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Abstract
Bayesian inference problems require sampling or approximating high-dimensional probability dis-
tributions. The focus of this paper is on the recently introduced Stein variational gradient descent
methodology, a class of algorithms that rely on iterated steepest descent steps with respect to a
reproducing kernel Hilbert space norm. This construction leads to interacting particle systems, the
mean-field limit of which is a gradient flow on the space of probability distributions equipped with
a certain geometrical structure. We leverage this viewpoint to shed some light on the convergence
properties of the algorithm, in particular addressing the problem of choosing a suitable positive
definite kernel function. Our analysis leads us to considering certain nondifferentiable kernels
with adjusted tails. We demonstrate significant performance gains of these in various numerical
experiments.

Keywords: Bayesian inference, gradient flows, geometry of optimal transport, Stein’s method,
reproducing kernel Hilbert spaces

1. Introduction

Sampling and Variational Inference (VI) are the most common paradigms for extracting informa-
tion from posterior distributions arising from Bayesian inference problems. This is a particularly
challenging problem in high dimensions, where the posterior distribution will only be known up
to a constant of normalisation. Markov Chain Monte Carlo (MCMC) methods based on the
Metropolis-Hastings algorithm provide a generic approach to sampling from such distributions.
However, in high dimensions these methods suffer from poor scalability due to correlation between
successive samples. Variational techniques reformulate inference as an optimisation problem; seek-
ing a distribution from a family of simple probability distributions which best approximates the
target posterior distribution. VI typically permits faster inference, albeit at the cost of losing
asymptotic exactness.

Recently there has been interest in particle optimisation techniques which combine aspects of
both approaches. Here, an ensemble of particles are collectively evolved forward, seeking to ap-
proximate the posterior distribution. One such approach, known as Stein Variational Gradient
Descent (SVGD), was introduced in Liu and Wang (2016). In this method, an ensemble of N
particles in Rd defining an empirical measure ρN is moved forward in a series of discrete steps via
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the map
x 7→ T (x) = x+ εψ(x),

where ε is the step size and ψ is a vector field, which is chosen such that the pushforward measure
T♯ρ

N has minimal KL divergence with respect to the target posterior π ∝ exp(−V ). Choosing ψ
from within the unit ball of a vector valued RKHS Hd

k with positive definite kernel k : Rd×Rd → R
results in discrete dynamics of the form

Xi
n+1 = Xi

n − ε

N

(
N∑

j=1

∇k(Xi
n, X

j
n) +

N∑
j=1

k(Xi
n, X

j
n)∇V (Xj

n)

)
,

where ∇k denotes the gradient with respect to the first variable. In the continuous time limit, as
ε → 0, this results in the following system of ordinary differential equations (ODEs) describing
the evolution of the particles X1, . . . , XN ,

dXi
t

dt
= − 1

N

N∑
j=1

∇k(Xi
t , X

j
t )−

1

N

N∑
j=1

k(Xi
t , X

j
t )∇V (Xj

t ), i = 1, . . . , N. (1)

It was observed in Liu (2017) that the scaling limit of (1) as N → ∞ is given by the mean-field
equation

∂tρt(x) = ∇ ·
(
ρt(x)

∫
Rd

k(x, y) [∇ρt(y) + ρt(y)∇V (y)] dy

)
, (2)

where ρ denotes the limiting density of the particles as N tends to infinity. The convergence of
ρN to ρ was proved rigorously in Lu et al. (2019a) together with existence and uniqueness for
(2), as well as convergence to equilibrium, albeit without quantitative rates. In Liu (2017) it
was observed that the evolution equation (2) can be viewed as a gradient flow on the space of
probability densities, equipped with a certain distance that depends on the kernel k. Remarkably,
this observation places SVGD in direct correspondence with the more conventional (overdamped)
Langevin dynamics (Pavliotis, 2014), see Appendix A. Our main focus in this paper is to follow
the thread of this parallel and leverage the gradient flow perspective for the study of contraction
and equilibration properties of (2). To wit, we develop a second order calculus and study the
convexity properties of the KL-divergence with respect to an appropriately constructed geometry
on the space of probability densities, henceforth called Stein geometry, and identify conditions in
the form of functional inequalities which are necessary for exponential convergence of ρt to the
equilibrium π. Building on this analysis, we are able to derive principled guidelines for making
a suitable choice of the kernel function k. In particular, we explore analytically and numerically
the use of singular kernel functions, i.e. those that are not continuously differentiable. In our
experiments we demonstrate significant performance gains in a variety of inference tasks.

1.1 Previous work

The SVGD method has attracted a lot of interest since it was introduced in Liu and Wang (2016).
Indeed, numerous variants have been proposed which improve scalability by exploiting additional
information such as the conditional dependency structure (Zhuo et al., 2018) or the underlying
geometry of the posterior (Chen et al., 2019; Detommaso et al., 2018; Liu and Zhu, 2018; Wang
et al., 2019a). Stochastic variants which introduce noise into the dynamics in order to aid ex-
ploration and efficiency of SVGD have also been proposed (Gallego and Insua, 2018; Li et al.,
2020; Zhang et al., 2020, 2018). Other methods in the spirit of particle optimisation have been
proposed, such as Ambrogioni et al. (2018); Bigoni et al. (2019); Chen et al. (2018b); Liu et al.
(2019); Mroueh et al. (2018, 2019). The potential of SVGD has also been explored in the context of
sequentially updated Bayesian posteriors (Detommaso et al., 2019; Pulido and van Leeuwen, 2018).

Gradient flows provide a natural formalism in which to analyse the long-term behaviour of cer-
tain classes of nonlinear, nonlocal partial differential equations with dissipative behaviour. This
includes many PDEs arising as the mean-field equations of ensembles of interacting stochastic
particle systems.
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The space of densities equipped with the quadratic Wasserstein metric formally defines a Rie-
mannian structure over which gradient flows can be defined. It is well known that solutions to the
Fokker-Plank equation associated with the overdamped Langevin dynamics can be formulated as
gradient flows of the KL-divergence (or relative entropy) with respect to the Wasserstein metric.
Analysis of the geodesic convexity of the KL-divergence yields conditions under which exponential
convergence to equilibrium can be established. This differential-geometric perspective was put
forward by F. Otto and coworkers (see for example Jordan et al. (1998); Otto (2001); Otto and
Westdickenberg (2005) or Villani (2009, Chapter 15) and Villani (2003a, Chapter 9)). Of par-
ticular importance for the development in Section 5 is the discussion in Otto and Villani (2000,
Section 3). Extensions to systems of overdamped Langevin particles with various forms of interac-
tions and their relationships to ensemble Kalman filters and inverse problems (Iglesias et al., 2013)
have also been considered (Garbuno-Inigo et al., 2020a,b; Nüsken and Reich, 2019), see also the
extension to γ-drift diffusions studied in Li (2019). In Lu et al. (2019b), the Langevin dynamics
are augmented with interactions giving rise to a nonlocal birth-death term in the mean-field equa-
tions. By reformulating the system as a gradient flow of the KL-divergence with respect to the
Wasserstein-Fisher-Rao metric, sufficient conditions for expontential convergence to equilibrium
are obtained with quantitative rates. The dynamics put forward in Pathiraja and Reich (2019);
Reich and Weissmann (2021) are based on approximations of the particle-density within a suitably
chosen RKHS; this approach should be contrasted with SVGD which relies on a driving vector field
with minimal RKHS-norm. We would also like to refer the reader to Wang and Li (2020), where
Newton gradient flows have been developed, holding the promise of accelerating convergence in
the face of ill-conditioning.

In the context of machine learning a number of recent works have proposed gradient flow for-
mulations of methods for sampling and variational inference, see for example Arbel et al. (2019);
Li and Montúfar (2018); Lu et al. (2019b); Wang et al. (2019b); Gao et al. (2019); Li and Montúfar
(2020). In particular, a number of approaches which unify Langevin dynamics and SVGD via the
common framework of Wasserstein gradient flows have also appeared (Chen and Zhang, 2017;
Chen et al., 2018a).

1.2 Our contribution

The contributions in this paper are:

• Following Liu (2017) we formulate the mean-field limit of SVGD as a gradient flow of the KL-divergence
in the so-called Stein geometry. We define appropriate tangent spaces and study foundational prop-
erties of the structure thus obtained.

• We derive expressions for the geodesics in this geometry and based on these, explore second order prop-
erties of the gradient flow dynamics. The latter are intimately related to a qualitative and quantitative
understanding of the convergence to equilibrium, as has been widely recognised in the literature on
Wasserstein gradient flows (see Villani (2009) and references therein). By way of counterexample,
we show that, within this framework and using only entropy as the driving force, it is in general im-
possible to obtain bounds on the Stein-Hessian operator that would allow us to conclude exponential
convergence as in the Wasserstein case.

• Moreover, we study the curvature of the KL-divergence around equilibrium, and identify conditions in
the form of functional inequalities which are equivalent to exponential decay when near equilibrium.
In certain scenarios we show that there is a direct correspondence with functional-analytic properties
of the reproducing kernel Hilbert space (RKHS) associated to the kernel function k.

• Based on this we derive a series of guidelines for making a suitable choice of kernel function k, especially
placing emphasis on regularity and tail properties.

We would like to point out that differential-geometric tools at this point mainly serve for intuition,
and that a rigorous formulation in the framework of metric length spaces has been carried out in
Ambrosio et al. (2008) for the Wasserstein case. Adapting those techniques to the Stein geometry
is an interesting direction for future work.
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The remainder of the paper will be as follows. In Section 2 we shall introduce basic notation and
a number of preliminary assumptions. In Section 3 we discuss a stochastic variant of the SVGD
dynamics (originally proposed in Gallego and Insua (2018)) and show that the resulting mean-field
PDE coincides with (2). In Section 4 we recall and extend the Stein geometry introduced in Liu
(2017), in particular characterising the solution of the mean-field equation (2) as a gradient flow of
the KL-divergence with respect to this geometry. In Section 5 we study the geodesic equations un-
der the Stein metric and investigate the geodesic convexity of the KL-divergence. In Section 6 we
focus on the long-time behaviour when close to equilibrium, and in particular identify conditions
in the form of functional inequalities for exponential return. In Section 7 we give a brief outlook
at applications of the developed theory for polynomial kernels. In Section 8 a number of numerical
experiments are presented to confirm and complement the theory. Comments and conclusions are
deferred to Section 9. In Appendix A we draw parallels between SVGD and the Stein geometry
on the one hand, and Langevin dynamics and the Wasserstein geometry on the other hand.

2. Assumptions and Preliminaries

2.1 Notation and preliminaries

We first briefly define the function spaces which will be used throughout this paper. The space
C∞

c (Rd) consists of smooth functions with compact support, and D′(Rd) refers to its topological
dual, the space of distributions. Given a probability measure ρ on Rd we define L2(ρ) to be the
Hilbert space of square-integrable functions with respect to ρ with inner product ⟨ϕ, ψ⟩L2(ρ) =∫
Rd ϕψ dρ. The subspace L2

0(ρ) consists of centered functions in L2(ρ), that is,

L2
0(ρ) =

{
ϕ ∈ L2(ρ) :

∫
Rd

ϕ dρ = 0

}
. (3)

We define the (weighted) Sobolev space H1(ρ) to be the subspace of L2(ρ) functions having
derivatives also in L2(ρ), i.e.

H1(ρ) =
{
ϕ ∈ L2(ρ) : ∥∇ϕ∥L2(ρ) <∞

}
.

The following assumption on k is fundamental:

Assumption 1 (Assumptions on k) The kernel k : Rd × Rd → R is continuous, symmetric and positive
definite, i.e.

n∑
i,j=1

αiαjk(xi, xj) ≥ 0,

for all n ∈ N, α1, . . . αn ∈ R and x1, . . . , xn ∈ Rd.

Canonical examples of kernels satisfying Assumption 1 include the Gaussian kernel k(x, y) =

exp
(
− |x−y|2

σ2

)
, and Laplace kernel k(x, y) = exp

(
− |x−y|

σ

)
. More generally, we will consider the

kernels kp,σ : Rd × Rd → R, defined via

kp,σ(x, y) = exp

(
−|x− y|p

σp

)
, (4)

where p ∈ (0, 2] is a smoothness parameter, and σ > 0 is called the kernel width.
Let (Hk, ⟨·, ·⟩Hk ) be the reproducing kernel Hilbert space (RKHS) associated to the kernel k,

(Steinwart and Christmann, 2008, Sec 4.2), that is, Hk is the Hilbert space of all functions on Rd

such that, for x ∈ Rd, k(x, ·) ∈ Hk and f(x) = ⟨f, k(x, ·)⟩Hk . We let ∥ · ∥Hk be the norm induced
by the inner product on Hk. The d-fold Cartesian product

Hd
k = Hk × . . .×Hk︸ ︷︷ ︸

d times

(5)
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is a Hilbert space of vector fields v = (v1, . . . , vd) : Rd → Rd, equipped with the norm

∥v∥2Hd
k
=

d∑
i=1

∥vi∥2Hk
.

Remark 1 (Vector-valued RKHS) More generally one can consider matrix-valued kernels of the form
k̄ : Rd × Rd → Rd×d, (Carmeli et al., 2006; Micchelli and Pontil, 2005), as has recently been done in Wang
et al. (2019a). The associated RKHS Hk̄ then consists of vector-valued functions. We leave the analysis of
SVGD algorithms based on matrix-valued kernels for future work.

The following is a nondegeneracy assumption on k, instrumental in guaranteeing convergence of
solutions to (2) towards the target π.

