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Abstract

In multivariate data analysis, it is often important to estimate a graph characterizing de-
pendence among p variables. A popular strategy in Gaussian graphical models and latent
Gaussian graphical models uses the non-zero entries in a p× p covariance or precision ma-
trix, typically requiring restrictive modeling assumptions for accurate graph recovery. To
improve model robustness, we instead focus on estimating the backbone of the dependence
graph. We use a spanning tree likelihood, based on a minimalist graphical model that is
purposely overly-simplified. Taking a Bayesian approach, we place a prior on the space of
trees and quantify uncertainty in the graphical model. In both theory and experiments, we
show that this model does not require the population graph to be a spanning tree or the
covariance to satisfy assumptions beyond positive-definiteness. The model accurately re-
covers the backbone of the population graph at a rate competitive with existing approaches
but with better robustness. We show combinatorial properties of the spanning tree, which
may be of independent interest, and develop an efficient Gibbs sampler for Bayesian in-
ference. Analyzing electroencephalography data using a hidden Markov model with each
latent state modeled by a spanning tree, we show that results are much more interpretable
compared with popular alternatives.

Keywords: Graph-constrained Model, Incidence Matrix, Laplacian, Matrix Tree Theo-
rem, Traveling Salesperson Problem.

1. Introduction

In multivariate data analysis, it is commonly of interest to make inferences on the de-
pendence structure in a collection of p random variables. In Gaussian graphical models
and latent Gaussian graphical models, the covariance matrix provides a typical summary
of pairwise dependence between variables, while the inverse of the covariance or precision
matrix is used to characterize conditional dependence relationships. To simplify inferences,
a focus is commonly in inferring a dependence graph: G = (V,EG), with V = {1, . . . , p}
nodes representing the p variables and EG = {es} the set of edges. If (j, k) is an edge in
EG, there is a dependence relationship between the two variables yj and yk.

There is a huge literature on Gaussian graphical models, encompassing different types
of dependence, mostly defined through the covariance among the yj ’s, Σ0, or its inverse
(precision), Ω0. Popular examples include: assuming the variables follow a multivari-
ate Gaussian distribution, (i) Σ0:j,k = 0 implies yj and yk are statistically independent
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(Dempster, 1972; Cox and Wermuth, 1996) and (ii) Ω0:j,k = 0 implies yk are conditionally
independent given all other variables; such graphs have become very popular due to the
graphical lasso (Friedman et al., 2008). (iii) using the lower-triangular decomposition of Ω0

after some permutation CCT = PΩ0P
T (P is a permutation matrix), those non-zero Cj,k’s

give a directed acyclic graph (DAG) as a sequential data generating scheme (Rütimann
and Bühlmann, 2009; Cao et al., 2019). There is a rich related literature including more
complex elaborations, such as graphs that change over time (Basu and Michailidis, 2015),
hyper-graphs (Roverato, 2002), copula graphical models (Dobra and Lenkoski, 2011) and
Bayesian applications such as Dobra et al. (2004).

A major practical issue in inferring dependence graphs based on observations of multi-

variate vectors y(i) = (y
(i)
1 , . . . , y

(i)
p )T, for i = 1, . . . , n, is that the number of possible graphs

is immense for large p. For example, for covariance graphs (i), there are 2p(p−1)/2 possible
graphs, which clearly increases extremely rapidly with p. This creates two practical issues.
Firstly, even for moderate p, we cannot visit all possible graphs so it becomes challenging to
identify the “best” graph that is most likely given the observed data. Secondly, even if we
could identify one best graph, there is likely a large number of alternative graphs that are
equally plausible given the observed data. Hence, whenever we estimate a dependence graph
in more than a few variables, we inherently expect a large amount of uncertainty. There are
many available algorithms that deal with the first problem, ranging from the graphical lasso
to thresholding the empirical covariance. However, the resulting point estimates should be
interpreted carefully given the second problem.

Most graphical selection procedures leverage on estimates of the covariance or precision,
Σ̂ or Ω̂. To obtain fewer errors in graph estimation, one typically needs to first achieve high
accuracy in Σ̂ or Ω̂. In large p settings, this is challenging. Cai et al. (2016b) showed that
the empirical covariance Σ̂ = Sn converges to the population Σ0 in ‖Σ̂ − Σ0‖2op = O(p/n),
with ‖.‖op the operator norm. Hence, the sample size n may need to be substantially larger
than p. To obtain an accurate estimate under the n < p scenario, the true Σ0 has to satisfy
restrictions. For example, Bickel and Levina (2008a) assumed Σ0 is sparse and proposed a
simple thresholding estimator. Bickel and Levina (2008b) instead assume the off-diagonal
elements in Σ0 between yj and yk decay with |j − k|, and propose a banding/tapering
estimator. Yuan and Lin (2007) and Friedman et al. (2008) supposed that the true Ω0 is very
sparse, motivating the graphical lasso (glasso). For a survey of large p covariance/precision
estimators, see Cai et al. (2016c). Roughly speaking, one can recover Σ0 (or Ω0) at an error
rate diminishing at O(log p/n) if the corresponding assumption holds for the true Σ0. These
assumptions are difficult to verify in practice and violations (e.g, true graph is dense) may
lead to poor performance.

This motivates us to consider a less ambitious task — if we cannot accurately recover
the whole edge set EG, can we estimate a smaller subset, as an important summary statistic
of G? Intuitively, a useful edge subset corresponds to the “backbone” graph, in which we
use as few edges as possible, while connecting as many nodes as permitted. This leads
us to consider a classic graph/combinatorial statistic called the “spanning tree” (Kruskal,
1956), as the smallest graph that still connects all the nodes. This tree is commonly
used to solve the “traveling salesperson problem”, by finding a simple travel plan that
approximately minimizes the total distance traveled between p cities. Similarly, we can
imagine a “minimal” generative process: starting from one variable, we sequentially generate
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a new variable, that only depends on one of the existing variables. This leads to a spanning
tree likelihood.

There has been a recent surge of interest in exploiting spanning trees in a Bayesian
model. Teixeira et al. (2019); Luo et al. (2023) use spanning trees to produce a contiguous
partition of the temporal and spatial space; Luo et al. (2021, 2022) use spanning tree as a
modeling tool to accommodate irregularly shaped partition and build new nonparametric
regression models on manifolds; Duan and Roy (2023) show that treating disjoint union of
spanning trees as a latent graph variable leads to a generative model associated with the
spectral clustering algorithms; Natarajan et al. (2023) explore edge-union of spanning trees
for building new graphical priors. Despite these advanced applications, there is a lack of
exposition on the fundamental properties of spanning tree that would be useful for general
Bayesian researchers, and a lack of large sample theory for using spanning tree for graph
estimation, which motivate this article.

We equip the spanning tree with a prior distribution, allowing us to obtain a posterior
distribution over all possible spanning trees, hence quantifying model uncertainty. Impor-
tantly, in both theory and numerical experiments, we demonstrate that this model does not
require the population G to be a spanning tree, nor the population covariance Σ0 to satisfy
any assumptions besides positive-definiteness; yet, it can accurately recover the backbone of
the population graph G, as the minimum spanning tree transform based on Σ0. Our theory
is in the same spirit as the celebrated result of White (1982), who studied the asymptotic
behavior of a restricted model estimator when the data are generated from a different full
model; as well as the more recent spiked covariance model (Donoho et al., 2018) for the
optimal estimation of the leading eigenvalues of Σ0 using a restricted parameterization. In
our case, the posterior distribution on the spanning tree concentrates rapidly (at a negative
exponential rate in n) around the spanning tree summary of the true graph. In contrast, if
we try to obtain the full graph, we necessarily concentrate critically slowly unless we make
overly strong assumptions.

The spanning tree has been used previously in a variety of statistical contexts. Exam-
ples include approximating discrete distributions (Chow and Liu, 1968), hypothesis testing
(Friedman and Rafsky, 1979), classification (Juszczak et al., 2009) and network analy-
sis (Tewarie et al., 2015). It has also been considered as a graphical model (Meilă and
Jaakkola, 2006; Edwards et al., 2010; Byrne and Dawid, 2015) with various extensions such
as mixtures of trees (Meilă and Jordan, 2000) and algorithms for tree selection [see Chapter
7 of Højsgaard et al. (2012)]. Chow and Wagner (1973) showed consistency and Tan et al.
(2011) quantified the convergence rate when the data are generated from a spanning tree
graphical model. Various spanning tree posterior sampling algorithms using Metropolis-
Hastings have been proposed (Dai, 2008; Green and Thomas, 2013) along with closed-form
solutions for some marginal quantities (Schwaller et al., 2019).

We are inspired by this literature; however, our unique contributions include: (i) we
characterize the posterior concentration rate (competitive to the graphical lasso) under a
general case when the data may not be generated according to a spanning tree — this
is distinct from prior literature where one assumes an oracle tree structure (Tan et al.,
2011); (ii) we propose a novel Bayesian strategy of tree selection by harnessing global-
local shrinkage priors (Polson and Scott, 2010) to induce a posterior concentrated near the
minimum spanning tree; (iii) we propose to use rank constraint of the incidence matrix to
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guarantee the connectivity of a spanning tree, which leads to convenient algorithms such as
one for finding cut partition.

2. Bayesian Spanning Tree

To provide some intuition about the spanning tree as the backbone of a graph, we first briefly
review the solutions to the traveling salesperson problem, demonstrate the simplicity of the
spanning tree and motivating its use in a generative model.

2.1 Traveling on a Graph via the Spanning Tree

Suppose we have a graph G = (V,EG) with nodes V = {1, . . . , p} and edges EG =
{e1, . . . , eM}. Each edge is undirected es = (j, k) ≡ (k, j), and associated with a weight
wj,k = wk,j ≥ 0.

Consider the traveling salesperson problem: suppose G is a connected graph — for any
two nodes j and k, there is a path(j, k) = {(j, l1), (l1, l2), . . . , (lm−1, lm), (lm, k)} (a subset
of EG) that allows us to travel from j to k. With each node representing a city and wj,k
the distance between two cities, a salesperson wants to go to every city, while trying to
minimize the total distance traveled. This is a combinatorial optimization problem:

min
I
Q(I) = min

I

∑
(j,k)∈I

wj,k,

where I is the itinerary, as an ordered sequence of edges.
Finding the optimal itinerary is a challenging problem. Nevertheless, we can consider a

simpler problem that gives a close-to-optimal solution: since those p cities can be connected
via p − 1 edges (roads), what if we first find the best p − 1 edges with the shortest total
distance, and then develop an itinerary on them?

