
Journal of Machine Learning Research 24 (2023) 1-50 Submitted 2/23; Revised 8/23; Published 12/23

Partial Order in Chaos: Consensus on Feature Attributions
in the Rashomon Set.

Gabriel Laberge1 gabriel.laberge@polymtl.ca

Yann Pequignot2 yann.pequignot@iid.ulaval.ca

Alexandre Mathieu2 alexandre.mathieu.7@ulaval.ca

Foutse Khomh1 foutse.khomh@polymtl.ca

Mario Marchand2 mario.marchand@ift.ulaval.ca
1Génie Informatique et Génie Logiciel, Polytechnique Montréal
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Abstract

Post-hoc global/local feature attribution methods are progressively being employed to
understand the decisions of complex machine learning models. Yet, because of limited
amounts of data, it is possible to obtain a diversity of models with good empirical per-
formance but that provide very different explanations for the same prediction, making it
hard to derive insight from them. In this work, instead of aiming at reducing the under-
specification of model explanations, we fully embrace it and extract logical statements
about feature attributions that are consistent across all models with good empirical perfor-
mance (i.e. all models in the Rashomon Set). We show that partial orders of local/global
feature importance arise from this methodology enabling more nuanced interpretations by
allowing pairs of features to be incomparable when there is no consensus on their relative
importance. We prove that every relation among features present in these partial orders
also holds in the rankings provided by existing approaches. Finally, we present three use
cases employing hypothesis spaces with tractable Rashomon Sets (Additive models, Kernel
Ridge, and Random Forests) and show that partial orders allow one to extract consistent
local and global interpretations of models despite their under-specification.

Keywords: XAI, Feature Attribution, Under-Specification, Rashomon Set, Uncertainty

1. Introduction

The Machine Learning (ML) framework has proven to be an essential tool in many data-
intensive domains such as software engineering, medicine, and cybersecurity (Esteves et al.,
2020; Kaieski et al., 2020; Salih et al., 2021). However, the lack of interpretability of com-
plex models is still an important hurdle to their applicability. For this reason, various
model-agnostic techniques such as LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee,
2017), and Integrated/Expected Gradient (IG/EG) (Sundararajan et al., 2017; Erion et al.,
2021) have recently been developed to provide explanations of model decisions in the form
of local feature attributions. These attributions are meant to indicate the contribution
(positive/negative/null) of individual features toward a model prediction, and their magni-
tudes (positive/null) can be used to rank features in order of importance. As researchers
and practitioners have started to apply these model-agnostic explanations to real-world set-
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tings, it has become apparent that they are subject to variability. First, given a fixed model,
re-running the explainer can yield different local feature attributions (Visani et al., 2020;
Slack et al., 2021; Zhou et al., 2021). Second, retraining the model can induce different local
explanations for the same decisions (Fel et al., 2021; Shaikhina et al., 2021; Schulz et al.,
2021). This phenomenon, known as under-specification, arises when one employs a rich
hypothesis space containing various models that all fit the data while having very different
behaviors (D’Amour et al., 2020).

In this work, we focus on uncertainty induced by the model under-specification, while
controlling the variability arising from the explainer. Current literature addresses this
uncertainty by aggregating local explanations from an ensemble of independently trained
models. The aggregation is either conducted by averaging the models (Shaikhina et al.,
2021), or averaging the local feature importance ranks (Schulz et al., 2021). We find that,
although these methods provide a single local feature attribution to explain all models, it
is unclear what statements practitioners are allowed to make with confidence using said
explanation.

Our characterization of explanations uncertainty departs from the current ones by fo-
cusing on statements about local/global feature attribution. Our motto in this context of
model under-specification is: only consider statements on which all models with good perfor-
mance agree Concretely, we are going to work with the set of all models with an empirical
loss at most ε, or equivalently, with all models in the Rashomon Set (Fisher et al., 2019). At
a fixed tolerance ε, local/global feature attribution statements on which there is a consensus
in the Rashomon Set form partial orders, instead of the total orders typically used to rank
features. Partial orders have the advantage to enable safer interpretation by allowing two
features to be incomparable, which occurs when two models in the Rashomon Set disagree
on their relative importance. In such cases, we abstain from claiming that one feature
is more important than the other and let practitioners study both features and decide to
modify whichever feature is most actionable. Here is a brief summary of the contributions
of this work:

1. We identify local/global feature attribution statements on which there is a perfect
consensus across all models with an empirical loss at most ε (i.e. all models in the
Rashomon Set). These statements result in partial orders, which differ from the total
orders commonly used to visualize feature attributions. Our methodology currently
supports the Rashomon Sets of Additive Regression, Kernel Ridge Regression, and
Random Forests.

2. We prove that if feature i is locally more important than feature j according to our par-
tial orders, then the same relation holds in the total rankings proposed by Shaikhina
et al. (2021); Schulz et al. (2021). This property establishes that our approach based
on partial order is conservative over these total ranking approaches in the sense that
it differs from them only by dismissing some relations among features that are deemed
uncertain. This is a desirable property given the lack of ground truth in explainability,
which restricts quantitative comparisons between competing techniques.

3. We finally present empirical evidence on three open-source datasets that our partial
orders are indeed more cautious than total orders, while still conveying important
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information about the predictions. Each use-case employs a different class of models
to better highlight the versatility of our framework.

The rest of the paper is structured as follows: Section 2 introduces Machine Learning
notation, local/global feature attributions, and the problem of model under-specification,
Section 3 presents a toy-example that serves as the motivation behind our method, Section
4 discusses our methodology for asserting consensus in the Rashomon Set, while Sections 5,
6, & 7 apply the methodology to Additive models, Kernel Ridge Regression, and Random
Forests respectively. Finally, Section 8 discusses the results and Section 9 concludes the
paper.

2. Background & Related Work

2.1 Machine Learning Notation

In supervised Machine Learning (ML) settings, we work with an input space X ⊆ Rd,
a target space Y, an hypothesis space H : X → Y ′, and a loss function ` : Y ′ × Y →
R+. We shall refer to each individual function h ∈ H as a model or a hypothesis. For
parametric hypothesis spaces H = {hθ : θ ∈ Rp}, each realization of the parameters θ is
a different model/hypothesis. We suppose there exists a distribution D over X × Y from
which examples from a dataset S = {(x(i), y(i))}Ni=1 ∼ DN are sampled iid. The ultimate
goal of supervised ML is to find a model h? ∈ argminh∈H LD(h), with minimal population
loss LD(h) := E(x,y)∼D[`(h(x), y)]. However, since the data-generating distribution D is
unknown, we cannot compute the population loss LD(h) and must resort to studying the
empirical loss on the dataset S

L̂S(h) :=
1

N

N∑
i=1

`(h(x(i)), y(i)), (1)

which can be minimized overH to get an estimate hS ∈ argminh∈H L̂S(h) of h?. In this work,
we study the hypothesis spacesH of Additive Splines (Hastie et al., 2009, Chapter 5), Kernel
Ridge Regression (Mohri et al., 2018, Chapters 6 & 11) and Random Forests (Breiman,
2001a). The two loss functions ` that are considered are the squared loss `(y′, y) = (y′−y)2

for a continuous target Y ⊆ R and the 0−1 loss `(y′, y) = 1(y′ 6= y) for a binary target
Y = {0, 1}.

2.2 Feature Attribution

The ML paradigm has been successful in tackling tasks where traditional programming
methods fail. Still, the lack of transparency of some state-of-the-art models such as Ran-
dom Forests and Multi-Layered Perceptrons prohibits their wide-spread application (Arrieta
et al., 2020). To meet this novel challenge, the community of eXplainable Artificial Intelli-
gence (XAI) has recently been growing with the ambition of explaining black box models.
In this paper, by explaining, we mean asking a contrastive question about the model and
then answering said question.

A contrastive question takes the form : why is the model output h(x) so high/low
compared to a baseline value? The baseline value is commonly chosen to be the average
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model output Ez∼B[h(z)] over a distribution B called the background. At the heart of any
contrastive question is a quantity called the Gap

G(h,x) := h(x)− E
z∼B

[h(z)]. (2)

Therefore, asking a contrastive question amounts to measuring a Gap G(h,x) 6= 0 and
wondering why it is strongly positive or negative. Examples of contrastive questions include:

1. Why is individual x predicted to have a higher-than-average risk of heart disease?
Here, the Gap is positive and the background B is the empirical distribution over the
whole dataset.

2. Why is house x predicted to have a lower price than house z? In that case, the Gap
is negative and the background B is the Dirac measure δz.

Now, to answer a contrastive question, we need mathematical tools to probe the model
and extract information from it. Examples of such techniques are local feature attributions,
which are vector-valued functionals φ : H × X → Rd whose vector output represents the
contribution of each feature towards the Gap

d∑
i=1

φi(h,x) = G(h,x). (3)

Since the feature attributions sum up to the Gap, a large positive attribution for feature i
is interpreted as stating that the input component xi increased the model output relative to
the baseline. The amplitude of the score |φi(h,x)| is called the local feature importance and
it is often used to rank features. That is, we interpret |φi(h,x)| < |φj(h,x)| as stating that
feature i is locally less important than feature j for explaining the Gap. Returning to the
contrastive question on house prices, a negative attribution with maximal local importance
may be given to the size xi = small of house x. This would mean that the small size of
the house is the main factor driving its price down relative to house z. In this work, we are
only going to consider local feature attributions that are linear w.r.t the model:

φ(h1 + αh2,x) = φ(h1,x) + αφ(h2,x), (4)

for any hypotheses h1, h2 ∈ H, and α ∈ R. The principal reason for this restriction is that
it will render the optimization problems described in Section 4 tractable. We now present
two linear local feature attributions methods that have previously been used to answer
contrastive questions about black boxes: SHAP (Lundberg and Lee, 2017), and Expected
Gradient (EG) (Erion et al., 2021).

2.2.1 Shapley Values

The Shapley values are a fundamental concept from cooperative game theory (Shapley,
1953). Letting [d] = {1, 2, . . . , d} be the set of all d features, and given a subset P ⊆ [d] of
features, we define the replace function rP : Rd × Rd → Rd as

rP (z,x)i =

{
xi if i ∈ P
zi otherwise.

(5)
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Moreover, let π be a permutation of [d], π(i) be the position of the feature i in π, and
π:i = {j ∈ [d] : π(j) < π(i)}. The Shapley values, as defined in the library SHAP
(Lundberg and Lee, 2017), are the average marginal contributions of specifying the ith
feature from the background distribution across all coalitions

φSHAP
i (h,x) := E

π∼Ω
z∼B

[
h( rπ:i∪{i}(z,x) )− h( rπ:i(z,x) )

]
, (6)

where Ω is the uniform distribution over all d! permutations of the [d]. Because they
involve an expectation over all permutations, the Shapley values scale poorly w.r.t the
number of features, although a method called TreeSHAP was recently developed to reduce
the complexity to polynomial assuming the model being explained is an ensemble of decision
trees (Lundberg et al., 2020; Laberge and Pequignot, 2022).

2.2.2 Integrated/Expected Gradient

The Integrated/Expected Gradient (IG/EG) originates from a different background: cost-
sharing in economics. It is also known as the Aumann-Shapley value and has been previously
used to compute saliency maps of Convolutional Neural Networks (Sundararajan et al., 2017;
Erion et al., 2021). The general definition of EG is

φEG
i (h,x) := E

z∼B,
t∼U(0,1)

[
(xi − zi)

∂h

∂xi

∣∣∣∣
tx+(1−t)z

]
. (7)

The main idea of this approach is to average the gradient along linear paths between
reference inputs sampled from the background and the input x of interest. When the
background distribution degenerates to a single atom at input z (B = δz), the Expected
Gradient falls back the so-called Integrated Gradient.

2.2.3 Global Feature Attribution

As a complement to local feature attributions, global feature attributions are vector-valued
functionals Φ : H → Rd+ that aim to highlight which features are globally most used by
the model. Unlike local explanations, these functionals Φ are not specific to a given input,
and the values of the attributions are restricted to be positive. Hence, we will often refer
to them as global feature importance. A straightforward way to extract global insight from
local feature attributions is to average their absolute value across the data

Φ
[1]
i (h) := E

x∼D
[ |φi(h,x)| ] (8)

which is the by-default scheme in the Python libraries SHAP (Lundberg and Lee, 2017) and
InterpretML (Nori et al., 2019). Another way to combine local attributions into global
ones is to average their squared amplitude

Φ
[2]
i (h) := E

x∼D
[φi(h,x)2 ]. (9)

Although this functional has not yet been proposed, it is a natural measure of importance
for linear models h(x) = ω0 +

∑d
i=1 ωixi whose local feature attributions (using B = D) are
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φi(h,x) = ωi(xi−Ez∼D[zi]) (Lundberg and Lee, 2017). In that case, the global importance

Φ
[2]
i = ω2

iVz∼D(zi) correspond to the standardized coefficients. We will also see in Section
5 that Φ[2] presents computational advantages over Φ[1] in the case of Additive Regression.

This work focuses on SHAP and EG local feature attributions and their global counter-
part Φ[1] or Φ[2]. Still, but there exist many more post-hoc methods for local/global feature
attributions. For instance, LIME (Ribeiro et al., 2016) computes local feature attributions
by training a linear model to mimic the behavior of h around x. This local explainer was
not used because it does not respect Equation 3. Moreover, Permutation Feature Impor-
tance (Breiman, 2001a) and SAGE (Covert et al., 2020) extract global feature importance
by perturbing a feature and reporting the impact on model performance. Studying these
two global importance techniques is part of our future work.

