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Abstract

Generative artificial intelligence has made significant strides, producing text indistinguish-
able from human prose and remarkably photorealistic images. Automatically measuring
how close the generated data distribution is to the target distribution is central to diagnos-
ing existing models and developing better ones. We present MAUVE, a family of comparison
measures between pairs of distributions such as those encountered in the generative model-
ing of text or images. These scores are statistical summaries of divergence frontiers captur-
ing two types of errors in generative modeling. We explore three approaches to statistically
estimate these scores: vector quantization, non-parametric estimation, and classifier-based
estimation. We provide statistical bounds for the vector quantization approach.

Empirically, we find that the proposed scores paired with a range of f -divergences and
statistical estimation methods can quantify the gaps between the distributions of human-
written text and those of modern neural language models by correlating with human judg-
ments and identifying known properties of the generated texts. We demonstrate in the
vision domain that MAUVE can identify known properties of generated images on par with
or better than existing metrics. In conclusion, we present practical recommendations for
using MAUVE effectively with language and image modalities.
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1. Introduction

Large-scale generative artificial intelligence models show an ability to produce human-like
text and realistic images. Recent chatbots such as ChatGPT/GPT-4 (OpenAI, 2023),
Bard (Google, 2023), and Ernie Bot (Sun et al., 2021) have rapidly gained wide promi-
nence in the general public for their articulate responses across many topics and styles.
More generally, large language models such as Llama-2 (Touvron et al., 2023), Falcon (Al-
mazrouei et al., 2023), Bloom (Workshop, 2022), and Mistral (Jiang et al., 2023), as well as
image and multi-modal generative models such as Stable Diffusion (Rombach et al., 2022),
Imagen (Saharia et al., 2022), and CM3leon (Yu et al., 2023) can produce original content
in response to queries in the form of blog posts, poetry, computer programs, and artwork.

However, evaluating the distributions captured by such large-scale generative models
requires substantial effort. Automatic measures can dramatically reduce the cost of eval-
uation, in turn making it easier to rapidly develop models, choose hyperparameters, and
understand a model’s capabilities.

One approach to evaluation is to compare a generative model’s distribution Q with the
target distribution P of the real data that it aims to model. Doing so requires considering
two types of errors: (I) the mass of Q that has a low probability under P where the model
produces unrealistic or degenerate data, and (II) the mass of P that has a low probability
under Q where the model is not able to produce some class of realistic data. However,
quantifying these errors in a principled, computationally tractable manner is challenging
when faced with real-world text or image distributions.

We present a family of comparison measures between pairs of probability distributions,
such as those encountered in the generative modeling of text and images. Building upon
the notion of divergence frontiers proposed by Djolonga et al. (2020), our measures are
statistical summaries of f -divergence frontiers, which capture the two types of errors. We
explore three methods for estimating these divergence frontiers and their scalar summaries.
We provide statistical bounds for two of these estimation methods—vector quantization
and nearest-neighbor estimation—as well as theoretical guidance on choosing the level of
vector quantization. In the spirit of popular metrics in natural language processing such as
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), we call these measures MAUVE scores.

We develop the scores in practice for open-ended text generation. We find that, for a
range of f -divergences and estimation methods, these measures quantify the gap between the
distributions of human-written text and those of modern neural language models efficiently
and robustly. Moreover, we show that these measures extend to image distributions, aligning
well with the widely used Fréchet distance in the computer vision domain in quantifying the
effect of sampling algorithms and architectural improvements. Together, our theoretical and
empirical analyses demonstrate that MAUVE provides a principled, effective, and powerful
recipe for comparing distributions of complex high-dimensional text and images.

1.1 Contributions

We make the following contributions in this work.
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Figure 1: Left: Comparing two distributions P and Q. Here, Rλ = λP + (1 − λ)Q is the
interpolation between P and Q for λ ∈ (0, 1) and R′ denotes some arbitrary distribution. Right:
The corresponding divergence frontier (black curve) between P and Q. The interpolations Rλ for
λ ∈ (0, 1) make up the frontier, while all other distributions such as R′ must lie above the frontier.

Statistical Summaries of Divergence Frontiers (Section 3). Our goal is to provide a
scalar summary of the discrepancy between a generative model Q and the target distribution
P that it aims to model. To do so, following Djolonga et al. (2020), we consider two types
of costs: (I) the mass of Q that has low probability under P , and (II) the mass of P that
has low probability under Q. We formalize these costs using a divergence frontier,

Ff (P,Q) =
{(
Df (P‖Rλ), Df (Q‖Rλ)

)
: λ ∈ (0, 1)

}
,

where Rλ = λP + (1− λ)Q, and Df is an f -divergence such as the Kullback–Leibler (KL)
divergence. See Figure 1 for an illustration. This extends the frontiers of (Djolonga et al.,
2020) to general f -divergences. We shall show in Section 3 that the nice properties of the
divergence frontiers also extend to their variants based on f -divergences.

We propose three scalar statistical summaries of divergence frontiers. The first summary
measures the area under a transformed divergence frontier:

MAUVEf (P,Q) = AUC
({(

exp(−x), exp(−y)
)

: (x, y) ∈ Ff (P,Q)
}
∪ {(1, 0), (0, 1)}

)
.

Here, exp(·) monotonically transforms the frontier to account for unbounded divergences.
Second, we consider an integral summary that sweeps over the coordinates on the diver-

gence frontier and accumulates their costs:

FIf (P,Q) := 2

∫ 1

0

(
λDf (P‖Rλ) + (1− λ)Df (Q‖Rλ)

)
dλ.

Finally, the third summary simply uses costs from the mid-point of the frontier, i.e., the
coordinates corresponding to λ = 1/2:

Midf (P,Q) :=
1

2
Df (P‖R1/2) +

1

2
Df (Q‖R1/2) .

At their core, all three summaries are based on f -divergences. Thus, all three benefit from
our estimation algorithms and error bounds for f -divergences, which we discuss next.
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Statistical Estimation Algorithms (Section 4). We give algorithms for computing
the summaries MAUVEf , FIf , and Midf on real-world distributions of text or images. This
requires computing f -divergences between the target distribution P and the model distri-
bution Q, which is challenging due to the lack of direct access to P and Q, and the large
support of each distribution. To address these challenges, we propose three methods for
estimating divergence frontiers from i.i.d. samples using embeddings of the data (e.g., from
a large language model for text data):

1. Quantization: we jointly quantize the distributions P and Q in some embedding space
to form two multinomial distributions, then estimate the divergence frontier between
the two multinomial distributions.

2. Nearest-neighbor : we use the nearest neighbors (in some embedding space) of each
sample to estimate the likelihood ratio P (x)/Q(x), which we use to estimate the
required f -divergences.

3. Classifier : we train a classifier to identify whether each sample belongs to the target
or model distribution. We use the classifier to estimate the likelihood ratio and, in
turn, the required f -divergences.

Error Bounds. We develop error bounds for the first quantization approach. The total
estimation error of the divergence frontier consists of two parts: (i) the statistical error in
estimating the frontier from samples, and (ii) the quantization error that arises from passing
from the original distributions to their quantized versions.

For the statistical error, Theorem 10 gives an error bound that allows for long tails
and countable support of the distribution P . This improves over a naive bound that does
not allow for distributions with long tails, and requires finite support. A key technique
that enables this result is considering the missing mass (Good, 1953): the total probability
that does not appear in the finite sample used to estimate the frontier. When the two
distributions P and Q intersect on a finite set of k elements, the bounds simplify further.
For example, we give the following statistical error bound on the integral summary (Eq. 12):

E|FI(P̂n, Q̂n)− FI(P,Q)| ≤ Õ
(√

k

n
+
k

n

)
,

where P̂n and Q̂n are the empirical estimators and n is the number of samples. We give
a similar bound for general f -divergences (Eq. 11). Our results hold under assumptions
that are satisfied by many common f -divergences (Table 9). To improve the statistical
performance of empirical estimators when the quantization size k is large, we also apply
add-constant smoothing to estimate the two distributions—we add a small constant b > 0
to the counts of each bin and normalize them to form a distribution. We prove in Theorem 12
a statistical error bound for the add-constant estimators. Applied to the integral summary,
the bound is (Eq. 17)

E|FI(P̂ bn, Q̂
b
n)− FI(P,Q)| ≤ Õ

(√
kn+ kb

n+ kb

)
,
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where P̂ bn and Q̂bn are the add-constant estimators. A similar bound for general f -divergences
is given in Eq. 16.

For the quantization error, we show that there exists a quantization scheme with error
O(1/k), where k is the size of the k-partition used to quantize the sample space. Our analysis
is inspired by the asymptotic approximation of an f -divergence with increasingly finer par-
titions (Györfi and Nemetz, 1978, Theorem 6). Combining the statistical and quantization
error bounds gives us a bound on the total error of the integral summary (Eq. 20):

E|FI(P̂Sk,n, Q̂Sk,n)− FI(P,Q)| ≤ Õ
(√

k

n
+
k

n
+

1

k

)
.

We discuss how to operationalize the nonparametric nearest-neighbor estimation with
dimensionality reduction via principal component analysis (PCA). For nearest-neighbor es-
timation, we discuss bounds from Noshad et al. (2017) (Theorem 17).

Experiments (Section 7). Our experiments are organized into multiple parts, mainly
focusing on the open-ended text generation setting.

We start by analyzing the effectiveness of the proposed measure for comparing text
distributions. We focus on the area summary using the KL divergence computed with vector
quantization. We demonstrate that the proposed measures correlate with human quality
judgments (Section 7.1) and quantify known properties of generated text (Section 7.2). The
main focus of the rest of the experimental study is to analyze the effects of each of the
components of the evaluation pipeline: the estimation method, the choice of the divergence,
and the choice of the embedding.

First, we consider different estimation methods: vector quantization, nearest neigh-
bor estimation, and classifier-based estimation (Section 7.3). We also consider a popular
parametric Gaussian approximation method—assuming that embedded samples from the
target and model distributions are distributed according to multivariate Gaussians, we es-
timate the parameters of each Gaussian and estimate the divergence frontier by numerical
integration (see Appendix C for more details). We find that all estimation methods identify
expected quality trends and correlate with human evaluations. However, nearest-neighbor
and classifier-based estimation show a slightly decreased ability to identify good hyper-
parameter values, while parametric estimation requires extreme dimensionality reduction.
Thus, we recommend vector quantization as a default.

Second, we experiment with other f-divergences and optimal transport costs (Sec-
tion 7.4). Specifically, we compare different variants of the proposed measure based on (i)
alternate f -divergences, (ii) other statistical summaries of the divergence frontier, and (iii)
summaries of frontiers based on optimal transport distances. We find that all the quantities
based on f -divergences correlate perfectly. On the other hand, some of the optimal trans-
port distances fail to capture expected trends. These results demonstrate the flexibility and
effectiveness of our proposed measures.

Third, we perform a thorough exploration of the effect of the embedding in the
evaluation pipeline (Section 7.5). Our experiments reveal that the embedding is crucial to
the empirical success of MAUVE. While most large language model embeddings (either a
masked or a causal language model, including the model used to generate the text) and
even shallow GloVe (Pennington et al., 2014) embeddings yield useful comparison measures,
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we find that string kernel-based embeddings or embedding-free direct estimation methods
fail to capture expected trends.

Finally, we demonstrate that our measures generalize to other AI domains beyond text.
Specifically, we show that in the image domain, our measure recovers expected trends with
respect to the sampling algorithm and model size, and correlates perfectly with the widely
used Fréchet distance in this setting (Section 7.7).

Previous Papers. This work builds upon two previous shorter conference papers. The
first (Pillutla et al., 2021) introduces the area summary in the context of open-ended text
generation and conducts an empirical study. The second (Liu et al., 2021) studies the statis-
tical theory behind estimating divergence frontiers with vector quantization and smoothed
distribution estimators. This work unifies both of these works and makes several further
contributions.

First, we introduce the notion of f -divergence frontiers and three scalar summaries, gen-
eralizing the area summary from (Pillutla et al., 2021) and the integral summary from (Liu
et al., 2021). We also systematically study the properties of the three summaries (Section 3).
Second, we consider three estimation algorithms (Section 4), based on nonparametric estima-
tion, classifier-based estimation, and a parametric Gaussian approximation, and empirically
compare their performance for open-ended text generation (Section 7.3). Empirically, we
perform a thorough exploration of alternatives based on f -divergences and optimal trans-
port (Section 7.4). We also probe the effect of the embedding (Section 7.5), and perform
experiments in the vision domain (Section 7.7), not covered in the previous two papers.

2. Background and Setup

We discuss the basics of open-ended text generation and set up the problem of comparing
multiple generative models.

2.1 Language Modeling and Open-Ended Text Generation

We start with neural autoregressive language models since these form the backbone of pre-
vailing approaches to text generation.

Language Modeling. Consider a sequence x = (x1, · · · , x|x|) of natural language text,
where each xi belongs to a finite vocabulary V (e.g., characters or words). An autoregres-
sive language model P̂ (· |x1:t) models the conditional distribution over the next token xt+1

following the sequence x1:t. While neural language models, i.e., language models param-
eterized by a neural network, date back to at least (Bengio et al., 2003; Collobert et al.,
2011), contemporary models are based on the transformer architecture (Vaswani et al., 2017)
summarized in Figure 2 (left).

The usual training objective for neural language modeling is via supervised multi-class
classification of the next token. We assume that there is an underlying distribution P (· |x1:t)
for the next token xt+1 humans would write in continuation to a prefix x1:t. The training
procedure aims to minimize the Kullback-Liebler (KL) divergence between the distributions
P (· |x1:t) and P̂ (· |x1:t) assigned by humans and the language model respectively over the
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next token xt+1 in continuation to a context x1:t ∼ Pt coming from human-written text:

min
θ

Et∼Unif([T−1])Ex1:t∼Pt

[
KL
(
P (· |x1:t)

∥∥∥P̂θ(· |x1:t)
)]

, (1)

where T is the maximum sequence length. Since neither the distribution Pt over prefixes
of length t nor the distribution P (· |x1:t) over the next token is known in practice, plug-in
estimates of both are employed in practice.

Autoregressive models also yield an estimate of the joint probability P̂ (x) of a sequence
x = (x1, · · · , x|x|) as

P̂ (x) =

|x|−1∏
t=0

P̂ (xt+1 |x1:t) .

Open-Ended Text Generation. The open-ended text generation task asks us to output
text x̂s+1:|x̂| in continuation of a given context x1:s. In contrast to directed text generation
tasks such as translation, summarization, and question-answering, the task here is open-
ended in that the context size s� |x̂| is typically small and does not meaningfully constrain
the output space. Unlike directed text generation tasks such as translation, summarization,
and question-answering, the goal here is to generate text that is coherent, fluent, creative,
and engaging. Since these criteria are hard to make mathematically precise, we instead
consider the surrogate goal of generating text which is human-like, such that generated text
samples can pass for samples from the distribution P over human written text sequences.

We model a text generation system as a probability distribution Q(· |x1:s) such that its
generated text x̂s+1:|x̂| is an i.i.d. sample from Q. Given a neural autoregressive language
model P̂ , we can generate open-ended text in a serial, left-to-right fashion, by sampling
x̂s+1 ∼ P̂ (·|x1:s), x̂s+2 ∼ P̂ (·|x1:s, x̂s+1), etc. This is also known as ancestral sampling, and
the induced distribution Q over sequences is

Qsamp(x1:s, x̂s+1:|x̂|) =
s∏
t=1

P (xt|x1:t−1)

|x̂|∏
t=s+1

P̂ (x̂t|x1:s, x̂s+1:t−1) ,

where we assume that the prefix x1:s ∼ Ps is drawn from the human distribution. Note
that the distribution Qsamp is identical to P̂ , expect for the prefix x1:s. General decoding
algorithms produce samples from a reshaped model distribution, as we discuss next.

Decoding Algorithms. Assuming the language model learning has succeeded, we have
that P̂ (· |x1:t) ≈ P (· |x1:t) for prefixes x1:t ∼ Pt drawn from the distribution of human-
written text, in the sense that the objective of (1) is bounded above by some ε > 0. However,
for x̂1:t drawn from a distribution Qt which is different from the human distribution Pt, the
model’s next-token distribution P̂ (· | x̂1:t) can be quite different from P (· | x̂1:t) of humans.
In the iterative process of ancestral sampling, the gap between P (x̂1:t) and Qsamp(x̂1:t) keep
increasing as the generation length t grows larger, so that Qsamp is quite far from P . This
leads to decoding algorithms which produce samples

x̂t+1 ∼ Q(· |x1:s, x̂s+1:t) ,
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Figure 2: Left: The transformer architecture takes in a text sequence x = (x1, . . . , x|x|) and out-
puts the next-token distribution P̂ ( · |x1:t) for each prefix x1:t. Right: Illustration of how decoding
algorithms (specifically, temperature rescaling and top-K decoding) reshape the model’s next-token
distribution.

where Q(· |x1:t) is a reshaping of the language model P̂ (· |x1:t) in order to promote more
conservative outputs. We now define a few popular decoding algorithms; see also Figure 2
(right) for an illustration.

Temperature rescaling (Ackley et al., 1985) applies to language models parameterized
with a softmax function:

P̂ (xt+1 |x1:t) =
exp

(
φ(xt+1|x1:t)

)∑
x∈V exp

(
φ(x|x1:t)

) ,
for some unnormalized scoring function φ(· |x1:t) : V → R. This decoding algorithm rescales
the term inside the exponential with a “temperature” parameter τ > 0:

Qtemp,τ (xt+1 |x1:t) =
exp

(
1
τ φ(xt+1|x1:t)

)∑
x′t+1∈V

exp
(

1
τ φ(x′t+1|x1:t)

) .
When τ < 1, the distribution Qtemp,τ (· |x1:t) becomes more peaked around the most likely
next tokens, making the distribution more conservative.

For an integer K < |V |, top-K sampling (Fan et al., 2018) applies the transformation

Qtop-K(xt+1|x1:t) =

{
1
Z P̂ (xt+1|x1:t) , if xt+1 ∈ Vtop-K ,
0 , else,

where Z is a normalizing constant, and Vtop-K = {z(1), · · · , z(K)} ⊂ V is the set of the K
highest scoring tokens satisfying

P̂ (z(1)|x1:t) ≥ · · · ≥ P̂ (z(K)|x1:t) ≥ max
z∈V \Vtop-K

P̂ (z|x1:t) .
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The extremeK = |V | corresponds to ancestral sampling. The other extremeK = 1 is known
as greedy decoding, which corresponds to choosing the most likely next token iteratively.
Greedy decoding is often used to approximate the most likely sequence arg maxx P (x|x1:t).

Nucleus sampling (Holtzman et al., 2020), similar to top-K sampling, returns a sparse
distribution. Given a parameter p ∈ (0, 1), it applies the transformation

Qnuc,p(xt+1 | x1:t) =

{
1
Z P̂ (xt+1 | x1:t), if xt+1 ∈ Vnuc,p,
0, else,

(2)

where Z is again a normalizing constant. Here, the top-p vocabulary Vnuc,p is the smallest
set V ′ ⊂ V such that

∑
x∈V ′ P̂ (x|x1:t) ≥ p.

2.2 Comparing Generative Models

The usual approach to evaluating a text generation model is to compare the output of the
model to human-written text for the same prompt (Papineni et al., 2002; Lin, 2004, etc.).
This paradigm, however, breaks down for open-ended generation since there can be multiple
correct outputs.

We frame the problem as comparing two distributions. Let Q ∈ P(X ) denote the model
distribution over some data space X such as text sequences or images and let P ∈ P(X )
denote the target real data distribution. For text distributions, Q depends on the underlying
language model P̂ as well as the decoding algorithm. The goal of open-ended text generation
is to generate human-like text and the goal of image generation is to generate photorealistic
images. Both these goals can be framed as finding a model distribution Q that is as close
to P as possible in some metric. Therefore, we cast the evaluation of the generative model
as measuring the gap between the model distribution Q and the target distribution P . We
will make this precise in Section 3.

2.3 Information Divergences

We review the definition of f -divergences and give a few examples.

Definition 1. Let f : (0,∞) → R+ be a convex function with f(1) = 0. Let P,Q ∈ P(X )
be dominated by some measure µ ∈ P(X ) with densities p and q respectively. Then, the
f -divergence between P and Q is defined as

Df (P‖Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x) ,

with the convention f(0) = limt→0+ f(t) and 0f(p/0) = p limt→0+ t f(1/t).

Note that the non-negativity condition on f is without loss of generality.1 Since f is convex
and nonnegative with f(1) = 0, we have that f is non-increasing on (0, 1] and non-decreasing

1. The generator f̂(t) = f(t) + c(t− 1) yields the same f -divergence as a convex function f with f(1) = 0
for all c ∈ R. By choosing c such that f ′(1) = 0, we get that f̂ is minimized at t = 1. This ensures
non-negativity: inft>0 f̂(t) = f̂(1) = 0.
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on [1,∞). The conjugate generator to f is the function f∗ : (0,∞)→ [0,∞) defined by2

f∗(t) = tf(1/t) ,

where again we define f∗(0) = limt→0+ f∗(t). Since f∗ can be constructed by the perspective
transform of f , it is also convex. We can verify that f∗(1) = 0 and f∗(t) ≥ 0 for all t ∈ (0,∞),
so it defines another divergence Df∗ . We call it the conjugate divergence to Df since

Df∗(P‖Q) = Df (Q‖P ) .

The divergence Df is symmetric if and only if f = f∗, and we write it as Df (P,Q) to
emphasize the symmetry.

Example 2. We give a few examples of f -divergences.
(a) KL divergence: It is an f -divergence generated by fKL(t) = t log t− t+ 1.
(b) Interpolated KL divergence: For λ ∈ (0, 1), the interpolated KL divergence is given by

KLλ(P‖Q) = KL(P‖λP + (1− λ)Q) .

It is an f -divergence whose generator can be obtained from the upcoming Property 5.
(c) Jensen-Shannon divergence: The Jensen-Shannon Divergence is defined as

DJS(P,Q) =
1

2
KL1/2(P‖Q) +

1

2
KL1/2(Q‖P ).

More generally, we have the λ-skew Jensen-Shannon Divergence (Nielsen and Bhatia,
2013), which is defined for λ ∈ (0, 1) as DJS,λ = λKLλ(P‖Q) + (1− λ)KL1−λ(Q‖P ).
This is an f -divergence generated by

fJS,λ(t) = λt log

(
t

λt+ 1− λ

)
+ (1− λ) log

(
1

λt+ 1− λ

)
.

(d) Interpolated χ2 divergence: Similar to the interpolated KL divergence, we can define the
interpolated χ2 divergence Dχ2,λ and the corresponding generator fχ2,λ for λ ∈ (0, 1)
as

Dχ2,λ(P‖Q) = Dχ2(P‖λP + (1− λ)Q) and fχ2,λ(t) =
(t− 1)2

λt+ 1− λ .

The usual χ2 divergence is obtained in the limit λ→ 0.

3. Generalizing Divergence Frontiers with f-Divergences

In this section, we start with the notion of KL divergence frontiers from (Djolonga et al.,
2020) and define f -divergence frontiers in Section 3.1. We define three scalar summaries of
the frontier in Section 3.2 and study their properties in Section 3.3.

2. The conjugacy between f and f∗, also known as Csiszár conjugacy, is unrelated to the Fenchel or
Lagrange duality in convex analysis. This notion of conjugacy is related to the perspective transform
g(t, s) = s f(t/s).

10
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3.1 Tradeoff Curves to Evaluate Generative Models

Consider a generative model Q ∈ P(X ) which attempts to model the target distribution
P ∈ P(X ). It has been argued in (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) that one
must consider two types of costs to evaluate Q with respect to P : (a) a type I cost incurred
from generating poor-quality data, which is the mass of Q that has low or zero probability
mass under P , and (b) a type II cost incurred from a failure to capture the diversity of the
real data, which is the mass of P that Q does not adequately capture.

Suppose P and Q are uniform distributions on their supports, and R is uniform on
the union of their supports. Then, the type I cost is the mass of Supp(Q) \ Supp(P ),
or equivalently, the mass of Supp(R) \ Supp(P ). We measure this using the surrogate
KL(Q‖R), which is large if there exists an atom x such that Q(x) is large but R(x) is small.
Likewise, the type II cost is measured by KL(P‖R). When P and Q are not constrained to
be uniform, it is not clear what the measure R should be. Djolonga et al. (2020) propose
to vary R over all possible probability measures and consider the Pareto frontier of the
multi-objective optimization minR

(
KL(P‖R),KL(Q‖R)

)
. This leads to a curve called the

divergence frontier, illustrated in Figure 1), and is reminiscent of the precision-recall curve
in binary classification. See (Pepe, 2000; Cortes and Mohri, 2005; Clémençon and Vayatis,
2009; Clémençon and Vayatis, 2010; Flach, 2012) and references therein on trade-off curves
in machine learning.

It was shown in (Djolonga et al., 2020, Props. 1 and 2) that the divergence frontier
F(P,Q) of probability measures P and Q is carved out by mixtures Rλ = λP + (1 − λ)Q
for λ ∈ (0, 1). We present an elementary proof for completeness.

Property 3. Consider two distributions P,Q with finite support. Then, the Pareto frontier
for the pair of objectives

(
KL(P‖·),KL(Q‖·)

)
is given by

F(P,Q) =
{(

KL(P‖Rλ), KL(Q‖Rλ)
)

: λ ∈ (0, 1)
}
, (3)

where Rλ = λP + (1 − λ)Q. In other words, there does not exist any distribution R such
that KL(P |R) < KL(P |Rλ) and KL(Q|R) < KL(Q|Rλ) simultaneously for any λ ∈ (0, 1).

Proof The convexity of KL(P‖·),KL(Q‖·) allows us to compute the Pareto frontier F(P,Q)
exactly by minimizing linear combinations of the objectives. Concretely, we have from (Mi-
ettinen, 2012, Thms. 3.4.5 & 3.5.4) that

F(P,Q) =
{(

KL(P‖R?λ),KL(P‖R?λ)
)

: λ ∈ [0, 1]
}
, where

R?λ ∈ arg min
R
{λKL(P‖R) + (1− λ) KL(Q‖R)} .

Simple algebra gives us the identity

λKL(P‖R) + (1− λ) KL(Q‖R) = λKL(P‖Rλ) + (1− λ) KL(Q‖Rλ) + KL(Rλ‖R) .

The first two terms of the right-hand side are independent of R and the last term is mini-
mized at R = Rλ. Therefore, R?λ = Rλ.

In this work, we consider a more general family of f -divergence frontiers.

11
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Definition 4. The f -divergence frontier Ff (P,Q) for two distributions P,Q ∈ P(X ) and a
divergence generator function f satisfying f(0) <∞ and f∗(0) =∞ is defined as

Ff (P,Q) =
{(
Df (P‖Rλ), Df (Q‖Rλ)

)
: λ ∈ (0, 1)

}
,

where Rλ = λP + (1− λ)Q.

The condition f(0) <∞ ensures that Df (P‖Rλ) and Df (Q‖Rλ) are finite for 0 < λ < 1,
so the f -divergence frontier is well defined. The condition f∗(0) =∞ mimics the behavior of
the KL divergence so that Df (P‖Q) =∞ when P 6� Q and Df (Q‖P ) =∞ when Q 6� P .
This allows the divergence curve to grow to infinity as λ approaches the endpoints of (0, 1)
if the supports of P and Q are not identical. When f is not specified, we refer to the KL
divergence frontier defined above—it corresponds to f(t) = t log t− t+ 1.

Each coordinate of the f -divergence frontier is itself an f -divergence as we show next.

Property 5. Consider the f -divergence Df generated by the convex function f . For any
λ ∈ (0, 1), we have that Df (P‖λP + (1− λ)Q) = Dfλ(P‖Q) and Df (Q‖λP + (1− λ)Q) =
Df1−λ(Q‖P ), where fλ : (0,∞)→ R+ is given by

fλ(t) = (λt+ 1− λ) f

(
t

λt+ 1− λ

)
. (4)

Further, Dfλ is a valid f -divergence in that it satisfies the conditions of Definition 1: fλ is
convex, non-negative and fλ(1) = 0. Moreover, if f is twice differentiable with f ′′(t) > 0 for
all t > 0, then fλ is strictly convex with f ′′λ (t) > 0 for all t > 0.

Proof We have fλ ≥ 0 and fλ(1) = 0 by definition. In order to establish the convexity of
fλ, observe that fλ(t) = (g◦hλ)(t), where g(t, s) = s f(t/s) is the perspective transform of f ,
and hλ(t) = (t, λt+ 1−λ) ∈ R2

+ is a linear map. The perspective g of a convex function f is
convex, and convexity is preserved upon composition with a linear map hλ, so fλ is convex.
Finally, Df (P‖λP + (1− λ)Q) = Dfλ(P‖Q) and Df (Q‖λP + (1− λ)Q) = Df1−λ(Q‖P ) can
be verified from the definition.