Assumption 2 (Fukumizu et al., 2009; Sriperumbudur et al., 2010) The kernel k is integrally strictly
positive definite (ISPD), i.e. ∫

Rd

∫
Rd

k(x, y) dρ(x)dρ(y) > 0

holds for all finite nonzero signed Borel measures ρ.

From Sriperumbudur et al. (2010, Theorem 7), ISPD kernels are characteristic, i.e. the kernel
mean embedding ρ 7→

∫
k(·, y) dρ(y) is injective. We note that the kernels defined in (4) (in par-

ticular, the Gauss and Laplace kernels) are ISDP, see Lemma 44 below.

Throughout this article, we will denote by P(Rd) the space of probability measures on Rd. Abusing
the notation, we will use the same letter for their Lebesgue densities in case they exist. Given a
kernel k, we define the following subset of P(Rd),

Pk(Rd) =

{
ρ ∈ P(Rd) : ρ admits a smooth Lebesgue density, supp ρ = Rd,

∫
Rd

k(x, x) dρ(x) <∞

}
,

and, for ρ ∈ Pk(Rd), the linear operator Tk,ρ : L2(ρ) → Hk via

Tk,ρϕ =

∫
Rd

k(·, y)ϕ(y) dρ(y), ϕ ∈ L2(ρ). (7)

For ρ ∈ Pk(Rd), Tk,ρ is compact, self-adjoint and positive semi-definite. Furthermore, by Steinwart
and Christmann (2008, Theorem 4.26) the associated RKHS Hk will consist of L2(ρ)-functions.
By Assumption 2 and the fact that supp ρ = Rd, Tk,ρ is injective, and consequently, the embedding
Hk ⊂ L2(ρ) is dense. For a normed vector space V (such as L2(ρ), H1(ρ) or Hk above) and a

subset A ⊂ V , we denote by A
V ⊂ V the closure in the corresponding norm. That is, A

V
is the

smallest set containing A that is closed with respect to ∥ · ∥V .

Finally, our objective will be to generate samples from the target density π ∝ e−V on Rd. We
shall make the following basic assumptions on π and V :

Assumption 3 The potential V : Rd → R is continuously differentiable, with e−V ∈ L1(Rd). The target
density is given by

π =
1

Z
e−V , (8)

where Z =
∫
Rd e

−V dx is the normalising constant. Furthermore, π ∈ Pk(Rd).
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3. Stochastic SVGD and its Mean Field Limit

Before turning our focus towards the main topic of this paper in Section 4, we comment on a
stochastic variant of (1), providing another link to the overdamped Langevin dynamics. This
section can be skipped (or read independently from the rest of the paper). The follow-up work
Nüsken and Renger (2021) connects the deterministic dynamics (1) to its stochastic augmentation
(9) discussed below using the theory of large deviations and the geometric framework developed
in this paper.

In Gallego and Insua (2018), the following modification of (1) was introduced,

dX̄t =
(
−K(X̄t)∇V̄ (X̄t) +∇ · K(X̄t)

)
dt+

√
2K(X̄t) dWt, (9)

where X̄ = (X1, . . . , XN ) ∈ RNd comprises the collection of particles, (Wt)t≥0 denotes an Nd-
dimensional standard Brownian motion,

V̄ (x1, . . . , xN ) =

N∑
i=1

V (xi)

is the extended potential, and the state-dependent mass matrix K : RNd → RNd×Nd can be
decomposed into N2 blocks of size d× d as follows,

K(x̄) =

K11(x̄) . . . K1N (x̄)
...

. . .
...

KN1(x̄) . . . KNN (x̄)

 ,

where

Kij(x̄) =
1

N
k(xi, xj)Id×d.

Furthermore,
√

K(x̄) denotes a square root of the nonnegative matrix K(x̄). By definition,

(∇ · K)i =

Nd∑
j=1

∂Kij

∂x̄j
, i = 1, . . . , Nd,

so we see that the ith coordinate Xi
t satisfies the SDE

dXi
t =

1

N

N∑
j=1

[
−k(Xi

t , X
j
t )∇V (Xj

t ) +∇
X

j
t
k(Xi

t , X
j
t )
]
dt+

N∑
j=1

√
2K(X̄t)

ij
dW j

t , (10)

coinciding with (1) up to the noise term
√

2K(X̄t) dWt. Indeed, this perturbation becomes van-
ishingly small in the limit as N → ∞, and the mean-field limits of (1) and (9) agree:1

Proposition 2 (Formal identification of the mean-field limit) As N → ∞, the empirical measure
ρNt = 1

N

∑N
i=1 δXi

t
associated with (10) converges to the solution ρt of (2).

Proof See Appendix B.

It is straightforward to check that

π̄(x1, . . . , xN ) :=

N∏
i=1

π(xi) =
1

ZN
exp

(
−

N∑
i=1

V (xi)

)
(11)

is an invariant probability density for (9), with marginals2∫
R(N−1)d

π̄(x1, . . . , xN ) dx1 . . . d̂xi . . .dxN = π(xi).

1. While a rigorous convergence proof is beyond the scope of this work, we can formally identify the mean-field limit.

2. We use the notation dx1 . . . d̂xi . . . dxN to indicate that integration is meant to be performed over all variables
except for xi.
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Below, we will show that under mild conditions, the dynamics (9) is in fact ergodic with respect
to π̄, so that in particular

1

T

∫ T

0

1

N

N∑
i=1

ϕ(Xi
t) dt

T→∞−−−−→
∫
Rd

ϕ dπ, a.s., (12)

for any test function ϕ ∈ Cb(Rd). Suitable discretisations of (9) therefore lead to MCMC-type
algorithms on an extended state space in the framework of Ma et al. (2015), as already noticed
in Gallego and Insua (2018). See also Duncan et al. (2017, Section 2.2) and Nüsken and Pavliotis
(2019) for related discussions.

For our ergodicity result we need the following set of assumptions:

Assumption 4 The following hold:

1. The SDE (9) admits a global strong solution.

2. We have E
∫ t

0
|∇V (Xi

s)| ds <∞ for all i = 1, . . . , N and all t > 0.

3. The kernel k is translation-invariant, i.e.

k(x, y) = h (x− y) , x, y ∈ Rd,

where h ∈ C(Rd)∩C1(Rd\{0}) is Lipschitz continuous, and its gradient satisfies the one-sided Lipschitz
condition

(∇h(x)−∇h(y)) · (x− y) ≤ C|x− y|2, (13)

for some constant C and all x, y ̸= 0.

Proposition 3 (Ergodicity of stochastic SVGD) Let Assumption 4 be satisfied, d ≥ 2, and assume
that the initial condition for (10) is distinct, i.e. Xi

0 ̸= Xj
0 for i ̸= j. Then Xi

t ̸= Xj
t for i ̸= j for all t > 0,

almost surely. Moreover, the process (X̄t)t≥0 is ergodic with respect to the product measure (11).

Proof See Appendix B.

Remark 4 Assumption 4.2 holds under suitable (mild) conditions on the growth of V at infinity. Any
bounded translation-invariant kernel of regularity C2 satisfies Assumption 4, (3). Specifically, the kernels
(4) satisfy Assumption 4.3 if p ∈ [1, 2]. In the case when p < 1 these kernels are not Lipschitz continuous. We
leave an extension of Proposition 3 to this regime for future work. Note that the assumption of translation-
invariance can easily be weakened, but we choose to impose it for ease of presentation.

4. SVGD as a gradient flow

In Liu (2017) it was observed that the evolution equation (2) can be interpreted as gradient flow
dynamics of the KL-divergence on the space of probability measures equipped with a novel distance
dk that depends on the chosen kernel. Formally, dk is furthermore the geodesic distance induced
by a suitably chosen Riemannian metric. Here we review this perspective and identify the relevant
tangent spaces, preparing the ground for our calculations in the later sections. Let us remark that
in order to understand the results of the later sections Corollary 13 suffices; the remainder of this
section may thus be skipped at first reading.

In what follows we set up a formal Riemannian calculus on Pk(Rd), acting as though Pk(Rd)
was a smooth manifold. To reinforce this heuristic viewpoint, and for notational convenience, we
will use the shorthand M := Pk(Rd). This perspective (nowadays known as Otto calculus) has
been put forward for the case of the quadratic Wasserstein distance in the seminal works Jordan
et al. (1998); Otto (1998, 2001); Otto and Villani (2000); Otto and Westdickenberg (2005) and
was further developed in Ambrosio et al. (2008); Gigli (2012) and Daneri and Savaré (2008). For
textbook accounts we refer to Villani (2003a, Chapter 8), Villani (2009, Chapter 15) and Ambrosio
and Gigli (2013, Chapter 3).
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To facilitate intuition, we begin with an informal discussion. Speaking in broad terms, many
particle-based methods in general (see Section 1.1), and SVGD in particular, postulate dynamical
schemes of the form

dXt

dt
= vt(Xt), X0 ∼ ρ0. (14)

Those are based on a family of vector fields vt, inducing a flow of probability measures ρt = LawXt.
Under mild growth and regularity assumptions on vt, the evolution of ρt is governed by the
continuity equation

∂tρt +∇ · (ρtvt) = 0, (15)

see, for instance, Ambrosio and Gigli (2013, Section 4.1.2). On the other hand, given a flow of
probability measures ρt, we may reverse this logic and ask for a family of vector fields vt that
reproduces ρt, in the sense of (15), or, equivalently, (14). Notice that vt will not be unique,
since for any sufficiently regular density ρt there exist infinitely many vector fields ut that satisfy
∇ · (ρtut) = 0; those ut can be added to any vt without affecting the validity of (15). To enforce
uniqueness3, it is reasonable to either select vt so as to minimise a certain norm or to constrain it
to lie in a specified subspace (while at the same time satisfying (15)). The following result shows

that requiring vt to have minimal Hd
k-norm is equivalent to vt ∈ Tk,ρt∇C∞

c (Rd)
Hd

k , that is, up to
taking limits in Hd

k, vt is a gradient field, convolved using the operator Tk,ρ defined in (7). In other
words, the SVGD construction principle originally put forward in Liu and Wang (2016) (namely

to construct movement schemes that are minimal in Hd
k-sense) implies that vt ∈ Tk,ρt∇C∞

c (Rd)
Hd

k

for dynamics of the form (14).

Proposition 5 (Selection principle) Let the pair (ρ, v) : (0, 1) → Pk(Rd) × Hd
k satisfy the continuity

equation (15). Furthermore, assume that vt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k , for all t ∈ (0, 1). Then the following hold:

1. Given ρ, the vector field v is the unique solution to (15) in Tk,ρt∇C∞
c (Rd)

Hd
k : If (ρ,w) : (0, 1) →

Pk(Rd)×Hd
k also satisfies (15) as well as wt ∈ Tk,ρt∇C∞

c (Rd)
Hd

k for all t ∈ (0, 1), then v = w.

2. The vector field v minimises the Hd
k-norm among solutions to (15): Let w : (0, 1) → Hd

k be any other
vector field that together with ρ satisfies (15). Then

∥vt∥Hd
k
≤ ∥wt∥Hd

k
, for all t ∈ (0, 1).

The following proposition (proven in Appendix C) provides the basis for Proposition 5, as well as
for many of the other constructions in this section. It should be compared to the usual L2(ρ)-
orthogonal decomposition of vectors fields into gradients and (weighted) divergence-free vector
fields, see, for instance, Figalli and Glaudo (2021).

Proposition 6 (Helmholtz decomposition for RKHS) Let ρ ∈ M and define the space of (weighted)
divergence-free vector fields

L2
div(ρ) =

{
v ∈ (L2(ρ))d : ⟨v,∇ϕ⟩(L2(ρ))d = 0, for all ϕ ∈ C∞

c (Rd)
}
.

Then Hd
k admits the following ⟨·, ·⟩Hd

k
-orthogonal decomposition,

Hd
k =

(
L2

div(ρ) ∩Hd
k

)
⊕ Tk,ρ∇C∞

c (Rd)
Hd

k .

Proof of Proposition 5 For the first claim, notice that ∇ · (ρt(vt − wt))) = 0, for all t ∈

(0, 1). Since also vt − wt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k , the statement follows directly from the Helmholtz

decomposition for Hd
k in Proposition 6. For the second claim, notice that we can decompose

wt = vt + ut, where ∇ · (ρtut) = 0. From the orthogonality in (16) it then follows that

∥wt∥2Hd
k
= ∥vt∥2Hd

k
+ 2⟨vt, ut⟩Hd

k︸ ︷︷ ︸
=0

+∥ut∥2Hd
k
≥ ∥vt∥2Hd

k
, (16)

3. Apart from uniqueness, the subsequent minimal norm requirement holds the promise of making numerical schemes
associated to (14) particularly stable by reducing the stiffness of the dynamics.
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as required.

After this intuitive introduction, we proceed by introducing a suitable notion of tangent spaces
equipped with positive-definite quadratic forms, playing the role of Riemannian metrics. This

construction is motivated by the special role played by the spaces Tk,ρ∇C∞
c (Rd)

Hd
k according to

Proposition 5 and justified by Corollary 13 (see below). We follow Mielke et al. (2014, Section 4.2)
in style of exposition.

Definition 7 (Tangent spaces and Riemannian metric) For ρ ∈M , we define the tangent space

TρM =

{
ξ ∈ D′(Rd) : there exists v ∈ Tk,ρ∇C∞

c (Rd)
Hd

k such that (17a)

ξ +∇ · (ρv) = 0 in the sense of distributions

}
(17b)

and the Riemannian metric gρ : TρM × TρM → R by

gρ(ξ, χ) = ⟨u, v⟩Hd
k
, (18)

where ξ +∇ · (ρu) = 0 and χ+∇ · (ρv) = 0.