It is not hard to see that we only need to travel at most twice over each of those p− 1
edges (shown in Figure 1); hence we have a relaxed problem:

min
I
Q(I) ≤ 2 minT∈T

∑
(j,k)∈T

wj,k

where T is known as the spanning tree:

T = (V,ET ) : ET ⊆ EG, |ET | = p− 1, T is connected,

that is, T is the subgraph of G having the smallest number of edges, while still connecting
all the nodes; and T is the collection of all the spanning trees of G.

Unlike the original problem, the relaxed one (also known as the “minimum spanning
tree” problem) can be solved easily — this is an M-convex problem [the discrete equivalent
of convex (Murota, 1998)]; hence simple greedy algorithms (Kruskal, 1956; Prim, 1957)
converge to the global optimum.

To link spanning trees to a graphical model, imagine that we generate a new variable
yj each time we reach a new node, where each yj depends on one of the existing yk’s. Then
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the graph would become a spanning tree with likelihood

L(y;T ) = Π(y1)

p∏
j=2

Π [yj | yk : k ∈ {1, . . . , j − 1}, (j, k) ∈ ET ] . (1)

This generative graph has two advantages: (i) the optimal point estimate T is tractable; (ii)
it gives us a simplified graph of (p − 1) edges that estimate the “backbone” dependencies
among all the variables — as we later show in the theory section, the population backbone
graph can be formalized as:

T0 = arg min
T∈T

∑
(j,k)∈T

E‖yj − yk‖22, (2)

where the expectation is taken with respect to the generative distribution of the data.

(a) Traveling salesperson problem: reduce the
total distance traveled to all cities [the nodes
(blue dots), connected by edges (grey and red
lines)]. The minimum spanning tree (red) gives
a close-to-optimal solution.

(b) Generative graph conditioned on a spanning
tree: a variable is generated when reaching a
new node, as dependent on one of the existing
variables. The tree is a random subgraph of the
underlying graph.

Figure 1: Illustration of the minimum spanning tree and its graphical model.

2.2 Bayesian Spanning Tree Model

Slightly simplifying (1), we have the spanning tree graphical model:

L(y;T, θ) = Π(y1)
∏
es∈T

Π[yk | yj , es = (j, k), θs], (3)

where y1 is the first variable generated that we refer to as the “root”, we use es ∈ T as
shorthand for es ∈ ET , and θ = {θs}p−1

s=1 are the other parameters associated with the edges.
We will refer to (3) as the spanning tree likelihood, and will complete its specification in
the next subsection.
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We can improve the model flexibility by taking a Bayesian approach and assigning a
prior on T . This has the appealing advantages of (i) enabling regularization on the tree
through the prior specification, (ii) allowing us to obtain a set of trees in the high posterior
probability region, as opposed to a single estimated tree, and (iii) as will be shown in Section
3.2, we can analytically marginalize out T and obtain a marginal probability estimate of
whether (j, k) are connected.

We specify the tree prior in the following form:

Π0(T ) = g(T ), T ∈ T . (4)

and we use T to denote the set of all spanning trees with p nodes, and g(T ) ≥ 0 is a
probability mass function that sums to one over T ; the set T is a combinatorial space, with
a cardinalty |T | = p(p−2) (Buekenhout and Parker, 1998). The posterior of T is a discrete
distribution:

Π(T | y, θ) =
L(y;T, θ)Π0(T )∑

T ′∈T L(y;T ′, θ)Π0(T ′)
. (5)

The marginal density of the root Π(y1) is canceled in Π(T | y, θ), and hence we do not need to
specify Π(y1) in the likelihood (the choice of y1 as the root may impact Π [yj | yk : (j, k), θs],
which will be addressed in the next subsection).

2.3 Location Dependence and Likelihood Specification

For ease of exposition, we assume each y
(i)
k ∈ R is continuous, and denote the n samples

as ~yk = [y
(1)
k , . . . , y

(n)
k ] ∈ Rn. Following a typical convention in graphical modeling (Wang,

2012; Tan et al., 2015), we assume each ~yk is centered and standardized. To specify Π
[
yk |

yj , es = (j, k), θs
]
, we consider the commonly used location-scale family density:

Π
[
yk | yj , es = (j, k), σs

]
=

1

σns
f

(
~yk − ~yj
σs

)
, (6)

where the conditional density of yk is centered on yj , σs > 0 is a scale parameter associated
with the edge es, and f : Rp → [0,∞) integrates to one over Rp.

In choosing a specific f , we focus on obtaining root exchangeability of this graphical
model. In choosing a particular variable as the root node, we obtain a directed acyclic graph
having a corresponding variable ordering. However, given that the choice of root node is
typically arbitrary, it is desirable to remove dependence on its choice from the resulting
posterior distribution of T .

Fortunately, this root exchangeability can be achieved as long as f satisfies the symmetry
about zero constraint:

f(~x) = f(−~x) ∀~x ∈ Rn. (7)

Changing the root choice corresponds to applying a particular permutation of the vari-
able/node index {π(1), . . . , π(p)}. Considering the es = (j, k) edge in the initial graph,
after permutation we have yπ(j) = yj , yπ(k) = yk, and Π

[
yk | yj , es = (j, k), σs

]
replaced by

Π
[
yπ(j) | yπ(k), es = (π(k), π(j)), σs

]
. Therefore, we have

Π[T(1,...,n) | (y1, . . . , yp), θ] = Π[Tπ(1),...,π(p) | y(π(1), . . . , yπ(p)), θ],
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where Tπ(1),...,π(p) denotes the permuted graph obtained by replacing k with π(k) for each
node, and (j, k) with (π(j), π(k)) for each edge. Hence, the structure of the tree does not
change, but only the node number labels changes.

Remark 1 The above exchangeability property is different from node exchangeability, where
one would permute the variable/node index alone without changing the graph node index.
For a more comprehensive discussion of graph exchangeability, see Cai et al. (2016a).

To satisfy such symmetry constraints, and simplify our theoretical developments, we
focus on a simple Gaussian density,

Π
[
yk | yj , es = (j, k), σs

]
=

1

(2πσ2
s)
n/2|R|1/2

exp

[
−(~yk − ~yj)TR−1(~yk − ~yj)

2σ2
s

]
, (8)

where R is an n × n positive definite matrix allowing correlation between the samples

~yk = {y(1)
k , y

(2)
k , . . . , y

(n)
k }. If the multivariate data samples are uncorrelated, we simply let

R = In. In more complex settings, such as when the samples have temporal dependence,
R is a nuisance parameter, as our focus is on dependence across the outcomes and not the
samples. The approach for handling R necessarily depends on the sampling design; for time
series one may use an AR-1 structure, for spatially indexed data one may use a spatially
decaying correlation function, etc. For simplicity, we focus on using R = In.

We refer to (8) as the Gaussian spanning tree likelihood.

Remark 2 Although (8) may look similar to a regular multivariate Gaussian density, the
key parameters in this likelihood are the choices of (j, k)’s in T , which determine which
(yj − yk)’s enter into the likelihood. Further, note that when viewing σ2

s as a latent variable
and equipping it with appropriately chosen distribution, we obtain a Gaussian scale-mixture
spanning tree likelihood, which covers many useful non-Gaussian distributions (West, 1987).

With σ2
s varying across edges, it is important to choose a distribution to regularize the

spanning tree model. With this goal in mind, we build on the popular global-local shrinkage
prior framework (Polson and Scott, 2010) in the next subsection.

2.4 Global-Local Shrinkage Prior for Tree Selection

Letting Π0(T ) denote the prior probability of tree T , the posterior probability of choosing
a particular spanning tree under the Gaussian spanning tree likelihood is

Pr(T = T? | y, θ) =
exp

[
−(1/2)

∑
(j,k)∈T?

(
‖~yk − ~yj‖2/σ2

s

)]
Π0(T?)∑

T ′∈T exp
[
−(1/2)

∑
(j,k)∈T ′ (‖~yk − ~yj‖2/σ2

s)
]

Π0(T ′)
. (9)

Intuitively, if most of the σs’s are small, then the posterior distribution will be dominated by
trees T ∗ having most ‖~yk−~yj‖’s small. Hence, a prior favoring small σ’s will favor a smaller
high probability region of spanning trees, leading to greater interpretability. Nevertheless,
as shown in Figure 2, in order to form a valid spanning tree, we may have to choose a few
long edges with large ‖~yk − ~yj‖; hence, the prior for σs should ideally be concentrated at
small values with heavy tails.
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Figure 2: Illustration of the estimated spanning trees in the high posterior probability
region. The minimum spanning tree is shown in red and cyan, and the alternative trees are
shown in grey and cyan. Two edges with large ‖~yk − ~yj‖ (cyan) are necessary for forming
a valid spanning tree.

To satisfy both properties, we use a global-local prior as:

σs = λsτ, λs
iid∼ Πλ, τ ∼ Πτ . (10)

where τ > 0 is the global scale with Πτ concentrated near zero, so that τ ≈ 0 provides
an overall strong shrinkage; whereas λs > 0 is the local scale from Πλ, a heavy-tailed
distribution so that a few λs can have very large values.

Although there are a broad variety of global-local priors that would suffice for our
purposes, the generalized double Pareto (Armagan et al., 2013) is particularly convenient
due to the closed-form marginal. We focus on the multivariate extension of Xu and Ghosh
(2015), with λ2

s ∼
∫

Ga[λ2
s; (n+ 1)/2, κ2

s/2]Ga(κs;α, 1)dκs. Marginalizing over λs, we have
(omitting a constant not involving α, τ , with complete details provided in the appendix):

Π
[
yk | yj , es = (j, k), τ

]
∝ Γ(α+ n)

Γ(α)

1

τn

(
1 +
‖~yj − ~yk‖2

τ

)−(α+n)

. (11)

To favor a small global scale τ while being adaptive to the data, we use an informative
exponential prior τ ∼ Exp(1/µτ ) with the prior mean set to µτ = min(j,k:j 6=k) ‖~yj − ~yk‖2/n,
as an empirical estimate of the smallest scale among vectors (~yj − ~yk)’s. We choose α = 5
as a balanced choice between shrinkage and tail-robustness; details can found in Armagan
et al. (2013). Alternatively, when there is no need to accommodate for a few edges with
large ‖yj − yk‖2, one may use conjugate priors as suggested by Schwaller et al. (2019). If
one needs to further reduce the graph estimate from a spanning tree, one could consider a
continuous spike-and-slab distribution for σ2

s (George and McCulloch, 1995), which allows
removal of some edges that are associated with the slab (large scale).
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2.5 Prior for the Tree

We can obtain further regularization via the tree prior Π0(T ). We discuss a few choices
here, ranging from informative to non-informative.