To show the strict convexity of fλ, we calculate

f ′′λ (t) =
(1− λ)2

(λt+ 1− λ)3
f ′′
(

t

λt+ 1− λ

)
> 0

under the given assumptions.

3.2 Scalar Summaries of Divergence Frontiers

We define three summaries of divergence frontiers.

Area Summary. The first summary is inspired by the area under the curve (e.g. Flach,
2012)—a common strategy to summarize tradeoff curves in machine learning. Divergence
frontiers, however, can be unbounded. For instance, as λ → 1, we have KL(Q‖Rλ) →
KL(Q‖P ), which can be unbounded. The same holds for f -divergence frontiers because

12
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f∗(0) = ∞. Therefore, we define MAUVE to be the area under a monotonic transformation
of the f -divergence frontier:

MAUVEf (P,Q) = AUC
({(

exp(−cx), exp(−cy)
)

: (x, y) ∈ Ff (P,Q)
}
∪ {(1, 0), (0, 1)}

)
.
(5)

Here, c > 0 is a scaling constant that changes the numerical value of MAUVE, but not
its induced ordering over multiple models Q1, . . . , Qn. MAUVEf (P,Q) is always bounded
between 0 and 1 with larger values denoting a greater similarity between P and Q.

Integral Summary. For the second summary of the divergence frontier, we take inspiration
from the minimax theory of hypothesis testing, where the goal is also to study two types of
errors and it is common to theoretically analyze their linear combination; see, e.g., (Ingster
and Suslina, 2003, Sec. 1.2) and (Cai et al., 2011, Thm. 7). Similarly, we consider a linear
combination of the two costs that are the two coordinates of the divergence frontier:

Lf,λ(P,Q) := λDf (P‖Rλ) + (1− λ)Df (Q‖Rλ) . (6)

Note that, for the KL divergence, Rλ is exactly the minimizer of the linearized objective
λKL(P‖R) + (1 − λ)KL(Q‖R) according to Property 3. In this case, Lλ is also known as
the λ-skew Jensen-Shannon Divergence (cf. Example 2).

The linearized cost Lf,λ depends on the choice of λ. To remove this dependency, we
define an integral summary as

FIf (P,Q) := 2

∫ 1

0
Lf,λ(P,Q) dλ . (7)

We can interpret the frontier integral as the average linearized cost over λ ∈ (0, 1). The
constant of 2 is arbitrary and is chosen so that FIKL is bounded above by 1, as we shall
momentarily see in Section 3.3.

Mid-point Summary. The third summary is a generalization of the Jensen-Shannon
divergence, defined to be the linearized cost with weight λ = 1/2, i.e.,

Midf (P,Q) := Lf,1/2(P,Q) =
1

2
Df (P‖R1/2) +

1

2
Df (Q‖R1/2) . (8)

When f is the generator of the KL (resp. χ2) divergence, it recovers the Jensen-Shannon
(resp. Le Cam) divergence. This summary is intuitively close to the area summary as
illustrated in Figure 3.

3.3 Properties of Divergence Frontier Summaries

We study some properties of the area summary MAUVE.

Property 6. Fix an f -divergence Df (·‖·) such that f(0) <∞ and a scaling constant c > 0.
For any two distributions P,Q with finite support, the area summary MAUVE(P,Q) satisfies
the following:
(a) 0 ≤ MAUVEf (P,Q) = MAUVEf (Q,P ) ≤ 1,

13



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Rλ = λP + (1− λ)Q

exp
(
−Df (P‖Rλ)

)ex
p
( −D

f
(Q
‖R

λ
))

λ = 1/2

area = MAUVEf (P,Q)

area = exp
(
− 2 Midf (P,Q)

)

Figure 3: Relationship between the area summary MAUVEf and the mid-point summary Midf .
MAUVE is the area under the blue curve, while the mid-point summary Mid is related to the area
under the orange rectangle.

(b) MAUVEf (P, P ) = 1, and

(c) if f is strictly convex, MAUVEf (P,Q) = 1 if and only if P = Q.

Proof The curve (exp(−cx), exp(−cy)) for (x, y) ∈ Ff always lies within the unit square,
so 0 ≤ MAUVEf (P,Q) ≤ 1. If P = Q, then Df (P‖Rλ) = Df (Q‖Rλ) = 0 for all λ ∈ (0, 1),
so that MAUVEf (P,Q) is simply the area of the unit square. Conversely, if P 6= Q, we have
that Df (P‖Rλ) 6= 0 and Df (Q‖Rλ) 6= 0 for any λ ∈ (0, 1) whenever f is strictly convex.
Therefore, the curve (exp(−cx), exp(−cy)) for (x, y) ∈ Ff lies strictly within the unit square
and MAUVEf (P,Q) < 1.

We now turn to the integral summary.

Property 7. The integral summary FI of the f -divergence frontier defined by a convex
generator f satisfies the following properties:
(a) FIf is an f -divergence generated by the convex function

f̃(t) = 2

∫ 1

0

(
λ fλ(t) + (1− λ)f∗1−λ(t)

)
dλ ,

where fλ is as defined in (4).

(b) FIf (P,Q) = FIf (Q,P ).

(c) 0 ≤ FIf (P,Q) ≤ 4
∫ 1

0 λf
∗(λ)dλ+ 2

3f(0).

(d) If f is twice differentiable with f ′′(t) > 0 for all t > 0, we have FIf (P,Q) = 0 if and
only if P = Q.

Proof We denote λ̄ = 1− λ. For the first part, we have from Property 5,

FIf (P,Q) = 2

∫ 1

0

(
λDfλ(P‖Q) + λ̄D(fλ̄)∗(P‖Q)

)
dλ = Df̃ (P‖Q) ,

by using the definition of f -divergences. Note that f̃ is a convex function as it is the
positive linear combination of a family of convex functions. We also directly verify that

14
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f̃(t) ≥ f̃(1) = 0 for all t > 0, so Df̃ is a well-defined f -divergence. For the second part, we
get

(f̃)∗(t) = tf̃(1/t) = 2

∫ 1

0

(
λ f∗λ(t) + (1− λ)f1−λ(t)

)
dλ = f̃(t) ,

where the last equality follows by substituting λ′ = 1−λ. Therefore, FIf (Q,P ) = Df̃ (Q‖P ) =
Df̃∗(P‖Q) = Df̃ (P‖Q) = FIf (P,Q). For the third part, we use the upper bound on Lf,λ
from Proposition 19 in Appendix A to get

FIf (P,Q) = 2

∫ 1

0
Lf,λ(P‖Q) dλ ≤ 2

∫ 1

0

(
λf∗(λ) + λ̄f∗(λ̄) + 2λλ̄f(0)

)
dλ .

Simplifying this integral gives the third part. For the final part, we note that f ′′λ (t) > 0 and
(f∗
λ̄
)′′(t) > 0 for all t > 0 from Property 5. This gives

(f̃)′′(t) = 2

∫ 1

0

(
λ f ′′λ (t) + (1− λ)(f∗1−λ)′′(t)

)
dλ > 0 .

This implies that f̃ is strictly convex. Therefore, Df̃ (P‖Q) = 0 iff P = Q.

We can instantiate this property for common divergences. The integral summary FIKL

of the KL divergence frontier is generated by

f̃KL(t) =
t+ 1

2
− t

t− 1
log t ,

with the understanding that f̃KL(1) = limt→1 f̃KL(t) = 0. Similarly, the corresponding
expression for the integral summary of the χ2 divergence frontier is

f̃χ2(t) =
t2 + t+ 1

t− 1
log t− 3

2
(t+ 1) .

We have that FIKL and FIχ2 are upper bounded by 1 and 2 respectively.
Lastly, we turn to the mid-point summary.

Property 8. The mid-point summary Midf of the f -divergence frontier defined by a gen-
erator f satisfies the following properties:
(a) Midf is an f -divergence generated by the convex function f1/2 as defined in (4).

(b) Midf (P,Q) = Midf (Q,P ).

(c) 0 ≤ Midf (P,Q) ≤ 1
2 (f(0) + f(2)).

(d) If f is twice differentiable with f ′′(t) > 0 for all t > 0, we have Midf (P,Q) = 0 if and
only if P = Q.

Proof The first, second, and fourth parts follow directly from Property 5. The third part
is a consequence of Proposition 19 in Appendix A.
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4. Practical Computation of the Divergence Frontier and its Summaries

In this section, we consider how to compute MAUVE and related divergence frontier sum-
maries for high dimensional distributions of text or images. We usually do not have access
to the target distribution P representing human-written text or real-world images. While
the model likelihood Q(x) can be evaluated for some generative model Q such as language
models for text, it might not be available for others such as generative adversarial networks
for images. Therefore, we only assume access to the distributions P and Q via i.i.d. samples.

Given two independent samples x1, . . . ,xn
i.i.d.∼ P and x′1, . . . ,x′m

i.i.d.∼ Q, we wish to
estimate the summaries MAUVEf (P,Q), FIf (P,Q), or Midf (P,Q) using these samples. We
will often assume equal sample sizesm = n for simplicity, especially when stating bounds. In
real image or text applications, the distributions P and Q are typically discrete distributions
whose support size is too large to enumerate. For instance, neural language models induce
a probability distribution over documents of text. Thus, we cannot tractably compute the
f -divergences required by the divergence frontiers or their scalar summaries in closed form.
Instead, we consider four different estimation methods:

• Vector Quantization: We quantize the empirical distributions P̂n = (1/n)
∑n

i=1 δxi
and Q̂m = (1/m)

∑m
j=1 δx′j into k-dimensional multinomial distributions P̂n,k and Q̂m,k,

where k is a hyperparameter. We then estimate the divergence frontier by the plug-in
estimator Ff (P̂n,k, Q̂m,k), from which the corresponding summaries MAUVE, FI, and
Mid can be estimated. This approach can also be used with add-constant distribution
estimators in place of empirical distributions; see Table 2 for some examples.

• Nearest-neighbor estimation: We endow the space X with a metric ρ : X×X → R+

and consider the setNk(x) of the k-nearest neighbor of x from the union ofX = {xi}ni=1

and X ′ = {x′j}mj=1. We estimate the likelihood ratio P (x′j)/Q(x′j) based on the ratio
|Nk(x

′
j) ∩ X|/|Nk(x

′
j) ∩ X ′| for j = 1, . . . ,m. This likelihood ratio can then be used

to estimate the required f -divergences.

• Classifier-based estimation: We train a classifier over samples {(x1,+1)}n′i=1 ∪
{(x′j ,−1)}m′j=1 and use this to estimate the likelihood ratio P (x)/Q(x) over the re-
maining n− n′ +m−m′ samples. This likelihood ratio can then be used to estimate
the required f -divergences.

• Parametric approximation: Given an embedding ϕ : X → Rd, we make a para-
metric assumption that the pushforward distributions ϕ]P = N (µP ,ΣP ) and ϕ]Q =

N (µQ,ΣQ) with unknown parameters µP ,ΣP , µQ,ΣQ. We estimate µ̂P , Σ̂P , µ̂Q, Σ̂Q

from data and use Ff
(
N (µ̂P , Σ̂P ),N (µ̂Q, Σ̂Q)

)
as an estimate that is computed by

numerical integration. Although this approach is widely used in practice, it has no
theoretical guarantees. Therefore, we defer its discussion to Appendix C and compare
its empirical performance with other methods in Section 7.3.

In the rest of this section, we consider each in detail. In full generality, we will focus on
estimating f -divergences from samples. The results on estimating the f -divergence frontier
Ff (P,Q) follow as corollaries because each point on the frontier is itself an f -divergence
(Property 5).
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The quantized distribution PS

Figure 4: Illustration of the quantization PS of a distribution P over the Euclidean plane R2

under a partition S.

4.1 Estimation via Vector Quantization

Given a k-partition S = {S1, . . . , Sk} of the space X , we define the quantization of P over S
as PS =

(
P (S1), . . . , P (Sk)

)
. Then, PS and QS are multinomial distributions over k atoms;

they are piecewise constant approximations of P and Q similar to histograms as illustrated
in Figure 4. The quantization approach to estimating the divergence frontier consists of two
approximations:

• approximating the intractable divergence frontier Ff (P,Q) with the lower-dimensional
counterpart Ff (PS , QS), and

• estimating this frontier Ff (PS , QS) with its plug-in estimator Ff (P̂S,n, Q̂S,m), where
P̂S,n =

(
n−1

∑n
i=1 1{xi ∈ Sl}

)k
l=1

is the empirical distribution of PS , and Q̂S,m is the
corresponding empirical distribution of QS

In practice, the best quantization schemes are data-dependent, such as k-means clustering
or lattice-type vector quantization of dense representations of images or text; we will discuss
this in more detail in Section 4.1.2.

When the two distributions P and Q have long tails, the empirical estimators P̂S,n and
Q̂S,m can be of poor quality due to the missing mass phenomenon (Good, 1953), i.e., some
probability masses do not appear in the finite sample. This is illustrated in Figure 5. A
widely used technique to address such a challenge is the add-constant smoothing (see, e.g.,
Krichevsky and Trofimov, 1981). This approach adds a small constant b to the counts of
each bin and normalizes these pseudo-counts to form a normalized probability distribution.
Precisely, the add-b estimator of PS is defined as

P̂ bS,n =

(
b+

∑n
i=1 1{xi ∈ Sl}
n+ kb

)k
l=1

. (9)

Other estimators suitable for this regime have also been considered in the literature such as
the Good-Turing estimator (Orlitsky and Suresh, 2015) and absolute discounting (Falahatgar
et al., 2017).

4.1.1 Estimation Error Bounds

The total estimation error of the divergence frontier consists of two parts: (a) the statistical
error in estimating Ff (PS , QS) from samples, and (b) the quantization error in passing
from P,Q to PS , QS . For simplicity, we assume in this subsection that m = n. In what
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Figure 5: Left: Missing mass of a sample corresponds to those entries l ∈ Supp(P ) that do not
appear in the sample, i.e., P̂n,l = 0. Right: Add-constant smoothing adds a constant b to counts
of each bin l ∈ Supp(P ), including those that do not appear in the sample. Krichevsky–Trofimov
smoothing corresponds to b = 1/2.

follows, we establish a statistical error bound of order O(
√
k/n) and show that there exists

a quantization scheme with error O(1/k). The theory suggests that we can balance the two
errors at k = Θ

(
n1/3

)
.

Statistical Estimation Error. We establish a statistical bound on estimating a general
f -divergence Df (P‖Q) between discrete distributions P,Q using their plug-in estimators
P̂n, Q̂n from samples, respectively. To this end, we require the generator f and its conjugate
f∗ to satisfy some smoothness and tail assumptions.

Assumption 9. The generator f is twice continuously differentiable with f ′(1) = 0. Fur-
thermore,
(A1) We have C0 := f(0) <∞ and C∗0 := f∗(0) <∞.
(A2) There exist constants C1, C

∗
1 <∞ such that for every t ∈ (0, 1), we have,

|f ′(t)| ≤ C1 (1 ∨ log(1/t)) , and, |(f∗)′(t)| ≤ C∗1 (1 ∨ log(1/t)) .

(A3) There exist constants C2, C
∗
2 <∞ such that for every t ∈ (0,∞), we have,

t

2
f ′′(t) ≤ C2 , and,

t

2
(f∗)′′(t) ≤ C∗2 .

Some boundedness assumption is necessary since the minimax quadratic risk of estimat-
ing the KL divergence over all discrete distributions with k atoms is always infinity (Bu
et al., 2018). Assumption (A1) is a necessary and sufficient condition for Df (P‖Q) and
Df∗(P‖Q) to remain bounded for all distributions P,Q. Assumption (A2) guarantees that
f is approximately Lipschitz and cannot vary too fast, while (A3) is a technical assumption
that helps control the variation of f around zero.

These assumptions hold for many f -divergences, as shown in Table 1. Notably, they hold
for the FIKL and MidKL, as well as the coordinates of the KL and χ2 divergence frontiers.

We now turn to the statistical error bound. When both P and Q are supported on a
finite alphabet with k items, a natural strategy is to exploit the smoothness properties of the
f -divergence, namely Assumption (A2). This gives a naïve upper bound O(L

√
k/n) on the

absolute error, where L = C1 log (1/p∗) with p∗ = minl∈Supp(P ) Pl reflects the smoothness
of the f -divergence. The dependency on p∗ requires P to have finite support and a short
tail. However, in many real-world applications, the distributions can either be supported
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f -divergence Satisfies
Assumptions? C0 C∗0 C1 C∗1 C2 C∗2

KL No 1 ∞
Interpolated KL Yes λ̄ log 1

λ − λ̄ 1 λ̄2

λ
1
2

λ̄
8λ

Jensen-Shannon (JS) / MidKL Yes 1
2 log 2 1

2 log 2 1
2

1
2

1
4

1
4

Skew JS Yes λ̄ log 1
λ̄

λ log 1
λ λ λ̄ λ

2
λ̄
2

FIKL Yes 1
2

1
2 4 4 1

2
1
2

Interpolated χ2 Yes 1
λ̄

1
λ

2
λ̄2

2
λ2

4
27λλ̄2

4
27λ2λ̄

Le Cam / Midχ2 Yes 1
2

1
2 2 2 8

27
8
27

Squared Hellinger No 1 1 ∞ ∞

Table 1: Examples of f -divergences and whether they satisfy Assumptions (A1)-(A3). Here,
λ ∈ (0, 1) is a parameter of the interpolated or skew divergences, and we define λ̄ := 1− λ.

on a countable set or have long tails (Chen and Goodman, 1999; Wang et al., 2017). By
considering the missing mass in the sample, that is the total probability mass that does not
appear in the finite sample (Good, 1953), we can obtain a bound that is independent of p∗.
We refer to Figure 5 (left) for an illustration of the missing mass.

Theorem 10. Assume that k := |Supp(P )|∨|Supp(Q)| ∈ N∪{∞}. Let n ≥ 3, c1 := C1+C∗1 ,
and c2 := C2 ∨ C∗0 + C∗2 ∨ C0. Under Assumption 9, we have,

E|Df (P‖Q)−Df (P̂n‖Q̂n)| ≤
(
C1 log n+ C∗0 ∨ C2

)
αn(P ) +

(
C∗1 log n+ C0 ∨ C∗2

)
αn(Q)

(10)

+
(
C1 + C∗0 ∨ C2

)
βn(P ) +

(
C∗1 + C0 ∨ C∗2

)
βn(Q) ,

where αn(P ) =
∑k

l=1

√
n−1Pl and βn(P ) = E

[∑
l:P̂n(l)=0 Pl max {1, log (1/Pl)}

]
. Further-

more, if k <∞, then

E|Df (P‖Q)−Df (P̂n‖Q̂n)| ≤
(
c1 log n+ c2

)(√k

n
+
k

n

)
. (11)

In particular, for the Frontier Integral, it gives a statistical error bound of

E|FI(P̂n, Q̂n)− FI(P,Q)| ≤ C
(√

k

n
+
k

n

)
log n , (12)

where C is some absolute constant.

Some remarks about the bounds in Theorem 10 are as follows. First, the bound (10)
holds for any distributions with a countable support. Second, it does not depend on p∗ and
is adapted to the tail behavior of P and Q. For instance, if P is defined as Pl ∝ l−2 for
l ∈ [k], then αn(P ) ∝ (log k)/

√
n, which is much smaller than

√
k/n in (11) in terms of

the dependency on k. This result justifies the practice of using a large quantization size k

19



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

on real data. Third, it captures a parametric rate of convergence, i.e., O(n−1/2), up to a
logarithmic factor. This rate is not improvable in a related problem of estimating KL(P‖Q),
even with the assumption that P/Q is bounded (Bu et al., 2018). The bound in (11) is a
distribution-free bound, assuming k is finite. Note that it also gives an upper bound on the
sample complexity by setting the right-hand side of (11) to be ε and solving for n; this is
roughly k/ε2, ignoring constants and log factors.
Proof [Proof Sketch of Theorem 10] We sketch the proof for the FIKL(P,Q) = Df̃ (P‖Q)
with full details given in Appendix B.1. The proof relies on a careful analysis of the deriva-
tives of the f -divergence while accounting for the missing mass. We start by defining the
bivariate scalar function ψ(p, q) = q f̃(p/q) where f̃ is the generator of FI. Then, we have
FI(P,Q) =

∑k
l=1 ψ(Pl, Ql). By the triangle inequality, we have,

∣∣∣FI(P̂n, Q̂n)− FI(P,Q)
∣∣∣ ≤ k∑

l=1

∣∣∣ψ(P̂n,l, Q̂n,l)− ψ(Pl, Q̂n,l)
∣∣∣︸ ︷︷ ︸

=:∆l

+
∣∣∣ψ(Pl, Q̂n,l)− ψ(Pl, Ql)

∣∣∣︸ ︷︷ ︸
=:∆′l

.

We bound ∆l in terms of |P̂n,l − Pl| so that summing over all coordinates gives a bound on
the total variation distance ‖P̂n − P‖TV =

∑k
l=1 |P̂n,l − Pl|. A first-order Taylor expansion

gives the bound
∆l ≤ sup

s∈[0,1]
|ψp(sPl + (1− s)P̂n,l, Ql)| |Pl − P̂n,l| ,

where ψp denotes the partial derivative of ψ w.r.t. its first argument. Unfortunately, as p→ 0
for fixed q 6= 0, we have that |ψp(p, q)| = |f̃ ′(p/q)| ≤ log(q/p)→∞ by Assumption (A2).

We use a two-pronged approach to overcome this issue. First, we take a second-order
Taylor expansion and carefully bound the remainder term using Assumption (A3) to get

∆l ≤
1

2
|P̂n,l − Pl| log

(
1

max{Pl, P̂n,l}

)
. (13)

Secondly, because P̂n is an empirical distribution, we only have two possibilities: P̂n,l ≥ 1/n

or P̂n,l = 0. The first case gives an additional log n dependence on the total variation
distance (based on Assumption (A2)), while the second case is in the missing mass regime.
Based on results from the missing mass literature (Berend and Kontorovich, 2012; Mcallester
and Ortiz, 2003), we show

βn(P ) = E

[
k∑
l=1

I(P̂n,l = 0) Pl log
1

Pl

]
≤ k log n

n
,

where βn(P ) is constructed from the upper bound (13) with P̂n,l = 0. Finally, we bound
the total variation term by repeatedly applying Jensen’s inequality as

E‖P̂n − P‖TV ≤
k∑
l=1

√
E(P̂n,l − Pl)2 =

k∑
l=1

√
Pl(1− Pl)

n
≤ αn(P ) ≤

√
k

n
.
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Braess-Sauer Krichevsky-Trofimov Laplace
bl = 1/2 if l does not appear
bl = 1 if l appears once
bl = 3/4 if l appears more than once

b ≡ 1/2 b ≡ 1

Table 2: Add-constant smoothed distribution estimators.

Following Property 5, we can specialize Theorem 10 to show the consistent estimation
of the entire f -divergence frontier F(P,Q).

Proposition 11. Take an arbitrary λ0 ∈ (0, 1). Suppose we are given distributions P,Q
with k := |Supp(P )| ∨ |Supp(Q)| ∈ N ∪ {∞}. Assume that Assumption 9 holds true for fλ
with λ ∈ [λ0, 1− λ0]. If the sample size n ≥ 3, the bounds in (10) and (11) hold for

E

[
sup

λ∈[λ0,1−λ0]

{∣∣Df (P̂n‖R̂λ)−Df (P‖Rλ)
∣∣+
∣∣Df (Q̂n‖R̂λ)−Df (Q‖Rλ)

∣∣}] , (14)

where R̂λ := λP̂n + (1− λ)Q̂n, with constants replaced by C/λ0 for some absolute constant
C. In particular, if λ0 = λn is chosen as λn = o(1) and λn = ω(

√
k/n log n), then the

expected worst-case error (14) converges to zero at rate O(λ−1
n

√
k/n log n).

When f is the generator to the KL divergence, Assumption 9 holds for fλ. Hence, Propo-
sition 11 holds for the KL divergence frontier. In the absence of additional assumptions, the
truncation in Proposition 11 is necessary to ensure boundedness of the estimated quantities,
since KL(P‖Rλ) is close to KL(P‖Q) for small λ, and this can be unbounded.

Estimation Error With Smoothing. We bound the statistical error in estimating the
divergence Df (P‖Q) between P and Q using their add-constant estimators P̂ bn and Q̂bn
introduced in (9) and illustrated in Figure 5. Again, this result also holds for the FIKL

and MidKL, as well as the coordinates of the KL and χ2 divergence frontiers. This result is
proved in Appendix B.2.

Theorem 12. Assume that k := |Supp(P )|∨|Supp(Q)| ∈ N∪{∞}. Let n ≥ 3, c1 := C1+C∗1 ,
and c2 := C2 ∨ C∗0 + C∗2 ∨ C0. Under Assumption 9, we have,

E|Df (P‖Q)−Df (P̂ bn‖Q̂bn)| ≤
(
nαn(P )

n+ kb
+ γn,k(P )

)(
C1 log

(n
b

+ k
)

+ C∗0 ∨ C2

)
(15)

+

(
nαn(Q)

n+ kb
+ γn,k(P )

)(
C∗1 log

(n
b

+ k
)

+ C0 ∨ C∗2
)
.

where γn,k(P ) = (n+ bk)−1bk
∑k

l=1|Pl − k−1|. Furthermore, if k <∞, then

E|Df (P‖Q)−Df (P̂ bn‖Q̂bn)| ≤
(
c1 log

(n
b

+ k
)

+ c2

) √kn+ 2b(k − 1)

n+ kb
. (16)

In particular, for the Frontier Integral, it gives a statistical error bound of

E|FI(P̂ bn, Q̂
b
n)− FI(P,Q)| ≤ C

√
kn+ 2b(k − 1)

n+ kb
log
(n
b

+ k
)
, (17)

where C is some absolute constant.
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Empirical Braess-Sauer Good-Turing Krichevsky-Trofimov Laplace

Figure 6: Statistical error with smoothed distribution estimators on synthetic data. (a):
Zipf(0) and Dir(1/2) with k = 103; (b): Zipf(0) and Dir(1/2) with n = 2×104; (c): Dir(1)
and Zipf(r) with k = 103 and n = 104; (d): Zipf(2) and Zipf(r) with k = 103 and n = 104.

Let us compare the bounds in Theorem 12 with the ones in Theorem 10. For the
distribution-dependent bound, the term αn(P ) log n in (10) is improved by a factor n/(n+bk)
in (15). The missing mass term βn(P ) is replaced by the total variation distance between
P and the uniform distribution on [k] with a factor bk/(n+ bk). The improvements in both
two terms are most significant when k/n is large. As for the distribution-free bound, when
k/n is small, the bound in (16) scales the same as the one in (11); when k/n is large (i.e.,
bounded away from 0 or diverging), it scales as O(log n+ log (k/n) + k−1) while the one in
(11) scales as O(k log n/n+ k−1).

Simulations of Smoothing. We conduct a simple simulation study to empirically verify
the effectiveness of smoothing. Following the experimental settings used by Orlitsky and
Suresh (2015), we consider two types of distributions: (a) the Zipf(r) distribution with
r ∈ [0, 2] where Pl ∝ l−r. (b) the Dirichlet distribution Dir(α) with α ∈ {1/2,1}. For each
pair (P,Q), we generate i.i.d. samples of size n from each of them and estimate the Frontier
Integral from these samples. We compare 4 different smoothed distribution estimators with
the empirical distribution (“Empirical”) as discussed in (Orlitsky and Suresh, 2015). For
each l ∈ X , let nl be the number of times l appears in the sample and let ϕt be the number
of symbols appearing t times in the sample. The (modified) Good-Turing estimator is defined
as P̂GT

n,l ∝ nl if nl > ϕnl+1 and P̂GT
n,l ∝

(
ϕnl+1 + 1

)
(nl + 1)/ϕnl otherwise. The remaining

three estimators are all based on the add-b smoothing. For the Braess-Sauer estimator, the
pseudo-count parameter b = bl is data-dependent and chosen as bl = 1/2 if nl = 0, bl = 1
if nl = 1 and bl = 3/4 otherwise. For the Krichevsky-Trofimov estimator, the parameter
b ≡ 1/2. For the Laplace estimator, the parameter b ≡ 1. See Table 2 for a summary.