Remark 8 As usual, we say that ξ +∇ · (ρv) = 0 holds in the sense of distributions if

⟨ξ, ϕ⟩ −
∫
Rd

∇ϕ · v dρ = 0,

for all ϕ ∈ C∞
c (Rd), where ⟨·, ·⟩ denotes the duality pairing between D′(Rd) and C∞

c (Rd). Moreover,

Tk,ρ∇C∞
c (Rd)

Hd
k refers to the closure of the set Tk,ρ∇C∞

c (Rd) =
{
Tk,ρ∇ϕ : ϕ ∈ C∞

c (Rd)
}

with respect to
the norm ∥ · ∥Hd

k
.

We have the following result, in particular justifying the definition of gρ in (18):

Lemma 9 (Properties of TρM and gρ) For every ρ ∈M , the following hold:

1. (TρM, gρ) is a Hilbert space.

2. For every ξ ∈ TρM there exists a unique v ∈ Tk,ρ∇C∞
c (Rd)

Hd
k such that ξ+∇·(ρv) = 0 in the sense of

distributions, in particular gρ is well-defined. The map v 7→ −∇ · (ρv) is a Hilbert space isomorphism

between (Tk,ρ∇C∞
c (Rd)

Hd
k , ⟨·, ·⟩Hd

k
) and (TρM, gρ).

Proof See Appendix C.

Remark 10 The second statement of Lemma 9 shows that the tangent spaces (TρM, gρ) could equivalently be

defined as (Tk,ρ∇C∞
c (Rd)

Hd
k , ⟨·, ·⟩Hd

k
). In the case of the quadratic Wasserstein distance this is the route taken

in Gigli (2012, Section 1.4) and Ambrosio and Gigli (2013, Section 2.3.2). The space (Tk,ρ∇C∞
c (Rd)

Hd
k has

an appealing intuitive interpretation: It consists exactly of those vector fields that might arise from particle
movement schemes when those are constrained by an RKHS-norm (see the intuitive introduction to this
section), as proposed in the original paper Liu and Wang (2016). We note in passing that our definition of

the tangent spaces differs from the one put forward in Liu (2017) by the constraint v ∈ Tk,ρ∇C∞
c (Rd)

Hd
k .

The latter is crucial for the isomorphic properties obtained in Lemma 9 and for the calculations in Section
5.
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In preparation for the following lemma, let us recall that the L2(Rd)-functional derivative of a
suitable functional F :M → R is defined via∫

Rd

δF
δρ

(ρ)ϕ dx =
d

dε

∣∣∣
ε=0

F(ρ+ εϕ), (19)

for ϕ ∈ C∞
c (Rd) with

∫
Rd ϕ dx = 0, see for instance Peletier (2014, Section 3.4.1). We remark that

a more rigorous treatment can be given in terms of Fréchet derivatives (see Carmona and Delarue
(2018, Section 5.4) for a related discussion). The heuristic Riemannian structure introduced in
Definition 7 induces a gradient operator which we can formally identify as follows:

Lemma 11 (Stein gradient) Let ρ ∈ M and F : M → R be such that the functional derivative δF
δρ

(ρ) is

well-defined and continuously differentiable. Moreover assume that Tk,ρ∇ δF
δρ

(ρ) ∈ Tk,ρ∇C∞
c (Rd)

Hd
k . Then

the Riemannian gradient associated to (TρM, gρ) is given by

(gradkF)(ρ) = −∇ ·
(
ρ Tk,ρ∇

δF
δρ

(ρ)

)
. (20)

Proof See Appendix C.

Remark 12 (Onsager operators) The operators Kρ : ϕ 7→ −∇ · (ρTk,ρ∇ϕ) should be thought of as map-
pings from the topological dual T ∗

ρM into TρM . As such, they correspond to the musical isomorphisms
between tangent and cotangent bundles in Riemannian geometry (Lee, 2006), or, in the language of physics,
to the raising and lowering of indices. Following this analogy, the functional (Fréchet) derivative δF

δρ
(ρ) lies

in the space T ∗
ρM , at least formally. In the theory of gradient flows, the operators Kρ are often referred to

as Onsager operators (Arnrich et al., 2012; Liero and Mielke, 2013; Machlup and Onsager, 1953; Mielke,
2011, 2013; Mielke et al., 2016; Öttinger, 2005).

We recall the definition of the KL-divergence with respect to the target measure π,

KL(ρ|π) =
∫
Rd

log
( ρ
π

)
dρ =

∫
Rd

ρ log ρ dx︸ ︷︷ ︸
=:Reg(ρ)

+

∫
Rd

V dρ︸ ︷︷ ︸
=:Cost(ρ|π)

+Z, (21)

noting the decomposition into a data term Cost(ρ|π) and an entropic regularisation Reg(ρ) that
aids intuition in a statistical context (Liutkus et al., 2019). The following result forms the linchpin
for the work subsequently presented in this paper (see also Liu (2017, Theorem 3.5)).

Corollary 13 The gradient flow dynamics of the KL-divergence with respect to the Stein geometry is given
by the Stein PDE (2).

Proof This follows from Lemma 11 together with

δKL

δρ
(ρ) = log ρ+ 1 + V,

which can be obtained by standard computations from (19), see for instance Villani (2009, Chapter
15).

The gradient flow perspective immediately implies the decay of the KL-divergence along the flow.
Our aim in Section 5 will be to make the following statement more quantitative.

Corollary 14 (Decay of the KL-divergence) For solutions (ρt)t≥0 to the Stein PDE (2) it holds that

d

dt
KL(ρt|π) ≤ 0.

The Riemannian structure introduced in Definition 7 formally induces a Riemannian distance (Lee,
2006, Chapter 6) on M as follows:

10
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Definition 15 (Stein distance) For µ, ν ∈M we define the Stein distance

d2k(µ, ν) = inf
(ρ,v)∈A(µ,ν)

{∫ 1

0

∥vt∥2Hd
k
dt, vt ∈ Tk,ρt∇C∞

c (Rd)
Hd

k

}
, (22)

where the set of connecting curves is given by

A(µ, ν) =

{
(ρ, v) : [0, 1] → Pk(Rd)×Hd

k, ρ0 = µ, ρ1 = ν,

∂tρ+∇ · (ρv) = 0 in the sense of distributions

}
. (23)

Remark 16 The distance dk is constructed in such a way that, formally,

d2k(µ, ν) = inf
ρ

{∫ 1

0

gρt(∂tρt, ∂tρt) dt : ρ0 = µ, ρ1 = ν

}
,

however sidestepping the issue of defining the appropriate notion of differentiation for ∂tρ.

Lemma 17 The following hold:

1. The Stein distance dk is an extended metric4 on M .

2. If k is continuous and bounded, then there exists a constant C > 0 such that

W2(µ, ν) ≤ Cdk(µ, ν), µ, ν ∈M,

denoting by W2 the quadratic Wasserstein distance. In particular, the topology induced by dk is stronger
than the topology of weak convergence.

3. The constraint vt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k in (22) can be dropped, i.e. we have

d2k(µ, ν) = inf
(ρ,v)∈A(µ,ν)

{∫ 1

0

∥vt∥2Hd
k
dt

}
. (24)

Proof See Appendix C.

Remark 18 With Lemma 17.3 in conjuction with Corollary 13 we recover the main result from Liu (2017).

The additional constraint vt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k in (22) allows us to reduce the optimisation problem to

a subset of A(µ, ν) and to place the analysis in a formal Riemannian framework, in particular allowing the
calculations in Section 5.

It is instructive to note the similarity of (24) with the Benamou-Brenier formula for the quadratic
Wasserstein distance W2, see Benamou and Brenier (2000), Villani (2003a, Theorem 8.1), Carmona and
Delarue (2018, Theorem 5.53), as well as Appendix A. In particular, dk can be obtained form W2 by merely
adapting the notion of kinetic energy, i.e. by exchanging the L2(ρ)-norm for the Hd

k-norm. We would like
to advertise the works Buttazzo et al. (2009); Carrillo et al. (2010); Dolbeault et al. (2009); Li (2019) for
a rigorous analysis of similarly modified transport-based distances, as well as the overview article Brasco
(2012) for an in-depth discussion.

Remark 19 (Kernels that depend on ρ) Although the framework in this section has been set up for a
fixed kernel k, it is straightforward to extend it to the case when k varies with ρ, allowing for adaptive choices
as the algorithm progresses. In particular, the gradient flow perspective is still valid. Indeed, it is sufficient
to replace k by k(ρ) in the equations (17), (18), (20), (22) and (23). Note, however, that in this case the
results in the following Section 5 would require nontrivial adaptations, in particular to Proposition 20. Those
might be an interesting avenue for future research, and in this regard we would like to point the reader to Li
(2021, Section 4) for a recently discovered connection between mean-field kernels and differential geometric
structures induced by (positive-definite) Hessians.

4. An extended metric satisfies the usual axioms (see the proof in Appendix C), but d(µ1, µ2) = +∞ for some
µ1, µ2 ∈ M is possible.
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5. Second order calculus for SVGD

In this section, we study the constant-speed geodesics associated to the Riemannian geometry
developed in the previous section. As is well-known, convexity properties of the KL-divergence
along those curves correspond to the contraction behaviour of the associated gradient flow (see
Theorem 22 below). Constant-speed geodesics (ρt)0≤t≤1 are characterised by

dk(ρs, ρt) = |t− s|dk(ρ0, ρ1) s, t ∈ [0, 1],

and can be obtained as critical points for the variational problem (22), or, equivalently, (24),
allowing arbitrary starting and end points µ, ν ∈M . As it turns out, constant-speed geodesics can
formally be described by a coupled system of PDEs:

Proposition 20 (Geodesic equations) Let (ρt, vt)0≤t≤1 be a critical point of (22). Then

∂tρ+∇ · (ρTk,ρ∇Ψ) = 0, (25a)

∂tΨ+∇Ψ · Tk,ρ∇Ψ = 0, (25b)

for some function Ψ : [0, 1]× Rd → R, and vt = Tk,ρt∇Ψt.

Proof (Informal) The proof (to be found in Appendix D) relies on formal computations, inspired
by the heuristics in Otto and Villani (2000, Section 3). It proceeds by identifying (25) as the
formal optimality conditions for (22); in particular, Ψ acts as a Lagrange multiplier enforcing the
constraints. A rigorous formulation (involving well-posedness of (25)) is the subject of ongoing
work. In the Wasserstein case, rigorous formulation of the associated geodesic equations have
been given imposing additional regularity assumption, see Lott (2008, Proposition 4) or using the
machinery of geodesic length spaces (Gigli, 2012, Proposition 3.10 and Remark 3.11).

In the sequel, we will refer to smooth solutions (ρt,Ψt)0≤t≤1 of the system (25) as Stein geodesics.

Remark 21 It is interesting to compare (25) to the geodesic equations for the quadratic Wasserstein distance
W2,

∂tρ+∇ · (ρ∇Ψ) = 0, (26a)

∂tΨ+
1

2
|∇Ψ|2 = 0, (26b)

see Lott (2008), Villani (2003a, Chapter 5) and Otto and Villani (2000). In contrast to (25), the second
equation (26b) decouples from the first one, (26a). The fact that the distance dk induces a system of coupled
equations for its geodesics can naturally be linked to the interpretation of (2) as the mean-field limit of an
interacting particle system. See also Appendix A.

In what follows, our objective is to take some steps towards a more quantitative understanding
of the KL-decay in Corollary 14. As is well-known, decay estimates can be obtained from convexity
properties along geodesics. We refer to Villani (2003b, Section 9.1), in particular to Formal
Corollary 9.3, restated here as follows:

Theorem 22 (Informal) Assume that there exists λ > 0 such that

d2

dt2
KL(ρt|π)

∣∣
t=0

> λ, (27)

for all unit-speed geodesics (ρt)t∈(−ε,ε). Then

KL(ρt|π) ≤ e−2λtKL(ρ0|π). (28)

along solutions (ρt)t≥0 of (2).

Remark 23 (Beyond the KL-divergence) Using Lemma 11, it is possible to derive alternative dynami-
cal schemes that seek to minimise arbitrary functionals of sufficient regularity. In Theorem 22, it would then
be sufficient to replace the KL-divergence by the functional of interest, and the calculations that follow in this
section (in particular those leading to Lemma 25) could be carried out in a similar fashion. We would like
to point the reader towards Arbel et al. (2019), where the gradient flow of the maximum mean discrepancy
in the Wasserstein geometry has been investigated using similar ideas.
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Remark 24 Unit-speed geodesics are solutions (ρt,Ψt)t∈(−ε,ε) to (25) satisfying gρt(∂tρ, ∂tρ) = 1 for t ∈
(−ε, ε). By the definition of gρ (see (18)) the latter statement is equivalent to

⟨Tk,ρt∇Ψt, Tk,ρt∇Ψt⟩Hd
k
= 1,

and, by using Steinwart and Christmann (2008, Theorem 4.26), to∫
Rd

∫
Rd

∇Ψt(y)k(y, z)∇Ψt(z)dρt(y)dρt(z) = 1. (29)

Motivated by Theorem 22 we compute the left-hand side of (27):

Lemma 25 (Computing the Hessian) Let (ρt,Ψt)t∈(−ε,ε) be a Stein geodesic, i.e. a smooth solution to
(25), and ρ0 ≡ ρ, Ψ0 ≡ Ψ. Then

d2

dt2
KL(ρt|π)

∣∣
t=0

= Hessρ(Ψ,Ψ), (30)

where

Hessρ(Φ,Ψ) =

d∑
i,j=1

∫
Rd

∫
Rd

∂iΦ(y)qij [ρ](y, z)∂jΨ(z) dρ(y)dρ(z), (31)

and

qij [ρ](y, z) =δij

d∑
l=1

∫
Rd

∂xl

(
e−V (x)k(x, y)

)
eV (x) dρ(x) ∂ylk(y, z) (32a)

−
∫
Rd

∂yj∂xi

(
e−V (x)k(x, y)

)
eV (x) dρ(x)k(y, z) (32b)

−
∫
Rd

∂xj

(
eV (x)∂xi

(
e−V (x)k(x, y)

))
k(x, z) dρ(x). (32c)

Proof See Appendix E.