Perhaps the simplest informative choice is an edge-based prior, including information
that certain edges are more likely to be in the graph through a p × p matrix containing
ηj,k ≥ 0, and letting

Π0(T | η) = z−1(η)
∏

(j,k)∈T

ηj,k, (12)

where z(η) =
∑

T∈T
∏

(j,k)∈T ηj,k is the normalizing constant. Those (j, k) with larger
ηj,k will be more likely to be in T a priori. For example, in brain connection networks,
one may favor connections between regions that are closer together spatially by letting
ηj,k = exp(−‖xj − xk‖2) with xj the associated spatial coordinate. As another example, if
one wants to block connections between j and k, one can simply set ηj,k = 0.

Often we do not know which edges are more likely, but may have prior preferences for
certain graph statistics. Here we consider the degree, as the total number of edges for
each node Dj =

∑p
k=1 1[(j, k) ∈ T ]. To obtain a degree-based prior, we propose to set

ηj,k = vjvk, leading to

Π0(T | v1, . . . , vp) = z−1(η)

p∏
j=1

v
Dj

j , (13)

with (v1, . . . , vp) encoding prior knowledge of which nodes have more edges, and the nor-
malizing constant having closed form z(η) = (

∑p
j=1 vj)

p−2
∏p
j=1 vj ; a proof is provided in

the appendix.
We now explore the case in which the vjs are assigned a Dirichlet hyper-prior

(v1, . . . , vp) ∼ Dir(α, . . . , α), (14)

where α is the concentration parameter. Since
∑p

j=1 vj = 1, we have Π0(T, v1, . . . , vp | α) ∝
v

(Dj+α−2)
j . Conjugacy allows us to integrate out v = (v1, . . . , vp) and obtain the marginal

prior on the degrees

Π0(T | α) ∝
p∏
j=1

Γ(Dj + α− 1),

where
∑p

j=1Dj = 2(p − 2). Due to the rapid increase of the gamma function Γ(x) ≈√
2πx(x/e)x, for small to moderate α (such as when α � p), this prior is skewed towards

having a few dominating large Dj ’s — as a result, the graph will contain a few “hubs”,
each connecting to a large number of nodes [Figure 3(a)]. Since the sum of Dj is fixed, α
effectively controls the variance of degrees.

Alternatively, as a non-informative prior, one could use the uniform distribution over the
space of T , Π0(T ) = 1/p(p−2)1(T ∈ T ) [Figure 3(b)]. We use this as the default throughout
the article.
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(a) A hub graph generated from Dirichlet
degree-based tree prior, with high degrees in
only a few nodes.

(b) A graph generated from the uniform tree
prior, with similar degrees across nodes.

Figure 3: Illustration of graphs generated from the Dirichlet degree-based tree prior and
the non-informative uniform prior.

Regardless of the choice, all the above priors enjoy a simple form in the posterior distri-
bution, as a product separable over the edges Π(T | y) ∝

∏
(j,k)∈T

{
ηj,kΠ[yk | yj , (j, k), θs]

}
.

This separable form allows us to easily update each edge in posterior computation, while
leading to useful closed-form quantities in the marginal posterior, as presented below.

3. Properties

3.1 Partition Function and Marginal Connecting Probability

The spanning tree is supported in a large combinatorial space. Despite the high complexity,
some quantities related to the marginal posterior distribution are available analytically in
closed-form. These results are related to findings in Schwaller et al. (2019).

For generality, we focus on the posterior distribution of T in the following form:

pr(T | y) =

∏
(j,k)∈T exp(qj,k)

zq
,

where exp(qj,k) = ηj,kΠ[yk | yj , (j, k), θs] as shown above. The denominator zq is commonly
known as the partition function:

zq =
∑
T∈T

∏
(j,k)∈T

exp(qj,k). (15)

Letting Aq = {exp(qj′,k′)}(j′,k′), with Aq:j,j = 0 in the diagonal, we show in the following
Theorem that zq can be computed easily. All proofs are deferred to the appendix.

Theorem 3 (Kirchhoff’s matrix tree theorem for partition function) Let Aq be de-
fined as above, Dq = diag{

∑
k 6=j exp(qj,k)}j, Lq = Dq − Aq be the Laplacian matrix, and J

be a matrix of ones. Then
zq = det(Lq + J/p2).

In summarizing the posterior distribution of T , it is useful to examine the chance that
a particular (j, k) is picked by the spanning tree. In particular, we focus on the marginal
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posterior probability that edge (j, k) is in T , which corresponds to the sum of the posterior
probabilities of all trees having edge (j, k). Remarkably these marginal posterior edge
probabilities are available in closed form. Differentiating the log-partition function, we
have

pr[T 3 (j, k) | y] =
∑
T∈T

1[(j, k) ∈ T ]pr(T | y)

=

∑
all T3(j,k) exp(qj,k)

∏
(h,l)∈T :(h,l) 6=j,k exp(qh,l)

zq

=
∂ log zq
∂qj,k

= (ΩL
j,j + ΩL

k,k − 2ΩL
j,k) exp(qj,k),

where ΩL = (Lq + J/p2)−1. We refer pr[T 3 (j, k) | y] as the “marginal connecting
probability” for (j, k).

The closed-form for the marginal connecting probability is dependent on other parame-
ters, such as the scale τ and hyper-parameters {vj}. Hence, it is still necessary to perform
computation for the joint posterior distribution of those parameters and tree.

3.2 Connectivity Guarantee via Matrix Rank Constraint

The parameter T needs to satisfy the connected graph constraint, which may appear chal-
lenging to enforce computationally – if we want to propose an update to T during a sampling
algorithm, how can we ensure that the proposal is still a spanning tree? A näıve way would
be checking consecutively over the edges in ET to ensure the connectivity — this procedure
is commonly known as “graph traversal”.

We propose an alternative to bypass the need for graph traversal. Consider the incidence
matrix B, a p×(p−1) matrix that records the node-to-edge relationship. For s = 1, . . . , p−1,
if es = (j, k), we set Bj,s = 1, Bk,s = −1 and all other Bl,s = 0 for l 6= j or k. The
matrix B is useful, because a graph of p nodes is connected if and only if the rank of
its incidence matrix rank(B) = p − 1 [Theorem 2.3 of Bapat (2010)]; that is, B is of full
column rank. Therefore, we can convert the combinatorially constrained space into a simple
rank-constrained problem:

T = {T : B is the incidence matrix of T, rank(B) = p− 1}.

We show the full-rankness of B implies an appealing combinatorial property, which
allows us to quickly find the “graph cut partition” related to each edge. To formalize, in a
spanning tree, removing an edge es = (j, k) will create two disconnected components; we
want to find the graph cut partition as the two disjoint sets of vertices:

Cut[(j, k)] = (V1, V2)

such that j ∈ V1, k ∈ V2,

V1 ∪ V2 = V, V1 ∩ V2 = ∅
G(V1) connected, G(V2) connected,

where G(Vk) is the sub-graph of G containing only the nodes in Vk. Finding Cut[(j, k)]
is non-trivial – in a brute-force approach, one starts from node j, traversing the edges

11



Duan and Dunson

ET \ {(j, k)} and adding all the visited nodes to V1; after visiting all the nodes accessible
in the path from j, one assigns the remaining nodes to V2.

The rank constraint can significantly reduce the burden — due to the full column rank,
the projection of any column ~Bs (corresponding to an edge es) into the nullspace of the
others would be a non-zero vector. Interestingly, the output of this projection contains only
two unique values, allowing us to directly find V1 and V2.

Theorem 4 (Traversal-free solution to find the graph cut partition) Denote the sth
column of B by ~Bs, and other columns by B[−s]. Then the p-element vector

~βs = {I −B[−s](B
T
[−s]B[−s])

−1BT
[−s]} ~Bs,

contains only two unique values β∗1,s, β
∗
2,s ∈ R with β∗1,s 6= β∗2,s. The Cut(es) = (V1, V2) can

be found using V1 = {j : βj,s = β∗1,s} and V2 = {j : βj,s = β∗2,s}.

Remark 5 The matrix inversion (BT
[−s]B[−s])

−1 can be computationally costly for large p

with a complexity at O(p3). To address this issue, we develop an efficient algorithm that
can extract (BT

[−s]B[−s])
−1 from (BTB)−1, and update the value of (BTB)−1 when a column

of B changes. This allows us to only evaluate (BTB)−1 for one time during the algorithm
initialization, and reduce the cost of computing ~βs to O(p) during the posterior sampling.
The details are provided in the appendix.

4. Posterior Computation

We develop an efficient Gibbs sampler for sampling from the posterior distribution over
spanning trees. To facilitate fast exploration of the high posterior probability region, we
develop: (i) a graph update step that can rapidly change the shape of the spanning tree;
(ii) an initialization that gives the approximate posterior mode of the spanning tree.

4.1 Gibbs sampling with the Cut-and-Reconnect Step

4.1.1 Update T

Since the full conditional distribution of T takes a product form over (j, k), one may use
the random-walk cover algorithm (Aldous, 1990; Mosbah and Saheb, 1999), loop-erasing
algorithm (Wilson, 1996) or approximation (Durfee et al., 2017) to directly sample T . This
would give independent samples of spanning trees.

On the other hand, to allow potential extension for sampling T from a non-product
form distribution, a Gibbs sampler would be of interest as well. At the current state of T
with ET = {e1, . . . , ep−1}, to make an update to the spanning tree, we propose a “cut-and-
reconnect” step for each edge es = (j, k): we first remove this edge and find its graph cut
partition Cut(es) = (V1, V2), and then sample a new edge (j′, k′) across V1 and V2, so that
we obtain a new spanning tree T ∗.

The transition that replaces (j, k) with (j′, k′) is reversible and has a simple multinomial
probability:

pr[(j′, k′) ∈ T ∗ | ET \ (j, k)] =
exp(qj′,k′)∑

j∈V1,k∈V2 exp(qj,k)
.
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(a) Cutting an edge (red) gives two discon-
nected subgraphs (with node sets V1 and V2),
calculated using the Theorem 4.
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(b) Drawing a new edge from the multinomial
distribution with |V1| × |V2| choices (green)
and form a new tree.

Figure 4: At each step, the cut-and-reconnect step explores a change of edge over a large
number of candidates, leading to rapid state exploration in the spanning tree space.

Repeating this for s = 1, . . . , p− 1 rapidly changes the shape of the tree.
To understand why this edge-based update can efficiently explore the space of T , we

compare it with an alternative node-based update — removing a node j from the graph and
reattaching it to one of the other nodes. For the node-based update, there are only at most
(p − 1) candidates in the multinomial draw; whereas for the edge-based update, there are
|V1|(p− |V1|) candidates, which has an order up to O(p2). To illustrate the large number of
candidates in the edge-based update, we plot a diagram in Figure 4.