As shown in Figure 6, the smoothed distribution estimators reduce the absolute error.
For parts (a) and (b), the Good-Turing and the Krichevsky-Trofimov estimators have the
best absolute error. For parts (c) and (d), the Good-Turing estimator is adapted to various
regimes of tail-decay, outperforming the empirical estimator. The Krichevsky-Trofimov and
Braess-Sauer estimators, on the other hand, exhibit small absolute errors for particular
decay regimes. While the smoothed estimators offer a marked improvement when k/n is
large (that is, close to 1), the best estimator is problem-dependent. As a rule of thumb, we
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(p(x)
q(x)
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T1
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Figure 7: Oracle quantization S in the estimation of the f -divergence Df (P‖Q) with Df (PS‖QS),
where P and Q have densities p and q. This example shows quantization into |S| = 3 bins: blue,
orange, and green. Bin i is given by the set {x : f(p(x)/q(x)) ∈ [Ti−1, Ti)}.

suggest the Krichevsky-Trofimov estimator which works well in the large k/n regime but is
still competitive when k/n is small (i.e., large n).

Quantization Error. We now turn to the quantization error of f -divergences, i.e.,

inf
|S|≤k
|Df (P‖Q)−Df (PS‖QS)|,

where the infimum is over all partitions S of X of size no larger than k, and PS and QS are
the quantized versions of P and Q according to S. We do not assume X to be discrete, nor
do we need Assumption 9 to hold. All the results hold for the Frontier Integral (Property 7)
and pointwisely on the divergence frontier (Property 5). Our analysis is inspired by the
asymptotic approximation of an f -divergence with increasingly finer partitions (Györfi and
Nemetz, 1978, Theorem 6). The key idea behind the proof is shown in Figure 7 and the full
proof is given in Appendix B.3.

Proposition 13. For any two distributions P,Q over X and any k ≥ 1, we have

inf
|S|≤2k

|Df (P‖Q)−Df (PS‖QS)| ≤ f(0) + f∗(0)

k
, (18)

where the infimum is over all partitions of S of size at most 2k.

Total Error. Combining the bounds on the statistical and quantization errors leads to the
following bound for the total estimation error for the Frontier Integral.

Theorem 14. Assume that Sk is a partition of X such that |Sk| = k ≥ 2. Then, the total
error E|FI(P̂Sk,n, Q̂Sk,n)− FI(P,Q)| is upper bounded by

C
[

(αn(P ) + αn(Q)) log n+ βn(P ) + βn(Q) + |FI(P,Q)− FI(PSk , QSk)|
]
. (19)

Moreover, if the quantization error of Sk satisfies the bound in (18), we have

E|FI(P̂Sk,n, Q̂Sk,n)− FI(P,Q)| ≤ C
[(√

k

n
+
k

n

)
log n+

1

k

]
. (20)
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Algorithm 1 MAUVE estimation via vector quantization

Input: Samples {xi}ni=1
i.i.d.∼ P and {x′j}mj=1

i.i.d.∼ Q, quantization size k, smoothing constant

b, embedding model ϕ, discretization Λ of [0, 1].

1: {ϕ(xi)}ni=1, {ϕ(x′j)}mj=1 ← embed
(
ϕ, {xi}ni=1, {x′j}mj=1

)
. Embed the samples

2: C = quantize
(
{ϕ(xi)}ni=1, {ϕ(x′j)}mj=1

)
. Cluster embeddings jointly

3: For l = 1, . . . , k, set . Count cluster assignments

P̂ bS,n,l =
1

n+ kb

(
n∑
i=1

1
{
C(xi) = l

}
+ b

)
, Q̂bS,m,l =

1

m+ kb

 m∑
j=1

1
{
C(x′j) = l

}
+ b


4: Compute F̂f (P̂ bS,n, Q̂

b
S,m) from (21) for λ ∈ Λ . Build the divergence frontier

5: return MAUVEf (P,Q) ≈ AUC
(

exp
(
−c F̂f (P̂ bS,n, Q̂

b
S,m)

))
. Numerical quadrature

Based on the bound in (20), a good choice of k is Θ(n1/3) which balances between the
statistical error and the quantization error. This balancing is enabled by the existence of
a good vector quantizer with a distribution-free bound in (18). In practice, this suggests
a data-dependent vector quantizer using nonparametric density estimators. However, di-
rections such as kernel density estimation (Meinicke and Ritter, 2002; Hegde et al., 2004;
Hulle, 1999) and nearest-neighbor methods (Alamgir et al., 2014) have not met empirical
success for vector quantization, as they suffer from the curse of dimensionality common in
nonparametric estimation. In particular, Wang et al. (2005); Silva and Narayanan (2007,
2010) propose quantized divergence estimators but only prove asymptotic consistency and
little progress has been made since then. On the other hand, modern data-dependent vector
quantization techniques based on deep neural networks can successfully estimate properties
of the density from high dimensional data (Sablayrolles et al., 2019; Hämäläinen and Solin,
2020). Theoretical results for those techniques could complement our analysis. We leverage
these powerful methods to scale our approach on real data in Section 7. In addition, while
nonparametric estimators are not very successful for vector quantization, we can utilize them
to estimate the f -divergences directly; we return to this in Section 4.2.

4.1.2 Towards a Practical Algorithm

To develop a practical vector quantization-based estimation procedure for the divergence
frontier Ff (P,Q), we use a data-dependent partitioning S based on quantizing the samples
in some embedding space. The overall procedure is summarized in Algorithm 1.

Recall that we use vector quantization because the support size of real-world text or
image distributions is extremely large. We employ embeddings from a pre-trained deep
neural network to compute the vector quantization; such deep representations have been
shown to capture the important properties of the data across modalities (Zhang et al., 2018;
Devlin et al., 2019).

Concretely, we embed the samples using a model ϕ : X → Rd to get {ϕ(xi)}ni=1 and
{ϕ(x′j)}mj=1. Then, we jointly quantize the embedded samples to obtain a mapping C : X →
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[k]. This induces a partitioning S = (S1, . . . , Sk) with Sl = {x ∈ X : C(x) = l}. For
instance, with k-means clustering (Manning and Schütze, 2001; Jurafsky and Martin, 2009),
C(x) denotes the index l of a cluster center cl that is closest to embedding ϕ(x) in terms
of L2 distance so that each partition Sl ∈ S is the Voronoi cell

Sl =
{
x ∈ X : ‖ϕ(x)− cl‖2 ≤ ‖ϕ(x)− cj‖2 for j = 1, . . . , k

}
.

Here, we assume that ties are broken arbitrarily.
The quantized distribution PS is now computed from the fraction of the points in each

partition. For the add-b smoothing, the estimator is

P̂ bS,n,l =
1

n+ kb

(
n∑
i=1

1{xi ∈ Sl}+ b

)
, for l = 1, . . . , k .

Note that b = 0 reduces to the empirical distribution, and this coincides with the approach
used in (Pillutla et al., 2021). In this work, we default to Krichevsky-Trofimov smoothing,
which corresponds to b = 1/2.

Each coordinate of the estimated divergence curve is now an f -divergence of the form
Df (PS,n‖λP̂ bS,n+(1−λ)Q̂bS,m) and can be computed by summing over the k coordinates. The
full divergence frontier Ff (P̂ bS,n, Q̂

b
S,m) is a continuously parameterized curve for λ ∈ (0, 1).

For computational tractability, we take a discretization Λ of (0, 1) and take

F̂f (P,Q) =

{(
Df (Q‖Rλ), Df (P‖Rλ)

)
:
Rλ = λP + (1− λ)Q,

λ ∈ Λ

}
. (21)

We take a uniform grid Λ = {1/N, 2/N, . . . , (N − 1)/N} with N points. Finally, we approx-
imate MAUVEf (P,Q) ≈ MAUVEf (P̂ bS,n, Q̂

b
S,m) using numerical quadrature on the discretized

frontier F̂f (P̂ bS,n, Q̂
b
S,m). For FIf , we can directly estimate FIf (P,Q) ≈ FIf (P̂ bS,n, Q̂

b
S,m)

when a closed-form expression is derived from Property 7 (e.g., for KL and χ2 divergences).

Computational Complexity. The computational complexity of the overall procedure in
Algorithm 1 is dominated by the cost of quantization. The complexity of k-means quan-
tization is O(Tknd), where T is the maximum number of Lloyd’s iterations and d is the
embedding dimension.

4.2 Estimation via Nearest Neighbors

We now turn to the estimation of the divergence frontier and its summaries by counting the
nearest neighbors of each sample. We consider nearest neighbors from the `2-distance in an
embedding space. Given an embedding model ϕ : X → Rd, we define a metric ρ on the data
space X as

ρ(x,x′) =
∥∥ϕ(x)− ϕ(x′)

∥∥
2
.

Let Nk(x) denote the set of k-nearest neighbors (under the metric ρ) of x from the set
X ∪ X ′ where X = {xi}ni=1 are samples from P and X ′ = {x′j}mj=1 are samples from Q.
Following (Noshad et al., 2017), we estimate the f -divergence Df (P‖Q) with the estimator

D̂f,k(X,X
′) = 0 ∨ 1

m

m∑
j=1

f

(
|Nk(x

′
j) ∩X|/n

|Nk(x
′
j) ∩X ′|/m

)
. (22)
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The intuition behind the estimator is that we expect |Nk(x
′
j) ∩X| ∝ P (x′j) and |Nk(x

′
j) ∩

X ′| ∝ Q(x′j), so their ratio (with appropriate normalization)

r̂(x′j) =
|Nk(x

′
j) ∩X|/n

|Nk(x
′
j) ∩X ′|/m

(23)

can be considered an estimate of the likelihood ratio r(x′j) := P (x′j)/Q(x′j). The f -
divergence Df (P‖Q) is them estimated as

D̂f,k(X,X
′) = 0 ∨ 1

m

m∑
j=1

f
(
r̂(x′j)

)
. (24)

4.2.1 Estimation Error Bounds

Nearest neighbor estimation of f -divergences typically requires continuous distributions on
a Euclidean space with densities satisfying certain regularity conditions. To this end, we
consider estimation on a noisy version of the problem.

First, we pass from a discrete data space X to an Euclidean embedding space by taking
embeddings from a model ϕ : X → Rd. While the pushforward distributions ϕ]P and ϕ]Q
are now supported on Rd, they are not guaranteed to have a density w.r.t. the Lebesgue
measure. To overcome this, we consider smooth these pushforward distributions by con-
volving them with a Gaussian N (0, σ2Id) to get distributions P ′ = ϕ]P ? N (0, σ2Id) and
Q′ = ϕ]Q?N (0, σ2Id). Sampling from the convolved distribution is trivial: ui = ϕ(xi) + ξi
and u′j = ϕ(x′j)+ξ′j are a valid samples from P ′ and Q′ respectively for xi ∼ P and x′j ∼ Q
with independent Gaussian noise ξi, ξ′j ∼ N (0, σ2Id). We analyze the corresponding version
of (22) that is constructed using the `2 distance between the noisy vectors ui,u′j . We show
that this procedure always underestimates the f -divergence.

Property 15. For any divergence generator f , we have

Df (P ′‖Q′) ≤ Df (ϕ]P‖ϕ]Q) ≤ Df (P‖Q) .

Further, if the data space X is discrete and the embedding model is injective, i.e., ϕ(x) 6=
ϕ(x′) for all distinct x,x′ ∈ X , then the last inequality hold with equality.

Proof The inequalities are direct applications of the data processing inequality for f -
divergences. When ϕ is injective, we have, (ϕ]P )

(
ϕ(x)

)
= P (x) for all x ∈ X and similarly

for Q. Therefore, Df (ϕ]P‖ϕ]Q) = Df (P‖Q) follows from an equality on each term of the
summation defining the f -divergence.

The nearest neighbor estimation (22) of Df (P ′‖Q′) requires the following assumptions.

Assumption 16. The smoothed distributions P ′, Q′ have densities p′, q′ w.r.t. the Lebesgue
measure, which satisfy the following:
(B1) There exists a B > 0 such that we have 1/B ≤ p′(u)/q′(u) ≤ B for all u ∈ Rd.
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Algorithm 2 MAUVE estimation via nearest-neighbors

Input: Samples X = {xi}ni=1
i.i.d.∼ P and X ′ = {x′j}mj=1

i.i.d.∼ Q, number of nearest neighbors

k, lower dimension d′, embedding model ϕ, discretization Λ of [0, 1].

1: {ϕ(xi)}ni=1, {ϕ(x′j)}mj=1 ← embed
(
ϕ, {xi}ni=1, {x′j}mj=1

)
. Embed the samples

2: U ∪ U ′ = PCA
(
{ϕ(xi)}ni=1 ∪ {ϕ(x′j)}mj=1, d

′
)

. Joint dimensionality reduction

3: Find Nk(u) = k-NN(k,u, U ∪ U ′) for u ∈ U ∪ U ′ . Find k-nearest neighbors jointly

4: Estimate r̂(u) for u ∈ U ∪ U ′ as . Estimate the likelihood ratio

r̂(u) =
|Nk(u) ∩ U |/n
|Nk(u) ∩ U ′|/m

5: Compute F̂f,k(P,Q) from (25) for λ ∈ Λ . Build the divergence frontier

6: return MAUVEf,k(P,Q) = AUC
(

exp
(
−c F̂f,k(P,Q)

))
. Numerical quadrature

(B2) The densities p′, q′ are Hölder continuous with coefficient γ ∈ (0, 1]. That is, there
exists a constant H > 0 such that

|p′(u)− p′(u′)| ≤ H‖u− u′‖γ2 for all u,u′ ∈ Rd ,

and similarly for q′.

The estimator (22) satisfies the following guarantee.

Theorem 17 (Noshad et al. (2017)). Suppose the smoothed distributions P ′, Q′ satisfy As-
sumption 16, and the divergence generator f is L-Lipschitz over [1/B,B], where B is from
Assumption (B1). Then, the k-nearest neighbor estimator (22) with sample size m = n
satisfies ∣∣∣E[D̂f,k(X,X

′)]−Df (P ′‖Q′)
∣∣∣ ≤ O((k

n

)γ/d
+

1

k

)
.

The assumption of f being Lipschitz on a restricted domain [1/B,B] follows directly
from Assumption (A2) with a logB factor. Thus, this assumption holds for many f -
divergences as shown in Table 1. The bound shows that this estimator suffers from the
curse of dimensionality, as is common for nonparametric estimators. The two terms of the
error are balanced at k = nγ/(d+γ) and the optimal rate is n−2γ/(d+γ).

4.2.2 Towards a Practical Algorithm

We note from Theorem 17 that the nearest neighbor estimator (22) suffers from the curse
of dimensionality. The embeddings obtained from pre-trained deep nets are extremely high-
dimensional, ranging between 103 and 104 for typical text and image models. We find
empirically that a dimensionality reduction step to d′ < 50 dimensions with principal com-
ponent analysis (PCA) is crucial for the estimator to work. The overall algorithm is given
in Algorithm 2.
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As in the case of estimation via quantization, we only consider the points on the diver-
gence frontier at a discretization Λ of (0, 1). We then approximate each coordinate x(λ)
and y(λ) of the divergence frontier for λ ∈ Λ by using the nearest neighbor estimator (22).
Concretely, this gives us

F̂f,k(P,Q) =

{(
D̂fλ,k(X,X

′), D̂f1−λ,k(X
′, X)

)
: λ ∈ Λ

}
, (25)

where fλ is as defined in Property 5 so that Dfλ(P‖Q) = Df (P‖λP +(1−λ)Q). Finally, we
estimate MAUVEf (P,Q), FIf (P,Q), and Midf (P,Q) from this curve with numerical quadra-
ture or with closed-form expressions when available.

Computational Complexity. The PCA step of Algorithm 2 has time complexity O(dn2+
d′d2) while the nearest neighbor search with K-d tree or ball tree structures takes time
O((d′ + k)n log n), assuming n = m. While both steps can be sped up with approximate
randomized algorithms, efficient open-source implementations of exact algorithms are fast
enough for problems with a few thousand samples. We use the library Faiss (Johnson et al.,
2019) in our experiments in §7.

4.2.3 Extensions and Variants

We could also similarly define a kernel density estimator instead of the nearest neighbor
estimator (e.g. Devroye et al., 1996). Given a kernel κ : Rd → R+ normalized such that∫
Rd κ(z)dz = 1, the kernel density estimate of the density of a distribution R using i.i.d.
samples U = {u1, . . . ,un} is given by

gκ,h,U (u) =
1

|U |hd κ
(
u− ui
h

)
, (26)

where h is a bandwidth parameter. A typical choice of kernel is the Gaussian kernel κ(z) =
(2π)−d/2 exp(−‖z‖22/2).

Similar to the nearest neighbor approach, we define the kernel density estimator in the
embedding space of a model ϕ : X → Rd. We approximate Df (P‖Q) that of the kernel
density estimator using samples X ∼ Pn and X ′ ∼ Qm as Df (gϕ(X)‖gϕ(X′)), which is in
turn estimated using its plug-in estimate

D̂f,κ,h(X,X ′) =
1

m

m∑
j=1

f

(
gκ,h,ϕ(X)

(
ϕ(x′j)

)
gκ,h,ϕ(X′\{x′j})

(
ϕ(x′j)

)) . (27)

The expectation over Q is approximated by a sample average over X ′. The numerator of
the term inside f(·) is simply the kernel density estimate (26) of P at x′j using all n samples
from X, while the denominator is the corresponding estimate for Q using the other m − 1
samples X ′ \ {x′j}. The rest of the estimation procedure is identical to Algorithm 2.

4.3 Estimation via Classification

Here, we consider estimating the likelihood ratio r(x) := P (x)/Q(x) with a probabilistic
classifier such as logistic regression (Sugiyama et al., 2012). The f -divergences can then be
estimated from this likelihood ratio.
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We first set up a binary classification problem to discriminate between the two dis-
tributions P and Q. Concretely, define the class prior as P(y = +1) = n/(n + m) and
P(y = −1) = m/(n+m) and the class-conditional distribution by P(x|y = +1) = P (x) and
P(x|y = −1) = Q(x). By the Bayes rule, the likelihood ratio can equivalently be written as

r(x) :=
P (x)

Q(x)
=

P(y = +1|x)

P(y = −1|x)

P(y = −1)

P(y = +1)
.

Given a probabilistic classifier that outputs an estimate η̂(x) for P(y = 1|x), we can
estimate the likelihood ratio as

r̂(x) =
mη̂(x)

n(1− η̂(x))
=
m

n
ρ(x) , (28)

where ρ(x) := η̂(x)/(1−η̂(x)) is the odds ratio. We then estimate the f -divergenceDf (P‖Q)
using the Monte Carlo estimate

D̂f (X,X ′; p̂) =
1

m

m∑
j=1

f
(
r̂(x′j)

)
=

1

m

m∑
j=1

f

(
mη̂(x′j)

n(1− η̂(x′j))

)
. (29)

To train a classifier, we split X = X1 ∪ X2 and X ′ = X ′1 ∪ X ′2, train a probabilistic
classifier such as a logistic regression model to separate X1 from X2 (train set) and evaluate
the likelihood ratios on X ′1 and X ′2 (validation set) to estimate the f -divergence.

Practical Considerations. Logistic regression can fail to yield meaningful odds ratio
estimates when the two distributions are well-separated. For evaluation of image generative
models such as GANs, Lopez-Paz and Oquab (2017) found that neural networks on the pixel
space capitalize on artifacts in the generated images, leading to perfect classification and
therefore, poor likelihood ratio estimates. To avoid this issue, we employ a linear model on
frozen embeddings ϕ : X → Rd.

5. Related Work

We focus in this paper on information divergence-based scores to evaluate generative models.
While the evaluation process is post hoc and external to a generative model, it is worthwhile
to mention the increasingly active research area analyzing (classes of) generative models and
establishing theoretical results such as statistical consistency, universal approximation, sam-
ple complexity; see e.g. (Biau et al., 2021; Schreuder et al., 2021) and references therein. We
review the related work on statistical trade-off curves, information divergence-based scores
for texts and images, and theoretical results on the statistical estimation of information
divergences in mathematical statistics and information theory.

5.1 Divergence Frontiers for Generative Models

Sajjadi et al. (2018) and Kynkäänniemi et al. (2019) both proposed to account for the two
types of errors of generative modeling using trade-off curves in the spirit of operation charac-
teristics and precision-recall curves for binary classification and statistical detection (Cortes
and Mohri, 2005; Clémençon and Vayatis, 2009; Clémençon and Vayatis, 2010; Flach, 2012).
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In an inspiring paper, Djolonga et al. (2020) proposed information divergence frontiers based
on Rényi divergences thereby encompassing both (Sajjadi et al., 2018) and (Kynkäänniemi
et al., 2019). The authors of (Djolonga et al., 2020) show how to compute the divergence
frontiers in special cases such as exponential families. Their exploration of statistical estima-
tion via vector quantization leads to two observations. First, a small quantization size can
lead to a bias of optimism, where Df (PS‖QS) ≤ Df (P‖Q) and this gap can be large when
|S| is small. Second, the statistical error from small sample sizes can lead to pessimistic esti-
mates of the divergences. However, (Djolonga et al., 2020) do not provide statistical bounds
for vector quantization nor do they analyze statistical properties of divergence frontiers de-
fined using f -divergences. Moreover, the above research does not consider applications to
open-ended text generation.

We extend the above line of work, presenting a general framework for estimating di-
vergence frontiers and their statistical summaries for generative models. Theoretically, we
provide quantitative upper bounds for both the statistical error and quantization error.
Specifically, we show that the statistical error is bounded by Õ(

√
k/n). Our bounds also

demonstrate the interest of using smoothed distribution statistical estimators to account for
the missing mass problem. We explore other estimation procedures based on nonparametric
nearest-neighbor and kernel density estimation, classifier-based estimation, and parametric
Gaussian approximations. We also perform a thorough empirical evaluation and operational-
ize these scores for large-scale text and image models. Finally, based on our observations,
we discuss practical recommendations, to facilitate the application to applied AI domains.

After the publication of the conference paper (Pillutla et al., 2021), subsequent work
has corroborated that the original MAUVE score compares favorably to other automatic
metrics for evaluating neural text (Kour et al., 2022). Pimentel et al. (2023) corroborated
the correlation between this score and human judgment. Their empirical analysis shows
that a 5-gram estimation of MAUVE3 has a much weaker correlation with human evaluations
than the vector quantization procedure used in (Pillutla et al., 2021) (cf. §4.1). Based
on this analysis, Pimentel et al. (2023) conclude that the key to the empirical success of
MAUVE is the vector quantization procedure. The experiments in Section 7 indicate that the
reality is much more nuanced. Indeed, we show that the other nonparametric, parametric,
and classifier-based estimation of Section 4 can be nearly as effective as vector quantization
with the right hyperparameters (§7.3); thus the vector quantization cannot be the driving
factor behind MAUVE’s usefulness as an evaluation metric. We note, however, that vector
quantization has several other benefits, including its simplicity and the availability of fast
open-source implementations.

Instead, we show that MAUVE requires an embedding of text to vectors to work well in
practice: modern transformer language model embeddings as used in (Pillutla et al., 2021)
work well but simple non-contextual GloVe embeddings also work equally well (§7.5). How-
ever, estimation from string kernel embeddings4 (§7.5.4) or direct estimation with language
model probabilities (§7.3.3) both fail to quantify previously known trends.

3. This involves estimating MAUVE(P,Q) ≈ MAUVE(P̂5-gram, Q̂5-gram) using 5-gram language models
P̂5-gram, Q̂5-gram fit to samples from P,Q respectively.

4. An example of a string kernel is the N -gram kernel defined in §7.5.4; this is directly comparable with
the N -gram estimation of MAUVE in the analysis in (Pimentel et al., 2023).
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The original MAUVE score has since then been adopted by the language modeling and
computational linguistics communities to measure performance and to tune hyper-parameters
in diverse language generation settings, including the design of decoding algorithms (Meister
et al., 2022; Hewitt et al., 2022; Su et al., 2022; Li et al., 2023; Finlayson et al., 2023), con-
trollable text generation (Yang et al., 2023), architectural innovations (Hu et al., 2022), and
differentially private language generation (Mattern et al., 2022; Yue et al., 2023; Kurakin
et al., 2023).

Since the publication of the conference paper (Liu et al., 2021), there has been some
recent work on the theoretical and algorithmic aspects of divergence frontiers. Verine et al.
(2023) give a novel representation of the precision-recall metrics of Sajjadi et al. (2018) as
f -divergences. They leverage a classifier-based estimation approach of these f -divergences
(similar to §4.3) to optimize image generative models specifically for a given tradeoff between
quality and diversity. Kim et al. (2023) propose a variant of generative precision-recall of
Kynkäänniemi et al. (2019) that is robust to outliers in the data and their extracted features.
They show how it can be computed using a nonparametric kernel density estimator (similar
to §4.2.3 but using random projections to evade the curse of dimensionality) in a statistically
consistent manner. Cheema and Urner (2023) propose a variant of generative precision-recall
and show that a nearest neighbor estimator converges to a well-defined population quantity.
As shown in our preliminary conference paper (Liu et al., 2021) and elaborated on in this
work, (f -)divergence frontiers can also be estimated in a statistically consistent manner with
both vector quantization and nonparametric k-nearest neighbor-based approaches.

5.2 Divergence Measures for Text

Prior measures of similarity/divergence between machine text and human text come in three
broad categories: (a) reference-based, (b) statistics-based, and (c) language modeling.

Reference-based metrics evaluate generated text by comparing it with a (small set of)
reference text sample(s), rather than comparing distributions over full sequence. These
include classical metrics for n-gram matching (Papineni et al., 2002; Lin, 2004; Banerjee
and Lavie, 2005), which are designed to capture similarities in the surface form of the
generated text and the human references, making them fundamentally ill-suited for open-
ended generation. Moreover, it has been shown in (Novikova et al., 2017) that these classical
metrics only weakly agree with human judgments.

More recent reference-based metrics are capable of comparisons in a high dimensional
embedding space (Shimanaka et al., 2018; Zhang et al., 2020; Sellam et al., 2020; Clark et al.,
2019), thereby capturing distributional semantics beyond superficial n-gram statistics. For
instance, Moverscore (Zhao et al., 2019) relies on the Word Mover’s distance (Kusner et al.,
2015), and is an instance of an optimal transport distance (Villani, 2003). Moverscore
computes the minimum cost of transforming the generated text to the reference text, taking
into account the Euclidean distance between vector representations of n-grams, as well as
their document frequencies. The paradigm of reference-based metrics is useful for targeted
generation tasks such as translation and summarization, where matching a set of references
is paramount. However, this family of metrics is unsuitable for the open-ended generation
task where there typically are several plausible continuations for each context and creative
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generations are desirable. Chan et al. (2022) consider distribution-aware reference-based
metrics for conditional generation tasks to account for the diversity in the output space.

Statistics-based metrics compare the model distribution Q with respect to the human
distribution P on the basis of some statistic T (P ) and T (Q). Property-specific statistics
such as the amount of repetition (Holtzman et al., 2020; Welleck et al., 2020b), verifiability
(Massarelli et al., 2020), or termination (Welleck et al., 2020a) are orthogonal to MAUVE,
which provides a summary of the overall gap between P and Q rather than focusing on
an individual property. Another statistic is the generation perplexity (Fan et al., 2018;
Holtzman et al., 2020), which compares the perplexity of the model text x ∼ Q with that
of human text x′ ∼ P under an external model R. We find in Section 7 that generation
perplexity fails to correctly capture the effect of the decoding algorithm and the text length.
Moreover, it can easily be fooled by an adversarial decoder that generates gibberish text
that nevertheless has the right perplexity, as we show in Section 7.2.

Language modeling metrics calculate how (un)likely human text x ∼ P is under the
model distribution Q, for instance, using the probability Q(x). These metrics are related to
a single point on the divergence curve, rather than a full summary. Examples include the
perplexity of the test set (which is a sample from P ) under the model Q and its generaliza-
tions to handle sparse distributions (Martins et al., 2020). Unlike the proposed measures,
these metrics never see model text samples x′ ∼ Q, so they cannot account for how likely the
model text is under the human distribution P . Moreover, they cannot be used for decoding
algorithms such as beam search which do not define a token-level distribution.

Automatic metrics have been proposed for specific domains such as generation of dia-
logues (Tao et al., 2018), stories (Guan and Huang, 2020), and others (Opitz and Frank,
2021). They capture task-specific properties; see the surveys (Celikyilmaz et al., 2020;
Sai et al., 2023). In contrast, MAUVE compares machine and human text in a domain-
agnostic manner. Other related work has proposed metrics that rely on multiple samples
for quality-diversity evaluation (Caccia et al., 2020), and Bayesian approaches to compare
the distribution of statistics in machine translation (Eikema and Aziz, 2020).

Gehrmann et al. (2023) point out the challenges involved in designing good automatic
evaluation metrics with a focus on directed generation tasks. They outline many suggestions
including continuously updated suites of datasets, documentation, and benchmarks, as well
as a multi-dimensional evaluation with each metric focusing on a small yet more precisely
defined scope. Liang et al. (2023) advocate for a multi-metric approach for evaluating
generated language, going beyond quality and considering specific attributes such as toxicity
and bias.