Remark 26 For notational convenience, our definition of Hessρ slightly differs from the definition of Hes-
sian operators commonly encountered in the literature on Wasserstein gradient flows (see for instance Otto
and Westdickenberg (2005, Section 3.1)).

Remark 27 Although (32) is written in a form requiring suitable differentiability properties of k, we would
like to emphasise that an examination of the proof shows that the result also holds for kernels that are merely
continuous (provided that ρ and Ψ are smooth enough), either by interpreting (32) in a distributional way,
or by performing integration by parts in (31).

Combining Theorem 22 with (29) we obtain the following informal lemma, relating a functional
inequality to exponential decay of the KL-divergence:

Lemma 28 (Informal) Assume that there exists λ > 0 such that

Hessρ(Ψ,Ψ) ≥ λ

∫
Rd

∫
Rd

∇Ψ(y) · k(y, z)∇Ψ(z) dρ(y)dρ(z) (33)

for all ρ ∈ M and Ψ such that the right-hand side of (33) is well-defined. Then the exponential decay
estimate (28) holds.

Remark 29 In more geometrical terms, (33) can be written as

Hessρ(Ψ,Ψ) ≥ λgρ(v, v),

with v = Tk,ρ∇Ψ.
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The Hessian can be split according to the decomposition of the KL-divergence in (21),

Hessρ(Φ,Ψ) = HessReg
ρ (Φ,Ψ) + HessCost

ρ (Φ,Ψ),

for explicit expressions see Lemmas 49 and 50 in Appendix E. Since the work of McCann (McCann,
1997), it is well-known that Reg(ρ) is displacement-convex in the sense of Theorem 22 along unit-
speed Wasserstein geodesics. The analogous statement is false for the Stein geodesics considered
in this paper:

Lemma 30 Let Ψ : Rd → R be a linear function, i.e. Ψ(x) = a · x for some a ∈ Rd, a ̸= 0. Then
HessReg

ρ (Ψ,Ψ) < 0 for all ρ ∈M and all translation-invariant kernels k.

Proof See Appendix D.

Lemma 30 shows that the entropic term Reg(ρ) by itself is not sufficient to explain contraction
properties of the Stein PDE (2), contrary to the case of the Fokker-Planck equation associated to
overdamped Langevin dynamics (see also Appendix A). As a consequence, we have not been able
to obtain bounds for the Stein-Hessian operator within this framework, which would have allowed
us to obtain the analogue of a logarithmic Sobolev inequality. More specifically, we expect that
more stringent assumptions (in comparison to standard settings in the theory of the Fokker-Planck
equation) would have to be imposed on V in order to obtain functional inequalities of the form
(33). A possible route towards Stein logarithmic Sobolev inequalities (under such more stringent
assumptions) might be via ‘systematic integration by parts’, developed in Jüngel (2016, Chapter
3).

Remark 31 (Different scalings for SVGD and overdamped Langevin) It is important to note that
comparing the convergence properties for the Stein PDE (2) and the Fokker-Planck equation does not straight-
forwardly lead to any conclusions about the associated algorithms, as the Fokker-Planck equation arises from
a different scaling. Indeed, consider N independent particles moving according to

dXi
t = −∇V (Xi

t) dt+
√
2 dW i

t , i = 1, . . . , N, (34)

where (W i
t )t≥0 denote independent standard Brownian motions. By arguments similar to those used in the

proof of Proposition 2 it is possible to show that the associated empirical measure ρNt = 1
N

∑N
i=1 δXi

t
converges

towards the solution of the Fokker-Planck equation

∂tρ = ∇ · (ρ∇V +∇ρ). (35)

Notice that the interacting system (10) contains an additional factor of 1
N

in comparison with (34). Since
this corresponds to a time rescaling of the form t 7→ t/N , the Stein mean-field limit describes the evolution
on a fast time scale, in comparison with (35). Direct comparisons between Langevin sampling (based on the
formulation in (34)) and SVGD (either using (1) or its stochastic variant (10)) are hence very challenging,
both from a practical and a theoretical point of view. Intuitively, it seems reasonable to expect that the inter-
acting nature of SVGD type schemes (in particular, the repulsion term including ∇k) might be advantageous
when V is multimodal and non-interacting Langevin samplers struggle to explore the whole state space. We
leave an in-depth study of this important problem for future work.

6. Curvature at equilibrium

In this section we study the properties of the bilinear form Hessπ, i.e. the curvature at equilibrium.
By a continuity argument and according to Section 5 (see in particular Theorem 22 and Lemma
28), we expect rapid convergence of solutions started close to equilibrium if and only if Hessπ is
bounded from below in the following sense5:

5. A similar reasoning has been employed in (Otto, 1998) in the context of pattern formation in magnetic fluids.
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Definition 32 (Exponential decay near equilibrium) We say that exponential decay near equilbrium
holds if there exists λ > 0 such that

Hessπ(Ψ,Ψ) ≥ λ

∫
Rd

∫
Rd

∇Ψ(y) · k(y, z)∇Ψ(z)dπ(y)dπ(z) (36)

holds for all Ψ ∈ C∞
c (Rd). In this case we call the largest possible choice of λ the local convergence rate.

For algorithmic performance, it is clearly desirable that exponential decay near equilibrium holds
and that λ can be chosen as large as possible. The following notion will turn out to be useful for
a finer comparison between different kernels:

Definition 33 (Rayleigh coefficients) For Ψ ∈ C∞
c (Rd) \ {0}, the associated Rayleigh coefficient is de-

fined by

λk
Ψ :=

Hessπ(Ψ,Ψ)∫
Rd

∫
Rd ∇Ψ(y) · k(y, z)∇Ψ(z) dπ(y)dπ(z)

.

If k1 and k2 are positive definite kernels, we say that k1 locally dominates k2 if

λk1
Ψ ≥ λk2

Ψ

for all Ψ ∈ C∞
c (Rd) \ {0}.

Remark 34 From Remark 24 we have

λk
Ψ =

d2

dt2
KL(ρt|π)

∣∣
t=0

,

where (ρt)t∈(−ε,ε) ⊂M is a curve with ρ0 = π and ∂tρ+∇· (ρTk,ρ∇Ψ) = 0. Intuitively, k1 locally dominates
k2 precisely when, in the geometry associated to k1, the KL-divergence ‘appears to be more curved at π’ than
in the geometry associated with k2, ‘in all directions’.

In what follows, we will start with the analysis of the functional inequality (36), in particular
identifying guidelines for a judicious choice of k.

Integration by parts in x shows that the expressions (32a) and (32b) vanish for ρ = 1
Z
exp(−V ),

so that

qij [π](y, z) = −
∫
Rd

∂xj

(
eV (x)∂xi

(
e−V (x)k(x, y)

))
k(x, z) dπ(x) (37a)

=

∫
Rd

∂i∂jV (x)k(x, y)k(x, z) dπ(x) +

∫
Rd

∂xik(x, z)∂xjk(x, y) dπ(x). (37b)

It is thus appropriate to associate the contributions (32a) and (32b) to the behaviour of SVGD
for distributions far from equilibrium. The expression (37b) relates the curvature properties of
the KL-divergence at π to those of V through its Hessian. Instructively, the same is true for the
Wasserstein-Hessian, leading to the celebrated Bakry-Émery criterion (see Appendix A). We will
see that the functional inequality (36) can be conveniently expressed in terms of the linear operator

Lϕ = −
d∑

i=1

eV ∂i
(
e−V Tk,π∂iϕ

)
, ϕ ∈ C∞

c (Rd). (38)

Integration by parts shows that L is symmetric and positive semi-definite on L2(π). By slight
abuse of notation, we will denote its self-adjoint (Friedrichs-)extension by the same symbol, and
its domain of definition by D(L). We would like to stress that the expression (38) is well-defined
even though the kernel k might not be differentiable. Indeed, Tk,π∂iϕ is smooth without regularity
assumptions on k, provided that π and ϕ are regular enough. Note also that under Assumption 2
on the kernel k, the null space of L coincides with the constant functions (for a proof we refer to
the proof of Lemma 35 in Appendix F).

The role of L becomes clear from the following lemma. Recall the definition of L2
0(π) from (3).
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Lemma 35 Let k satisfy Assumption 2. For λ ≥ 0, the following are equivalent:

1. The inequality (36) holds for all Ψ ∈ C∞
c (Rd).

2. The ‘Stein-Poincaré inequality’
⟨ϕ,Lϕ⟩L2(π) ≥ λ⟨ϕ, ϕ⟩L2(π) (39)

holds for all ϕ ∈ L2
0(π) ∩ C∞

c (Rd).

Proof See Appendix F.

Remark 36 Let λ ≥ 0 be the smallest nonnegative real number such that one (equivalently, both) of the
inequalities (36) and (39) hold(s) for all Ψ ∈ C∞

c (Rd). Then

λ = inf(σ(L) \ {0}),

where σ(L) denotes the spectrum of L. Inequalities of the form (39) are therefore often termed spectral gap
inequalities. In the theory of the Fokker-Planck equation, (39) has a direct analogue, the role of −L is taken
by the generator of overdamped Langevin dynamics (Bakry et al., 2013, Chapter 4), see also Appendix A.

Remark 37 For clarity, we emphasised the fact that k is assumed to be ISPD (see Assumption 2) in the
statement of Lemma 35, as the result will fail to hold otherwise. As we believe that non-ISPD kernels are of
algorithmic interest, an extension of this result to this setting is subject of ongoing work.

Remark 38 (Linearisation around π) The following represents an alternative way of deriving the Stein-
Poincaré inequality (39). Assuming that (ρt)t≥0 solves the Stein PDE (2), a simple calculation yields

∂tKL(ρt|π) =
∫
Rd

∫
Rd

∇
(
ρt(y)

π(y)

)
· k(y, z)∇

(
ρt(z)

π(z)

)
dπ(y)dπ(z) =: IStein(ρt|π), (40)

where we have defined the ‘Stein-Fisher information’ IStein. Assuming a ‘Stein-log-Sobolev inequality’ of the
form

KL(ρ|π) ≤ 1

2λ
IStein(ρ|π), (41)

the exponential decay estimate (28) would follow by a standard Gronwall argument (see, for instance, Bakry
et al. (2013, Theorem 5.2.1) in the context of the usual log-Sobolev inequality). We can now analyse (41)
for small perturbations of the target π. Setting ρ = (1 + εϕ)π with

∫
Rd ϕ dx = 0 and ε≪ 1, we obtain

KL(ρ|π) ≃ 1

2
ε2∥ϕ∥2L2(π) and IStein(ρ|π) ≃ ε2⟨ϕ,Lϕ⟩L2(π)

to leading order, recovering (39) from (41) in the limit as ε → 0. This argument is well-known in the case
of the usual log-Sobolev and Poincaré inequalities (see Bakry et al. (2013, Proposition 5.1.3)). Finally, we
refer the reader to Li (2019) for a study of related functional inequalities in the context of modified transport
geometries.

The next lemma shows that exponential convergence to equilibrium does not hold if k is too
regular:

Lemma 39 Let k ∈ C1,1(Rd × Rd), and assume the integrability condition

d∑
i=1

[
(∂iV (x))2k(x, x)− ∂iV (x)

(
∂1
i k(x, x) + ∂2

i k(x, x)
)
+ ∂1

i ∂
2
i k(x, x)

]
dπ(x) <∞, (42)

where ∂1
i and ∂2

i denote derivatives with respect to the first and second argument of k, respectively. Then
the inequalities (36) and (39) only hold for λ = 0, i.e. exponential convergence to equilibrium does not hold.

Proof See Appendix F.

Remark 40 The integrability condition (42) is very mild; it holds for instance in the case whenever π has
exponential tails and the derivatives of k and V grow at most at a polynomial rate.
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6.1 The one-dimensional case

In this subsection we discuss the functional inequality (36) in the case d = 1, when it simplifies
considerably (see Lemma 41 below). The higher-dimensional case appears to be significantly more
involved and will be considered in forthcoming work.

Lemma 41 Assume that d = 1, Hk ⊆ H1(π) with dense embedding, V ∈ C2(R) with bounded second
derivative and λ > 0. Then (36) holds for all Ψ ∈ C∞

c (Rd) if and only if∫
R
V ′′ϕ2 dπ +

∫
R
(ϕ′)2 dπ ≥ λ∥ϕ∥2Hk

(43)

for all ϕ ∈ Hk.

Proof See Appendix F.

The utility of the formulation (43) resides in the fact that V and π only appear on the left-hand
side while k only appears on the right-hand side. Hence, in the one-dimensional case and when the
conditions of Lemma 41 are satisfied, optimal kernel choice and the influence of the target measure
can be discussed separately. We have the following corollary on translation-invariant kernels:

Corollary 42 Assume the conditions from Lemma 41 and furthermore that k is translation-invariant, i.e.
that there exists h ∈ C(R)∩C1(R\{0}) with h absolutely continuous such that k(x, y) = h(x−y). If moreover
h(x) → 0 and h′(x) → 0 as x→ ±∞, then exponential convergence near equilibrium does not hold.

Proof See Appendix F.