4.1.2 Update the other parameters

Using the marginal density in (11), the parameters can be updated via

• Sample τ = |τ̃ | using random-walk Metropolis, by proposing τ̃∗ ∼ Uniform(τ̃−δ, τ̃+δ)
with δ > 0 a tuning parameter, and accepting with probability:

min

{
1,

∏
(j,k)∈T

[
1
|τ̃∗|n

(
1 +

‖~yj−~yk‖2
|τ̃∗|

)−(α+n)
]

exp(−|τ̃∗|/µτ )

∏
(j,k)∈T

[
1
|τ̃ |n

(
1 +

‖~yj−~yk‖2
|τ̃ |

)−(α+n)
]

exp(−|τ̃ |/µτ )

}
.

• If the degree-based prior in (13) is used, update (v1, . . . , vp) ∼ Dir(D1+α−1, . . . , Dp+
α− 1).

For the first step, we use an adaptation period at the beginning of the MCMC algorithm
to tune δ > 0, so that the acceptance rate of this step is around 0.3.

In the above algorithm, updating one edge of the tree has a computational complexity
of O(p); hence sampling all edges has a complexity of O(p2). To further accelerate the
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algorithm, one could use the random scan Gibbs sampler (Levine and Casella, 2006), which
in each iteration randomly chooses and updates a subset of the edges, hence reducing the
complexity to O(p).

In terms of the computational time, for a graph containing p = 200 nodes, sampling a
1, 000 steps takes about 2 minutes using Python on a quad-core laptop. The Markov chain
mixes rapidly, and we show diagnostics in the appendix.

Remark 6 As an alternative to sampling, if the marginal connecting probability is the main
interest, one can obtain a fast estimate of pr[T 3 (j, k) | y, τ̂ ] using a reasonable point esti-
mate of τ . For example, one could first find the conditional posterior mode of the spanning
tree T̂ (presented in the next subsection), then use the maximizer in the density (11) given
the tree: τ̂ = α

∑
(j,k)∈T̂ ‖yj − yk‖2/[n(p− 1)]. Computing the marginal connecting probabil-

ity (as well as the other quantities such as the partition function) is almost instantaneous
and takes at most a few seconds for p = 104.

4.2 Conditional Posterior Mode Estimation

Our next goal is to find a good initialization for the spanning tree; for this purpose, we will
use the posterior mode of the spanning tree given some initial estimate of (τ, η). In this
article, we initialize τ at µτ , and all ηj,k = 1/p2. Denote the adjacency matrix of the tree
by A = {aj,k}, aj,k = 1 if (j, k) ∈ T , aj,k = 0 otherwise; and the space of all adjacency
matrices for spanning trees by AT . Then the posterior mode of the adjacency matrix is

arg max
A∈AT

∑
j>k

aj,kqj,k, with qj,k = −(α+ n) log

(
1 +
‖~yj − ~yk‖2

τ

)
+ log ηj,k. (16)

Therefore, the mode is equivalent to the minimum spanning tree in a complete and
weighted graph, with the edge weight (−qj,k). There are several algorithms that can quickly
find the globally optimal solution (Prim, 1957; Dijkstra, 1959; Kruskal, 1956; Karger et al.,
1995). We choose to present Prim’s algorithm due to its simplicity.

Algorithm 1: Finding the conditional posterior mode Â

Initialize U = {1}, ET = ∅ and Ū = {1, . . . , p} \ U ;
while |U | < p do

Find (j, k) = arg max
(l,l′)∈(U,Ū)

ql,l′ , and (j, k) into ET .

Move l′ from Ū to U .
end

To explain this algorithm, we initialize the tree as a single node {1}, then add one
edge at a time; each time, among the edges that connect the current tree and the remaining
nodes, we pick the one with the largest ql,l′ . This is a greedy algorithm that finds the locally
optimal solution at each step; nevertheless, since the minimum spanning tree problem is
M-convex [a discrete extension of continuous convexity], the greedy algorithm is guaranteed
to converge to the global optimum [see Chapter 6.7 of Murota (1998)].

On the Prim’s algorithm above, one thing of independent interest is that at each step,
we only need to find the index of largest ql,l′ in (U, Ū), hence only the ordering of ql,l′ ’s
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impacts the tree estimate. This immediately leads to an invariance property of maximum
likelihood estimator for the tree.

Theorem 7 (Invariance of maximum likelihood tree estimator) For the maximum
likelihood tree estimator,

Â∗ = arg max
A∈AT

∑
j>k

aj,k log Π
[
yk | yj , es = (j, k), θ

]
,

if Π
[
yk | yj , es = (j, k), θ

]
is monotonically decreasing in the divergence/distance between yj

and yk: div(yj , yk) < div(yh, yl)⇒ Π
[
yk | yj , es = (j, k), θ

]
> Π

[
yh | yl, es = (h, l), θ

]
, then

Â∗ = arg min
A∈AT

∑
j>k

aj,kdiv(yj , yk).

As one application, for any spanning tree model specified with Π
[
yk | yj , es = (j, k), θ

]
decreasing in ‖yj − yk‖ (such as the generalized double Pareto density, location-scale t-
distribution density for continuous yj ∈ Rn, or hamming distance-based probability for
binary yj ∈ {0, 1}n), Â∗ would be the same as the one under a Gaussian/Gaussian-form
Π
[
yk | yj , es = (j, k), θ

]
∝ exp(−‖yj − yk‖22/2). Further, in our case (16), since the prior

probability gets overwhelmingly dominated by the likelihood as n → ∞, we see that our
posterior mode converge to the maximum likelihood estimator under a Gaussian density
as well. Therefore, we will now discuss mostly on Gaussian spanning tree models in the
theoretic section, and the results can be generalized to non-Gaussian models.

5. Theoretic Study

In this section, we provide a more theoretical exposition on our spanning tree model.

5.1 Connection to Gaussian Graphical Models

We now focus on the Gaussian spanning tree model, and compare it with Gaussian graphical

models. Following Ravikumar et al. (2011), we assume y(i) = (y
(i)
1 , . . . , y

(i)
p ) is a zero-

mean random vector with covariance Σ0. We denote the empirical covariance by Sn =∑n
i=1 y

(i)y(i)T/n.
The incidence matrix B can be used as a contrast matrix for computing ~yj −~yk. There-

fore, we have a matrix representation for the posterior:

L(y;T, θ)Π0(T ) ∝ |Ψ|−n/2 exp

{
−1

2

n∑
i=1

tr(y(i)TBΨ−1BTy(i)) + tr(A log η)

}
= |Ψ|−n/2 exp

{
−n

2
tr(BΨ−1BTSn) + tr(A log η)

}
,

(17)

where Ψ = diag(σ2
1, . . . , σ

2
p−1), log η is calculated element-wise on ηj,k, and A is the ad-

jacency matrix for T . For a tractable theoretic analysis, we will treat η as fixed with all
| log ηj,k| finite.
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We can immediately see some similarity of (17) to regularized Gaussian graphical mod-
els, such as the one associated with the graphical lasso (Friedman et al., 2008), with a
regularized likelihood proportional to |Ω̂|−1/2 exp{−n/2tr(Ω̂Sn) − λ|Ω̂|1,1}, and Ω̂ the pre-
cision matrix assumed to be sparse, as induced by the (1, 1)-matrix norm.

Indeed, we will show that (17) is equivalent to a regularized Gaussian graphical model,
except the structure of the precision matrix is determined by a spanning tree. Consider a
weighted spanning tree, with weighted adjacency (Aφ)j,k = σ−2

s for the edge es = (j, k) and
(Aφ)j,k = 0 if (j, k) is not an edge; and denote its degree matrix by Dφ.

Lemma 8 The Laplacian matrix Lφ = Dφ −Aφ has Lφ = BΨ−1BT.

Using the spectral property of the Laplacian, the smallest eigenvalue λ(1)(Lφ) = 0 with

its eigenvector ~1/
√
p; and the number of zero eigenvalues is equal to the number of isolated

subgraph(s) — since the spanning tree is connected, there is only one subgraph hence only
one eigenvalue equal to zero. Therefore, it is not hard to see the matrix

Ω̃ = Lφ + εJ

is strictly positive definite with ε > 0, which can be viewed as a precision matrix. Further,
we have the following identity.

Lemma 9 With Ω̃ = Lφ + εJ , we have |Ω̂| = p2ε|Ψ−1|.

Therefore, (17) becomes (omitting constant):

L(y;T, θ)Π0(T ) ∝ |Ω̃|−n/2 exp
{
−n

2
tr(SnΩ̃)

}
exp{tr(AT log η)}, (18)

which is a restricted Gaussian graphical model with the precision matrix parameterized by
the spanning tree.

5.2 Convergence of the Tree

With the connection to Gaussian graphical models established, a natural question is what is
the advantage of the spanning tree-based model, compared to other less restricted models?

Other than immense computational advantages, the key advantage is that we do not
require any assumption on the population Σ0 to accurately recover the minimum spanning
tree based on Σ0. In comparison, most of the existing approaches require specific strong
assumptions on Σ0 such as sparsity or norm constraints, unless n� p.

For the ease of analysis, we consider the non-informative prior Π0(T ) ∝ 1. Integrating
out σ2

s over the generalized double Pareto prior and examining the Prim’s algorithm, we
see the following equivalence:

arg min
(j,k)∈(U,Ū)

(α+ n) log

(
1 +
‖~yj − ~yk‖2

τ

)
= arg min

(j,k)∈(U,Ū)

‖~yj − ~yk‖22,

due to the monotonicity of the function (α + n) log(1 + x/τ) in x > 0, for any τ > 0. As
we can verify that ‖~yj − ~yk‖22/n = Sn:j,j + Sn:k,k − 2Sn:j,k, with Sn:j,k the (j, k)th element
of the empirical covariance Sn, we have the posterior mode of the tree as

T̂ = arg min
T∈T

∑
(j,k)∈T

Wn:j,k, Wn:j,k = Sn:j,j + Sn:k,k − 2Sn:j,k. (19)
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It is easy to see that as n → ∞, Sn → Σ0 in probability and the posterior mode will
converge to

T0 = arg min
T∈T

∑
(j,k)∈T

W0:j,k, W0:j,k = Σ0:j,j + Σ0:k,k − 2Σ0:j,k = E‖yj − yk‖22. (20)

That is, asymptotically, our model recovers the minimum spanning tree of W0, providing
accurate partial information about the population covariance Σ0 .

The next crucial question is, how fast does (19) converge to (20)? At a finite n, to
successfully recover T0 at T̂ , we only need the ordering in {Wn:j,k}(j,k) to partly match the
one in {W0:j,k}(j,k). Intuitively, this condition is much easier to meet, compared to having

‖Ω̂− Σ−1
0 ‖ ≈ 0 as in other approaches using a full covariance/precision matrix estimation.

We now formalize this intuition. For the required ordering condition, we first state an
important property of the minimum spanning tree. For generality, we consider the case
when the minimum spanning tree may be not unique (that is, there could be multiple
equivalent solutions in (20)).

