
with Si = {u, v}. In addition, letting λ = 1/(|J |+2) leads to the following Pricing Problem

min
∑
{u,v}∈E

δ{u,v} + λ

(
1 +

∑
v∈V

zv

)
s.t. δ{u,v} ≥ 1− zu − zv, δi ≥ 0, {u, v} ∈ E

zv ∈ {0, 1}, v ∈ V .

which has an optimal solution value strictly less than 1 as δ = 0 and z = 1 is a feasible
solution with value (|J |+ 1)/(|J |+ 2). Consequently the optimal solution must have δ = 0
and therefore the problem becomes

min
∑
v∈V

zv s.t. zu + zv ≥ 1 {u, v} ∈ E, zv ∈ {0, 1} v ∈ V

which is precisely the formulation of the MVC problem.

31



Lawless, Dash, Günlük, and Wei

Appendix F. Proof of Proposition 7

Proof At the termination of column generation either the MLP is solved to optimality
(i.e., zCG ≥ 0 and z∗RMLP = z∗MLP ) or it is not. In the former case, dzMLP e provides a
lower bound on zMIP as the objective function (8) has integer coefficients. In the latter
case, there may still be variables excluded from the RMLP that are included in the optimal
solution of the MLP. However, zCG provides an upper bound of the reduced cost for the
missing variables. Even if the Pricing Problem is not solved to optimality, a valid lower
bound on zCG can be used. However, it may be quite weak in practice. Since ck ≥ 2 for
any rule there are at most C/2 missing variables with reduced cost zCG or more that can
be added to the RMLP (Vanderbeck and Wolsey, 1996). Thus zMLP ≥ zRMLP +(C/2)zCG.
Combining both cases completes the proof of the proposition.

Appendix G. Data sets and Data Processing

The UCI repository data sets were used largely as-is. We note the following deviations and
label binarizations:

• Liver disorders: We used the number of drinks as the output variable as recommended
by the data donors rather than the selector variable. The number of drinks was
binarized as either ≤ 2 or > 2.

• Gas sensor array drift: The label was binarized as either ≤ 3 or > 3 as in (Dash et al.,
2014).

• Heart disease: We used only the Cleveland data and removed 4 samples with ‘ca’ =
?, yielding 299 samples. The label was binarized as either 0 or > 0 as in other works.

For the FICO data set, missing and special values were processed as follows. First, 588
records with all entries missing (values of −9) were removed. Values of −7 (no inquiries
or delinquencies observed) were replaced by the maximum number of elapsed months in
the data plus 1. Values of −8 (not applicable) and remaining values of −9 (missing) were
combined into a single null category. During binarization, a special indicator was created
for these null values and all other comparisons with the null value return False. Values
greater than 7 (other) in ‘MaxDelq2PublicRecLast12M’ were imputed as 7 (current and
never delinquent) based on the corresponding values in ‘MaxDelqEver’.

For the compas data from ProPublica (Angwin et al., 2016) we use the fair machine
learning cleaned data set from Kaggle. Following the methodology of (Zafar et al., 2017b)
we also restrict the data to only look at African American and Caucasian respondents -
filtering all data points that belong to other races and creating a new binary column which
indicates whether or not the respondent was African American. We use this new column
as our sensitive attribute for the compas data set. For adult and default we use gender as
the sensitive attribute. Tables 7 and 8 summarize the problem instance sizes for the data
sets used in the standard classification and fair classification experiments respectively.

32



Boolean Rule Sets via Column Generation

Table 7: Overview of data sets

data set Samples Binarized Features Size

banknote 1372 81 small
heart 299 137 small
ILPD 579 175 small

ionosphere 351 597 small
bupa 345 103 small
pima 768 145 small
wdbc 569 601 small

transfusion 748 69 small
tic-tac-toe 958 55 small

adult 48842 249 medium
bank-mkt 41188 233 medium

gas 13910 2690 large
FICO 9871 347 medium
magic 19020 201 medium

mushroom 8124 225 medium
musk 6598 3414 large

Table 8: Overview of fairness data sets

data set Samples Binarized Features Sensitive Variable Size

Adult 48842 249 Gender large
Compas 5278 24 Race medium
Default 30000 316 Gender (X2 column) large

For categorical variables j we use one-hot encoding to binarize each variable into multiple
indicator variables that check Xj = x, and the negation Xj 6= x. For numerical variables
we compare values against a sequence of thresholds for that column and include both the
comparison and it’s negation (i.e., Xj ≤ 1, Xj ≤ 2 andXj > 1, Xj > 2). For our experiments
we use the sample deciles as the thresholds for each column. We use the binarized data for
all the algorithms we test to control for the binarization method.

33



Lawless, Dash, Günlük, and Wei

Appendix H. Empirical Hamming Loss Results for All data sets

Table 9 summarizes the empirical performance of Hamming loss vs. 0-1 loss for all data
sets.

Table 9: Performance of Hamming loss vs. 0-1 loss with respect to computation time,
training, and test set accuracy (standard deviation in parenthesis). A 600s time
limit was placed on the solve time for all IP problems. Rows below the second
divider are for the fair setting under an equality of opportunity constraint of
ε = 0.025.

IP Solve Time Train Accuracy Test Accuracy
Hamming 0-1 Hamming 0-1 Hamming 0-1

banknote 0.0 (0.0) 0.0 (0.0) 99.8 (0.0) 99.8 (0.0) 99.5 (0.0) 99.5 (0.0)
heart 0.1 (0.0) 0.3 (0.2) 88.2 (0.1) 89.4 (0.1) 81.8 (0.1) 82.6 (0.1)
ILPD 0.0 (0.0) 0.5 (0.3) 81.0 (0.1) 81.1 (0.1) 73.6 (0.1) 73.6 (0.1)
ionosphere 0.1 (0.1) 0.2 (0.2) 95.8 (0.0) 96.2 (0.0) 93.0 (0.0) 92.8 (0.0)
pima 0.1 (0.1) 2.7 (4.6) 80.4 (0.0) 80.8 (0.0) 77.1 (0.0) 77.2 (0.0)
tic-tac-toe 0.2 (0.1) 0.7 (0.6) 99.1 (0.0) 99.1 (0.0) 96.9 (0.0) 96.9 (0.0)
transfusion 0.0 (0.0) 0.0 (0.0) 80.4 (0.0) 80.3 (0.0) 78.6 (0.0) 78.4 (0.0)
WDBC 0.0 (0.0) 0.1 (0.0) 98.6 (0.0) 98.5 (0.0) 96.0 (0.0) 96.1 (0.0)