Non-Automatic Metrics. HUSE (Hashimoto et al., 2019) aims to combine human judg-
ments of Type I errors with Type II errors measured using perplexity under Q. Due to the
costs of human evaluation, we consider HUSE and other metrics requiring human evalua-
tion, such as single-pair evaluation, complementary to the proposed automatic measures.
As a separate technical caveat, it is unclear how to use HUSE for sparse Q that assigns
zero probability to a subset of text, which is the case with state-of-the-art decoding algo-
rithms (Holtzman et al., 2020; Martins et al., 2020; Meister et al., 2022).
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5.3 Divergence Measures for Images

Evaluation of generative models is an active area of research in computer vision, where im-
plicit models including generative adversarial networks (Goodfellow et al., 2014) preclude
even basic divergence evaluations based on test-set log-likelihoods. The popular Inception
Score (Salimans et al., 2016) is based on large-scale supervised classification tasks; it is
unclear how to adapt this score to other modeling domains, such as open-ended text gen-
eration. The Fréchet Inception Distance (Heusel et al., 2017; Semeniuta et al., 2018) and
its unbiased counterpart, the Kernel Inception Distance (Bińkowski et al., 2018) are both
used for evaluating generative models, but, unlike divergence frontier methods, do not take
into account trade-offs between different kinds of errors between the learned and the ref-
erence distribution. We find in Section 7.2 that the Fréchet distance adopted to the text
setting fails to capture the dependence on the text length, while our proposed approach
can. We note that this sequential temporal aspect is absent in the image modality. An
exploration of this property of Fréchet distance and MAUVE in other sequential modalities
such as video (Unterthiner et al., 2018) and speech (Kilgour et al., 2019) is an interesting
direction for future work.

5.4 Statistical Estimation of Information Divergences

A closely related problem is the estimation of functionals of discrete distributions; see (Verdú,
2019) for an overview. In particular, the estimation of KL divergences has been studied in
both fixed and large alphabet regimes (Cai et al., 2006; Zhang and Grabchak, 2014; Bu et al.,
2018; Han et al., 2020). An important result from this line of research is that the minimax
quadratic risk of the naïve plug-in estimator is infinite (Bu et al., 2018). The main chal-
lenge arises from the missing mass phenomenon (Good, 1953) which is especially prominent
in the large alphabet regime. This challenge can be addressed by applying add-constant
smoothing (Krichevsky and Trofimov, 1981; Braess and Sauer, 2004) to the empirical distri-
bution estimator and requiring the two distributions to have a bounded density ratio. Our
results also utilize add-constant smoothing without the need for the boundedness assump-
tion. Other choices of estimators include the Good-Turing (Good, 1953) and the absolute
discounting (Falahatgar et al., 2017) estimators.

On the practical side, there is a new line of successful work that uses deep neural networks
to find data-dependent vector quantization to estimate information-theoretic quantities from
samples (Sablayrolles et al., 2019; Hämäläinen and Solin, 2020). Our experimental results
also rely on such data-dependent vector quantizers.

There exists a rich literature on statistical estimation of f -divergences using other meth-
ods. Nonparametric estimation of f -divergences via nearest-neighbor and kernel density
estimation was studied in (Póczos et al., 2011; Moon and Hero III, 2014; Kandasamy et al.,
2015; Noshad et al., 2017), to name a few. The variational expression for f -divergences
was leveraged for optimization-based estimation in (Nguyen et al., 2010; Sreekumar and
Goldfeld, 2022). Estimation under structural assumptions satisfied in applications such as
autoencoders was considered in (Rubenstein et al., 2019). While not directly related to
statistical estimation, a general optimization-based methodology to derive sharp inequali-
ties between various f -divergences was given in (Guntuboyina et al., 2014). In contrast,
we focus on vector quantization-based estimation while empirically comparing them to ap-
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Task Domain Model Finetuning Dataset Prompt
Length

Max.
Generation

Length

Number of
Generations

Web text GPT-2 (all sizes) Pretrained Webtext 35 tokens 1024 tokens 5000
News Grover (all sizes) Pretrained RealNews varying 1024 tokens 5000
Stories GPT-2 medium Finetuned WritingPrompts 50 tokens 512 tokens 5000

Table 3: Dataset and task summary for open-ended text generation. Note that 1024 tokens
correspond to ∼ 750 words on average.

proaches based on nonparametric estimators, classifier-based estimation, and parametric
approximation.

6. Experiments: Setup

We consider open-ended text generation tasks, where the model has to generate text in
continuation of a given text prompt. The open-endedness of the task is reflected in the
relative lengths of the prompt and the generation: the prompt is often quite short (35 to 50
tokens), while the generation is 10× to 30× longer (approximately 500 to 1000 tokens).

6.1 Task Domains and Models

We consider three different text domains: web text, news, and stories. For each domain, we
consider generation with size-based variants of transformer language models. See Table 3
for a summary.

Web Text Generation. The goal of this task is to generate articles from the publicly
available analogue of the Webtext dataset5 using pre-trained GPT-2 models for various
sizes (Radford et al., 2019; Brown et al., 2020). At generation time, we use as prompts the
first 35 tokens of each of the 5000 articles from the Webtext test set, keeping the maximum
generation length to 1024 tokens (which corresponds, on average, to around 750 words). For
comparison with human text, we use the corresponding human-written continuations from
the test set (up to a maximum length of 1024 tokens).

News Generation. Under this task, the goal is to generate the body of a news article,
given the title and metadata (publication domain, date, author names). We use a left-to-
right transformer language model, Grover (Zellers et al., 2019), which is similar to GPT-2
but tailored to generating news by conditioning on the metadata of the article as well. Our
generations rely on pre-trained Grover architectures of various sizes. The generation prompt
comprises the headline and metadata of 5000 randomly chosen articles from the “April2019”
set of the RealNews dataset (Zellers et al., 2019), and the maximum article length was 1024
tokens. We reuse the publicly available Grover generations6 for our evaluation.

Story Continuation. Given a situation and a (human-written) starting of the story as
a prompt, the goal of this task is to continue the story. Here, we use a GPT-2 medium
model fine-tuned for one epoch on the WritingPrompts dataset (Fan et al., 2018). We use

5. https://github.com/openai/gpt-2-output-dataset
6. available at https://github.com/rowanz/grover/tree/master/generation_examples
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as generation prompts the first 50 tokens of 5000 randomly chosen samples of the test set
of WritingPrompts. The model generations are allowed to be up to 512 tokens long. The
corresponding test examples, truncated at 512 tokens are used as samples from P .

6.2 Decoding Algorithms

We consider three common decoding algorithms described in Section 2.1.
(a) Greedy decoding selects the most likely next token xt+1 = arg maxx∈V P̂ (x | x1:t)

and is representative of a broader class of approximate likelihood maximization de-
coding algorithms.

(b) Ancestral sampling samples directly from the language model’s per-step distribu-
tions as xt+1 ∼ P̂ ( · | x1:t), and generates unbiased samples from the model distribu-
tion.

(c) Nucleus sampling (Holtzman et al., 2020) samples from top-p truncated per-step
distributions, xt+1 ∼ Q̂nuc,p( · | x1:t) as defined in Equation (2).

Greedy decoding attempts to find text that approximately maximizes its likelihood under
the model. While such algorithms are highly successful for directed text generation tasks
such as translation, they produce highly degenerate repetitive text in the open-ended setting.
While ancestral sampling produces unbiased samples from the model distribution, it also has
been found to generate degenerate text (Holtzman et al., 2020), ostensibly because the model
is imperfect, especially in the low-probability tail of the next-token distribution. Nucleus
sampling attempts to fix this by truncating the tail and is representative of the broader class
of truncated sampling methods that are now widely considered state-of-the-art. We vary the
nucleus parameter p ∈ {0.9, 0.92, 0.95, 0.99} for web text generation and story continuation,
and p ∈ {0.9, 0.92, 0.94, 0.96, 0.98} for news generation.

In addition, we also consider the following decoding algorithms:
(d) Beam search is a more sophisticated approximate likelihood maximization algorithm

that maintains a set of b promising prefixes. At each time step, all possible one-token
continuations of the current b prefixes are considered and the top b of them are retained.

(e) Locally typical sampling (Meister et al., 2022) is a truncation sampling method,
which we use as a representative of recent truncation-based decoding algorithms such
as Mirostat (Basu et al., 2021) and η-sampling (Hewitt et al., 2022). Locally typical
sampling with hyperparameter τ ∈ (0, 1) samples the next token from the truncated
vocabulary

Vtyp,τ = arg min
V ′

{∑
x∈V ′

∣∣∣log P̂ (x|x1:t) +H
(
P̂ (·|x1:t)

)∣∣∣ :
∑
x∈V ′

log P̂ (x|x1:t) ≥ τ
}

of the language model P̂ , where H(p) = −∑x∈V p(x) log p(x) is the Shannon entropy.
This is a set that covers at least τ -fraction of the probability mass but also has log
probabilities that are as close to the conditional entropy as possible. The samples are
obtained by sampling from this truncated distribution as

Qtyp,τ (xt+1 | x1:t) =

{
1
Z P̂ (xt+1 | x1:t), if xt+1 ∈ Vtyp,τ ,
0, else,

where Z is a normalizing constant.
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(f) Adversarial perplexity sampling is designed to generate low-quality text that
nevertheless matches the perplexity of human text. Adversarial perplexity sampling
proceeds in two phases: (1) we generate the first 15% of tokens in a sequence uniformly
at random from the vocabulary, and (2) we generate the remaining tokens greedily to
make the running perplexity of the generated sequence as close as possible to the
perplexity of human text.

6.3 Baseline Metrics

We compare the proposed measures to the following automatic evaluation metrics used
previously to evaluate open-ended generation.

• Generation Perplexity (Gen. PPL.): We compute the perplexity of the generated
text under the GPT-2 large model. A common heuristic is to match

• Zipf Coefficient: we report the slope of the best-fit line on the log-log plot of the
rank versus unigram frequency plot. Note that the Zipf coefficient only depends on
unigram count statistics and is invariant to, for instance, permuting the generations.
We use the publicly available implementation of (Holtzman et al., 2020).7

• Repetition Frequency (Rep.): The fraction of generations which devolved into
repetitions. Any generation that contains at least two contiguous copies of the same
phrase of any length appearing at the end of a phrase is considered a repetition. We
consider repetitions at the token level. This metric is useful to quantify degenerate
repetitiveness that sometimes comes up with neural text (e.g., with greedy decoding).

• Distinct-n: The fraction of distinct n-grams from all possible n-grams across all
generations. We use n = 4. This is a measure of how diverse the generated text is.

• Self-BLEU: Self-BLEU is calculated by computing the BLEU score of each generation
against all other generations as references. We report the Self-BLEU using 4-grams.
This operation is extremely expensive, so we follow the protocol of (Holtzman et al.,
2020): sample 1000 generations and compute the BLEU against all other 4999 gener-
ations. A lower Self-BLEU score implies higher diversity.

• Discriminator Accuracy: We train a binary classifier to classify text as human or
not. A smaller discrimination accuracy means that model text is harder to distinguish
from human text. A separate classifier is trained for each model and decoding algo-
rithm pair. For the story continuation task, we train a classification head on a frozen
GPT-2 large model using the logistic loss. We use 25% of the data as a test set and
the rest for training; a regularization parameter is selected with 5-fold cross-validation.
For the news dataset, we follow the protocol of (Zellers et al., 2019), i.e., a Grover large
model finetuned with a binary classification head.

Apart from discriminator accuracy, every other metric quantifies a property T (Q) of the
distribution Q of the generated text. This number makes sense only in comparison to the
corresponding quantity T (P ) of the human text distribution P . For each of these, we use
|T (Q)− T (P )| as a measure of the gap between P and Q.

7. https://github.com/ari-holtzman/degen/blob/master/metrics/zipf.py
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6.4 Human Judgements and Evaluation of Automatic Metrics

An effective metric should yield judgments that correlate highly with human judgments,
assuming that human evaluators represent a gold standard.8 We evaluate how the qual-
ity judgments of the proposed measures correlate with human quality judgments. In our
study, a quality judgment means choosing a particular (model, decoder) setting based on
the resultant generations.

Evaluation Protocol. Since our goal is to measure the gap between a model text distribu-
tion Q and a human text distribution P , we employ a pairwise setup for human evaluations.
At each round, an annotator receives a context and continuations from two different (model,
decoder) settings, and selects the continuation they found more (a) human-like, (b) inter-
esting, and (c) sensible on a 5-point Likert scale. Our interface for collecting annotations is
shown in Figure 24 of Appendix E.

We collect these annotations for web text generation with 8 different (model, decoder)
settings plus a ninth setting for human-written continuations. Each setting is a GPT-2
model size paired with either ancestral or nucleus sampling. This gives us a total of 36 pairs
of settings. Given the known difficulties with human evaluation of longer texts (Ippolito
et al., 2020), we use a maximum completion length of 256 tokens. We obtain 90 preference
ratings for each pair of settings, coming from a total of 214 crowd-workers from the Amazon
Mechanical Turk platform. The evaluators were paid USD 0.40 per evaluation based on an
estimated wage of USD 16 per hour.

Pairwise Scores to a Ranking. We convert these pairwise preferences to a ranking
by fitting a Bradley-Terry model (Marden, 1995), a parametric model used to predict the
outcome of a head-to-head comparison. In particular, we obtain a score wi for each setting i
so that the log odds of humans preferring setting i to setting j in a head-to-head comparison
is given by the difference wi − wj .
Evaluation of Automatic Metrics. Consider an automatic metric M with mean values
a = (a1, . . . , an) and standard deviations s = (s1, . . . , sn) across n different (model, decoder)
pairs, where the mean and standard deviation is over repetitions with multiple random seeds.
We assume that higher values of the metric mean that the text is closer to human text. Let
h = (h1, . . . , hn) denote the Bradley-Terry coefficients obtained from the human evaluation
protocol designed above. We evaluate the automatic metric M by comparing the ranking
it induces over the (model, decoder) pairs to that obtained by the human evaluation using
the Spearman rank correlation.

In order to account for the standard deviation of the metric, we define the worst-case
Spearman rank correlation between a1 ± s1, . . . , an ± sn with h = (h1, . . . hn) as

ρmin(a, s,h) = min
σ1,...,σn∈{−1,1}n

ρ
(
(ai + σisi)

n
i=1,h

)
, (30)

where ρ(a,h) denotes the Spearman rank correlation between a and h. The end result is
a correlation score in [−1, 1], with higher values meaning that quality judgments using the

8. While recent work has shown that human evaluation might not always be consistent (Clark et al., 2021;
Karpinska et al., 2021; Gehrmann et al., 2023), human judgments continue to be the gold standard for
evaluating open-ended text generation.
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Metric Task Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU MAUVE?

Human-like/BT Web text 0.810 0.762 −0.500 0.738 0.500 0.857
Interesting/BT Web text 0.643 0.405 −0.571 0.524 0.262 0.714
Sensible/BT Web text 0.738 0.643 −0.476 0.595 0.452 0.762
Disc. Acc. News 0.468 0.595 0.792 0.653 0.516 0.956
Disc. Acc. Stories 0.690 0.762 0.190 0.833 0.905 0.905

Table 4: Correlation of various automatic metrics with human judgments when available, and the
accuracy of a trained discriminator otherwise. “BT” denotes the Bradley-Terry score for a pairwise
human evaluation. We show the worst-case Spearman rank correlation defined in (30) for the BT
scores. Boldfaced/highlighted numbers indicate the highest correlation in each row.

automatic metric correlate with quality judgments made by human evaluators up to one
standard deviation from the randomness of sampling.

6.5 Hyperparameters

By default, we summarize the divergence frontier with MAUVEKL computed using k-means
vector quantization (Algorithm 1) with k = 500 buckets. Following the discussion in Sec-
tion 4.1, we use the Krichevsky–Trofimov (add-1/2) smoothing. This is different from the
default setting of (Pillutla et al., 2021), where the empirical estimator is used instead (with
the other hyperparameters remaining the same). To make this distinction clear, we refer to
the version computed by the smoothed estimator as MAUVE?KL and the original version of
(Pillutla et al., 2021) as MAUVEKL (or MAUVE? and MAUVE respectively when the KL diver-
gence is clear from the context). We compare this choice with different estimation methods
in Section 7.3 and different divergence frontier summaries in Section 7.4.

7. Experimental Results

We present the main experimental results in this section. We start by comparing the rank-
ings induced by MAUVE to that of the human evaluators in Section 7.1. Next, we demonstrate
in Section 7.2 that the proposed measures can quantify how the properties of the generated
text vary with model size, decoding algorithms, and text length. Then, we compare in
Section 7.3 the different statistical estimation methods discussed in Section 4. We perform
a detailed comparison of various f -divergence and optimal transport-based alternatives in
Section 7.4. We demonstrate the effect of the embedding model in Section 7.5, and explore
the applicability of generative precision-recall (Kynkäänniemi et al., 2019), originally pro-
posed for the vision modality, to the natural language modality in Section 7.6. Finally, we
go beyond the language domain to show how the proposed methods can be useful in the
vision modality in Section 7.7.

7.1 Comparison to Human Evaluation

We now compare the ranking induced by the proposed measure to that of the human eval-
uation scores.
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Correlation with Human Judgments. Table 4 shows the correlation between human
judgments and five automatic evaluation metrics obtained using our evaluation protocol on
the web text domain. MAUVE correlates highly with human judgments of how human-like
(0.857), interesting (0.714), and sensible (0.762) the machine text is. MAUVE’s correlations
with human judgments are substantially higher than those for the other automated measures;
for instance, the commonly used generation perplexity has correlations that are 0.810, 0.643,
and 0.738 respectively. The results suggest that the proposed measures may act as an
effective, automatic surrogate for costly human judgments.

Correlation with Learned Discriminators. We also measure the quality of generations
by how well a trained model (a discriminator) can distinguish between real and generated
text (Lopez-Paz and Oquab, 2017). We report the test accuracy of a binary classifier trained
to discriminate between machine and human text; a lower discrimination accuracy implies
that the generation is harder to distinguish from human text. We report the accuracy
of Grover-large as the discriminator for the news generations as it produced the highest
discrimination accuracy (Zellers et al., 2019) while we use GPT-2 large for the story domain.
As seen in Table 4, MAUVE correlates the highest with the discrimination accuracy (0.956 for
news and 0.905 for stories) among all comparison measures. Computing the discrimination
accuracy for each (model, decoder) pair requires fine-tuning a separate model, which is
particularly expensive for large models. The proposed measures, on the other hand, do not
require any training when computed using vector quantization.

Disagreements between MAUVE and Human Judgements. Table 5 gives the values
of MAUVE and the Bradley-Terry coefficients of the human evaluation for how human-like
the text is. Human evaluators find GPT-2 xl with ancestral sampling (BT score of 8.97) to
produce text that is more human-like than GPT-2 medium with nucleus sampling (BT score
of −3.43), while their MAUVE scores are 0.908 and 0.936 respectively. Similarly, MAUVE finds
GPT-2 large with ancestral sampling to be worse than GPT-2 small with nucleus sampling,
while human evaluators disagree. MAUVE agrees with the human evaluators on all other
pairwise comparisons.

7.2 Quantifying the Effect of Model Size, Decoding, Text Length

To study the effectiveness of the proposed measures for comparing text distributions, we
first examine how they quantify known properties of generated text: a good metric should
meet expected behavior that is known from existing research on each property. Specifically,
we investigate how MAUVE behaves under changes in model size, decoding algorithm, and
generation length. We give the results of web text generation in Table 5; the corresponding
results for the other domains can be found in Appendix D.

Effect of the Model Size. Scaling the model size has been a critical driver of recent
advances in natural language processing, with larger models leading to better language
modeling and higher-quality open-ended generation. An effective metric should capture
the relationship between model size and generation quality, which we verify with human
evaluations.

We see from Table 5 that MAUVE increases as the model size increases, agreeing with
the human evaluation and the expectation that larger models should have higher quality
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GPT-2 Size Decoding Gen. PPL Zipf Coef. Rep. Distinct-4 Self-BLEU Human(↑) MAUVE? (↑)

small

Sampling 101.8800.627 0.9260.001 0.0010.000 0.9410.001 0.3270.003 −27.52 0.6550.018

Greedy 1.224 1.037 0.942 0.072 0.4650.000 – 0.019
Nucleus, 0.9 23.7880.144 1.0120.002 0.0100.001 0.8590.002 0.4360.004 −15.78 0.9060.005

Adversarial 12.554 1.073 0.006 0.365 0.525 – 0.043

medium

Sampling 129.2630.798 0.8720.001 0.0010.000 0.9530.001 0.2810.002 −30.77 0.4460.010

Greedy 1.241 0.978 0.903 0.091 0.415 – 0.024
Nucleus, 0.9 21.0730.134 0.9570.001 0.0050.001 0.8840.001 0.4020.003 −3.43 0.9360.004

Adversarial 12.554 1.006 0.005 0.381 0.444 – 0.044

large

Sampling 30.0800.196 0.9300.002 0.0020.001 0.9160.001 0.3580.001 −6.93 0.8780.008

Greedy 1.232 0.983 0.881 0.100 0.413 – 0.026
Nucleus, 0.95 13.4990.058 0.9670.002 0.0060.001 0.8700.001 0.4120.002 12.55 0.9520.002

Adversarial 12.554 0.965 0.005 0.395 0.429 – 0.035

xl

Sampling 31.8860.447 0.9300.001 0.0020.001 0.9130.001 0.3600.003 8.97 0.9080.005

Greedy 1.278 0.975 0.859 0.115 0.417 – 0.033
Nucleus, 0.95 14.1430.043 0.9660.002 0.0050.000 0.8680.001 0.4130.002 15.66 0.9550.004
Adversarial 12.554 0.986 0.005 0.397 0.448 – 0.057

Human n/a 12.602 0.952 0.002 0.878 0.382 47.25 –

Table 5: Automatic metrics across different model sizes and decoding approaches for web text
generations. Subscripts indicate the standard deviation across 5 runs for the sampling-based meth-
ods; greedy decoding, being deterministic, always returns the same value for a given model. For
nucleus sampling, we show the best hyperparameter value from {0.9, 0.92, 0.95, 0.99} as per MAUVE.
The column “Human” gives the Bradley-Terry score obtained from how human-like the text is (Sec-
tion 6.4). Boldfaced numbers indicate the best performance according to the metric, or closest to
the human reference, when applicable.

Decoding Greedy Beam Beam + no 4-gram repeat Ancestral Nucleus
b = 4 b = 8 b = 4 b = 8

MAUVE? 0.019 0.040 0.049 0.438 0.415 0.6550.021 0.9060.005

Table 6: Beam search with beam sizes b = 4, 8 (with and without allowing 4-gram repetitions)
versus other decoding algorithms of Table 5 for web text generation with GPT-2 small. The subscript
denotes the standard deviation over 5 random seeds and is omitted for the deterministic greedy
decoding and beam search.

Decoding Locally Typical Sampling Nucleus
τ = 0.2 τ = 0.5 τ = 0.7 τ = 0.9 τ = 0.95 τ = 0.99

MAUVE? 0.8620.012 0.8960.005 0.880.01 0.9390.009 0.9500.005 0.9140.007 0.9520.003

Table 7: Comparing locally typical sampling (Meister et al., 2022) to nucleus sampling (p =
0.95) with MAUVE for web text generations from GPT-2 large. The subscript denotes the standard
deviation over 5 random seeds.

generations. The widely-used generation perplexity, however, incorrectly rates the large
model’s text as better than the xl model. In this case, human evaluators rate generations
from the small model better than those from the medium model. Interestingly, MAUVE and
Gen. PPL. both identify this relationship, agreeing with the human ratings, in contrast to
the other automatic metrics we surveyed.
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Figure 8: Generation quality versus maximum generation length according to MAUVE and three
alternative measures (web text, GPT-2). MAUVE is the only comparison measure that identifies that
generation quality decreases monotonically with increasing text length. The shaded area shows one
standard deviation over generations from 5 random seeds.

Effect of the Decoding Algorithm. Recent work has identified two clear trends in open-
ended text generation with standard autoregressive models: (1) using greedy decoding results
in repetitive, degenerate text (Holtzman et al., 2020; Welleck et al., 2020b,a); (2) nucleus
sampling (and related truncated sampling methods) with the right hyperparameter yields
higher quality text than ancestral sampling (Fan et al., 2018; Holtzman et al., 2020). An
effective measure should thus indicate the quality relationship greedy ≺ ancestral ≺ nucleus.

We see from Table 5 that MAUVE correctly identifies the expected quality relationship,
assigning the lowest quality to greedy decoding for the xl model followed by ancestral sam-
pling, and the highest quality to nucleus sampling for all model sizes — these values are
0.016, 0.882, 0.940 respectively for the xl model. Other commonly used metrics fail to iden-
tify this relationship: generation perplexity rates the highly degenerate greedy-decoded text
as better than ancestral sampling (a difference of 11.324 w.r.t. the human perplexity vs.
19.284). Furthermore, generation perplexity falls victim to the adversarial decoder that
produces gibberish text. MAUVE, on the other hand, rightly rates it poorly.
We see in Table 6 that MAUVE identifies degeneracy of beam search, thus quantifying the
qualitative observations of Holtzman et al. (2020). Next, Table 7 shows that locally typical
sampling produces text that is comparable in its MAUVE score to nucleus sampling and
outperforms other decoding algorithms, echoing the results of Meister et al. (2022).

Effect of the Generation Length. Although large transformer-based models can gener-
ate remarkably fluent text, it has been observed that the quality of generation deteriorates
with text length: as the generation gets longer, the model starts to wander, switching to
unrelated topics and becoming incoherent (Rashkin et al., 2020). As a result, an effective
measure should indicate lower quality (e.g. lower MAUVE) as generation length increases.

Figure 8 shows MAUVE as the generation length increases, along with three alternative
metrics: generation perplexity, sparsemax score (Martins et al., 2020), and Fréchet dis-
tance (Heusel et al., 2017; Semeniuta et al., 2018). MAUVE reflects the desired behavior,
showing a decrease in quality as generation length grows, with the trend consistent across
model sizes. The other three metrics, however, show less favorable trends. Fréchet dis-
tance indicates improving quality as the length increases, while generation perplexity shows
non-monotonic quality trends for the small and large models. Finally, language modeling
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Figure 9: Computing MAUVE using different estimation procedures of Section 4. Top row: Trends
from varying model size, decoding algorithm, and text length. Bottom row: Effect of estimation
hyperparameters on the correlation with the default setting of MAUVE (vector quantization with
k = 500) and human evaluations from Table 5. These correlations for the classifier-based estimator
are 0.979 and 0.857 respectively.

metrics such as the sparsemax score (Martins et al., 2020) remain constant, since they do
not depend on the samples generated.

7.3 Comparison of Statistical Estimation Methods

We now compare different methods of estimating MAUVE from Section 4 as well as direct
estimation from model probabilities.

7.3.1 Comparison of Vector Quantization with Other Approximations

We now compare the different statistical estimation methods from Section 4: vector quanti-
zation (Algorithm 1 with Krichevsky–Trofimov smoothing, our default), nearest neighbor es-
timation (Algorithm 2), kernel density estimation (Algorithm 2 modified as in Section 4.2.3),
classifier-based estimation (Section 4.3), and parametric approximation (Appendix C). We
also compare these to the direct estimation of MAUVE based on model probabilities. We
perform these comparisons for the web text domain.

Hyperparameters. The non-parametric nearest neighbor and kernel density estimators
and the parametric approximation require the d = 1024 dimensional embeddings to be pro-
jected into a small m-dimensional subspace. We use the first m principal components of the
embeddings. Empirically, we find that the monotonicity property KL(P‖λ1P+(1−λ1)Q) ≤
KL(P‖λ2P + (1− λ2)Q) for λ1 ≥ λ2 can fail to hold in the non-parametric and parametric
estimates if m > 100. This is a manifestation of the well-known curse of dimensionality for
non-parametric estimation and the Monte-Carlo estimation (Equation (46) in Appendix C)
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required by our parametric approximation. Practically, the failure of the monotonicity prop-
erty makes it challenging to estimate the area under the curve. We employ a `2-regularization
term to the classifier-based estimator and found the results to be robust to the choice of the
regularization parameter in the range 1/n to 10−3/n where n is the number of samples. We
use a different scaling constant c within the exponential (cf. (5)) for each method: c = 5 for
vector quantization, c = 10 for nearest neighbor and kernel density estimation, c = 2.5 for
classification, and c = 1 for the Gaussian approximation. Note that this does not change
the induced rankings.