2.3 Under-Specification and Rashomon Set

The Rashomon Effect (Breiman, 2001b), also known as model under-specification (D’Amour
et al., 2020) or model multiplicity (Marx et al., 2020) refers to the observation that there
often exists a large diversity of models that fit the data well. This is especially true when one
is employing a hypothesis space with a large capacity. Formally, model under-specification
can be characterized via the Rashomon Set (Fisher et al., 2019)

Definition 1 (Rashomon Set) Given a hypothesis space H, a loss function `, a data set
S, and a tolerance threshold ε > 0, the Rashomon set is defined as

R(H, ε) :=
{
h ∈ H : L̂S(h) ≤ ε

}
, (10)

where we leave the dependence in S and ` implicit from the context.

Although Rashomon Sets have an appealing and simple interpretation, their computation
is intractable unless |H| is small or unless H is the set of linear hypotheses fitted with
squared loss. Hence, in general settings, the Rashomon Sets have to be estimated, which
can be done by sampling models and keeping the ones with satisfactory performance (Dong
and Rudin, 2019; Semenova et al., 2022). However, this method can be time-consuming
and requires extensive memory to store thousands of models. Alternatively, by relaxing the
notion of “model” to include all possible feature selections (i.e. H = ∪D⊆[d]HD where HD
only relies on features in D), forward selection strategies can enumerate good models more
efficiently (Kissel and Mentch, 2021).

Other approaches work implicitly with the Rashomon Set by solving optimization prob-
lems over H under the constraint that L̂S(h) ≤ ε. In doing so, one can explore the differ-
ent characteristics of models in the Rashomon Set without ever needing to represent the
set explicitly. Such optimization problems have been studied to characterize the under-
specification of model predictions (Marx et al., 2020; Coker et al., 2021; Hsu and Calmon,
2022), and global feature importance (Fisher et al., 2019). However, to the best of our
knowledge, this is the first work that explores the range of possible local feature attribu-
tions φ(h,x) across all models from the Rashomon Set.
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2.4 Under-Specification of Feature Attributions.

In the words of Leo Breiman (2001b) “The multiplicity problem and its effect on conclusions
drawn from models needs serious attention.” Indeed, since models are under-specified, so
are their interpretations via local/global feature attributions. In practice, this translates
to situations where a large set of independently trained models all yield different local
explanations for the same Gap, or different rankings of global feature importance. If our goal
is to not just understand one hypothesis h, but also to provide interpretations that are robust
to the inherent under-specification of the ML pipeline, then contradicting explanations are
problematic. Previous work tackles this uncertainty by aggregating the feature attributions
of multiple independently trained models. They both consider an ensemble E = {hk}Mk=1 of
M models trained independently via a stochastic learning algorithm hk ∼ A(S). The local
feature attributions of each of these models are computed {φ(hk,x)}Mk=1 and aggregated.
Uncertainty scores are provided in tandem with the aggregated attributions as means to
convey how “confident” the local attributions are.

For instance, Shaikhina et al. (2021) aggregate local feature attributions by explain-
ing the average model and the uncertainty scores are the variances of feature attributions
among models. That is, they define the average model hE = 1

M

∑M
i=1 hk and compute

its corresponding feature attributions φ(hE ,x), which the authors show to be equivalent
to averaging the local feature attributions of each individual model when attribution is
a linear functional. The uncertainty score for the attribution of feature i is the variance
1
M

∑M
k=1(φi(hk,x)− φi(hE ,x) )2.

In a similar effort, Schulz et al. (2021) obtain aggregated local explanations by averaging
the ranks of the feature importance across models 1

M

∑M
k=1 r[ |φ(hk,x)| ], where r : Rd+ → [d]

is the rank function that maps each component of a vector to its rank among the other
components. For the uncertainty score for feature i they suggest using the ordinal consensus
metric, which takes values between 0 and 1 and measures the consistency between the
rankings. As we shall see in Section 3, both of these approaches share the same limitations:
it is unclear what statements we can/cannot make with confidence when analyzing the
resulting local feature attributions. Indeed, they both end up providing a total order of
local feature importance which suggests that every feature is either more important or less
important than any other feature, irrespective of the explanation uncertainty. Moreover,
the uncertainty scores shown in tandem with the explanations do not easily translate to
confidence scores about statements of the form “feature i is locally more important than
feature j”. Finally, they do not consider the whole Rashomon Set but rather employ
ensembles of M independently trained models, which may underestimate the true under-
specification of the ML task.

3. Motivation

We illustrate the limitations of current methods and motivate our own with a toy re-
gression problem. We sampled 1000 4-dimensional points x ∼ N (0,Σ) where Σ is iden-
tity, except for Σ1,2 = Σ2,1 = 0.75, labelled them via y := f(x) + ∆, with f(x) =

−8 cos(x1 − x2) cos(x1 + x2) + 1.5x3 (x4 is a dummy variable) and ∆ is Gaussian noise
with standard deviation σ = 0.1. We then independently trained five Multi-Layered Per-
ceptrons (MLP) with layerwidths= 50, 20, 10 and ReLU activations. All models ended up
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x4 = 1.57

x3 = 1.57

x1 = 1.57

x2 = 1.57
Test RMSE
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0.512

0.525

0.585

x1=1.57
mean=3.983

x3=1.57
mean=2.220

x2=1.57
mean=4.594

Figure 1: Left: local feature attributions for the average model hE (orange line) and each
individual model (blue lines). Right: Partial order of local feature importance. There is
a directed path from feature xi to feature xj if all good models agree that feature xi is
more important than xj .

having test set Root-Mean-Squared-Error (RMSE) between 0.47 and 0.62, while the tar-
get had a standard deviation of 4.91. After conducting paired Student-t tests between the
model with RMSE 0.47 and the four others, we concluded that the one with error 0.62
was significantly worst and should be discarded. The other three models did not have a
significantly worst test RMSE and so we kept them.

We analyzed the predictions of the four remaining models at the input x = (π2 ,
π
2 ,

π
2 ,

π
2 )

which ranged from 9.05 to 10.05 (the ground truth being f(x) = 0.75π + 8 ≈ 10.36).
Specifying the background distribution B to be the whole training set, we computed the
output baselines Ez∼B[hk(z) ] which ranged from −1.00 to −1.07 across the four models.
Therefore, for all four models, the prediction Gap G(hk,x) was positive meaning that
running SHAP or EG on all models would answer the same contrastive question: why is
the prediction at x so much higher-than-average? To provide insight into why the Gaps
at x are positive, Figure 1 (Left) presents the SHAP local feature attributions for all four
models as blue lines. We see that the various MLPs lead to different interpretations. To
make sense of these, we used the two state-of-the-art methods for local feature attribution
aggregation.

Following Shaikhina et al. (2021), we average the predictions of our four models, leading
to a single predictor hE with a test RMSE of 0.43. The resulting SHAP feature attribution
is shown as an orange line in Figure 1 (Left). The total order of local feature importance
for this average model is represented in the first column of Table 1. In particular, this
explanation suggests that x2 is more important than x1, which given our knowledge of the
symmetry of the ground truth seems somewhat spurious. Indeed, since the underlying data-
generating distribution, the target function f , and the point x to explain are all symmetric
w.r.t x1 and x2, an ideal explanation would certainly not support that x2 is more important
than x1. The uncertainty of the local feature attribution is characterized via the variance
across the five models, see the second column of Table 1. We note that variance is higher
for the attributions of features x1 and x2, suggesting that their contribution toward the
output is more uncertain. Still, it is unclear what variance values are low/high enough to
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Feature Attribution hE Variance Mean rank Ordinal Consensus

x2 = 1.57 4.59 0.50 2.75 0.83
x1 = 1.57 3.98 0.35 2.25 0.83
x3 = 1.57 2.22 0.10 1.0 1.00
x4 = 1.57 -0.10 0.09 0.0 1.00

Table 1: Aggregated feature attributions and uncertainty scores following previous methods.

label attributions as trustworthy/untrustworthy. Moreover, despite their higher variance,
features x1 and x2 are locally more important than features x3 and x4 for all models. Thus,
the variance can lead to an overly pessimistic picture of the insights one can gather from
feature attributions of multiple models

Following Schulz et al. (2021), we averaged the ranks of the SHAP local feature impor-
tance, see the third column of Table 1. This method also suggests that x2 is locally more
important than x1, which is again spurious. Using the Ordinal Consensus as an uncertainty
metric (the fourth column of Table 1) suggests that all feature importance ranks are confi-
dent. Indeed, both x1 and x2 have an Ordinal Consensus of 0.83 seeing that there is only a
single model for which the ranks of these two features are switched. Nonetheless, looking at
Figure 1 (Left), the model that contradicts all others has a test RMSE of 0.512, which is the
second best of the whole ensemble. Simply put, this model offers a different but still valid
perspective on the data. However, its opinion is “washed out” by the other three models in
the computation of the Ordinal Consensus. Hence, we argue that the Ordinal Consensus
offers a view of uncertainty that is too optimistic.

As we have just highlighted, the methods of Shaikhina et al. (2021) and Schulz et al.
(2021) share the same limitations:

• It is unclear what statements one can/cannot make using these frameworks. For in-
stance, is x2 really more important than x1 for explaining the gap? Both approaches
return a total order of local feature importance, which suggests one statement of rela-
tive importance for every pair of features i.e. feature i is locally less/more important
than feature j. As we have seen, the uncertainty metrics provided in tandem with the
total orders (Variance or Ordinal Consensus) do not help to decide what statements
on relative importance are trustworthy.

• It is unclear what is the impact of model performances on the insights provided by
these two methods. For instance, the second-best model in the ensemble contradicts
all others regarding the relative importance of x1 and x2. However, its opinions are
diluted when aggregating all explanations.

In light of those takeaways, we decide to focus our method directly on statements about
relative feature importance, and whether or not all good models agree on them. For instance,
how can we decide if feature x2 is locally more important than x1? As noted earlier, one
model considers, contrary to the other four, that x1 is more important than x2. Given
that this model is as good as any other, we can simply decide to abstain from claiming
any relation of importance between x1 and x2. In this case, abstention seems indeed a
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cautious position given the symmetry of the ground truth. Following this logic, for every
other pair of features, we check if all four models agree on their relative importance. For
instance, all four models agree that x1 is more important than x3. We decide to record this
consensus as a trustworthy statement and we represent it with an arrow from x1 to x3 in
Figure 1 (Right). Furthermore, we observe that while all four models agree that x1, x2 and
x3 have a positive attribution, this is not the case for x4 (our dummy variable). Based on
this observation, we decide to keep only the variables for which all models agree on the sign
and exclude x4 from our final explanation.

All relations of importance among pairs of features for which there is consensus among
the four models actually form a partial order, a generalization of total orderings which can
be conveniently represented using a Directed Acyclic Graph called a Hasse diagram. The
partial order of Figure 1 (Right) summarizes our explanation. Note that the partial order
suggests that the only relative importance statements we can make are that features x1 and
x2 are locally more important than x3. These two statements are also supported by the
total orders of Shaikhina et al. (2021) and Schulz et al. (2021), a fact that always holds as
discussed in Section 4.3.

4. Methodology

4.1 Consensus on Statements about Feature Attributions

4.1.1 Local

Having introduced a basic motivation for considering the consensus among diverse models
with good performance, we now present a formal description of the approach. First and
foremost, our theory focuses on statements s : H×X → {0, 1} about local feature attribu-
tions. Given a performance threshold ε > 0, end-users will only be presented statements on
which there is a perfect consensus for all models in the Rashomon Set

∀h ∈ R(H, ε) s(h,x) = 1. (11)

We now present various statements about local feature attributions.

Definition 2 (Positive (Negative) Gap) We say that the gap G(h,x) is positive (resp.
negative) according to h if G(h,x) > 0 (resp. G(h,x) < 0). Formally, the statements take
the form s(h,x) = 1[G(h,x) > 0] and s(h,x) = 1[G(h,x) < 0].

Before running SHAP or EG, it is primordial to understand the sign of the gap as it is the
basis behind the contrastive question we attempt to answer. There may exist instances x(i)

in the data where there is no consensus on the sign of the gap. Therefore, we let

SG(ε) :=
{
i ∈ [N ] : ∀h1, h2 ∈ R(H, ε) sign[G(h1,x

(i))] = sign[G(h2,x
(i))]
}
, (12)

be the sets of data instances on which a contrastive question makes sense. If two models
disagree on the sign of the Gap, then it is useless to run SHAP or EG on them since these
techniques would not end up answering the same contrastive question. If a contrastive
question has been formulated without ambiguity, we can run SHAP or EG and analyze the
local feature attributions.

10
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Definition 3 (Positive (Negative) Attribution) We say that feature i has positive (resp.
negative) attribution according to h if φi(h,x) > 0 (resp. φi(h,x) < 0). More formally, the
statements are s(h,x) = 1[φi(h,x) > 0] and s(h,x) = 1[φi(h,x) < 0].

We can now define the sets

SA(ε,x) :=
{
i ∈ [d] : ∀h1, h2 ∈ R(H, ε) sign[φi(h1,x)] = sign[φi(h2,x)]

}
, (13)

which store the features whose attribution has a consistent sign across all good models.
After identifying the sign of the local feature attributions, it makes sense to order them
according to their magnitude.