The following example shows that the main assumptions of Lemma 39 (differentiability of the
kernel) and Corollary 42 (translation-invariance of the kernel) cannot be dropped. In other words,
rapid convergence close to equilibrium can be achieved by choosing a nondifferentiable kernel that
is adapted to the tails of the target:

Example 1 In the case d = 1, consider the ‘weighted Matérn kernel’

k(x, y) = π(x)−1/2e−|x−y|π(y)−1/2, (44)

and assume that there exists a constant λ̃ > 0 such that

V ′′(x) +
(V ′)2(x)

2
≥ λ̃, (45)

for all x ∈ R. Then exponential convergence near equilibrium holds, with the explicit constant

λ = min
(
1, λ̃/2

)
. (46)

We present the calculation justifying this statement in Appendix F.

In the case when (43) is valid, we can characterise the local dominance of kernels (in the sense of
Definition 33) in terms of the unit-balls in Hk1 and Hk2 :

Lemma 43 Let k1 and k2 be two positive definite kernels, and assume that the conditions in Lemma 41 are
satisfied for both. Then k1 dominates k2 if and only if Hk2 ⊂ Hk1 and

∥ϕ∥Hk1
≤ ∥ϕ∥Hk2

,

for all ϕ ∈ Hk2 .

Proof See Appendix F.

To exemplify the statement of Lemma 43, let us consider the kernels kp,σ : Rd × Rd → R defined
in (4). We recall that p ∈ (0, 2] is a smoothness parameter and σ > 0 denotes the kernel width.
The relation between the corresponding RKHSs is as follows:
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Lemma 44 The following hold:

1. kp,σ is a strictly integrally positive definite kernel, for all p ∈ (0, 2] and σ > 0.

2. If p > q then Hkp,σp
⊂ Hkq,σq

, for all σ > 0. The inclusion is strict.

3. If p > q then there exist σp, σq > 0 such that

∥ϕ∥Hkq,σq
≤ ∥ϕ∥Hkp,σp

,

for all ϕ ∈ Hkp,σp
.

Proof See Appendix F.

The preceding result in conjunction with Lemma 43 suggests that choosing a smaller value of
p ∈ (0, 2] and adjusting σ accordingly when simulating SVGD dynamics with a kernel of the form
(4) might lead to improved algorithmic performance. Note, however, that there is a computational
cost associated to kernels with small p, as the equations (1) become stiff. In Section 8 we investigate
these issues in numerical experiments.

7. Outlook: polynomial kernels

In Liu and Wang (2018) the authors suggest using polynomial kernels of the form k(x, y) = x ·y+1
when the target measure is approximately Gaussian. Here we would like to point out that the
formulas obtained in Lemma 25 are convenient for the analysis of this case since all the derivatives
can be computed explicitly and have simple forms. An in-depth analysis of the implications for
the use of polynomial kernels would be beyond the scope of this work, but we present the following
result:

Lemma 45 Let d = 1, V (x) = α
2
x2, α > 0 and k(x, y) = xy. Then

q[ρ](y, z) = 2αk(y, z)

∫
R
x2 dρ(x), (47)

and hence (33) holds with

λ = 2α

∫
R
x2 dρ(x). (48)

Proof The identity (47) follows by straightforward calculation from (32).

Lemma 45 is an encouraging result since λ > 0 whenever ρ ̸= δ0. Furthermore, the rate of
contraction is naturally linked to the second moment of the measure ρ. A more detailed study of
polynomial kernels in the multidimensional setting and for non-Gaussian targets is the subject of
ongoing work.

Remark 46 Since polynomial kernels are not ISPD (and hence violate Assumption 2), convergence to the

target π is not guaranteed. However, we note that k̃ = k + εk0 is ISPD whenever k0 is (and where ε > 0,
k being any kernel). Polynomial kernels are thus admissible in our framework (and Lemma 45 might be
indicative) when used in conjuntion with a small perturbation, for instance by a kernel of the form (4).

8. Numerical Experiments

In this section, using numerical experiments, we demonstrate that some of the results (see in
particular Example 1 as well as the discussion following Lemmas 43 and 44) arising from the
mean-field analysis of Section 6 carry through to the associated finite-particle model. In par-
ticular, we demonstrate that the smoothness of the kernel plays a significant role on the per-
formance of the SVGD dynamics as a sampling algorithm. We study two simple Gaussian
mixture model tests. In the first example we consider the one dimensional target distribution
π = 1

4
N (2, 1) + 1

4
N (−2, 1) + 1

4
N (6, 1) + 1

4
N (−6, 1) on R. The standard SGVD dynamics (1) are
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simulated for N = 500 particles up to time T = 5000. The resulting ODE was integrated using
an implicit variable order BDF scheme (Byrne and Hindmarsh, 1975), for which we keep track of
the number of gradient evaluations throughout the entire simulation. We investigate kernels of
the form (4) for different values of p ≤ 2. We first consider such kernels with fixed p taking values
2, 1, 1

2
, . . .. The behaviour of the scheme is strongly dependent on the choice of the bandwidth σ.

Following Liu and Wang (2016) and all subsequent works we choose σ according to the median
heuristic. In Figure 1 the histograms of the empirical distributions is plotted at the final time.
We observe a significant improvement in accuracy between p = 1 and p = 2, with the 500 par-
ticles packing far more efficiently as p is decreased from 2. However, moving beyond p = 1 the
approximation starts to suffer close to the tails of the distribution, suggesting that more particles
would be needed as p is taken to 0. The temporal behaviour is shown in Figure 2 which plots the
Wasserstein-1 distance between the target density and the empirical SVGD distribution over time.
The Wasserstein distance was computed using the Python Optimal Transport Library (Flamary
and Courty, 2017) based on an exact sample of size 107. For p = 1 we observe that the finite-
particle bias in the stationary distribution is far lower. However, decreasing p further down to 1

2
we

do not see this improvement being sustained. In the right-hand side figure, the Wasserstein error
is plotted as a function of the number of gradient evaluations, which characterises computational
cost. We observe that, after an initial transient period, the simulation for p = 1 is far more accurate
per unit cost, whilst maintaining this accuracy becomes more expensive as p decreases. The latter
is in line with the fact that the derivatives of the kernels (4) become unbounded for p ∈ (0, 1), and
so the system (1) becomes numerically significantly stiffer in that regime. Simulating SVGD for
p smaller than 1

2
the accuracy degrades very strongly. These observations suggest that a kernel

with a time-evolving value of p might achieve the ‘best of both worlds’. To this end we consider a
form of annealing where we take log p(t) = (1 − t/T ) log p0 + t/T log p1, for t ∈ [0, T ] and where
T = 1000 is the final simulation time. We choose p0 = 2 and p1 = 1

2
. The convergence results for

the annealing strategy are shown in Figures 1 and 2. We observe that the annealed version attains
the lowest Wasserstein error overall, substantially lower than the fixed p-kernels at time t = 500.
However, this advantage quickly diminishes as T increases to 1000, suggesting that this is likely a
finite-particle effect. We observe similar behaviour when plotting the Wasserstein error against the
number of gradient evaluations. While it is clear that there is potential for performance increases
through annealing, it is evident that this is very sensitive to the particular annealing ‘schedule’,
and we leave a detailed study for further work.

As a second example, a two-dimensional Gaussian mixture model is considered defined by π =
1
6

∑6
i=1 N (µi,Σi), where µ1 = (−5,−1)⊤, µ2 = (−5, 1)⊤, µ3 = (5,−1)⊤, µ4 = (5, 1)⊤, µ5 =

(0, 1)⊤, µ6 = (0,−1)⊤ and

Σ1 = Σ2 = Σ3 = Σ4 =
1

5
I2×2, and Σ5 = Σ6 =

(
10 0
0 1

2

)
,

see Figure 3. Standard SVGD dynamics are simulated with 500 particles up to time T = 5000
using a kernel of the form (4) with p = 2, 1, 0.5, 0.1, etc. We see from Figure 4 that the lowest
error (in terms of Wasserstein-1 distance) is attained when p = 0.5, after which the performance
degrades very rapidly. From the right-hand side plot, we also observe that p = 0.5 provides the
lowest error per unit computational cost, after an interim transient period.

Both the above examples suggest that p needs to be tuned to the target distribution, and that
it could be updated adaptively. We leave investigations of such adaptation strategies for future
work. Finally, we remark that Corollary 42 suggests using non-translation-invariant kernels with
adapted tails as in Example 1. In our numerical studies we find, however, that doing so incurs
an additional computational cost that often outweighs the favourable properties of the associ-
ated mean-field dynamics. Still, developing SVGD schemes relying on kernels with appropriately
adapted tails might be an interesting direction for further research.
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Figure 1: Histogram of the empirical distribution of N = 500 particles at final time, simulated
according to standard SVGD dynamics for T = 500 time units. The first three are using
a kernel of the form (4) for p = 2, 1, 1

2 , respectively. The last histogram employs a time-
evolving kernel where the value of p is evolved from p0 = 2 to p1 = 1

2 . The red line denotes
the target density.
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Figure 2: Time evolution of the Wasserstein-1 error between the target and empirical distributions
arising from simulating SVGD from 0 to T and different values of p. In the left plot, the
evolution is shown as a function of time. In the right plot, it is shown as a function of the
number of gradient evaluations, reflecting the true computational cost.

9. Conclusions

In this paper we have analysed the geometric properties of SVGD related to its gradient flow
interpretation. In particular, we have extended the framework put forward in Liu (2017), obtained
the associated geodesic equations and used those results to derive functional inequalities connected
to exponential convergence of SVGD dynamics close to equilibrium. We have leveraged the latter
to develop principled guidelines for an appropriate choice of the kernel k and verified those in
numerical experiments. In particular, our theoretical considerations have led us to investigating
singular kernels with adjusted tails.

There are various avenues for further research. First, it would be interesting to place the
geometric calculations in the framework of metric spaces developed in Ambrosio et al. (2008),
relaxing the regularity assumptions and placing in particular Proposition 20 on a more rigorous
foundation. It will be of key importance to extend the results obtained in Section 6.1 to the mul-
tidimensional case. The numerical experiments have indicated that such an extension might be
possible and yield further insights. Quantifying the speed of convergence for initial distributions
far from equilibrium remains an open and challenging problem. As noted in Section 7, this might
be possible (and first encouraging results are available) for polynomial kernels. Last but not least,
we believe that understanding the properties of the finite-particle systems (1) and (9) (as opposed
to the mean field limit (2)) will be important for further algorithmic advances. All of the preceding
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Figure 3: Target distribution for the two-dimensional Gaussian mixture model example.
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Figure 4: Time evolution of the Wasserstein-1 error between the target and empirical distributions
arising from simulating SVGD from 0 to T and different values of p for the two-dimensional
mixture model example. In the left plot, the evolution is shown as a function of time. In
the right plot, it is shown as a function of the number of gradient evaluations, reflecting
the true computational cost.

points are currently under investigation.
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Appendix A. Analogies between Langevin dynamics and SVGD

In this appendix we will trace the similarities between overdamped Langevin dynamics and SVGD
according to the gradient flow perspective. We note that a similar comparison has been made in
Liu (2017, Section 3.5). Here our aim is to extend this discussion and place our results in this
context.

A.1 Overdamped Langevin dynamics, the Fokker-Planck equation and optimal
transport

To start with, let us consider the overdamped Langevin dynamics (Pavliotis, 2014, Section 4.5)

dXt = −∇V (Xt) dt+
√
2 dBt, X0 = x0. (49)

It is well-known that under mild conditions on V this SDE admits a unique strong solution (Xt)t≥0

that is ergodic with respect to π ∝ e−V , see, for instance, Roberts et al. (1996). This fact motivates
using a suitable discretisation of (49) as a sampling scheme, laying the foundation for a number
of (approximate) MCMC algorithms such as MALA and ULA (Robert and Casella, 2013, Section
6.5.2). The law of Xt, denoted by ρt := Law(Xt), solves the Fokker-Planck equation

∂tρ = ∇ · (ρ∇V +∇ρ) (50a)

= ∇ · (ρ(∇V +∇ log ρ)) . (50b)

The value of the reformulation (50b) becomes apparent when we notice that the Stein PDE (2)
can be written in the form

∂tρ = ∇ · (ρTk,ρ(∇V +∇ log ρ)) ,

see Lemma 11 and Corollary 13. In particular, the Fokker-Planck Onsager operator (Machlup and
Onsager, 1953; Mielke et al., 2016; Öttinger, 2005)

KFP
ρ : ϕ 7→ −∇ · (ρ∇ϕ),

should be compared to the Stein Onsager operator from Remark 12. As first observed in the
seminal paper Jordan et al. (1998), the PDE (50) can be interpreted as the gradient flow of the
KL-divergence (21) with respect to the quadratic Wasserstein distance W2 using the Benamou-
Brenier formula (Benamou and Brenier, 2000)

W2
2 (µ, ν) = inf

(ρ,v)

{∫ 1

0

∥vt∥2L2(ρt)
dt : ∂tρ+∇ · (ρv) = 0, ρ0 = µ, ρ1 = ν

}
. (51)

As already noticed in Remark 18, the Stein distance dk essentially differs from W2 only by ex-
changing the L2(ρ)-norm for the Hd

k-norm. The infimum in (51) remains the same if optimisation
is carried out over gradient fields v = ∇ϕ, see for instance Gigli (2012, Section 1.4). This is com-

pletely analogous to the optional constraint vt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k in Definition 15, see (24). The

geodesics associated to the distances dk and W2 are described by the systems of equations (25)
and (26). As already observed in Remark 21, the equations pertaining to the Stein geometry are
coupled, reflecting the fact that SVGD is based on an evolution of interacting particles. In Otto
and Villani (2000, Section 3), the Hessian of the KL-divergence in the Wasserstein geometry was
computed; this expression should naturally be compared to the Hessian in the Stein geometry, see
Lemma 25. Notably, the Wasserstein-Hessian can be related to the Ricci-curvature of the under-
lying manifold, an observation that has sparked numerous developments within the intersection
between geometry and probability (see for instance Villani (2009, Part III)). As of now we are
not able to spot a similar connection in (32). We believe that a more intuitive (possibly geo-
metric) understanding of (32) might lead to further algorithmic improvements of SVGD. Finally,
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the Wasserstein-Hessian has been leveraged in Otto (2001) for the analysis of certain functional
inequalities central to the understanding of exponential convergence to equilibrium of the over-
damped Langevin dynamics (49). We mention in particular the Poincaré inequality taking the
same form as (39), but with L given by

Lϕ = −
d∑

i=1

eV ∂i
(
e−V ∂iϕ

)
, (52)

i.e. only differing by the operator Tk,π. The viewpoint of Otto and Villani (2000) led to a geometric
understanding of the celebrated Bakry-Émery criterion (Otto and Villani, 2000, Theorem 2); we
note that our condition (45) has a similar flavour (albeit in a simplified context). Despite all those
similarities, we would like to stress that the Fokker-Planck equation (50) governs the law of (49)
while the Stein PDE (2) arises as the mean-field limit for (1) and (9). This fact makes a direct
theoretical comparison between the corresponding algorithms difficult, see Remark 31.