adult 1.9 (0.8) 278.5 (67.8) 83.1 (0.0) 83.0 (0.0) 82.8 (0.0) 82.8 (0.0)
bank-mkt 0.7 (0.2) 165.6 (126.5) 90.2 (0.0) 90.2 (0.0) 90.0 (0.0) 90.0 (0.0)
gas 24.4 (16.4) 190.7 (94.4) 97.3 (0.0) 97.3 (0.0) 96.9 (0.0) 97.0 (0.0)
magic 7.0 (3.7) 270.4 (54.7) 84.1 (0.0) 84.2 (0.0) 83.4 (0.0) 83.6 (0.0)
mushroom 0.1 (0.0) 0.1 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
musk 0.6 (0.4) 1.2 (0.6) 96.8 (0.0) 96.8 (0.0) 95.9 (0.0) 95.9 (0.0)

adult 35.5 (48.6) 546.0 (101) 81.9 (0.3) 82.1 (0.3) 81.7 (0.3) 81.7 (0.3)
compas 4.0 (3.5) 11.4 (6.5) 64.8 (0.3) 65.1 (0.2) 64.5 (0.4) 64.4 (0.5)
default 3.5 (0.8) 12.3 (6.1) 78.0 (0.0) 78.0 (0.0) 77.7 (0.0) 77.7 (0.0)

Appendix I. 0-1 Formulation with Equalized Odds

Model (27)-(35) is the full formulation for the 0-1 model with equalized odds constraints
used in an empirical comparison with the hamming loss proxy. (27)-(29) and (35) are from
the original 0-1 formulation introduced in Section 2.1. Constraint (30) is the complexity
bound for the rule set. Constraints (31) and (32) bound the difference in false negative rate
between the two groups. Finally, constraints (33) and (34) bound the false positive rate
between the two groups (these constraints are replaced with the hamming loss proxies for
false positives in our model).

34



Boolean Rule Sets via Column Generation

min
∑
i∈P

ζi+
∑
i∈N

ζi (27)

s.t. ζi +
∑
k∈Ki

wk ≥ 1, ∀i ∈ P (28)

wk ≤ ζi, ∀i ∈ N , k ∈ Ki (29)∑
k∈K

ckwk ≤ C (30)

1

|P1|
∑
i∈P1

ζi −
1

|P2|
∑
i∈P2

ζi ≤ ε1 (31)

1

|P2|
∑
i∈P2

ζi −
1

|P1|
∑
i∈P1

ζi ≤ ε1 (32)

1

|N1|
∑
i∈N1

ζi −
1

|N2|
∑
i∈N2

ζi ≤ ε2 (33)

1

|N2|
∑
i∈N2

ζi −
1

|N1|
∑
i∈N1

ζi ≤ ε2 (34)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P∪N| (35)

Appendix J. Pool Select

While solving the restricted MIP, the mixed integer programming solver retains a set of
feasible integer solutions encountered during the process. We evaluate the 0-1 loss on all
these solutions, and pick the one with the lowest 0-1 loss. In other words, while we optimize
for Hamming loss, we select the best solution from the candidate pool of feasible solutions
using 0-1 loss. Table 10 summarizes the impact of selecting a final rule set from the solution
pool using Hamming loss and 0-1 loss respectively. For each solution selection strategy, we
perform 10-fold cross validation with hyper-parameter tuning over a small subset of potential
complexities and report the best average test set accuracy results. The Hamming columns
correspond to using the rule set with the lowest Hamming loss, whereas the 0-1 columns
correspond to selecting the solution from the solution pool that has the lowest train set 0-1
loss. By design, selecting the final rule set using 0-1 loss leads to a higher train set accuracy
for every data set. While this translates to an improvement in test set accuracy for most
data sets, it is not always guaranteed. Note that while the overall increase in performance
is modest, it comes at practically no additional computational cost.

Appendix K. BRS parameters

We followed (Wang et al., 2017) and its associated code in setting the parameters of BRS
and FPGrowth, the frequent rule miner that BRS relies on: minimum support of 5% and
maximum length 3 for FPGrowth; reduction to 5000 candidate rules using information gain
(this reduction was triggered in all cases); α+ = α− = 500, β+ = β− = 1, and 2 simulated
annealing chains of 500 iterations for BRS itself.

35



Lawless, Dash, Günlük, and Wei

Table 10: Effect of selecting a final rule set from the solution pool using Hamming loss and
0-1 loss (standard deviation in parenthesis)

Train Accuracy Test Accuracy
Hamming 0-1 Hamming 0-1

banknote 97.8 (0.0) 98.1 (0.0) 97.3 (0.0) 97.6 (0.0)
heart 83.2 (0.0) 83.9 (0.0) 78.9 (0.1) 77.9 (0.1)
ILPD 72.7 (0.0) 72.7 (0.0) 71.5 (0.0) 71.5 (0.0)
ionosphere 93.9 (0.0) 94.6 (0.0) 87.8 (0.1) 88.4 (0.1)
liver 69.1 (0.01) 69.9 (0.01) 59.1 (0.1) 59.7 (0.1)
pima 78.1 (0.0) 78.9 (0.0) 73.8 (0.1) 75.2 (0.1)
tic-tac-toe 80.2 (0.0) 80.9 (0.0) 77.6 (0.0) 78.3 (0.0)
transfusion 80.2 (0.0) 80.4 (0.0) 77.9 (0.0) 77.9 (0.0)
WDBC 96.3 (0.0) 96.3 (0.0) 95.1 (0.0) 94.9 (0.0)

adult 82.4 (0.0) 82.5 (0.0) 82.5 (0.0) 82.6 (0.0)
bank-mkt 90.0 (0.0) 90.0 (0.0) 90.0 (0.0) 90.0 (0.0)
gas 91.7 (0.0) 91.9 (0.0) 91.4 (0.0) 91.6 (0.0)
FICO 71.6 (0.0) 72.0 (0.0) 70.8 (0.1) 71.1 (0.2)
magic 80.9 (0.0) 81.1 (0.0) 80.7 (0.0) 81.0 (0.0)
mushroom 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
musk 92.4 (0.0) 93.0 (0.0) 92.1 (0.0) 92.9 (0.0)

Appendix L. Accuracy-Simplicity Trade-offs for All data sets

Below in Figures 7 and 8 is the full set of accuracy-simplicity trade-off plots for all 16 data
sets, including the 4 from the main text.