Results. The results are given in Figure 9. We see that each of the estimation methods
can identify most of the trends of Section 7.2. As a notable exception, the classifier-based
estimate fails to identify the trend that the GPT-2 small model with ancestral sampling is
better than the medium one (cf. Table 5). Notably, the parametric approximation identifies
the correct dependence on the text length while the parametric approximation of the opti-
mal transport cost, namely the Fréchet distance fails to capture this trend (cf. Figure 8).
Interestingly, m = 5 or 10 principal components of the embeddings allow us to capture the
trends with respect to the model size, decoding algorithms, and text length.

Correlation Analysis. We note that each estimation method exhibits a high Spearman
rank correlation with the default vector quantization approach of 0.95 to 1.0 and a worst-case
Spearman correlation of at least 0.857 with the human evaluations for the best hyperparam-
eter values. We find that the parametric approximation is not robust to the number m of
principal components — its performance steeply drops off at m = 100.

Pros and Cons of the Estimation Methods. All the tested estimation methods are
consistent with each other, demonstrating the versatility of MAUVE’s recipe of estimating
information divergences from vector embeddings of data. However, there are some minor
differences. First, the k-nearest neighbor and classifier-based estimators report a tie between
nucleus sampling with p = 0.9 and p = 0.95. In contrast, the vector quantization approach
ranks p = 0.95 as better than p = 0.9; this is also the case with the Gen. PPL. baseline.
Second, the non-parametric nearest neighbor and kernel density estimators, as well as the
parametric Gaussian approximation require extreme dimensionality reduction, which makes
it important to select the lower dimension correctly. In contrast, the quantization perfor-
mance is more robust to its hyperparameter (the quantization size k). Thus, we recommend
the vector quantization approach as a reliable default as it is relatively computationally
inexpensive and does not require much hyperparameter tuning.

7.3.2 Effect of Smoothing on Vector Quantization-Based Estimation

We now analyze the effect of smoothing on vector quantization-based estimation. Table 8
compares vector quantization (Algorithm 1) with and without the Krichevsky–Trofimov
smoothing. Their Spearman rank correlations are 1.0, meaning that they induce the same
ranking. We note that their numerical values can be different, depending on the number of
empty bins.

Recall the computation pipeline of Algorithm 1: we jointly quantize the embedded sam-
ples {ϕ(x1, . . . , ϕ(xn)} and {ϕ(x′1), . . . , ϕ(x′m)} from P and Q respectively with k-means
clustering. If some bin l contained samples only from P , then the mass in that particular
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GPT-2 Size Decoding MAUVE (↑) Empty bins

No Smoothing K-T Smoothing Total Number Percentage

small
Sampling 0.5890.018 0.6550.018 54.26.6 5.40.7
Greedy 0.008 0.0190.000 373.0 37.3

Nucleus, 0.9 0.8780.006 0.9060.005 36.44.9 3.60.5

medium
Sampling 0.3730.010 0.4460.010 77.05.5 7.70.5
Greedy 0.012 0.024 314.0 31.4

Nucleus, 0.9 0.9150.006 0.9360.004 29.06.6 2.90.7

large
Sampling 0.8450.010 0.8780.008 30.21.3 3.00.1
Greedy 0.0120.000 0.0260.000 311.40.8 31.10.1

Nucleus, 0.95 0.9360.003 0.9520.002 26.63.0 2.70.3

xl
Sampling 0.8820.006 0.9080.005 27.66.8 2.80.7
Greedy 0.016 0.033 288.0 28.8

Nucleus, 0.95 0.9400.006 0.9550.004 23.42.9 2.30.3

Table 8: Comparison of MAUVE with vector quantization without any smoothing (the default of
(Pillutla et al., 2021)) and with Krichevsky–Trofimov (K-T) smoothing (the default MAUVE? in this
work). Their Spearman correlation is 1.00. The last two columns show the number and fraction
of empty bins obtained after vector quantization (without smoothing) across both P and Q for the
computation of MAUVE(P,Q). The subscript of each column denotes the standard deviation over 5
random seeds.

bin of Q̂S,m(l) would be missing, i.e., Q̂S,m(l) = 0. Table 8 shows the number and fraction
of empty bins. We observe around 2% to 5% empty bins for nucleus and ancestral sampling.
The number of empty bins increases with an increasing gap between the two distributions:
greedy decoding has around 30% of the bins empty while the best setting (nucleus sampling
with the xl model) only has 2.3% of the bins empty. This motivates the use of smoothed
distribution estimators even with data-dependent vector quantization.

7.3.3 Direct Estimation from Model Probabilities

In contrast to these previous estimation methods based on model embeddings, we compute
MAUVE directly using the model probabilities Q(·). Since the human probabilities P (·) are
not available to us, we use the probabilities from GPT-2 xl (without reshaping the model
probabilities) as a surrogate P ′. Then, using samples x1, . . . ,xn ∼ P and x′1, . . . ,x′n ∼ Q,
we approximate the coordinates of the KL divergence curve by the Monte Carlo estimates

KL(P‖λP + (1− λQ)) ≈ 1

n

n∑
i=1

log
P ′(xi)

λP ′(xi) + (1− λ)Q(xi)
,

and similarly for KL(Q‖λP + (1− λQ)).

Results. The results are shown in Figure 10. We observe that this direct estimation can
identify the right trend for model size for nucleus sampling, but fails to identify the right
trend for ancestral sampling for medium ≺ small ≺ large (see Table 5). Similarly, it fails
to identify the right trends for the decoding algorithm, rating ancestral sampling as better
than nucleus sampling.
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Figure 10: Direct estimation of MAUVE from model probabilities Q(·), using the probabilities from
GPT-2 xl as a surrogate for the human distribution P (·). The Spearman rank correlation of this
direct estimation with MAUVE? (the default vector quantization with smoothing) is 0.430 and its
worst-case Spearman rank correlation (defined in (30)) with human evaluation scores from Table 5
is 0.371.

7.3.4 Summary and Discussion

The results of this section show that all the estimation procedures considered in Section 4 can
produce useful estimates of the divergence frontier summaries at the right hyperparameter
values, while the direct estimation procedure fails. These experiments suggest that the
particular vector quantization is not a key factor behind the empirical success of MAUVE and
refute the argument of Pimentel et al. (2023) that the embedding-based vector quantization
is the key ingredient leading to MAUVE’s strong correlation with human judgments (see
§5.1 for a detailed discussion). We note, however, that vector quantization has orthogonal
benefits such as its simplicity and fast open-source implementation. As we explore in the
upcoming §7.5, a reliable vector embedding turns out to be the key component behind
MAUVE’s strong correlation with human judgment.

7.4 Comparison to Other Divergences and Optimal Transport Costs

Next, we compare our default choice of MAUVE?KL with different f -divergences and optimal
transport-based distances.

7.4.1 Divergence Frontier Summaries and Other f-Divergences

We compare MAUVEKL with other KL divergence frontier summaries, FIKL, and MidKL.
We also evaluate the corresponding summaries of the χ2-divergence frontier and two other
divergence metrics: the total variation distance TV(P,Q) and the squared Hellinger distance
H2(P,Q). Since we approximate all the f -divergences in question using vector quantization
and Krichevsky–Trofimov (add-1/2) smoothing, we refer to them using their starred names,
e.g., MAUVE?KL and FI?KL.

Results. The results are given in Table 9. We see that all divergence frontier summaries
correlate perfectly with each other, with a near-perfect Spearman correlation coefficient of
0.99 or higher. Notably, the correlation of FIKL with the Bradley-Terry human evaluation
coefficients is larger than the other measures, which are all equal (0.93 versus 0.85 for
how human-like the text is). From a closer inspection of the actual values of the various
divergences in Table 16 of Appendix D, we see that FIKL ranks ancestral sampling for the
xl model as better than nucleus sampling for the small model and agreeing with human
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Correlation MAUVE?KL FI?KL Mid?KL MAUVE?χ2 Mid?χ2 TV? H2
?

MAUVE?KL 1.0 0.99 1.0 1.0 1.0 1.0 1.0
BT/Human-like 0.857 0.929 0.857 0.857 0.857 0.857 0.857
BT/Interesting 0.714 0.738 0.714 0.714 0.714 0.714 0.714
BT/Sensible 0.762 0.833 0.762 0.762 0.762 0.762 0.762

Table 9: Comparison of various divergence frontier summaries and f -divergences with the default
MAUVE?KL and human judgments on the web text dataset. We show their worst-case Spearman rank
correlation within one standard deviation (defined in Equation (30)).
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Figure 11: Optimal transport costs for GPT-2 generations in the web text domain. We rescale
each measure by a constant so that all the numbers are O(1). Note that a lower transport cost
denotes a smaller gap between the distributions. Their correlations with MAUVE? (default) and
human evaluations are given in Table 10.

evaluators for how human-like the text is. On the other hand, all other measures (including
MAUVEKL) are not able to distinguish between these two in the sense that they are within
one standard deviation of each other.

7.4.2 Variants based on Optimal Transport

We investigate divergence frontier summaries based on optimal transport costs rather than
f -divergences. Given two distributions P,Q ∈ P(X ) and a cost function ρ : X × X → R+,
the optimal transport cost between P and Q induced by ρ is defined as

OTρ(P,Q) = min

{∫
X×X

ρ(x,x′) dπ(x,x′) : π ∈ P(X × X ) has marginals P,Q
}
.

In our context, following Section 4.2, we use the cost function

ρ(x,x′) = ‖ϕ(x)− ϕ(x′)‖22
based on an embedding model ϕ : X → Rd. This is also the squared Wasserstein-2 distance
between the pushforward distributions P ′ = ϕ]P and Q′ = ϕ]Q. Similar to Section 4, we
simply use the plug-in estimate OTρ(P̂n, Q̂n) between the empirical distributions to estimate
the optimal transport cost – we refer to it as the plug-in optimal transport cost.

We consider quantized versions of this cost following the recipe of Section 4.1. We
quantize the empirical distributions P̂n and Q̂n into k-dimensional multinomial distribu-
tions P̂n,k, Q̂n,k ∈ ∆k−1. We define a cost ρk(i, j) = ‖ci − cj‖22, where ci is the cluster
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Figure 12: Comparison of variants of MAUVE based on optimal transport costs for GPT-2 genera-
tions in the web text domain. Larger values denote a smaller gap for each variant. Their correlations
with human evaluations are given in Table 10.

Correlation
OT variants MAUVE variants

Plug-in Fréchet Quantized
OT +
Linear

interpolation

OT +
Barycenteric
interpolation

(Default) KL +
Linear

interpolation

MAUVE?KL 0.954 0.997 0.980 0.983 0.980 1.000
BT/Human-like 0.810 0.857 0.810 0.810 0.857 0.857
BT/Interesting 0.714 0.714 0.714 0.714 0.714 0.714
BT/Sensible 0.738 0.762 0.738 0.738 0.762 0.762

Table 10: Comparison of optimal transport baselines and variants of MAUVE defined using optimal
transport distances with the default MAUVE?KL and human evaluations on the web text dataset. We
show their worst-case Spearman rank correlation within one standard deviation (defined in (30)) for
the human evaluations.

center obtained from k-means clustering of the embeddings. We refer to the resulting cost
OTρk(P̂n,k, Q̂n,k) as the quantized optimal transport cost.

The Fréchet distance (Heusel et al., 2017) is a parametric approximation of OTρ which
approximates the pushforwards ϕ]P and ϕ]Q by multi-variate Gaussians. Note that the
approach of Appendix C for MAUVE follows this recipe. Unlike the methods of Appendix C,
the Fréchet distance has the advantage that it can be computed in closed form.

We also explore variants of the divergence frontier (Definition 4) based on the optimal
transport cost. Define the optimal transport frontier with linear interpolation as

FOT,ρ(P,Q) :=
{(

OTρ(P,Rλ),OTρ(Q,Rλ)
)

: λ ∈ (0, 1)
}
, (31)

where Rλ = λ + (1 − λ)Q. Inspired by the original characterization of the KL-divergence
frontiers as Pareto frontiers (Djolonga et al., 2020), we define a Pareto frontier of optimal
transport costs. Concretely, we define the optimal transport frontier with barycentric
interpolation as

Fbary
OT,ρ(P,Q) :=

{(
OTρ(P,R

?
λ),OTρ(Q,R

?
λ)
)

: λ ∈ (0, 1)
}
,

where R?λ = arg min
R

{λOTρ(P,R) + (1− λ)OTρ(Q,R)} (32)

is the barycenter of P and Q with weights λ and 1 − λ. While the two formulations are
equivalent for the KL divergence as we show in Property 3, they are distinct in general for
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optimal transport costs. The definition in (32) is the analogue of (3) for the KL divergence
frontier. We define the corresponding versions of MAUVE, namely MAUVEOT and MAUVE

bary
OT

to be the area under the negative exponential of the frontiers, as in (5).

Computation and Hyperparameter Tuning. Similar to Section 4.1, we estimate the
divergence frontiers FOT(P,Q) and Fbary

OT (P,Q) on quantized versions FOT,ρk(P̂n,k, Q̂n,k)

and Fbary
OT,ρk

(P̂n,k, Q̂n,k). To compute them efficiently, a widely used approach is to add
entropic regularization to the optimal transport problem (Cuturi, 2013). Their behavior
depends crucially on the regularization parameter being chosen. A good default choice is
the median of all the pairwise costs.

Results. The results are shown in Figures 11 and 12, and Table 10.
First, we note that the plug-in optimal transport cost fails to capture the correct de-

pendence for the model size as it rates the medium-sized model as worse than GPT-2 small
under nucleus sampling (1499 ± 5 vs. 1473 ± 4, cf. Table 17 in Appendix D). The plug-in
estimator also fails to capture the dependence on the text length. Similar to the Fréchet
distance in Section 7.2, its numbers suggest that longer model generations drift closer to the
human distribution rather than farther away.

This issue of optimal transport costs can be fixed by vector quantization. Indeed, both
the quantized optimal transport costs and their frontier summary variants capture the cor-
rect dependence in terms of text length, while simultaneously capturing the right trends for
the model size and decoding algorithm. This suggests that vector quantization may have
a regularizing effect on the estimation problem — we leave a deeper exploration of this
phenomenon for future work.

Correlation Analysis. We see from Table 10 that the plug-in optimal transport cost has
a smaller worst-case Spearman correlation of 0.810 with human evaluations. This is smaller
than MAUVEKL, Fréchet, and MAUVE

bary
OT (0.857) and is on par with Gen. PPL. Comparing

the full numbers in Table 17 in Appendix D allows us to find the reason for this discrepancy.
The quantized OT cost rates GPT-2 small and medium models with nucleus sampling (resp.
0.083 and 0.077) as better than the large and xl models with ancestral sampling (resp. 0.090
and 0.104; these gaps are larger than the standard deviation of 0.005 across runs). These
trends disagree with human evaluations. MAUVEOT and MAUVE

bary
OT make the same mistake

while MAUVE?KL identifies the small model with nucleus sampling as being worse than the
large and xl models with ancestral sampling.

Summary and Discussion. Naïve use of optimal transport costs such as the Fréchet
distance (parametric Gaussian approximation) or the empirical estimator in the embedding
space leads to a failure to capture the right trend with respect to the generation length.
This issue is specific to the text setting due to the lack of a temporal dimension for images;
indeed, the Fréchet distance is the de facto standard evaluation metric for image generation.
Optimal transportation in the quantized embedding space (similar to Section 4.1), as well
as frontier summaries that build upon them can overcome this issue.
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Figure 13: Effect of embeddings on the news generations. We compare generative models GPT-
2 and Grover using embeddings from both GPT-2 and Grover. The Spearman rank correlation
between MAUVE?Grover(P, ·) and MAUVE?GPT-2(P, ·) is 0.971.
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Figure 14: Effect of embeddings on web text generations with GPT-2. MAUVE? computed from
GPT-2 embeddings and RoBERTa embeddings have a Spearman rank correlation of 0.962.

7.5 Effect of the Embedding

The results of Sections 7.3 and 7.4.1 suggest that the embedding is a key factor in the
empirical usefulness of MAUVE and other divergence frontier summaries. In this section, we
analyze the effect of the embeddings, experimenting with using the generative model itself,
using masked language models, shallow embeddings, and finally string-based embeddings
that are not learned from data.

7.5.1 Reusing a Generative Model For Embeddings

First, we study whether using the embeddings from the same generative model we are
evaluating might bias the proposed measures toward generations from that model. In par-
ticular, consider two generative models Q1 and Q2, and let MAUVEi(P, ·) denote the value
of MAUVE obtained from using embeddings from model Qi for i ∈ {1, 2}. We check whether
MAUVE1(P,Q1) > MAUVE1(P,Q2) but MAUVE2(P,Q1) < MAUVE2(P,Q2).

We perform a comparison in the news domain, where P denotes the distribution of
articles in the RealNews dataset. We take Q1 to the Grover model and Q2 to be GPT-2,
both of various sizes and decoding algorithms.9 We use Grover large and GPT-2 large to
compute the embeddings.

The results are given in Figure 13. We observe that the embeddings from both GPT-2
and Grover agree that generations from Grover are closer to the RealNews distribution than
GPT-2. This trend holds uniformly across model sizes and decoding algorithms. Indeed,

9. Although the training data of GPT-2 is proprietary, its open version OpenWebText (Gokaslan and Cohen,
2019) contains a significant number of news articles (Sharoff, 2020). The most frequently occurring web
domains in OpenWebText are news domains (Gehman et al., 2020, Figure 5).
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the Spearman rank correlation between MAUVEGPT-2 and MAUVEGrover is 0.971. Still, there
are some minor differences in the trends revealed by each of the features. For instance,
Grover embeddings suggest that news generations from GPT-2 large are better than those
from GPT-2 xl. Similarly, Grover embeddings suggest p = 0.92 as the best nucleus sampling
hyperparameter for GPT-2 generations, while features from GPT-2 think 0.9 ≤ p ≤ 1 are
roughly equivalent.

Overall, we find that the MAUVE scores obtained from both generative models are
strongly correlated, and we do not find any evidence of bias from reusing a generative
model for embeddings.

7.5.2 Masked Language Model Embeddings

So far, we only considered embeddings from left-to-right language models such as GPT-2
and Grover. In this next experiment, we consider using embeddings from a masked language
model, RoBERTa large (Liu et al., 2019). We repeat the experiments in the web text domain
with GPT-2 as the generative model and RoBERTa as the embedding model.

The results are given in Figure 14. First, we note that the correlation between MAUVE

computed from GPT-2 embeddings and RoBERTa embeddings has a Spearman rank cor-
relation of 0.962. Second, we observe that RoBERTa embeddings also capture the trends
concerning model size and decoding, with some minor differences. For instance, both models
identify the greedy ≺ ancestral ≺ nucleus trend from Section 7.2. While both embedding
models agree that p = 0.9 is the best nucleus sampling hyperparameter for the small model,
they disagree on generations from the large model. Other baselines such as Gen. PPL. that
do not use embeddings suggest that p = 0.95 is the best hyperparameter, agreeing with
embeddings from GPT-2. We also note that RoBERTa features do not capture the medium
≺ small ≺ large ≺ xl trend for model sizes under ancestral sampling (cf. Table 5).

In summary, the proposed measures computed with masked language models correlate
strongly with those computed from left-to-right language models. They can quantify trends
concerning model size and decoding.

7.5.3 Learned Shallow GloVe Embeddings

Next, we examine MAUVE equipped with learned embeddings predating the advent of trans-
former language models. We repeat the web text experiments with GPT-2 generations where
MAUVE is computed based on the GloVe word embeddings (Pennington et al., 2014).

The GloVe embeddings differ from the deep embeddings of the preceding sections in
two ways. First, they are non-contextual, meaning that a word (e.g. “bank”) has the same
embedding regardless of the context (e.g. “river bank ” or the “Bank of America”). Second,
they are embeddings of whitespace-separated words, as opposed to BPE tokens that are
used in transformer language models. Overall, we represent a sequence x = (w1, . . . , wT ) of
words10 using the average GloVe embedding of words in the vocabulary Vglove:

ϕglove(x) =
1

T

T∑
i=1

GloVe(wi) · I(wi ∈ Vglove) .

10. We use wi instead of xi to emphasize that these are words rather than BPE tokens as in the rest of the
paper.
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Figure 15: MAUVE from shallow and string-based embeddings on web text generations with GPT-
2.

Correlation GPT-2 Embedding GloVe Embedding N-gram Kernel Subsequence Kernel

MAUVE?KL (default) 1.00 0.993 0.727 0.783

BT/Human-like 0.857 0.928 0.500 0.286

BT/Interesting 0.714 0.738 0.262 0.214

BT/Sensible 0.762 0.833 0.429 0.214

Table 11: Correlation of MAUVE?KL computed from shallow and string-based embeddings with the
default GPT-2 embeddings and with human evaluations. For the latter, we show their worst-case
Spearman rank correlation within one standard deviation (defined in Equation (30)).

Results. We note that the GloVe embeddings identify the key trends concerning model size,
decoding, and text length in Figure 15. Indeed, its worst-case Spearman correlation with the
human evaluation in Table 11 is even (marginally) better than that of the GPT-2 embeddings
(0.93 vs. 0.86). However, the GloVe embeddings have a significant drawback: they come
from a bag-of-words model where word order is irrelevant. As shown in Figure 16, GPT-2
embeddings do not suffer from this drawback. Overall, these results show that MAUVE can
extract useful information from shallow GloVe embeddings, demonstrating the versatility of
MAUVE.

7.5.4 String-based Kernel Embeddings

Next, we compute MAUVE directly from strings, without any learned embeddings, shallow or
deep. Concretely, we consider the embeddings implied by a positive definite kernel κ(x,x′)
between text sequences x,x′.

Recall that a kernel κ : X × X → R+ over a space X is said to be positive definite
if the Gram matrix K ∈ Rr×r with entries [K]i,j = κ(xi,xj) defined by any collection
x1, . . . ,xr ∈ X of r inputs is a symmetric and positive definite matrix for all integers
r; we refer to the textbook (Shawe-Taylor and Cristianini, 2004) for background. A key
property of positive definite kernels is that they can be viewed as dot products in an abstract
feature space. Specifically, Mercer’s theorem states that there is a unique feature map
ϕκ : X → H onto a Hilbert space H equipped with an inner product 〈·, ·〉H such that
κ(x,x′) = 〈ϕκ(x), ϕκ(x′)〉H for all x,x′ ∈ X (Mercer, 1909).

We compute MAUVE using these embeddings ϕκ induced by two string kernels, where X
is the space of text sequences (i.e., strings):
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(a) N-gram kernel: Given an integer N , the N -gram kernel is defined as the ratio of
common N -grams of its inputs to the total number unique of N -grams (Shawe-Taylor
and Cristianini, 2004, Sec. 11.2). Specifically, letting AN (x) denote the set of all
N -grams in the sequence x, the N -gram kernel κN is defined as

κN (x,x′) =
|AN (x) ∩AN (x′)|
|AN (x) ∪AN (x′)| .

This is also the Jaccard similarity between the set of N -grams of x and those of x′.
(b) Subsequence kernel: The subsequence kernel (Lodhi et al., 2002) is based on the

number of common (non-contiguous) subsequences of length N and scaled by the gap
using a decay factor λ ∈ (0, 1), known also as the gap penalty. Concretely, the feature
map ϕN,λ used to define the subsequence kernel κN,λ has one component for every
possible length-N sequence z ∈ V N . The corresponding component is zero if z is not
a subsequence of x, else it is

ϕN,λ(x)[z] =
∑

i :z=x[i]

λlen(i) ,

where i is an index sequence and x[i] is the subsequence of x obtained by selecting
the indices from i, and len(i) = i|i| − i1 + 1 is the length of the subsequence in x.
A naïve implementation of κN,λ(x,x′) has a complexity of O(|V |N ) but it can be
implemented using sparse dynamic programming in O(NM log |x|) time, where M =
|{(i, j) : xi = x′j}| is the total number of matches between x and x′ (Rousu et al.,
2005).

We compute MAUVE from the respective embeddings of these two kernels at the level of word-
piece tokens using the nearest neighbor method of §4.2. To keep the MAUVE computation
time to under two hours, we use n = 800 samples for the N -gram kernel and n = 200
samples for the subsequence kernel. We sweep over the hyperparameters N ∈ {3, 4, 5}
and λ ∈ {0.1, 0.2, . . . , 0.9} of the kernels and report the hyperparameters that have the
highest correlation with the human evaluation: these are N = 3 for the N -gram kernel and
N = 5, λ = 0.5 for the subsequence kernel.
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Results. Figure 15 shows the dependence of MAUVE on the trends concerning model size,
decoding, and text length. We see that string kernel embeddings only identify these trends
weakly and unreliably, i.e., the mean across 5 runs trend is as expected but the gaps are
often smaller than the standard deviation across runs. This is true of all three trends but
take the text length as an example. MAUVE from the subsequence kernel at a length of 512
tokens is 0.879 ± 0.013, which is smaller than 0.889 ± 0.010 at length 256 and larger than
0.871 ± 0.005 at 1024 tokens, but all three numbers are within one standard deviation of
each other. Similarly, we see from Table 11 that the worst-case Spearman correlations with
the human evaluation results are small, always under 0.5. This shows that the raw strings
are not informative enough for MAUVE.

7.5.5 Summary and Discussion

The results of this subsection demonstrate the importance of the embedding to the use-
fulness of MAUVE. The poor performance of N -gram and subsequence kernels, and direct
model probabilities (Section 7.3.3) show that some care must be taken to use informative
embeddings. Yet, MAUVE is versatile enough to leverage information from a wide variety of
embeddings, including language model embeddings (left-to-right LMs, even if it has been
used for generation, or masked LMs), and shallow non-contextual embeddings.

7.6 Comparison to Generative Precision and Recall

Metrics based on divergence frontiers have been previously used extensively in the computer
vision community (Sajjadi et al., 2018; Kynkäänniemi et al., 2019; Djolonga et al., 2020).
How do these metrics fare in the evaluation of text generative models? We now examine the
applicability of the most widely used such metrics, i.e., Kynkäänniemi et al.’s precision and
recall for generative models, in the web text domain.

Definitions. These notions of precision and recall rely on whether a point x lies within
the manifold of a set of samples Y . Concretely, letting distk(z, Y ) denoted the distance of
z to its kth neighbor in Y , define

sk(x, Y ) :=

{
1, if ∃z ∈ Y : ρ(x, z) ≤ distk(z, Y ),

0, else.

Using this notion, the generative precision and recall (evaluated with k nearest neighbors) of
a generative distribution Q relative to a target distribution P based on n samples XQ ∼ Qn
and XP ∼ Pn are defined as

Precisionk(XP , XQ) =
1

n

∑
x′∈XQ

sk(x
′, XP ), and Recallk(XP , XQ) =

1

n

∑
x∈XP

sk(x, XQ) .

Intuitively, the precision is high if the generated data looks more human-like (i.e., plausibly
drawn from P ) and the recall is high if the generative model captures the diversity of the
target distribution P . Higher values of both precision and recall are desirable. We find that
all 1 ≤ k ≤ 25 produced the same qualitative trends, so we show the results for k = 5.
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Figure 17: Empirical behavior of generative precision and recall (originally proposed by Kynkään-
niemi et al. (2019) for evaluating GANs in computer vision) for natural language generation in the
web text domain. Higher values denote better performance.

Results. Figure 17 shows the trends with respect to model scale, decoding algorithm,
and text length. Given that larger language models are generally better text generators,
we expect the precision and recall to both increase with the model scale. We see for both
ancestral and nucleus sampling that the recall increases as expected. However, the preci-
sion decreases with increasing model scale; this suggests that smaller models produce more
human-like text, which is qualitatively untrue.

Next, we consider the effect of decoding in terms of the nucleus sampling parameter p.
Prior work suggests that p ∈ [0.9, 0.95] should give the most human-like text while p = 1
gives the most diverse text (Holtzman et al., 2020). Thus, we would expect the precision to
peak in p ∈ [0.9, 0.95], while we expect the recall to increase with p monotonically. We see
that the actual trends are the exact opposite of what we would expect, i.e. p = 1 produces
the most human-like text whereas p = 0.9 best matches the diversity of human text, both
of which are qualitatively untrue.

Finally, since model text generations degrade as they get longer, we expect both precision
and recall to get worse with text length. Again, the precision metric says that the generated
text gets more human-like as its length increases, which is untrue.

Summary and Discussion. In summary, these results demonstrate that the notion of
generative precision and recall proposed by Kynkäänniemi et al. do not behave as expected
for natural language generation. In contrast, MAUVE identifies the expected behavior with
respect to model size, decoding algorithm, and text length.

7.7 Evaluating Image Generative Models with MAUVE

In this section, we explore the applicability of our approach to measure the gap between a
distribution Q of images generated by a neural net and its target distribution P of real-world
images.

