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Abstract

Units equivariance (or units covariance) is the exact symmetry that follows from the
requirement that relationships among measured quantities of physics relevance must obey
self-consistent dimensional scalings. Here, we express this symmetry in terms of a (non-
compact) group action, and we employ dimensional analysis and ideas from equivariant
machine learning to provide a methodology for exactly units-equivariant machine learning:
For any given learning task, we first construct a dimensionless version of its inputs using
classic results from dimensional analysis and then perform inference in the dimensionless
space. Our approach can be used to impose units equivariance across a broad range of
machine learning methods that are equivariant to rotations and other groups. We discuss
the in-sample and out-of-sample prediction accuracy gains one can obtain in contexts like
symbolic regression and emulation, where symmetry is important. We illustrate our approach
with simple numerical examples involving dynamical systems in physics and ecology.

1. Introduction

In recent years, there has been enormous progress in developing machine learning methods
that incorporate exact symmetries. Indeed, the revolutionary performance of convolutional
neural networks (LeCun et al., 1989) was enabled by the imposition of a local translational
symmetry at the bottom layer of the networks. When a learning problem obeys an exact
symmetry, we have the strong intuition that imposing symmetry on the method must improve
learning and generalization. Much of the work on exact symmetries has been situated in
physics and natural-science domains (Yu et al., 2021; Kashinath et al., 2021), because
physical laws exactly obey a panoply of symmetries.
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One of the symmetries of physics—and indeed all of the sciences—is the symmetry
underlying dimensional analysis. Quantities that are added or subtracted must have identical
units – if the units system of the inputs to a function is changed, the units of the output must
change accordingly. This symmetry—which we call “units equivariance” but in physics, it
might be more natural to call this units covariance—is a passive symmetry that applies to all
problems (see Section 4.1 of Rovelli and Gaul (2000)). It has many implications. One is that
it is possible to derive scalings and dependencies of outputs on inputs from the units directly.
For example, if a problem involves only a length L, an acceleration g, and a mass m, and the
problem is to learn or predict a time t, it is possible from units alone to see that t ∝

√
L/g.

Another implication is that inhomogeneous functions, such as transcendental functions and
most non-linear functions, can only be applied to dimensionless (unitless) quantities: if a
quantity x is dimensional, an inhomogeneous polynomial expression in x is inconsistent with
the principle that quantities to be added or subtracted must have identical units. These
dimensional symmetries are strict and exact, and apply to essentially every problem in the
sciences. In chemistry, ecology, and economics, for example, the inputs and the outputs of
functional relationships have non-trivial units, and the results must be equivariant to the
choice of units system. Machine learning methods for physical sciences are often designed
in such a way that implies units-equivariance, even if they don’t explicitly say so (see for
instance Cambioni et al. (2019, 2021)).

In this work, we implement a particular case of group-equivariant machine learning,
for the group corresponding to changes in units. We make use of dimensionless quantities,
which are the invariants of this group. We thereby build on our previous work in which
group invariants are used to build group-equivariant functions (Villar et al., 2021; Yao
et al., 2021; Blum-Smith and Villar, 2022). Our procedure here builds dimensionless features
out of the problem inputs and then ensures that the resulting outputs are scaled back to
their correct dimensions or units. The guiding philosophy of the work is to transform the
inputs into invariant features before they are used to train a machine learning method, and
then to un-transform label predictions at the output or at test time. These approaches to
symmetry-respecting machine learning are simple to implement and perform well (Yao et al.,
2021; Chen and Villar, 2022).

In what follows, we will make the strong assumption that the dimensions and units of all
regression inputs are known, complete, and self-consistent. However, a different direction of
research is to look at how dimensional relationships or other symmetries are discovered. This
is the setting for Constantine et al. (2017), and Evangelou et al. (2021). This idea—discovery
of dimensional structure—connects to prior work as a particular case of the more general
problem of learning symmetries from data (Benton et al., 2020; Cahill et al., 2020; Portilheiro,
2022).

Related work: Dimensional analysis is a classical theory with applications in engineering
and science (Barenblatt, 1996). These ideas have been connected to machine learning
previously (Rudolph et al., 1998; Frisone and Misiti, 2019; Bakarji et al., 2022). The key
theoretical result in the dimensional analysis is the Buckingham Pi Theorem (Buckingham,
1914), which says that a function is units equivariant if and only if it is a function of a set of
dimensionless quantities. These quantities can (usually) be obtained as products of integer
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powers of the input features. Integer linear-algebra algorithms permit the discovery of a
generating set of dimensionless features (Hubert and Labahn, 2012).

Incorporating group invariances and equivariances in the design of neural networks has
led to advances in many applications from molecular dynamics, to turbulence, to climate and
traffic prediction (Batzner et al., 2021; Wang et al., 2020b; Bakarji et al., 2022; Kashinath
et al., 2021; Jin et al., 2020).

In many applications, symmetries are implemented approximately via data augmentation
(Baird, 1992; Van Dyk and Meng, 2001; Wong et al., 2016; Cubuk et al., 2018; Dao et al.,
2019; Chen et al., 2020a; Shen et al., 2022). In other applications symmetries are implemented
exactly. In graph neural networks, the learned functions are equivariant with respect to
actions by permutations of the order in which nodes appear in the adjacency matrix (Gilmer
et al., 2017; Duvenaud et al., 2015; Chen et al., 2019a; Gama et al., 2020). Parametrizing
such functions efficiently and universally is a difficult task because of its connection with the
graph isomorphism problem. Many methods and theoretical results have been proposed to
address this challenge (Xu et al., 2018; Morris et al., 2019; Chen et al., 2019b, 2020b; Huang
and Villar, 2021).