Definition 4 (Local Relative Importance) We say that feature i is locally less impor-
tant than j (or equivalently j is locally more important than i) according to h if |φi(h,x)| ≤
|φj(h,x)|. Formally, the statements take the form s(h,x) := 1[|φi(h,x)| ≤ |φj(h,x)|].
Note that model consensus on local relative importance leads to a partial order �ε,x on
SA(ε,x) defined by:

i �ε,x j ⇐⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)| , (14)

∀i, j ∈ SA(ε,x). By requiring a perfect consensus on the Rashomon Set, we guarantee that
the order relations will be transitive. Partial orders differ from the common total orders
by allowing some pairs of features to be incomparable when there exist two models with
conflicting evidence on relative importance.

Recall that asserting the consensus on a statement over the Rashomon Set (i.e. verifying
that ∀h1, h2 ∈ R(H, ε), s(h1,x)=s(h2,x)=1) can require checking that uncountably many
hypotheses h satisfy that statement. Fortunately, for the specific statements that are of
interest to us, this can be rephrased as an optimization problem.

Definition 5 (Local Feature Attribution Consensus) Given a tolerance level ε > 0,
a Rashomon Set R(H, ε), and a local feature attribution φ : H × X → Rd, consensus on
statements are asserted via the following optimization problems.

1. Positive (Negative) Gap : There is consensus that the gap G(h,x) is positive
(resp. negative) if infh∈R(H,ε)G(h,x) > 0 (resp. suph∈R(H,ε)G(h,x) < 0).

2. Positive (Negative) Attribution : There is consensus that feature i has a positive
(resp. negative) attribution if infh∈R(H,ε) φi(h,x) > 0 (resp. suph∈R(H,ε) φi(h,x) < 0).

3. Local Relative Importance : Let there be a consensus that the attribution of features
i and j have signs si and sj. Under this assumption, the local feature importance
becomes |φi(h,x)| = siφi(h,x) for any h ∈ R(H, ε), and similarly for feature j.
Consequently, there is a consensus that i is locally less important than j if

sup
h∈R(H,ε)

siφi(h,x)− sjφj(h,x) ≤ 0.

These optimization problems may potentially be intractable depending on the hypothesis
set H and loss functions `. Nonetheless, we will see that they can be solved exactly and
efficiently for Additive Regression, Kernel Ridge Regression, and Random Forests.

11
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4.1.2 Global

We can also consider global model statements s : H → {0, 1}, which are no longer specific
to any input x, and assert a consensus over them. When interpreting models globally,
there is no need to define the notions of Gap or even sign of the attribution. Indeed, since
global feature importance are already positive, we only need to study statements of relative
importance.

Definition 6 (Global Relative Importance) We say that feature i is globally less im-
portant than j (or equivalently, j is globally more important than i) according to h if
Φi(h) ≤ Φj(h). Formally, the statements take the form s(h) := 1[Φi(h) ≤ Φj(h)].

Model consensus on global relative importance defines a partial order �ε on [d]:

i �ε j ⇐⇒ ∀h ∈ R(H, ε) Φi(h) ≤ Φj(h). (15)

As with local feature attributions, consensus assertion over the Rashomon Set can be
rephrased as an optimization problem.

Definition 7 (Global Feature Importance Consensus) Given a tolerance level ε > 0,
a Rashomon Set R(H, ε), and a Global Feature Importance Φ : H → Rd, there is a consensus
that i is globally less important than j if and only if

sup
h∈R(H,ε)

Φi(h)− Φj(h) ≤ 0.

4.2 Recommendations for Error Tolerance

It remains to address the specification of the error tolerance ε. This is a critical choice
because the tolerance controls the size of the Rashomon Set and therefore the number
of statements on which consensus is attained. Assuming that hS is unique, when the
tolerance error is set to its minimum value we explain a single model hS and we have total
orders of local/global feature importance. As we increase ε, contradicting explanations will
arise and the total orders will become partial orders. The number of statements present
in these partial orders will diminish and eventually become null for a sufficiently high ε.
Thus, varying the error tolerance influences how many statements about the empirical loss
minimizer we abstain from making.

But why would we ever want to abstain from making certain statements supported
by hS? Isn’t it the model that is going to be deployed anyway? The risk is that some
explanations of hS might be contradicted by another model with “slightly worst empirical
loss”. When this occurs, we argue that the explanations of hS are not trustworthy and we
advocate for abstention. Determining the right notion of “slightly worst empirical loss” is
a difficult problem. Here we suggest two approaches 1) one based on statistical guarantees
2) a heuristic based on relative error increases.

12
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4.2.1 Capture Bounds

Assume we can find εmax such that any model with a larger empirical loss can be shown to
be suboptimal in terms of population loss LD(h). More precisely, with probability 1 − δ,
L̂S(h) > εmax implies that LD(h) > LD(h?). Then it is not relevant to set ε > εmax since
the Rashomon Set would include models that are likely suboptimal. Assuming h? is unique,
this εmax is the smallest value that respects

P
S∼DN

[L̂S(h?) ≤ εmax] = P
S∼DN

[h? ∈ R(H, εmax)] > 1− δ. (16)

We shall refer to such statistical guarantees as “Capture Bounds” since they guarantee that
the Rashomon Set will “capture” the best-in-class model. By setting ε = εmax, with high
probability, any statement on which there is a consensus on the Rashomon Set will also
hold for the unknown h?. That is, we explain the best model without knowing which one
it is. We now present three capture bounds

First, if H is finite and small (e.g. |H| ≤ 100), we recommend using Model Set Selec-
tion (Kissel and Mentch, 2021). We define the subset E ⊆ H of all models that are not
significantly worse than the empirical risk minimizer hS according to a statistical test e.g.
paired Student-t tests with significance 1 − δ. Setting εmax = max{L̂S(h)}h∈E guarantees
that Equation 16 holds. This capture bound was previously applied to the ensemble of five
MLPs from Section 3.

Second, if strong assumptions can be made on how the target was generated, then the
following capture bound can be used.

Proposition 8 Under the assumption that the data were generated by the optimal model
h? plus iid zero-mean Gaussian noise

y = h?(x) + ∆, where ∆ ∼ N (0, σ2), (17)

and using the squared loss `(y′, y) = (y′ − y)2, we have that

P
S∼DN

[L̂S(h?) > εmax] = 1− Fχ2
N

(
N

σ2
εmax

)
, (18)

where Fχ2
N

is the CDF of a chi-2 random variable with N degrees of freedom. The proof is
provided in Appendix A.1.

Solving δ := 1 − Fχ2
N

( N
σ2 εmax) for εmax yields the desired tolerance. If the residuals

∆ follow another law than Gaussian, one could replace the χ2
N CDF by the CDF of the

distribution of 1/N
∑N

i=1(∆(i))2. The assumption that the data was generated by h? plus
symmetric noise is very strong, but it is ubiquitous in Statistics and Linear Regression
(See for instance (Hastie et al., 2009, Section 3.2) and (Wasserman, 2004, Section 13.5)).
Therefore, we think this capture bound is at-least worth investigating in any regression
problem.

13
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Third, we suggest this capture bound if a good reference hypothesis can be chosen apriori
i.e. before seeing the dataset S on which the empirical loss is computed.

Proposition 9 Let ` be the 0−1 loss, S ∼ DN be a dataset, href ∈ H be a reference model
that is independent of S, and h? be a best in-class hypothesis, for any ε′ ∈ R+, we have

P
S∼DN

[L̂S(h?) ≥ ε′ + L̂S(href)] ≤ exp

{
− Nε′2

2

}
. (19)

The proof is provided in Appendix A.1

Solving δ := exp
{
− N(εmax−L̂S(href))

2

2

}
for εmax yields the error tolerance.

4.2.2 Relative Increase Heuristic

Capture bounds rely on very strong assumptions and therefore cannot be used out-of-the-
box for all problems. When they are inapplicable, we recommend the heuristic

ε = (1 + εrel)× L̂S(hS), (20)

for a εrel typically fixed to 5% (Dong and Rudin, 2019; Coker et al., 2021), although smaller
values could be used. Setting ε based on this heuristic does not provide any statistical
guarantee. Consequently, any alternative model h′ ∈ R(H, ε) that is highlighted by the
practitioner should be compared to hS using a paired Student-t test on fresh data. For
example, if a model in the Rashomon Set is found to contradict hS on a statement of interest,
then one should assert that the test error of this alternative model is not significantly worse
than that of the empirical loss minimizer.

4.2.3 Sensitivity Analysis

When any experimental choice is made, it is important to conduct a sensitivity analysis
regarding this choice. Otherwise, the results could be disregarded for being arbitrary or
manipulable. Setting the tolerance ε is one such critical choice and therefore we must provide
evidence that our conclusions are not too sensitive to the specific value of ε employed. To
measure such sensitivity, we propose to compute the normalized cardinality of the local
partial orders

| �ε,x(i) | :=
(

1

2
d(d+ 1)

)−1

1[x(i) ∈ SG(ε)]× |{(j, k) ∈ SA(ε,x(i))2 : j �ε,x(i) k}|. (21)

For any example x(i), this measure goes from 0 (when the gap does not have a consistent
sign) to 1 (when we have a total order among the d features). This quantity returns the
ratio of statements highlighted by the local partial order to the total number of possible
statements 1

2d(d+ 1) = 1
2d(d− 1) (local relative importance) + d (attribution sign). Given

the cardinality measure, a sensitivity analysis on ε would involve asserting the stability of
the histograms { | �ε,x(i) | }Ni=1 for small perturbations of ε.

14
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4.3 Relation To Prior Work

Prior methods for characterizing the effect of model uncertainty on local feature attributions
have mainly focused on explaining an ensemble of models E = {hk}Mk=1 trained with the
same stochastic learning algorithm hk ∼ A(S) (Shaikhina et al., 2021; Schulz et al., 2021).
We go a step further by studying the feature attributions of all models in the Rashomon Set.
For this reason, it may not be immediately clear how our method compares to prior work.
The following proposition shows that what we propose is a more conservative alternative
to both existing methods.

Proposition 10 Let φ(·,x) be a linear local feature attribution functional, and E = {hk}Mk=1

be an ensemble of M models from H trained with the same stochastic learning algorithm
hk ∼ A(S). Said local feature attribution and ensemble will be employed in the methods
of (Shaikhina et al., 2021; Schulz et al., 2021). Moreover, let ε ≥ max{L̂S(hk)}Mk=1 be an
error tolerance, and let �ε,x be the consensus order relation on SA(ε,x) (cf. Equation 14).
If the relation i �ε,x j holds, we have that i is locally less important than j in the two total
orders of prior work (Shaikhina et al., 2021; Schulz et al., 2021).

This proposition is key as it implies that our framework will not provide users with
statements that are not supported by existing approaches. In a way, all we do is abstain from
making statements whose uncertainty is highest. We think this is an important property to
have because, unlike model predictions, there are no ground truths for feature attributions.
For example, a practitioner can apply multiple aggregation mechanisms to model predictions
(Arithmetic Mean, Geometric Mean, Majority Vote etc.) and compare the resulting test
set performances using the target y as ground truth. However, when aggregating feature
attributions using different schemes, there is no metric for what feature importance ranking
is the best, or closest to ground truth. This is one of the major challenges currently faced
by the explainability community. Still, since our framework only highlights statements
supported by existing approaches, we avoid the need for quantitative comparisons.

The following Section 5, 6, & 7 each presents a practical application of our framework
using a different hypothesis space and dataset. The code to reproduce these experiments is
available online1.

1. https://github.com/gablabc/Partial_Order_in_Chaos
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5. Application to Additive Regression

5.1 Rashomon Set

Additive models have the form h(x) := ω0 +
∑d

j=1 hj(xj) where each function hj only
depends on the feature xj . Since the output is the sum of d functions hj , the attribu-
tion of each individual feature is readily available which is why these models are adver-
tised as transparent. To fit an additive model, one must choose a class of hypotheses for
each univariate function hj . A first method is to represent each of the functions non-
parametrically via a sum of univariate decision trees. This scheme is what is currently done
in the ExplainableBoostingMachine of the InterpretML Python library (Nori et al., 2019)

for instance. The parametric alternative is to define a basis {hjk}Mj

k=1 along each dimension
j (for example using Splines) and represent the additive model using linear combinations
of these basis functions (Hastie et al., 2009, Chapter 5)

hω(x) := ω0 +

d∑
j=1

Mj∑
k=1

ωjkhjk(xj)︸ ︷︷ ︸
hj(xj)

= ωTh(x) (22)

where

ω := [ω0, ω11, ω12, . . . , ω1,M1︸ ︷︷ ︸
feature 1

, ω21, ω22, . . . , ω2,M2︸ ︷︷ ︸
feature 2

, . . . , ωd1, ωd2, . . . , ωd,Md︸ ︷︷ ︸
feature d

]T ,

and

h(x) := [1, h11(x), h12(x), . . . , h1M1(x)︸ ︷︷ ︸
feature 1

, . . . , hd1(x), hd2(x), . . . , hdMd
(x)︸ ︷︷ ︸

feature d

]T .