Appendix B. Proofs for Section 3

Proof of Proposition 2 Let ϕ ∈ C∞
c ([0,∞) × Rd) be a smooth test function with compact

support and define Φ ∈ C∞
c ([0,∞)× RNd) by Φ(t, x) := 1

N

∑N
i=1 ϕ(t, xi). Using the notation

b(x, ρ) :=

∫
Rd

[−k(x, y)∇V (y) +∇yk(x, y)] dρ(y),

Itô’s formula implies

dΦ(t, X̄t) =
1

N

N∑
i=1

(
∂tϕ(t,X

i
t) +∇ϕ(t,Xi

t) · b(Xi
t , ρ

N
t )
)
dt+Tr

(
K(X̄t)HessΦ(X̄t)

)
dt

+

√
2

N

N∑
i,j=1

∇ϕ(Xi
t) ·
√

K(X̄t)
ij
dW j

t .

The Hessian HessΦ ∈ RNd×Nd consists of N2 blocks of size d× d with

[HessΦ(x)]ij =

{
1
N
Hessϕ(xi) if i = j

0 otherwise
, (i, j) ∈ {1, . . . , N}2,

so that it is a block diagonal matrix, with each diagonal block containing the Hessian of ϕ.

A simple calculation yields that

Tr(K(x)HessΦ(x)) =
1

N2

N∑
i=1

k(xi, xi)Tr(Hessϕ(xi)) =
1

N2

N∑
i=1

k(xi, xi)∆ϕ(xi),

so that

Tr
(
K(X̄t)HessΦ(X̄t)

)
=

1

N

∫
Rd

k(x, x)∆ϕ(x) dρNt (x).

It follows that

⟨ϕ(t, ·), ρNt ⟩ − ⟨ϕ(0, ·), ρN0 ⟩ =
∫ t

0

⟨∂sϕ(s, ·), ρNs ⟩ ds+
∫ t

0

⟨∇ϕ(s, ·) · b(·, ρNs ), ρNs ⟩ ds

+
1

N

∫ t

0

⟨k(·, ·)∆ϕ(·), ρNs ⟩ds+Nt,
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where the brackets denote the duality pairing between test functions and measures. The term Nt

represents a local martingale with quadratic variation

[N·,N·]t =
2

N2

∫ t

0

N∑
i,j=1

∇ϕ(Xi
s) · K(X̄s)ij∇ϕ(Xj

s ) ds

=
2

N3

∫ t

0

N∑
i,j=1

∇ϕ(Xi
s) · ∇ϕ(Xj

s ) k(X
i
s, X

j
s ) ds

=
2

N

∫ t

0

∫
Rd

∫
Rd

∇ϕ(y) · ∇ϕ(z)k(y, z) dρNs (y) dρNs (z) ds.

In particular, assuming that the family {ρN· : N ∈ N} possesses a limit point in P(C[0, T ]), it
follows that [N·,N·]t ∼ O(N−1) as N → ∞. Let ρ· be a limit point of the family {ρN· : N ∈ N},
then formally as N → ∞ we obtain the following relationship for the limiting distribution:

⟨ϕ(t, ·), ρt⟩ − ⟨ϕ(0, ·), ρ0⟩ =
∫ t

0

⟨∂sϕ(s, ·), ρs⟩ds+
∫ t

0

⟨∇ϕ(s, ·) · b(·, ρs), ρs⟩ ds,

so that the limit ρt = limN→∞ ρNt satisfies the nonlinear transport equation

∂tρt(t, x) = −∇ · (b(x, ρt)ρt),

as required.

Proof of Proposition 3 For a textbook account of similar proof strategies we refer to Khas-
minskii (2011), see also the proof of Theorem 3.1 in Meyn and Tweedie (1993). Let us define the
set

D := (Rd)N \
⋃
i ̸=j

{
(x1, . . . , xn) ∈ (Rd)N : xi = xj

}
and the Lyapunov function

F (x̄) =

N∑
l,m=1
l̸=m

Flm(xl, xm), x̄ = (x1 . . . , xN ) ∈ D, (53)

with

Flm(xl, xm) = −1

2
χ(|xl − xm|2) log |xl − xm|2.

Here χ ∈ C∞
c (R) is assumed to be a fixed nonnegative cutoff function with χ ≡ 1 on [0, 1]. We

now argue that there exist constants C1, C2 ∈ R such that

(L̄F )(x̄) ≤ C1

N∑
i=1

|∇V (xi)|+ C2, x̄ = (x1, . . . xN ) ∈ D, (54)

where L̄ is the infinitesimal generator6 of (9),

L̄ϕ = −∇V̄ · K∇ϕ+ (∇ · K) · ∇ϕ+K : ∇∇ϕ, ϕ ∈ D(L̄). (55)

For l ̸= m, we see that

(
−∇V̄ · K∇Flm

)
(x̄) =− χ

(
|xl − xm|2

) N∑
i=1

∇V (xi) ·
xl − xm

(xl − xm)2
(h(xi − xm)− h(xi − xl)) (56a)

+
1

2
log |xl − xm|2

N∑
i,j=1

∇V (xi) · h(xi − xj)∇xjχ
(
|xl − xm|2

)
(56b)

≤ C̃1

N∑
i=1

|∇V (xi)|+ C̃2, (56c)

6. Here we use the notation K : ∇∇ϕ =
∑

ij Kij∂i∂jϕ.
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where here and in what follows C̃1 and C̃2 denote generic constants, the value of which can change
from line to line. The estimate (56c) follows from the fact that (56b) is bounded (with compact
support) by the construction of χ, and by using Lipschitz continuity of h in (56a). Similarly, we
have that

((∇ · K) · ∇Flm) (x̄) =

N∑
i,j=1

∇xih(xi − xj) · ∇xjFlm(xl, xm) (57a)

= χ(|xl − xm|2)
N∑
i=1

(∇xi(h(xi − xm)− h(xi − xl)) ·
xl − xm

(xl − xm)2
(57b)

− log |xl − xm|2χ′(|xl − xm|2)
N∑
i=1

∇xi (h(xi − xl)− h(xi − xm)) · (xl − xm) (57c)

is bounded due to the one-sided Lipschitz bound (13). Lastly,

(K : ∇∇Flm) (x̄) =

N∑
i,j=1

h(xi − xj)∇xi · ∇xjFlm = −
N∑
i=1

(h(xi − xl)− h(xi − xm))∇xi · (58a)

·
(
log |xl − xm|2χ′ (|xl − xm|2

)
(xl − xm) + χ

(
|xl − xm|2

) xl − xm
(xl − xm)2

)
(58b)

≤ C̃ − 2χ
(
|xl − xm|2

) d− 2

(xl − xm)2
(h(0)− h(xm − xl)) , (58c)

where we have again subsumed terms that are bounded by the construction of χ in the constant C̃.
Note that the second term in (58c) (including the minus sign) is nonpositive since h is a positive
definite function (see, for instance, Fasshauer (2007, Theorem 3.1(4))). Collecting (56), (57) and
(58), we indeed arrive at the Lyapunov bound (54).

Now note that F is bounded from below, and so we can choose a constant c such that F̃ := F+c
is nonnegative. By the assumption that the initial condition is distinct, there exists q0 ∈ N such
that F̃ (X̄0) < q0. For q > q0 let us define the stopping times

τq = inf{t ≥ 0 : F̃ (X̄t) = q}.

By Dynkin’s formula in combination with the bound (54) and Assumption 4, we see that

E[F̃ (X̄τq∧t)] < Ct, (59)

for all q > q0 and a constant Ct that depends on t, but not on q. On the other hand,

E[F̃ (X̄τq∧t)] = E[F̃ (X̄t)1{t<τq}] + qP[t ≥ τq] ≥ qP[t ≥ τq], (60)

where we have used the fact that F̃ is nonnegative. This, together with (59), immediately implies
P[t ≥ ξ] = 0 for all t ≥ 0, where ξ := limq→∞ τq. Monotone convergence then shows that
P[ξ = ∞] = 1.

In other words, we have shown that X̄t ∈ D almost surely, for all t ≥ 0. Since K is strictly
positive definite on D, there is an invariant measure with strictly positive Lebesgue density (see
(11)) and D is path-connected (Bolley et al., 2018, Lemma 3.1), it follows that the process is
irreducible and hence ergodic with unique invariant measure (11), see Kliemann (1987).

Appendix C. Proofs for Section 4

Let us begin with the following auxiliary lemma:

25
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Lemma 47 Let ρ ∈ Pk(Rd). Then Tk,ρ∇C∞
c (Rd)

Hd
k is the orthogonal complement of L2

div(ρ) ∩ Hd
k in Hd

k,
where L2

div(ρ) is the space of weighted divergence-free vector fields, i.e.

L2
div(ρ) =

{
v ∈ (L2(ρ))d : ⟨v,∇ϕ⟩L2(ρ) = 0 for all ϕ ∈ C∞

c (Rd)
}
. (61)

Moreover, L2
div(ρ) ∩Hd

k is closed in Hd
k.

Proof of Proposition 6 We begin by showing that Tk,ρ∇C∞
c (Rd)

Hd
k is the orthogonal comple-

ment of L2
div(ρ) ∩ Hd

k in Hd
k. Indeed, using the relation (U⊥)⊥ = U valid for arbitrary linear

subspaces of Hilbert spaces, it is enough to show that(
Tk,ρ∇C∞

c (Rd)
)⊥Hd

k = L2
div(ρ) ∩Hd

k. (62)

By Steinwart and Christmann (2008, Theorem 4.26), we have that Tk,ρ is the adjoint of the
inclusion Hd

k ↪→ (L2(ρ))d, implying

⟨v,∇ϕ⟩L2(ρ) = ⟨v, Tk,ρ∇ϕ⟩Hd
k
, (63)

for all v ∈ Hd
k and ϕ ∈ C∞

c (Rd). This proves (62) and thus the orthogonality statement follows.
We next show that L2

div(ρ) ∩ Hd
k is closed in Hd

k. For that, let (vn) ⊂ L2
div(ρ) ∩ Hd

k with vn → v
in Hd

k. Using (63) we see that v ∈ L2
div(ρ), implying that L2

div(ρ)∩Hd
k is closed. The statement of

Proposition 6 now follows from Theorem II.3 in Reed et al. (1972).

We now turn to the proof of Lemma 9.
Proof of Lemma 9 We only prove the second claim, as it immediately implies the first one.

Assume that for ξ ∈ TρM there exist v, w ∈ Tk,ρ∇C∞
c (Rd)

Hd
k such that

ξ +∇ · (ρv) = ξ +∇ · (ρw) = 0

in the sense of distributions. It follows immediately that∫
Rd

∇ϕ · (v − w) dρ = 0,

for all ϕ ∈ C∞
c (Rd), i.e. v − w ∈ L2

div(ρ). Since Tk,ρ∇C∞
c (Rd)

Hd
k ∩ L2

div(ρ) = {0} by Lemma 47

and v − w ∈ Tk,ρ∇C∞
c (Rd)

Hd
k , we conclude that v = w. Consequently, the map v 7→ ∇(ρv) is a

bijection. The fact that it is also an isometry follows directly from the definition of gρ.

Proof of Lemma 11 By definition, the Riemannian gradient gradρF ∈ TρM is determined by
the requirement that

gρ
(
gradρF , ∂tµt

∣∣∣
t=0

)
=

d

dt
F(µt)

∣∣∣
t=0

, (64)

for all sufficiently regular curves (µt)t∈(−ε,ε) ⊂ M with µ0 = ρ and ∂tµt

∣∣∣
t=0

∈ TρM . Given such

a curve and corresponding vector fields (wt)t∈(−ε,ε) satisfying ∂tµ +∇ · (µw) = 0 in the sense of
distributions, we compute the right-hand side of (64),

d

dt
F(µt)

∣∣∣
t=0

=

∫
Rd

δF
δµ

(µt) ∂tµt dx
∣∣∣
t=0

=

∫
Rd

∇δF
δρ

(ρ) · w0 dρ.

