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Abstract
We introduce a new class of optimization problems called scale invariant problems that cover
interesting problems in machine learning and statistics and show that they are efficiently
solved by a general form of power iteration called scale invariant power iteration (SCI-PI).
SCI-PI is a special case of the generalized power method (GPM) (Journée et al., 2010) where
the constraint set is the unit sphere. In this work, we provide the convergence analysis of
SCI-PI for scale invariant problems which yields a better rate than the analysis of GPM.
Specifically, we prove that it attains local linear convergence with a generalized rate of
power iteration to find an optimal solution for scale invariant problems. Moreover, we
discuss some extended settings of scale invariant problems and provide similar convergence
results. In numerical experiments, we introduce applications to independent component
analysis, Gaussian mixtures, and non-negative matrix factorization with the KL-divergence.
Experimental results demonstrate that SCI-PI is competitive to application specific state-
of-the-art algorithms and often yield better solutions.
Keywords: scale invariance, power iteration, optimization, convergence analysis, machine
learning applications

1. Introduction

We study a new class of optimization problems called scale invariant problems having the
form of

maximize f(x) subject to x ∈ ∂Bd , {x ∈ Rd : ‖x‖2 = 1}, (1)

where f : Rd → R is a twice continuously differentiable, scale invariant function. We
say that a function f is scale invariant, which is rigorously defined later in Definition 1,
if its geometric surface is invariant under constant multiplication of x. Many important
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optimization problems in statistics and machine learning can be formulated as scale invariant
problems, for instance, Lp-norm kernel PCA and maximum likelihood estimation of mixture
proportions, to name a few. Moreover, as studied herein, independent component analysis
(ICA, Example 3), Gaussian mixture models (GMM, Example 4), and non-negative matrix
factorization with the Kullback-Leibler divergence (KL-NMF, Example 5) can be formulated
as extended settings of scale invariant problems where the objective function is a sum of scale
invariant functions or the problem is scale invariant with respect to a subset of variables
while the other variables are fixed.

Since ∂Bd is not a convex set, scale invariant problems are in general non-convex opti-
mization problems. Nevertheless, some instances can be efficiently solved, for instance, the
leading eigenvector problem (Golub and Van Loan, 2012). Power iteration (Muntz, 1913;
Mises and Pollaczek-Geiringer, 1929) is an algorithm to find the leading eigenvector of a
diagonalizable matrix A. In power iteration, xk+1 ← Axk/‖Axk‖2 is repeatedly applied
until some stopping criterion is satisfied. Since no hyperparameter is required, this update
rule is practical but at the same time it attains global linear convergence with the rate of
|λ2|/|λ1| where |λi| is the ith largest absolute eigenvalue of A (Wilkinson, 1965; Golub and
Van Loan, 2012). The linear convergence property of power iteration has been extended to
many applications. However, theoretical understanding of when and how such algorithms
enjoy this attractive convergence property of power iteration is limited. For example, for
convex f , a general form of power iteration called generalized power method (GPM) (Journée
et al., 2010) has been shown to attain only global sublinear convergence rate of O(1/ε), not
generalizing the appealing linear convergence of power iteration. For historical development
of power iteration, see Golub and Van der Vorst (2000); Tapia et al. (2018).

In this work, we present scale invariant problems that generalize the leading eigenvector
problem in the sense that any stationary point x∗ of (1) satisfying ∇f(x∗) = λ∗x∗ for some
λ∗ is an eigenvector of ∇2f(x∗). By this property, scale invariant problems can be seen as the
leading eigenvector problem near a local optimum x∗, so we can expect that a general form
of power iteration would work well for them. By swapping the objective function and the
constraint, we obtain a geometrically interpretable dual problem with the goal of finding the
closest point w to the origin from the constraint f(w) = 1. By mapping an iterate xk to the
dual space, taking a descent step in the dual space and mapping it back to the original space,
we geometrically derive scale invariant power iteration (SCI-PI), which replaces Axk with
∇f(xk) in power iteration. SCI-PI is the same algorithm as GPM applied to the unit sphere
constraint. However, we improve the convergence rate of GPM for scale invariant problems
showing that the algorithm attains local linear convergence with a generalized rate of power
iteration when initialized close to it. To the best of our knowledge, this is the first work
exploiting the properties of scale invariant problems. Also, this is the first linear convergence
result of GPM for general optimization problems. This improvement is significant since with
linear convergence, the iteration complexity to attain an ε-optimal solution reduces from
O(1/ε) to O(1/ log(1/ε)). Moreover, under some mild conditions, we provide an explicit
expression regarding the initial condition on ‖x0 − x∗‖2 to ensure convergence.

In the extended settings (Section 4), we discuss three variants of (1). In the first setting,
we consider a sum of scale invariant functions (Subsection 4.1) as an objective function. This
setting covers a Kurtosis-based ICA and can be solved by SCI-PI with similar convergence
guarantees. Second, we consider a block version of scale invariant problems (Subsection 4.2)
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which covers KL-NMF and the Burer-Monteiro factorization of semi-definite programs. To
solve this block scale invariant problem, we present a block version of SCI-PI and show that
it attains linear convergence in a two-block case. Lastly, we consider partially scale invariant
problems (Subsection 4.3) which include general mixture problems such as GMM. For this
partially scale invariant problems, we present an alternating algorithm based on SCI-PI and
gradient ascent along with its convergence analysis. In numerical experiments, we benchmark
the proposed algorithms against state-of-the-art methods for ICA, KL-NMF, and GMM. The
experimental results show that our algorithms are computationally competitive and result in
better solutions in “most” if we do not beat in all herein studied cases.

In summary, this work has the following contributions.

1. We introduce scale invariant problems which cover interesting examples in statistics
and machine learning. By the eigenvector property (Proposition 4), they resemble the
leading eigenvector problem near a local optimum x∗.

2. For scale invariant problems, we prove that SCI-PI (a special form of GPM) converges to
a local maximum x∗ at a logarithmic rate when initialized close to x∗. This generalizes
the attractive convergence property of power iteration. Moreover, we introduce three
extended settings of scale invariant problems along with solution algorithms and their
convergence analyses.

3. We report numerical experiments including a novel reformulation of KL-NMF to a
block scale invariant problem. The experimental results demonstrate that SCI-PI is
not only computationally competitive to state-of-the-art methods but also often yield
better solutions.

The paper is organized as follows. In Section 2, we define scale invariance and present
interesting properties of scale invariant problems including an eigenvector property and a
dual formulation. We then provide a geometric derivation of SCI-PI and a convergence
analysis in Section 3. The extended settings are discussed in Section 4 and we report the
numerical experiments in Section 5. We finish the introduction with literature review and a
notation paragraph.

1.1 Related Works

Power Iteration The global linear convergence property of power iteration is analogous
to that of gradient descent for convex optimization. Therefore, many variants including
coordinate-wise (Lei et al., 2016), momentum (Xu et al., 2018), online (Boutsidis et al., 2015;
Garber et al., 2015), stochastic (Oja, 1982), stochastic variance-reduced (Shamir, 2015, 2016;
Xu et al., 2018; Kim and Klabjan, 2020b), and truncated (Yuan and Zhang, 2013; Han and
Liu, 2014) power iterations have been developed, drawing a parallel literature to gradient
descent for convex optimization. We discover a class of optimization problems which can be
locally seen as the leading eigenvector problem, and prove that they can be efficiently solved
by a general form of power iteration.

Generalized Power Method (GPM) GPM (Journée et al., 2010) is an iterative al-
gorithm that finds the next iterate by projecting the gradient at the current iterate to
the constraint set. GPM has been applied to statistical problems such as sparse principal
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component analysis (PCA) (Journée et al., 2010; Luss and Teboulle, 2013) and L1-norm
kernel PCA (Kim and Klabjan, 2020a). While GPM has a general form of power iteration, its
convergence analysis does not extend the attractive convergence property of power iteration.
For example, only global sublinear convergence has been shown for convex f . We generalize
the local linear convergence property of power iteration to scale invariant problems.

Block Power Iteration A block version of power iteration has been developed to solve
the phase synchronization problem (Boumal, 2016). If the problem consists of a single block
and the shift parameter is set to zero, this algorithm specializes to power iteration. Under
some conditions on the measurement noise and the initial iterate, it attains linear convergence
to a global solution (Liu et al., 2017). To solve the Burer-Monteiro factorization (Burer and
Monteiro, 2003) of semi-definite programs (Vandenberghe and Boyd, 1996), Erdogdu et al.
(2022) developed a block coordinate maximization (BCM) algorithm. By iteratively sampling
a block and applying power iteration to it, BCM attains local linear convergence as well
as global sublinear convergence. However, the linear convergence property of block power
iteration has not been extended to more general settings. In this work, we prove that block
variants of SCI-PI attain linear convergence for block and partially scale invariant problems.

Alternating Minimization Alternating algorithms have been developed for many applica-
tions such as k-means clustering (MacQueen, 1967), Gaussian mixture model (Bishop, 2006),
dictionary learning (Olshausen and Field, 1997; Aharon et al., 2006), matrix completion
(Candès and Recht, 2009), matrix factorization (Lee and Seung, 2001), and finding a point
in the intersection of two closed sets (Lewis et al., 2009). Beck (2015) studied alternating
minimization and proved that it achieves sublinear convergence for convex programming. For
optimization problems with a separable convex objective function and a linear constraint,
alternating direction method of multipliers (ADMM) (Boyd et al., 2011) has been shown to
attain linear convergence (Hong and Luo, 2017). However, due to the exact minimization
step, ADMM can incur high per iteration cost. Instead of performing exact minimization,
our algorithms alternatively apply simple steps to update blocks but at the same time they
achieve local linear convergence.

Manifold Optimization Viewed as an optimization problem on the real projective plane,
a scale invariant problem can be reformulated to an equivalent problem in the embedding
space. The reformulated problem is unconstrained in the embedding space but it has a highly
non-convex structure, e.g., the maximization of the Rayleigh quotient. In order to solve the
reformulated problem, general algorithms for unconstrained non-convex optimization such as
gradient and Newton methods with line search, and trust region method (Absil et al., 2009)
can be employed. Rather than working in the embedding space, we focus on a generalization
of power iteration.

Gauge Optimization A gauge function which is a nonnegative, convex, and positively
homogeneous function that vanishes at the origin is a multiplicatively scale invariant function.
Gauge functions include norms and pseudonorms as special cases and generalize the notion of
a norm. The gauge program that minimizes a gauge function over a convex set is introduced
in (Freund, 1987) and further studied in (Friedlander et al., 2014). The literature on gauge
optimization is mainly about developing and studying dual problems. Conversely, we develop
a simple numerical algorithm that solves the primal problem.
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1.2 Notation

Let R and R+ denote the set of real numbers and the set of non-negative real numbers,
respectively. Let d be the dimension of the optimization variable x. Let Rd denote the set
of d-dimensional real vectors and f be a function from Rd to R. We denote the gradient
and Hessian of a function f as ∇f and ∇2f . Let u and v be functions from R to R+ and
R \ {0} to R, representing multiplicative and additive factor functions, respectively, and let
p be the degree of a scale invariant function, which equals to the degree of homogeneity
for a multiplicative scale invariant function and 0 for an additive scale invariant function.
We use (λi,vi) and (si,ui) to represent eigen-pairs. The jth element of vi is denoted as
vi,j . Let k be the iteration index and we denote the sequences of iterates and function
values by {xk}k=0,1,··· and {f(xk)}k=0,1,···, respectively. Lastly, we let �, � and (·)�2 denote
element-wise product, division and square, respectively and let 1n ∈ Rn denote the vector of
n ones.

2. Scale Invariant Problems

Before presenting properties of scale invariant problems, we first define scale invariant
functions.

Definition 1 We say that a function f : Rd → R is multiplicatively scale invariant if it
satisfies

f(cx) = u(c)f(x) (2)

for some even function u : R → R+ with u(0) = 0. Also, we say that f : Rd \ {0} → R is
additively scale invariant if it satisfies

f(cx) = f(x) + v(c) (3)

for some even function v : R \ {0} → R with v(1) = 0.

The following proposition characterizes the exact form of u and v for continuous f .

Proposition 2 If a continuous function f 6= 0 satisfies (2) with a multiplicative factor u,
then we have

u(c) = |c|p (4)

for some p > 0. Also, if a continuous function f satisfies (3) with an additive factor v, then
we have

v(c) = loga |c| (5)

for some a such that 0 < a and a 6= 1.

Using the explicit forms of u and v in Proposition 2, we establish derivative-based
properties of scale invariant functions below.