Setup. We study the distribution of images generated by models trained on the Flickr-
Faces-HQ Dataset (FFHQ) (Karras et al., 2019). The models we consider are based on the
StyleGAN2-ADA generative adversarial networks described by Karras et al. (2020a).

As a representative divergence frontier summary, we consider MAUVE?KL computed using
quantization with k = 1000 clusters. We use 50, 000 samples from the model in comparison
to 50, 000 samples from the FFHQ training data, unless specified otherwise. The resolution
of each image is 1024 × 1024. Note that in the language modality, we compute MAUVE
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Figure 18: Evaluating image generative models across sampling algorithms with MAUVE, Frećhet
distance (Heusel et al., 2017) and generative precision-recall (Kynkäänniemi et al., 2019) (top row).
Some sample images generated at various sampling parameters are shown in the bottom row. We use
the StyleGAN2-ADA model (Karras et al., 2020a) with various values of the ψ-sampling parameter
ψ as the model distribution Q and compare it with the reference distribution P over the FFHQ
dataset. The generations shown at each threshold ψ are generated from the same initial randomness
for a given position in the grid. We recommend zooming in for a closer inspection of the generated
images.

using samples from the test set whereas here–following standard practice in vision when
comparing distributions using Inception Score or Fréchet distance–we use samples from the
train set. Similar to these baselines, we use as an embedding model the standard features of
an Inception network pre-trained on Imagenet. This setting for Fréchet distance corresponds
exactly to the FID-50k metric commonly used in the vision literature. We also compare to
the generative precision-recall (Kynkäänniemi et al., 2019); cf. §7.6 for definitions.

7.7.1 Effect of the Sampling

We consider samples drawn from the GAN model using ψ-sampling, a technique that biases
sampling towards modes of the model distribution.11

We briefly describe ψ-sampling. The generator function of these models maps a simple
random latent variable z ∼ N (0, IZ) to an image x = g(z) ∈ X drawn from the pushforward
distribution defined by a learned generator function g : Z → X . The generator itself is
decomposed into g = s ◦ h consisting of an embedding mapping function h : Z → W
and synthesis network s : W → X . Let w∗ = Ez∼N (0,IZ)[h(z)] be the average embedding
of noise. Given z ∼ N (0, IZ), we define ψ-sampling using a modified generator function
defined by

gψ(z) = s(w∗ + ψ(h(z)−w∗)) .

11. ψ-sampling is referred to as truncation by Karras et al. (2020a).
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Figure 19: Comparing StyleGAN model generations with MAUVE, Frećhet distance (Heusel et al.,
2017) and generative precision-recall. We compare: (v1) the original StyleGAN (Karras et al.,
2019), (v2) StyleGAN2-ADA (Karras et al., 2020a), (v3) StyleGAN3 (Karras et al., 2021), and
(XL) StyleGAN-XL (Sauer et al., 2022). These plots use 5000 samples for each metric, and the
shaded region denotes the standard deviation across 10 runs with different subsamples of the target
distribution.

If ψ < 1, this transformation linearly contracts the mapped value h(z) ∈ W towards the
mean mapping w∗. Intuitively, this will result in higher probability, but less diverse, output
images. In contrast, ψ > 1 will emphasize the lower probability regions of the image space,
resulting in more diverse images of lower quality.

Results. The results are given in Figure 18. Both MAUVE and Fréchet distance identify
the same ordering of ψ: 1 � 1.2 � 0.7 � 0.3 � 0. Qualitatively, we observe the expected
quality-diversity tradeoff as we vary ψ. The extreme ψ = 0.3 produces high-quality images
of faces that look very similar to each other. At ψ = 0.7, we observe more diversity in the
generated faces over attributes such as hair color and style, eyewear, and other factors. We
get a greater diversity at ψ = 1 with more diversity in hair and eyewear but also in the
direction the generated face points towards and facial expressions. At ψ = 1.2, we that
the generated faces start to appear distorted. Some images also feature parts of a second
face. The notions of generative precision and recall capture both quality and diversity
trends, as was demonstrated in previous work. Thus, similar to Fréchet distance, MAUVE

accounts for both quality and diversity to produce a single measure of the gap between the
model distribution and the target distribution. Unlike both precision-recall and the Fréchet
distance, however, MAUVE also perfectly identifies various trends in the natural language
modality.

7.7.2 Effect of the Model Scale and Architecture

We compare image generative models across different model architectures, analogous to the
effect of the model scale in §7.2. For these experiments, we use 5000 samples to compute each
metric (compared to the 50000 samples used for the experiments in the previous experiment).

Effect of Model Scale and Architectural Improvements. We compare various gen-
erations of StyleGAN models. Each model in this family builds upon the previous one
with innovations in the architecture and training pipeline to address certain artifacts in the
generated images. We consider the following models:
(a) StyleGAN (Karras et al., 2019): the first model in this family with 26 million pa-

rameters.
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(b) StyleGAN2-ADA (Karras et al., 2020b,a): the second model in this family, with 30
million parameters.

(c) StyleGAN3 (Karras et al., 2021): this model makes substantial changes to the ar-
chitecture of StyleGAN2. StyleGAN3 has only 15 million parameters but produces
image generations of similar quality as StyleGAN2-ADA as per standard metrics like
the Fréchet distance. The authors claim that it is better suited to video generation.

(d) StyleGAN-XL (Sauer et al., 2022): the largest model in this family that we consider
with 71 million parameters.

All images were produced using ψ-sampling with ψ = 1.

The results are shown in Figure 19. We find that both MAUVE? and Frećhet distance
find the same trends: more recent models are better with StyleGAN2-ADA and StyleGAN3
being rated almost the same (i.e., with one standard deviation of each other). Notably, the
most recent and the largest model — StyleGAN-XL — produces the best images as per
these metrics.

On the other hand, generative precision (Kynkäänniemi et al., 2019) rates the oldest
StyleGAN model as producing the most photorealistic images (highest precision). This fails
to pass the visual inspection test, as the subsequent works in the StyleGAN family discuss
the flaws of this model’s generations and are designed to improve them. This is similar to
the text domain where generative precision finds that the smallest GPT-2 model produces
the most human-like text. Thus, designing fine-grained fidelity and diversity metrics for
generative models that can be used reliably across model scales and families remains an
important open problem.

Comparing GANs with Diffusion Models. We compare StyleGAN2-ADA with a dif-
fusion model NCSN++ (Song et al., 2021) on the FFHQ domain. NSCN++ is the first
diffusion model to directly generate high-resolution images of 1024 × 1024 pixels (without
up-sampling lower-resolution images in a multi-step pipeline). Stein et al. (2023) show
that diffusion models perform significantly worse than GANs on metrics computed in the
Inception-V3 embedding space despite being comparable or better generators in terms of
both fidelity (as measured by human evaluations) and diversity. We follow their recom-
mendation and use embeddings from a DINOv2 model (Oquab et al., 2023) (specifically, its
ViT-L/14 configuration), which was shown to not have such a bias.

The results are given in Table 12: StyleGAN2-ADA (ψ = 1) outperforms the diffu-
sion model by a large margin as per both MAUVE and Fréchet distance. Figure 20, which
shows some samples from the diffusion model, explains the source of this large disparity.
These generations contain more artifacts than the GANs generations (shown in Figure 18),
including glaring asymmetries in facial features such as hairs or eyes.

Many successful diffusion-based generative models such as DALL-E 2 (Ramesh et al.,
2022) and Imagen (Saharia et al., 2022) adopt a two-step pipeline: (a) generate low-
resolution images with a diffusion model (e.g. 64 × 64 pixels), and (b) upsample the gen-
eration using one or more super-resolution models (e.g. 642 → 2562 → 10242 pixels). Our
results above show that end-to-end diffusion modeling to directly generate high-resolution
images remains an important open problem.
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Model Fréchet Distance MAUVE?KL

StyleGAN2 298.592.02 0.9790.034
Diffusion NCSN++ 646.495.80 0.6480.002

Table 12: GANs vs. diffusion models: Com-
paring StyleGAN2-ADA with the diffusion model
NCSN++ (Song et al., 2021). We use features
from the DINOv2 (ViT-L/14) model and each
metric is computed using 5000 samples. The sub-
script denotes the standard deviation over 10 runs
with different subsamples of the target distribu-
tion. MAUVE? is computed using vector quantiza-
tion of size k = 100.

Figure 20: Samples from the diffusion
model NCSN++ (Song et al., 2021).

7.7.3 Summary

These results, together with those from the preceding sections, indicate that the general
recipe of approximating gaps between distributions of complex high-dimensional objects
using embeddings from a pre-trained deep net using f -divergence frontiers and MAUVE is a
powerful one.

7.8 Tightness of the Statistical Error Bounds

We conduct a numerical study to empirically investigate the tightness of the statistical
error bounds presented in Theorem 10. Using the frontier integral FIKL as a representative
summary of the f -divergence frontier, we investigate the estimation error in divergence
frontier summaries as a function of the sample size n and the quantization size k from
samples.

We consider two domains: text generation in the web text domain using a pretrained
GPT-2 large and nucleus sampling with p = 0.95 (§6) and face image generation using a
StyleGAN2-ADA model pretrained on FFHQ sampled using ψ = 1 (§7.7).

We study the statistical error incurred by the plug-in estimator using n samples to esti-
mate the population divergence, where each population distribution containsN texts/images
(N = 5000 for the text domain and N = 50000 for the image domain). Following the recipe
of §4.1, we first represent each text/image by its features. Next, we quantize these 2N fea-
tures into k bins using k-means clustering. For each support size k, this gives us quantized
distributions PSk and QSk . Then, we sample n i.i.d. examples from each of the two distri-
butions and use their empirical versions P̂Sk,n and Q̂Sk,n to compute FI(P̂Sk,n, Q̂Sk,n). We
estimate the statistical error E|FIKL(P̂Sk,n, Q̂Sk,n)− FIKL(PSk , QSk)| from a Monte Carlo
estimate using 100 random trials and compare it with two bounds from Theorem 10:
(a) Bound: the distribution independent bound (

√
k/n+ k/n) log n, and

(b) Oracle Bound: the distribution dependent bound (αn(P ) + αn(Q)) log n+ βn(P ) +
βn(Q) assuming the quantities αn and βn (defined in Theorem 10) are known.

We fix the support size (i.e., the quantization size) k and plot each of these quantities in a
log-log plot with varying n and compare their slope.12 We then repeat the experiment with

12. A log-log plot of the function f(x) = cxλ is a straight line with slope λ, which thus captures the degree.
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Figure 21: Statistical error of the estimated frontier integral FIKL on real text/image data,
as a function of the sample size n and support size k. (a): Text data with k = 64; (b):
Image data with k = 1024; (c): Text data with n = 103; (d): Image data with n = 104.
These bounds are scaled by 30.

n fixed and k varying. We scale the bounds by a factor of 30 for easier visual comparison of
their slopes; this only changes the intercept and leaves the slope unchanged.

Results. Figure 21 contains the Monte Carlo estimate and the bounds of the statistical
error for real text and image data. In Figure 21(b), we see that the oracle bound captures
the right rate for small sample sizes where k/n > 1. Whereas, for large n, the distribution-
independent bound is better at matching the slope of the Monte Carlo estimate. The same
is true for Figure 21(c), where the oracle bound is better for large k. For parts (a) and
(d), however, both bounds do not capture the right slope of the Monte Carlo estimate;
Theorem 10 is not a tight upper bound in this case. Yet, we notice that Theorem 12 is
still a valid upper bound. Indeed, for part (a), we observe that the rate of decrease of the
Monte Carlo estimate is only faster than the bound but not slower. Overall, these results
demonstrate the favorable statistical error properties of MAUVE.

8. Empirical Recommendations

Following the introduction of MAUVE in the conference paper (Pillutla et al., 2021), it has
been adopted by the language modeling community for measuring performance and hyper-
parameter tuning in diverse language generation settings, including contrastive decoding (Su
et al., 2022; Li et al., 2023), truncation decoding (Meister et al., 2022; Hewitt et al., 2022),
and momentum decoding (Lan et al., 2022); controllable text generation (Yang et al., 2023);
architectural innovations (Hu et al., 2022); and differentially private language generation
(Mattern et al., 2022; Yue et al., 2023; Kurakin et al., 2023).

We review some subtleties of using the proposed measures in practice and offer some
practical guidelines.

Aligning Automatic Evaluation to the Goal of Generative Modeling. A common
objective of generative modeling is to exactly match the model distribution Q to a real data
distribution P . As discussed in Section 3, this can fail due to a Type I error, where the
model produces unrealistic or low-quality data, or a Type II error, where the model is unable

59



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

to produce some plausible real samples and fails to capture the diversity of real data. On
the other hand, there are scenarios where ensuring a low Type I error is the only objective
of generation (and matching the target P is not important). For instance, correctness is
the key objective in machine translation, while using a diverse vocabulary is not the main
concern.

The proposed divergence frontier summaries, as measures of the gap between a model
distribution Q and real data distribution P , are well-suited for the first objective and are
ill-suited for the second one. For instance, in the context of open-ended text generation,
(Su and Xu, 2022) empirically show that contrastive search has a lower MAUVE score than
nucleus sampling while producing higher quality text (i.e., lower type I error) as inferred from
human evaluations. This can be explained by a large type II error in contrastive search,
leading to a large gap or smaller MAUVE score. Indeed, each token in contrastive search
is chosen deterministically from its top-K vocabulary for small K < 10, so it can fail to
generate the occasional surprising or low-probability words found in human text (Holtzman
et al., 2020).

In summary, we recommend the use of the proposed divergence frontier summaries when
the goal of the generative model is to match both the quality and diversity of the target real
data distribution.

Relative Comparisons Instead of Absolute Scores. We find that the proposed meth-
ods are best suited for relative comparisons while the absolute scores are less meaningful.
For instance, if we wish to find which model distribution among Q1 and Q2 has a smaller
gap to the target distribution P , we can compare MAUVE(P,Q1) to MAUVE(P,Q2). The
individual value of MAUVE(P,Qi) can vary based on the computational approximation, its
hyperparameters, and the number of samples. Indeed, we only consider the rankings induced
by MAUVE in Section 7 by comparing the Spearman rank correlation with other rankings.

Randomness and Standard Deviations. There are multiple sources of randomness in
the computation of MAUVE: the randomness from sampling for stochastic decoding algo-
rithms, as well as the random initialization for k-means quantization. Since the absolute
values of the proposed measures are not meaningful, the standard deviations are equally
important in making relative comparisons. We strongly recommend taking into account the
standard deviation across multiple runs rather than just the mean even for relative compar-
isons; the worst-case Spearman rank correlation defined in (30) is one such measure. We
also observed that, while the proposed measures can capture the basic properties as in Sec-
tion 7.2, it is much harder to quantify subtle differences (e.g., when trying to improve over
nucleus sampling). In this case, we recommend increasing the sample size or the number of
random seeds to reduce the uncertainty in the statistical estimation.

Sample Size and Text Length. The greater the number of samples, the smaller the
statistical estimation error (cf. Section 4). We recommend empirically that each distribution
contains at least 1000 samples. The proposed measure computed with a smaller number of
samples is biased towards optimism (that is, the score typically goes down as the number
of samples increases) and exhibits a larger standard deviation. Likewise, we find that the
proposed measures can capture the gap between long texts (at least 256 tokens, preferably
512 tokens) but they might not always capture the difference between shorter texts (see the
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overlapping shaded areas denoting the standard deviation in Figure 8). In Section 7, we use
5000 samples of up to 1024 tokens (with a prefix length of 35) to compute MAUVE and we
report the mean and standard deviation over 5 repetitions.
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Appendix

The outline of the appendix is as follows:
• Appendix A: Complete proofs of divergence frontier properties from Section 3.
• Appendix B: Full proofs of estimation via quantization from Section 4.1.
• Appendix C: Details of the parametric approximation approach mentioned in Section 4.
• Appendix D: Additional experimental results to augment those in Section 7.
• Appendix E: Additional details of the human evaluations described in Section 6.4.

Appendix A. Properties of the Divergence Frontiers

We give a closed-form expression for Frontier Integral, for the special case of the KL diver-
gence.

Property 18. The integral summary Frontier Integral of the KL divergence frontier is an
f -divergence generated by the convex function

f̃KL(t) =
t+ 1

2
− t

t− 1
log t ,

with the understanding that f̃KL(1) = limt→1 f̃KL(t) = 0,

Proof Let P and Q be dominated by some probability measure µ with density p and q,
respectively. We will establish the expression

FI(P,Q) =

∫
X
1{p(x) 6= q(x)}

(
p(x) + q(x)

2
− p(x)q(x)

p(x)− q(x)
log

p(x)

q(x)

)
dµ(x) , (33)

with the convention 0 log 0 = 0. This gives the expression for f̃KL from the definition of an
f -divergence.

We now establish (33). Denote λ̄ = 1−λ. By Tonelli’s theorem, it holds that FIKL(P,Q) =
2
∫
X h(p(x), q(x))dµ(x), where

h(p, q) =

∫ 1

0

(
λp log p+ λ̄q log q − (λp+ λ̄q) log(λp+ λ̄q)

)
dλ.
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When p = q, the integrand is 0. If q = 0, then the second term inside the integral is 0,
while the first term is

∫ 1
0 λp log(1/λ)dλ = p/4. Finally, when p 6= q are both non-zero, we

evaluate the integral to get,

h(p, q) =
p

2
log p+

q

2
log q − 2p2 log p− p2 − 2q2 log q + q2

4(p− q) ,

and rearranging the expression gives (33).

Next, we give a technical lemma used to establish properties of FIf and Midf .

Proposition 19. Let P,Q ∈ P(X ) be probability measures with finite support. Then, the
linearized cost Lf,λ defined in Equation (6) satisfies the bound

Lf,λ(P‖Q) ≤ λ f∗(λ) + (1− λ)f∗(1− λ) + 2λ(1− λ)f(0) .

Proof Denote λ̄ = 1−λ. Let P,Q ∈ ∆k−1 be discrete distributions over k <∞ items. The
function P,Q 7→ Lf,λ(P‖Q), by virtue of being an f -divergence, is jointly convex in P,Q.
So, Lf,λ(P‖Q) is maximized for P ?, Q? that lie at some vertices of the probability simplex
∆k−1. We can rule out P ? = Q? as Lf,λ(P‖Q) = 0 in this case. Therefore, without loss of
generality, we can assume that P ? = (1, 0, . . . , 0) ∈ ∆k−1 and Q? = (0, 1, 0, . . . , 0) ∈ ∆k−1.
Plugging this in gives the upper bound

Lf,λ(P ?‖Q?) = λ2f(1/λ) + 2λλ̄f(0) + λ̄2f(1/λ̄) = λf∗(λ) + λ̄f∗(λ̄) + 2λλ̄f(0) .

Appendix B. Proofs of Theoretical Bounds: Quantization

In this section, we give the complete proofs of quantization in Section 4.1. The outline is as
follows:

• Appendix B.1: Proof of the statistical error bound for the empirical estimator (Theo-
rem 10).

• Appendix B.2: Proof of the statistical error bound for the add-constant estimator
(Theorem 12).

• Appendix B.3: Proof of the quantization error bound (Proposition 13).

B.1 Statistical Error Bound

In this section, we prove Theorem 10.
The proof relies on two key lemmas—the approximate Lipschitz lemma (Lemma 20)

and the missing mass lemma (Lemma 22). The argument breaks into two cases in P (and
analogously for Q) for each atom a ∈ X :
(a) P̂n,a > 0: Since P̂n is an empirical measure, we have that P̂n,a ≥ 1/n. In this case the

approximate Lipschitz lemma gives us the Lipschitzness in ‖P − P̂n‖TV up to a factor
of log n.
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(b) P̂n,a = 0: In this case, the mass corresponding to Pa is missing in the empirical measure
and we directly bound its expectation following similar arguments as in the missing
mass literature; see, e.g., (Berend and Kontorovich, 2012; Mcallester and Ortiz, 2003).

B.1.1 Approximate Lipschitz Property

First, we express the derivatives of ψ(p, q) = qf(p/q) in terms of the derivatives of f :

∂ψ

∂p
(p, q) = f ′

(
p

q

)
= f∗

(
q

p

)
− q

p
(f∗)′

(
q

p

)
(34a)

∂ψ

∂q
(p, q) = f

(
p

q

)
− p

q
f ′
(
p

q

)
= (f∗)′

(
q

p

)
(34b)

∂2ψ

∂p2
(p, q) =

1

q
f ′′
(
p

q

)
=
q2

p3
(f∗)′′

(
q

p

)
≥ 0 (34c)

∂2ψ

∂q2
(p, q) =

p2

q3
f ′′
(
p

q

)
=

1

p
(f∗)′′

(
q

p

)
≥ 0 (34d)

∂2ψ

∂p∂q
(p, q) = − p

q2
f ′′
(
p

q

)
= − q

p2
(f∗)′′

(
q

p

)
≤ 0 , (34e)

where the inequalities f ′′, (f∗)′′ ≥ 0 followed from convexity of f and f∗ respectively.
We now present the main lemma that shows that the function ψ is nearly Lipschitz, up

to a log factor. This lemma can be leveraged to directly obtain a bound on the statistical
error of the f -divergence in terms of the expected total variation distance, provided the
probabilities are not too small.

Lemma 20. Suppose that f satisfies Assumption 9. Consider ψ : [0, 1] × [0, 1] → [0,∞)
given by ψ(p, q) = qf(p/q). We have, for all p, p′, q, q′ ∈ [0, 1] with p ∨ p′ > 0, q ∨ q′ > 0,
that

|ψ(p′, q)− ψ(p, q)| ≤
(
C1 max

{
1, log

1

p ∨ p′
}

+ C∗0 ∨ C2

)
|p− p′|

|ψ(p, q′)− ψ(p, q)| ≤
(
C∗1 max

{
1, log

1

q ∨ q′
}

+ C0 ∨ C∗2
)
|q − q′| .

Proof We only prove the first inequality. The second one is identical with the use of f∗

rather than f . Suppose p′ ≥ p. From the fact that ψ is convex in p together with a Taylor
expansion of ψ(·, q) around p′, we get,

0 ≤ ψ(p, q)− ψ(p′, q)− (p− p′)∂ψ
∂p

(p′, q) =
1

2

∫ p

p′

∂2ψ

∂p2
(s, q)(p− s)ds

= −p
2

∫ p′

p

∂2ψ

∂p2
(s, q)ds+

1

2

∫ p′

p
s
∂2ψ

∂p2
(s, q)ds

≤ 0 + C2(p′ − p) ,
where we used ∂2ψ/∂p2 is non-negative due to convexity and, by (34c) and Assump-
tion (A3),

s
∂2ψ

∂p2
(s, q) =

s

q
f ′′ (s/q) ≤ 2C2 .
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This yields

−(p′ − p)∂ψ
∂p

(p′, q) ≤ ψ(p, q)− ψ(p′, q) ≤ −(p′ − p)∂ψ
∂p

(p′, q) + C2(p′ − p) .

We consider two cases based on the sign of ∂ψ∂p (p′, q) = f ′(p/q) (cf. Eq. (34a)).

Case 1. ∂ψ
∂p (p′, q) ≥ 0. Since q 7→ f ′(p/q) is decreasing in q, we have

0 ≤ (p′ − p)∂ψ
∂p

(p′, q) = (p′ − p)f ′(p/q) ≤ lim
q→0

(p′ − p)f ′(p/q) = (p′ − p)f∗(0) ,

where we used f ′(∞) = f∗(0) from Lemma 26. From Assumption (A1), we get the bound

|ψ(p, q)− ψ(p′, q)| ≤ (C∗0 ∨ C2)(p′ − p) .

Case 2. ∂ψ
∂p (p′, q) < 0. By Assumption (A2), it holds that∣∣∣∣∂ψ∂p (p′, q)

∣∣∣∣ ≤ C1 max{1, log(q/p′)} ≤ C1 max{1, log(1/p′)} ,

and thus
|ψ(p, q)− ψ(p′, q)| ≤

(
C1 max

{
1, log

1

p′

}
+ C2

)
(p′ − p) .

With the above lemma, the estimation error of the empirical f -divergence can be upper
bounded by the total variation distance between the empirical measure and its population
counterpart up to a logarithmic factor, where:

‖P̂n − P‖TV =
∑
a∈X
|P̂n,a − Pa| . (35)

For the first part, we further upper bound the expected total variation distance of the
plug-in estimator, which is

‖P̂n − P‖TV =
∑
a∈X
|P̂n,a − Pa| .

Lemma 21. Assume that P is discrete. For any n ≥ 1, it holds that

E‖P̂n − P‖TV ≤ αn(P ).

Furthermore, if k = |Supp(P )| <∞, then

E‖P̂n − P‖TV ≤ αn(P ) ≤
√
k

n
.
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Proof Using Jensen’s inequality, we have,

E
∑

a∈Supp(P )

|P̂n,a − Pa| ≤
∑

a∈Supp(P )

√
E(P̂n,a − Pa)2

=
∑

a∈Supp(P )

√
Pa(1− Pa)

n
≤ αn(P ) ,

If k < ∞, then it follows from Jensen’s inequality applied to the concave function t 7→
√
t

that

1

k

k∑
i=1

√
ak ≤

√√√√1

k

k∑
i=1

ak .

Hence, αn(P ) ≤
√
k/n and it completes the proof.

B.1.2 Missing Mass Computation

For the second part, we treat the missing mass directly.

Lemma 22 (Missing Mass). Assume that k = |Supp(P )| <∞. Then, for any n ≥ 3,

E

[∑
a∈X

1
{
P̂n,a = 0

}
Pa

]
≤ k

n
(36)

βn(P ) := E

[∑
a∈X

1
{
P̂n,a = 0

}
Pa

(
1 ∨ log

1

Pa

)]
≤ k log n

n
, (37)

where a ∨ b := max{a, b}.

Proof We prove the second inequality. The first one is identical. Note that E[1{P̂n,a =
0}] = P(P̂n,a = 0) = (1−Pa)n. Therefore, the left-hand side (LHS) of the second inequality
is

LHS =
∑
a∈X

(1− Pa)nPa max{1,− logPa}

≤
∑
a∈X

1

n
∨ log n

n
=
k log n

n
,

where we used Lemma 28 and Lemma 29.

Remark 23. According to (Berend and Kontorovich, 2012, Prop. 3), the bound k/n in (36)
is tight up to a constant factor.
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B.1.3 Full Proof of the Statistical bound

Now, we are ready to prove Theorem 10.
Proof [Proof of Theorem 10] Define ∆n,m(a) :=

∣∣∣ψ(Pa, Qa)− ψ(P̂n,a, Q̂m,a)∣∣∣. We have
from the triangle inequality that

∆n,m(a) ≤
∣∣∣ψ(Pa, Qa)− ψ(P̂n,a, Qa)∣∣∣︸ ︷︷ ︸

=:T1(a)

+
∣∣∣ψ(P̂n,a, Qa)− ψ(P̂n,a, Q̂m,a)∣∣∣︸ ︷︷ ︸

=:T2(a)

.

Since P̂n,a = 0 or P̂n,a ≥ 1/n, the approximate Lipschitz lemma (Lemma 20) gives

T1(a) ≤
{
Pa (C1 max{1, log(1/Pa)}+ C∗0 ∨ C2) , if P̂n,a = 0,

|Pa − P̂n,a|
(
C1 log n+ C∗0 ∨ C2

)
, else.

Consequently, Lemma 21 yields∑
a∈X

E[T1] ≤
∑
a∈X

E
[
1{P̂n,a = 0}Pa (C1 max{1, log(1/Pa)}+ C∗0 ∨ C2)

]
+
∑
a∈X

E
[
|P̂n,a − Pa|

] (
C1 log n+ C∗0 ∨ C2

)
≤ (C1 + C∗0 ∨ C2)βn(P ) +

(
C1 log n+ C∗0 ∨ C2

)
αn(P ) .

Since ψ(p, q) = qf(p/q) = pf∗(q/p), an analogous bound holds for T2 with the appropriate
adjustment of constants. Hence, the inequality (10) holds. Moreover, when k < ∞, the
inequality (11) follows by invoking again Lemma 22 and Lemma 21.

We now prove Proposition 11.
Proof [Proof of Proposition 11] The inequality is a direct consequence of Theorem 10. Recall
from Property 5 that Df (P‖Rλ) = Dfλ(P‖Q) where fλ(t) := f(t/(λt+ 1− λ))(λt+ 1− λ).
From the proof of Theorem 10 we have

|Dfλ(P̂n‖Q̂m)−Dfλ(P‖Q)|
≤
∑
a∈X

1{P̂n,a = 0}Pa (C1 max{1, log(1/Pa)}+ C∗0 ∨ C2)

+
∑
a∈X

1{Q̂m,a = 0}Qa (C∗1 max{1, log(1/Qa)}+ C0 ∨ C∗2 )

+
∑
a∈X

∣∣Pa − P̂n,a∣∣(C1 log n+ C∗0 ∨ C2

)
+
∑
a∈X

∣∣Qa − Q̂m,a∣∣(C∗1 logm+ C0 ∨ C∗2
)
.