Theorem 10 (Path strict optimality) For a complete graph with edge weights {Wj,k}j,k,

denote {T (1)
0 , T

(2)
0 , . . . , T

(M)
0 } as the set of all the minimum spanning trees. Any edge

outside the trees (h, l) 6∈ ∪Mm=1T
(m)
0 has higher weight than every edge on the tree path

(j, k) ∈ T (m)
0 : (j, k) ∈ path(h, l) for m = 1, . . . ,M ; that is, we have Wh,l > Wj,k strictly.

Using the above theorem, we can define a “separability constant” δ > 0 to quantify how
separable the minimum spanning tree(s) is from the other spanning trees:

δ = min
(h,l,j,k)∈I

(Wh,l −Wj,k),

where I =

{
(h, l, j, k) : (h, l) 6∈ ∪Mm=1T

(m)
0 , (j, k) ∈ T (m)

0 : (j, k) ∈ path(h, l)

for m = 1, . . . ,M

}
.

We use Figure 5(a) to explain the above separability constant — let (h∗, l∗, j∗, k∗) be
the indices so that we reached Wh∗,l∗ −Wj∗,k∗ = δ, with (j∗, k∗) on one of the minimum

spanning trees T
(1)
0 and (h∗, l∗) not on any of the T

(m)
0 . If we remove the edge (j∗, k∗), the

path(h∗, l∗) will be disrupted; hence the graph cut will lead to h∗ ∈ V1 and l∗ ∈ V2. As a
result, adding (h∗, l∗) will form a new spanning tree. This new tree is sub-optimal in terms

of having the total weights δ larger than T
(1)
0 .

We are now ready to state the convergence rate for the posterior mode.

Theorem 11 Assume y(i) iid∼ F , i = 1, . . . , n, with F a p-variate distribution with mean ~0

and covariance matrix Σ0, and each y
(i)
j sub-Gaussian with bound parameter λ. Denote the

set of all minimum spanning trees based on Σ0 as in (20) by T0 = {T (1)
0 , T

(2)
0 , . . . , T

(M)
0 }.

Denoting a posterior mode of the spanning tree by T̂ ,

pr(T̂ 6∈ T0) ≤ 2

3
exp

{
− nδ2

8(β2
0 + β0δ)

+ 3 log p

}
,

17



Duan and Dunson

where β0 = 2(11λ2)3/(v2) and v2 = minj,k[E(~yj − ~yk)4 −W 2
0:j,k].

We do not impose a Gaussian assumption on F , but just the tail concentration condition
on y. The probability of falling outside of T0 drops to zero rapidly, at an exponentially
decaying rate in the separability constant δ and sample size n. Therefore, we only need
n � log p without requiring any conditions on Σ0 or its associated graph G0. Figure 5(b)
illustrates the intuition. Note that above result holds for any F with finite support (since
they are sub-Gaussian), such as one for binary yj ∈ {0, 1}n.

(a) Path optimality of the minimum spanning tree (shown in solid lines): any edge not on the
minimum spanning tree (blue) has strictly higher weight than every edge in the tree path (red)
connecting the two nodes.

(b) Intuition about the faster convergence of the restricted graph model: the oracle graph G0 sits in
the unrestricted graph space. Due to the high dimension p � n, the covariance/precision matrix-
based estimator has a large uncertainty (grey contours) and critically slow convergence rate. The
spanning tree model is in a restricted parameter space T (orange), where the tree estimator has a
much smaller uncertainty (blue contours) and faster convergence to T0 — the minimum spanning
tree transform of G0.

Figure 5: Illustration of the theory results.

Remark 12 To provide a probabilistic interpretation of the above theorem, note that (18)
is a discrete distribution quickly converging to the posterior mode set as n→∞. Therefore,
the theorem shows that the large sample posterior is correctly concentrated toward T0, as a
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transform of the ground-truth G0. On the other hand, it remains an open theoretic question
on how to quantify the differences between Π(T | y) and Π(G | y).

6. Numerical Experiments

6.1 Comparing Point Estimates with Existing Approaches on Backbone
Estimation

We compare our Bayesian spanning tree model against a few popular graph estimation
approaches: the thresholding estimator on the absolute empirical correlation; the graphical
lasso with a chosen α, as the multiplier to the l1,1-norm of the precision matrix; the graphical
lasso with α chosen by cross-validation (as implemented in the scikit-learn package). We
record the graph edge estimate (j, k) as where Σ̂j,k 6= 0 in the thresholding estimator, and

Ω̂j,k 6= 0 in the graphical lasso.
First, we consider the common assumption that the graph is very sparse. We use the

scikit-learn package to generate a precision matrix Ω0, with edge density level at 3% (num-
ber of non-zero elements divided by p2), and non-zero correlations of magnitude between
(0.3, 0.9). At p = 200, this leads to approximately 600 edges in each experiment. Then we

simulate repeats of the data (y
(i)
1 , . . . , y

(i)
p ) ∼ N(0,Ω−1

0 ) for i = 1, . . . , n and obtain graph
estimates Ĝ from each method. Each setting is repeated over different n’s, and for each n
the mean of 10 experiments is shown with the 95% confidence interval for each reported
quantity.

Denote the oracle graph by G0 and its minimum spanning tree by T0. Ideally, we want
the graph estimate to fully cover the backbone subgraph Ĝ ⊇ T0, while having Ĝ ⊆ G0

so that we do not obtain too many falsely positive edge estimates. Therefore, a useful
benchmark for the estimation error is |T0\Ĝ|+|Ĝ\G0|; we show the details in the appendix.

Remark 13 To be fair, due to the constraints of spanning trees, there will be false negative
estimates in G0 \ Ĝ if G0 has more than (p − 1) edges. Nevertheless, as our focus is
on recovering the backbone graph (to be exact, the backbone support graph of the oracle
covariance matrix as in (20), regardless if G0 is disconnected), we choose to benchmark
using the number of false positive edges as estimation error.

As shown in Figure 6, the graphical lasso using cross-validation produces the largest
number of edges; while its estimates cover T0, they also contain too many falsely positive
|Ĝ \G0|. Empirically tuning α = 0.8 in the graphical lasso somewhat reduces this problem.
The correlation thresholding estimator using |ρ|j,k ≥ 0.5 (as a common “default” choice in
practice) seems to produce the best results among the existing approaches. The Bayesian
spanning tree shows a competitive performance to the best existing approach. At the same
time, it shows a low error for estimating T0: at n ≥ 100, it almost perfectly recovers all the
edges in T0.
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(a) Oracle graph, with its
minimum spanning tree
shown in red.

(b) Graphical lasso with α
chosen by cross-validation.

(c) Graphical lasso using α =
0.8.

(d) Thresholding absolute
correlation at 0.9.

(e) Thresholding absolute cor-
relation at 0.5.

(f) Bayesian spanning tree
(posterior mode shown).

Sample size

(g) Graph estimation error, when the oracle has about 600 edges over 200 nodes.

Sample size

(h) Graph estimation error, when the oracle has about 4, 000 edges over 200 nodes.

Figure 6: Simulated experiments on graph estimation. Panels (b-f) are point estimates
obtained at n = 100 for the oracle graph with about 600 edges.

Next, we slightly change the experiment setting by increasing the denseness of the
oracle graph. We adjust the edge density level to around 20%, which leads to a graph with
about 4, 000 edges over 200 nodes. This time, all the existing approaches show much larger
estimation error, likely due to the breakdown of the sparsity assumption. On the other
hand, the Bayesian spanning tree still maintains a good performance, with the estimation
error rapidly decreasing in n.

We provide the detail in the appendix, and illustrate the sensitivity in solely relying on
comparing the magnitude of empirical precision matrix elements for graph estimation.
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6.2 Uncertainty Quantification of the Graph Estimates

We now demonstrate the capability of the uncertainty quantification of our Bayesian span-
ning tree model.

First, we consider the common example of a latent position graph (Hoff et al., 2002)
associated with three communities. In the latent space, each community is a group of points
generated from a bivariate Gaussian. As shown in Figure 7, the likely spanning tree T is
the one containing three component trees, each spanning the points within a community,
and two long edges with large ‖~yk − ~yj‖ binding the three trees together.

There is a large amount of uncertainty in this model, as can be seen via comparing Panels
(a) and (b): (i) within a community, each point has a large number of other points in its
neighborhood, hence there are multiple ways to form a tree with high posterior probability
(that is, we have a low separability constant δ); (ii) when connecting two communities
together, these candidate long edges do not differ much in the density (11) (due to the near
polynomial density tail of generalized double Pareto), hence they are almost equally likely to
enter T . As shown in Panel (c), most of the edges have a relatively low marginal connecting
probability pr[T 3 (j, k) | y], indicating the posterior probability of T is scattered over a
large number of different trees.

(a) One spanning tree sam-
pled from the posterior distri-
bution.

(b) Another spanning tree
sampled from the posterior
distribution.

(c) The matrix of marginal
connecting probabilities
pr[T 3 (j, k) | y].

Figure 7: High uncertainty of spanning trees when estimating a latent position graph with
3 communities, each formed by a bivariate Gaussian.

Next, we move to the case of a graph formed near two manifolds. We use the two-moon
example provided in the scikit-learn package. As shown in Figure 8, each point has only
one or a few points in the neighborhood, therefore, the posterior distribution of T is highly
concentrated near the posterior mode. As a result, the two random posterior samples do not
seem to differ much; and we have high values of

∑
T pr[(j, k) ∈ T, T | y] near the diagonal

of the matrix.
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(a) One spanning tree sam-
pled from the posterior distri-
bution.

(b) Another spanning tree
sampled from the posterior
distribution.

(c) The matrix of marginal
connecting probabilities
pr[T 3 (j, k) | y].

Figure 8: Low uncertainty of spanning trees for when estimating a graph formed by the
two-moon manifold.

We now empirically assess the concentration rate of the posterior distribution to the
posterior mode. Under p = 100, 200 or 300, we generate a dense p × p covariance matrix
Σ0 using the scikit-learn package, and generate n data from N(0,Σ0). Under each sample
size n, we fit our model and obtain 100 sampled trees and compare them with the posterior
mode. Figure 9 shows a very rapid concentration of posterior distribution to the posterior
mode.
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(b) p = 200
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(c) p = 300

Figure 9: The posterior distribution concentrates rapidly to the posterior mode, as sample
size n increases. Each boxplot is generated based on 100 trees drawn from the posterior
distribution, and the proportions |T \ T̂ |/(p− 1) characterizing the difference between each
tree sample and the posterior mode T̂ .