More generally, in equivariant machine learning, neural networks are restricted to only
represent functions that are invariant or equivariant with respect to group actions (Cohen
and Welling, 2016; Maron et al., 2018; Kondor, 2018). Some of these methods involve group
convolutions (Cohen and Welling, 2016, 2017; Wang et al., 2020a), irreducible representations
of groups (Fuchs et al., 2020; Kondor, 2018; Thomas et al., 2018; Weiler et al., 2018; Cohen
et al., 2018; Weiler and Cesa, 2019), or constraints on optimization (Finzi et al., 2021). Others
involve the construction of explicitly invariant features (Gripaios et al., 2021; Haddadin,
2021; Villar et al., 2021; Blum-Smith and Villar, 2022). We are proponents of the approach
of constructing explicit invariants.

In regression problems, a recent line of theoretical work shows that imposing symmetries
and group equivariance can reduce generalization error in linear (Elesedy and Zaidi, 2021)
and kernel (Elesedy, 2021) settings, as well as sample complexity in (finite) group-invariant
kernel settings Bietti et al. (2021); Mei et al. (2021). Most importantly, without imposing
certain symmetries many learning algorithms are not able to learn correctly Brugiapaglia
et al. (2021).

Our contributions:

• We provide a definition for units equivariance as an equivariance with respect to a
group action, and incorporate it into machine learning models, aided by ideas from
classical dimensional analysis.

• We show that exact units equivariance is easy to impose on many kinds of learning
tasks, by constructing a dimensionless version of the learning task, performing the
dimensionless task, and then scaling back in the proper dimensions (and units) at
the end (perhaps prior to evaluating the cost function). Dimensionless quantities
are invariants with respect to changes in units and can be computed using discrete
linear algebra algorithms. In this sense, the approach we advocate here is related to
approaches based on group invariants to impose exact group equivariances (Villar
et al., 2021).
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• We discuss extensions of theoretical results on generalization bounds for regression
problems under symmetries generated by compact groups (Elesedy and Zaidi, 2021),
to the group of scalings (which is not compact but reductive).

• We demonstrate with a few simple numerical regression problems that the reduction
of model capacity (at fixed complexity) delivered by the units equivariance leads
to improvements in generalization (in-distribution and out-of-distribution). In this
context, we discuss symbolic regression and emulator-related tasks. We also discuss
the limitations of our approach in the context of unknown dimensional constants.

2. Units, dimensions, and units equivariance

Almost every physical quantity (any position, velocity, or energy, say) has units (inches,
kilometers per hour, or BTUs, say). In the physical sciences, we are advised to use SI units
(Thompson and Taylor, 2008), which include meters (m), meters per second (m s−1), and
Joules (J), for example. Any energy can be converted to J, any velocity can be converted to
m s−1, and so on, according to known conversion factors. There are dimensionless quantities
in physics too, such as Reynolds numbers, or concentrations, but these can also be thought
of as having units of unity (or percent or parts per million or so on).

Abstracting slightly, all the (say) SI units are built on base units of kilograms (kg),
meters (m), seconds (s), kelvin (K), amperes (A), and a few others (such as moles). That is,
it is possible to convert any SI unit into powers of the base units. For example, a pascal
(Pa) is a kgm−1 s−2, and a volt (V) is a kgm2 s−3A−1. That is, the units of any physical
quantity can be converted to powers of the SI base units.

Abstracting even further, there is a concept of dimensions, which is the physical entity
being measured by units, or the thing that is unchanged when you change the units of
something. Two energies, even if measured in different unit systems, both have the dimensions
of energy. In this sense, there are not just the base units of kg, m, s, K, A, and so on; there
are also the base dimensions of mass, length, time, temperature, current, and so on.

It is always possible to create, from any dimensioned quantity, a dimensionless quantity
by multiplying and dividing by powers of quantities with the base dimensions. Similarly, it
is possible to convert any dimensional relationship into a dimensionless relationship. This
operation is formalized in the Buckingham Pi Theorem (Buckingham, 1914), which motivates
this work.

Not only it is the case that physical quantities that are added must have the same
dimensions; in detail, the numerical addition of the quantities must be performed only
after they have been converted to the same units as well. And the products (or ratios) of
quantities of units will have the products (or ratios) of the input-quantity units. Connected
to this is a concept of consistent base units or coherence: For example, imagine having a
mass M measured in grams, a length L measured in inches, a force F measured in newtons,
and a speed V measured in kilometers per hour. These quantities have inconsistent base
units, in the sense that the time unit inside the force unit is not the same as the time unit
inside the speed unit. Naive multiplication of different combinations of these quantities will
produce outputs with incommensurate units. They have to be converted to consistent units
prior to any arithmetic manipulations. In what follows, we will assume that the inputs and
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outputs of any model or problem under consideration have been converted into coherent
units, for example, the explicitly coherent SI system.

Coherence is a hard requirement, but still leaves a lot of room to maneuver. For example,
in one of the examples in Section 5, we measure horizontal distances in meters and volumes
of water in liters. These are incoherent technically since a volume can be expressed as a
length cubed. However, since we express the problem such that horizontal distances and
volumes never inter-convert, we can coherently express the problem with this choice.

We consider spaces Z =
∏d

i=1Xui , which consist of coherent (meaning described in a
consistent units system) dimensional elements. Each factor Xui is a space of values for a
given feature, which is measured in units specified by a parameter ui. Thus x1 ∈ Xu1 might
be a mass, x2 ∈ Xu2 a temperature, x3 ∈ Xu3 a velocity, etc. As a set, each Xui is just R,
but the specification of its dimensions via ui endows it with a specific action by a group G
of rescalings. A precise development of this setup follows.

We fix a list of k base units in terms of which all the desired features can be described.
For example, if the features consist of energies, temperatures, velocities, forces, masses, and
accelerations, the base units could be (kg,m, s,K) (and k = 4). The choice of base units
determines a rescaling group G := Rk

>0. An element (g1, . . . , gk) ∈ G rescales the ith base
unit by a factor of gi for each i.