Note that, for the interpolated KL divergence, we have

C0 = 1− λ ≤ 1, C∗0 = log
1

λ
− 1 + λ ≤ log

1

λn,m

C1 = 1, C∗1 =
(1− λ)2

λ
≤ 1

λn,m

C2 = 1/2, C∗2 =
1− λ

8λ
≤ 1

8λn,m
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for all λ ∈ [λn,m, 1− λn,m]. The claim then follows from the same steps of Theorem 10.

B.2 Statistical Error Bound with Smoothing

In this section, we apply add-constant smoothing to estimate the f -divergences and study
its statistical error.

Consider P ∈ P(X ) and an i.i.d. sample {Xi}ni=1 ∼ P . The add-constant estimator of
P is defined by

P̂ bn,a =
Na + b

n+ kb
, for all a ∈ X ,

where b > 0 is a constant and Na = |{i ∈ [n] : Xi = a}| is the number of times the
symbol a appears in the sample. In practice, b = ba could be different depending on the
value of Na, but we use the same constant b for simplicity. Similarly, We define Q̂bm with
Ma = |{i ∈ [m] : Yi = a}|. The goal is to upper bound the statistical error

E|Df (P‖Q)−Df (P̂ bn‖Q̂bm)| (38)

under Assumption 9.
Compared to the statistical error of the plug-in estimator, a key difference is that each

entry in the add-constant estimator is at least (n+kb)−1∧(m+kb)−1. Hence, we can directly
apply the approximate Lipschitz lemma without the need to control the missing mass part.
Another difference is that the total variation distance is now between the add-constant
estimator and its population counterpart, which can be bounded as follows.

Lemma 24. Assume that k = Supp(P ) <∞. Then, for any b > 0,

∑
a∈X

E|P̂ bn,a − Pa| ≤
∑
a∈X

√
nPa(1− Pa) + bk|Pa − 1/k|

n+ kb
≤
√
kn+ 2b(k − 1)

n+ kb
.

Proof Note that

|P̂ bn,a − Pa| = |
Na − nPa
n+ kb

+
b(1− kPa)
n+ kb

| ≤ |Na − nPa
n+ kb

|+ |b(1− kPa)
n+ kb

|.

Using Jensen’s inequality, we have

∑
a∈X

E|P̂ bn,a − Pa| ≤
∑
a∈X

[√
E|Na − nPa

n+ kb
|2 +

c|1− kPa|
n+ kb

]

=
∑
a∈X

[√
nPa(1− Pa)
n+ kb

+
bk|1/k − Pa|

n+ kb

]
.

We claim that ∑
a∈X
|Pa −

1

k
| ≤ 2(k − 1)

k
.
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If this is true, we have

∑
a∈X

E|P̂ bn,a − Pa| ≤
√
kn+ 2b(k − 1)

n+ kb
,

since
∑

a∈X
√
Pa(1− Pa) ≤

√
k. It then remains to prove the claim. Take a1, a2 ∈ X such

that Pa1 ≥ k−1 ≥ Pa2 . It is clear that

|Pa1 −
1

k
|+ |Pa2 −

1

k
| ≤ |Pa1 + Pa2 −

1

k
|+ |Pa2 − Pa2 −

1

k
|

= Pa1 + Pa2 .

Repeating this argument gives

∑
a∈X
|Pa −

1

k
| ≤ 1− 1

k
+
k − 1

k
=

2(k − 1)

k
.

Now we are ready to prove Theorem 12.
Proof [Proof of Theorem 12] Following the proof of Theorem 10, we define

∆n,m(a) := |ψ(Pa, Qa)− ψ(P̂ bn,a, Q̂
b
m,a)| .

We have from the triangle inequality that

∆n,m(a) ≤
∣∣∣ψ(Pa, Qa)− ψ(P̂ bn,a, Qa)∣∣∣︸ ︷︷ ︸

=:T1(a)

+
∣∣∣ψ(P̂ bn,a, Qa)− ψ(P̂ bn,a, Q̂bm,a)∣∣∣︸ ︷︷ ︸

=:T2(a)

.

Since P̂ bn,a ≥ b/(n+ kb), the approximate Lipschitz lemma (Lemma 20) gives

T1(a) ≤ |Pa − P̂ bn,a|
(
C1 log(n/b+ k) + C∗0 ∨ C2

)
,

By lemma 24, it holds that

∑
a∈X E[T1(a)]

C1 log(n/b+ k) + C∗0 ∨ C2
≤
∑
a∈X

[√
nPa

n+ kb
+
bk|1/k − Pa|

n+ kb

]
=
nαn(P )

n+ kb
+ γn,k(P )

≤
√
kn+ 2b(k − 1)

n+ kb
.
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Since ψ(p, q) = qf(p/q) = pf∗(q/p), an analogous bound holds for T2(a) with the appropri-
ate adjustment of constants and the sample size. Putting these together, we get,

E
∣∣Df (P‖Q)−Df (P̂ bn‖Q̂bm)

∣∣ ≤ E

[∑
a∈X
|∆n(a)|

]

≤
[
nαn(P )

n+ kb
+ γn,k(P )

] (
C1 log(n/b+ k) + C∗0 ∨ C2

)
+

[
mαm(Q)

m+ kb
+ γm,k(Q)

] (
C∗1 log(m/b+ k) + C0 ∨ C∗2

)
≤
(
C1 log(n/b+ k) + C∗0 ∨ C2

)√kn+ 2b(k − 1)

n+ kb

+
(
C∗1 log(m/b+ k) + C0 ∨ C∗2

)√km+ 2b(k − 1)

m+ kb
.

B.3 Quantization Error

We establish a bound on the quantization error of f -divergences, i.e.,

inf
|S|≤k
|Df (P‖Q)−Df (PS‖QS)|, (39)

where the infimum is over all partitions of X of size no larger than k, and PS and QS are
the quantized versions of P and Q according to S, respectively. Note that we do not assume
X to be discrete in this section. All the results hold for the linearized cost Lλ(P̂n, Q̂n) and
the frontier integral FI(P̂n, Q̂n) from Table 1.

Our analysis is inspired by the following result, which shows that the f -divergence can
be approximated by its quantized counterpart; see, e.g., (Györfi and Nemetz, 1978, Theorem
6).

Theorem 25. For any P,Q ∈ P(X ), it holds that

Df (P‖Q) = sup
S
Df (PS‖QS), (40)

where the supremum is over all finite partitions of X .
We now prove Proposition 13, the finite-partition analogue of this.

Proof [Proof of Proposition 13] Assume f(0) + f∗(0) <∞. Otherwise, there is nothing to
prove. Fix two distributions P,Q over X . Partition the measurable space X into

X1 =

{
x ∈ X :

dP

dQ
(x) ≤ 1

}
, and, X2 =

{
x ∈ X :

dP

dQ
(x) > 1

}
,

so that

Df (P‖Q) =

∫
X1

f

(
dP

dQ
(x)

)
dQ(x) +

∫
X2

f∗
(

dQ

dP
(x)

)
dP (x) =: D+

f (P‖Q) +D+
f∗(Q‖P ) .
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We quantize X1 and X2 separately, starting with X1. Define sets S1, · · · , Sk as

Sm =

{
x ∈ X1 :

f(0)(m− 1)

k
≤ f

(
dP

dQ
(x)

)
<
f(0)m

k

}
,

where the last set Sk is also extended to include {x ∈ X1 : f((dP/dQ)(x)) = f(0)}. Since
f is nonincreasing on (0, 1], it follows that supx∈X1

f((dP/dQ)(x)) ≤ f(0). As a result, the
collection S = {S1, · · · , Sk} is a partition of X1. This gives

f(0)

k

k∑
m=1

(m− 1)Q[Sm] ≤ D+
f (P‖Q) ≤ f(0)

k

k∑
m=1

mQ[Sm] . (41)

Further, since f is nonincreasing on (0, 1], we also have

f(0)(m− 1)

k
≤ f

(
sup
x∈Fm

dP

dQ
(x)

)
≤ f

(
P [Fm]

Q[Fm]

)
≤ f

(
inf
x∈Fm

dP

dQ
(x)

)
≤ f(0)m

k
.

Hence, it follows that

f(0)

k

k∑
m=1

(m− 1)Q[Sm] ≤ D+
f (PS1‖QS1) ≤ f(0)

k

k∑
m=1

mQ[Sm] . (42)

Putting (41) and (42) together gives

inf
|S1|≤k

∣∣∣D+
f (P‖Q)−D+

f (PS1‖QS1)
∣∣∣ ≤ f(0)

k

k∑
m=1

Q[Sm] ≤ f(0)

k
, (43)

since
∑k

m=1Q[Sm] = Q[X1] ≤ 1. Repeating the same argument with P and Q interchanged
and replacing f by f∗ gives

inf
|S2|≤k

∣∣∣D+
f∗(Q‖P )−D+

f∗(QS2‖PS2)
∣∣∣ ≤ f∗(0)

k
. (44)

To complete the proof, we upper bound the inf of S over all partitions of X with |S| = k
by the inf over S = S1 ∪ S2 with partitions S1 of X1 and S2 of X2, and |S1| = |S2| = k.
Now, under this partitioning, we have, D+

f (PS‖QS) = D+
f (PS1‖QS1) and D+

f∗(QS‖PS) =

D+
f∗(QS2‖PS2). Putting this together with the triangle inequality, we get,

inf
|S|≤2k

∣∣∣Df (P‖Q)−Df (PS‖QS)
∣∣∣

≤ inf
S=S1∪S2

{∣∣∣D+
f (P‖Q)−D+

f (PS‖QS)
∣∣∣+
∣∣∣D+

f∗(Q‖P )−D+
f∗(QS‖PS)

∣∣∣}
≤ inf
|S1|≤k

∣∣∣D+
f (P‖Q)−D+

f (PS1‖QS1)
∣∣∣+ inf

|S2|≤k

∣∣∣D+
f∗(Q‖P )−D+

f∗(QS2‖PS2)
∣∣∣

≤ f(0) + f∗(0)

k
.
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B.4 Properties and Technical Lemmas

Lemma 26. Suppose the generator f satisfies Assumptions (A1) and (A2). Then,

lim
t→∞

f ′(t) = f∗(0) , and lim
t→∞

(f∗)′(t) = f(0) .

Proof We start by observing that

lim
t→0

t|f ′(t)| ≤ C1 lim
t→0

t ∨ t log
1

t
= 0 .

Next, a direct calculation gives

(f∗)′(1/t) = f(t)− tf ′(t) ,

so that taking the limit t→ 0 gives

lim
t→∞

(f∗)′(t) = f(0)− lim
t→0

tf ′(t) = f(0) .

The proof of the other part is identical.

Property 27. Suppose f : (0,∞) → [0,∞) is convex and continuously differentiable with
f(1) = 0 = f ′(1). Then, f ′(x) ≤ 0 for all x ∈ (0, 1) and f ′(x) ≥ 0 for all x ∈ (1,∞).

Proof Monotonicity of f ′ means that we have for any x ∈ (0, 1) and y ∈ (1,∞) that
f ′(x) ≤ f ′(1) = 0 ≤ f ′(y).

Lemma 28. For all x ∈ (0, 1) and n ≥ 3, we have

0 ≤ (1− x)nx log
1

x
≤ log n

n
.

Proof Let h(x) = (1−x)nx log(1/x) be defined on (0, 1). Since limx→0 h(x) = 0 < h(1/n),
the global supremum does not occur as x → 0. We first argue that h obtains its global
maximum in (0, 1/n]. We calculate

h′(x) = (1− x)n−1

(
−nx log

1

x
+ (1− x)

(
log

1

x
− 1

))
≤ (1− x)n−1(1− nx) log

1

x
.

Note that h′(x) < 0 for x > 1/n, so h is strictly decreasing on (1/n, 1). Therefore, it must
obtain its global maximum on (0, 1/n]. On this interval, we have,

(1− x)nx log
1

x
≤ x log

1

x
≤ log n

n
,

since x log(1/x) is increasing on (0, exp(−1)).

The next lemma comes from (Berend and Kontorovich, 2012, Theorem 1).

Lemma 29. For all x ∈ (0, 1) and n ≥ 1, we have

0 ≤ (1− x)nx ≤ exp(−1)/(n+ 1) < 1/n .
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Appendix C. Estimation of Divergences via Parametric Approximations

We discuss here the parametric approximation approach for divergence estimation men-
tioned in Section 4. Given an embedding model ϕ : X → Rd, we first approximate the
f -divergence Df (P‖Q) by Df (ϕ]P‖ϕ]Q). Since {ϕ(xi)}ni=1 is an i.i.d. sample from ϕ]P , we
then approximate ϕ]P by a multivariate Gaussian distribution with mean and covariance
matrix given by

µ̂P :=
1

n

n∑
i=1

ϕ(xi) and Σ̂P :=
1

n− 1

n∑
i=1

(ϕ(xi)− µ̂P )(ϕ(xi)− µ̂P )>,

respectively. The distribution ϕ]Q can be approximated by Nd(µ̂Q, Σ̂Q) similarly. Finally,
we approximate Df (ϕ]P‖ϕ]Q) by

Df

(
Nd(µ̂P , Σ̂P )

∥∥ Nd(µ̂Q, Σ̂Q)
)

=

∫
f

(
φ(z; µ̂P , Σ̂P )

φ(z; µ̂Q, Σ̂Q)

)
φ(z; µ̂Q, Σ̂Q)dz , (45)

where φ(· ;µ,Σ) is the probability density function of the multivariate normal distribution
N (µ,Σ). To evaluate the integration in (45), we can use the Monte Carlo approach—(i)
generate i.i.d. samples {zb}Bb=1 from Nd(µ̂Q, Σ̂Q), and (ii) approximate (45) by the empirical
average

D̂f (µP ,ΣP ‖µQ,ΣQ) =
1

B

B∑
b=1

f

(
φ(zb; µ̂P , Σ̂P )

φ(zb; µ̂Q, Σ̂Q)

)
. (46)

Although this approach is widely used in practice, it has no theoretical guarantee. Its
performance can get arbitrarily bad depending on the two distributions P and Q. We give
below a simple example to illustrate this.

Example 30. Consider two distributions ϕ]P ∼ 1
2N (−µ, 1)+ 1

2N (µ, 1) and ϕ]Q ∼ N (0, 1).
It is straightforward to get that ϕ]P has mean zero and variance∫

x2dϕ]P (x) =
1

2

∫
x2φ(x;−µ, 1)dx+

1

2

∫
x2φ(x;µ, 1)dx = 1 + µ2.

As a result, the KL divergence KL(ϕ]P‖ϕ]Q) can be approximated by

KL
(
N (0, 1 + µ2)‖N (0, 1)

)
=
µ2 − log (1 + µ2)

2
.

On the other hand, we also know that

KL(ϕ]P‖ϕ]Q) =

∫ [
1

2
φ(x;−µ, 1) +

1

2
φ(x;µ, 1)

]
log

[
1

2

φ(x;−µ, 1)

φ(x; 0, 1)
+

1

2

φ(x;µ, 1)

φ(x; 0, 1)

]
dx

=

∫
φ(x;µ, 1) log

[
1

2

φ(x;−µ, 1)

φ(x; 0, 1)
+

1

2

φ(x;µ, 1)

φ(x; 0, 1)

]
dx.

72



MAUVE Scores for Generative Models: Theory and Practice

Notice that

1

2

φ(x;−µ, 1)

φ(x; 0, 1)
+

1

2

φ(x;µ, 1)

φ(x; 0, 1)
=

1

2
e−µ

2/2
(
e−xµ + exµ

)
=

1

2
e−µ

2/2e−xµ(1 + e2xµ).

As a result, we get

KL(ϕ]P‖ϕ]Q) = −µ
2

2
− log 2− µ

∫
xφ(x;µ, 1) dx+

∫
log (1 + e2xµ)φ(x;µ, 1) dx

= −µ
2

2
− log 2− µ2 +

∫
log (1 + e2xµ)φ(x;µ, 1) dx

≥ −3µ2

2
− log 2 +

∫
2xµφ(x;µ, 1) dx

=
µ2

2
− log 2.

This implies that

KL(ϕ]P‖ϕ]Q)−KL
(
N (0, 1 + µ2)‖N (0, 1)

)
≥ 1

2
log (1 + µ2)− log 2

can be arbitrarily large as µ increases. Hence, the parametric approximation approach can
be extremely inaccurate even in this simple example.

Computational Complexity. Estimating the mean vectors and covariance matrices takes
O(nd2) time. Since evaluating the density φ(z;µ,Σ) involves computing the quadratic form
(z − µ)>Σ−1(z − µ), we can compute Σ−1 once with time complexity O(d3) and evaluate
Σ−1(z−µ) for different z’s where each evaluation cost O(d2) time. Assuming that sampling
an observation from Nd(µ̂Q, Σ̂Q) takes O(d) time, the time complexity of the Monte Carlo
approximation is O(Bd2 + d3). Hence, the parametric approximation approach has overall
time complexity O(nd2 +Bd2 + d3).

Appendix D. Experiments: Additional Results

We elaborate on the results in Section 7 in this section as follows.
• Appendix D.1: full results across model size and decoding for all domains.
• Appendix D.2: full results across text length.
• Appendix D.3: full comparison to other f -divergence frontier summaries.
• Appendix D.4: use of MAUVE for hyperparameter tuning.

D.1 Results for Other Domains: News and Stories

The analogue of Table 5 for the news and story domains are Tables 13 and 14 respectively.
These are qualitatively similar to the web text domain. MAUVE, like discrimination accu-
racy, rates larger models as better and nucleus sampling as better than ancestral sampling
and greedy decoding. An exception to this rule is Grover large, where MAUVE thinks ances-
tral sampling is better than nucleus sampling. The statistics-based measures, namely Zipf
coefficient, Repetition, and the fraction of distinct 4 grams all prefer smaller Grover sizes.
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Grover Size Decoding Gen. PPL Zipf Coef. Rep. Distinct-4 Self-BLEU % Disc. Acc.(↓) MAUVE?(↑)

base
Sampling 37.505 0.942 0.002 0.882 0.419 99.925 0.754
Greedy 1.413 1.038 0.518 0.081 0.548 100.000 0.012
Nucleus, 0.96 23.064 0.974 0.006 0.847 0.462 99.950 0.764

large
Sampling 27.796 0.946 0.002 0.878 0.429 99.450 0.836
Greedy 1.575 1.012 0.366 0.124 0.504 100.000 0.013
Nucleus, 0.98 20.792 0.962 0.002 0.859 0.450 98.475 0.800

mega
Sampling 22.656 0.950 0.001 0.879 0.427 97.300 0.847
Greedy 1.796 1.003 0.316 0.176 0.500 100.000 0.013
Nucleus, 0.96 14.834 0.972 0.003 0.848 0.469 88.675 0.852

Human n/a 15.356 0.956 0.002 0.842 0.473 – –

Table 13: News generation evaluation across different Grover model sizes, and de-
coding approaches. For nucleus sampling, we show the best hyperparameter value from
{0.9, 0.92, 0.94, 0.96, 0.98} as per MAUVE. Disc. Acc. denotes the discrimination accuracy (%)
of a Grover large model trained to distinguish human text from machine text generated with the
model and decoding algorithm of each row. Boldfaced numbers indicate the performance closest to
the human reference when applicable, or the best performance according to the measure.

Decoding Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU % Disc. Acc. (↓) MAUVE?(↑)
Sampling 38.9830.143 1.0660.002 0.0010.000 0.8330.001 0.5180.003 78.0980.365 0.9290.007

Nucleus, 0.9 15.4330.042 1.2010.002 0.0060.001 0.7190.001 0.6370.002 75.1500.373 0.9140.005

Nucleus, 0.92 17.4220.060 1.1790.002 0.0040.001 0.7420.001 0.6200.003 71.9790.594 0.9260.003

Nucleus, 0.95 21.5990.127 1.1470.002 0.0030.000 0.7750.002 0.5890.005 68.5860.583 0.9400.003

Top-50 13.7350.027 1.2930.004 0.0020.000 0.7060.001 0.6640.003 83.5490.381 0.8860.010

Top-100 16.5270.041 1.2520.001 0.0020.000 0.7430.001 0.6310.001 78.1500.207 0.9130.005

Top-500 23.8330.076 1.1530.001 0.0010.000 0.7940.001 0.5760.002 69.6800.450 0.9420.004

Greedy 1.739 1.362 0.988 0.101 0.742 99.712 0.013

Human 19.704 1.101 0.001 0.783 0.571

Table 14: Story continuation evaluation across different decoding approaches with GPT-2 medium.
Disc. Acc. denotes the discrimination accuracy (%) of a classifier (a frozen GPT-2 large model with a
classification head) trained to distinguish human text from machine text generated with the decoding
algorithm of each row. Boldfaced numbers indicate the performance closest to the human reference
when applicable, or the best performance according to the measure.

Next, we turn to the language modeling comparison measures in Table 15. JS con-
sistently favors greedy decoding, which produces far worse text than other decoding algo-
rithms. Likewise, ε-PPL favors ancestral sampling, which also produces somewhat degen-
erate text (Holtzman et al., 2020), while SP appears to be unable to distinguish between
ancestral sampling and nucleus sampling. This makes SP, JS, and ε-PPL unsuitable to
compare generated text to human text.

D.2 Effect of Text Length

We now turn to the plot of comparison measures versus text length in Figure 22. This shows
the results of Figure 8 for different hyperparameters. Recall that we expect the quality of the
generation to degrade as the maximum length of the text (both machine and human-written)
increases.
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GPT-2 Size Decoding SP(↑) JS(↓) ε-PPL(↓) Human/BT(↑) MAUVE?(↑)

small

Greedy 0.431 0.394 1049.589 – 0.019
Sampling 0.653 0.425 19.401 −27.52 0.6550.018

Nucleus, 0.9 0.652 0.414 25.938 −15.78 0.9060.005

medium

Greedy 0.465 0.371 708.057 – 0.024
Sampling 0.670 0.402 14.631 −30.77 0.4460.010

Nucleus, 0.9 0.670 0.391 18.821 −3.43 0.9360.004

large

Greedy 0.483 0.359 580.020 – 0.026
Sampling 0.679 0.381 12.658 −6.93 0.8780.008

Nucleus, 0.95 0.679 0.374 14.938 12.55 0.9520.002

xl

Greedy 0.496 0.349 497.696 – 0.033
Sampling 0.686 0.369 11.412 8.97 0.9080.005

Nucleus, 0.95 0.686 0.363 13.677 15.66 0.9550.004

Adversarial n/a n/a n/a – 0.057

Table 15: MAUVE versus comparison measures based on language modeling (SP, JS, and ε-PPL)
across different model sizes, and decoding approaches for web text generations. SP, JS, and ε-PPL
are deterministic because they do not require generations from a decoding algorithm. Moreover,
they cannot measure the quality of the adversarial decoding. The column “Human/BT” gives the
Bradley-Terry score obtained from a pairwise human evaluation (Section 7.1). Boldfaced numbers
indicate the best performance according to the measure.

GPT-2
Size Decoding MAUVE?KL (↑) FI?KL (↓) Mid?KL (↓) MAUVE?χ2 (↑) Mid?χ2 (↓) TV? (↓) H2

? (↓) BT (↑)
Human-like

small Sampling 0.6550.018 0.0330.002 0.1050.004 0.3350.020 0.1910.007 0.3630.006 0.2250.010 −27.518
Nucleus, 0.9 0.9060.005 0.0160.001 0.0440.001 0.7340.011 0.0840.003 0.2300.005 0.0910.003 −15.783

medium Sampling 0.4460.010 0.0420.001 0.1600.003 0.1640.004 0.2770.003 0.4430.004 0.3560.009 −30.769
Nucleus, 0.9 0.9360.004 0.0120.001 0.0350.001 0.8050.009 0.0680.002 0.2050.004 0.0730.002 −3.429

large Sampling 0.8780.008 0.0170.000 0.0520.002 0.6720.016 0.0980.003 0.2510.004 0.1070.004 −6.935
Nucleus, 0.95 0.9520.002 0.0100.000 0.0300.001 0.8490.007 0.0580.002 0.1870.005 0.0610.002 12.553

xl Sampling 0.9080.005 0.0140.001 0.0440.001 0.7370.012 0.0830.003 0.2320.005 0.0900.003 8.966
Nucleus, 0.95 0.9550.004 0.0100.001 0.0290.002 0.8570.012 0.0560.003 0.1850.006 0.0590.003 15.664

Table 16: Comparison f -divergences frontier summaries for the web text domain. The correlations
from this table are reported in Table 9 of Section 7.4. The subscripts denote standard deviations
over 5 random seeds. Boldfaced numbers indicate the smallest gap between the two distributions.

D.3 Comparison with Other Divergences and Optimal Transport

The full version of Tables 9 and 10 from Section 7.4 are given as Tables 16 and 17 respectively.

D.4 Use of MAUVE for Hyperparameter Tuning

Figure 23 plots MAUVE for nucleus and top-K sampling for various values of the hyperpa-
rameters p and K. This illustrates the utility of MAUVE for hyperparameter tuning.

Appendix E. Human Evaluation: Protocol and Full Results

We describe the human evaluation protocol and results of Section 6.4 in detail. The outline
for this section is:

• Appendix E.1: Details of the Bradley-Terry statistical model used to obtain ranking
from pairwise preferences.

• Appendix E.2: Full results of the human evaluation.
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Figure 22: Generation quality versus maximum generation length as per various comparison
measures for web text generation with GPT-2. We expect the quality of the generation to degrade
as the maximum length of the text (both machine and human-written) increases. MAUVE is the only
comparison measure that correctly shows this behavior across all models and decoding algorithms.
The shaded area denotes one standard deviation over generations from 5 random seeds.

GPT-2
Size Decoding

OT variants (↓) MAUVE variants (↑)

Plug-in Fréchet Quantized
OT +
Linear

interpolation

OT +
Barycenteric
interpolation

(Default) KL +
Linear

interpolation

BT (↑)
Human-like

small Sampling 763.2811.264 199.5910.788 0.1580.001 0.8140.001 0.9370.001 0.6550.018 −27.518
Nucleus, 0.9 693.2634.610 148.3881.236 0.0830.005 0.9350.007 0.9640.001 0.9060.005 −15.783

medium Sampling 791.7584.780 224.9702.526 0.2080.002 0.7250.004 0.9140.001 0.4460.010 −30.769
Nucleus, 0.9 700.4963.961 140.1740.813 0.0770.004 0.9420.005 0.9670.001 0.9360.004 −3.429

large Sampling 717.9095.618 153.3581.325 0.1040.004 0.9050.006 0.9580.002 0.8780.008 −6.935
Nucleus, 0.95 681.8834.367 133.5830.762 0.0620.001 0.9610.002 0.9690.001 0.9520.002 12.553

xl Sampling 705.4824.617 146.5931.136 0.0900.003 0.9240.004 0.9620.001 0.9080.005 8.966
Nucleus, 0.95 685.1313.258 132.9271.555 0.0610.003 0.9620.004 0.9700.001 0.9550.004 15.664

Table 17: Comparison of measures based on optimal transport for the web text domain. The
correlations from this table are reported in Table 10 of Section 7.4. The subscripts denote standard
deviations over 5 random seeds. Boldfaced numbers indicate the smallest gap between the two
distributions.

• Appendix E.3: Additional details of the human evaluation protocol.
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Figure 23: MAUVE for nucleus and top-K sampling for different values of p and K for GPT-2
large. MAUVE rates nucleus sampling with p = 0.95 and top-K sampling with 100 ≤ K ≤ 1000 as
the best choices. The shaded area denotes one standard deviation over generations from 5 random
seeds.

Figure 24: Mechanical Turk interface for human evaluation.
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E.1 From Pairwise Preferences to Ranking: the Bradley-Terry Model

We compute the Bradley-Terry (BT) scores from the pairwise preferences obtained from the
human evaluation along each of the three axes interesting, sensible, and more likely to be
written by a human.

Bradley-Terry Model Review. Given n players with scores w1, · · · , wn, the the Bradley-
Terry model (Marden, 1995) models the outcome of a head-to-head comparison of any two
players using a sigmoid13

Prob(i beats j) =
1

1 + e−(wi−wj)/100
.

The model also assumes the outcome of each head-to-head comparison of any pair of players
is independent of all other comparisons. Note that the model is invariant to additive shifts
of the scores, i.e., the model probabilities induced by scores w1 + C, · · · , wn + C is same as
the that induced by w1, · · · , wn for any constant C. For uniqueness, we normalize the scores
so that their mean is 0.