Appendix M. Results for Additional Classifiers

As discussed in the main text, we were unable to execute code from the authors of Inter-
pretable Decision Sets (IDS) (Lakkaraju et al., 2016) with practical running time when the
number of candidate rules mined by Apriori (Agrawal and Srikant, 1994) exceeded 1000.
While it is possible to limit this number by increasing the minimum support and decreasing
the maximum length parameters of Apriori, we did not do so beyond a support of 5% and
length of 3 (same values as with FPGrowth for BRS) as it would severely constrain the re-
sulting candidate rules. Thus we opted to run IDS only on those data sets for which Apriori
generated fewer than 900 candidates given minimum support of 5% and either maximum
length of 3 or unbounded length.

In terms of the settings for IDS itself, we ran a deterministic version of the local search
algorithm with ε = 0.05 as recommended by the authors. We set λ6 = λ7 = 1 to have equal
costs for false positive and negatives, consistent with the other algorithms. For simplicity,
the overlap parameters λ3 and λ4 were set equal to each other and tuned separately for
accuracy, yielding λ3 = λ4 = 0.5. λ5 was set to 0 as it is not necessary for binary classifi-
cation. Lastly, λ1 and λ2 were set equal to each other to reflect the choice of complexity
metric as the number of rules plus the sum of their lengths. We then varied λ1 = λ2 over a
range to trade accuracy against complexity.

36



Boolean Rule Sets via Column Generation

0 10 20 30 40 50 60
complexity

84
86
88
90
92
94
96
98

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(a) banknote

0 20 40 60 80 100 120
complexity

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(b) heart

0 20 40 60 80 100 120 140
complexity

67

68

69

70

71

72

73

74

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(c) ILPD

0 10 20 30 40 50 60 70 80
complexity

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(d) ionosphere

0 20 40 60 80 100 120 140
complexity

50

52

54

56

58

60

62

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(e) liver

0 20 40 60 80 100 120 140
complexity

66

68

70

72

74

76

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(f) pima

0 5 10 15 20 25 30
complexity

65

70

75

80

85

90

95

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(g) tic-tac-toe

0 20 40 60 80 100 120 140
complexity

74

75

76

77

78

79

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(h) transfusion

Figure 7: Rule complexity-test accuracy trade-offs. Pareto efficient points are connected by
line segments.)

37



Lawless, Dash, Günlük, and Wei

0 10 20 30 40 50
complexity

90

92

94

96
%

 a
cc

ur
ac

y

CG
BRS
AM
BCD

(a) WDBC

0 20 40 60 80 100 120 140
complexity

76

78

80

82

84

86

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(b) adult

0 20 40 60 80 100 120 140
complexity

86

87

88

89

90

91

%
 a

cc
ur

ac
y CG

BRS
AM
BCD

(c) bank-marketing

0 20 40 60 80 100 120 140
complexity

84

86

88

90

92

94

96

98

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(d) gas

0 20 40 60 80 100 120 140
complexity

65

70

75

80

85

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(e) magic

2.5 5.0 7.5 10.0 12.5 15.0 17.5
complexity

90

92

94

96

98

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(f) mushroom

0 20 40 60 80 100 120 140
complexity

84

86

88

90

92

94

96

98

100

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(g) musk

0 20 40 60 80 100 120 140
complexity

69

70

71

72

73

%
 a

cc
ur

ac
y

CG
BRS
AM
BCD

(h) FICO

Figure 8: Rule complexity-test accuracy trade-offs. Pareto efficient points are connected by
line segments.)

38



Boolean Rule Sets via Column Generation

Table 11: Mean test accuracy for rule set classifiers (%, standard error in parentheses)

data set CG BRS AM BCD IDS RIPPER

banknote 99.1 (0.3) 99.1 (0.2) 98.5 (0.4) 98.7 (0.2) 65.2 (2.1) 99.2 (0.2)
heart 78.9 (2.4) 78.9 (2.4) 72.9 (1.8) 74.2 (1.9) 79.3 (2.2)
ILPD 69.6 (1.2) 69.8 (0.8) 71.5 (0.1) 71.5 (0.1) 71.5 (0.1) 69.8 (1.4)
ionosphere 90.0 (1.8) 86.9 (1.7) 90.9 (1.7) 91.5 (1.7) 88.0 (1.9)
liver 59.7 (2.4) 53.6 (2.1) 55.7 (1.3) 51.9 (1.9) 51.0 (0.2) 57.1 (2.8)
pima 74.1 (1.9) 74.3 (1.2) 73.2 (1.7) 73.4 (1.7) 68.4 (0.9) 73.4 (2.0)
tic-tac-toe 100.0 (0.0) 99.9 (0.1) 84.3 (2.4) 81.5 (1.8) 98.2 (0.4)
transfusion 77.9 (1.4) 76.6 (0.2) 76.2 (0.1) 76.2 (0.1) 76.2 (0.1) 78.9 (1.1)
WDBC 94.0 (1.2) 94.7 (0.6) 95.8 (0.5) 95.8 (0.5) 85.1 (2.2) 93.0 (0.9)

adult 83.5 (0.3) 81.7 (0.5) 83.0 (0.2) 82.4 (0.2) 83.6 (0.3)
bank-mkt 90.0 (0.1) 87.4 (0.2) 90.0 (0.1) 89.7 (0.1) 89.9 (0.1)
gas 98.0 (0.1) 92.2 (0.3) 97.6 (0.2) 97.0 (0.3) 99.0 (0.1)
magic 85.3 (0.3) 82.5 (0.4) 80.7 (0.2) 80.3 (0.3) 72.0 (0.1) 84.5 (0.3)
mushroom 100.0 (0.0) 99.7 (0.1) 99.9 (0.0) 99.9 (0.0) 100.0 (0.0)
musk 95.6 (0.2) 93.3 (0.2) 96.9 (0.7) 92.1 (0.2) 95.9 (0.2)
FICO 71.7 (0.5) 71.2 (0.3) 71.2 (0.4) 70.9 (0.4) 71.8 (0.2)

Our partial results for IDS are shown in Tables 11 and 13. Despite “cheating” in the
sense of choosing λ1 = λ2 to maximize accuracy after all the test results were known, the
performance is not competitive with the other rule set algorithms on most data sets. In
addition to the constraints placed on Apriori, we suspect that another reason is that the
IDS implementation available to us is designed primarily for the interval representation of
numerical features and is not easily adapted to handle the alternative (≤, >) representation.