Proposition 3 Suppose that f is twice differentiable. If f satisfies (2) with a multiplicative
factor u(c) = |c|p, we have

c∇f(cx) = |c|p∇f(x), ∇f(x)Tx = pf(x), ∇2f(x)x = (p− 1)∇f(x). (6)
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Also, if f satisfies (3) with an additive factor v(c) = loga |c|, we have

c∇f(cx) = ∇f(x), ∇f(x)Tx =
1

log(a)
, ∇2f(x)x = −∇f(x). (7)

Proposition 3 states that a scale invariant function f satisfies that ∇2f(x)x is a scalar
multiple of ∇f(x). Let

L(λ, x) = f(x) + λ (1− ‖x‖2) .

be the Lagrange function of (1) and (λ∗, x∗) be a stationary point satisfying ∇L(λ, x) = 0
such that

∇f(x∗) = λ∗x∗, ‖x∗‖2 = 1. (8)

In the next proposition, we derive an eigenvector property which states that for any stationary
point (λ∗, x∗) of (1) satisfying (8), x∗ is an eigenvector of ∇2f(x∗).

Proposition 4 Suppose that f is twice differentiable and let (λ∗, x∗) be a stationary point
of (1) satisfying (8). If f satisfies (2) with u(c) = |c|p, then we have

∇2f(x∗)x∗ = (p− 1)λ∗x∗.

Also, if f satisfies (3) with v(c) = loga |c|, then we have

∇2f(x∗)x∗ = −λ∗x∗.

In both cases, x∗ is an eigenvector of ∇2f(x∗). Moreover, if λ∗ is greater than the largest
eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ), then x∗ is a local maximum to (1).

Proof If f is multiplicative scale invariant with the degree of p, by Proposition 3, we have

∇2f(x∗)x∗ = (p− 1)∇f(x∗) = (p− 1)λ∗x∗.

Also, by Proposition 3, if f is additive scale invariant f , we have

∇2f(x∗)x∗ = −∇f(x∗) = −λ∗x∗.

Therefore, in both cases, a stationary point x∗ is an eigenvector of ∇2f(x∗).
Suppose that λ∗ is greater than the largest eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ). For any

h satisfying hTx∗ = 0, we have

hT∇2
xxL(x∗, λ∗)h = hT

(
∇2f(x∗)− λ∗(I − x∗(x∗)T )

)
h

= hT∇2f(x∗)(I − x∗(x∗)T )h− λ∗‖h‖22 < 0.

Since the second-order sufficient condition is satisfied, x∗ is a local maximum.

Proposition 4 states that a stationary point x∗ is an eigenvector of ∇2f(x∗). Note that the
Lagrange multiplier λ∗ is not necessarily an eigenvalue corresponding to x∗. The eigenvalue
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corresponding to x∗ is (p−1)λ∗ if f is multiplicatively scale invariant or −λ∗ if f is additively
scale invariant. The second-order sufficient condition for local optimality requires that the
Lagrange multiplier λ∗ rather than the eigenvalue corresponding to x∗ is greater than the
largest eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ). Due to this eigenvector property, scale invariant
problems can be considered as a generalization of the leading eigenvector problem. Next, we
introduce a dual formulation of scale invariant problems.

Proposition 5 Suppose that the objective function f is continuous and either multiplicatively
scale invariant with a positive optimal value and a multipicative factor u(c) = |c|p such that
p > 0 or additively scale invariant having an additive factor v(c) = loga |c| such that a > 1.
Then, solving (1) is equivalent to solving the following optimization problem

minimize ‖w‖2 subject to f(w) = 1. (9)

In other words, if x∗ is an optimal solution to (1), then w∗ = x∗/f(x∗)1/p (multiplicative)
or w∗ = a1−f(x∗)x∗ (additive) is an optimal solution to (9). Conversely, if w∗ is an optimal
solution to (9), x∗ = w∗/‖w∗‖2 is an optimal solution to (1).

For a multiplicatively scale invariant f having a negative optimal value and a multiplicative
factor u(c) = |c|p such that p < 0, we can derive a similar reformulation by replacing f(w) = 1
with f(w) = −1. On the other hand, for an additively scale invariant f having an additive
factor v(c) = loga |c| such that 0 < a < 1, we obtain a maximization problem with the same
objective function and constraint. The dual formulation (9) has a nice geometric interpretation
that an optimal solution w∗ is the closest point to the origin from {w : f(w) = 1}. We use
this understanding to derive SCI-PI in Section 3.

Lastly, we introduce two well-known examples of scale invariant problems in machine
learning and statistics.

Example 1 (Lp-norm Kernel PCA) Given data vectors ai ∈ Rd and a mapping Φ, Lp-
norm PCA considers

maximize
1

n

∑n
i=1‖Φ(ai)

Tx‖pp subject to x ∈ ∂Bd (10)

where the objective function satisfies property (2) with u(c) = |c|p.

Example 2 (Estimation of Mixture Proportions) Given a design matrix L ∈ Rn×d
satisfying Lij ≥ 0, the problem of estimating mixture proportions seeks to find a vector π of
mixture proportions on the probability simplex Sd =

{
π :
∑d

j=1 πj = 1, π ≥ 0
}
that solves

maximize
1

n

∑n
i=1 log

(∑d
j=1Lijπj

)
subject to π ∈ Sd. (11)

By reparametrizing πj by x2
j , we obtain an equivalent optimization problem

maximize
1

n

∑n
i=1 log

(∑d
j=1Lijx

2
j

)
subject to x ∈ ∂Bd, (12)

which now satisfies property (3) with v(c) = 2 log |c|.

The reformulation idea in Example 2 implies that any simplex-constrained problem with
scale invariant f can be reformulated to a scale invariant problem.
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3. Scale Invariant Power Iteration

In this section, we provide a geometric derivation of SCI-PI to find a local optimal solution
of (1). The algorithm is developed using the geometric interpretation of the dual formulation
(9) as illustrated in Figure 1. Starting with an iterate xk ∈ ∂B, we obtain a dual iterate
wk by mapping xk to the constraint f(w) = 1. Given wk, we identify the hyperplane lk on
which the current iterate wk lies and is tangent to f(w) = 1. After identifying the equation
of lk, we find the closest point zk to the origin from lk and obtain a new dual iterate wk+1

by mapping zk to the constraint f(w) = 1. Finally, we obtain a new primal iterate xk+1 by
mapping wk+1 back to the set ∂Bd.

Now, we develop an algorithm based on the above idea. For derivation of the algorithm,
we assume that an objective function f is differentiable and satisfies either (2) with u(c) = |c|p
where p > 0 and f(x) > 0 for all x ∈ ∂B or (3) with v(c) = loga|c| where 1 < a. Under
these conditions, a scalar mapping from xk to wk can be well defined as wk = xk/f(xk)1/p or
wk = a1−f(xk)xk, respectively. Let wk = ckxk. Since wk is on the constraint f(w) = 1, the
normal vector of the hyperplane lk is ∇f(wk). Therefore, we can write down the equation
of the hyperplane lk as

{
w : ∇f(wk)

T (w − wk) = 0
}
. Note that zk is a scalar multiple of

∇f(wk) where the scalar can be determined from the requirement that zk is on lk. Since
wk+1 is the projection of zk, it must be a scalar multiple of the normal vector yk = ∇f(wk).
Therefore, we can write wk+1 as wk+1 = dkyk. Finally, by projecting wk+1 to ∂Bd, we obtain

xk+1 =
wk+1

‖wk+1‖2
=

dkyk
‖dkyk‖2

=
yk
‖yk‖2

=
∇f(wk)

‖∇f(wk)‖2
=
∇f(ckxk)

‖∇f(ckxk)‖2
=
∇f(xk)

‖∇f(xk)‖2
where the last equality follows from Proposition 3. The update rule is the linear optimization
oracle on ∂Bd. In the sense that SCI-PI finds an optimal solution by solving a sequence of
linear optimization problems, it is similar to the Frank-Wolfe algorithm (also called conditional
gradients) and online linear prediction algorithms (Huang et al., 2017). Summarizing all the
above, we obtain SCI-PI presented in Algorithm 1.

(0, 0)

xk

wk

lk

xk+1

wk+1

zk

∂Bd

f(w) = 1

Figure 1: Geometric derivation of SCI-PI

Algorithm 1 SCI-PI
Output: initial point x0 ∈ ∂Bd
k ← 0
while ∇f(xk) 6= 0 do

xk+1 ←
∇f(xk)

‖∇f(xk)‖2
k ← k + 1

end while
Output: xk

Note that in Figure 1 {‖wk‖2}k=0,1,··· is non-increasing if the sublevel set {w | f(w) ≤ 1}
is convex. Since all sublevel sets of a quasi-convex function are convex, we can expect that
SCI-PI yields an ascending step if f is quasi-convex (not necessarily scale invariant). See
Proposition 11 in Appendix B for the convergence to a stationary point for quasi-convex f .
If f is not quasi-convex, the sequence {f(xk)}k=0,1,··· is not necessarily increasing, making
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it hard to analyze global convergence. Exploiting the eigenvector property, we study local
convergence of SCI-PI for scale invariant f below.

Theorem 6 Let f be a scale invariant, twice continuously differentiable function on an open
set containing ∂Bd. Let x∗ be a local maximum such that ∇f(x∗) = λ∗x∗ and (λi,vi) be an
eigen-pair of ∇2f(x∗) with x∗ = v1. If λ∗ > λ̄2 = max2≤i≤d |λi|, then there exists some δ > 0
such that under the initial condition ‖x0 − x∗‖2 < δ, the sequence of iterates {xk}k=0,1,···
generated by SCI-PI satisfies

‖xk − x∗‖22 ≤
k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2

‖x0 − x∗‖22,

where

λ̄2

λ∗
+ γt < 1 for all t ≥ 0 and lim

k→∞
γk = 0.

Moreover, if ∇jf = ∂f/∂xj has a continuous Hessian Hj on an open set containing Bd ,
{x ∈ Rd : ‖x‖2 ≤ 1}, we can explicitly write δ as

δ(λ∗, λ̄1, λ̄2,M) = min

{ √
2λ∗

λ∗ + |λ∗ − λ̄1 −M |
,

√
2(λ∗ − λ̄2)

λ∗ − λ̄2 +M + |λ∗ − λ̄1 −M |

}

where λ̄1 = |λ1| and

M = max
x∈∂Bd,y1,··· ,yd∈Bd

√∑d
i=1(xTGi(y

1, · · · , yd)x)2, Gi(y
1, · · · , yd) =

∑d
j=1 vi,jHj(y

j).

Proof Since ∇2f(x∗) is real and symmetric, without loss of generality, we assume that
{v1, · · · ,vd} form an orthogonal basis in Rd.

Since f is twice continuously differentiable on an open set containing ∂Bd, for x ∈ ∂Bd,
using the Taylor expansion of ∇f(x)Tvi at x∗, we have

∇f(x)Tvi = ∇f(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x) (13)

where

Ri(x) = o(‖x− x∗‖2). (14)

From ∇f(x∗) = λ∗x∗ and x∗ = v1, we have

∇f(x)Tv1 = ∇f(x∗)Tx∗ + (x− x∗)T∇2f(x∗)x∗ +R1(x)

= λ∗ − λ1(1− xTx∗) +R1(x)

= λ∗ + α(x)

(15)

where
α(x) = −λ1(1− xTx∗) +R1(x). (16)
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On the other hand, for 2 ≤ i ≤ d, due to ∇f(x∗) = λ∗x∗, x∗ = v1 and the orthogonality of
{v1, . . . ,vd}, we have

∇f(x∗)Tvi = λ∗(x∗)Tvi = 0. (17)

From (13), this results in

∇f(x)Tvi = λix
Tvi +Ri(x). (18)

Using (18) and the definition of λ̄2, we have

d∑
i=2

(
∇f(x)Tvi

)2
=

d∑
i=2

[
λ2
i (x

Tvi)2 + 2λi(x
Tvi)Ri(x) + (Ri(x))2

]
≤ λ̄2

2

d∑
i=2

(xTvi)2 + 2λ̄2

d∑
i=2

|xTvi||Ri(x)|+
d∑
i=2

(Ri(x))2 .

(19)

By the Cauchy Schwartz inequality, we have

λ̄2

d∑
i=2

|xTvi||Ri(x)| ≤ λ̄2

√√√√ d∑
i=2

(xTvi)2

√√√√ d∑
i=2

(Ri(x))2,

which results in

d∑
i=2

(
∇f(x)Tvi

)2 ≤ λ̄2
2

d∑
i=2

(xTvi)2 + 2λ̄2

√√√√ d∑
i=2

(xTvi)2

√√√√ d∑
i=2

(Ri(x))2 +
d∑
i=2

(Ri(x))2

=

λ̄2

√√√√ d∑
i=2

(xTvi)2 + β(x)

2 (20)

where

β(x) =

√√√√ d∑
i=2

(Ri(x))2. (21)

Using 1− xTx∗ = o(‖x− x∗‖2) and (14) for (16) and (21), we have

α(x) = o(‖x− x∗‖2), β(x) = o(‖x− x∗‖2). (22)

From x ∈ ∂Bd, x∗ = v1, and the fact that {v1, · · · ,vd} forms an orthogonal basis in Rd, we
have

d∑
i=2

(xTvi)2 = 1− (xTv1)2 = 1− (xTx∗)2 ≤ 2(1− xTx∗) = ‖x− x∗‖22. (23)

Therefore, by (15), (20), (22), (23), and Lemma 12, we obtain the first part of the desired
result.