Say there are d features. Then for each i = 1, . . . , d, we express the units of the ith feature
in terms of the base units, and record this expression in an integer vector ui ∈ Zk, whose jth
component is the exponent to which the jth base unit occurs in this expression. Continuing
the example, if the first feature is an energy measured in Joules, then u1 = [1, 2,−2, 0],
because 1 J = 1 kgm2/s2. We then define Xui to be the real line R equipped with the action
by G induced by its action on the base units. Explicitly, if xi ∈ Xui and g = (g1, . . . , gk) ∈ G,
then the action is given by the formula

g · xi =

 k∏
j=1

g
−uij

j

xi. (1)

In our running example, if we replace kg with g and m with cm, leaving s and K untouched,
then the group element that accomplishes this rescaling is g = (0.001, 0.01, 1, 1), and if
x1 = 2.9, representing a value of 2.9 J, then

g · x1 = (0.001)−1(0.01)−2(1)2(1)0(2.9) = 2.9× 107

reflecting the fact that 2.9 J = 2.9× 107 g cm2/s2.

We call the space of features Z a units-typed space. It is the cartesian product

Z =
d∏

i=1

Xui . (2)

It is a real vector space under coordinatewise addition and multiplication by (dimensionless)
scalars. Furthermore, the elements of Xu can be multiplied by elements of Xu′ . In summary
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the algebraic rules for x ∈ Xu and x′ ∈ Xu′ , α ∈ R and γ ∈ Z are the following:

α (x,u) = (αx,u),where α is a dimensionless scalar (3)

(x,u) + (x′,u′) =

{
(x+ x′,u) if u = u′

does not exist otherwise
(4)

(x,u) (x′,u′) = (xx′,u+ u′) (5)

(x,u)γ = (xγ , γ u), where γ is a (dimensionless) integer. (6)

Thus Xu can be seen as a homogeneous component of degree u in a Zk-graded algebra. We
do not make explicit use of this, however.

Because each factor Xu carries an action (1) by the rescaling group G, the space Z does
as well. Note that the action is completely specified by the ordered list (u1, . . . ,ud) ∈ (Zk)d

of units vectors. Sometimes we will denote x ∈ Z as x = (xi,ui)i=1,...,d to indicate the units
of each of its features.

We call units-typed function any function between units-typed spaces. Definition 1
defines units equivariant functions.

Definition 1 A units-typed function is any function f : ZX → ZY . If in addition, it has
the property that

f(g · x) = g · (f(x)) (7)

for every g in the rescaling group G, then we say that f is a units-equivariant function.

For example, imagine that f is a units-equivariant function that takes as input a mass,
a length, and an acceleration, and returns a time and an energy. If the mass, length, and
acceleration inputs are multiplied by 1, 1, and 1/25 respectively, then the time and energy
outputs should end up multiplied by 5 and 1/25 respectively. That is, the units equivariance
is an expression of the natural dimensional and units-conversion scalings.

In order for a non-constant function f to be units-equivariant, it will be necessary that
each of the vectors of units of ZY lies in the span of the set of input vectors of units of ZX .

In other work (Villar et al., 2021) we are concerned with geometric (coordinate-free)
properties of scalar, vector, and tensor inputs to machine learning problems. Each component
of a vector or a tensor with units (such as a velocity or a stress) can be represented as an
element of X . In physics, all elements of a vector or tensor must have the same units vector
u. By combining the formulation from (Villar et al., 2021) with our current formulation, we
can make units-equivariant and coordinate-free models (see Section 5).

3. Units-equivariant regressions

Given training data (xt,yt)t=1,...N , where xt ∈ ZX and yt ∈ ZY (both units-typed spaces), a
units-equivariant regression is a regression restricted to a space of units-equivariant functions.

There are multiple approaches for imposing exact symmetries on machine learning
methods. Here we take an invariant-features approach (Villar et al., 2021). We begin by
algorithmically constructing a featurizer ϕ(·) that constructs dimensionless features ξ from the
dimensioned input data x, and a decoder gx,v(·) that converts dimensionless label predictions
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dimensional
inputs featurizer dimensionless

features
learned
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dimensionless
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Z
ϕ−−−→ Rs

h−−−→ R
gx,v−−−→ Xv

Figure 1: Overview of the general approach.

η̂ into dimensioned training-label predictions ŷ with dimensions of v. See Figure 1 for a
visualization of the setup.

Regression (or classification, or any other task) proceeds as usual, but in the space of
purely dimensionless features and labels, with the dimensioned training labels appearing only
in the cost function. The concept underlying this approach is that, for the units equivariance
to be exact, it is necessary that the inputs to any method that implements nonlinear functions
of the input x (such as a multilayer perceptron, or a kernel regression) act instead only on
dimensionless features ξ, because otherwise the nonlinearities effectively (internally) add
and subtract quantities with different dimensions, which violates the equivariance. This
approach borrows ideas from the Buckingham Pi Theorem (Buckingham, 1914), and uses
technology from linear algebra over the integers (Stanley, 2016) to construct the featurizer
ϕ(·) algorithmically.

Specifically, the input space Z includes d dimensional input features, such as mass,
temperature, etc (2). Some of the inputs will be fundamental constants, such as Newton’s
constant, speed of light, etc. The featurizer ϕ : Z → Rs delivers s (dimensionless) products
of integer powers of the numerical elements of Z. If x = (xi,ui)i=1,...,d then ϕ(x) =
(ϕ1(x), . . . , ϕs(x)) where for all j = 1, . . . s we have

ξj = ϕj(x) =
d∏

i=1

x
αji

i where
d∑

i=1

αjiui = 0 ∈ Zk, (8)

where the constraint guarantees that ξj is dimensionless. The exponents αji ∈ Z can be
found by solving the system of diophantine linear equations in (8) and the solutions form a
lattice, the dimension of which can be computed as:

#dimensionless features = #input variables - #independent units, (9)

where the number of independent units coincides with the number of linearly independent
vectors in {ui}di=1. For example, consider three velocities v1, v2, v3 with units m s−1, the
number of units is two (m and s), but the number of independent units is one, making the
dimensionless scalars a two-dimensional lattice.

We could select our featurizer to produce a basis of the lattice (we use the Smith Normal
Form to this end (Stanley, 2016), a similar approach to (Hubert and Labahn, 2012), which
uses the Hermite Normal Form), or we could select our featurizer to produce all lattice
points within a bounded region.