7. Spanning Tree Modeling of Brain Networks

We use our Bayesian spanning tree model to analyze data from a neuroscience study on hu-
man working memory. The study involves 20 human subjects participating in the Sternberg
verbal memory test: first, each subject reads a list of g numbers on the screen, trying to
memorize them for 2 seconds; then with the numbers removed from the screen, the subject
answers if a particular number was in the list shown earlier. During this process, electroen-
cephalogram (EEG) signals are obtained from electrode channels placed over 128 regions of
interest (ROIs) of each subject’s brain, over 5 seconds covering 512 times points. The goal
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of this study is to not assess whether the subject correctly answers the question, but to find
out how the brain acts differently when the subject is performing a simpler task with g = 2
numbers versus a more challenging task with g = 6 numbers.

We denote each EEG time series by y
[s,g,t]
j , as the signal collected from the jth ROI

for subject s under the task load g at time t. To flexibly model these time series, we use
the following hidden Markov model, based on K latent graph states, each modeled by a
spanning tree (T (1), . . . , T (K)):

y
[s,g,t]
1 , y

[s,g,t]
2 , . . . , y

[s,g,t]
128 ∼ BSTM(T̃s,g,t; τ),

pr[T̃s,g,0 = T (k)] = q0,k,

pr[T̃s,g,t = T (k) | T̃s,g,t−1 = T (k′)] = q
[g]
k′,k for t > 1,

(q0,1, . . . , q0,K) ∼ Dir(0.5, . . . , 0.5),

(q
[g]
k′,1, . . . , q

[g]
k′,K) ∼ Dir(0.5, . . . , 0.5) for k′ = 1, . . . ,K,

Π0(T (k)) ∝ 1,

where BSTM(T̃ ; τ) represents the Bayesian spanning tree model with the tree T̃ and the
density (11) with the scale parameter τ ; (q0,1, . . . , q0,K) are the initial probability distribu-
tion for the K states. To enable borrowing of information across subjects and tasks, we
let the parameters τ , q0,k’s and the dictionary of trees T (k)’s to be shared across subjects
and tasks. On the other hand, to characterize the difference between two tasks, we set each

q
[g]
k′,k, the transition probability from state k′ to state k, to be different according to the task

load g = 2 or 6.
We use the Dirichlet distribution with concentration parameter 0.5 to induce approxi-

mate sparsity in the values of the initial and transition probabilities, and we set K = 20 for
as an upper bound. In posterior samples, we found the maximum number of states used by
the model is only 5, indicating K = 20 is sufficient as an upper bound.

We run our MCMC algorithm for 20, 000 iterations, and discard the initial 10, 000 as
a burn-in. Figure 10 shows the results for the data analysis. We plot the posterior mode
spanning tree for each latent state, while showing the uncertainty on each edge using the
marginal connecting probability.

The results are quite interpretable — as shown in Panels a and d, the two dominating
states correspond to having each ROI connect to another that is spatially close. There is
separation between the front of the brain (upper part in each plot) and the rear (lower
part). Comparing the task of memorizing g = 2 numbers (Panel f) against the one of g = 6
numbers (Panel g), the latter involves more time spent in the State 5, during which the
brain is more active and has more long-range connectivities over the brain (Panel e).

To validate our trained model, we use a previously reserved set of EEG data collected
from another 20 subjects (hence 40 time series), and using our estimated model to classify
whether a time series is likely to be collected under g = 2 or g = 6. Specifically, for each

testing time series ỹ[s,g̃,t] = (ỹ
[s,g̃,t]
1 , ỹ

[s,g̃,t]
2 , . . . , ỹ

[s,g̃,t]
128 )t, and for g = 2 or 6, we sample the

latent state assignments given T̂ (k)’s fixed at the posterior mode, q̂0,k’s and q̂
[g]
k′,k’s fixed at

the posterior mean from the trained model, over the course of 10, 000 MCMC iterations.

We average the last 5, 000 iterations to compute the likelihood Π(ỹ[s,g̃,t] | T̂ (k), q̂0,k, q̂
[g]
k′,k)
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marginalizing out the state assignment. Comparing g = 2 and 6, we obtain the classification
probability:

pr(g = 2 | .) =
Π(ỹ[s,g̃,t] | T̂ (k), q̂0,k, q̂

[2]
k′,k all k, k′)

Π(ỹ[s,g̃,t] | T̂ (k), q̂0,k, q̂
[2]
k′,k all k, k′) + Π(ỹ[s,g̃,t] | T̂ (k), q̂0,k, q̂

[6]
k′,k all k, k′)

.

(a) State 1 (b) State 2 (c) State 3 (d) State 4 (e) State 5

(f) Distribution of state as-
signment for memory task
load g = 2.

(g) Distribution of state as-
signment for memory task
load g = 6.

(h) Comparison of the two
time series in the state assign-
ment for one subject.

Figure 10: Results of analyzing the electroencephalogram (EEG) time series collected over
128 channels on the human brain, using the Hidden Markov Model with the spanning trees
as the latent states. The posterior distribution contains five latent states (Panels a-e, viewed
from the top of the head), where each panel shows the posterior mode spanning tree with the
color representing the marginal connecting probability. Comparing the task of memorizing
g = 2 numbers (Panel f) to the one of g = 6 numbers (Panel g), the latter involves more
time spent in the State 5, during which the brain is more active and has more long-range
connectivities over the brain (Panel e). Panel h shows a comparison in the times series of
the latent state assignments, when a given subject is memorizing g = 2 (blue) versus g = 6
(orange) numbers.

Using g = 2 if pr(g = 2 | .) > 0.5 and g = 6 otherwise, we obtain a low misclassification
rate of 15% when comparing with true g̃. In the receiver operating characteristic curve, we
calculate the area under the curve (AUC) and obtain 89%. This suggests that our model
provides an adequate characterization the differences between the groups, given the low
signal-to-noise ratio in EEG data.
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To compare, we also run the same hidden Markov model except with each latent state
modeled by a multivariate Gaussian distribution N(~µk,Ω

−1
k ), with Ωk estimated via the

graphical lasso with α = 0.5. Setting K at 20, we obtain a competitive validation result
with the misclassification rate at 15% and AUC at 85%; however, a major drawback is that
this Gaussian hidden Markov model involves 16 latent states with nontrivial probabilities
(≥ 5%), hence is much more difficult to interpret than the 5 states from the spanning tree-
based model. In addition, we test the Gaussian hidden Markov model with K reduced to
10, and it leads to much worse validation performance, with the misclassification rate at
45% and AUC at 53%, which is almost close to a random guess; similarly, we test α = 0.1
and α = 1 in the graphical lasso, and obtain similarly poor performance. Therefore, the
Gaussian hidden Markov model is much less parsimonious than the spanning tree-based
model. Lastly, we fit logistic regression on the raw data, which leads to misclassification
rate at 39% and an AUC of 55%. This large classification error is likely due to the high
dimension and noisiness of EEG data, whereas fitting a graphical model seems to improve
the signal-to-noise ratio.

8. Discussion

In this article, we propose to use the spanning tree as a restricted graph model to estimate
the backbone of a latent graph. We study its mathematical properties and demonstrate
good performances in both theory and applications in recovering important subsets of edges.
There are several interesting extensions worth exploring. First, instead of using only one
spanning tree, one could consider the union of multiple spanning trees as a more flexible
graphical model; there are several open questions that need to be addressed, such as the
identifiability issue due to the overlap of multiple trees as well as its finite sample recovery
theory. Second, one could consider the spanning tree as the opposite extremity of the clique
graph [a completely connected graph with p(p− 1)/2 edges]; therefore, one could view the
broad class of connected graphs as in some continuum between those two extremal graphs,
potentially creating useful new graph models. This is related to thin junction tree (Bach
and Jordan, 2001) and bounded treewidth Bayesian networks (Elidan and Gould, 2008).
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Marina Meilă and Tommi Jaakkola. Tractable Bayesian Learning of Tree Belief Networks.
Statistics and Computing, 16(1):77–92, 2006.
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Appendix A. Appendix

A.1 Proof of Theorem 3

Proof The proof slightly extends Chaiken and Kleitman (1978), which states

zq =
1

p

p∏
j=2

λ(j)(Lq),

where λ(2)(Lq) ≤ . . . λ(p)(Lq) are the largest p − 1 eigenvalues of Lq. Since the smallest
eigenvalue of Lq is 0 with a corresponding eigenvector 1p/

√
p, adding J/p/p to Lq and tak-

ing the determinant yields the result.

A.2 Proof of Theorem 4

Proof
For ease of notation, let M = I − B[−s](B

T
[−s]B[−s])

−1BT
[−s]. After removing edge es,

we obtain two separated subgraphs, denoted by G1 and G2. Considering two nodes j1 and
j2 in the same connected subgraph (without loss of generality, in G1), we use a p-element
binary vector ~x(j1, j2) to represent auxiliary edge (j1, j2), with the j1th element equal to 1
and j2th element equal to −1, and all other elements 0.

We know there is a path in G1 that connects the nodes j1 and j2. We can represent the
auxiliary edge ~x(j1, j2) as a linear combination of the columns of B[−s] using the edges in
the path. That is, there exists ah’s taking value in {−1, 1} such that:

~x(j1, j2) =
∑

h:eh∈path(j1,j2)

ah ~Bh.

This means that ~x(j1, j2) is in the column space of B[−s], therefore M~x(j1, j2) = ~0.
Multiplying M to ~x(j1, j2) corresponds to creating a contrast between the columns j1

and j2 of M . Hence if j1, j2 are in the same subgraph, Ml,j1 = Ml,j2 for all l = 1, . . . , p;
since M is symmetric, Mj1,l = Mj2,l for all l = 1, . . . , p. Therefore, for two index sets
V1 = {j : j ∈ G1} and V2 = {k : k ∈ G2}, the matrix M can be divided into four
blocks; within each the elements have the same value: Mj1,j2 = m1,1 for j1 ∈ V1, j2 ∈ V1,
Mj2,j1 = Mj1,j2 = m1,2 for j1 ∈ V1, j2 ∈ V2, Mj1,j2 = m2,2 for j1 ∈ V2, j2 ∈ V2.

Since ~Bs = ~x(j, k) [or −~x(j, k), we will use the former without loss of generality], we
know:

M ~Bs = (Ml,j −Ml,k)l=1,...,p,

where Ml,j −Ml,k = m1,1 −m1,2 if l ∈ V1, and Ml,j −Ml,k = m1,2 −m2,2 if l ∈ V2. That is,

the vector M ~Bs is also partitioned into two parts according to l ∈ V1 or l ∈ V2.
It remains to show those two values are distinct m1,1 − m1,2 6= m1,2 − m2,2. We use

proof by contradiction. Supposing equality holds, we have M ~Bs = ~1pc, for some scalar

c ∈ R. Since B = [B[−s] ~Bs] has full rank p − 1, ~Bs should not be in the column space of

B[−s]; hence c 6= 0. However, we know 1T
pM = 1T

p − 1T
pB[−s](B

T
[−s]B[−s])

−1BT
[−s] = 1T

p , as
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each column of B[−s] adds up to zero — that is, 1T
pM

~Bs = 1T
p
~Bs = 0, which contradicts

~1T
p
~1pc = pc 6= 0.