In Table 12, accuracy results of logistic regression (LR) and support vector machine
(SVM) classifiers are included along with those of non-rule set classifiers from the main
text (CART and RF). Although LR is a generalized linear model, it may not be regarded
as interpretable in many application domains. For SVM, we used a radial basis function
(RBF) kernel and tuned both the kernel width as well as the complexity parameter C using
nested cross-validation.

39



Lawless, Dash, Günlük, and Wei

Table 12: Mean test accuracy for other classifiers (%, standard error in parentheses)

data set CART RF LR SVM

banknote 96.8 (0.4) 99.5 (0.1) 98.8 (0.2) 99.9 (0.1)
heart 81.6 (2.4) 82.5 (0.7) 83.6 (2.5) 82.9 (1.9)
ILPD 67.4 (1.6) 69.8 (0.5) 72.9 (0.8) 70.8 (0.6)
ionosphere 87.2 (1.8) 93.6 (0.7) 86.9 (2.6) 94.9 (1.8)
liver 55.9 (1.4) 60.0 (0.8) 59.1 (2.0) 59.4 (1.7)
pima 72.1 (1.3) 76.1 (0.8) 77.9 (1.9) 76.8 (1.9)
tic-tac-toe 90.1 (0.9) 98.8 (0.1) 98.3 (0.4) 98.3 (0.4)
transfusion 78.7 (1.1) 77.3 (0.3) 77.0 (0.8) 77.0 (0.3)
WDBC 93.3 (0.9) 97.2 (0.2) 95.4 (0.9) 98.2 (0.4)

adult 83.1 (0.3) 84.7 (0.1) 85.1 (0.2) 84.8 (0.2)
bank-mkt 89.1 (0.2) 88.7 (0.0) 89.8 (0.1) 88.7 (0.0)
gas 95.4 (0.1) 99.7 (0.0) 99.4 (0.1) 99.5 (0.1)
magic 82.8 (0.2) 86.6 (0.1) 79.0 (0.2) 87.7 (0.3)
mushroom 96.2 (0.3) 99.9 (0.0) 99.9 (0.1) 100.0 (0.0)
musk 90.1 (0.3) 86.2 (0.4) 93.1 (0.2) 97.8 (0.1)
FICO 70.9 (0.3) 73.1 (0.1) 71.6 (0.3) 72.3 (0.4)

Table 13: Mean complexity (# rules + total # conditions, standard error in parentheses)

data set CG BRS AM BCD IDS RIPPER CART

banknote 25.0 (1.9) 30.4 (1.1) 24.2 (1.5) 21.3 (1.9) 11.2 (0.5) 28.6 (1.1) 51.8 (1.4)
heart 11.3 (1.8) 24.0 (1.6) 11.5 (3.0) 15.4 (2.9) 16.0 (1.5) 32.0 (8.1)
ILPD 10.9 (2.7) 4.4 (0.4) 0.0 (0.0) 0.0 (0.0) 2.0 (0.0) 9.5 (2.5) 56.5 (10.9)
ionosphere 12.3 (3.0) 12.0 (1.6) 16.0 (1.5) 14.6 (1.4) 14.6 (1.2) 46.1 (4.2)
liver 5.2 (1.2) 15.1 (1.3) 8.7 (1.8) 4.0 (1.1) 0.0 (0.0) 5.4 (1.3) 60.2 (15.6)
pima 4.5 (1.3) 17.4 (0.8) 2.7 (0.6) 2.1 (0.1) 6.0 (0.3) 17.0 (2.9) 34.7 (5.8)
tic-tac-toe 32.0 (0.0) 32.0 (0.0) 24.9 (3.1) 12.6 (1.1) 32.9 (0.7) 67.2 (5.0)
transfusion 5.6 (1.2) 6.0 (0.7) 0.0 (0.0) 0.0 (0.0) 2.0 (0.0) 6.8 (0.6) 14.3 (2.3)
WDBC 13.9 (2.4) 16.0 (0.7) 11.6 (2.2) 17.3 (2.5) 15.2 (0.7) 16.8 (1.5) 15.6 (2.2)

adult 88.0 (11.4) 39.1 (1.3) 15.0 (0.0) 13.2 (0.2) 133.3 (6.3) 95.9 (4.3)
bank-mkt 9.9 (0.1) 13.2 (0.6) 6.8 (0.7) 2.1 (0.1) 56.4 (12.8) 3.0 (0.0)
gas 123.9 (6.5) 22.4 (2.0) 62.4 (1.9) 27.8 (2.5) 145.3 (4.2) 104.7 (1.0)
magic 93.0 (10.7) 97.2 (5.3) 11.5 (0.2) 9.0 (0.0) 10.0 (0.0) 177.3 (8.9) 125.5 (3.2)
mushroom 17.8 (0.3) 17.5 (0.4) 15.4 (0.6) 14.6 (0.6) 17.0 (0.4) 9.3 (0.2)
musk 123.9 (6.5) 33.9 (1.3) 101.3 (11.6) 24.4 (1.9) 143.4 (5.5) 17.0 (0.7)
FICO 13.3 (4.1) 23.2 (1.4) 8.7 (0.4) 4.8 (0.3) 88.1 (7.0) 155.0 (27.5)

40



Boolean Rule Sets via Column Generation

Appendix N. Stability Example

Consider the following rule sets generated for two different splits of the compas data (both
trained with C = 30 and no fairness constraint).