10
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On the other hand, if ∇jf has a continuous Hessian Hj , by Lemma 14, we have

d∑
i=1

(Ri(x))2 ≤ 1

4
M2‖x− x∗‖42. (24)

Using (24) for (16) and (21), we have

α(x) = −λ1(1− xTk x∗) +R1(x) ≥ −(M + |λ1|)(1− xTx∗),

β(x) =

√√√√ d∑
i=2

(Ri(x))2 ≤ M

2
‖x− x∗‖22.

(25)

Therefore, using (15), (20), (23), (25) and Lemma 12 with

A = λ∗, B = M + |λ1|, C = 0, D = λ̄2, E = 0, F = M,

we obtain the desired result.

Theorem 6 states local convergence of SCI-PI with an asymptotic rate of λ∗/λ̄2. Note that
the assumption that the Lagrange multiplier λ∗ corresponding to a local maximum x∗ satisfies
λ∗ > λ̄2 = max2≤i≤d |λi| holds for all strict local maxima if f is convex, multiplicatively scale
invariant with p ≥ 1 since λi ≥ 0 for all i and λ∗ = (p− 1)λ1, according to Proposition 4.
However, in general, not all local maxima satisfy this assumption since it is stronger than the
second-order sufficient condition stated as λ∗ > max2≤i≤d λi in Proposition 4. Nevertheless,
by adding σ‖x‖2 for some σ > 0 to the objective function f , we can always enforce λ∗ > λ̄2.
Conversely, by adding σ‖x‖2 for some σ < 0, we may improve the convergence rate as done
by shifted power iteration (Golub and Van Loan, 2012). The convergence rate of γk is o(1)
for twice continuously differentiable f . If ∇jf has a continuous Hessian, we further have
γk = O(‖xk − x∗‖2). (For the derivations of the convergence rate of γk, see the proofs of
Lemmas 12 and 14.)

The non-convexity of the objective function hinders the attainment of global guarantees
for SCI-PI. While Theorem 6 establishes a condition on the initial iterate that guarantees
local convergence, finding an initial point sufficiently close to a global optimal solution is
a challenging task. To ensure global guarantees, additional conditions on problem-specific
parameters are necessary. For example, mild assumptions on problem parameters in affine
phase retrieval render the objective function strongly convex, leading to global optimality
(Huang and Xu, 2022). Nevertheless, local convergence remains an appealing property since
random initialization often provides a satisfactory starting point (Chen et al., 2019).

Reduction to power iteration For the leading eigenvector problem to find the leading
eigenvector of a positive semi-definite matrix A � 0, the objective function is f(x) = 1

2x
TAx,

and thus SCI-PI specializes to power iteration. Let λi be the ith largest eigenvalue of A.
The condition λ∗ > λ̄2 in Theorem 6 is interpreted as the positive eigen-gap λ1 − λ2 > 0
assumption. The convergence result in Theorem 6 not only matches the convergence rate
of λ1/λ2 but also restores the initial condition δ <

√
2 or xT0 x∗ > 0 of power iteration since

M = 0.

11
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Comparision to generalized power method Under the spherical constraint, generalized
power method (Journée et al., 2010) has the same update rule as SCI-PI. Generalized power
method has shown to attain sublinear convergence for convex f . Local linear convergence
in Theorem 6 has been not shown for generalized power method. This convergence result
established for a scale invariant objective function with the spherical constraint is extended
to various settings in the next section.

4. Extended Settings

4.1 Sum of Scale Invariant Functions

Consider a sum of scale invariant functions of the form f(x) =
∑m

i=1 f
M
i (x) +

∑n
j=1 f

A
j (x)

where fMi is multiplicatively scale invariant with ui(c) = |c|pi and fAj is additively scale
invariant with vj(c) = logaj |c|. Note that this does not imply that f is scale invariant
in general. Thus, a stationary point x∗ satisfying ∇f(x∗) = λ∗x∗ is not necessarily an
eigenvector of ∇2f(x∗). Instead, a stationary point x∗ is an eigenvector of F (x∗) defined as

F (x) =

m∑
i=1

(
1

pi − 1

)
∇2fMi (x)−

n∑
j=1

∇2fAj (x).

since

∇f(x) =

m∑
i=1

∇fMi (x) +

n∑
j=1

∇fAj (x) = F (x)x

by Proposition 3. Here is an example that involves a sum of scale invariant functions.

Example 3 (Kurtosis-based ICA) Given a pre-processed data matrixW ∈ Rn×d, Kurtosis-
based ICA (Hyvärinen and Oja, 2000) solves

maximize
1

n

n∑
i=1

[
(wTi x)4 − 3

]2 subject to x ∈ ∂Bd. (26)

The objective function f is a sum of scale invariant functions.

We present a local convergence analysis of SCI-PI for a sum of scale invariant functions
as follows.

Theorem 7 Let f be a sum of scale invariant functions and twice continuously differentiable
on an open set containing ∂Bd. Let x∗ be a local maximum such that ∇f(x∗) = λ∗x∗ and
{v1, · · · ,vd} be a set of eigenvectors of F (x∗) with x∗ = v1. If λ∗ > λ̄2 = ‖∇2f(x∗)(I −
x∗(x∗)T )‖2, then there exists some δ > 0 such that under the initial condition ‖x0−x∗‖2 < δ,
the sequence of iterates {xk}k=0,1,··· generated by SCI-PI satisfies

‖xk+1 − x∗‖22 ≤
k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2

‖x0 − x∗‖22,

12
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where

λ̄2

λ∗
+ γt < 1 for all t ≥ 0 and lim

k→∞
γk = 0.

Moreover, if ∇jf = ∂f/∂xj has a continuous Hessian Hj on an open set containing Bd, we
can explicitly write δ as

δ(λ∗, λ̄1, λ̄2,M) =

√
2(λ∗ − λ̄2)

λ∗ +M + λ̄1 + |λ∗ −M |

where λ̄1 =
√

2 · ‖∇2f(x∗)x∗‖2 and

M = max
x∈∂Bd,y1,··· ,yd∈Bd

√∑d
i=1(xTGi(y

1, · · · , yd)x)2, Gi(y
1, · · · , yd) =

∑d
j=1 vi,jHj(y

j).

Proof By the stationarity condition, a local optimal solution x∗ is an eigenvector of F (x∗).
Since F (x∗) is real and symmetric, without loss of generality, we assume that {v1, · · · ,vd}
form an orthogonal basis in Rd.

Since f is twice continuously differentiable on an open set containing ∂Bd, for x ∈ ∂Bd,
using the Taylor expansion of ∇f(x)Tvi at x∗, we have

∇f(x)Tvi = ∇f(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x) (27)

where
Ri(x) = o(‖x− x∗‖2). (28)

Using (27) with i = 1 and ∇f(x∗) = λ∗x∗, we obtain

∇f(x)Tv1 = λ∗(x∗)Tv1 + (x− x∗)T∇2f(x∗)v1 +R1(x) = λ∗ + α(x) (29)

where
α(x) = (x− x∗)T∇2f(x∗)v1 +R1(x). (30)

Using (27) and ∇f(x∗) = λ∗x∗ for 2 ≤ i ≤ d, we have

∇f(x)Tvi = λ∗(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x) = (x− x∗)T∇2f(x∗)vi +Ri(x),

resulting in

d∑
i=2

(∇f(x)Tvi)2 =

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi +Ri(x)

)2
. (31)

From x∗ = v1 and the fact that {v1, · · · ,vd} forms an orthogonal basis in Rd, we have

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi

)2
= ‖∇2f(x∗)(x− x∗)‖22 −

(
(x− x∗)T∇2f(x∗)v1

)2
= (x− x∗)T∇2f(x∗)

(
I − x∗(x∗)T

)
∇2f(x∗)(x− x∗)

= (x− x∗)T∇2f(x∗)
(
I − x∗(x∗)T

)2∇2f(x∗)(x− x∗).

13
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Since

‖∇2f(x∗)
(
I − x∗(x∗)T

)2∇2f(x∗)‖2 = ‖
(
I − x∗(x∗)T

)
∇2f(x∗)‖22

= ‖∇2f(x∗)
(
I − x∗(x∗)T

)
‖22,

we have

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi

)2 ≤ λ̄2
2‖x− x∗‖22. (32)

Also, using (32) and the Cauchy-Schwartz inequality, we obtain

d∑
i=2

(x− x∗)T∇2f(x∗)viRi(x) ≤
d∑
i=2

|(x− x∗)T∇2f(x∗)vi||Ri(x)|

≤

√√√√ d∑
i=2

((x− x∗)T∇2f(x∗)vi)
2

√√√√ d∑
i=2

Ri(x)2

≤ λ̄2‖x− x∗‖2

√√√√ d∑
i=2

Ri(x)2.

(33)

Using (32) and (33) for (31), we obtain

d∑
i=2

(∇f(x)Tvi)2 ≤ λ̄2
2‖x− x∗‖22 + 2λ̄2‖x− x∗‖2

√√√√ d∑
i=2

Ri(x)2 +

d∑
i=2

Ri(x)2,

resulting in
d∑
i=2

(∇f(x)Tvi)2 ≤
(
λ̄2‖x− x∗‖22 + β(x)

)2 (34)

where

β(x) =

√√√√ d∑
i=2

Ri(x)2. (35)

Using (x− x∗)T∇2f(x∗)v1 = o(
√
‖x− x∗‖2) and (28) for (30) and (35), we have

α(x) = o(
√
‖x− x∗‖2), β(x) = o(‖x− x∗‖2). (36)

By (29), (34), (36), and Lemma 12, we obtain the first part of the desired result.
On the other hand, if ∇jf has a continuous Hessian Hj , by Lemma 14, we have

d∑
i=1

(Ri(x))2 ≤ 1

4
M2‖x− x∗‖42. (37)
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Using |(x− x∗)T∇2f(x∗)v1| ≤ λ̄1

√
1− xTk x∗ and (37) for (30) and (35), this leads to

α(x) = (x− x∗)T∇2f(x∗)v1 +R1(x) ≥ −λ̄1

√
1− xTk x∗ −M(1− xTk x∗),

β(x) =

√√√√ d∑
i=2

Ri(x)2 ≤ M

2
‖x− x∗‖22.

(38)

By (29), (34), (38), and Lemma 13 with

A = λ∗, B = M, C = λ̄1, D = 0, E = λ̄2, F = M,

we obtain

δ(λ∗, λ̄1, λ̄2,M) = min

{ √
2λ∗

λ∗ + |λ∗ −M |+ λ̄1
,

√
2(λ∗ − λ̄2)

λ∗ +M + λ̄1 + |λ∗ −M |

}

=

√
2(λ∗ − λ̄2)

λ∗ +M + λ̄1 + |λ∗ −M |
,

which completes the proof.

Note that λ̄1 has the additional
√

2 factor which comes from the fact that x∗ is not
necessarily an eigenvector of ∇2f(x∗). Nonetheless, the asymptotic convergence rate in
Theorem 7 provides a generalization of the convergence rate in Theorem 6.

4.2 Block Scale Invariant Problems

Next, consider a class of optimization problems having the form of

maximize f(x, y) subject to x ∈ ∂Bdx , y ∈ ∂Bdy

where f : Rdx+dy → R is scale invariant in x for fixed y and vice versa. A stationary point
(x∗, y∗) satisfies ∇xf(x∗, y∗) = λ∗x∗ and ∇yf(x∗, y∗) = s∗y∗ for some λ∗, s∗ ∈ R, and x∗ and
y∗ are eigenvectors of ∇2

xxf(x∗, y∗) and ∇2
yyf(x∗, y∗), respectively, according to Proposition 4.

Some examples of block scale invariant problems are given next.

Example 4 (Semidefinite Programming (SDP) (Vandenberghe and Boyd, 1996))
Let A,X ∈ Rn×n. Given an SDP problem

maximize 〈A,X〉 subject to Xii = 1, i ∈ {1, 2, · · · , n}, X � 0,

the Burer-Monteiro approach (Burer and Monteiro, 2003) yields the following block scale
invariant problem (Erdogdu et al., 2022)

maximize 〈A, σσT 〉 subject to ‖σi‖2 = 1, i ∈ {1, 2, · · · , n}

where σi denotes the ith row of σ ∈ Rn×r.
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Example 5 (Kullback-Leibler (KL) divergence NMF) The KL-NMF problem (Févotte
and Idier, 2011; Lee and Seung, 2001; Wang and Zhang, 2013) is defined as

minimize DKL(V ‖WH) ,
n∑
i=1

m∑
j=1

Vij log
Vij∑r

q=1WiqHqj
− Vij +

r∑
q=1

WiqHqj


subject to Wiq ≥ 0, Hqj ≥ 0, i = 1, · · · , n, j = 1, · · · ,m, q = 1, · · · , r.