By letting H be the N × (1 +
∑d

j=1Mj) matrix whose ith row is h(x(i))T , the empirical
loss minimizer for the squared loss takes the familiar form

ωS = (HTH)−1HTy. (23)

Definition 11 (Rashomon Set for Parametric Additive Regression) Let H be the
set of Parametric Additive Regression models (cf Equation 22), ` be the squared loss, S
be a dataset of size N , and ωS = argminh∈H L̂S(h) be the least-square estimate. If one

uses the performance threshold ε ≥ L̂S(ωS), then the Rashomon set R(H, ε) consists of all
parameters ω s.t.

(ω − ωS)T
HTH

N
(ω − ωS) ≤ ε− L̂S(ωS). (24)

We see that the Rashomon Set is an ellipsoid in parameter space. Moreover, if we let
ε < L̂S(ωS), then the Rashomon Set is empty.

This result is a simple generalization of the Rashomon Set of Ridge Regression derived
in Semenova et al. (2022) to Parametric Additive Regression.
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5.2 Asserting Model Consensus

5.2.1 Local Feature Attribution

In addition to having an analytical expression of their Rashomon Set, additive models also
have a clear notion of local feature attribution. For instance, running SHAP and EG on an
additive model while taking the whole dataset S as the background yields the same result

φSHAP
j (h,x) = φEG

j (h,x) = hj(xj)−
1

N

N∑
i=1

hj(x
(i)
j )

=

Mj∑
k=1

ωjk

(
hjk(xj)−

1

N

N∑
i=1

hjk(x
(i)
j )

)
=

Mj∑
k=1

ωjkhjk(xj) = ωTj hj(x),

(25)

which is a linear function of the weights ω. We have seen previously in Definition 5 that
asserting the consensus on local feature attribution statements amounts to optimization
problems that are linear with respect to the attributions φ. Therefore, asserting a consensus
on the Rashomon Set of Parametric Additive models requires maximizing/minimizing a
linear function on an ellipsoid

min/max
ω

aTω

with (ω − ωS)TA(ω − ωS) ≤ ε− L̂S(ωS),
(26)

withA := HTH
N and assuming ε ≥ L̂S(ωS). The value of a depends on the type of statement

and the instance x(i) being explained:

• Positive (Negative) Gap

a = [0, h11(x(i)), . . . , h1M1(x(i)), . . . , hd1(x(i)), . . . , hdMd
(x(i))]

• Positive (Negative) Attribution of Feature j

a = [0, . . . , hj1(x(i)), hj2(x(i)), . . . , hjMj (x
(i)), . . . , 0]

• Local Relative Importance of Features i and j

a = [0, . . . , sihi1(x(i)), . . . , sihiMi(x
(i)), 0, . . . , 0, −sjhj1(x(i)), . . . , −sjhjMj (x

(i)), . . . , 0]

These optimization problems have an analytical solution that can be computed rapidly
using the Cholesky decomposition A = CCT . The optimal values of Equation 26 are

±
√
ε− L̂S(ωS) ‖a′‖+ aTωS , (27)

where a′ = C−1a see Appendix B.1.1 for more details. This result is a generalization of
Theorem 4 from Coker et al. (2021) to Additive models and arbitrary linear functionals of
the weights aTω. We deduce from Equation 27 that the minimum and maximum values of

any linear functional evaluated on the Rashomon Set are a deviation of

√
ε− L̂S(ωS)‖a′‖

from aTωS the value of the functional evaluated on the least-square. Since the deviation is
an explicit function of the tolerance ε, a consensus on local feature attribution statements
can be efficiently asserted at any tolerance level.
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5.2.2 Global Feature Importance

Now investigating global feature importance, we observe that the functional Φ
[2]
j is a

quadratic form of the weights

Φ
[2]
j (h) :=

1

N

N∑
i=1

φj(h,x
(i))2 =

1

N

N∑
i=1

ωTj hj(x
(i))hj(x

(i))T ωj

= ωTj

(
1

N

N∑
i=1

hj(x
(i))hj(x

(i))T
)
ωj = ωTj Bjωj .

(28)

Therefore, asserting a consensus on global relative importance statements in the Rashomon
Set of Additive Regression (solving Definition 7) requires optimizing a quadratic form
over an ellipsoid

min/max
ω

ωTi Biωi − ωTj Bjωj

with (ω − ωS)TA(ω − ωS) ≤ ε− L̂S(ωS),
(29)

which is known as the Trust-Region-Subproblem (TRS). Impressively, by Corollary 7.2.2
of (Conn et al., 2000, Section 7.2) this problem has necessary optimality conditions for
the global optimum, even when the quadratic form is non-convex. We describe our TRS
solver in Appendix B.1.2. We end by noting that Fisher et al. (2019) previously defined
the Model Class Reliance as the interval

[
minh∈R(H,ε) Φi(h),maxh∈R(H,ε) Φi(h)

]
which they

computed for Ridge Regression by solving a TRS. However, our framework is more general
because we can also assert a consensus on relative importance relations i.e. all good models
agree that i is globally less important than j.

5.3 House Price Prediction

The Kaggle-Houses2 dataset consists of predicting the logarithm of the selling price of 2919
houses based on 79 numerical and categorical features. The training set S contains the first
1460 houses which are labeled, while the test set regroups the remaining 1459 houses whose
selling prices are hidden by Kaggle. The only way to measure test performance is to submit
predictions on the Kaggle Website.

For simplicity, we only selected numerical features and removed time-related features
since we are only interested in the physical properties of the houses. Moreover, features that
were perfectly collinear with others were ignored since they would render the matrix HTH
singular. We were left with 19 numerical features which were non-redundant, although some
had a very high Spearman correlation : GarageArea/GarageCars, BsmtPercFin/BsmtFullBath,
and BedroomAbvGrd/TotRmsAbvGrd. We decided to keep correlated features to see how they
impact model underspecification.

Additive Regression requires deciding which hj to parametrize with spline bases and
which to parametrize as linear functions of the input hj(xj) = ωjxj . For each feature, we
fitted the target with a depth-3 decision tree using only that feature as input and selected the
k features with the lowest RMSE for spline parametrization. We tuned the hyperparameter

2. https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Figure 2: Residuals Analysis of hS . (Left) Residual as a function of the prediction to assess
homogeneity. The horizontal lines represent the 25th, 50th, and 75th percentiles for three
different prediction bins. (Right) Histogram of the residuals and fitted densities.

k, the polynomial degree of the splines, the number of knots, and their positions via five-
fold cross-validation. The resulting least-square models had a train RMSE of 0.141. As
references for test performance, predicting the average training set target yields a RMSE of
0.426 on Kaggle while Gradient Boosting3 leads to an error of 0.127. In the case of Additive
Regression, we got a test error of 0.150.

To quantify the under-specification of our hypothesis class, we computed the Rashomon
Set of all good models on the training set. We could not use the test set since labels
are not available. To fix a reasonable value of tolerance ε, we investigated whether the
assumptions behind the capture bound of Proposition 8 were reasonable on this dataset.
That is, could the labels have been provided by the best-in-class h? plus iid noise ∆? We
first assumed that hS and h? make similar enough predictions on training data to view
the residuals {y(i) − hS(x(i))}Ni=1 as noise samples {∆(i)}Ni=1. Figure 2 (Left) supports that
the residuals are homogeneous but Figure 2 (Right) reveals they are not Gaussian and
are better modeled with a Student-t. Supported by these observations, we modeled the
noise ∆ with a Student-t distribution fitted on the residuals. Afterward, we approximated
the distribution of L̂S(h?) = 1

N

∑
i=1(∆(i))2 with the empirical distribution resulting from

sampling {∆(i)}Ni=1 ∼ tNν a total of 2×105 times. Taking the 95th percentile of this empirical
distribution yielded the tolerance εmax = 0.1444. Under our assumptions, by fixing ε =
εmax = 0.1444 we have an approximate 95% chance that the Rashomon Set will include the
best-in-class model.

5.3.1 Local Feature Attribution

Local feature attributions were computed on all houses in the training set using Equation
25. To conduct a sensitivity analysis of our local explanations with respect to the choice of
ε, we computed the partial order cardinalities (cf. Equation 21) at several tolerance values,

3. https://www.kaggle.com/code/eesuck/xgboost-regressor
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Figure 3: (Left) Sensitivity Analysis regarding the choice of ε. The median partial-order
cardinalities are shown as a function of the tolerance on training RMSE. The two curves
represent whether or not we group correlated features together. (Right) Local Feature
Attributions of models sampled from the Rashomon Set boundary. We observe a trade-off
between local attributions of correlated features.

see the red curve in Figure 3(Left). We observe that the cardinalities are stable with respect
to small perturbations of ε. However, the cardinalities are rather small, which we suspect
is partly due to feature correlations. To test this hypothesis, we sampled models from the
Rashomon Set boundary and compared their local attributions for correlated features, see
Figure 3(Right). We observe a trade-off: the more models rely on one feature, the less they
rely on the other. To deal with this under-specification, we propose to group correlated
features i and j and consider their joint local attribution

φij(h,x) := φi(h,x) + φj(h,x). (30)

instead of their separate local attribution. Therefore, we group GarageArea/GarageCars

into Garage, BsmtPercFin/BsmtFullBath into Bsmt and BedroomAbvGrd/TotRmsAbvGrd

into AbvGrd. Doing so, one obtains partial orders with higher cardinalities as evidenced
by the red curve in Figure 3(Left), suggesting that grouping correlated features can re-
duce explanation under-specification. In the sequel, we will present local/global feature
attributions with and without grouping.

We explained the predictions on the house with the fifth-smallest selling price: 40K USD.
Said predictions ranged from 70K to 100K in the Rashomon Sets of both Scenarios and there
was a consensus that the gap was negative. Figure 4 shows the local feature attribution on
this instance and the partial orders that summarize all the statements good models agree on.
We observe that features OverallQual=4 (quality of materials and finish of the house from
a scale of 1 to 10) and 1stFlrSF=very small have maximal importance when explaining
the drop in price relative to the mean. These statements are robust to the choice of model
within the Rashomon Set. OverallQual=4 also has maximal importance but, because it is
incomparable to any other feature, we find it safer to simply ignore it. Moreover, we note
that there are no garage-related and basement-related features in the Hasse diagram with-

20



Consensus on Feature Attributions in the Rashomon Set

−0.2 0.0

OverallQual=4
1stFlrSF=very small

OverallCond=4
GarageCars=1

FullBath=1
BsmtPercFin=0

EnclosedPorch=large
BsmtFullBath=0

Fireplaces=0
GarageArea=very small

WoodDeckSF=0
MasVnrArea=0
ScreenPorch=0

BedroomAbvGr=3
OpenPorchSF=medium

LotArea=small
TotRmsAbvGr=6
KitchenAbvGr=1
2ndFlrSF=small

OverallQual=4
mean=-0.208

2ndFlrSF=small
mean=0.064

OverallCond=4
mean=-0.109

1stFlrSF=very small
mean=-0.181

−0.2 0.0

OverallQual=4
1stFlrSF=very small

OverallCond=4
Garage

Bsmt
FullBath=1

EnclosedPorch=large
Fireplaces=0

WoodDeckSF=0
MasVnrArea=0
ScreenPorch=0

OpenPorchSF=medium
AbvGr

LotArea=small
KitchenAbvGr=1
2ndFlrSF=small

OverallQual=4
mean=-0.208

Bsmt
mean=-0.057

2ndFlrSF=small
mean=0.064

Garage
mean=-0.062

OverallCond=4
mean=-0.109

1stFlrSF=very small
mean=-0.181

Figure 4: Local feature attributions of a house with a below-average price. (Top) Without
grouping. (Bottom) With grouping.

out Grouping. As illustrated in Figure 4 (Top-Left), the attributions of highly correlated
features such as GarageArea/GarageCars and BsmtPercFin/BsmtFullBath do not have a
consistent sign. This is because competing models can rely on one feature or the other,
which prohibits a consensus on which feature leads to a decrease in selling price. By consid-
ering the joint local attribution of correlated features, the attributions of the groups Garage
and Bsmt become consistently negative, see Figure 4 (Bottom-Left). Hence, our framework
allows us to get consistent model interpretations in spite of the presence of strong feature
correlations.

Finally, we note that, at tolerance ε = 0.1444, the sign of the gaps is well-defined for 68%
of the houses. For about one-third of houses, it does not make sense to ask the contrastive
question: Why is this house price higher/lower than average?. We discuss how to deal with
those houses in Appendix C.
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Figure 5: Global Feature Importance of the Kaggle-Houses dataset. (Top) Without group-
ing. (Bottom) With grouping.

5.3.2 Global Feature Importance

We end this section by presenting global feature importance in Figure 5. For simplicity, we
only include in the Hasse diagrams the features whose global importance is non-null across
the whole Rashomon set. Such features appear to be necessary in the sense that every
model in the Rashomon Set relies on them. As seen previously, the partial order without
Grouping does not contain features related to the basement and the garage. We believe
that this can be again attributed to strong feature correlations. By grouping correlated
features, we discover that the joint effects of Garage and Bsmt are important for all good
models.