A.3 Proof of Lemma 8

The proof is trivial by checking each element of BΨ−1BT.

A.4 Proof of Lemma 9

Proof Introduce augmented matrices B∗ = (B 1p) and Λ∗ = diag{Ψ−1, ε}. As both
matrices are square and full rank, we have

|Ω̂| = |B∗Λ∗B∗T| = |B∗||Λ∗||B∗T| = |B∗B∗T||Λ∗| = |BBT + J ||Λ∗|.

Using the previous lemma with binary (Aφ)j,k ∈ {0, 1}, BBT is the Laplacian of an un-
weighted spanning tree T̃ , with eigenvalues λ̃p ≥ . . . ≥ λ̃2 > λ̃1 = 0, and

|BBT + J | = p

p∏
l=2

λ̃l.

Using Kirchhoff’s matrix tree theorem (Buekenhout and Parker, 1998), the product of the
top (p − 1) eigenvalues of the Laplacian for graph G is related to the number of spanning
trees t(G) contained in G via

p∏
l=2

λ̃l = pt(G).

As t(T̃ ) = 1, |BBT + J | = p2. Combining the above, we have |Ω̂| = p2ε|Ψ−1|.

A.5 Proof of Theorem 10

Proof We first state the theorem from Goh (2002).

Theorem 14 For a complete graph with edge weights {Wj,k}, a spanning tree T is a
minimum spanning tree if and only if: for every edge (h, l) 6∈ T , Wj,k ≤ Wh,l for every
(j, k) ∈ T : (j, k) ∈ path(h, l).

We prove by contradiction that we must have Wj,k 6= Wh,l for (h, l) 6∈ ∪Mm=1T
(m)
0 . Sup-

pose Wj,k = Wh,l for a certain (h, l) not in the tree and a (j, k) ∈ path(h, l) in the minimum

spanning tree T
(m)
0 . Since (j, k) ∈ path(h, l), we can disconnect (j, k) and replace it with

(h, l); we have a new path such that (h, l) ∈ path(j, k), forming a new minimum spanning

tree, which contradicts the condition (h, l) 6∈ ∪Mm=1T
(m)
0 .
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A.6 Proof of Theorem 11

Proof For better clarity, in this proof, we use simplified notations mj,k := Wn:j,k, Mj,k :=
W0:j,k, S := Sn and Σ := Σ0. The posterior mode corresponds to

T̂ = arg min
T

∑
es=(j,k)∈T

(Sj,j + Sk,k − 2Sj,k),

where j 6= k, and mj,k = (Sj,j + Sk,k − 2Sj,k). Using Sj,k = 1/n
∑n

i=1 y
(i)
j y

(i)
k , we have

mj,k = n−1
n∑
i=1

{y(i)
j − y

(i)
k }

2.

Letting z
(i)
j,k = y

(i)
j − y

(i)
k , z

(i)
j,k has mean 0, and

E exp(tz
(i)
j,k)

(a)

≤
√

E exp(2ty
(i)
j )E exp(−2ty

(i)
k )

(b)

≤ exp(4t2λ2/2)

where (a) uses Cauchy-Schwarz inequality and (b) uses E exp(tX) ≤ exp(λ2t2/2) ∀t ∈ R for

the λ−sub-Gaussian random variable. Therefore, z
(i)
j,k is 2λ-sub-Gaussian.

We have the mean of {z(i)
j,k}

2 as

Mj,k = E{z(i)
j,k}

2 = Σj,j + Σk,k − 2Σj,k,

and it is not hard to see that Mj,k = Emj,k = E(Sj,j + Sk,k − 2Sj,k) as well. Since Σ
is positive definite, letting x be a p-element vector with xj = 1, xk = −1 and all other
elements 0, we have Mj,k = xTΣx > 0. Further, Mj,k ≤ 4 max(Σj,j ,Σk,k) due to |Σj,k| ≤√

Σj,jΣk,k ≤ max(Σj,j ,Σk,k).
1. Show that (mj,k −Mj,k) is sub-exponential via the Bernstein’s condition.

Our next goal is to check the Bernstein’s moments condition for w
(i)
j,k = {z(i)

j,k}
2 −Mj,k,

for all q = 2, 3, . . .:

|E{w(i)
j,k}

q| ≤ q!2−1v2
j,kβ

q−2, (21)

where v2
j,k is the variance of w

(i)
j,k and we want to find a valid constant β that satisfies the

inequality.
We now focus on a given index (i, j, k). For ease of notation, we omit the subscript

(j, k) and superscript i. For q = 2, (21) holds trivially, hence we now focus on q ≥ 3.
Using Lemma 1.4 from Buldygin and Kozachenko (2000), for any q > 0, the moments of a
2λ-sub-Gaussian random variable has

E|z|q ≤ 2(q/e)(q/2)(2λ)q. (22)

We have for any q = 3, 4, . . .:

E|z2|q/q! ≤ 2(2q/e)q(2λ)2q

= 23q+1(q/e)qλ2q/q!

(a)

≤ (2/e)(8λ2)q

(23)
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where (a) uses q! ≥ e(q/e)q.

∣∣Ewq
q!

∣∣1/q = |
E(z2 −Mj,k)

q

q!
|1/q

(a)

≤ (
E|z2 −Mj,k|q

q!
)1/q

(b)

≤
(Ez2q)1/q +Mj,k

(q!)1/q

(c)

≤ (2/e)1/q8λ2 + 4λ2/{e1/q(q/e)}
(d)

≤ 8λ2 + 4λ2/{e1/3(3/e)}
< 11λ2.

where (a) uses |Ex| ≤ E|x| ; (b) is due to the Minkowski inequality, (E|X + Y |q)1/q ≤
(E|X|q)1/q+(E|Y |q)1/q for any q ≥ 1; (c) uses (23), q! ≥ e(q/e)q, andMj,k ≤ 4 max(Σj,j ,Σk,k)

and Lemma 1.2 from Buldygin and Kozachenko (2000), that for λ-sub-Gaussian y
(i)
j , its

variance Σj,j ≤ λ2; (d) uses (2/e)1/q < 1, and e1/q(q/e) is increasing in q ≥ 3. Therefore,

|Ewq| ≤ q!(11λ2)q,

hence the next goal is to find β such that q!(11λ2)q ≤ q!2−1v2βq−2. Slight manipulation
yields that, for q ≥ 3, we need β large enough such that

(11λ2)q−2 ≤ v2

2(11λ2)2
βq−2.

In addition,

v2 = Ew2 = E(z2 −Mj,k)
2 = Ez4 −M2 ≤ Ez4

(a)

≤ 2(4/e)2(2λ)4 ≤ 70λ4,

where (a) uses the sub-Gaussian moment bound (22). Therefore, we know v2/{2(11λ2)2} <
v2/(70λ4) ≤ 1, and a valid constant is

β ≥ {2(11λ2)2/(v2)} × (11λ2) = 2(11λ2)3/(v2).

Further, note that β ≥ 2(11λ2)3/(70λ4) ≥ 38λ2 > v.

Now including the index (i, j, k), w
(i)
j,k is sub-exponential with parameters vj,k and βj,k.

This gives the Bernstein inequality for any ε > 0,

Pr(|mj,k −Mj,k| ≥ ε) = Pr(| 1
n

n∑
i=1

w
(i)
j,k| ≥ ε) ≤ 2 exp{− nε2

2(v2
j,k + βj,kε)

}

(a)

≤ 2 exp{− nε2

2(β2
j,k + βj,kε)

},

(b)

≤ 2 exp{− nε2

2(β2
0 + β0ε)

},
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where (a) uses v ≤ β, and in (b) we set β0 = maxall(j,k) βj,k.
2. Analyze Prim’s greedy algorithm to find the concentration inequality

Let T0 be the minimum spanning tree based on the oracle covariance:

T0 = arg min
T

∑
es=(j,k)∈T

Mj,k,

where Mj,k = Σj,j + Σk,k− 2Σj,k. We can now analyze the Prim’s greedy algorithm applied

on mj,k’s and bound the probability of finding a spanning tree T̂ different than T0.
For simplicity, let us start with the case when the oracle minimum spanning spanning

tree is unique. At the step with two sets of nodes U and Ū , if an edge (j′, k′) ∈ E(U, Ū) (the
edge set between U and Ū) but (j′, k′) 6∈ T0, then there must be an edge (j, k) ∈ E(U, Ū),
(j, k) ∈ T0 such that (j, k) ∈ path(j′, k′). By the path optimality of the oracle minimum
spanning tree, M(j,k) < M(j′,k′). The probability of not having mj,k < mj′,k′ has:

pr(mj,k ≥ mj′,k′) = pr{(mj,k −Mj,k)− (mj′,k′ −Mj′,k′) ≥ (Mj′,k′ −Mj,k)}
(a)

≤ pr{(mj,k −Mj,k)− (mj′,k′ −Mj′,k′) ≥ δ}
(b)

≤ pr{|mj,k −Mj,k|+ |mj′,k′ −Mj′,k′ | > δ}
(c)

≤ pr{|mj,k −Mj,k| > δ/2}+ pr{|mj′,k′ −Mj′,k′ | > δ/2}

≤ 4 exp[− nδ2

8(β2
0 + β0δ

]

where (a) uses the condition M(j′,k′)−M(j,k) ≥ δ; (b) is due to the former implies the latter;
(c) uses the union bound.

Given a node set U and its complement Ū , denote the event G(U) as picking any edge
(j′, k′) from E(U, Ū) but not in T0. Let ñ(U) be the number of edges in E(U, Ū)∩ET0 , then
using union bound we have:

pr{G(U)} ≤ {|E(U, Ū)| − ñ(U)}4 exp[− nδ2

8(β2
0 + β0δ)

]

(a)

≤ {|E(U, Ū)| − 1}4 exp[− nδ2

8(β2
0 + β0δ)

],

(24)

where (a) uses ñ(U) ≥ 1.
Letting {U1, U2, . . . , Up} be the sequence used to obtain the minimum spanning tree in

the Prim’s algorithm, with U1 = {1} and Up = {1, . . . , n}, we have

pr{
p⋃

k=1

G(Uk)} ≤
p∑

k=1

(|E(Uk, Ūk)| − 1)4 exp[− nδ2

8(β2
0 + β0δ)

]

(a)

≤ 2p3

3
exp[− nδ2

8(β2
0 + β0δ)

]

=
2

3
exp[− nδ2

8(β2
0 + β0δ)

+ 3 log p]
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where (a) uses
∑p

k=1{(p− k)k − 1} = p(p2 − 7)/6 ≤ p3/6.
Now consider the case when the oracle minimum spanning tree is not unique. Given a

node set U and its complement Ū , denote the event G(U) as picking any edge (j′, k′) in
the edges between (U, Ū) but not in one of T0’s. Letting ñ(U) be the number of edges in
E(U, Ū) ∩ (∪Kk=1ET (k)

0

), clearly, ñ(U) ≥ 1, hence (24) still holds. Therefore, the rest of the

result follows.