Fitting the Model. The Bradley-Terry model can be fit to data using Zermelo’s algo-
rithm (Hunter, 2004). Suppose that we are given a dataset of head-to-head comparisons
summarized by numbers Nij denoting the number of times player i has defeated player
j. Then, the negative log-likelihood `(w1, · · ·wn) of the data under the The Bradley-Terry
model can be written as

`(w1, · · · , wn) = −
n∑
i=1

n∑
j=1

Nij log(1 + e−(wi−wj)/100) .

This is convex in the parameters w1, · · · , wn since the log-sum-exp function is convex. Zer-
melo’s algorithm (Hunter, 2004) can be used to compute the maximum likelihood estimate.
Denote w̃i = wi/100. Starting from an initial estimate w̃(0)

1 , · · · , w̃(0)
n , each iteration of

Zermelo’s algorithm performs the update

u
(t)
i = log

∑
j 6=i

Nij

− log

∑
j 6=i

Nij +Nji

exp(w̃
(t)
i ) + exp(w̃

(t)
j )


followed by the mean normalization

w̃
(t+1)
i = u

(t)
i −

1

n

n∑
j=1

u
(t)
j .

Processing Raw Data. We collect the result of a head-to-head comparison using 5 options:
Definitely A/B, Slightly A/B, or a Tie. We combine “Definitely A” and ”Slightly A“ into a
single category denoting that A wins, while ties were assigned to either A or B uniformly at
random.

13. The scaling factor 100 is arbitrary and does not change the model or the obtained rankings.
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GPT-2 Size Decoding BT/Human-like BT/Interesting BT/Sensible

Human 47.251 25.503 43.229
xl Nucleus, p = 0.95 15.664 23.046 31.888

Sampling 8.966 9.529 7.753
large Nucleus, p = 0.95 12.553 6.785 8.781

Sampling −6.935 −1.532 −7.106
medium Nucleus, p = 0.9 −3.429 −12.824 −7.293

Sampling −30.769 −34.323 −32.004
small Nucleus, p = 0.9 −15.783 −0.697 −7.442

Sampling −27.518 −15.487 −37.805

Table 18: Fitted Bradley-Terry (BT) scores for each of the three axes rated by human annotators:
“Human-like” denotes measures how likely the text is to be written by a human, while “Interesting”
and “Sensible” quantify how interesting or sensible the text is. The Spearman rank correlations
between each of these scores are: Human-like and Interesting: 0.917, Human-like and Sensible:
0.917, Interesting and Sensible: 0.967.

E.2 Full Results of the Human Evaluation

BT Model for Human Eval. In our setting, each “player” is a source of text, i.e., one
human, plus, eight model and decoding algorithm pairs (four model sizes GPT-2 small-
/medium/large/xl coupled with pure sampling or nucleus sampling). We compute the BT
score of each player as the maximum likelihood estimate of corresponding the parameters
w1, · · · , wn based on head-to-head human evaluation data.

A higher BT score indicates a stronger preference from human annotators. The BT
scores are reported in Table 18.

Interpreting BT scores. The BT scores reported in Table 18 give us predictions from the
sigmoid model above. For example, consider the column “BT/Human-like”. The best model-
generated text, GPT-2 xl with nucleus sampling will lose to human text with probability
0.578. At the other end, GPT-2 small with nucleus sampling will lose to human text with
probability 0.679. This shows that there is still much room for improvement in model-
generated text.

Discussion. In general, the BT scores from human evaluations and MAUVE both indicate
that (a) nucleus sampling is better than pure sampling for the same model size, and, (b)
larger model sizes are better for the same decoding algorithm. There is one exception to this
rule, as per both the human evaluations and MAUVE: GPT-2 small is better than GPT-2
medium for pure sampling.

E.3 Additional Details

We describe more details for the human evaluation. The terminology below is taken from
(Shimorina and Belz, 2022).

Number of Outputs Evaluated. We compare 9 players: one player is “human”, rep-
resenting human-written text, whereas the other 8 are text generated by the model using
the first 35 tokens of the corresponding human generation as a prompt. Each of the 8 non-
human players come from a GPT-2 model of different sizes (small, medium, large, xl) and
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two decoding algorithms (pure sampling and nucleus sampling). We perform 90 comparisons
between each pair of players, so each player is evaluated 90× 8 = 720 times.

Prompt Filtering. We manually selected 1831 out of 5000 prompts which are well-formed
English sentences from the web text test set.14 For every head-to-head comparison, we
sample 90 prompt without replacement and then sample the corresponding completions (for
human-generated text, we use the test set of web text). We only consider a pair of players
for human evaluation if the generation from each player is at least 200 BPE tokens long
(and we truncate each generation at a maximum length of 256 BPE tokens).

Number of Evaluators. 214 unique evaluators participated in the evaluation. Of these,
11 evaluators supplied at least 50 annotations 95 evaluators supplied at least 10 annotations.

Evaluator Selection and Pay. We conduct our human evaluation on Amazon Mechanical
Turk. Since the task only requires elementary reading and understanding skills in English,
we open the evaluations to non-experts. Each crowd worker was paid 0.40 per annotation.
The pay was estimated based on a $16/hour wage for the 85th percentile of response times
from a pilot study (which was approx. 98 seconds per annotation). These evaluators are
not previously known to the authors.

Training and Instructions. The evaluators were given instructions about the task and
two detailed examples. No other training was provided due to the elementary nature of the
task. The screenshots of these examples are given in Figure 25 while the instructions read:

Task Info: We are studying how good AI models are at generating text on the internet.
You are given a snippet of text from a random document on the internet, called the
"prompt" or the "context", as well as two continuations, A and B. One or both of these
is written by an AI. You must choose (a) which of two continuations is more interesting,
(b) which makes more sense given the prompt, and, (c) which is more likely to have
been written by a human, as per your assessment.

Guidelines:

• There are five choices for each question: Definitely A/B, Slightly A/B, or Tie. Please
use the "Tie" option extremely sparingly! (No more than one in every ten pairs
should be chosen as a tie along any of the three questions).

• The questions can have different answers! Some text is very creative or interesting,
but it doesn’t quite fit the prompt or make sense.

• Try to focus on quality over quantity. The text can be long but contain rambly
gibberish.

• Don’t worry if the text ends abruptly or has other artifacts of the website download-
ing process (text like ’Advertisement’ for instance).

• Please do your best, some of these are pretty challenging!
• Answering each question should take around 1.5 minutes on average, as per our

estimation. We have calibrated the pay to be $16 per hour with this speed.

14. The web text dataset is scraped from the internet and is not curated. This dataset contains poor
prompts such as headers of webpages or error messages, such as: “Having trouble viewing the video?
Try disabling any ad-blocking extensions currently running on your browser” or “Front Page Torrents
Favorites My Home My Galleries Toplists Bounties News Forums Wiki”. We exclude such prompts as
they are unsuitable for human evaluation.
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Quality Control. All annotations made in under 25 seconds were excluded for quality
control (the mean response time per annotation was 47 seconds).

Quality Criteria. We use three quality criteria. The questions asked to the evaluators
are (verbatim):

1. Interestingness: “Which continuation is more interesting or creative, given the context?"

2. Sensible: “Which continuation makes more sense, given the context?”

3. Human-like: “Which continuation is more likely to be written by a human?”

Note that we do explicitly name the criteria in the evaluation form, although those names
could be inferred from the definitions. We use these names only in the paper.
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Figure 25: Annotated examples shown to the evaluators.

82



MAUVE Scores for Generative Models: Theory and Practice

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. In Proc. of NeurIPS, 2020.

Yuheng Bu, Shaofeng Zou, Yingbin Liang, and Venugopal V. Veeravalli. Estimation of KL
divergence: Optimal minimax rate. IEEE Transactions on Information Theory, 64(4),
2018.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent
Charlin. Language GANs Falling Short. In Proc. of ICLR, 2020.

Haixiao Cai, Sanjeev R. Kulkarni, and Sergio Verdú. Universal divergence estimation for
finite-alphabet sources. IEEE Trans. Inf. Theory, 52(8):3456–3475, 2006.

T. Tony Cai, X. Jessie Jeng, and Jiashun Jin. Optimal detection of heterogeneous and
heteroscedastic mixtures. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(5), 2011.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of Text Generation: A
Survey. arXiv Preprint, 2020.

David M Chan, Yiming Ni, Austin Myers, Sudheendra Vijayanarasimhan, David A Ross,
and John Canny. Distribution aware metrics for conditional natural language generation.
arXiv preprint arXiv:2209.07518, 2022.

Fasil Cheema and Ruth Urner. Precision Recall Cover: A Method For Assessing Generative
Models. In AISTATS, volume 206, pages 6571–6594, 2023.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4), 1999.

Elizabeth Clark, Asli Celikyilmaz, and Noah A. Smith. Sentence Mover’s Similarity: Auto-
matic Evaluation for Multi-Sentence Texts. In Proc. of ACL, 2019.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and
Noah A. Smith. All That’s ‘Human’ Is Not Gold: Evaluating Human Evaluation of
Generated Text. In Proc. of ACL, 2021.

Stéphan Clémençon and Nicolas Vayatis. Nonparametric estimation of the precision-recall
curve. In Proc. of ICML, pages 185–192, 2009.

Stéphan Clémençon and Nicolas Vayatis. Overlaying classifiers: a practical approach to
optimal scoring. Constructive Approximation, 32:619–648, 2010.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel P. Kuksa. Natural Language Processing (Almost) from Scratch. J. Mach. Learn.
Res., 12:2493–2537, 2011.

83



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the ROC curve.
In Proc. of NeurIPS, volume 17, 2005.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Proc.
of NIPS, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proc. of NAACL,
pages 4171–4186, 2019.

Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Springer, 1996.

Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, and Syl-
vain Gelly. Precision-Recall Curves Using Information Divergence Frontiers. In Proc. of
AISTATS, pages 2550–2559, 2020.

Bryan Eikema and Wilker Aziz. Is MAP Decoding All You Need? The Inadequacy of the
Mode in Neural Machine Translation. In Proc. of CoLING, 2020.

Moein Falahatgar, Mesrob I Ohannessian, Alon Orlitsky, and Venkatadheeraj Pichapati.
The power of absolute discounting: All-dimensional distribution estimation. In Proc. of
NIPS, 2017.

Angela Fan, Mike Lewis, and Yann N. Dauphin. Hierarchical Neural Story Generation. In
Proc. of ACL, pages 889–898, 2018.

Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish
Sabharwal. Closing the curious case of neural text degeneration, 2023.

Peter Flach. Machine Learning: The Art and Science of Algorithms That Make Sense of
Data. Cambridge University Press, 2012.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
ToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models. In EMNLP,
pages 3356–3369, 2020.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. Repairing the Cracked Foun-
dation: A Survey of Obstacles in Evaluation Practices for Generated Text. J. Artif. Intell.
Res., 77:103–166, 2023.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

I. J. Good. The population frequencies of species and the estimation of population param-
eters. Biometrika, 40(3-4), 1953.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In Proc.
of NeurIPS, 2014.

84

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


MAUVE Scores for Generative Models: Theory and Practice

Google. Bard: A conversational AI tool by Google. https://bard.google.com, 2023.

Jian Guan and Minlie Huang. UNION: An Unreferenced Metric for Evaluating Open-ended
Story Generation. In Proc. of EMNLP, pages 9157–9166, 2020.

Adityanand Guntuboyina, Sujayam Saha, and Geoffrey Schiebinger. Sharp Inequalities for
f -Divergences. IEEE Trans. Inf. Theory, 60(1):104–121, 2014.

L. Györfi and T. Nemetz. f -dissimilarity: A generalization of the affinity of several distri-
butions. Annals of the Institute of Statistical Mathematics, 30, 1978.

Perttu Hämäläinen and Arno Solin. Deep Residual Mixture Models. arXiv preprint, 2020.

Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax Estimation of Divergences
Between Discrete Distributions. IEEE J. Sel. Areas Inf. Theory, 1(3):814–823, 2020.

Tatsunori Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical eval-
uation for natural language generation. In Proc. of NAACL, pages 1689–1701, 2019.

Anant Hegde, Deniz Erdogmus, Tue Lehn-Schioler, Yadunandana N Rao, and Jose C
Principe. Vector-quantization by density matching in the minimum Kullback-Leibler di-
vergence sense. In IJCNN, 2004.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. GANs trained by a two time-scale update rule converge to a local Nash equilibrium.
Proc. of NeurIPS, 30, 2017.

John Hewitt, Christopher D Manning, and Percy Liang. Truncation Sampling as Language
Model Desmoothing. In Proc. of EMNLP Findings, 2022.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The Curious Case of Neural Text
Degeneration. In Proc. of ICLR, 2020.

Jinyi Hu, Xiaoyuan Yi, Wenhao Li, Maosong Sun, and Xing Xie. Fuse It More Deeply! A
Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation.
In Proc. of NAACL, 2022.

Marc Van Hulle. Faithful representations with topographic maps. Neural Networks, 12(6),
1999.

David R Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of
Statistics, 32(1):384–406, 2004.

Yuri Ingster and I.A. Suslina. Nonparametric Goodness-of-Fit Testing Under Gaussian Mod-
els. Springer, 2003.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic
Detection of Generated Text is Easiest when Humans are Fooled. In Proc. of ACL, pages
1808–1822, July 2020.

85

https://bard.google.com


Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B.
ArXiv Preprint, 2023.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 2019.

Dan Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice
Hall, Pearson Education International, 2009.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, et al.
Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations.
Advances in Neural Information Processing Systems, 28, 2015.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer. The Perils of Using Mechanical Turk
to Evaluate Open-Ended Text Generation. In Proc. of EMNLP, 2021.

Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Gen-
erative Adversarial Networks. In Proc. of CVPR, pages 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training Generative Adversarial Networks with Limited Data. Proc. of NeurIPS, 33:
12104–12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and Improving the Image Quality of StyleGAN. In Proc. of CVPR, pages
8107–8116, 2020b.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-Free Generative Adversarial Networks. In Proc. of NeurIPS, pages
852–863, 2021.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet Audio
Distance: A Reference-Free Metric for Evaluating Music Enhancement Algorithms. In
Interspeech, pages 2350–2354, 2019.

Pum Jun Kim, Yoojin Jang, Jisu Kim, and Jaejun Yoo. TopP&R: Robust Support Esti-
mation Approach for Evaluating Fidelity and Diversity in Generative Models. In Proc. of
NeurIPS, 2023.

George Kour, Samuel Ackerman, Eitan Farchi, Orna Raz, Boaz Carmeli, and Ateret Anaby-
Tavor. Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics
for Text Corpora. In Proc. of EMNLP, 2022.

Raphail E. Krichevsky and Victor K. Trofimov. The performance of universal encoding.
IEEE Transactions on Information Theory, 27(2), 1981.

86



MAUVE Scores for Generative Models: Theory and Practice

Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas Terzis.
Harnessing large-language models to generate private synthetic text. arXiv Preprint, 2023.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From Word Embeddings to
Document Distances. In Proc. of ICML, pages 957–966. PMLR, 2015.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Im-
proved Precision and Recall Metric for Assessing Generative Models. In Proc. of NeurIPS,
2019.

Tian Lan, Yixuan Su, Shuhang Liu, Heyan Huang, and Xian-Ling Mao. Momentum Decod-
ing: Open-ended Text Generation As Graph Exploration. arXiv Preprint, 2022.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto,
Luke Zettlemoyer, and Mike Lewis. Contrastive Decoding: Open-ended Text Generation
as Optimization. In Proc. of ACL, pages 12286–12312, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Ya-
sunaga, Yian Zhang, Deepak Narayanan, et al. Holistic evaluation of language models,
2023.

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text
Summarization Branches Out, pages 74–81, 2004.

Lang Liu, Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi, and Zaid Harchaoui.
Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects,
and Frontier Integrals. In Proc. of NeurIPS, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. arXiv Preprint, 2019.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins.
Text Classification using String Kernels. Journal of machine learning research, 2(Feb):
419–444, 2002.

David Lopez-Paz and Maxime Oquab. Revisiting Classifier Two-Sample Tests. In Proc. of
ICLR, 2017.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 2001. ISBN 978-0-262-13360-9.

John I. Marden. Analyzing and modeling rank data, volume 64 of Monographs on Statistics
and Applied Probability. Chapman & Hall, London, 1995. ISBN 0-412-99521-2.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. Sparse Text Generation.
In Proc. EMNLP, pages 4252–4273, 2020.

Luca Massarelli, Fabio Petroni, Aleksandra Piktus, Myle Ott, Tim Rocktäschel, Vassilis
Plachouras, Fabrizio Silvestri, and Sebastian Riedel. How Decoding Strategies Affect the
Verifiability of Generated Text. In Proc. of EMNLP, pages 223–235, 2020.

87



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schoelkopf, and Mrinmaya
Sachan. Differentially Private Language Models for Secure Data Sharing. In Proc. of
EMNLP, 2022.

David Mcallester and Luis Ortiz. Concentration inequalities for the missing mass and for
histogram rule error. Journal of Machine Learning Research, 4, 2003.

Peter Meinicke and Helge Ritter. Quantizing density estimators. In Proc. of NeurIPS, 2002.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally Typical Sampling.
Transactions of the Association for Computational Linguistics, 2022.

James Mercer. Functions of positive and negative type, and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society of London (A), 209
(441-458):415–446, 1909.

Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science &
Business Media, 2012.

Kevin R. Moon and Alfred O. Hero III. Ensemble estimation of multivariate f -divergence.
In Proc. of ISIT, pages 356–360. IEEE, 2014.

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating Divergence
Functionals and the Likelihood Ratio by Convex Risk Minimization. IEEE Trans. Inf.
Theory, 56(11):5847–5861, 2010.

Frank Nielsen and Rajendra Bhatia. Matrix Information Geometry. Springer, 2013.

Morteza Noshad, Kevin R. Moon, Salimeh Yasaei Sekeh, and Alfred O. Hero III. Direct
estimation of information divergence using nearest neighbor ratios. In ISIT, pages 903–
907. IEEE, 2017.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser. Why We
Need New Evaluation Metrics for NLG. In Proc. of EMNLP, 2017.

OpenAI. GPT-4 Technical Report, 2023.

Juri Opitz and Anette Frank. Towards a Decomposable Metric for Explainable Evaluation
of Text Generation from AMR. In Proc. of EACL, pages 1504–1518, 2021.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud
Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li,
Ishan Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jé-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2:
Learning Robust Visual Features without Supervision. CoRR, 2023.

Alon Orlitsky and Ananda Theertha Suresh. Competitive distribution estimation: Why is
Good-Turing good. In NeurIPS, 2015.

88



MAUVE Scores for Generative Models: Theory and Practice

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for
Automatic Evaluation of Machine Translation. In Proc. of ACL, pages 311–318, 2002.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global Vectors
for Word Representation. In Proc. of EMNLP, pages 1532–1543, 2014.

Margaret Sullivan Pepe. Receiver Operating Characteristic Methodology. Journal of the
American Statistical Association, 95(449):308–311, 2000. ISSN 01621459.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. MAUVE: Measuring the Gap Between Neural Text and Human
Text with Divergence Frontiers. In Proc. of NeurIPS, 2021.

Tiago Pimentel, Clara Meister, and Ryan Cotterell. On the Usefulness of Embeddings,
Clusters and Strings for Text Generation Evaluation. In Proc. of ICLR, 2023.

Barnabás Póczos, Liang Xiong, and Jeff G. Schneider. Nonparametric Divergence Estimation
with Applications to Machine Learning on Distributions. In Proc. of UAI, pages 599–608,
2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
Text-Conditional Image Generation with CLIP Latents. arXiv Preprint, 2022.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. PlotMachines: Outline-
Conditioned Generation with Dynamic Plot State Tracking. In Proc. of EMNLP, pages
4274–4295, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-Resolution Image Synthesis with Latent Diffusion Models. In Proc. of CVPR, pages
10684–10695, 2022.

Juho Rousu, John Shawe-Taylor, and Tommi Jaakkola. Efficient Computation of Gapped
Substring Kernels on Large Alphabets. Journal of Machine Learning Research, 6(9), 2005.

Paul K. Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme, and Ilya O. Tol-
stikhin. Practical and Consistent Estimation of f-Divergences. In Proc. of NeurIPS, pages
4072–4082, 2019.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading
vectors for similarity search. In Proc. of ICLR, 2019.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton,
Seyed Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim
Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-
to-Image Diffusion Models with Deep Language Understanding. In Proc. of NeurIPS,
2022.

89



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Ananya B. Sai, Akash Kumar Mohankumar, and Mitesh M. Khapra. A Survey of Evaluation
Metrics Used for NLG Systems. ACM Comput. Surv., 55(2):26:1–26:39, 2023.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. In Proc. of NeurIPS, 2018.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved Techniques for Training GANs. In Proc. of NeurIPS, pages 2226–
2234, 2016.

Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling StyleGAN to Large
Diverse Datasets. In SIGGRAPH, pages 49:1–49:10, 2022.

Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak Dalalyan. Statistical guarantees for
generative models without domination. In Algorithmic Learning Theory, pages 1051–1071.
PMLR, 2021.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh. BLEURT: Learning Robust Metrics
for Text Generation. In Proc. of ACL, pages 7881–7892, 2020.

Stanislau Semeniuta, Aliaksei Severyn, and Sylvain Gelly. On Accurate Evaluation of GANs
for Language Generation, 2018. arXiv Preprint.

Serge Sharoff. Know thy Corpus! Robust Methods for Digital Curation of Web corpora. In
Proc. of LREC, pages 2453–2460. European Language Resources Association, 2020.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru Komachi. RUSE: Regressor Using Sen-
tence Embeddingsfor Automatic Machine Translation Evaluation. In Proc. of Conference
on Machine Translation, pages 751–758, 2018.

Anastasia Shimorina and Anya Belz. The human evaluation datasheet: A template for
recording details of human evaluation experiments in NLP. In Proc. of Workshop on
Human Evaluation of NLP Systems, pages 54–75, 2022.

Jorge Silva and Shrikanth Narayanan. Universal consistency of data-driven partitions for
divergence estimation. In Proc. of ISIT, 2007.

Jorge Silva and Shrikanth S Narayanan. Information divergence estimation based on data-
dependent partitions. Journal of Statistical Planning and Inference, 140(11), 2010.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equa-
tions. In Proc. of ICLR, 2021.

Sreejith Sreekumar and Ziv Goldfeld. Neural Estimation of Statistical Divergences. Journal
of Machine Learning Research, 23(126):1–75, 2022.

90



MAUVE Scores for Generative Models: Theory and Practice

George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin
Villecroze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T. Taylor, and Gabriel Loaiza-
Ganem. Exposing flaws of generative model evaluation metrics and their unfair treatment
of diffusion models. In Proc. of NeurIPS 2023, 2023.

Yixuan Su and Jialu Xu. An Empirical Study On Contrastive Search And Contrastive
Decoding For Open-ended Text Generation. arXiv Preprint, 2022.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A
Contrastive Framework for Neural Text Generation. In Proc. of NeurIPS, 2022.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in
Machine Learning. Cambridge University Press, 2012.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang
Liu, Xuyi Chen, Yanbin Zhao, Yuxiang Lu, et al. ERNIE 3.0: Large-scale Knowledge
Enhanced Pre-training for Language Understanding and Generation. ArXiv Preprint,
2021.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. RUBER: An Unsupervised Method
for Automatic Evaluation of Open-Domain Dialog Systems. In Proc. of AAAI, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open Foundation and Fine-Tuned Chat Models. ArXiv Preprint, 2023.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin
Michalski, and Sylvain Gelly. Towards Accurate Generative Models of Video: A New
Metric & Challenges. arXiv Preprint, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Proc. of
NeurIPS, pages 5998–6008, 2017.

Sergio Verdú. Empirical Estimation of Information Measures: A Literature Guide. Entropy,
21(8):720, 2019.

Alexandre Verine, Benjamin Negrevergne, Muni Sreenivas Pydi, and Yann Chevaleyre.
Precision-Recall Divergence Optimization for Generative Modeling with GANs and Nor-
malizing Flows. In Proc. of NeurIPS, 2023.

Cédric Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

Qing Wang, Sanjeev R Kulkarni, and Sergio Verdú. Divergence estimation of continuous
distributions based on data-dependent partitions. IEEE Transactions on Information
Theory, 51(9), 2005.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to Model the Tail. In Proc.
of NeurIPS, 2017.

91



Pillutla, Liu, Thickstun, Welleck, Swayamdipta, Zellers, Oh, Choi, Harchaoui

Sean Welleck, Ilia Kulikov, Jaedeok Kim, Richard Yuanzhe Pang, and Kyunghyun Cho.
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding. In
Proc. of EMNLP, pages 5553–5568, 2020a.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason We-
ston. Neural Text Generation With Unlikelihood Training. In Proc. of ICLR, 2020b.

BigScience Workshop. BLOOM: A 176B-Parameter Open-Access Multilingual Language
Model. ArXiv Preprint, 2022.

Zonghan Yang, Xiaoyuan Yi, Peng Li, Yang Liu, and Xing Xie. Unified Detoxifying and
Debiasing in Language Generation via Inference-time Adaptive Optimization. In Proc. of
ICLR, 2023.

Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang,
Arun Babu, Binh Tang, Brian Karrer, Shelly Sheynin, et al. Scaling Autoregressive Multi-
Modal Models: Pretraining and Instruction Tuning. ArXiv Preprint, 2023.

Xiang Yue, Huseyin A. Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari,
Huan Sun, David Levitan, and Robert Sim. Synthetic Text Generation with Differential
Privacy: A Simple and Practical Recipe. In Proc. of ACL, pages 1321–1342, 2023.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roes-
ner, and Yejin Choi. Defending Against Neural Fake News. In Proc. of NeurIPS, 2019.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unrea-
sonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR, pages 586–595,
2018.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. BERTScore:
Evaluating text generation with BERT. In Proc. of ICLR, 2020.

Zhiyi Zhang and Michael Grabchak. Nonparametric estimation of Küllback-Leibler diver-
gence. Neural Comput., 26(11):2570–2593, 2014.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger.
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth
Mover Distance. In Proc. of EMNLP, 2019.

92


	Introduction
	Contributions

	Background and Setup
	Language Modeling and Open-Ended Text Generation
	Comparing Generative Models
	Information Divergences

	Generalizing Divergence Frontiers with f-Divergences
	Tradeoff Curves to Evaluate Generative Models
	Scalar Summaries of Divergence Frontiers
	Properties of Divergence Frontier Summaries

	Practical Computation of the Divergence Frontier and its Summaries
	Estimation via Vector Quantization
	Estimation Error Bounds
	Towards a Practical Algorithm

	Estimation via Nearest Neighbors
	Estimation Error Bounds
	Towards a Practical Algorithm
	Extensions and Variants

	Estimation via Classification

	Related Work
	Divergence Frontiers for Generative Models
	Divergence Measures for Text
	Divergence Measures for Images
	Statistical Estimation of Information Divergences

	Experiments: Setup
	Task Domains and Models
	Decoding Algorithms
	Baseline Metrics
	Human Judgements and Evaluation of Automatic Metrics
	Hyperparameters

	Experimental Results
	Comparison to Human Evaluation
	Quantifying the Effect of Model Size, Decoding, Text Length
	Comparison of Statistical Estimation Methods
	Comparison of Vector Quantization with Other Approximations
	Effect of Smoothing on Vector Quantization-Based Estimation
	Direct Estimation from Model Probabilities
	Summary and Discussion

	Comparison to Other Divergences and Optimal Transport Costs
	Divergence Frontier Summaries and Other f-Divergences
	Variants based on Optimal Transport

	Effect of the Embedding
	Reusing a Generative Model For Embeddings
	Masked Language Model Embeddings
	Learned Shallow GloVe Embeddings
	String-based Kernel Embeddings
	Summary and Discussion

	Comparison to Generative Precision and Recall
	Evaluating Image Generative Models with Mauve
	Effect of the Sampling
	Effect of the Model Scale and Architecture
	Summary

	Tightness of the Statistical Error Bounds

	Empirical Recommendations
	Properties of the Divergence Frontiers
	Proofs of Theoretical Bounds: Quantization
	Statistical Error Bound
	Approximate Lipschitz Property
	Missing Mass Computation
	Full Proof of the Statistical bound

	Statistical Error Bound with Smoothing
	Quantization Error
	Properties and Technical Lemmas

	Estimation of Divergences via Parametric Approximations
	Experiments: Additional Results
	Results for Other Domains: News and Stories
	Effect of Text Length
	Comparison with Other Divergences and Optimal Transport
	Use of Mauve for Hyperparameter Tuning

	Human Evaluation: Protocol and Full Results
	From Pairwise Preferences to Ranking: the Bradley-Terry Model
	Full Results of the Human Evaluation
	Additional Details