As a final observation, all models agree that 1stFlrSF is more important than OverallCond

despite the fact that their min-max intervals of global importance intersect. This means that
looking at min-max intervals of global feature importance (i.e. the Model Class Reliance
(Fisher et al., 2019)) does not provide the full picture of the Rashomon Set.
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6. Application to Kernel Ridge Regression

6.1 Rashomon Set

Let k : X ×X → R+ be a symmetric positive definite kernel. Then such a kernel induces a
functional space called a Reproducing-Kernel-Hilbert-Space (RKHS), which is actually the
completion of the Pre-Hilbert space (Mohri et al., 2018)

Hk :=

{
hα(x) =

R∑
j=1

αjk(x, r(j)) for R ∈ N,α ∈ RR, r(j) ∈ X
}

(31)

endowed with the scalar product

〈 k(·, r(i)) , k(·, r(j)) 〉Hk := k(r(i), r(j)), (32)

from which the terminology “Reproducing-Kernel” arises. The spaceHk is infinite-dimensional
since it requires specifying any integer R and any R reference inputs r(j). For simplicity, we
shall fix the R reference inputs in advance and store them in a dictionary D := {r(j)}Rj=1.
We will then use the finite-dimensional approximation

HDk :=

{
hα(x) =

R∑
j=1

αjk(x, r(j)) for α ∈ RR
}

(33)

s.t. HDk ⊂ Hk as was done in (Fisher et al., 2019). Since these spaces are still considerably
expressive, it is common to apply regularization when learning models from them. From
the Rashomon perspective, this implies studying the Rashomon Set

R(HDk , ε) :=

{
hα ∈ HDk : L̂D(hα) + λ‖hα‖2 ≤ ε

}
, (34)

where λ > 0 is a regularization hyper-parameter that is fine-tuned by cross-validation and
‖hα‖2 := 〈hα, hα〉Hk =

∑R
i,j=1 αiαjk(r(i), r(j)) is the functional norm induced by the scalar

product on Hk. We let K ∈ RR×R be the symmetric positive semi-definite matrix of kernel
evaluations on the dictionary K[i, j] = k(r(i), r(j)). The regularized least-square solution is

αD = (K + λRI)−1y. (35)

Given this notation, we can present the Rashomon Set of Kernel Ridge Regression.

Definition 12 (Rashomon Set for Kernel Ridge Regression) Let HDk be the space
induced by the kernel k and dictionary D, ` be the squared loss, λ > 0 be a regulariza-
tion hyper-parameter, and αD be the solution of the regularized least-square. If one uses the
performance threshold ε ≥ L̂D(hαD) + λ‖hαD‖2, then the Rashomon set R(HDk , ε) consists
of all models hα s.t.

(α−αD)T (K/R+ λI)K(α−αD) ≤ ε− L̂D(hαD)− λ‖hαD‖2. (36)

We see that the Rashomon Set is an ellipsoid in RR.

The proof is mutatis mutandis like the proof for Ridge Regression in Semenova et al.
(2022) but with Kernel Ridge instead.
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6.2 Asserting Model Consensus

Unlike the previous section, the model hα is no longer additive, and hence there is no
universal way to assign a score φi to each input feature when explaining a gap in model
predictions. Hence, we must rely on either SHAP or Integrated Gradient, which are two
principled approaches for computing said scores. Because the exponential burden of Shapley
values has not yet been solved for kernel methods, SHAP was not used and we instead
employed the Integrated Gradient with a single baseline input z. Henceforth, assuming the
kernel is continuous and has continuous partial derivatives (k ∈ C1(X × X )), we compute
the IG as follows.

φIG
i (hα,x, z) := (xi − zi)

∫ 1

0

∂hα
∂xi

∣∣∣∣
tx+(1−t)z

dt

=
R∑
j=1

αj

[
(xi − zi)

∫ 1

0

∂k(·, r(j))

∂xi

∣∣∣∣
tx+(1−t)z

dt

]
︸ ︷︷ ︸

φij

=
R∑
j=1

αiφij ,
(37)

which is a linear function of the coefficients α. Consequently, asserting a consensus on IG
feature attributions will again amount to optimizing a linear function over an ellipsoid so
we can leverage results from the previous section. The only additional step required for
Kernel Ridge is to pre-compute the path integrals φij with common quadrature methods.

Similarly to Additive Models in Section 5.2.2, one can combine local feature attribu-
tions into global feature importance Φ[2] which are a quadratic form of the α coefficients.
Again, asserting a consensus over the Rashomon Set would require solving a TRS.

6.3 Criminal Recidivism Prediction

COMPAS is a proprietary model currently employed in the United States to predict the
risk of recidivism from individuals that were recently arrested. These risks are encoded as
integers going from 1 (low-risk) to 10 (high-risk). The use of this automated tool in the
justice system is driven by the promise of providing objective information to judges based
on empirical data, thus circumventing human biases. Still, the strong reliance of models on
historical data means they can reproduce/perpetuate past injustices. To test such claims,
ProPublica has collected several thousands of COMPAS scores from 2013-2014 in the Florida
Broward County (Larson et al., 2016). In the resulting article, several pairs of Caucasian and
African-American defendants are presented along with their COMPAS scores, the former
often being lower than the latter despite the Caucasian defendant having a longer criminal
history. These examples of pairs along with the subsequent analysis from the article seem to
imply that the proprietary model depends on race. However, the methodology of ProPublica
has been heavily criticized alongside the claim that COMPAS depends explicitly on race
(Rudin et al., 2018). Hence, there may exist alternative explanations besides race for the
discrepancy between scores, so it is pertinent to study the local feature attributions of the
whole Rashomon Set of reasonable models when predicting COMPAS scores.

To analyze the dependencies of risk scores on the various features, we repeated the
experiments of Fisher et al. (2019) where a Kernel Ridge Regression model was fitted
directly on the 1-10 scores from the ProPublica dataset. The same features were employed
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Input Name Score Race Age Priors Charge

x Robert Cannon 6 African-American 22 0 Misdemeanor
z James Rivelli 3 Caucasian 54 3 Felony

Table 2: Comparison of the COMPAS scores of two individuals.

while adding two additional ones related to juvenile misdemeanors and felonies. The dataset
was split in train and test sets with ratios of 0.8 and 0.2. The training samples were used
to define the dictionary of reference inputs D. We utilized the polynomial kernel k(x,x′) =
(γ〈x,x′〉 + 1)p with degree p = 3 and the Gaussian kernel k(x,x′) = exp(−γ‖x − x′‖2).
The kernel scale hyper-parameter γ and the regularization factor λ were fine-tuned with
5-fold cross-validation on the training set, see the results for Gaussian Kernels in Figure
6 (a). Similar results were obtained with Polynomial Kernels. The test set RMSE of the
final model was 2.11 for Gaussian Kernels and 2.12 for Polynomial Kernels. We note that
the performances are worse than Fisher et al. (2019) because, unlike them, we predict the
recidivism risk scores and not the risk scores for violent recidivism, which could be easier
to predict. In this paper, we decided to study the recidivism risk scores instead since these
are the ones that were actually discussed in the ProPublica article.

After fitting the models, we identified a pair of Caucasian/African-American individuals
who were highlighted in the ProPublica piece and applied our explainability framework on
them. More specifically, we compared Robert Cannon and James Rivelli, see Table 2. James
Rivelli is a 54-year-old Caucasian man who was arrested for shoplifting. Despite having a
criminal record with three priors, he was assigned a low COMPAS score. In contrast, Robert
Cannon, a 22-year-old African-American charged with petit theft, was assigned a high risk
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of recidivism. Letting Robert be the input of x and James be the input z, we observe that
the differences in scores are also present for the Kernel Ridge models: hαD(x) = 4.9 and
hαD(z) = 2.5 for Gaussian Kernels, and hαD(x) = 4.9 and hαD(z) = 2.4 for Polynomial
Kernels. Therefore, we have a prediction gap G(hαD ,x) = hαD(x)−hαD(z) that is positive.

Given the historical racism in the United States, it is very tempting to look at these
two individuals and say that Robert Cannon is predicted to have a higher risk “because
of his race”. Still, there may exist a diversity of alternative explanations for this discrep-
ancy, which we can study by exploring the Rashomon Set of our Kernel Ridge models.
The Integrated Gradient was employed using Robert as the input of interest x and James
as the reference input z to obtain feature attributions. Since computing the IG feature
attributions requires estimating the integrals of Equation 37 with quadratures, we ended
up with estimates φ̂IG(hαD ,x) of the real attributions φIG(hαD ,x). We characterized the
estimation error of this discretization by reporting the Gap Error∣∣∣∣ d∑

i=1

φ̂i(hαD ,x)−G(hαD ,x)

∣∣∣∣, (38)

and used it as a proxy of how well φ̂(hαD ,x) approximates φ(hαD ,x). By simplicity, the
Trapezoid quadrature was implemented, see Figure 6 (b) for the convergence of the Gap
Error as the number of steps in the quadrature increases. We note that, as expected,
the quadrature converges to the second order. For the remainder of the analysis, we have
employed quadratures with 1000 steps.

Now, can we use a capture bound to set the tolerance ε? Unfortunately, the empirical
loss L̂D(hα)+λ‖hα‖2 involves regularization so we cannot guarantee that the Rashomon Set
(cf. Equation 34) contains h? unless we make a strong (unverifiable) smoothness assumption
‖h?‖2 ≤ B. Without knowledge of B, we instead resort to a relative increase heuristic
ε = 1.01×

[
L̂D(hαD)+λ‖hαD‖2

]
≈ 4.23 (an increase of εrel = 1% of the minimum objective

value 4.19). Unlike Sections 5.3 & 7.3, we did not compute a sensitivity analysis w.r.t.
changes in ε. Rather, by setting it to a reasonably small value, we only wish to prove
the existence of competing models that disagree on their explanation for the discrepancy
between James and Robert.

Figure 7 presents the local feature attributions across the Rashomon Sets R(HDk , 4.23)
of Gaussian and Polynomial Kernels. Since the results are consistent across the two types
of Kernels, we will only discuss Gaussian Kernels. Inspecting the top bar plot, we see
that, according to the Integrated Gradient of the empirical loss minimizer, plotted as the
blue/red bars, the features Age=22 and Race=Black have positive attributions while the
features Charge=Misdemeanor and Prior=0 have negative attributions. This suggests that
one of the possible explanations for the high risk of Robert relative to James is racial
discrimination toward African-Americans. However, when we additionally consider the
opinion of models with slightly worst performance on the training data, some of our previous
statements on feature attribution cease to hold. Importantly, there exists a competing model
h′ ∈ R(HDk , 4.23) that yield a null attribution to the feature Race=Black, and whose test
error is not significantly worse than hαD according to a paired Student-t test with δ = 0.05.
Therefore, there are reasonable explanations for the disparity between Robert and James,
that do not rely on Robert being African-American. Even when considering the whole
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Figure 7: Local feature attribution comparing Robert Cannon to James Rivelli. (Top)
Gaussian Kernels. (Bottom) Polynomial Kernels. The features on the left of the bar charts
represent James while the values on the right represent Robert.

Rashomon Set, there remain statements on which models reach consensus. Notably, the
attribution of the feature Age=22 remains positive and has maximum importance.

These observations are concordant with previous work of Rudin et al. (2018) which hy-
pothesizes that COMPAS depends strongly on age and (at most) weakly on race. Nonethe-
less, our local analysis on James and Robert must not be taken as absolute facts about the
proprietary model COMPAS. This is because we do not have access to the model and we
are surrogating it with Kernel Ridge models fitted on 7 features. The original COMPAS
model, on the contrary, takes 137 different factors into consideration to produce a score
(Rudin et al., 2018). Our analysis is more of a proof of concept that our explainability
framework can make sense of the local feature attributions of competing models and that
it can highlight the diversity of explanations for the discrepancies between two individuals.

27



Laberge, Pequignot, Mathieu, Khomh and Marchand

7. Application to Random Forests

7.1 Rashomon Set

A Random Forest (RF) is an ensemble of independently trained decision trees whose pre-
dictions are averaged to yield the final predictions (Breiman, 2001a). To increase diversity,
each tree is trained on a different bootstrap sample of the original dataset and each inner
split is done among a random subset of features. We let s represent the seed encoding all
pseudo-random processes in the training of a single tree ts. If S is a distribution over all
possible seeds on a computer, the theoretical definition of a RF is

h(x) = E
s∼S

[ts(x)]. (39)

Given the finite representation of numbers on a computer, we can assume that the set of
possible seeds is finite and of size M . Then, a reasonable choice of distribution over seeds is
the uniform over M seeds i.e. S = U({1, 2 . . . ,M}). In practice, the expectation Es∼S has
to be approximated using Monte-Carlo sampling. Given m < M , we subsample m seeds
uniformly at random S ∼ Sm, and return the sample average as our estimate of the RF

hS(x) =
1

m

∑
s∈S

ts(x). (40)

By the weak law of large numbers, the estimated RF should converge to the true RF (cf.
Equation 39) as m increases. Since sampling m seeds out of M with/without replacement
assigns a non-zero probability to any subset of m seeds, we conceptualize the space of all
possible RFs as the collection of all subsets of trees.

Definition 13 Given a large set T = {ts}Ms=1 of M trees trained with M seeds, the set of
all possible RFs of m trees is

Hm :=

{
1

m

∑
t∈T

t : T ⊆ T and |T | = m

}
, (41)

i.e. all averages of subsets of m trees from T . Moreover, we define Hm: := ∪Mk=mHk as all
RFs with least m trees. We interpret H1: as the set of all possible RF that can ever appear
in practice on a given dataset, regardless of the choice of m.