(39)

Many popular algorithms (Lee and Seung, 2001; Lin, 2007) for the KL-NMF problem
are based on alternating minimization of W and H. Since the objective function can be
decomposed over j, given W ≥ 0 and j ∈ {1, · · · ,m}, we consider a subproblem of the form

minimize f jKL(h) =
n∑
i=1

Vij log
Vij∑r

q=1Wiqhj
− Vij +

r∑
q=1

Wiqhq

 subject to hq ≥ 0 (40)

where hq = Hqj . Note that the KL-NMF problem in the form of (39) is not a block scale
invariant problem. However, using a novel reformulation, we show that the KL divergence
NMF subproblem is indeed a scale invariant problem.

Lemma 8 The KL-NMF subproblem (40) is equivalent to the following scale invariant
problem

maximize −
n∑
i=1

Vij log

r∑
q=1

Wiqh̄q subject to
r∑
q=1

h̄q = 1, h̄q ≥ 0, (41)

with the relationship (
∑n

i=1 Vij)h̄q = (
∑n

i=1Wiq)hq.

Proof Since a log-linear function is concave, (40) is a convex problem in h. Consider the
Lagrangian of the original problem

L(h, λ) = f jKL(h)−
r∑
q=1

λqhq, λ ≥ 0. (42)

Let h∗ be an optimal solution to (40) and λ∗ be a vector in Rr satisfying the following
first-order KKT conditions

∇f jKL(h∗) = λ∗q1m, λ∗qh
∗
q = 0, q = 1, · · · , r (43)

where ∇f jKL denotes the derivative of f jKL with respect to h.
Since (43) implies

∑r
q=1 h

∗
qλ
∗
q = 0, we have

r∑
q=1

h∗qλ
∗
q =

r∑
q=1

h∗q∇f
j
KL(h∗) = −

n∑
i=1

r∑
q=1

VijWiqh
∗
q∑r

q′=1Wiq′h
∗
q′

+
n∑
i=1

r∑
q=1

Wiqh
∗
q ,

resulting in
n∑
i=1

Vij =
n∑
i=1

r∑
q=1

Wiqh
∗
q . (44)
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Next, let

minimize f jSCI(h) =

n∑
i=1

Vij log
Vij∑r

q=1Wiqhq
subject to

n∑
i=1

Vij =

n∑
i=1

r∑
q=1

Wiqhq, hq ≥ 0,

(45)
and let f∗KL and f∗SCI be the optimal objective values of (40) and (45), respectively. We
prove the equivalence of (45) and (40) by the following arguments:

1. Since (45) has an additional constraint
∑n

i=1 Vij =
∑n

i=1

∑r
q=1Wiqhq compared

to (40), it always satisfies f∗SCI ≥ f∗KL .

2. Since we have shown that
∑n

i=1 Vij =
∑n

i=1

∑r
q=1Wiqh

∗
q , a solution h∗ of (40)

is a feasible point of (45). This implies f∗KL ≥ f∗SCI .

Now, we reparameterize h by h̄ so that
∑n

i=1 Vij =
∑n

i=1

∑r
q=1Wiqhq if and only if

∑r
q=1 h̄q =

1, which yields the relationship between two variables h̄q = hq(
∑n

i=1Wiq)/(
∑n

i=1 Vij). Note
that (41) is a mixture proportion estimation problem (Example 2) and thus a scale invariant
problem.

To solve block scale invariant problems, we consider an alternating maximization algorithm
called block SCI-PI, which repeats

xk+1 ← ∇xf(xk, yk)/‖∇xf(xk, yk)‖2, yk+1 ← ∇yf(xk, yk)/‖∇yf(xk, yk)‖2. (46)

We present a local convergence result of block SCI-PI below.

Theorem 9 Suppose that f is twice continuously differentiable on an open set containing
∂Bdx × ∂Bdy and let (x∗, y∗) be a local maximum satisfying

∇xf(x∗, y∗) = λ∗x∗, λ∗ > λ̄2 = max
2≤i≤dx

|λi|, ∇yf(x∗, y∗) = s∗y∗, s∗ > s̄2 = max
2≤j≤dy

|sj |

where (λi,vi) and (sj ,uj) are eigen-pairs of ∇2
xxf(x∗, y∗) and ∇2

yyf(x∗, y∗), respectively with
x∗ = v1 and y∗ = u1. If

ν2 = ‖∇2
yxf(x∗, y∗)‖22 < (λ∗ − λ̄2)(s∗ − s̄2),

then for the sequence of iterates {(xk, yk)}k=0,1,··· generated by (46), there exists some δ > 0
such that if ∆0 < δ, then we have

∆2
k ≤

∏k−1
t=0 (ρ+ γt)

2 ∆2
0 and limk→∞γk = 0

where

∆k =

∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥

2

, ρ =
1

2

 λ̄2

λ∗
+
s̄2

s∗
+

√[
λ̄2

λ∗
− s̄2

s∗

]2

+
4ν2

λ∗s∗

 < 1.
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Proof From Lemma 15 with x = xk, y = yk, we have∑dx
i=2(∇xf(xk, yk)

Tvi)2

(∇xf(xk, yk)Tv1)2
≤
(
λ̄2

λ∗
‖xk − x∗‖2 +

ν

λ∗
‖yk − y∗‖2 + θx(xk, yk)

)2

.

Since
xk+1 =

∇xf(xk, yk)

‖∇xf(xk, yk)‖2
,

we obtain

‖xk+1 − x∗‖2 ≤

√∑dx
i=2(∇xf(xk, yk)Tvi)2

(∇xf(xk, yk)Tv1)2
≤ λ̄2

λ∗
‖xk − x∗‖2 +

ν

λ∗
‖yk − y∗‖2 + θx(xk, yk).

(47)
Using Lemma 15 for x = yk, y = xk and the definition of yk+1, we have

‖yk+1 − y∗‖2 ≤
ν

s∗
‖xk − x∗‖2 +

s̄2

s∗
‖yk − y∗‖2 + θy(xk, yk). (48)

Combining (47) and (48), we obtain

[
‖xk+1 − x∗‖2
‖yk+1 − y∗‖2

]
≤


λ̄2

λ∗
ν

λ∗

ν

s∗
s̄2

s∗


[
‖xk − x∗‖2
‖yk − y∗‖2

]
+

[
θx(xk, yk)

θy(xk, yk)

]
. (49)

Since ρ < 1 due to ν2 < (λ∗ − λ̄2)(s∗ − s̄2), by Lemma 17, we obtain the desired result.

Being the spectral norm of the off-diagonal block of the Hessian at the local maximum
(x∗, y∗), ν measures how much partial derivatives of one block of variables are affected by
the other block of variables. If the objective function f is separable in x and y as in the case
of the KL-NMF problem, ν becomes zero, and we have ρ = max {λ̄2/λ

∗, s̄2/s
∗}. Note that

ρ increases as ν increases. If ν2 becomes larger than (λ∗ − λ̄2)(s∗ − s̄2), the Jacobi update
rule (46) may fail due to the interaction effects between x and y. On the other hand, the
result of Theorem 6 can be restored by dropping x or y in Theorem 9. While we consider the
two-block case here, the algorithm and the convergence analysis can be easily generalized to
more than two blocks.

4.3 Partially Scale Invariant Problems

Lastly, we consider a class of optimization problems of the form

maximize f(x, y) subject to x ∈ ∂Bdx

where f(x, y) : Rdx+dy → R is a scale invariant function in x for each y ∈ Rdy . A partially
scale invariant problem has the form of (1) with respect to x once y is fixed. If x is fixed, we
obtain an unconstrained optimization problem with respect to y. A stationary point (x∗, y∗)
satisfies ∇xf(x∗, y∗) = λ∗x∗ and ∇yf(x∗, y∗) = 0 for some λ∗ ∈ R, and x∗ is an eigenvector
of ∇2

xxf(x∗, y∗). Here is an example of partially scale invariant problems.
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Example 6 (Gaussian Mixture Model (GMM)) The GMM problem is defined as

maximize
n∑
i=1

log

d∑
j=1

πj N (ai;µj ,Σj) subject to π ∈ Sd.

Note that the objective function is scale invariant for fixed µj and Σj, and µj is unconstrained.
If we assume some structure on Σj, estimation of Σj can also be unconstrained. For general
Σj, semi-positive definiteness is necessary for Σj.

To solve partially scale invariant problems, we consider an alternating maximization
algorithm based on SCI-PI and the gradient method as

xk+1 ← ∇xf(xk, yk)/‖∇xf(xk, yk)‖2, yk+1 ← yk + α∇yf(xk, yk). (50)

While the gradient method is used in (50), any method for unconstrained optimization can
replace it. We present a convergence analysis of (50) below.

Theorem 10 Suppose that f(x, y) is scale invariant in x for each y ∈ Rdy , µ-strongly
concave in y with an L-Lipschitz continuous ∇yf(x, y) for each x ∈ ∂Bdx, and three-times
continuously differentiable on an open set containing ∂Bdx × Rdy . Let (x∗, y∗) be a local
maximum satisfying

∇f(x∗) = λ∗x∗, λ∗ > λ̄2 = max2≤i≤dx |λi|

where (λi,vi) is an eigen-pair of ∇2
xx f(x∗, y∗) with x∗ = v1. If

ν2 = ‖∇2
yxf(x∗, y∗)‖22 < µ(λ∗ − λ̄2),

then for the sequence of iterates {(xk, yk)}k=0,1,··· generated by (50) with α = 2/(L+µ), there
exists some δ > 0 such that if ∆0 < δ, then we have

∆2
k ≤

∏k−1
t=0 (ρ+ γt)

2 ∆2
0 and limk→∞γk = 0

where

∆k =

∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥

2

, ρ =
1

2

 λ̄2

λ∗
+
L− µ
L+ µ

+

√[
λ̄2

λ∗
− L− µ
L+ µ

]2

+
8ν2

λ∗(L+ µ)

 < 1.

Proof Using Lemma 15 for x = xk, y = yk and the definition of xk+1, we have

‖xk+1 − x∗‖2 ≤
λ̄2

λ∗
‖xk − x∗‖2 +

ν

λ∗
‖yk − y∗‖2 + θx(xk, yk). (51)

By Lemma 16 with x = xk, y = yk, we also have

‖yk+1 − y∗‖2 ≤
(

2ν

L+ µ

)
‖xk − x∗‖2 +

(
L− µ
L+ µ

)
‖yk − y∗‖2 + θy(xk, yk). (52)
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Combining (51) and (52), we obtain

[
‖xk+1 − x∗‖2
‖yk+1 − y∗‖2

]
≤


λ̄2

λ∗
ν

λ∗

2ν

L+ µ

L− µ
L+ µ


[
‖xk − x∗‖2
‖yk − y∗‖2

]
+

[
θx(xk, yk)

θy(xk, yk)

]
. (53)

Note that since ν2 < µ(λ∗ − λ̄2), the spectral radius ρ satisfies

ρ =
1

2

 λ̄2

λ∗
+
L− µ
L+ µ

+

√(
λ̄2

λ∗
− L− µ
L+ µ

)2

+
8ν2

λ∗(L+ µ)

 < 1.

Therefore, by Lemma 14, we obtain the desired result.

As in the result of Theorem 9, the rate ρ increases as ν increases and is equal to
max {λ̄2/λ

∗, (L − µ)/(L + µ)} when ν = 0. Also, by dropping y, we can restore the
convergence result of Theorem 6.

5. Numerical Experiments

We test the proposed algorithms on real-world data sets. All experiments are implemented
on a standard laptop (2.6 GHz Intel Core i7 processor and 16GM memory) using the Julia
programming language. Let us emphasize that scale invariant problems frequently appear in
many important applications in statistics and machine learning. We select three important
applications, KL-NMF, GMM and ICA. A description of the data sets is provided below and
source codes are available at: https://github.com/youngseok-kim/SCIPI-JMLR.

5.1 Description of Data Sets

For KL-NMF (Section 5.2), we use four public real data sets available online∗ and summarized
in Table 1. Waving Trees (WT) has 287 images, each having 160 × 120 pixels. KOS and
NIPS are sparse, large matrices implemented for topic modeling. WIKI is a large binary
matrix having values 0 or 1 representing the adjacency matrix of a directed graph. Here,
sparsity represents the fraction of zero elements in a matrix.

Name # of samples # of features # of nonzeros Sparsity

WIKI 8,274 8,297 104,000 0.999
NIPS 1,500 12,419 280,000 0.985
KOS 3,430 6,906 950,000 0.960
WT 287 19,200 5,510,000 0.000

Table 1: A brief summary of data sets used for KL-NMF

∗These four data sets are retrieved from https://www.microsoft.com/en-us/research/project, https:
//archive.ics.uci.edu/ml/datasets/bag+of+words, and https://snap.stanford.edu/data/wiki-Vote.
html
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Name # of classes # of samples Dimension

Sonar 2 208 60
Ionosphere 2 351 34

HouseVotes84 2 435 16
BrCancer 2 699 10

PIDiabetes 2 768 8
Vehicle 4 846 18
Glass 6 214 9
Zoo 7 101 16

Vowel 11 990 10
Servo 51 167 4

Table 2: A brief summary of data sets used for GMM

Name # of samples # of features

Wine 178 14
Soybean 683 35
Vehicel 846 18
Vowel 990 10
Cardio 2,126 22

Satellite 6,435 37
Pendigits 10,992 17

Letter 20,000 16
Shuttle 58,000 9

Table 3: A brief summary of data sets used for ICA

For GMM (Section 5.3), we use ten public real data sets, corresponding to all small and
moderate data sets provided by the mlbench package in R. We select data sets for multi-class
classification problems and run EM and SCI-PI for the given number of classes without class
labels. In Table 2, the sample size varies from 101 to 990, the dimension varies from 2 to 60,
and the number of classes varies from 2 to 51. In these data sets, only a small portion of
entries are missing. If missing entries exist, we impute them with the means.