Rule Set 1: Predict repeat offence if:[
(Score Factor=True) and (Age ≤ 45)

]
OR[

(Score Factor=True) and (Age > 45) and (Misdemeanor=False) and
(Priors≥ 4) and (Gender=Male)

]
Rule Set 2: Predict repeat offence if:[

(Score Factor=True) and (Gender=Female)
]

OR[
(Score Factor=True) and (Age ≤ 45) and (Age≥25) and

(Priors≥ 10) and (Gender=Male)
]

Despite both rule sets having near identical performance on their respective train and test
sets, the two rule sets are qualitatively quite different. For instance, the rule sets share no
common rules or even rules with the exact same features. The second rule in both rule sets
involves the number of priors but use different thresholds (4 vs. 10). This lack of stability
is a well documented problem in interpretable models (Guidotti and Ruggieri, 2019). It
remains an open research problem on how to improve the stability of rule sets and other
interpretable classification models.

Appendix O. Parameters for Fairness-Accuracy Trade-offs

For our experiments we took a two-phase approach. During the first rule generation phase,
we ran our column generation algorithm with a set of different hyperparameters to generate
a set of potential rules. To warm start this procedure, we also start the column generation
process with a set of rules mined from a random forest classifier. We then solve the master
IP with the set of candidate rules and a larger set of hyperparameters to generate the curves
included in the body of the report. Table 14 summarizes the hyperparameters used for both
Phase I and II. Note that for the equalized odds formulation, we set ε1 = ε2 and use the
values in Table 14.

We tested our algorithm against three other popular interpretable fair classifiers: Zafar
2017 (Zafar et al., 2017a), Hardt 2016 (Hardt et al., 2016), and Fair Decision trees trained

Table 14: Overview of ε hyperparameters Tested

data set ε Phase 1 ε Phase 2

Adult {0.01, 0.1, 1} {0, 0.01, 0.05, 0.1, 0.15, 0.2, 1}
Compas {0.01, 0.1, 1} {0, 0.01, 0.05, 0.1, 0.15, 0.2, 1}
Default {0.01, 0.1, 1} {0, 0.01, 0.03, 0.05, 0.1, 0.2, 1}

41



Lawless, Dash, Günlük, and Wei

Table 15: Overview of C Hyperparameters Tested

data set Phase 1 Phase 2

Adult {5, 20, 40, 80, 100} {5, 15, 20, 30, 40, 50, 60, 80, 100}
Compas {5, 15, 30} {5, 10, 15, 20, 30}
Default {5, 15, 30} {5, 10, 15, 20, 30}

Table 16: Overview of Zafar Optimizer Hyperparameters

data set τ µ

Adult 5 1.2
Compas 20 1.2
Default 0.5 1.2

using the exponentiated gradient algorithm in fairlearn (Agarwal et al., 2018). For the
Zafar algorithm we used the optimizer parameters specified in Table 16, and tested a range
of 30 different ε values (linearly spaced between 0 and 0.5) for the covariance threshold.
For Hardt 2016 we used the logistic regression implementation from scikit-learn (Pedregosa
et al., 2011) and tested 100 different decision thresholds for each sub-group (1% increments).
For the exponentiated gradient algorthm from fairlearn we used scikit-learn’s decision tree
as the base estimator and tested both a range of maximum depth hyperparameters (20
values linearly spaced between 1 and 30), and 30 different ε values (linearly spaced be-
tween 0 and 0.5) for the fairness constraints. For all the algorithms we used 10-fold nested
cross-validation to select the best hyperparameters for every level of fairness and removed
dominated points from the figures present in the results section of the main paper.

Appendix P. Results for Additional Fair Classifiers

The following section reports additional results for the Fair CORELS classifier. We set
a maximum cardinality, i.e., the number of features allowed in a rule, of 2 for Adult and
Default, and 5 for compas. We found that increasing the cardinality above 2 for the two
large data sets led to memory issues on our computing infrastructure with 16 GB RAM. We
tested possible values for the complexity regularization parameter λ on a logarithmic scale
from 0.0001 to 10, and use the default parameters for other settings. Table 17 shows the
performance of the classifier in the absence of fairness constraints. For every data set, the
Fair CORELS classifier has lower accuracy than the other benchmark approaches. This is in
contrast to the reported numbers in Aı̈vodji et al. (2021) which show competitive accuracy
on both Adult and compas. It is unclear if the degradation in performance is a function of
our binarization process and data set pre-processing, or the limitations of our computing
infrastructure, or a discrepancy between the publicly available code for Fair CORELS and
the code used to obtain the results in Aı̈vodji et al. (2021).

Figure 9 shows the full Pareto curve of accuracy versus fairness for the benchmark fair
classifiers including Fair CORELS. In every data set Fair CORELS is dominated by the
Fair CG approach, though it outperforms the other benchmark algorithms in areas with
low unfairness.

42



Boolean Rule Sets via Column Generation

Table 17: Mean test accuracy and fairness results with no fairness constraints (standard
deviation in parenthesis). Equality of opportunity and equalized odds refer to
the amount of unfairness between the two groups under each fairness metric.

Fair CG Zafar Hardt Fair Learn Fair CORELS

Adult
Accuracy 82.5 (0.5) 85.2 (0.5) 83.0 (0.4) 82.4 (0.4) 77.7 (2.7)
Equality of Opportunity 7.6 (0.5) 11.9 (3.7) 18.2 (4.8) 11.5 (4.6) 3.0 (5.3)
Equalized Odds 7.6 (0.5) 11.9 (3.7) 18.2 (4.8) 11.5 (4.6) 3.0 (5.3)

Compas
Accuracy 67.6 (1.1) 64.6 (1.9) 65.9 (2.7) 65.8 (2.9) 60.8 (6.1)
Equality of Opportunity 23.8 (5.3) 42.8 (5.4) 23.7 (6.4) 21.7 (7.1) 14.1 (11.5)
Equalized Odds 24.1 (5.1) 47.6 (5.8) 27.0 (5.2) 24.9 (4.5) 14.8 (13.1)

Default
Accuracy 82.0 (0.7) 81.2 (0.8) 77.9 (1.7) 77.9 (1.7) 77.9 (1.7)
Equality of Opportunity 1.3 (0.6) 2.7 (1.9) 0 (0) 0 (0) 0 (0)
Equalized Odds 1.9 (0.5) 4.2 (2.5) 0 (0) 0 (0) 0 (0)

0.00 0.02 0.04 0.06 0.08
Unfairnesss (TPR Gap)

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Adult

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Unfairnesss (Max(TPR, TNR) Gap)