Figure 8 illustrates an example of spaceHm which accentuates their combinatoric nature.
We also note the monotonic relation m < m′ ⇒ Hm: ⊃ Hm′: . Since we interpret H1: as the
set of all possible RFs that can ever appear in practice on a dataset, we aim to characterize
its Rashomon Set R(H1:, ε). Such a Rashomon Set cannot be explicitly represented because
if its exponential size (|H1:| = 2M − 1). Still, we will see that studying the space Hm: for a
carefully chosen m can help us characterize a large subset of the Rashomon Set. The reason
we want to work with hypotheses Hm: is that they have a desirable property: optimizing a
linear functional over them is tractable, as highlighted by the following proposition.

Proposition 14 Let T := {ts}Ms=1 be a set of M trees, Hm: be the set of all RFs with at
least m trees from T , and φ : Hm: → R be a linear functional, then minh∈Hm: φ(h) amounts
to averaging the m smallest values of φ(ts) for s = 1, 2, . . .M .
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Figure 8: Example of the space H2 representing all the possible groupings of 2 decision
trees out of M = 4.

The proof of this proposition is presented in Appendix A.3. Examples of linear functionals
φ : Hm: → R include the model prediction at fixed input h(x) and the SHAP feature
attribution which we can compute efficiently with TreeSHAP (Lundberg et al., 2020).

At this point, we assume that the desired tolerance on error ε has been fixed and
so we wish to identify a value m(ε) that guarantees that Hm(ε): ⊆ R(H1:, ε), or equiva-

lently, that maxh∈Hm(ε):
L̂S(h) ≤ ε. This value m(ε) should be as small as possible so that

the space Hm(ε): is as large as possible. With this goal in mind, we restrict ourselves to
losses `(y′, y) that are monotonically increasing w.r.t |y′ − y|. This includes the 0 −1 loss
and the squared loss for example. Such losses are of interest because maxy′∈Y ′ `(y′, y) =
max{`(miny′∈Y ′ y′, y) , `(maxy′∈Y ′ y′, y)} for any set Y ′, meaning that the worst loss on a
point must be attained by either of the two most extreme predictions at that point. Re-
membering that model predictions are linear functionals of the trees, Proposition 14 can
be used to efficiently identify the min/max predictions at any input. Therefore, it makes
sense to define the upper bound

max
h∈Hm:

L̂S(h) ≤ 1

N

N∑
i=1

max
h∈Hm:

`(h(x(i)), y(i)),

=
1

N

N∑
i=1

max

{
`
(

min
h∈Hm:

h(x(i)), y(i)
)
, `
(

max
h∈Hm:

h(x(i)), y(i)
)}

:= ε+(m),

(42)

which can be computed efficiently at any m ≤ M in time O(NM logM). Because of the
scalability of this process w.r.t M , the total number of tree M must be reasonable, but
still large enough so that T = {ts}Ms=1 is representative of all trees that would be produced
with all possible seeds on a computer. We will see in the experiments of Section 7.3 that
setting M = 1000 can be representative of all trees fitted on real-world data.

Now, given an absolute tolerance ε on the empirical loss, we search for the smallest
number of trees m we can keep while ensuring that ε+(m) ≤ ε

m(ε) := min{m ∈ [M ] : ε+(m) ≤ ε}. (43)
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Figure 9: Choosing m based on the error tolerance ε.

The intuition behind the computation of m(ε) is presented in Figure 9. Since setting
m = m(ε) guarantees that maxh∈Hm: L̂S(h) ≤ ε+(m) ≤ ε, we have Hm(ε): ⊆ R(H1:, ε).
Hence, we are going to employ Hm(ε): as an under-estimate of the Rashomon Set over which
we can efficiently optimize linear functionals such as model predictions or the SHAP local
feature attributions.

We end this subsection by presenting in detail the computation of ε+(m) on a toy
example. We designed a regression task where the input follows a N (0, 1) Gaussian and the
output y is a quadratic function x2 plus some noise of amplitude 0.9. A total of M = 1000
different seed values were used to independently generate 1000 decision trees. Figure 10 (a)
shows the upper bound ε+(m) of any RF containing at least m trees. Given a threshold on
the RMSE of ε = 1, the smallest m we can safely consider is m(ε) = 691. Hence, we suggest
employing the set H691: as a subset of R(H1:, 1). Figure 10 (b) presents the minimum
and maximum predictions minh∈H691: h(x) and maxh∈H691: h(x) at various values of x. We
see that the min-max prediction intervals are wider in low-data density regions near the
boundaries. This means that there is more disagreement among individual trees on these
points. Such an observation makes sense because each tree is fitted on a bootstrap sample
of the dataset and therefore some trees have never seen the boundary points.

7.2 Asserting Model Consensus

7.2.1 Local Feature Attribution

We discuss how to assert model consensus on local feature attributions statements at any
level of tolerance ε. Given an error tolerance ε, we set m to m(ε), and assert the consensus
on Hm: via optimization problems (cf. Definition 5) that we solve efficiently with Propo-
sition 14. For example, to compute minh∈Hm: φi(h,x), we calculate the vector of feature
attributions of all trees [φi(t1,x), φi(t2,x), . . . , φi(tM ,x)]T with TreeSHAP, then we sort
it and average its m smallest values. The overall complexity of this procedure w.r.t M is
O(M logM).
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Figure 10

7.2.2 Global Feature Importance

Asserting model consensus on global feature importance statements is a lot more com-
plicated since the functionals Φ[1],Φ[2] are not linear w.r.t the model. Thus, we cannot
leverage directly apply Proposition 14. We refer to Appendix B.2 for the full details of
how we deal with global feature importance. In short, we employ the functional Φ[1] and
create an ensemble E containing

1. Approximates of argmin/maxh Φ
[1]
i (h) for 1 ≤ i ≤ d.

2. Approximates of argmin/maxh Φ
[1]
i (h)− Φ

[1]
j (h) for 1 ≤ i < j ≤ d.

After, we assert a consensus among all models in E ⊂ Hm(ε): leading to the partial order

i �̂ε j ⇐⇒ ∀h ∈ E Φi(h) ≤ Φj(h). (44)

We consequently underestimate the diversity of our models, but the resulting partial order
of global importance is guaranteed to be transitive.

7.3 Income Prediction

The Adult-Income dataset available on the UCI repository4 contains the census data of
48,842 individuals collected in 1994. It consists of a binary classification task with the goal
of predicting whether or not a person makes more (y = 1) or less (y = 0) than 50k USD
per year based on 14 attributes. Out of all these features, we removed fnlwgt because we
do not fully understand what it represents and native-country because it is a categorical
feature with very high cardinality. We were finally left with five numerical features and
seven one-hot-encoded categorical ones. After encoding, we were left with a data matrix of

4. https://archive.ics.uci.edu/ml/datasets/adult
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Figure 11: Estimating the Rashomon Set of RFs on Adult-Income. Each curve is associated
with a different tree collection Ti.

40 columns. The data was split into train and test sets with ratios 0.8 and 0.2 respectively.
The training set was used to obtain the set T of M iid trees. For the model, we utilized
Scikit-Learn’s RandomForestClassifiers whose hyperparameters were tuned with a 100
steps random search and 5-fold cross-validation. Then, we trained M = 1000 trees in order
to generate a set T . The training was actually repeated 5 times so that we ended up with
5 distinct sets of 1000 trees Ti with i = 1, 2, . . . , 5. We do not expect practitioners to fit
several sets Ti when applying our methodology. This was done to verify our assumption
that T is representative of all trees trained with bootstrapped data and random splits.

After obtaining large collections of trees, we estimated the Rashomon Set containing
all RFs that perform well on the test set. The loss employed was the 0-1 loss meaning the
Rashomon Set contains all models with a Misclassification Rate below some threshold ε. The
tolerance ε was set via the capture bound of Proposition 9 using href = 1/M

∑M
s=1 ts as the

reference model. This proposition is applicable since we compute the Rashomon Set on test
data that is independent of the hypothesis href which was fitted on training data. Using a
confidence δ = 1%, the proposition led to an error tolerance ε =

√
−2 log(1%)/N+L̂S(href) ≈

3%+ L̂S(href). By computing the upper bound ε+(m) on test samples, we set the minimum
number of trees m(ε) = 815, see Figure 11 (a). At this tolerance level, the sign of the gap
is consistent for 90.8% of the individuals. Therefore, under-specification prohibits us from
explaining one-tenth of the data. We refer to Appendix C for how we deal with those
unexplainable instances.

7.3.1 Local Feature Attribution

The model outputs h(x) ∈ [0, 1] must be interpreted as estimates of the conditional proba-
bilities of y given x and not as hard 0/1 predictions. Therefore, local feature attributions
should sum up to a difference in conditional probabilities. We computed local feature at-
tributions with the efficient algorithm TreeSHAP. In fact, seeing that categorical features
were one-hot-encoded, which is not supported in the TreeSHAP implementation of the SHAP
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Figure 12: Local feature attributions on two individuals (Top) A person with a high pre-
diction, (Bottom) Individual near the decision boundary. The Hasse Diagrams only show
the first three ranks.

library, we used the Partition-TreeSHAP algorithm described in (Laberge and Pequignot,
2022). The feature attribution requires a background distribution B to serve as a reference
and we used the empirical distribution of the whole training set. Still, given the considerable
size of the Adult dataset, we had to subsample B instances from the training set and use
them to estimate Shapley values. So, we ended up explaining the models with estimates φ̂
rather than ground-truths φ. A proxy of the error made by subsampling is the Gap Error
presented in Equation 38. We found that the Gap Errors would stabilize to around 0.2% at
B = 500 and so we employed 500 background samples. This led to a ten-minute runtime
for explaining M = 1000 decision trees on 2000 test instances.

Figure 11 (b) presents the mean partial-order cardinality as a function of tolerance on
test error. We observe that the five curves are very similar which suggests that fitting M =
1000 trees can be representative of all trees possibly generated for RFs. For error tolerances
smaller than the ε employed, the mean cardinality decreases very rapidly. This means that
our partial orders abstain from making many statements supported by href = 1/M

∑M
s=1 ts,

but which are contradicted by other RFs with slightly worst test performance. We now
discuss two instances that were explained with our framework.

The first instance is an individual who makes more than 50k per year and whose predic-
tions range from 0.69 to 0.74 across H815:. The average prediction on the background for all
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trees is 0.23 so this individual has a positive gap, which we aim to explain with TreeSHAP.
Figure 12 (Top) illustrates this person’s local feature attribution and the resulting partial
order that encodes the statements on which there is a consensus in H815:. We observe that
the features educational-num=large and matiral-status=Married have maximal posi-
tive importance for understanding why this individual has higher-than-average predictions.
At the second rank is the feature age=large, which is also important but to a lesser extent.
Looking at the bar char on the top left, we note that the feature gender=Male is given a
small yet consistently positive attribution across all models. It appears that all RFs with
at least 815 trees exhibit a small gender bias. We will come back to this in our analysis of
global feature importance.

The second instance is a person who makes more than 50k and whose predictions range
from 0.30 to 0.50. The prediction gap is still positive in that case but it is smaller than the
previous example. Figure 12 (Bottom) shows how our framework would explain the positive
gaps. We focus on the two features capital-gain=0 and workclass=Self-Employed which
both have a negative attribution according to the average model. Looking at the error bars
on the bar chart, we observe that the model uncertainty is higher for workclass than with
capital-gain. This means that there is more agreement among RFs that capital-gain=0
reduced the model output. For workclass=Self-Employed, the model uncertainty is so
high that the min-max interval crosses the origin, which implies the existence of RFs with
satisfactory performance that yield a positive attribution to this feature. Our framework
identified this ambiguity and hence removed the feature workclass from the partial order
despite it having a negative attribution according to the average model.

7.3.2 Global Feature Importance
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race

workclass

gender

education
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relationship

occupation

hours-per-week

educational-num

age

capital-gain
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Figure 13: Global Feature Importance
on Adult-Income.

Figure 13 presents the global feature impor-
tance. The associated Hasse diagram is not
shown because the feature ordering is a to-
tal order. Indeed, the rankings are consistent
across all RFs with at least 815 trees. Inter-
estingly, there were more disagreements when
looking at local feature attributions. This high-
lights that combining local attributions φ into
global ones Φ can result in information loss.
Hence, it is primordial to investigate explana-
tions under-specification both globally and lo-
cally.

Notice that all features have non-null importance across the Rashomon Set. This was
not true for the hypothesis class of Additive Models, see Figure 5. We suspect that this
is due to the training procedure of RFs. Indeed, when growing trees, a random subset of
candidate features is chosen at each internal node. The optimal split is then chosen among
these features. Hence, even if a feature is irrelevant for predicting y, there is a non-zero
probability it will be used by some of the trees in the forest. This is unfortunate in the
context of biases because any of our good RFs uses the gender features for prediction.
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8. Discussion

As suggested by our experiments, model under-specification has an important impact on
feature attributions on real data, and taking into account this uncertainty seems necessary
to derive reliable insight from machine learning models. Our conservative approach only
retains the information on features attributions on which all models agree and still succeeds
in finding partial order in this chaos. This in itself is an important observation because one
could have expected the partial orders to be trivial and contain no interesting structure (no
arrows).