For ICA, discussed also in Section 5.3, we use nine public data sets (see Table 3) from
the UCI Machine Learning repository†. The sample size varies from 178 to 58,000 and the
dimension varies from 9 to 37.

5.2 KL-divergence Nonnegative Matrix Factorization

We perform experiments on the KL-NMF problem (39) described in Example 5. Let us recall
that the original KL-NMF problem can be solved via block SCI-PI where in each iteration
the algorithm solves the subproblem of the form (41). Our focus is to compare this algorithm
with other well-known alternating minimization algorithms listed below, updating H and W
alternatively. We let z = V � (Wh).

• Projected gradient descent (PGD): It iterates hnew ← h− η �W T (z − 1n) followed by
projection onto the simplex, where η ∝ h is an appropriate learning rate (Lin, 2007).

†https://archive.ics.uci.edu/ml/index.php
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Figure 2: Convergence of the three algorithms for the KL-NMF subproblem; the relative
error |fk − f∗|/|f0 − f∗| (Top) and the log relative error (Bottom); n/m: the number of
samples/features of the data matrix

• Multiplicative update (MU): A famous multiplicative update algorithm is originally
suggested by (Lee and Seung, 2001), which iterates hnew ← h� (W T z)� (W T1n) and
is learning rate free.

• Our method (SCI-PI): It iterates hnew ← h� (σ+W T z)�2 followed by rescaling, where
σ is a shift parameter. We simply use σ = 1 for preconditioning.

• Sequential quadratic programming (MIXSQP): It exactly solves each subproblem
via a convex solver mixsqp (Kim et al., 2020). This algorithm performs sequential
non-negative least squares.

KL-NMF subproblem on synthetic data sets Before presenting experimental results
of alternating algorithms on the KL-NMF problem (39), we report small experiments using
synthetic data sets on the KL-NMF subproblem (40) where we repeat the above iterations
until convergence.

To study the convergence rate for the KL-NMF subproblems, we use the four data sets
studied in Kim et al. (2020). We study MU, PGD and SCI-PI since they have the same
order of computational complexity per iteration, but omit MIXSQP since it is a second-order
method which cannot be directly compared. For PGD, the learning rate is optimized by grid
search. The stopping criterion is ‖fk − f∗‖2 ≤ 10−6f∗ where fk is the objective value at
iteration k and f∗ is the solution obtained by MIXSQP after extensive computation time.
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The result is shown in Figure 2‡. The average runtime for aforementioned three methods
are 33, 33 and 30 seconds for 10,000 iterations, respectively. Although the reformulated scale
invariant problem (12) is a non-convex problem, SCI-PI always finds a global optimal solution,
regardless of the starting point. Moreover, as shown in the figure, SCI-PI outperforms the
other two algorithms for all simulated data sets.

KL-NMF on real world data sets Next, we test the four algorithms on the data sets
in Table 1. We estimate r = 20 factors. At each iteration, all four algorithms solve m
subproblems simultaneously for W and then alternatively for H.

The result is summarized in Figure 3§. The convergence plots are based on the average
relative errors over ten repeated runs with random initializations. The result shows that
SCI-PI is an overall winner, showing faster convergence rates. The stopping criterion is the
same as above. To assess the overall performance when initialized differently, we select KOS
and WIKI and run MU, PGD, SCI-PI, and MIXSQP ten times‡. The three algorithms except
MIXSQP have (approximately) the same computational cost per iteration, take runtime of
391, 396, 408 seconds for KOS data and 372, 390, 418 seconds for WIKI data, respectively
for 200 iterations. MIXSQP has a larger per iteration cost. After 400 seconds, SCI-PI
achieves the lowest objective values in all cases but one for each data set (38 out of 40 in
total). Thus it clearly outperforms other methods and also achieves the lowest variance.
Unlike the other three algorithms, SCI-PI is not an ascent algorithm but an eigenvalue-based
fixed-point algorithm. Admittedly, non-monotone convergence of SCI-PI can hurt reliability
of the solution but for the KL-NMF problem its performance turns out to be stable.

5.3 Gaussian Mixture Model and Independent Component Analysis

In this subsection, we study the empirical performance of SCI-PI when it is applied to GMM
and ICA.

GMM GMM fits a mixture of Gaussian distributions to the underlying data. Let Lij =
N (ai;µj ,Σj) where i is the sample index and j the cluster index and let π be the actual
mixture proportion vector. GMM fits into our restricted scale invariant setting (Section 4.3)
with reparametrization, but the gradient update for µj ,Σj is replaced by the exact coordinate
ascent step. The EM and SCI-PI updates for π can be written respectively as

r = 1n � (Lπ), πnew ∝ π � (LT r) (EM), πnew ∝ π � (α+ LT r)�2 (SCI-PI) (54)

where α is a shift parameter set to 1. We compare SCI-PI and EM for different real-world
data sets from Table 2. All the algorithms initialize from the same standard Gaussian random
variable, repeatedly for ten times. The result is summarized in the left panel in Figure 4.
In some cases, SCI-PI achieves much larger objective values even if initialized the same. In
many cases the two algorithms exhibit the same performance. This is because estimation of
µk’s and Σk’s are usually harder than estimation of π, and EM and SCI-PI have the same

‡For each evaluation, we randomly draw ten initial points and report the averaged relative errors with
respect to f∗. The initial input for the KL-NMF problem is a one-step MU update of a Uniform(0, 1) random
matrix.

§In all plots we do not show the first few iterations. The initial random solutions have the gap of
approximately 50% which drops to a few percent after ten iterations where the plots start.
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Figure 3: Convergence of the four NMF algorithms; the relative error |fk−f∗|/|f0−f∗| (Top
left) and the log relative error (Bottom); Boxplots containing ten objective values achieved
after 400 seconds (Top right)
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updates for µ and Σ. For a few cases EM outperforms SCI-PI. Let us mention that SCI-PI
and EM have the same order of computational complexity and require 591 and 590 seconds
of total computation time, respectively.

ICA We implement SCI-PI on the Kurtosis-based ICA problem (Hyvärinen et al., 2004)
and compare it with the benchmark algorithm FastICA (Hyvarinen, 1999), which is the
most popular algorithm. Given a pre-processed¶ data matrix W ∈ Rn×d, we maximize an
approximation of negative entropy (Hyvärinen and Oja, 2000), f(x) =

∑n
i=1

[
(wTi x)4 − 3

]2,
subject to x ∈ ∂Bd. This problem fits into the sum of scale invariant setting (Section 4.1).
SCI-PI iterates xk+1 ← W T [(Wxk)

�4 − 31n) � (Wxk)
�3] and FastICA iterates xk+1 ←

W T (Wxk)
�3 − 3(1Tn (Wxk)

�2)xk, both followed by normalization.
In Figure 4 (right panel), we compare SCI-PI and FastICA on the data sets in Table 3.

The majority of data points (81 out of 100 in total) show that SCI-PI tends to find a
better solution with a larger objective value, but in a few cases SCI-PI converges to a
sub-optimal point. Both algorithms are fixed-point based and thus have no guarantee of
global convergence but overall SCI-PI outperforms FastICA. SCI-PI and FastICA have the
same order of computational complexity and require 11 and 12 seconds of total computation
time, respectively.

6. Final Remarks

In this paper, we propose a new class of optimization problems called the scale invariant
problems, together with a generic solver SCI-PI, which is indeed an eigenvalue-based fixed-
point iteration. We showed that SCI-PI directly generalizes power iteration and enjoys
similar properties such as that SCI-PI has local linear convergence under mild conditions
and its convergence rate is determined by eigenvalues of the Hessian matrix at a solution.
Also, we extend scale invariant problems to problems with more general settings. We show
by experiments that SCI-PI can be a competitive option for numerous important problems
such as KL-NMF, GMM and ICA. Moreover, while not studied in this work, SCI-PI can
be generalized to solve optimization problems on the Stiefel manifold such as block PCA.
Under orthonormality constraints, the problem with a scale invariant function can be locally
considered as the top k eigenvector problem. Therefore, we can develop a general form
of the QR iteration (Francis, 1961, 1962) and its convergence analysis using similar proof
techniques. Finding more examples and extending SCI-PI further to a more general setting
is a promising direction for future studies.

¶A centered matrix W̃ = n1/2UDV T is pre-processed by W = W̃V D−1V T so that WTW = nV V T .
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Appendix A. Proofs of Propositions

A.1 Proof of Proposition 2

From (2) and (3), we infer functional equations of the multiplicative factor u and the additive
factor v. Under the continuity assumption on f , these functional equations have the forms
of Cauchy equations. Relying on known properties of Cauchy equations, we prove that u
and v are homogeneous and log functions, respectively. We next provide details.

We first consider the multiplicative scale invariant case. Let x be a point such that
f(x) 6= 0. Then, we have

f(rsx) = u(rs)f(x) = u(r)u(s)f(x),

which results in

u(rs) = u(r)u(s)

for all r, s ∈ R. Let g(r) = ln(u(er)). Then, we have

g(r + s) = ln(u(er+s)) = ln(u(eres)) = ln(u(er)) + ln(u(es)) = g(r) + g(s),

which implies that g satisfies the first Cauchy functional equation. Since f is continuous, so
is u and thus g. Therefore, by (Sahoo and Kannappan, 2011, pp. 81-82), we have

g(r) = rg(1) (55)

for all r ≥ 0. From the definition of g and (55), we have

u(er) = eg(r) = (er)g(1). (56)

Representing r > 0 as r = eln(r) and using (56), we obtain

u(r) = u
(
eln(r)

)
= rg(1) = rln(u(e)) = rp.

Since f(x) 6= 0, if p = ln(u(e)) < 0, then we have

limr→0+f(rx) = limr→0+u(r)f(x) = f(x) · limr→0+r
p = f(x) · ∞ 6= f(0) <∞,

contradicting the fact that f is continuous at 0. Also, if p = 0, then we get u(r) = 1, which
contradicts u(0) = 0. Therefore, we must have p > 0. From u being an even function, we
finally have

u(r) = |r|p

for r ∈ R.

Now, consider the additive scale invariant case. For any x ∈ dom(f), we have

f(rsx) = f(x) + v(rs) = f(x) + v(r) + v(s),
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which results in

v(rs) = v(r) + v(s)

for all r, s ∈ R \ {0}. Let g(r) = v(er). Then, we have

g(r + s) = v(er+s) = v(eres) = v(er) + v(es) = g(r) + g(s).

Since g is continuous and satisfies the second Cauchy functional equation, by (Sahoo and
Kannappan, 2011, pp. 83-84), we have

g(r) = rg(1)

for all r ≥ 0. For r > 0, letting r = eln(r), we have

v(r) = v(eln(r)) = g(ln(r)) = g(1)ln(r) = v(e)ln(r) = loga(r)

where a = e
1

v(e) . Note that a satisfies 0 < a and a 6= 1. From the fact that v is an even
function, we finally have

v(r) = loga|r|

for r ∈ R \ {0}.

A.2 Proof of Proposition 3

Without loss of generality, we can represent a scale-invariant function f as

f(cx) = u(c)f(x) + v(c) (57)

since we can restore a multiplicatively or additively scale-invariant function by setting v(c) = 0
or u(c) = 1, respectively.

In order to derive the first-order derivative properties, we differentiate (57) with respect
to x and c, respectively. Then, we further differentiate the latter with respect to x to obtain
the second-order property.

By differentiating (57) with respect to x, we have

∇f(cx) =
u(c)

c
∇f(x).

On the other hand, by differentiating (57) with respect to c, we have

∇f(cx)Tx = u′(c)f(x) + v′(c). (58)

By differentiating (58) with respect to x, we obtain

c∇2f(cx)x+∇f(cx) = u′(c)∇f(x). (59)

Plugging c = 1 into (58) and (59) completes the proof.
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A.3 Proof of Proposition 5

In order to prove the equivalence of (1) and (9), we show that a scalar multiple of an
optimal solution to one problem is optimal to the other problem. Since {x : ‖x‖2 = 1}
and {w : f(w) = 1} have a one-to-one correspondence, we can uniquely determine such a
mapping.

First, we consider the multiplicatively scale invariant case where f(x∗) > 0. Suppose
that an optimal solution to (9) is z not x∗/f(x∗)1/p such that

‖z‖2 < ‖x∗/f(x∗)1/p‖2. (60)

Let ẑ = z/‖z‖2. Then, we have ‖ẑ‖2 = 1 and z = ẑ/f(ẑ)1/p. Since ‖ẑ‖2 = ‖x∗‖2 = 1, we
have

‖z‖2 = ‖ẑ/f(ẑ)1/p‖2 = 1/f(ẑ)1/p, ‖x∗/f(x∗)1/p‖2 = 1/f(x∗)1/p. (61)

From (60) and (61), we have f(x∗) < f(ẑ) since p > 0. This contradicts the assumption that
x∗ is an optimal solution to (1).