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y
Adult

FairCG
Zafar
Hardt

FairCORELS
Fair Learn

0.00 0.01 0.02 0.03 0.04 0.05
Unfairnesss (TPR Gap)

0.78

0.79

0.80

0.81

0.82

A
cc

ur
ac

y

Default

FairCG
Zafar
Hardt
FairCORELS
Fair Learn

0.00 0.01 0.02 0.03 0.04 0.05
Unfairnesss (Max(TPR, TNR) Gap)

0.78

0.79

0.80

0.81

0.82

A
cc

ur
ac

y

Default

FairCG
Zafar
Hardt

FairCORELS
Fair Learn

0.00 0.05 0.10 0.15 0.20 0.25
Unfairnesss (TPR Gap)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

A
cc

ur
ac

y

Compas

FairCG
Zafar
Hardt
FairCORELS
Fair Learn

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Unfairnesss (Max(TPR, TNR) Gap)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

A
cc

ur
ac

y

Compas

FairCG
Zafar
Hardt
FairCORELS
Fair Learn

Figure 9: Test Accuracy Fairness Frontier for Fair CG and other interpretable fair classifiers
with respect to equality of opportunity (left column) and equalized odds (right
column).

43



Lawless, Dash, Günlük, and Wei

References

A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions ap-
proach to fair classification. In J. Dy and A. Krause, editors, International Confer-
ence on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Re-
search, pages 60–69. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/

v80/agarwal18a.html.

S. Aghaei, M. J. Azizi, and P. Vayanos. Learning optimal and fair decision trees for
non-discriminative decision-making. AAAI Conference on Artificial Intelligence, 33(01):
1418–1426, Jul. 2019. doi: 10.1609/aaai.v33i01.33011418. URL https://ojs.aaai.org/

index.php/AAAI/article/view/3943.

G. Aglin, S. Nijssen, and P. Schaus. Learning optimal decision trees using caching branch-
and-bound search. AAAI Conference on Artificial Intelligence, 34(04):3146–3153, Apr.
2020. URL https://ojs.aaai.org/index.php/AAAI/article/view/5711.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In International
Conference on Very Large Data Bases (VLDB), pages 487–499, 1994.

U. Aı̈vodji, J. Ferry, S. Gambs, M.-J. Huguet, and M. Siala. FairCORELS, an open-source
library for learning fair rule lists. In ACM International Conference on Information &
Knowledge Management (CIKM), pages 4665–4669, 2021.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software used
across the country to predict future criminals. and it’s biased against blacks. Available
at https://www.propublica.org/article/machine-bias-risk-assessments-in-\

criminal-sentencing (2016), 2016.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998. doi: 10.1287/opre.46.3.316.

K. P. Bennett and J. A. Blue. Optimal decision trees. Technical Report 214, Rensselaer
Polytechnic Institute, Troy, NY, 1996.

R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and
A. Roth. A convex framework for fair regression. In ACM Conference on Fairness,
Accountability, and Transparency (FAccT), 2017.

D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning, 106(7):1039–
1082, July 2017.

J. Bi, T. Zhang, and K. P. Bennett. Column-generation boosting methods for mixture of
kernels. In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 521–526, Aug. 2004.

S. I. Birbil, M. Edali, and B. Yuceoglu. Rule covering for interpretation and boosting. arXiv
preprint arXiv:2007.06379, 2020.

44

http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html
https://ojs.aaai.org/index.php/AAAI/article/view/3943
https://ojs.aaai.org/index.php/AAAI/article/view/3943
https://ojs.aaai.org/index.php/AAAI/article/view/5711
https://www.propublica.org/article/machine-bias-risk-assessments-in-\ criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-\ criminal-sentencing


Boolean Rule Sets via Column Generation

C. Borgelt. An implementation of the FP-growth algorithm. In Workshop on Open Source
Data Mining Software (OSDM), pages 1–5, 2005.

E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I. Muchnik. An im-
plementation of logical analysis of data. IEEE Transactions on Knowledge and Data
Engineering, 12(2):292–306, Mar/Apr 2000.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman & Hall/CRC, 1984.

T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free classi-
fication. Data Mining and Knowledge Discovery, 21:277–292, 09 2010. doi: 10.1007/
s10618-010-0190-x.

E. Carrizosa, B. Martin-Barragan, and D. R. Morales. Binarized support vector machines.
INFORMS Journal on Computing, 22(1):154–167, 2010.

E. Carrizosa, C. Molero-Ŕıo, and D. R. Morales. Mathematical optimization in classification
and regression trees. Top, 29(1):5–33, 2021.

L. E. Celis, L. Huang, V. Keswani, and N. K. Vishnoi. Classification with fairness
constraints: A meta-algorithm with provable guarantees. In ACM Conference on
Fairness, Accountability, and Transparency (FAccT), pages 319–328, Jan. 2019. doi:
10.1145/3287560.3287586. URL http://doi.acm.org/10.1145/3287560.3287586.

G. Chen, H. Liu, L. Yu, Q. Wei, and X. Zhang. A new approach to classification based on
association rule mining. Decision Support Systems, 42(2):674–689, Nov. 2006.

H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for
effective classification. In IEEE International Conference on Data Engineering (ICDE),
pages 716–725, 2007.

A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153–163, Jun 2017. ISSN 2167-647X. doi: 10.
1089/big.2016.0047. URL http://dx.doi.org/10.1089/big.2016.0047.

P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In European
Working Session on Machine Learning (EWSL), pages 151–163, 1991.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261–283,
Mar 1989.

W. W. Cohen. Fast effective rule induction. In International Conference on Machine
Learning (ICML), pages 115–123, 1995.

W. W. Cohen and Y. Singer. A simple, fast, and effective rule learner. In AAAI Conference
on Artificial Intelligence, pages 335–342, 1999.

M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Springer, 2014.

45

http://doi.acm.org/10.1145/3287560.3287586
http://dx.doi.org/10.1089/big.2016.0047


Lawless, Dash, Günlük, and Wei

S. Corbett-Davies and S. Goel. The measure and mismeasure of fairness: A critical review
of fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

I. I. Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

S. Dash, D. M. Malioutov, and K. R. Varshney. Screening for learning classification rules
via Boolean compressed sensing. In IEEE International Conference on Acoustics, Speech,
& Signal Processing (ICASSP), pages 3360–3364, 2014.