From the definition of TρM , we have that ∂tµt

∣∣∣
t=0

∈ TρM implies w0 ∈ Hd
k. Therefore, using

Steinwart and Christmann (2008, Theorem 4.26), we can write∫
Rd

∇δF
δρ

(ρ) · w0 dρ =

〈
Tk,ρ∇

δF
δρ

(ρ), w0

〉
Hd

k

. (65)
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From the definition of gρ, the left-hand side of (64) can be expressed as

gρ
(
gradρF , ∂tµt

∣∣∣
t=0

)
= ⟨v, w0⟩Hd

k
, (66)

where gradρF +∇ · (ρv) = 0, v ∈ Tk,ρ∇C∞
c (Rd). Now imposing equality of (65) and (66) for all

w0 ∈ Tk,ρ∇C∞
c (Rd) leads to the desired result.

Proof of Lemma 17
1.) We recall that metrics by definition satisfy the axioms

dk(µ1, µ2) ≥ 0, (nonnegativity) (67a)

dk(µ1, µ2) = dk(µ2, µ1), (symmetry) (67b)

dk(µ1, µ2) = 0 ⇐⇒ µ1 = µ2, (nondegeneracy) (67c)

dk(µ1, µ2) + dk(µ2, µ3) ≤ dk(µ1, µ3), (triangle inequality) (67d)

for µ1, µ2, µ3 ∈ M . The properties (67a) and (67c) follow directly from the definition of dk. For
(67b) note that (ρt, vt)t∈[0,1] ∈ A(µ, ν) if and only if (ρ1−t,−v1−t)t∈[0,1] ∈ A(ν, µ) as well as

v ∈ Tk,ρ∇C∞
c (Rd) if and only if −v ∈ Tk,ρ∇C∞

c (Rd). The triangle inequality (67d) follows from
considering concatenated paths from µ1 to µ3 via µ2.

2.) From Steinwart and Christmann (2008, Theorem 4.26) we have that

∥v∥L2(ρ) ≤
∫
Rd

k(x, x) dρ(x) ∥v∥Hd
k
, v ∈ Hd

k.

The claim now follows directly from the Benamou-Brenier formula for the quadratic Wasserstein
distance, see Benamou and Brenier (2000), together with Lemma 17.3.

3.) For fixed µ, ν ∈ M , consider a connecting curve (ρ, v) ∈ A(µ, ν). According to Lemma 47
we have the Hd

k-orthogonal decompositions

Hd
k = Tk,ρt∇C∞

c (Rd)
Hd

k ⊕
(
L2

div(ρt) ∩Hd
k

)
, t ∈ [0, 1], (68)

i.e. we can write

vt = ut + wt, ut ∈ Tk,ρt∇C∞
c (Rd)

Hd
k , wt ∈ L2

div(ρt) ∩Hd
k,

with (ut)t∈[0,1] and (wt)t∈[0,1] being uniquely determined. Since wt ∈ L2
div(ρt) for all t ∈ [0, 1], we

have that v satisfies the continuity equation (23) if and only if u does. By Hd
k-orthogonality in

(68), we moreover have
∥vt∥2Hd

k
= ∥ut∥2Hd

k
+ ∥wt∥2Hd

k
, t ∈ [0, 1]. (69)

Because (69) is optimised for wt = 0 while keeping the continuity equation unchanged, it is clear

that the objective in (24) enforces wt = 0, or, equivalently, vt ∈ Tk,ρt∇C∞
c (Rd)

Hd
k , for all t ∈ [0, 1].

Appendix D. Proofs for Section 5

Proof of Proposition 20 The arguments are formal and proceed along the lines of Otto and
Villani (2000, Section 3). In (22) let us substitute vt = Tk,ρt∇Φt with Φt ∈ C∞

c (Rd), t ∈ [0, 1], to
obtain

d2k(µ, ν) = inf
(ρ,Φ)

{∫ 1

0

∥Tk,ρt∇Φt∥2Hd
k
dt : ∂tρ+∇ · (ρTk,ρ∇Φ) = 0, ρ0 = µ, ρ1 = ν

}
, (70)
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where the continuity equation is as usual interpreted in a weak sense, i.e. the pair (ρ,Φ) satisfies
the constraints in (70) if and only if

−
∫ 1

0

∫
Rd

∂tΨdρ dt−
∫ 1

0

⟨∇Ψ, Tk,ρ∇Φ⟩L2(ρ) dt+

∫
Rd

Ψ1 dν −
∫
Rd

Ψ0 dµ = 0, (71)

for all test functions Ψ ∈ C∞
c ([0, 1] × Rd). Let us now define the following functional on pairs

(ρ,Φ),

E(ρ,Φ) := sup
Ψ

{
−
∫ 1

0

∫
Rd

∂tΨdρ dt−
∫ 1

0

⟨∇Ψ, Tk,ρ∇Φ⟩L2(ρ) dt+

∫
Rd

Ψ1 dν −
∫
Rd

Ψ0 dµ

}
,

where the supremum is taken over all Ψ ∈ C∞
c ([0, 1] × Rd). Since the expression inside the

supremum is linear in Ψ, it follows that E characterises weak solutions in the sense of (71) in the
following way,

E(ρ,Φ) =

{
0 if (ρ,Φ) solves (71),

+∞ otherwise.

We can therefore write

1

2
d2k(µ, ν) = inf

(ρ,Φ)
sup
Ψ

{
1

2

∫ 1

0

∥Tk,ρt∇Φt∥2Hd
k
dt+ E(ρ,Φ)

}
(73a)

= inf
(ρ,Φ)

sup
Ψ

{
1

2

∫ 1

0

∥Tk,ρt∇Φt∥2Hd
k
dt (73b)

−
∫ 1

0

∫
Rd

∂tΨdρ dt−
∫ 1

0

∫ 1

0

⟨∇Ψ, Tk,ρ∇Φ⟩L2(ρ) dt+

∫
Rd

Ψ1 dν −
∫
Rd

Ψ0 dµ

}
. (73c)

The term in brackets in (73b)-(73c) is convex in Φ and concave (in fact, linear) in Ψ. Hence,
it is justified to exchange infimum and supremum (see Rockafellar (1970),Villani (2003a, Section
1.1.6)) to obtain

1

2
d2k(µ, ν) = inf

ρ
sup
Ψ

{
−
∫ 1

0

∫
Rd

∂tΨdρ dt+

∫
Rd

Ψ1 dν −
∫
Rd

Ψ0 dµ (74a)

+ inf
Φ

{
1

2

∫ 1

0

(
∥Tk,ρt∇Φt∥2Hd

k
dt− ⟨∇Ψ, Tk,ρt∇Φ⟩L2(ρt)

)
dt

}}
. (74b)

Using the fact that Tk,ρ is self-adjoint in L2(ρ) and that T 1/2
k,ρ : L2(ρ) → Hk is an isometry

(Steinwart and Christmann, 2008, Section 4.3), we see that

⟨∇Ψ, Tk,ρt∇Φ⟩L2(ρt) = ⟨T 1/2
k,ρt

∇Ψ, T 1/2
k,ρt

∇Φ⟩L2(ρt) = ⟨Tk,ρt∇Ψ, Tk,ρt∇Φ⟩Hd
k
. (75)

Substituting into (74b), it follows that

arg inf
Φ

{
1

2

∫ 1

0

(
∥Tk,ρt∇Φt∥2Hd

k
dt− ⟨∇Ψ, Tk,ρt∇Φ⟩L2(ρt)dt

)}
= Ψ,

up to an additive constant, i.e.

inf
Φ

{
1

2

∫ 1

0

(
∥Tk,ρt∇Φt∥2Hd

k
dt− ⟨∇Ψ, Tk,ρt∇Φ⟩L2(ρt)

)
dt

}
= −1

2

∫ 1

0

∥Tk,ρt∇Ψt∥2Hd
k
dt.

Using (75), we obtain the expression

1

2
∥Tk,ρ∇Ψ∥2Hd

k
=

1

2

∫
Rd

∫
Rd

∇Ψ(x)k(x, y)∇Ψ(y) dρ(x)dρ(y).
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Therefore, formally, we can compute the functional derivatives (see (19)),

δ

δρ

(
1

2
∥Tk,ρ∇Ψ∥2Hd

k

)
(x) =

∫
Rd

k(x, y)∇Ψ(x) · ∇Ψ(y) dρ(y) = ∇Ψ(x) · (Tk,ρ∇Ψ)(x),

δ

δΨ

(
1

2
∥Tk,ρ∇Ψ∥2Hd

k

)
(x) = ∇x ·

(
ρ(x)

∫
Rd

k(x, y)∇Ψ(y) dρ(y)

)
= ∇ · (ρTk,ρ∇Ψ) (x).

The formal optimality conditions for (74) are therefore given by the system (25).

Proof of Lemma 30 Dealing first with (83b)-(83c) and noting ∇Ψ = a, we observe that

d∑
i,j=1

∫
Rd

∫
Rd

∫
Rd

aiaj
(
∂xi∂xjk(x, y)

)
(k(y, z)− k(x, z)) dρ(x)dρ(y)dρ(z) = 0,

since ∂xi∂xjk(x, y) = ∂xi∂xjk(y, x) and (k(y, z)− k(x, z)) = − (k(x, z)− k(y, z)). We hence obtain

Hessρ(Ψ,Ψ) =

d∑
i,l=1

a2i

∫
Rd

∫
Rd

∫
Rd

∂xlk(x, y)∂ylk(y, z) dρ(x)dρ(y)dρ(z)

= −
d∑

i,l=1

a2i

∫
Rd

(∫
Rd

k(x, y)∂xlρ(x) dx

)2

dρ(y) < 0.

The inequality is strict since k is assumed to be integrally strictly positive definite, and the density
ρ cannot be constant.

Appendix E. Proof of Lemma 25

The proof proceeds by direct calculation, using the geodesic equations (25). For convenience, let
us introduce the notation

w = Tk,ρ∇Ψ. (78)

The following lemma will come in handy.

Lemma 48 Let ρ and Ψ be smooth solutions to (25). Then

∂twi = −
d∑

j=1

∫
Rd

k(·, y)∂jΨ(y)∂iwj(y) dρ(y)−
d∑

j=1

∫
Rd

k(·, y)∂j (∂iΨ(y)wj(y)ρ(y)) dy, (79)

for i = 1, . . . , d.

Proof By direct calculation, we obtain

∂twi =

∫
Rd

k(·, y) [∂i(∂tΨ)] (y) dρ(y) +

∫
Rd

k(·, y) [∂iΨ∂tρ] (y) dy (80a)

= −
d∑

j=1

∫
Rd

k(·, y) [∂i((∂jΨ)wj)] (y) dρ(y)−
d∑

j=1

∫
Rd

k(·, y) [∂iΨ(y)∂j(ρwj)] (y) dy (80b)

= −
d∑

j=1

∫
Rd

k(·, y)∂jΨ(y)∂iwj(y) dρ(y)−
d∑

j=1

∫
Rd

k(·, y)∂j (∂iΨ(y)wj(y)ρ(y)) dy. (80c)

Note that in the last line we have used the fact that the term involving ∂i∂jΨ cancels.

We will work under the assumption that k is smooth. Note that we make this restriction for
simplicity only such that all expressions can be written in compact form. The results extend
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without difficulty to the general case by either interpreting the relevant terms in the sense of
distributions or by performing integration parts, shifting the derivatives to ρ and Ψ (asssumed to
be smooth). See also Remark 27.

Recall the decomposition (21). In what follows, we compute the contributions from the terms
Reg(ρ) and Cost(ρ|π) separately (see Lemmas 49 and 50 below) and gather everything at the end
of the section.

Lemma 49 (Hessian of Reg(ρ)) Let (ρt,Ψt)t∈(−ε,ε) be a Stein geodesic, i.e. a smooth solution to (25),
and ρ0 ≡ ρ, Ψ0 ≡ Ψ. Then

∂2
tReg(ρt)

∣∣
t=0

= HessReg
ρ (Ψ,Ψ), (81)

where

HessReg
ρ (Φ,Ψ) =

d∑
i,j=1

∫
Rd

∫
Rd

∂iΦ(y)q
Reg
ij [ρ](y, z)∂jΨ(z) dρ(y)dρ(z), (82)

and

qReg
ij [ρ](y, z) = δij

d∑
l=1

∫
Rd

∂xlk(x, y)dρ(x) ∂ylk(y, z) (83a)

− k(y, z)

∫
Rd

(
∂xi∂yjk(x, y)

)
dρ(x) (83b)

−
∫
Rd

(
∂xi∂xjk(x, y)

)
k(x, z) dρ(x), i, j = 1, . . . , d. (83c)

Proof We have

∂tReg(ρ) =

∫
Rd

∂tρ log ρ dx+ ∂t

∫
Rd

dρ︸ ︷︷ ︸
=0

, (84)

where the second term vanishes due to the conservation of total probability. Inserting (25) into
(84), we arrive at

∂tReg(ρ) = −
d∑

i=1

∫
Rd

∂i(ρwi) log ρ dx =

d∑
i=1

∫
Rd

wi∂iρ dx = −
d∑

i=1

∫
Rd

(∂iwi) dρ.