If the dimensioned output is y = (y,v) ∈ X we find an integer solution αyi of∑d
i=1 αyiui = v and the decoder gx,v : R → X is gx,v(η̂) = η̂

∏d
i=1 x

αyi

i . In words, the
decoder finds from x a product of integer powers of elements of x that has the same di-
mensions as the output label y, and multiplies the dimensionless label prediction η̂ by that
product. This is possible because any non-constant units-equivariant function must have the
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vector v lie in the span of the vectors {ui}di=1. In practice, there is not a unique choice for
αyi. One practical solution is to learn different models for different solutions αyi and use an
ensemble method (see Section 5).

The training of a regression model usually involves the optimization of a loss function.
This is often a norm of a difference between the training labels y and their predictions
ŷ. When the problem is made dimensionless, this loss can be made dimensionless as well,
or else it can be left dimensional. In many contexts, the loss is a chi-squared objective
or a log-likelihood or can be interpreted as such. In these cases, the loss is dimensionless
naturally. The units-equivariance approach we recommend is agnostic to whether the loss is
dimensionless or dimensional; adoption of this approach does not require the adoption of
any particular loss.

This approach does, however, place several significant burdens on the user: All elements
of the input x and output y of the method must have well-defined and known units, and
the units information must be encoded in the form of a k-vector of integer powers of a
well-defined list of k base units. Also, sometimes quantities external to the natural training
data must be included with the inputs x, such as parameters or fundamental constants
(such as Newton’s constant and the speed of light), that are relevant to unit conversions or
natural relationships among quantities with different units.

The key idea is that the dimensionless featurizer ϕ(·), which produces s dimensionless
features, can be compared with an arbitrary featurizer ϕ̃(·), which produces p features
that are not necessarily dimensionless. For example, we can consider the space spanned by
rational monomials of inputs of a certain degree.

Definition 2 (Rational monomial) A function P : Rd → R is a rational monomial
(also known as a Laurent monomial) if

P (x1, . . . , xd) =

d∏
i=1

aix
αi
i , (10)

where the coefficients ai ∈ R and the exponents αi ∈ Z. The degree of P is defined as∑d
i=1 |αi|.

The units-equivariance approach (8) will produce features consisting of dimensionless
rational monomials (example: mass ∗ spring constant ∗ (length)2 ∗ (momentum)−2 is a di-
mensionless rational monomial), whereas a non-equivariant approach can produce arbitrary
features of the same type (rational monomials of bounded degrees). We claim that imposing
the units equivariance provides a good inductive bias for the learning problem. In Section 4
we briefly discuss the generalization gains of imposing this exact symmetry.

This approach plays well with many machine learning approaches, including linear
regression, kernel regression, and deep learning: It involves only a swap-in replacement for
the featurizing or feature normalization that is usually done prior to training a model, and a
tweak to the output layer of the method. Thus it can be adapted to almost any machine
learning method in use at the present day.
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4. Generalization improvements of units equivariance

Imposing the exact units-equivariance symmetry in regression tasks improves the prediction
performance even in cases where the held-out data has out-of-distribution properties. This
empirical improvement can be partly attributed to the fact that the symmetry acts like a
physics-informed prior which constraints the regression inputs to satisfy correct dimensional
scaling relationships. Another reason could be due to dimensionality reduction: when the
task is made dimensionless the resulting number of independent, dimensionless inputs is
always strictly less than the number of dimensional inputs. One way to make this argument
precise is by assuming that the units-equivariant functions are a subset of the baseline
hypothesis class. In this case, at fixed model complexity (e.g. rational monomials of a certain
degree), the number of free parameters or the model capacity goes down when the problem
is made dimensionless.

In Appendix A we formally discuss the generalization improvements of certain equivariant
models and how these results translate to units-equivariance. We based our analysis on
recent results that show how to compute explicitly the gains in terms of generalization gaps
and sample complexity of imposing group invariances and equivariances in machine learning.
The results from Mei et al. (2021) and Bietti et al. (2021) hold for finite groups, whereas the
results from Elesedy and Zaidi (2021) and Elesedy (2021) hold for general compact groups.
Specifically, Elesedy and Zaidi (2021) shows that if we are aiming to learn a target invariant
function f∗ from samples from an invariant distribution µ, then for any estimator f̂ , the
(Reynolds) projection of f̂ onto the space of invariant functions has a smaller expected error.
We explain the details in Appendix A.

The problem we consider here, units equivariance, uses the group of scalings, which is
unfortunately non-compact so the results from Elesedy and Zaidi (2021) don’t directly apply.
In particular, given a function, it is unclear what is the correct notion of its projection onto
the space of invariant functions. This is particularly relevant because our approach does not
compute a regression to later project its estimator onto the space of invariant functions. It
directly solves a regression in a space of invariant functions. The question of how much one
gains by using this approach assumes the existence of a certain non-invariant baseline.

Given a space of functions F and F̄ the subspace of invariant functions, then a projection
onto the space of invariant functions is just an operator P : F → F̄ that fixes F̄ pointwise.
Therefore the way to project a function onto the space of invariant functions is far from
being unique. There are two notions of projection we consider, (1) the so-called Reynolds
projection, which generalizes the notion of averaging the function along the group orbit, (2)
the orthogonal projection with respect to the measure µ used to generate the data. In the
case of compact groups and data sampled from invariant measures both notions coincide,
giving a very simple expression for the generalization gap of a function in comparison with its
projection onto the space of invariant functions. However, we show that in the non-compact
case, the notions do not coincide for any real measure µ.

In Appendix A:

• We summarize the ideas from Elesedy and Zaidi (2021) that allow them to compute
a generalization gap for compact groups. In a nutshell: We assume we are learning
an unknown G-invariant function f∗ : Rd → R from samples. We assume that G is a
compact group and the data is sampled from a G-invariant measure in Rd (x ∼ µ ∈ Rd,
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µ(U) = µ(g · U) for all g ∈ G and measurable U ⊂ Rd). The risk of a function
f : Rd → R is defined as the expected test error:

R(f) := Ex∼µ∥f(x)− f∗(x)∥2 (11)

Elesedy and Zaidy show that by projecting f to the space of invariant functions, the
generalization gap always improves. In particular:

∆(f, f̄) := R(f)−R(f̄) = ∥f⊥∥2µ ≥ 0 (12)

where f̄ is the (orthogonal or Reynolds) projection of f onto the space of invariant func-
tions (see Appendix A for the precise definition), and f⊥ is its orthogonal complement
in L2(Rd, µ).