For an optimal solution w∗ to (9), since f(w∗) = 1, we have w∗ 6= 0 and thus ‖w∗‖2 > 0
and f (w∗/‖w∗‖2) = 1/‖w∗‖p2 > 0. Suppose an optimal solution to (1) is y with

f(y) > f (w∗/‖w∗‖2) > 0. (62)

Let ŷ = y/f(y)1/p. Then, f(ŷ) = 1 and y = ŷ/‖ŷ‖2. Using f(ŷ) = f(w∗) = 1, we have

f(y) = f (ŷ/‖ŷ‖2) = 1/‖ŷ‖1/p2 , f (w∗/‖w∗‖2) = 1/‖w∗‖1/p2 . (63)

From (62) and (63), we obtain ‖ŷ‖2 < ‖w∗‖2, which contradicts that w∗ is optimal to (9).
Next, we consider the additively scale invariant case. Suppose that an optimal solution

to (9) is z with

‖z‖2 < ‖a1−f(x∗)x∗‖2. (64)

Let ẑ = z/‖z‖2. Then, we have ‖ẑ‖2 = 1 and z = a1−f(ẑ)ẑ. Using ‖ẑ‖2 = ‖x∗‖2 = 1, we
have

‖z‖2 = a1−f(ẑ), ‖a1−f(x∗)x∗‖2 = a1−f(x∗). (65)

From (64) and (65), we obtain f(x∗) < f(ẑ) due to a > 1, which contradicts the assumption
that x∗ is an optimal solution to (1).

Conversely, suppose that an optimal solution of (1) is y with

f(y) > f (w∗/‖w∗‖2) . (66)

Let ŷ = a1−f(y)y. Then, we have f(ŷ) = 1 and y = ŷ/‖ŷ‖2. Since f(ŷ) = f(w∗) = 1, we have

f(y) = f(ŷ)− loga‖ŷ‖2 = 1− loga‖ŷ‖2, f (w∗/‖w∗‖2) = 1− loga‖w∗‖2. (67)

From (66) and (67), we have ‖ŷ‖2 < ‖w∗‖2 since a > 1, contradicting the fact that w∗ is an
optimal solution to (9).
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Appendix B. Sublinear convergence of SCI-PI for quasi-convex f

Proposition 11 If f is quasi-convex and continuously differentiable, a sequence of iterates
{xk}k=0,1,··· generated by SCI-PI satisfies f(xk+1) ≥ f(xk) for all k ≥ 0. Moreover, either
Algorithm 1 terminates with a stationary point or every limit point is a stationary point.

Proof Suppose that f(xk+1) < f(xk). By the first-order property of differentiable quasi-
convex functions, this leads to

∇f(xk)
T (xk+1 − xk) = ∇f(xk)

T

(
∇f(xk)

‖∇f(xk)‖2
− xk

)
= ‖∇f(xk)‖2 −∇f(xk)

Txk ≤ 0.

(68)

However, since f(xk+1) 6= f(xk), ∇f(xk) is not a scalar multiple of xk, resulting in

‖∇f(xk)‖2 −∇f(xk)
Txk > 0.

This contradicts (68). Therefore, we have f(xk+1) ≥ f(xk).
If Algorithm 1 terminates at iteration k, we have∇f(xk) = 0. Therefore, xk is a stationary

point satisfying (8) with the value of the Lagrange multiplier being zero. Otherwise, let x∗

be a limit point and suppose that x∗ is not a stationary point. Then, there exists some ε > 0
such that ∇f(x∗)Tx∗/‖∇f(x∗)‖2 < 1− ε. Since ∇f is continuous, there exists some δ > 0
such that for x ∈ ∂Bd with ∇f(x) 6= 0, if ‖x− x∗‖2 < δ, then

∇f(x∗)T∇f(x)

‖∇f(x∗)‖2‖∇f(x)‖2
> 1− ε.

Let k′ be an index such that ‖xk′−x∗‖2 < δ. Since {f(xk)}k=0,1,··· is non-decreasing, we have
f(xk′) ≤ f(xk′+1) ≤ f(x∗). By the first-order derivative property of quasi-convex functions,
we obtain

∇f(x∗)T (xk′+1 − x∗)
‖∇f(x∗)‖2

≤ 0.

However, since xk′+1 = ∇f(xk′)/‖∇f(xk′)‖2 and ‖xk′ − x∗‖2 < δ, we must have

∇f(x∗)Tx∗

‖∇f(x∗)‖2
< 1− ε < ∇f(x∗)T∇f(xk′)

‖∇f(x∗)‖2‖∇f(xk′)‖2
.

This leads to a contradiction. Therefore, x∗ must be a stationary point.

Appendix C. Additional Lemmas

On several occasions, we use if x ∈ ∂Bd, y ∈ ∂Bd, then

‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2xT y = 2(1− xT y).

Note that if xT y ≥ 0, then√
1− (xT y)2 =

√
(1− xT y)(1 + xT y) ≥

√
1− xT y =

‖x− y‖2√
2

. (69)

By Cauchy-Schwarz, we also have√
1− (xT y)2 =

√
(1− xT y)(1 + xT y) ≤

√
2
√

1− xT y = ‖x− y‖2. (70)
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C.1 In Support of the Proofs of Theorem 6 and Theorem 7

Lemma 12 Let x∗ be a vector in Rd and {v1, · · · ,vd} be an orthogonal basis in Rd such
that x∗ = v1. If a twice continuously differentiable function f : Rd → R satisfies

∇f(x)Tv1 = λ∗ + α(x),
d∑
i=2

(∇f(x)Tvi)2 ≤
(
λ̄2‖x− x∗‖2 + β(x)

)2 (71)

for every x ∈ ∂Bd and some functions α, β : Rd → R and scalars λ∗, λ̄ such that

α(x) = o(
√
‖x− x∗‖2), β(x) = o(‖x− x∗‖2), λ∗ > λ̄ ≥ 0,

then for the sequence of iterates {xk}k=0,1,··· generated by SCI-PI, there exists some δ > 0
such that under the initial condition ‖x0 − x∗‖2 < δ, we have

‖xk − x∗‖22 ≤
k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2

‖x0 − x∗‖22,
λ̄2

λ∗
+ γt < 1, and lim

k→∞
γk = 0.

Proof By (71) for every x ∈ ∂Bd, we have∑d
i=2(∇f(x)Tvi)2

(∇f(x)Tv1)2
≤
(
λ̄2‖x− x∗‖2 + β(x)

λ∗ + α(x)

)2

.

Let

θ(x) =
λ̄2‖x− x∗‖2 + β(x)

λ∗ + α(x)
− λ̄2

λ∗
‖x− x∗‖2.

Then, we have θ(x) = o(‖x− x∗‖2) and∑d
i=2(∇f(x)Tvi)2

(∇f(x)Tv1)2
≤
(
λ̄2

λ∗
+

θ(x)

‖x− x∗‖2

)2

‖x− x∗‖22. (72)

Let

ε(x) =
θ(x)

‖x− x∗‖2
. (73)

For x ∈ Rd such that xTx∗ > 0 or ‖x − x∗‖2 <
√

2, we multiply (72) by 2/(1 + xTx∗) to
obtain ∑d

i=2(∇f(x)Tvi)2

(∇f(x)Tv1)2

(
2

1 + xTx∗

)
≤
(
λ̄2

λ∗
+ ε(x)

)2(
1 +

1− xTx∗

1 + xTx∗

)
‖x− x∗‖22

=

(
λ̄2

λ∗
+ γ(x)

)2

‖x− x∗‖22 (74)

where

γ(x) =
λ̄2

λ∗

(
1− xTx∗

1 + xTx∗ +
√

2(1 + xTx∗)

)
+ ε(x)

√
1 +

1− xTx∗
1 + xTx∗

. (75)
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By (71), there exists some δ1 > 0 such that if ‖x− x∗‖2 < δ1, then

∇f(x)Tv1 > 0. (76)

Also, by (73), for any γ̄ > 0 satisfying

λ̄2

λ∗
+ γ̄ < 1, (77)

there exists some constant δ2 > 0 such that if ‖x− x∗‖2 < δ2, then

|ε(x)| ≤ γ̄

4
. (78)

Let γk = γ(xk), εk = ε(xk), and δ = min{δ1, δ2,
√

2λ∗

λ̄2
γ̄,
√

2}. We prove that if ‖xk−x∗‖2 < δ,
then we have

‖xk+1 − x∗‖22 ≤
(
λ̄2

λ∗
+ γk

)2

‖xk − x∗‖22 and γk ≤ γ̄. (79)

Since δ <
√

2, we have xTk x
∗ > 0. Also, from ‖xk − x∗‖2 < δ1 and x∗ = v1, using the update

rule of SCI-PI and (76), we obtain

xTk+1x
∗ =
∇f(xk)

Tx∗

‖∇f(xk)‖2
=
∇f(xk)

Tv1

‖∇f(xk)‖2
> 0.

On other the hand, since |xTk+1v1| ≤ ‖xk+1‖2‖v1‖2 = 1, we have

1− (xTk+1x
∗)2 ≤

1− (xTk+1v1)2

(xTk+1v1)2
.

Also, from the fact that {v1, · · · ,vd} forms an orthogonal basis in Rd, we have ∇f(xk) =∑d
i=1(∇f(xk)Tvi)vi and ‖∇f(xk)‖22 =

∑d
i=1(∇f(xk)Tvi)2. Using the update rule of SCI-PI,

we have

1− (xTk+1v1)2

(xTk+1v1)2
=
‖∇f(xk)‖22 − (∇f(xk)

Tv1)2

(∇f(xk)Tv1)2
=

∑d
i=2(∇f(xk)

Tvi)2

(∇f(xk)Tv1)2
.

By ‖xk − x∗‖2 <
√

2, using (74), we have

‖xk+1 − x∗‖22 = (1− (xTk+1x
∗)2)

(
2

1 + xTk+1x
∗

)
≤
(
λ̄2

λ∗
+ γ(xk)

)2

‖xk − x∗‖22.

Since xTk x
∗ > 0, ‖xk − x∗‖2 < δ2, and 1− xTk x∗ <

λ∗

λ̄2
γ̄,

γk =
λ̄2

λ∗

 1− xTk x∗

1 + xTk x
∗ +

√
2(1 + xTk x

∗)

+ εk

√
1 +

1− xTk x∗

1 + xTk x
∗ ≤

γ̄

2
+
γ̄

2
= γ̄,
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which proves (79). Therefore, if x0 satisfies ‖x0 − x∗‖2 < δ, by repeatedly applying (79), we
obtain

‖xk − x∗‖22 ≤
k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2

‖x0 − x∗‖22 and
λ̄2

λ∗
+ γk ≤

λ̄2

λ∗
+ γ̄ < 1.

From

‖xk − x∗‖22 <
(
λ̄2

λ∗
+ γ̄

)2k

‖x0 − x∗‖22, (80)

we have xk → x∗, and thus limk→∞ γk = 0 by (75). This gives the desired result.

Lemma 13 Let x∗ be a vector in Rd and {v1, · · · ,vd} be an orthogonal basis in Rd such
that x∗ = v1. If a three-times continuously differentiable function f : Rd → R satisfies

∇f(x)Tv1 ≥ A−B(1− xTx∗)− C
√

1− xTx∗ (81)

and

d∑
i=2

(∇f(x)Tvi)2 ≤
(
D
√

1− (xTx∗)2 + E‖x− x∗‖2 +
F

2
‖x− x∗‖22

)2

(82)

for every x ∈ ∂Bd and some constants A,B,C,D,E, F such that

A > 0, B + C > 0,
D + E

A
< 1,

then for the sequence of iterates {xk}k=0,1,··· generated by SCI-PI, under the initial condition
that ‖x0 − x∗‖2 < δ where

δ = min

{ √
2A

A+ |A−B|+ C
,

√
2(A−D − E)

A−D + F + C + |A−B|

}
, (83)

we have

‖xk − x∗‖22 ≤
k−1∏
t=0

(
D + E

A
+ γt

)2

‖x0 − x∗‖22,
D + E

A
+ γt < 1, and lim

k→∞
γk = 0.