For the second derivative we obtain

∂2
tReg(ρ) = −

d∑
i=1

∫
Rd

∂i(∂twi) ρ−
d∑

i=1

∫
Rd

(∂iwi)∂tρ dx (85a)

= −
d∑

i=1

∫
Rd

∂i(∂twi) dρ+

d∑
i,j=1

∫
Rd

(∂iwi)∂j(ρwj) dx (85b)

= −
d∑

i=1

∫
Rd

∂i(∂twi) dρ−
d∑

i,j=1

∫
Rd

(∂i∂jwi)wj dρ (85c)

We now substitute (78) and (79) into (85c) to get

∂2
tReg(ρ) =

d∑
i,j=1

∫
Rd

∫
Rd

∫
Rd

∂xik(x, y)∂jΨ(y)∂yik(y, z)∂jΨ(z) dρ(x)dρ(y)dρ(z)

−
d∑

i,j=1

∫
Rd

∫
Rd

∫
Rd

∂xi∂yjk(x, y)∂iΨ(y)k(y, z)∂jΨ(z) dρ(x)dρ(y)dρ(z)

−
d∑

i,j=1

∫
Rd

∫
Rd

∫
Rd

∂xi∂xjk(x, y)∂iΨ(y)k(x, z)∂jΨ(z) dρ(x)dρ(y)dρ(z),

which can be written in the form (82)-(83).
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Lemma 50 (Hessian of Cost(ρ|π)) Let (ρt,Ψt)t∈(−ε,ε) be a Stein geodesic, i.e. a smooth solution to (25),
and ρ0 ≡ ρ, Ψ0 ≡ Ψ. Then

∂2
tCost(ρt|π)

∣∣
t=0

= HessCost
ρ (Ψ,Ψ),

where

HessCost
ρ (Φ,Ψ) =

d∑
i,j=1

∫
Rd

∫
Rd

∂iΦ(y)q
Cost
ij [ρ](y, z)∂jΨ(z) dρ(y)dρ(z),

and

qCost
ij [ρ](y, z) = −δij

d∑
l=1

∫
Rd

∂lV (x) (k(x, y)∂ylk(y, z)) dρ(x) (87a)

+

∫
Rd

(
∂iV (x)∂yjk(x, y)k(y, z)

)
dρ(x) (87b)

+

∫
Rd

∂i∂jV (x)k(x, y)k(x, z) dρ(x) +

∫
Rd

(
∂iV (x)∂xjk(x, y)k(x, z)

)
dρ(x), (87c)

for i, j = 1, . . . , d.

Proof Proceeding as in the proof of Lemma 49, we obtain

∂tCost(ρ|π) =
∫
Rd

V ∂tρ dx = −
d∑

i=1

∫
Rd

V (∂i(ρwi)) dx =

d∑
i=1

∫
Rd

∂iV wi dρ (88)

and

∂2
tCost(ρ|π) =

d∑
i=1

∫
Rd

∂iV ∂twi dρ+

d∑
i=1

∫
Rd

∂iV wi∂tρ dx

=

d∑
i=1

∫
Rd

∂iV ∂twi dρ−
d∑

i,j=1

∫
Rd

∂iV wi∂j(ρwj) dx

=

d∑
i=1

∫
Rd

∂iV ∂twi dρ+

d∑
i,j=1

∫
Rd

∂j(∂iV wi)wj dρ

=

d∑
i=1

∫
Rd

∂iV ∂twi dρ+

d∑
i,j=1

∫
Rd

(∂i∂jV )wiwj dρ+

d∑
i,j=1

∫
Rd

∂iV (∂jwi)wj dρ.

Inserting (78) and (79) gives the announced result.

We are now ready to conclude:
Proof of Lemma 25 It is enough to show that

qij [ρ] = qReg
ij [ρ] + qCost

ij [ρ], i, j = 1, . . . , d.

A straightforward calculation shows that (83a) and (87a) add up to (32a), (83b) and (87b) add
up to (32b), and (83c) and (87c) add up to (32c).

Appendix F. Proofs for Section 6

Proof of Lemma 35 By a straightforward calculation, the first statement is equivalent to the
inequality∫

Rd

[
d∑

j=1

∂j
(
e−V Tk,π∂jΨ

)]2
eV dx ≥ λ

d∑
j=1

∫
Rd

∫
Rd

∂jΨ(y)k(y, z)∂jΨ(z)e−V (y)e−V (z) dydz, (90)
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for all Ψ ∈ C∞
c (Rd). To show the equivalence between (90) and the second statement, first notice

that (90) can be written in the form∫
Rd

(LΨ)2 dπ ≥ λ

∫
Rd

ΨLΨdπ, Ψ ∈ C∞
c (Rd). (91)

Next we argue that under Assumption 2, the null space of L coincides with the constant functions.
Indeed assume that ϕ ∈ C∞

b (Rd) ∩D(L) satisfies Lϕ = 0. Multiplying this equation by ϕe−V and
integrating by parts leads to

d∑
i=1

∫
Rd

∫
Rd

∂iϕ(x)k(x, y)∂iϕ(y)e
−V (x)e−V (y) dxdy = 0.

Since k is positive definite, it follows that the summands in the above equation are each nonnegative
and thus have to be zero individually. According to Assumption 2, it follows that the measure
∂iϕe

−V dx vanishes for every i ∈ {1, . . . d}, which is only possible if ϕ is constant. By a very similar
argument (using again Assumption 2) we see that the range of L is dense in L2

0(π).
A straightforward application of the spectral theorem for (possibly unbounded) self-adjoint

operators to (91) shows that σ(L) ⊂ {0} ∪ [λ,∞). Note moreover that∫
Rd

Lϕ dπ = 0

for all ϕ ∈ C∞
c (Rd), and that L2

0(π) is the orthogonal complement of the constant functions in
L2(π). Hence, L leaves L2

0(π) invariant, and the restriction satisfies σ(L|L2
0(π)) ⊂ [λ,∞). Since

L|L2
0(π) is therefore bounded from below and, as noted above, with dense range, it is invertible,

and, in particular L−1/2 : L2
0(π) → L2

0(π) is well-defined. The equivalence between (90) and the
second statement now follows by letting Ψ = L−1/2ϕ.

Proof of Lemma 39 For ϕ ∈ C∞
c (Rd) we can write

(Lϕ)(x) = 1

Z

d∑
i=1

∫
Rd

eV (x)eV (y)∂xi∂yi

(
e−V (x)e−V (y)k(x, y)

)
ϕ(y)e−V (y) dy,

using the regularity assumption on k. Defining the positive definite kernel

k̃(x, y) :=

d∑
i=1

eV (x)eV (y)∂xi∂yi

(
e−V (x)e−V (y)k(x, y)

)
,

we see that L = Tk̃,π. A short calculation shows that the integrability condition (42) is equivalent
to ∫

Rd

k̃(x, x) dπ(x) <∞, (92)

and thus L is compact according to Steinwart and Christmann (2008, Theorem 4.27). By the
spectral theorem for compact self-adjoint operators (Kreyszig, 1978, Section 8.3), there exists an
orthonormal basis (ei)i∈N of L2(π) such that

Lei = µiei, (93)

µi ≥ 0 and µi → 0. Plugging (93) into (39) and using µi → 0 shows that necessarily λ = 0.

Proof of Lemma 41 For Ψ ∈ C∞
c (R), set ϕ = Tk,πΨ

′. Using (75), we see that the right-hand
side of (36) coincides with λ⟨ϕ, ϕ⟩Hk . For the left-hand side we calculate∫

R

[
(e−V ϕ)′

]2
eV dx =

∫
R

[
−V ′ϕ+ ϕ′]2 e−V dx (94a)

=

∫
R

[
(V ′)2ϕ2 − 2V ′ϕϕ′ + (ϕ′)2

]
e−V dx =

∫
R

[
(V ′′)ϕ2 + (ϕ′)2

]
e−V dx, (94b)
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where we have used that

−2

∫
R
V ′ϕϕ′e−V dx = −

∫
R
V ′(ϕ2)′e−V dx =

∫
R
V ′′ϕ2e−V dx−

∫
R
(V ′)2ϕ2 dx.

It is therefore clear that if (43) holds for all ϕ ∈ Hk, then (36) holds for all Ψ ∈ C∞
c (R). For the

converse implication, note that boundedness of V ′′ implies that (94) is a continuous functional on
H1(π). It thus remains to show that {Tk,πΨ

′ : Ψ ∈ C∞
c (R)} is dense in H1(π). By Assumptions

2 and 3, Tk,π : L2(π) → Hk is continuous with dense range, see Steinwart and Christmann (2008,
Theorem 4.26ii) and Exercise 4.6). Since Hk is densely embedded in H1(π) by assumption, it
suffices to argue that

{
Ψ′ : Ψ ∈ C∞

c (R)
}
=

{
Ψ ∈ C∞

c (R) :
∫
R
Ψdx = 0

}
is dense in L2(π). Indeed, for any ϕ ∈ L2(π) and ε > 0 there exists Ψ1 ∈ C∞

c (R) such that
∥ϕ − Ψ1∥L2(π) < ε/2. Moreover, since π is a probability measure, there exists Ψ2 ∈ C∞

c (R)
such that

∫
R(Ψ1 + Ψ2) dx = 0 and ∥Ψ2∥L2(π) < ε/2. It now follows that Ψ := Ψ1 + Ψ2 satisfies

∥ϕ−Ψ∥L2(π) < ε, concluding the proof.

Proof of Corollary 42 We argue by contradiction. Assume that there exists λ > 0 such that
(43) holds for all ϕ ∈ Hk. For x ∈ R, let us choose ϕx = k(x, ·) = h(x−·) ∈ Hk. For the right-hand
side of (43) we then obtain

λ⟨ϕx, ϕx⟩Hk = λk(x, x) = λh(0). (95)

Since h and h′ are bounded, we have that

lim
x→±∞

(∫
R
V ′′(y)h(x− y)dπ(y) +

∫
R
(h′(x− y))2 dπ(y)

)
= 0

by dominated convergence. This contradicts (43) (or forces λ = 0), because (95) does not depend
on x ∈ R.

Proof for Example 1 Arguing as in the proof of Lemma 41, it is enough to show that∫
R

[
(V ′′)ϕ2 + (ϕ′)2

]
e−V dx ≥ λ⟨ϕ, ϕ⟩Hk (96)

for all ϕ ∈ {Tk,πΨ
′ : Ψ ∈ C∞

c (R)}. We show the stronger statement that (96) holds for all ϕ ∈ Hk

(recall that Ran Tk,π ⊂ Hk). Combining Theorem 1.7 and Corollary 2.5 from Saitoh and Sawano
(2016), we see that

Hk =
{
π−1/2f : f ∈ H1(R)

}
,

where H1(R) denotes the Sobolev space of order one, and, furthermore,

⟨π−1/2f, π−1/2f⟩Hk = ∥f∥2H1(R) =

∫
R

[
f2 + (f ′)2

]
dx. (97)

For the left-hand side of (96), we calculate∫
R

[
(V ′′)(π−1/2f)2 +

(
(π−1/2f)′

)2]
e−V dx =

∫
R

[
V ′′f2 +

(
V ′

2
f + f ′

)2
]
dx (98a)

=

∫
R

[
V ′′f2 +

(
V ′

2

)2

f2 + V ′ff ′ + (f ′)2
]
dx =

∫
R

[(
V ′′

2
+

(
V ′

2

)2
)
f2 + (f ′)2

]
dx, (98b)

using ∫
R
V ′ff ′ dx =

1

2

∫
R
V ′(f2)′ dx = −1

2

∫
R
V ′′f2 dx. (99)
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In (99) we have used the fact that by boundedness of V ′′, f ∈ H1(R) and L’Hôpital’s rule,

lim
x→±∞

f2V ′ = lim
x→±∞

2ff ′V ′′ = 0.

From (97) and (98b) it is clear that (96) holds with λ as given in (46).

Proof of Lemma 43 Following the proof of Lemma 41, it is straightforward to show that the
Rayleigh coefficients are given by

λk
Ψ =

∫
R V

′′ϕ2 dπ +
∫
R(ϕ

′)2 dπ

∥ϕ∥2Hk

,

where ϕ = Tk,πΨ
′. The claim now follows by a density argument, similar to the one employed in

the proof of Lemma 41.

Proof of Lemma 44 By a slight abuse of notation, we will denote kp,σ(x, y) = kp,σ(r), with
r = |x − y|, using the fact that kp,σ is radially symmetric. We compute the Fourier transform in
spherical coordinates,

(Fkp,σ)(ξ) =
∫
Rd

exp(−ix · ξ) exp
(
−|x|p

σp

)
dx

= cd

∫ 2π

0

∫ ∞

0

exp(−ir|ξ| cos θ) exp
(
− rp

σp

)
drdθ,

where θ is the angle between ξ and x, and cd > 0 is a dimension-dependent constant resulting
from integration over the remaining angles. From Koldobsky (2005, Lemma 2.27) we have that

Ap,σ(ξ, θ) :=

∫ ∞

0

exp(−ir|ξ| cos θ) exp
(
− rp

σp

)
dr

is strictly positive for all (ξ, θ) ∈ Rd × [0, 2π]. It therefore follows that Fkp,σ is strictly positive.
Hence, by Wendland (2004, Theorem), kp,σ is a positive definite kernel. The fact that it is also
integrally strictly positive definite follows from Sriperumbudur et al. (2011, Proposition 5). From
Koldobsky (2005, Lemma 2.28), we have that there exist constants C1, C2 > 0 such that

C1|ξ|−p−1 ≤ Ap,σ(ξ, θ) ≤ C2|ξ|−p−1, |ξ| > 1.

It is then easy to see that (Fkp,σp)/(Fkq,σq ) is bounded if p > q and unbounded if q < p, for all
σq, σp > 0. The second claim of Lemma 44 now follows from Zhang and Zhao (2013, Proposition
3.1). According to the same result, in the case when p > q, we have

∥ϕ∥Hkq,σq
≤ C∥ϕ∥Hkp,σp

, ϕ ∈ Hkp,σp
,

where

C =

√
sup

Fkp,σp

Fkq,σq

.

Using

(Fkp,Lσ)(ξ) =
1

Lp
(Fkp,σ)(Lpξ), L > 0,

it is clear that σp and σq can be chosen in such a way that C ≤ 1, proving the third claim.
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