• We explain how to extend these ideas to non-compact groups using Weyl’s trick.

• We show that if we replace Rd with a complex domain in Cd, and the measure
is invariant with respect to complex scalings of modulus 1, then the results from
Elesedy and Zaidi (2021) apply and we can prove a non-negative generalization gap
for equivariant functions with respect to complex scalings.

• We show that if the domain is real, the two notions of projection (orthogonal and
Reynolds) don’t match for any choice of measure.

Out-of-distribution generalization The generalization improvements from Elesedy and
Zaidi (2021); Elesedy (2021); Bietti et al. (2021) assume that the data is sampled from
group invariant measures. However, since the group of scalings is not compact, scaling
invariant probability measures do not exist. The exact scaling symmetries enforced by the
units equivariance extend to arbitrary dilations of the base dimensions. Thus they connect
function outputs for very different inputs. In the context of regression, this means that the
predictions of trained units-equivariant models ought to enable accurate predictions far
outside the domain of the training set. One way to state this is to compare the domains of
the dimensionless features to the domains of the raw dimensional features.

Mathematically, this can be stated in terms of out-of-distribution generalization (Arjovsky,
2020; Geisa et al., 2021; Dey et al., 2022). In particular, consider a generic problem with
d inputs with dimensions made from k base units, and (therefore) a basis of s = d − k
dimensionless quantities. Consider a training set sampled from a distribution µ supported in
a compact set D ⊂ Rd. This induces a distribution ϕ(µ) in the space of dimensionless features
Rs. Many distributions in Rd (possibly even supported in disjoint sets) map to ϕ(µ). For a
trivial example, consider d = 2 mass inputs, such that k = 1; if the training set has masses
in kg drawn from Unif(0, 1) and the test set has masses in g drawn from Unif(0, 104), they
will nonetheless both have the same distribution in the one (d−k = 1) available independent
dimensionless quantity (the ratio of masses). This is one reason why this method allows
us to generalize to settings that can be considered out-of-distribution in the original input
space. We conjecture that the out-of-distribution generalization improvement spans beyond
this trivial case. We show numerical evidence of this claim in Section 5. This observation is
corroborated in related literature where different types of equivariances are shown related to
data augmentation procedures (Chen et al., 2020a), which, in turn, lead to an empirically
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favorable performance in out-of-distribution settings (Liang and Zou, 2022). We believe
that a rigorous out-of-distribution result could be formalized using techniques from domain
adaptation and meta-learning (Ben-David et al., 2010; Mansour et al., 2009; Hanneke and
Kpotufe, 2019; Li et al., 2018; Kang and Feng, 2018); we leave that for future work.

5. Experimental demonstrations

Symbolic regression: Simple springy pendulum In this example, we consider a
pendulum bob of mass m (units of kg) at the end of a linear spring, swinging under the
influence of gravity. The total mechanical energy or hamiltonian H (units of kgm2 s−2) of
this system consists of a kinetic energy and two potential-energy contributions:

H =
1

2

|p|2

m︸ ︷︷ ︸
kinetic energy

+
1

2
ks (|q| − L)2︸ ︷︷ ︸
spring

potential energy

−mg⊤q︸ ︷︷ ︸
gravitational

potential energy

, (13)

where p is the 3-vector momentum of the bob (units of kgm s−1), |p|2 = p⊤p, ks is the
spring constant (units of Nm−1 = kg s−2), q is the 3-vector position of the bob relative to
the pivot (units of m), |q| =

√
q⊤q, L is the natural length of the spring (units of m), g is

the 3-vector acceleration due to gravity (units of m s−2). The natural base units here are the
SI base units (kg,m, s), but they could just as easily be (stone, furlong, fortnight).

This is almost the simplest possible physics problem. We honor its simplicity by con-
structing an extremely simplified symbolic regression: Given samples of the parameters
m, ks, L,g, the initial conditions p,q, and the corresponding values of the hamiltonian H,
we show that (as expected) we can infer the exact functional form of the hamiltonian, and
that, imposing units-equivariance significantly reduces the complexity and prediction error
of the problem.

First, we observe that, in Newtonian mechanics, the hamiltonian—or total mechanical
energy—is a scalar. Thus the hamiltonian can be a function only of scalars and scalar
products of the vector and scalar inputs (Villar et al., 2021). We construct all rational scalar
monomials of the inputs up to a well-defined degree, including, for example, mks |q| (g⊤p)−2,
where the vectors g,p,q are implicitly column vectors, |q| is the magnitude of q, and g⊤p is
the scalar (inner) product of g and p. For our purposes, the degree of the rational monomial
is the maximum absolute value exponent appearing in the expression, so the example would
have a degree 2. Then we construct all dimensionless rational scalar monomials of the inputs
up to the same well-defined degree, including, for example, mks L

2 |p|−2, which is also of
degree 2 but dimensionless. It turns out that there are far fewer dimensionless rational scalar
monomials than rational scalar monomials to any degree.

In detail, the dimensional scalar inputs to our monomial lists are the 9 scalars m, ks, L,
|g|, (g⊤p), (g⊤q), |p|, (p⊤q), |q|. We produce all monomials to a maximum degree 2 but are
subject to two additional rules: While we count scalars |g|, |q|, and |p| as having degree 1,
we count scalars g⊤p and p⊤q and so on as having degree 2 (so at maximum degree 2, say,
they cannot appear squared). We also did not permit the dot products g⊤p and p⊤q and so
on to appear with negative powers (because these inverses can produce unbounded singular
values in the design matrix). With these inputs and these rules, there are 286 dimensionless
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monomials to (only!) degree 2, and 187 500 total monomials (irrespective of dimensions) to
degree 2.