Proof Let ‖x0 − x∗‖2 = δ0 < δ. To prove the main result, we show that if ‖xk − x∗‖2 < δ0,
then we have xTk+1x

∗ > 0 and

1− (xTk+1x
∗)2

(xTk+1x
∗)2

≤ ρk
1− (xTk x

∗)2

(xTk x
∗)2

(84)

where

ρk =

(
D + E + (E + F )‖xk − x∗‖2/

√
2

A− (|A−B|+ C)‖xk − x∗‖2/(
√

2− ‖xk − x∗‖2)

)2

.
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Suppose that ‖xk − x∗‖2 < δ0 for k ≥ 0. Since ‖xk − x∗‖2 < δ, by (83), we have xTk x
∗ > 0

and

A−B(1− xTk x∗)− C
√

1− xTk x∗ = AxTk x
∗ + (A−B)(1− xTk x∗)− C

√
1− xTk x∗

= AxTk x
∗ +

A−B
2
‖xk − x∗‖22 −

C√
2
‖xk − x∗‖2

≥ xTk x∗
(
A− |A−B|+ C√

2

‖xk − x∗‖2
xTk x

∗

)
> 0

(85)

where the first inequality follows from ‖xk − x∗‖2 ≤
√

2 and the second one follows from

|A−B|+ C√
2

‖xk − x∗‖2
xTk x

∗ =
(|A−B|+ C)‖xk − x∗‖2√

2− ‖xk − x∗‖22/
√

2
≤ (|A−B|+ C)‖xk − x∗‖2√

2− ‖xk − x∗‖2
< A.

Inequality (85) implies that

xTk+1x
∗ =
∇f(xk)

Tv1

‖∇f(xk)‖2
=
A−B(1− xTk x∗)− C

√
1− xTk x∗

‖∇f(xk)‖2
> 0.

On the other hand, since

1− (xTk+1v1)2

(xTk+1v1)2
=
‖∇f(xk)‖22 − (∇f(xk)

Tv1)2

(∇f(xk)Tv1)2
=

∑d
i=2(∇f(xk)

Tvi)2

(∇f(xk)Tv1)2
,

using (81), (82), and (85), we have

1− (xTk+1x
∗)2

(xTk+1x
∗)2

≤

D
√

1− (xTk x
∗)2 + E‖xk − x∗‖2 + F

2 ‖xk − x
∗‖22

A−B(1− xTk x∗)− C
√

1− xTk x∗

2

≤

(
D + E + (E + F )‖xk − x∗‖2/

√
2

A− (|A−B|+ C)‖xk − x∗‖2/(
√

2− ‖xk − x∗‖2)

)2
1− (xTk x

∗)2

(xTk x
∗)2

where we use the fact that
√

1 + x ≤ 1 +
√
x for x ≥ 0 to derive

D
√

1− (xTk x
∗)2 + E‖xk − x∗‖2 + F

2 ‖xk − x
∗‖22√

1− (xTk x
∗)2

= D + E

√
1 +

1− xTk x∗

1 + xTk x
∗ + F

√
1− xTk x∗

1 + xTk x
∗

≤ D + E + (E + F )

√
1− xTk x∗

1 + xTk x
∗

≤ D + E + (E + F )
‖xk − x∗‖2√

2
.
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Since xTk x
∗ > 0 and xTk+1x

∗ > 0, we can write (84) as

‖xk+1 − x∗‖22 ≤

 ρk(1 + xTk x
∗)

ρk + (1− ρk)(xTk x∗)2 + xTk x
∗
√
ρk + (1− ρk)(xTk x∗)2

 ‖xk − x∗‖22.
Let

ρ̄k =
ρk(1 + xTk x

∗)

ρk + (1− ρk)(xTk x∗)2 + xTk x
∗
√
ρk + (1− ρk)(xTk x∗)2

.

Before proving ρ̄k ≤ ρ̄0 < 1, we first show that ρk ≤ ρ0 < 1. Since xTk x
∗ ≥ xT0 x

∗, we have
‖xk − x∗‖2 ≤ ‖x0 − x∗‖2, and thus

‖xk − x∗‖2√
2− ‖xk − x∗‖2

≥ ‖x0 − x∗‖2√
2− ‖x0 − x∗‖2

,

which results in ρk ≤ ρ0. From δ0 < δ and (83), we have

|A−B|+ C + E + F√
2− ‖x0 − x∗‖2

‖x0 − x∗‖2 ≤ A−D − E,

and thus

A− |A−B|+ C√
2− ‖x0 − x∗‖2

‖x0 − x∗‖2 −
[
D + E + (E + F )

‖x0 − x∗‖2√
2

]
≥ 0.

This leads to ρ0 < 1.
If ρk = 0, obviously ρk ≤ ρ0. Otherwise, using 0 < ρk ≤ ρ0 and xTk x

∗ ≥ xT0 x∗, we have

ρ̄k =
1 + xTk x

∗

(xTk x
∗)2/ρk + (1− (xTk x

∗)2) + xTk x
∗
√

(xTk x
∗)2/ρ2

k + (1− (xTk x
∗)2)/ρk

≤
1 + xTk x

∗

(xTk x
∗)2/ρ0 + (1− (xTk x

∗)2) + xTk x
∗
√

(xTk x
∗)2/ρ2

0 + (1− (xTk x
∗)2)/ρ0

≤
ρ0(1 + xTk x

∗)

ρ0 + (1− ρ0)(xTk x
∗)2 + xTk x

∗
√
ρ0 + (1− ρ0)(xTk x

∗)2

≤ ρ0√
ρ0 + (1− ρ0)(xTk x

∗)2

1 +
1−

√
ρ0 + (1− ρ0)(xTk x

∗)2√
ρ0 + (1− ρ0)(xTk x

∗)2 + xTk x
∗


≤ ρ0√

ρ0 + (1− ρ0)(xT0 x
∗)2

1 +
1−

√
ρ0 + (1− ρ0)(xT0 x

∗)2√
ρ0 + (1− ρ0)(xT0 x

∗)2 + xT0 x
∗


= ρ̄0.
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Since

ρ0 + (1− ρ0)(xT0 x
∗)2 + xT0 x

∗
√
ρk + (1− ρk)(xT0 x∗)2 − ρk(1 + xT0 x

∗) > 0,

we finally have ρ̄ < 1. Therefore, we have

‖xk+1 − x∗‖22 ≤
(
D + E

A
+ γk

)2

‖xk − x∗‖22 ≤ ρ̄0 ‖xk − x∗‖22

where

ρ̄k =

(
D + E

A
+ γk

)2

< 1.

Since ‖xk+1 − x∗‖2 < δ, by induction, we have

‖xk − x∗‖22 ≤ ρ̄k0 ‖x0 − x∗‖22,

which implies the convergence of x∗ to x∗. As x∗ → x∗, we have ρ̄k → ρk and ρk → (D+E
A )2,

which leads to γk → 0. This completes the proof.

Lemma 14 Let f be three-times continously differentiable on an open set containing ∂Bd
and Hj be the Hessian of ∇jf = ∂f/∂xj. Let {v1, · · · ,vd} be an orthogonal basis in Rd.
For x ∈ ∂Bd and y1, · · · , yd ∈ Bd, let

Gi(y
1, · · · , yd) =

d∑
j=1

vi,jHj(y
j), Ri(x) = ∇f(x)Tvi −∇f(x∗)Tvi − (x− x∗)T∇2f(x∗)vi.

Then, we have
d∑
i=1

(Ri(x))2 ≤ 1

4
M2‖x− x∗‖42

where
M = max

x∈∂Bd,y1,··· ,yd∈Bd

√∑d
i=1(xTGi(y

1, · · · , yd)x)2.

Proof From ∇jf(x) being twice continuously differentiable near ∂Bd, we have

∇jf(x) = ∇jf(x∗) +∇∇jf(x∗)T (x− x∗) +
1

2
(x− x∗)T Hj(y

j) (x− x∗) (86)

where yj ∈ N (x, x∗) := {y | y = λx+ (1− λ)x∗, 0 ≤ λ ≤ 1}. Since

Ri(x) =
1

2
(x− x∗)TGi(y1, · · · , yd)(x− x∗)

=
1

2
‖x− x∗‖22

[
x− x∗

‖x− x∗‖2

]T
Gi(y

1, · · · , yd)
[

x− x∗

‖x− x∗‖2

]
,

(87)

using the definition of M , we have the desired result.
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C.2 In Support of the Proofs of Theorem 9 and Theorem 10

Lemma 15 Suppose that f(x, y) is scale invariant in x ∈ Rdx for each y ∈ Rdy and twice
continuously differentiable on an open set containing ∂Bdx × ∂Bdy . Let (x∗, y∗) be a point
satisfying

∇xf(x∗, y∗) = λ∗x∗, λ∗ > λ̄2 = max2≤i≤dx |λi|, x∗ = v1

where (λi,vi) is an eigen-pair of ∇2
xxf(x∗, y∗). Then, for any x ∈ ∂Bdx and y ∈ ∂Bdy , we

have

∇xf(x, y)Tv1 = λ∗ + (y − y∗)T∇2
yxf(x∗, y∗)x∗ + α(x, y)

and

dx∑
i=2

(∇xf(x, y)Tvi)2 ≤
(
λ̄2‖x− x∗‖2 + ν‖y − y∗‖2 + β(x, y)

)2
where

α(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
, β(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
, ν = ‖∇2

xyf(x∗, y∗)‖2.

Therefore, we have∑dx
i=2(∇xf(x, y)Tvi)2

(∇xf(x, y)Tv1)2
≤
(
λ̄2

λ∗
‖x− x∗‖2 +

ν

λ∗
‖y − y∗‖2 + θ(x, y)

)2

where

θ(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Proof Since ∇2
xxf(x∗, y∗) is real and symmetric, without loss of generality, we assume that

{v1, · · · ,vdx} forms an orthogonal basis in Rdx .
By Taylor expansion of ∇xf(x, y)Tvi at (x∗, y∗), we have

∇xf(x, y)Tvi = ∇xf(x∗, y∗)Tvi +

[
x− x∗
y − y∗

]T [∇2
xxf(x∗, y∗)
∇2
yxf(x∗, y∗)

]
vi +Ri(x, y)

where

Ri(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Using ∇xf(x∗, y∗) = λ∗x∗ and x∗ = v1, we have

∇xf(x∗, y∗)Tv1 = λ∗, (x− x∗)T∇2
xxf(x∗, y∗)v1 = −λ1(1− xTk x∗).

Therefore, we obtain

∇xf(x, y)Tv1 = λ∗ + (x− x∗)T∇2
yxf(x∗, y∗)x∗ + α(x, y) (88)

36



Scale Invariant Power Iteration

where

α(x, y) = R1(x, y)− λ1(1− xTx∗) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

In the same way, for 2 ≤ i ≤ dx, we have

∇xf(x∗, y∗)Tvi = λ∗(x∗)Tvi = 0, (x− x∗)T∇2
xxf(x∗, y∗)vi = λix

Tvi,

resulting in

∇xf(x, y)Tvi = λix
Tvi + (y − y∗)T∇2

yxf(x∗, y∗)vi +Ri(x, y). (89)

From (89), we obtain

dx∑
i=2

(∇xf(x, y)Tvi)2 =

dx∑
i=2

(λi)
2(xTvi)2 +

dx∑
i=2

(
(y − y∗)T∇2

yxf(x∗, y∗)vi
)2

+

dx∑
i=2

(Ri(x, y))2 + 2

dx∑
i=2

λi(x
Tvi)(y − y∗)T∇2

yxf(x∗, y∗)vi

+ 2

dx∑
i=2

λi(x
Tvi)Ri(x, y)

+ 2

dx∑
i=2

(y − y∗)T∇2
yxf(x∗, y∗)viRi(x, y).

Since {v1, · · · ,vdx} forms an orthogonal basis in Rdx , with x∗ = v1 and ‖x‖22 = 1, we have

dx∑
i=2

(λi)
2(xTvi)2 ≤ (λ̄2)2

(
1− (xTx∗)2

)
≤ (λ̄2)2‖x− x∗‖22

and
dx∑
i=2

(
(y − y∗)T∇2

yxf(x∗, y∗)vi
)2 ≤ ‖(y − y∗)T∇2

yxf(x∗, y∗)‖22 ≤ ν2‖y − y∗‖22.

Let R̄2(x, y) = max2≤i≤dx |Ri(x, y)|. Note that

R̄2(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Using the Cauchy-Shwartz inequality, we have

dx∑
i=2

λi(x
Tvi)(y − y∗)T∇2

yxf(x∗, y∗)vi ≤ λ̄2ν‖y − y∗‖2‖x− x∗‖2.

Also, we have

dx∑
i=2

λi(x
Tvi)Ri(x, y) ≤ λ̄2R̄2(x, y)

√
dx‖x− x∗‖2
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and

dx∑
i=2

Ri(x, y)(y − y∗)T∇2
yxf(x∗, y∗)vi ≤ νR̄2(x, y)

√
dx‖y − y∗‖2.

Therefore, we obtain

dx∑
i=2

(∇xf(x, y)Tvi)2 ≤
(
λ̄2‖x− x∗‖2 + ν‖y − y∗‖2 + β(x, y)

)2 (90)

where

β(x, y) = R̄2(x, y)
√
dx = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Since {v1, · · · ,vdx} forms an orthogonal basis in Rdx and |xTx∗| ≤ ‖x‖2‖x∗‖2 = 1, we have

1− (∇xf(x, y)Tx∗)2

‖∇xf(x, y)‖22
≤
∑dx

i=2(∇xf(x, y)Tvi)2

(∇xf(x, y)Tv1)2
.