The principal limitation of our approach is that we are currently restricted to Additive
Regression, Kernel Ridge Regression, and Random Forests. It is therefore primordial to ex-
tend our work to other models, especially to more Classifiers. We envision using techniques
from previous work to sample Logistic Regression models and Decision Trees (Dong and
Rudin, 2019; Kissel and Mentch, 2021; Semenova et al., 2022). Once an ensemble of models
is available, we could apply Model Set Selection to choose ε (cf. Section 4.2.1) and assert
consensus of the selected models.

Still, there may also exist hypothesis spaces whose Rashomon Set is too large to be real-
istically estimated, for instance, Neural Networks. Moreover, the cost of training/explaining
multiple models may be too high for practitioners to see any benefit. A potential solution
to derive careful conclusions from these large models would be to employ only a few models,
but train them in a way that ensures they are as diverse as possible. This application of
our framework is left for future work as it involves unique and novel challenges regarding
the training of Neural Networks.

The main characteristic of our approach is that we require a perfect consensus among all
good models. However, when employing our methodology with a finite ensemble of models,
one may wonder why not also consider statements on which a majority of models agree
(or at least 90% of the models agree). As a more extreme example, a practitioner may
have 1000 models and 999 of these models state something while a single one states the
opposite. Our approach would abstain from making any statement in that case, which may
seem unnecessarily strict. An important argument for requiring a perfect consensus is that it
ensures the transitivity of the order relations. This property is crucial for the interpretability
of the feature orderings. We note that some prior work has produced partial orders from
the consensus of at least α% of the models via the transitive closure and fine-tuning of α
to avoid cycles (Cheng et al., 2010). Nonetheless, in our context of local explainability,
this method has two issues. First, it would require fine-tuning α for each instance x(i)

and therefore the interpretation of order relations would change on an instance-by-instance
basis. Second, because they rely on transitive closure, the resulting Hasse diagrams could
be misinterpreted seeing as the existence of a directed path between two features would not
imply a consensus among at least α% of the models that one feature is more important. Our
diagrams, on the other hand, remain simple to interpret: for any instance x(i), a directed
path between two features means that all models agree on the relative importance statement
and the absence of such path means that at least one model disagrees on that statement.
Still, we think that imperfect consensus is a pertinent future work direction, especially for
extending our framework to Bayesian methods.
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On a more philosophical level, a justification for perfect consensus is that, given that
the error threshold ε was fixed at a value that represents a satisfactory performance, any
single model that disagrees with the rest is still a good model, and its mere existence is
enough to put into question the claim supported by the others. Going back to the extreme
scenario of 999 models disagreeing with a single one, if this solitary model had the worst
performance of the whole ensemble, slightly reducing the error tolerance would remove this
model from the Rashomon Set and we would reach a consensus.

Speaking of tuning the error tolerance ε, similar to prior work (Fisher et al., 2019; Marx
et al., 2020; Hsu and Calmon, 2022), we explore a range of tolerance values and inspect the
effect of under-specification on conclusions drawn from models. Nonetheless, it is not clear
what is the right value for ε, however, we argue that this is a limitation shared by multiple
studies on the Rashomon Set (D’Amour et al., 2020; Dong and Rudin, 2019; Semenova
et al., 2022; Coker et al., 2021). It is well understood that the ε parameter should be “small
enough” to represent negligible performance differences. But, there is still no agreement on
what “small enough” means depending on the ML task and hypothesis space. We think the
most promising directions in tackling this limitation are Proposition 7 from Fisher et al.
(2019), Profile Likelihoods (Coker et al., 2021, Appendix C.1), Model Set Selection (Kissel
and Mentch, 2021), and our Propositions 8 & 9. All these statistical guarantees suggest
to define the “set of all good models” as a set that contains the best-in-class h? with high
probability. Future work should investigate these theoretical results jointly.

9. Conclusion

In this work, we propose a new approach to explanations in the context of model uncertainty.
Rather than considering the mean attributions or the mean rank, we identify properties
and relations of feature attributions that are consistent across a set of models with good
performance. These logical statements about local/global feature attribution naturally
lead to a partial order of feature importance, which we show can provide more nuanced
explanations than the more common total orders based on mean attributions. As such, we
believe that our work opens a new perspective on post-hoc explanations in the context of
model uncertainty.

In future work, we intend to study more Classifiers (Logistic Regression, Decision Trees,
Neural Networks) and other local/global post-hoc explanations (LIME, Permutation Im-
portance, SAGE). Moreover, we shall apply our methodology to more practical settings,
especially those where there are clear actionable features on which a human subject is able
to act upon. We hope that in these scenarios, the nuance introduced by partial orders will
prove most beneficial.
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Appendix A. Proofs

A.1 Statistical Bounds

Proposition 15 (Proposition 8) Under the assumption that the data was generated by
the optimal model h? plus zero-mean Gaussian noise

y = h?(x) + ∆, where ∆ ∼ N (0, σ2), (45)

and using the squared loss `(y′, y) = (y′ − y)2, we have that

P
S∼DN

[L̂S(h?) > εmax] = 1− Fχ2
N

(
N

σ2
εmax

)
, (46)

where Fχ2
N

is the CDF of a chi-2 random variable with N degrees of freedom.

Proof Under the assumption that Equation 45 is valid, we have that

L̂S(h?) =
1

N

N∑
i=1

(h?(x)− y(i))2 =
1

N

N∑
i=1

(∆(i))2,

where each ∆(i) is sampled iid from a N (0, σ2) Gaussian. Now we have

P
S∼DN

[L̂S(h?) > εmax] = P
∆∼N (0,σ2)N

[
1

N

N∑
i=1

(∆(i))2 > εmax

]

= P
∆∼N (0,σ2)N

[ N∑
i=1

(
∆(i)

σ

)2

>
N

σ2
εmax

]

= P
∆∼N (0,1)N

[ N∑
i=1

(∆(i))2 >
N

σ2
εmax

]
= P

c∼χ2
N

[
c >

N

σ2
εmax

]
= 1− Fχ2

N

(
N

σ2
εmax

)
.

(47)
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Proposition 16 (Proposition 9) Let `(ŷ, y) = 1(ŷ 6= y) be the 0−1 loss, S ∼ DN be a
dataset, href ∈ H be a reference model that is independent of S, and h? be a best in-class
hypothesis, for any ε′ ∈ R+, we have

P
S∼DN

[L̂S(h?) ≥ ε′ + L̂S(href)] ≤ exp

{
− Nε′2

2

}
. (48)

Proof We assume that L̂S(h?) ≥ ε′ + L̂S(href) and show that this implies the occurrence
of an unlikely event. We first have

L̂S(h?)− L̂S(href) =
1

N

N∑
i=1

1[h?(x(i)) 6= y(i)]− 1[href(x
(i)) 6= y(i)] (49)

=
1

N

N∑
i=1

∆(i), (50)

where the N random variables ∆(i) := 1[h?(x(i)) 6= y(i)] − 1[href(x
(i)) 6= y(i)] are iid, take

values between −1 and 1, and have the expectancy

µ = E
S∼DN

[∆(i)] = E
(x(i),y(i))∼D

[∆(i)] = LD(h?)− LD(href). (51)

We accentuate that Equation 51 only holds if the reference model href is independent on
the dataset S used to assess model performance. Now by definition of h?, we have µ ≤ 0.
However, under our assumption that L̂S(h?) ≥ ε′ + L̂S(href), we have that 1

N

∑N
i=1 ∆(i) ≥

ε′ ≥ 0. Hence we have a bounded random variable ∆ whose true mean is negative but whose
empirical mean is large and positive. This event becomes highly improbable as ε′ increases
or the sample size N increases, see the following Figure.

0-1 1

µ
ε′

1
N

∑N
i=1 ∆(i)

Formally, using Hoeffding’s inequality yields

P
S∼DN

[L̂S(h?) ≥ ε′ + L̂S(href)] = P
S∼DN

[
1

N

N∑
i=1

∆(i) ≥ ε′
]

(52)

≤ P
S∼DN

[
1

N

N∑
i=1

∆(i) − µ ≥ ε′
]

(Since µ ≤ 0)

≤ exp

{
− Nε′2

2

}
, (With Hoeffding’s inequality)

concluding the proof.
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A.2 Relation to Prior Work

Proposition 17 (Proposition 10) Let φ(·,x) be a linear feature attribution functional,
and E = {hk}Mk=1 be an ensemble of M models from H trained with the same stochastic
learning algorithm hk ∼ A(S). Said feature attribution and ensemble will be employed in the
methods of (Shaikhina et al., 2021; Schulz et al., 2021). Moreover let ε ≥ max{L̂S(hk)}Mk=1

be an error tolerance, and let �ε,x be the consensus order relation on SA(ε,x) (cf. Equation
14). If the relation i �ε,x j holds, we have that i is less important than j in the two total
orders of prior work (Shaikhina et al., 2021; Schulz et al., 2021).

Proof We first note that, since i, j ∈ SA(ε,x), there is a consensus across the Rashomon
Set that these features attributions have sign si and sj respectively. As a reminder, this
simplifies the expression of the feature importance : ∀h ∈ R(H, ε) |φi(h,x)| = siφi(h,x).
Additionally, our assumption that ε ≥ max{L̂S(hk)}Mk=1, guarantees that E ⊆ R(H, ε). We
now prove that the order relation i �ε,x j is present in the two rankings from the literature.

Shaikhina et al. (2021) compute the average model hE = 1
M

∑M
k=1 hk and rank features

according to their importance for this model |φ(hE ,x)|. For any i, j ∈ SA(ε,x), we deduce

i �ε,x j ⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ R(H, ε) siφi(h,x) ≤ sjφj(h,x)

⇒ ∀h ∈ E siφi(h,x) ≤ sjφj(h,x)

⇒ 1

M

M∑
k=1

siφi(hk,x) ≤ 1

M

M∑
k=1

sjφj(hk,x)

⇒ siφi(hE ,x) ≤ sjφj(hE ,x) (By Linearity of φ)

⇒ |φi(hE ,x)| ≤ |φj(hE ,x)|, (By Linearity of φ, si = sign[φi(hE ,x) ])

thus proving that the order relation is also present when explaining the average model.

Schulz et al. (2021) order features using the mean rank 1
M

∑M
k=1 r[ |φ(hk,x)| ], where

r : Rd+ → [d] is the rank function. By the definition, for any model h, we have |φi(h,x)| ≤
|φj(h,x)| ⇐⇒ ri[ |φ(h,x)| ] ≤ rj [ |φ(h,x)| ]. Therefore,

i �ε,x j ⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ E |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ E ri[ |φ(h,x)| ] ≤ rj [ |φ(h,x)| ]

⇒ 1

M

M∑
k=1

ri[ |φ(hk,x)| ] ≤ 1

M

M∑
k=1

rj [ |φ(hk,x)| ],

which implies that the order relation is also supported by the mean ranks.
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A.3 Random Forests

Proposition 18 (Proposition 14) Let T := {ts}Ms=1 be a set of M trees, Hm: be the set
of all subsets of at least m trees from T , and φ : Hm: → R be a linear functional, then
minh∈Hm: φ(h) amounts to averaging the m smallest values of φ(ts) for s = 1, 2, . . .M .

Proof We can compute the linear functional on every tree {φ(ts)}Ms=1 and store the indices
of the m smallest ones in a set Cm s.t. |Cm| = m and

s ∈ Cm and s′ /∈ Cm ⇒ φ(ts) ≤ φ(ts′). (53)

Now, to prove to proposition, we must show that φ( 1
m

∑
s∈Cm ts) ≤ φ(h) ∀h ∈ Hm:.

Since minh∈Hm: φ(h) = mink=m,...,M minh∈Hk φ(h), the proof can be done in two parts:
first for a fixed k we prove that φ( 1

k

∑
s∈Ck ts) ≤ φ(h) ∀h ∈ Hk and secondly prove that

argmink=m,...,M φ( 1
k

∑
s∈Ck ts) = m.

Part 1 By linearity φ( 1
k

∑
s∈Ck tr) = 1

k

∑
s∈Ck φ(tr). Also, remember that any model

h ∈ Hk is associated to a subset C ′k of k seeds i.e. h = 1
k

∑
s∈C′

k
tr. Importantly, since Ck

and C ′k have the same size, the two sets Ck\C ′k and C ′k\Ck have a one-to-one correspondence.
We get

1

k

∑
s∈Ck

φ(ts) =
1

k

( ∑
s∈Ck∩C′

k

φ(ts) +
∑

s∈Ck\C′
k

φ(ts)

)

≤ 1

k

( ∑
s∈Ck∩C′

k

φ(ts) +
∑

s′∈C′
k\Ck

φ(ts′)

)
(cf. Equation 53)

=
1

k

∑
s∈C′

k

φ(ts) = φ

(
1

k

∑
s∈C′

k

ts

)
= φ(h).

Part 2 We now prove that argmink=m,...,M φ( 1
k

∑
s∈Ck ts) = m. The key insight is that

given m′ > m, the set Cm contains the m smallest elements of Cm′ . We get

1

m′

∑
s∈Cm′

φ(ts) =
1

m′

( ∑
s∈Cm

φ(ts) +
∑

s′∈Cm′\Cm

φ(ts′)

)

≥ 1

m′

( ∑
s∈Cm

φ(ts) +
∑

s′∈Cm′\Cm

[
1

m

∑
s∈Cm

φ(ts)

])

=
1

m′

( ∑
s∈Cm

φ(ts) +
m′ −m
m

∑
s∈Cm

φ(ts)

)
=

1

m′
m′

m

∑
s∈Cm

φ(ts) =
1

m

∑
s∈Cm

φ(ts),

which ends the proof.
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zTz ≤ ε′

ωS

(ω − ωS)TA(ω − ωS) ≤ ε′

z1

z2

ω1

ω2

z = CT (ω − ωS)

ω = (C−1)Tz + ωS

Figure 14: Mapping an ellipsoid to the unit sphere.