Given the enormous difference between 286 and 187 500, it is obvious that units equiv-
ariance is incredibly informative. We demonstrate the value experimentally by performing
symbolic regressions for the hamiltonian H with two different objectives; one an L2, and
the other a LASSO objective. In each case, the objective is the norm of the difference
between the predicted and true hamiltonian value, but made dimensionless by dividing by
the quantity ks L

2, which has units of energy. In the L2 case, 8192 training-set objects are
used, and in the LASSO case, 128. Training-set objects are drawn from distributions in
m, ks, L,g,p,q, in which the scalars m, ks, L are drawn from uniforms and the vectors g,p,q
are drawn from isotropically oriented unit vectors times magnitudes drawn from uniforms.
In both cases, the regression applied to the dimensionless-feature design matrix delivers
machine-precision-level errors on held-out data and linear-fit coefficients that represent the
correct formula or expression for the hamiltonian.

A large number of baseline monomials (187 500) makes it computationally difficult to
perform equivalent baseline comparisons. This alone demonstrates the value of the units-
equivariant approach for symbolic regression-like problems. However, in order to test this, we
augment the 286 dimensionless monomials with 500 randomly chosen dimensional monomials
and—at these training-set sizes—the symbolic regressions fail: They deliver an order of
magnitude worse mean-squared error on held-out test data and they do not find the correct
coefficients for the hamiltonian expression. The code is publicly available at Google Colab.1

Emulator: Springy double pendulum Next, we consider the task of learning the
dynamics of the springy double pendulum, which is a pair of single springy pendula connected
with a free pivot2 (Figure 2). The goal here is to predict its trajectory at later times from
different initial states. For this task, for each of the realization of the N training data,
m1,m2, ks1, ks2, L1, L2 are randomly generated from Unif(1, 2), as well as the norm of the
gravitational acceleration vector g. Initializations at t0 of the pendulum positions and
momenta are generated as those in Finzi et al. (2021) and Yao et al. (2021). The training
labels are the positions and momenta at a set of T̃ later times t ∈ {t1, . . . , tT̃ }:

z(t) = (q1(t),q2(t),p1(t),p2(t)), t ∈ {t0, . . . , tT̃ }. (14)

In our experiments, the training set consists of positions and momenta of the pendula
in a sequence of T̃ = 10 equispaced consecutive times sampled from a sequence of T = 60
equispaced times obtained by integrating the dynamical system according to its ground truth
parameters. In the testing stage, the trajectory at t = 1, . . . , T from different initial states
are predicted given the initializations at t = 0. We consider three different testing setups
to compare the dimensionless scalar-based implementation with the dimensional baseline
considered in Yao et al. (2021). This baseline is currently state-of-the-art on this problem. It
embodies Hamiltonian and geometric symmetries and performs very well (Yao et al., 2021).

The test data used in Experiment 1 is generated from the same distribution as the
training dataset. The test data used in Experiment 2 consists of applying a transformation
to the test data in Experiment 1, where each of the input parameters that include a power of

1. See https://dwh.gg/springy.
2. The source code is published in https://github.com/weichiyao/ScalarEMLP/tree/dimensionless.
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Figure 2: The springy double pendulum.

kg in its units (m1, m2, ks1, ks2, p1(0) and p2(0)) is scaled by a factor randomly generated
from Unif(3, 7). The test data used in Experiment 3 has the input parameters m1, m2, ks1,
ks2, L1 and L2 generated from Unif(1, 5). We use the same training data N = 30000 for all
three experiments and each test set consists of 500 data points. That is, Experiments 2 and
3 have out-of-distribution test data, relative to their training data.

We implement Hamiltonian neural networks (HNNs; Greydanus et al. 2019; Sanchez-
Gonzalez et al. 2019) with scalar-based MLPs for this learning task. In particular, we
have a set of scalar inputs S = {m1,m2, ks1, ks2, L1, L2} and a set of vector inputs V =
{g,p1(0),p2(0),q1(0),q2(0)− q1(0)}. We construct the dimensional scalars (baseline) and
dimensionless scalars based on these two sets of inputs.

The dimensional scalar inputs to the baseline MLPs include 32 scalars: (i) scalar inputs
S, as well as their inverses {1/a : a ∈ S}; (ii) inner products of the vector inputs {u⊤v :
u,v ∈ V}, as well as their magnitudes {|u| : u ∈ V}.

The dimensionless scalar inputs are the following 32 scalars: (i) m1/m2, ks1/ks2, L1/L2

and their inverses; (ii) we divide each vector input by its magnitude before we compute the
inner products, which gives a set of dimensionless scalars {(u⊤v)/(|u||v|) : u,v ∈ V}; (iii)
we also consider dimensionless rational scalar monomials (mi |g|)/(ksi Li), (ksi Li)/(mi |g|),
|qi(0)|/Li, |qi(0)|2/L2

i , |pi(0)|/(
√
mi ksi Li), |pi(0)|2/(mi ksi L

2
i ), i = 1, 2. We use dimension-

less scalars as inputs to the MLPs, which makes the outputs of the MLPs also dimensionless.
The decoder then scales the outputs to restore the hamiltonian H units of kgm2 s−2.
At this stage we employ the following 26 scaling factors: ksr Li Lj , mi Lj |g|, mi g

⊤qj(0),
(pi(0)

⊤pj(0))/mr, ksr qi(0)
⊤qj(0), i, j, r ∈ {1, 2}, all of which have the units of kgm2 s−2.

The dimensional scalars-based and the dimensionless scalars-based MLPs both have
equal numbers of model parameters, and are trained with the same set of hyper-parameters
(number of training epochs, learning rate, etc.).