Using (88) and (90), we have∑dx
i=2(∇xf(x, y)Tvi)2

(∇xf(x, y)Tv1)2
≤
(
λ̄2

λ∗
‖x− x∗‖2 +

ν

λ∗
‖y − y∗‖2 + θ(x, y)

)2

where

θ(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

This completes the proof.

Lemma 16 Suppose that f(x, y) is µ-strongly concave in y ∈ Rdy with an L-Lipschitz
continuous ∇yf(x, y) for each x ∈ ∂Bdx and three-times continously differentiable with
respect to x and y on an open set containing ∂Bdx × Rdy . Let (x∗, y∗) be a point such that
∇yf(x∗, y∗) = 0. Then, for any x ∈ ∂Bdx and y ∈ Rdy , with α = 2/(L+ µ), we have

‖y + α∇yf(x, y)− y∗‖2 ≤
(

2ν

L+ µ

)
‖x− x∗‖2 +

(
L− µ
L+ µ

)
‖y − y∗‖2 + θ(x, y) (91)

where

ν = ‖∇2
yxf(x∗, y∗)‖2, θ(x, y) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Proof Let ∇y,if be the ith coordinate of ∇yf and

Hy,i =

[
Hxx
y,i Hxy

y,i

Hyx
y,i Hyy

y,i

]
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be the Hessian of ∇y,if . By Taylor expansion of ∇y,if(x, y) at (x∗, y), we have

∇y,if(x, y) = ∇y,if(x∗, y) +∇x∇y,if(x∗, y)T (x− x∗) +Ri(x, y) (92)

where ∇x∇y,if(x∗, y) denotes the ith column of ∇2
yxf(x∗, y) and

Ri(x, y) =
1

2
(x− x∗)THxx

y,i(x̂
i, y)(x− x∗), x̂i ∈ N (x, x∗). (93)

Also, from f being three-times continuously differentiable, we have

∇x∇y,if(x∗, y) = ∇x∇y,if(x∗, y∗) +Hxy
y,i(x

∗, ŷi)(y − y∗), ŷi ∈ N (y, y∗). (94)

Since

|(y − y∗)THyx
y,i(x

∗, ŷi)(x− x∗)| ≤ ‖Hyx
y,i(x

∗, ŷi)‖2‖x− x∗‖2‖y − y∗‖2

≤ 1

2
‖Hyx

y,i(x
∗, ŷi)‖2

(
‖x− x∗‖22 + ‖y − y∗‖22

)
,

we have

(y − y∗)THyx
y,i(x

∗, ŷi)(x− x∗) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
. (95)

By (92), (93), (94), and (95), we have

∇yf(x, y) = ∇yf(x∗, y) +∇2
yxf(x∗, y∗)(x− x∗) + R̄(x, y) (96)

where

R̄i(x, y) = Ri(x, y) + (y − y∗)THyx
y,i(x

∗, ŷi)(x− x∗) = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Using (96), we have

y + α∇yf(x, y)− y∗ = y − y∗ + α∇yf(x∗, y) + α∇2
yxf(x∗, y∗)(x− x∗) + R̄(x, y),

resulting in

‖y + α∇yf(x, y)− y∗‖2 ≤ ‖y − y∗ + α∇yf(x∗, y)‖2
+ α‖∇2

yxf(x∗, y∗)(x− x∗)‖2 + α‖R̄(x, y)‖2.
(97)

Since−f(x∗, y) is µ-strongly convex in y with an L-Lipschitz continuous gradient−∇yf(x∗, y),
by theory of convex optimization (Bubeck, 2015, p. 279), we have

‖y − y∗ + α∇yf(x∗, z)‖2 ≤
(
L− µ
L+ µ

)
‖y − y∗‖2 (98)

due to α = 2/(L+ µ). Also, we have

α‖∇2
yxf(x∗, y∗)(x− x∗)‖2 ≤

(
2ν

L+ µ

)
‖x− x∗‖2. (99)
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Plugging (98), (99) into (97), we finally obtain

‖y − y∗ + α∇yf(x∗, y)‖2 ≤
(
L− µ
L+ µ

)
‖y − y∗‖2 +

(
2ν

L+ µ

)
‖x− x∗‖2 + θ(x, y)

where

θ(x, y) = ‖R̄(x, y)‖2 = o

(∥∥∥∥[x− x∗y − y∗
]∥∥∥∥

2

)
.

Lemma 17 Suppose that a sequence of iterates {(xk, yk)}k=0,1,··· satisfies[
‖xk+1 − x∗‖2
‖yk+1 − y∗‖2

]
≤

[
a e/b

e/c d

][
‖xk − x∗‖2
‖yk − y∗‖2

]
+

[
θx(xk, yk)

θy(xk, yk)

]
(100)

for some functions θx and θy such that

θx(xk, yk) = o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥

2

)
, θy(xk, yk) = o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥

2

)
. (101)

If a, d, e ≥ 0 and b, c > 0 satisfy

ρ =
1

2

(
a+ b+

√
(a− b)2 +

4e2

bc

)
< 1,

then there exists some δ > 0 such that if ∆0 < δ, then we have

∆2
k ≤

k−1∏
t=1

(ρ+ γt)
2∆2

0 and lim
t→∞

γt = 0

where

∆k =

∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥

2

.

Proof From (100), we have[
‖xk+1 − x∗‖2
‖yk+1 − y∗‖2

]
≤

[
a e/b

e/c d

][
‖xk − x∗‖2
‖yk − y∗‖2

]
+

[
θx(xk, yk)

θy(xk, yk)

]
(102)

≤ (M +N(xk, yk))

[
‖xk − x∗‖2
‖yk − y∗‖2

]
(103)

where

M =

[
a e/b
e/c d

]
, ε(x, y) =

max{θx(x, y), θy(x, y)}√
‖xk − x∗‖22 + ‖yk − y∗‖22

,
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and

N(x, y) =
ε(x, y)√

‖xk − x∗‖22 + ‖yk − y∗‖22

[
‖xk − x∗‖2 ‖yk − y∗‖2
‖xk − x∗‖2 ‖yk − y∗‖2

]
.

Note that we have
lim

(x,y)→(x∗,y∗)
Nij(x, y) = 0, i, j = 1, 2.

By Lemma 18, there exists a sequence {ωt}t=0,1,··· such that

‖Mk‖2 =

k−1∏
t=0

(ρ+ ωt) and limt→∞ωt = 0.

Since ρ < 1, this implies that ‖Mk‖2 converge to 0. Let

τ = min{k : ‖Mk‖2 < 1}, ρ̄ =
‖M τ‖2 + 1

2
, ρmax = max

1≤k≤τ
‖Mk‖2.

Due to Nij(x, y)→ 0 as (x, y)→ (x∗, y∗) for i, j = 1, 2, there exists some δ > 0 such that if∥∥∥∥∥
[
x− x∗

y − y∗

]∥∥∥∥∥
2

< δ,

then we have∥∥∥∥∥
τ−1∏
l=0

(
M +N(φ(x, y, l))

)∥∥∥∥∥
2

< ρ̄, max
0<m≤τ

∥∥∥∥∥
m−1∏
l=0

(
M +N(φ(x, y, l))

)∥∥∥∥∥
2

< 1 + ρmax (104)

where φ(x, y, l) denotes the lth iterate (xl, yl) of the underlying algorithm starting with
(x0, y0) = (x, y).

To see this, let us define

g(x, y,m) =

∥∥∥∥∥
m−1∏
l=0

(
M +N(φ(x, y, l))

)∥∥∥∥∥
2

.

By (100) and (101), if x→ x∗ and y → y∗, then for any 0 ≤ l ≤ τ , we have

φ(x, y, l)→ (x∗, y∗),

resulting in
g(x, y,m)→ ‖Mm‖2.

Therefore, there exists some δτ > 0 such that g(x, y, τ) < ρ̄. Also, for each 1 ≤ m < τ ,
there exists some δm > 0 such that g(x, y,m) < 1 + ρmax. Taking the minimum of δm for
1 ≤ m ≤ τ , we obtain δ satisfying (104).

For any n ≥ 0, if ∆nτ < δ, using (104) for (103), we have

∆nτ+m ≤ (1 + ρmax)∆nτ , 1 ≤ m < τ, ∆(n+1)τ ≤ ρ̄∆nτ . (105)
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Suppose that ∆0 ≤ δ. Then, by repeatedly applying (105), for any n ≥ 0 and 0 ≤ m ≤ τ ,
we have

∆nτ+m ≤ (ρ̄)n (1 + ρmax)∆0,

which implies that ∆k → 0 as k →∞. Let

Nt = N(xt, yt), ηk =
‖
∏k
t=0(M +Nt)‖2

‖
∏k−1
t=0 (M +Nt)‖2

− ‖M
k+1‖2

‖Mk‖2
, γk = ωk + ηk.

Then, we have ∥∥∥∥∥
k−1∏
t=0

(M +Nt)

∥∥∥∥∥
2

=
k−1∏
t=0

(ρ+ ωt + ηt) =
k−1∏
t=0

(ρ+ γt). (106)

Since Nt → 0, we have ηt → 0, and thus limt→∞ γt = 0. This concludes the proof.

Lemma 18 Let M be a 2× 2 matrix such that

M =

[
a e/b
e/c d

]
for some a > 0, b > 0, c > 0, d ≥ 0, e ≥ 0 and let ρ be the largest absolute eigenvalue of M .
Then, there exists a sequence {ωt}t=0,1,... such that

‖Mk‖2 =

k−1∏
t=0

(ρ+ ωt) and lim
t→∞

ωt = 0.

Proof The characteristic equation reads

det(M − λI) = λ2 − λ(a+ d) + ad− e2

bc
= 0

with the discriminant of

(a− d)2 +
4e2

bc
≥ 0.

Thus, all eigenvalues are real.
First, we consider the case when det(M − λI) = 0 has a double root. We obtain the

condition for a double root as

(a− d)2 +
4e2

bc
= 0.

Since b > 0 and c > 0, this implies a = d and e = 0. Therefore, M = aI and ρ = a. From
Mk = akI, we have ‖Mk‖2 =

√
a2k = ρk, resulting in

ωk =
‖Mk+1‖2
‖Mk‖2

− ρ = ρ− ρ = 0, k ≥ 0.
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Next, we consider the case when M has two distinct eigenvalues λ1 and λ2. Since
a+ d > 0, we have λ1 + λ2 > 0. Without loss of generality, assume λ1 > λ2. Then, ρ = λ1.
Let v1 and v2 be corresponding eigenvectors of λ1 and λ2, respectively. Since v1 and v2 are
linearly independent we can represent each column of M as a linear combination of v1 and
v2 as

M = [α1v1 + β1v2 α2v1 + β2v2].

By repeatedly multiplying M , we obtain

Mk = [α1λ
k−1
1 v1 + β1λ

k−1
2 v2 α2λ

k−1
1 v1 + β2λ

k−1
2 v2].

Let Ck = (Mk)TMk. Then, we have

Ck11 = α2
1λ

2(k−1)
1 + β2

1λ
2(k−1)
2 + 2α1β1(λ1λ2)k−1vT1 v2

Ck22 = α2
2λ

2(k−1)
1 + β2

2λ
2(k−1)
2 + 2α2β2(λ1λ2)k−1vT1 v2

and

Ck12 = α1α2λ
2(k−1)
1 + β1β2λ

2(k−1)
2 + (α1β2 + α2β1)(λ1λ2)k−1vT1 v2, Ck21 = Ck12.

Since

Ck11 ≥ α2
1λ

2(k−1)
1 + β2

1λ
2(k−1)
2 − 2α1β1(λ1λ2)k−1 =

(
α1λ

k−1
1 − β1λ

k−1
2

)2
≥ 0

Ck22 ≥ α2
2λ

2(k−1)
1 + β2

2λ
2(k−1)
2 − 2α2β2(λ1λ2)k−1 =

(
α2λ

k−1
1 − β2λ

k−1
2

)2
≥ 0,

we have

‖Mk‖2 =

√
1

2

[
Ck11 + Ck22 +

√(
Ck11 − Ck22

)2
+ 4(Ck12)2

]
,

leading to

‖Mk+1‖2
‖Mk‖2

=

√√√√√√Ck+1
11 + Ck+1

22 +

√(
Ck+1

11 − Ck+1
22

)2
+ 4(Ck+1

12 )2

Ck11 + Ck22 +
√(

Ck11 − Ck22

)2
+ 4(Ck12)2

.

From

lim
k→∞

Ck11

λ
2(k−1)
1

= α2
1, lim

k→∞

Ck22

λ
2(k−1)
1

= α2
2, lim

k→∞

Ck12

λ
2(k−1)
1

= lim
k→∞

Ck21

λ
2(k−1)
1

= α1α2,

we obtain

lim
k→∞

‖Mk+1‖2
‖Mk‖2

=
√
λ2

1 = ρ.

From

lim
k→∞

ωk = lim
k→∞

‖Mk+1‖2
‖Mk‖2

− ρ = ρ− ρ = 0,

we obtain the desired result.
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