A.7 Calculation of the normalizing constant in the degree-based prior

Let r =
∑p

j=1 vj . Since η = vvT, we have z(η) = p−1
∏p
j=2 λ(j)(L) = |(diag(rv)−vvT)2:p,2:p|

due to the proof of Theorem 1, and the equivalence between the 1/p of the product of the
top (p− 1) eigenvalues and the cofactor. Therefore using the matrix determinant lemma

z(η) = rp−1(

p∏
j=2

vj)(1− r−1vT
2:ndiag(v−1

2:p)v2:p) = rp−2(

p∏
j=2

vj)(r −
p∑
j=2

vj) = rp−2
p∏
j=1

vj .

A.8 Calculation of the multivariate generalized double Pareto density

Letting ~β = ~yj − ~yk ∈ Rp, we first multiply with Π(λ2
s) and integrate out λ2

s

∫ ∞
0

(
1

2πτ2λ2
s

)n/2
exp

[
− ‖

~β‖2

2τ2λ2
s

] (κ2s
2

)n+1
2 (

λ2
s

)n+1
2
−1

Γ
(
n+1

2

) exp
[
−κ2

sλ
2
s/2
]

dλ2
s

=
1

τn

(
1

2π

)n−1
2 1

Γ
(
n+1

2

) (κ2
s

2

)n−1
2

×
∫ ∞

0

(
1

2πλ2
s

)1/2

exp

[
− ‖

~β‖2

2τ2λ2
s

](
κ2
s

2

)
exp

[
−κ2

sλ
2
s/2
]

dλ2
s

=
1

τn

(
1

2π

)n−1
2 1

Γ
(
n+1

2

) (κ2
s

2

)n−1
2 (κs

2

)
exp

[
−κs
‖~β‖
τ

]
.

Next, we multiply with Π(κs) and integrate out κs,∫ ∞
0

1

τn

(
1

2π

)n−1
2 1

Γ
(
n+1

2

) (1

2

)n+1
2

κns exp

[
−κs
‖~β‖
τ

]
1

Γ(α)
κα−1
s exp(−κs)dκs

=
1

τn

(
1

2π

)n−1
2 1

Γ(α)Γ
(
n+1

2

) (1

2

)n+1
2
∫ ∞

0
κn+α−1
s exp

[
−κs(1 +

‖~β‖
τ

)

]
dκs

=
1

2nΓ
(
n+1

2

)
π

n−1
2

Γ(α+ n)

Γ(α)

1

τn

(
1 +
‖~β‖
τ

)−(α+n)

.
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A.9 Efficient Calculation of (BT
[−s]B[−s])

−1 and Computational Complexity

The matrix inversion can be computationally intensive for large p. In order to avoid a direct
matrix inversion at each Gibbs sampling step, we develop a fast computing method that
can: (i) extract (BT

[−s]B[−s])
−1 from (BTB)−1, (ii) update (BTB)−1 when there is a change

in one column of B.
For (i), suppose that we have the value of (BTB)−1, without loss of generality, let the

matrix B = [B[−s] ~Bs], using block matrix form:

(BTB)−1 =

[
BT

[−s]B[−s] BT
[−s]

~Bs
~BT
s B[−s] ~BT

s
~Bs

]−1

=

[
M1,1 M1,2

MT
1,2 M2,2,

]
where Mj,k is corresponding block of (BTB)−1. Using the block matrix inversion formula,
we have:

(BT
[−s]B[−s])

−1 = M1,1 −M1,2M
−1
2,2M

T
1,2.

Since M2,2 is a scalar, the above can be evaluated rapidly.

For (ii), supposing that we have updated ~Bs to ~B∗s , and denoting B∗ = [B[−s] ~B
∗
s ], we

want to calculate (B∗TB∗)−1. Note that

(B∗TB∗)−1 =

[
BT

[−s]B[−s] BT
[−s]

~B∗s
~B∗Ts B[−s] ~B∗Ts

~B∗s

]−1

=

[
M∗1,1 M∗1,2
M∗T1,2 M∗2,2

]
.

We have:

M∗2,2 = { ~B∗Ts ~B∗s − ~B∗Ts B[−s](B
T
[−s]B[−s])

−1BT
[−s]

~B∗s}−1

= ( ~B∗Ts Ps ~B
∗
s )−1,

M∗1,2 = −(BT
[−s]B[−s])

−1BT
[−s]

~B∗sM
∗
2,2,

M∗1,1 = (BT
[−s]B[−s])

−1 + (BT
[−s]B[−s])

−1BT
[−s]

~B∗sM
∗
2,2
~B∗Ts B[−s](B

T
[−s]B[−s])

−1

= (BT
[−s]B[−s])

−1 +M∗1,2M
∗−1
2,2 M∗T1,2 ,

where Ps = I−B[−s](B
T
[−s]B[−s])

−1BT
[−s], and we can use step (i) to compute (BT

[−s]B[−s])
−1.

Since M2,2 and M∗2,2 are scalars, all matrix inversions are avoided.

Therefore, throughout the posterior estimation, we only need to invert BTB for one
time to calculate the initial value. Examining the computational complexity, if using serial
computation, the slowest matrix product/addition has a complexity of O(p2). Since most
of the existing linear algebra toolboxes are optimized with some parallelization, we now
check the parallel computing complexity for each term above. Computing (BT

[−s]B[−s])
−1

involves a matrix subtraction and vector-scalar-vector product, which have complexity
O(1). Similarly, computing M∗1,1 has complexity O(1). Computing M∗2,2 and M∗1,2 in-

volves matrix-vector products with complexity of O(p). Lastly, when computing ~βs, we
can bypass the matrix-matrix product by changing the order of multiplication to ~βs =
{I − B[−s](B

T
[−s]B[−s])

−1BT
[−s]} ~Bs = ~Bs − B[−s](B

T
[−s]B[−s])

−1(BT
[−s]

~Bs); hence, it involves

only matrix-vector product with a complexity of O(p). As the result, overall the projection
has a parallel computing complexity of O(p).
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A.10 Rapid Mixing of the Gibbs Sampler

The proposed Gibbs sampler exhibits apparent rapid mixing empirically. As shown in
Figure 11 using the two-moon manifold simulation, the degrees of the tree change quickly
from iteration to iteration, with the autocorrelation dropping to near zero almost within
1 lag; the update of the scale parameter τ using the random-walk Metropolis shows a fast
drop to near zero within a lag of 10. We found similar performance in all of the experiments
and data applications demonstrated in the article.

(a) Convergence diagnostics on the degrees of the spanning tree.

(b) Convergence diagnostics on the scale parameter τ .

Figure 11: The Gibbs sampler shows a rapid mixing of the Markov chains. Using the
MCMC sample collected from the two-moon manifold experiments, we show the traceplot
of the degree for one node / the scale parameter in one experiment, and autocorrelation plot
computed based on 30 repeated experiments, and their effective sample sizes per iteration.
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A.11 Additional Simulation Details when the Oracle is a Sparse Graph

Sample size

(a) False positive edges comparing with G0.

Sample size

(b) False negative edges comparing with T0.

Figure 12: The finite sample performance of graph estimation with the oracle being a sparse
graph with about 600 edges over 200 nodes.

A.12 Additional Simulation Details when the Oracle is a Relatively Dense
Graph

Sample size

(a) False positive edges comparing with G0.

Sample size

(b) False negative edges comparing with T0.

Figure 13: The finite sample performance of graph estimation with the oracle being a
relatively dense graph with about 4, 000 edges over 200 nodes.

We choose to present |T0\Ĝ|+ |Ĝ\G0| as error, because we know the false positive rates will
always have |Ĝ \G0| ≤ |Ĝ \ T0|. Therefore, using |Ĝ \ T0| would make the other estimators
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showing even higher errors than the ones shown in the main text. On the other hand, for
tree estimate, we can find out |T0 \ T̂ | = |T̂ \ T0|.

A.13 Sensitivity of Using Empirical Precision Matrix Thresholding for Graph
Estimation

We use a simulation to empirically show the sensitivity in solely relying on comparing
the magnitude of empirical precision matrix elements for graph estimation. We use a toy

example, with Ω0 =

 4.75 −1.64 −2.66
−1.64 2.72 0
−2.66 0 2.75

, then we generate n Gaussian vectors from

N(0,Ω−1
0 ), and compute the empirical precision matrix Ω̂. As the ground-truth Ω0:2,3 = 0,

we record the event that |Ω̂2,3| > |Ω̂1,2| or |Ω̂1,3|, which would lead to an erroneous graph
estimate if one uses magnitude thresholding (including soft-thresholding) on Ω̂. We repeat
each experiment at each n for 100 times, and compute the error rate and quantify the error
rate uncertainty. As shown in Figure 14, even at n ≈ p2), the error rate is still non-trivially
large.

0.2

0.4

0.6

4 6 8 10 12 14 16 18 20 22 24 26 28 30
Sample size

E
rr

or
 r

at
e

Figure 14: The error rate of using magnitude thresholding on empirical precision matrix
for a simple graph estimation.
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A.14 Graph Estimation When the Oracle is a Spanning Tree

(a) Oracle graph. (b) Thresholding abso-
lute correlation at 0.9.

(c) Thresholding abso-
lute correlation at 0.5.

(d) Graphical lasso
with α chosen by
cross-validation.

(e) Graphical lasso using
α = 20.

(f) Bayesian spanning
tree (posterior mode
shown).

Figure 15: Simulated experiments of recovering a graph with p = 200 nodes, where the
oracle graph is a spanning tree (Panel a). Panels (b-f) are plotted for n = 50. Starting
around n = 50, the Bayesian spanning tree successfully recovers the ground truth with
almost no errors, whereas the other approaches show many false positives.

We consider data generated from a spanning tree [Figure (15)(a)]. The thresholding esti-
mator and graphical lasso show many false positives (Panels b-d). Empirically tuning the
graphical lasso to α = 20 does somewhat reduce false positives, however, it leads to edge
loss and more false negatives (Panel e). The thresholding estimator has a similar sensitiv-
ity issue: thresholding at 0.5, as a common “default” choice in practice, leads to a severe
overestimation of the graph edges, while 0.9 reduces this problem to some extent. On the
other hand, coherent with the generative model, the Bayesian spanning tree shows good
performance (Panel f).
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