The prediction error (or state relative error) at time t is defined as

State.RelErr(t) =

√
(ẑ(t)− z(t))⊤(ẑ(t)− z(t))√
ẑ(t)⊤ẑ(t) +

√
z(t)⊤z(t)

. (15)

Table 1 reports the average errors over {t1, . . . , t60}. When the test data are generated
from the same distribution as the training data, the dimensional scalar-based MLP exhibits
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Figure 3: Ground truth and predictions of mass 1 (top) and 2 (bottom) in the phase space
w.r.t. each dimension. Top 6 panels: Results from Experiment 1, where the test
data are generated from the same distribution as those used for training. Here
the dimensional scalar-based MLPs exhibit slightly more accurate predictions for
longer time scales. Bottom 6 panels: Results from Experiment 2, where we use
the same test data in Experiment 1 but each with its inputs that have units of
kg randomly scaled by a factor generated from Unif(3, 7). Here the dimensionless
scalar-based MLP is able to provide comparable performance to Experiment 1,
while using the dimensional scalars gives much worse predictions.
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Scalar-based
MLPs

Experiment 1 Experiment 2 Experiment 3

Baseline .0055± .0030 .3669± .0050 .1885± .0031
Dimensionless .0061± .0024 .0089± .0034 .0435± .0047

Table 1: Geometric mean (standard deviation computed over 10 trials) of state relative
errors of the springy pendulum over T = 60. Results are shown for the dimensional
vs dimensionless scalar-based Hamiltonian Neural Networks (implemented as an
MLP) on three different test sets. Test data used in Experiment 1 are generated
from the same distribution as the training dataset; test data used in Experiment 2
using the same test data in Experiment 1 but each with its inputs that have units
of kg randomly scaled by a factor generated from Unif(3, 7); test data used in
Experiment 3 has mass m, scalar spring constant ks and natural spring length L
generated from a different distribution.

slightly more accurate predictions for longer time scales using the same training hyper-
parameters. When we have out-of-distribution test data as in Experiment 2 and 3, the
performance of both methods deteriorates as expected, but the dimensionless scalar-based
MLP exhibits a significantly better generalization performance. In particular, if we rescale
the units as in Experiment 2, where all the quantities that have the units of kg are scaled
by the same randomly generated factor, the dimensionless scalar-based MLP is able to
provide comparable performance to results from Experiment 1. Actually, this could be
considered to be an in-distribution test set in the space of dimensionless scalars (see
Section 4), and thus the only reason why the error is different is that the state relative
error (15) is not dimensionless. In other words, our experiments show that imposing units
equivariance increases the generalization performance significantly, especially in out-of-
distribution settings.

Figure 3 provides an illustration of the predicted orbits by the dimensional and the
dimensionless methods in Experiment 1 and Experiment 2.

Emulation: Arid vegetation model We further explore unit equivariance-informed
learning inspired by a non-linear problem in ecology3. In semi-arid environments, banded
vegetation is a characteristic feature of plant self-organization which is modulated by the
quantity of water available (Dagbovie and Sherratt, 2014). Inverting emergent vegetation
patterns as a function of environmental changes is a central problem in ecology. Towards
this end, a popular approach is the Rietkerk model, a set of differential equations relating
surface water u, water absorbed into the soil w, and vegetation density v (Rietkerk et al.,
2002). These differential equations are

3. See https://dwh.gg/Rietkerk.
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description default units

R rainfall 0.375 ℓd−1m−2

α infiltration rate 0.2 d−1

k2 saturation const. 5 gm−2

W0 water infiltration const. 0.1 —
Du surface water diffusion 100 d−1m2

gm water uptake 0.05 ℓ g−1 d−1

k1 water uptake constant 5 ℓm−2

δw soil water loss 0.2 d−1

Dw soil water diffusion 0.1 d−1m2

c water to biomass 20 ℓ−1 g
δv vegetation loss 0.25 d−1

Dv vegetation diffusion 0.1 d−1m2

T total integration time 200 d
δt integration time step 0.005 d
L integration patch length 200 m
δl spatial step size 2 m

Dimensionless features

c α−1 gm
R−1αk1

R−1c−1αk2
α−1δw
α−1δv
W0

α−1Dv L
−2

α−1Du L
−2

αT
α δt

α−1Dw L−2

L−1δl

Table 2: (Right) Parameters in the Rietkerk model and their units (Rietkerk et al., 2002).
The bottom four parameters are parameters of the integration. (Left) Basis of
dimensionless features found by our method.

du

dt
= R− α

v + k2W0

v + k2
u+Du∇2u

dw

dt
= α

v + k2W0

v + k2
u− gm

v w

k1 + w
− δw w +Dw ∇2w

dv

dt
= c gm

v w

k1 + w
− δv v +Dv ∇2v, (16)

where u,w, v are all functions of both two-dimensional spatial coordinates and time t, and
the ∇2 operator is the scalar second derivative operator (Laplacian) with respect to position.
In detail, u denotes the surface water density (units of mm = ℓm−2), v is the soil water
content (same units as u), and v is the vegetation density (units of gm−2). Further, the
time derivative operator has units of d−1, the Laplacian operator has units of m−2, and
the units of the other quantities (R, w0, gm, and so on) can be inferred from the equations
in (16). Here the natural base units are (ℓ, g,d,m). Note that as there is a conversion
1000 ℓ = 1m3, we could, in principle, reduce the base units by one. However, there is no
direct communication between water volume and distance across the surface, so these units
can be kept separate. In general, the units equivariance is more powerful when there are more
independent base units, which leads to substantial design decisions for the investigator. The
Rietkerk model is determined by a set of dimensional parameters described in Table 2, and
the initial conditions u0, v0, w0. We consider random initial conditions, and random choice
of parameters, uniformly sampled between 0.5 and 1.5 times the default value. For each
choice of parameters, we use finite differences to estimate the derivatives and Laplacian, and
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integrate the Rietkerk model using Euler’s method with time step 0.005 d, in a 200m×200m
grid, with 2m pixel spacing.