S. Dash, O. Gunluk, and D. Wei. Boolean decision rules via column generation. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NeurIPS), volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

743394beff4b1282ba735e5e3723ed74-Paper.pdf.

K. Dembczyński, W. Kot lowski, and R. S lowiński. ENDER: a statistical framework for
boosting decision rules. Data Mining and Knowledge Discovery, 21(1):52–90, Jul 2010.

A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column
generation. Machine Learning, 46(1–3):225–254, Jan. 2002.

P. Domingos. Unifying instance-based and rule-based induction. Machine Learning, 24(2):
141–168, 1996.

M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical risk mini-
mization under fairness constraints. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 31. Curran Associates, Inc., 2018. URL https://proceedings.

neurips.cc/paper/2018/file/83cdcec08fbf90370fcf53bdd56604ff-Paper.pdf.

D. Dua and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In
Innovations in Theoretical Computer Science (ITCS), pages 214–226. ACM, 2011. doi:
10.1145/2090236.2090255. URL http://doi.acm.org/10.1145/2090236.2090255.

J. Eckstein, N. Goldberg, and A. Kagawa. Rule-enhanced penalized regression by column
generation using rectangular maximum agreement. In International Conference on Ma-
chine Learning (ICML), pages 1059–1067. PMLR, 2017.

H. Edwards and A. J. Storkey. Censoring representations with an adversary. In Y. Bengio
and Y. LeCun, editors, International Conference on Learning Representations (ICLR),
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:

//arxiv.org/abs/1511.05897.

V. Feldman. Learning DNF expressions from Fourier spectrum. In Conference on Learning
Theory (COLT), pages 17.1–17.19, 2012.

46

https://proceedings.neurips.cc/paper/2018/file/743394beff4b1282ba735e5e3723ed74-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/743394beff4b1282ba735e5e3723ed74-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/83cdcec08fbf90370fcf53bdd56604ff-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/83cdcec08fbf90370fcf53bdd56604ff-Paper.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://doi.acm.org/10.1145/2090236.2090255
http://arxiv.org/abs/1511.05897
http://arxiv.org/abs/1511.05897


Boolean Rule Sets via Column Generation

FICO. FICO explainable machine learning challenge. https://community.fico.com/

community/xml, 2018. Last accessed 2018-05-16.

J. R. Foulds, R. Islam, K. N. Keya, and S. Pan. An intersectional definition of fairness. In
IEEE International Conference on Data Engineering (ICDE), pages 1918–1921. IEEE,
2020.

E. Frank and I. H. Witten. Generating accurate rule sets without global optimization. In
International Conference on Machine Learning (ICML), pages 144–151, 1998.

E. Frank, M. A. Hall, and I. H. Witten. The WEKA workbench. In Online Appendix for
”Data Mining: Practical Machine Learning Tools and Techniques”. Morgan Kaufmann,
4th edition, 2016.

J. H. Friedman and N. I. Fisher. Bump hunting in high-dimensional data. Statistics and
Computing, 9(2):123–143, Apr. 1999.

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. Annals of Applied
Statistics, 2(3):916–954, Jul 2008.

J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of Rule Learning. Springer-
Verlag, Berlin, 2014.

C. Gambella, B. Ghaddar, and J. Naoum-Sawaya. Optimization problems for machine
learning: A survey. European Journal of Operational Research, 290(3):807–828, 2021.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9(6):849–859, 1961. ISSN 0030364X, 15265463. URL
http://www.jstor.org/stable/167051.

R. Guidotti and S. Ruggieri. On the stability of interpretable models. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

O. Günlük, J. Kalagnanam, M. Li, M. Menickelly, and K. Scheinberg. Optimal decision
trees for categorical data via integer programming. Journal of Global Optimization, 81:
233–260, 2021.

L. Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.

gurobi.com.

P. L. Hammer and T. O. Bonates. Logical analysis of data—an overview: From combi-
natorial optimization to medical applications. Annals of Operations Research, 148(1):
203–225, Nov 2006.

M. Hardt, E. Price, E. Price, and N. Srebro. Equality of opportunity in supervised
learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems (NeurIPS), volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

9d2682367c3935defcb1f9e247a97c0d-Paper.pdf.

47

https://community.fico.com/community/xml
https://community.fico.com/community/xml
http://www.jstor.org/stable/167051
http://www.gurobi.com
http://www.gurobi.com
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf


Lawless, Dash, Günlük, and Wei

X. Hu, C. Rudin, and M. Seltzer. Optimal sparse decision trees. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 32, 2019. URL https://proceedings.

neurips.cc/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf.

F. Kamiran, I. Žliobaitė, and T. Calders. Quantifying explainable discrimination and re-
moving illegal discrimination in automated decision making. Knowledge and Information
Systems, 1:in press, 06 2012. doi: 10.1007/s10115-012-0584-8.

T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice
remover regularizer. In European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD), pages 35–50, Sept. 2012.

J. M. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair de-
termination of risk scores. In C. H. Papadimitriou, editor, Innovations in Theoretical
Computer Science Conference (ITCS), volume 67 of LIPIcs, pages 43:1–43:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi: 10.4230/LIPIcs.ITCS.2017.43.
URL https://doi.org/10.4230/LIPIcs.ITCS.2017.43.

A. R. Klivans and R. A. Servedio. Learning DNF in time 2õ(n
1/3). J. Comput. Syst. Sci.,

68(2):303–318, Mar. 2004.

R. A. Kovacs, O. Gunluk, and R. A. Hauser. Binary matrix factorisation via column
generation. In AAAI Conference on Artificial Intelligence, volume 35, pages 3823–3831,
2021.

H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint framework
for description and prediction. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 1675–1684, 2016.

A. H. Land and A. G. Doig. An automatic method for solving discrete programming
problems. ECONOMETRICA, 28(3):497–520, 1960.

W. Li, J. Han, and J. Pei. CMAR: accurate and efficient classification based on multiple
class-association rules. In IEEE International Conference on Data Mining (ICDM), pages
369–376, 2001.

X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick. Learning hash functions using
column generation. In International Conference on Machine Learning (ICML), pages
I–142–I–150, 2013.