Appendix B. Optimization

B.1 Optimization over a Ellipsoid

B.1.1 Linear Objective

We study the optimization of a linear function over an ellipsoid

max
ω

aTω

s.t. (ω − ωS)TA(ω − ωS) ≤ ε− L̂S(ωS),
(54)

which is necessary to compute the local feature attribution consensus on the Rashomon
Set of Additive Regression and Kernel Ridge Regression. To lighten the notation, we will
introduce the variable ε′ := ε− L̂S(ωS). Solving Equation 54 can be done efficiently with a
Cholesky decomposition of A = CCT , which we know exists since A is symmetric positive
definite. We also have A−1 = (C−1)TC−1. Now, it is always possible to map an ellipsoid
back to a sphere by defining a new variable

z := CT (ω − ωS), (55)

see Figure 14. Applying the inverse change of variable to ω in Equation 54, we get

aTω = aT
(

(C−1)Tz + ωS
)

= aT (C−1)T︸ ︷︷ ︸
a′T

z + aTωS , (56)

leading to the optimization problem

max
z

a′Tz + aTωS

s.t. zTz ≤ ε.
(57)
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Importantly, the optimization problems of Equations 54 and 57 both reach the same optimal
values. Since the objective a′Tz is a scalar product, it reaches its maximum objective value√
ε′‖a′‖ when the vector z points in the same direction as a′. The minimum and maximum

values of the objective are therefore ±
√
ε− L̂S(ωS)‖a′‖+ aTωS .

B.1.2 Quadratic Objective

We now investigate the optimization of a quadratic form over an ellipsoid

min
ω

ωTi Biωi − ωTj Bjωj

s.t. (ω − ωS)TA(ω − ωS) ≤ ε′.
(58)

Letting ωij ∈ RMi+Mj be the concatenation of ωi and ωj , and relabelling the least-square
ω̂ := ωS , we express the optimization problem as

min
ωij

ωTijBij ωij

s.t. (ωij − ω̂ij)TAij(ωij − ω̂ij) ≤ ε′,
(59)

where Bij is a block-diagonal matrix containing Bi and −Bj , and Aij is the Schur com-
plement of A. The Schur complement is computed because we must project the Rashomon
Set (which is an ellipsoid in R1+

∑
jMj ) onto the subspace RMi+Mj in which ωij resides.

Importantly, the projection of an ellipsoid on a subspace is still an ellipsoid whose covari-
ance matrix is the Schur complement. Taking the Cholesky decomposition Aij = CCT and
using the change of variable in Equation 55, we get

ωTijBij ωij = (zij − ẑij)TB′ij(zij − ẑij), (60)

with B′ij = C−1Bij(C
−1)T and ẑij := −CT ω̂ij . Thus, we can express the optimization in

standard TRS form
min
zij

(zij − ẑij)TB′ij(zij − ẑij)

s.t. zTijzij ≤ ε′
(61)

and solve the following necessary optimality conditions adapted from Corollary 7.2.2 in
(Conn et al., 2000, Section 7.2).

Corollary 19 (TRS Necessary Optimality Condition) Letting {σk}k be the eigenval-
ues of the matrix B′ij, any global minimizer zij of the TRS (Equation 61) must satisfy

B′ij(zij − ẑij) = λzij (62)

λ(zTijzij − ε′) = 0, (63)

for some λ ≥ max{0}∪{−σk}k. If λ > max{−σk}k then zij is the unique global minimizer.

To solve these conditions, we diagonalize B′ij = V DV T , define α = V Tzij and α̂ = V T ẑij .
Then, assuming λ > max{−σk}k, we rewrite Equation 62 as

α = (D + λI)−1Dα̂. (64)
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Also assuming λ > 0, Equation 63 becomes αTα = ε′, which combined with Equation 64
yields

q(λ) :=
∑
k

σ2
k

(σk + λ)2
α̂k = ε′. (65)

We finally solve the non-linear Equation q(λ) = ε′ for λ > max{0}∪{−σk}k with the bissec-
tion algorithm. From the resulting λ we can determine the TRS solution zij .

If we do not assume λ > max{0}∪{−σk}k, there are two additional cases to consider:

1. The solution is inside the ball (λ = 0).

2. The so-called “Hard Case” where λ = max{−σk}k and (D + λI) becomes singular.

For simplicity, we do not address them in this Appendix. We instead refer to (Conn et al.,
2000, Section 7.3) for discussion on these technicalities.

B.2 Combinatorial Optimization and Relaxations

B.2.1 Min/Max of Global Importance

In this section we discuss the combinatorial optimization problems that occur when com-
puting the global feature importance over the Rashomon Set of Random Forests. As a
reminder, we have defined

Hm :=

{
1

m

∑
t∈T

t : T ⊆ T and |T | = m

}
, (66)

as the set of RFs containing m trees. An alternative way to represent such a set is to
introduce binary variables z ∈ {0, 1}M with

∑M
s=1 zs = m and view all RFs from Hm as

1
m

∑M
s=1 zsts for some z.

Now letting φj be the SHAP local feature attribution of feature j, we wish to find the

minimum and maximum values of the global feature importance Φ
[1]
j (h) := 1

N

∑N
i=1 |φj(h,x(i)) |

across all RFs with m trees

min/max
z

1

Nm

N∑
i=1

∣∣∣∣ M∑
s=1

zs φj(ts,x
(i))

∣∣∣∣
s.t. z ∈ {0, 1}M and

M∑
s=1

zs = m.

(67)

These are non-linear combinatorial problems that are extremely hard to solve. For that
reason, we will provide quick approximate solutions based on a Linear relaxation of Equation
67. The first step of the relaxation is to enlarge the domain of z to allow fractional values.

min/max
z

N∑
i=1

∣∣∣∣ M∑
s=1

zs φj(ts,x
(i))

∣∣∣∣
s.t. z ∈ [0, 1]M and

M∑
s=1

zs = m.

(68)
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The corresponding domain is a polytope and so it is compatible with Linear Programs. The
second step of the Linear relaxation is to rephrase the absolute value function | · | as a Linear
Program

|α| = min
β

β

s.t. α ≤ β
−α ≤ β

(69)

|α| = max
β

βα

s.t. −1 ≤ β
β ≤ 1

(70)

After we get a solution to the relaxation of Equation 68, we project z back on {0, 1}M
using the following heuristic: if there are o components with z = 1, we select M−o fractional
values in decreasing order and set them to one. The other fractional values are set to zero.
For example, if we have M = 3 and find a solution z = [0, 1, 1, 0.75, 0.25] to the relaxation,
we would discretize the solution to get z = [0, 1, 1, 1, 0]. This heuristic may be sub-optimal
but our goal is to provide quick approximate solutions.

Maximize By leveraging Equation 70, we can reformulate Equation 68 as

max
z

N∑
i=1

∣∣∣∣ M∑
s=1

zs φj(ts,x
(i))

∣∣∣∣ = max
z

N∑
i=1

max
βi∈[−1,1]

βi

M∑
s=1

zsφj(ts,x
(i))

= max
z,β

N∑
i=1

M∑
s=1

zs βiφj(ts,x
(i))

= max
z,β

βTBz,

(71)

where z and β are each restricted to a separate polytope and Bis ≡ φj(ts,x
(i)). Equation

71 is known as a Bilinear Program which is a non-convex optimization problem that can
be solved to local optima via the coordinate ascent algorithm (Nahapetyan, 2009). In our
setting, the output of the coordinate ascent algorithm will already respect z ∈ {0, 1}M
since maxz β

TBz under the constraints on z yields zs = 1 for the m smallest values of∑N
i=1 βiφj(ts,x

(i)) and zs = 0 for the others.

Minimize By leveraging Equation 69, we can reformulate Equation 68 as

min
z,β

N∑
i=1

βi

s.t. z ∈ [0, 1]M and

M∑
s=1

zs = m

M∑
s=1

zs φj(ts,x
(i)) ≤ βi

−
M∑
s=1

zs φj(ts,x
(i)) ≤ βi,

(72)
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which is a Linear Program with N + M variables and 2(N + M) + 1 constraints that we
can solve efficiently if N and M are not too large. However, the solution of this LP can
have fractional values so we must use the discretization heuristic to get the final solution
z ∈ {0, 1}M . In our experiments on Adult-Income, about 0.25% of the non-null components
of z would be fractional so we suspect our discretization heuristic provided good solutions
in that setting.

Now that we have discussed approximate schemes to get the min/max global feature
importance across Hm, we are left with addressing relative importance relations between
features.

B.2.2 Global Relative Importance

To assert a consensus on global relative importance (cf. Definitions 6 & 7) we must

solve min/maxh Φ
[1]
j (h) − Φ

[1]
k (h). However, as previously discussed, we cannot guarantee

to minimize/maximize Φ
[1]
j (h) to optimality for Random Forests. Consequently, we cannot

guarantee to solve min/maxh Φ
[1]
j (h) − Φ

[1]
k (h) to optimality either. This is a critical issue

because the resulting partial order may not be transitive. Our solution is to create an
ensemble E containing

1. Approximates of argmin/maxh Φ
[1]
j (h) for 1 ≤ j ≤ d.

2. Approximates of argmin/maxh Φ
[1]
j (h)− Φ

[1]
k (h) for 1 ≤ j < k ≤ d.

After, we assert a consensus among all models in E ⊂ Hm(ε): leading to the partial order

j �̂ε k ⇐⇒ ∀h ∈ E Φj(h) ≤ Φk(h). (73)

We underestimate the diversity of our models but the resulting partial order of global

importance is guaranteed to be transitive. To approximate argmin/maxh Φ
[1]
j (h)− Φ

[1]
k (h),

we propose to define the set

Sjk := {i ∈ [N ] : ∀h ∈ Hm sign[φj(h,x
(i))] = sij and sign[φk(h,x

(i))] = sik} (74)

representing all data instances whose local attributions for features j and k has a consistent
sign across the Hm. Then we solve

argmin/max
z

∑
i∈Sjk

∣∣∣∣ M∑
s=1

zs φj(ts,x
(i))

∣∣∣∣− ∣∣∣∣ M∑
s=1

zs φk(ts,x
(i))

∣∣∣∣
= argmin/max

z

∑
i∈Sjk

sij

M∑
s=1

zs φj(ts,x
(i))− sik

M∑
s=1

zs φk(ts,x
(i))

= argmin/max
z

M∑
s=1

zs

( ∑
i∈Sjk

sijφj(ts,x
(i))− sik φk(ts,x(i))

)

= argmin/max
z

M∑
s=1

zsajks

(75)

which is a linear function of z thus we can leverage Proposition 14.
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Figure 15: Distributions of predictions for houses with ill-defined and well-defined gaps
across the Rashomon Set of Kaggle-Houses. The background B is the empirical distribution
over the whole training data.

Appendix C. Ill-Defined Gaps

In this appendix, we investigate instances x(i) whose gap is ill-defined given the underspec-
ification of the ML task. That is, there exists two models h1, h2 ∈ R(H, ε) which assign
gaps G(h1,x

(i)) < 0 and G(h2,x
(i)) > 0. When this occurs, it does not make sense to

compute local feature attributions at x(i) since the different models end up answering dif-
ferent contrastive questions. We now present instances with an ill-defined gap and show
that redefining the background B can help make these points explainable.

C.1 Kaggle-Houses

As a reminder, the background B employed on Kaggle-Houses was the empirical distribution
over the training data. Figure 15 shows the distributions of predictions for instance whose
gap is well-defined or ill-defined across the Rashomon Set. We note that instances whose
gap does not have a consistent sign tend to have predictions hS(x(i)) near the baseline
Ez∼B[hS(z)] so that the Gap G(hS ,x

(i)) is very small. This could explain why models with
similar performance can assign different signs to the gap. Importantly, model underspec-
ification warns us that the contrastive question is not well-posed on these houses and it
would be better to use another background B′ when explaining them. We redefined B′ to
be the empirical distribution over all houses with a predicted price below the first quartile.
Consequently, the prediction gaps increased and 97% of the houses that were previously
unexplainable suddenly became explainable.
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Figure 16: Distributions of predictions for instance with ill-defined and well-defined gaps
across the Rashomon Set for Adult-Income. The background B is the empirical distribution
over 500 uniform samples from the training data.

C.2 Adult-Income

As a reminder, the background B employed on Adult-Income was 500 instances sampled
uniformly at random from the training data. Figure 16 shows the distributions of predictions
for individuals whose gap is well-defined or ill-defined across the Rashomon Set. Again,
individuals whose gap is ill-defined tend to have predictions href(x

(i)) near the baseline
Ez∼B[href(z)] so that the Gap G(href,x

(i)) is small. Once more, we replace the background
and re-explain those inputs. Letting B′ be 500 uniformly-chosen adults who were predicted
to make more than 50K (i.e. href(x

(i)) > 0.5), the gaps became highly negative and 100%
of the previously unexplainable individuals were now explainable.
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