J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and scalable optimal sparse
decision trees. In International Conference on Machine Learning (ICML), volume 119
of Proceedings of Machine Learning Research, pages 6150–6160, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/lin20g.html.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 80–86, 1998.

48

https://proceedings.neurips.cc/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ac52c626afc10d4075708ac4c778ddfc-Paper.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
https://proceedings.mlr.press/v119/lin20g.html


Boolean Rule Sets via Column Generation

M. Lohaus, M. Perrot, and U. V. Luxburg. Too relaxed to be fair. In H. D. III and
A. Singh, editors, International Conference on Machine Learning (ICML), volume 119
of Proceedings of Machine Learning Research, pages 6360–6369. PMLR, 13–18 Jul 2020.
URL http://proceedings.mlr.press/v119/lohaus20a.html.

D. M. Malioutov and K. R. Varshney. Exact rule learning via Boolean compressed sensing.
In International Conference on Machine Learning (ICML), pages 765–773, 2013.

M. Marchand and J. Shawe-Taylor. The set covering machine. Journal of Machine Learning
Research, 3:723–746, 2002.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and
fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

M. Muselli and D. Liberati. Binary rule generation via Hamming clustering. IEEE Trans-
actions on Knowledge and Data Engineering, 14(6):1258–1268, 2002.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

S. Salzberg. A nearest hyperrectangle learning method. Machine Learning, 6(3):251–276,
1991.

L. Semenova, C. Rudin, and R. Parr. On the existence of simpler machine learning models.
In ACM Conference on Fairness, Accountability, and Transparency (FAccT), pages 1827–
1858, 2022.

G. Su, D. Wei, K. R. Varshney, and D. M. Malioutov. Learning sparse two-level Boolean
rules. In IEEE International Workshop on Machine Learning and Signal Processing
(MLSP), pages 1–6, Sept. 2016.

S. Subramanian, W. Sun, Y. Drissi, and M. Ettl. Constrained prescriptive trees via column
generation. In AAAI Conference on Artificial Intelligence, volume 36, pages 4602–4610,
2022.

B. Ustun and C. Rudin. Supersparse linear integer models for optimized medical scoring
systems. Machine Learning, 102:349–391, 2016.

B. Ustun and C. Rudin. Learning optimized risk scores. Journal of Machine Learning
Research, 20(150):1–75, 2019. URL http://jmlr.org/papers/v20/18-615.html.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
Nov. 1984.

49

http://proceedings.mlr.press/v119/lohaus20a.html
http://jmlr.org/papers/v20/18-615.html


Lawless, Dash, Günlük, and Wei

F. Vanderbeck and L. A. Wolsey. An exact algorithm for IP column generation. Operations
Research Letters, 19(4):151–159, 1996.

S. Verwer and Y. Zhang. Learning optimal classification trees using a binary linear program
formulation. AAAI Conference on Artificial Intelligence, 33(01):1625–1632, Jul. 2019.
URL https://ojs.aaai.org/index.php/AAAI/article/view/3978.

J. Wang and G. Karypis. HARMONY: Efficiently mining the best rules for classification.
In SIAM International Conference on Data Mining (SDM), pages 205–216, 2005.

T. Wang and C. Rudin. Learning optimized Or’s of And’s, Nov. 2015. arXiv:1511.02210.

T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille. A Bayesian frame-
work for learning rule sets for interpretable classification. Journal of Machine Learning
Research, 18(70):1–37, 2017.

D. Wei, S. Dash, T. Gao, and O. Gunluk. Generalized linear rule models. In International
Conference on Machine Learning (ICML), volume 97 of Proceedings of Machine Learning
Research, pages 6687–6696, 09–15 Jun 2019. URL https://proceedings.mlr.press/

v97/wei19a.html.

Y. Wu, L. Zhang, and X. Wu. On convexity and bounds of fairness-aware classification. In
International Conference on World Wide Web (WWW), pages 3356–3362, 2019.

X. Yin and J. Han. CPAR: Classification based on predictive association rules. In SIAM
International Conference on Data Mining (SDM), pages 331–335, 2003.

M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness beyond disparate
treatment & disparate impact. International Conference on World Wide Web (WWW),
2017a. doi: 10.1145/3038912.3052660. URL http://dx.doi.org/10.1145/3038912.

3052660.

M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi. Fairness constraints: Mech-
anisms for fair classification. In A. Singh and J. Zhu, editors, International Conference
on Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine
Learning Research, pages 962–970, Fort Lauderdale, FL, USA, 20–22 Apr 2017b. PMLR.
URL http://proceedings.mlr.press/v54/zafar17a.html.

R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In
S. Dasgupta and D. McAllester, editors, International Conference on Machine Learning
(ICML), pages 325–333, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL http:

//proceedings.mlr.press/v28/zemel13.html.

50

https://ojs.aaai.org/index.php/AAAI/article/view/3978
https://proceedings.mlr.press/v97/wei19a.html
https://proceedings.mlr.press/v97/wei19a.html
http://dx.doi.org/10.1145/3038912.3052660
http://dx.doi.org/10.1145/3038912.3052660
http://proceedings.mlr.press/v54/zafar17a.html
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html

	Introduction
	Contributions
	Related Work
	Outline of the Paper

	Classification Framework: Boolean Rule Sets
	0-1 loss
	Hamming loss
	Master Integer Programming Formulation

	Fairness
	Equality of Opportunity
	Equalized Odds
	Base Formulation for Fairness Setting

	Column Generation
	Pricing Problem: Base Formulation without Fairness
	Pricing Heuristic
	Pricing Problem: Fairness Setting
	Optimality Guarantees and Bounds

	Numerical Evaluation
	Experiment Details
	Hamming loss
	Classification
	Fairness

	Conclusion
	0-1 Aggregated Formulation
	Proof of Theorem 4
	Proof for Theorem 5
	Cycling During Column Generation
	Proof of Theorem 6
	Proof of Proposition 7
	Data sets and Data Processing
	Empirical Hamming Loss Results for All data sets
	0-1 Formulation with Equalized Odds
	Pool Select
	BRS parameters
	Accuracy-Simplicity Trade-offs for All data sets
	Results for Additional Classifiers
	Stability Example
	Parameters for Fairness-Accuracy Trade-offs
	Results for Additional Fair Classifiers