We consider the task of predicting, from initial conditions, the average vegetation density
after 200 days (the empirical steady state solution of (16) at default parameters). We produce
a training set of 1000 initial configurations and a test set of 100 configurations. A significant
portion of these simulations ended up with total vegetation death at a finite time. We didn’t
consider these examples for the regression task – extending our results to classification is
a future direction. We perform two forms of linear regression, a baseline regression, and a
unitless regression. The baseline regression uses 33 features: the dimensional parameters,
their inverses, and the dimensionless constant 1 which describes affine linear functions. The
dimensionless linear regression uses the method described in Section 3. It uses the Smith
normal form to construct a basis of 12 dimensionless features, and it uses them, their inverses,
and the constant 1, obtaining 25 regression features. The results show that the dimensionless
regression has significantly better performance in Figure 4.

Our toy model explores the impact of selecting dimensionally correct features on predicting
average vegetation outcomes when data are generated from a well-characterized ecological
model. However, other interesting symbolic regression problems remain open. For example,
is the Rietkerk model considered the most appropriate for modeling banded vegetation
patterns in general? A recent approach aimed to address the related inverse problem of
determining the underlying structure of a nonlinear dynamical system from data (Brunton
et al., 2016). There, sparse regression and compressed sensing tools informed the selection of
a small number of informative, non-linear terms hypothesized to explain observed dynamics.
Thus, these kinds of problems present an intriguing venue for future exploration of units
equivariance as a principled way to impose additional sparsity in a non-linear feature space
which could further aid methods like that of Brunton et al. (2016) by restricting feature
selection to units-equivariant, physically informative terms.

Symbolic regression: The black-body radiation law One of the most important
moments in modern physics was the introduction of the quantum-mechanical constant
h by Planck around 1900 (Planck, 1901). In our language, this discovery can be seen
as a symbolic regression, in which Planck discovered a simple symbolic expression that
accurately summarized a host of data sets on radiating bodies at different temperatures. The
dimensional constant h was introduced to explain the short-wavelength part of the radiation
law, but it ended up being the governing constant for all quantum phenomena; it led to a
simple prediction of the spectrum of the Hydrogen atom (Bohr, 1913) and is the core of
the Schrödinger equation (Schrödinger, 1926); it was extremely important in the history of
physics.

The black-body radiation Bλ(λ;T ) from a perfectly radiating and absorbing (black)
thermal source at temperature T is properly measured in intensity units, which are (or
can be) energy per time per wavelength per area per solid angle. Because solid angles are
dimensionless, this translates to SI units of Jm−3 s−1. The problem Planck faced was a set of
measurements (labels) Bλ(λ;T ) at many wavelengths λ for bodies at multiple temperatures
T . The input features λ, T, c, kB and output labels Bλ(λ;T ) of the problem are summarized
in Table 3, along with their units in the SI base unit system of kg,m, s,K.
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Figure 4: (Top) The evolution of vegetation density from random initialization according
to a Rietkerk model. The model’s parameters are given in Table 2. (Bottom)
We consider 1000 random initializations and evolutions according to random
parameters sampled from a uniform distribution supported in [0.5x, 1.5x] where x
are the baseline Rietkerk parameters from Table 2 (the integration parameters
remain fixed). Our regression task is to predict the spatial mean vegetation after
200 days as a function of the Rietkerk parameters. The light blue dots show the
(naive) regression vs Rietkerk model for linear regression on the model parameters,
its inverses, and the constant 1 (33 features in total) on a held-out test set. The
dark red dots correspond to a linear regression using a basis of dimensionless
features obtained with our (units-equivariant) method, their inverses, and the
constant 1 (25 features in total) in the same test set. The naive regression has a
test MSE of 26.3 g2m−4 whereas the units-equivariant regression has a MSE of
12.6 g2m−4. The Pearson correlation of the prediction and the target value is 0.94
for the naive regression and 0.97 for the units-equivariant regression.
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description units comment

Bλ(λ;T ) intensity kgm−1 s−3 regression label

λ wavelength m variable feature
T temperature K variable feature
c speed of light m s−1 fundamental constant

kB Boltzmann’s constant kgm2 s−2K−1 fundamental constant

Table 3: Labels and features in Planck’s black-body radiation problem and their units.

In terms of the language illustrated in Figure 1, the decoder gx,v involves multiplying
the dimensionless output of a dimensionless regression by a dimensional quantity with the
same units as the labels Bλ(λ;T ). The only possible dimensional quantity that can be made
out of the features that match the dimensions of the labels is

c

λ4
kB T , (17)

which has units of intensity. The featurizer ϕ makes all possible dimensionless quantities
out of the inputs. But wait, there are no (non-trivial) dimensionless features possible! In
a dimensionless regression, the only available input feature is the dimensionless constant
unity. That is, in our approach, the only possible outcome of the regression, in this case, is

Bλ(λ;T ) = C
c

λ4
kB T , (18)

where C is a universal constant. This is a classical dimensional analysis result.
There are two comments to make here. The first is that this form (18) is not a good fit

for the data! Thus the method we are proposing here fails. The explanation for this failure is
that there is a dimensionless constant, h (now known as Planck’s constant) that is missing
from our formulation in Table 3. The second is that this form (18) is a perfect fit to the
data at long wavelengths. That is, at long wavelengths, where quantum occupation numbers
are high, the problem behaves classically, and the data are extremely well explained by (18),
with C = 2. This result (with C = 2) is called the Rayleigh—Jeans law. If the reader is
interested in the history of physics, the Rayleigh–Jeans law is the lynchpin of the ultraviolet
catastrophe, which is a paradox of classical statistical mechanics, resolved by quantization.

What Planck discovered or realized is that the data could only be explained with the
introduction of a new dimensional universal constant. He had choices for the dimensions
of this constant, but he set it to have dimensions of energy times time. Planck’s symbolic
regression led to the complete expression

Bλ(λ;T ) =
2h c2

λ5

1

exp( h c
λ kB T )− 1

, (19)

which reduces to (18) with C = 2 in the limit λ → ∞. This result required the introduction
of the dimensional constant h, resolved the ultraviolet catastrophe, and seeded the discovery
of quantum mechanics. In the approach advocated in this work, we have no way to learn or
discover missing dimensional constants. That is a limitation of our approaches and motivates
future work.
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6. Discussion

In the above, we defined units equivariance for machine learning, with a focus on regression
and complex functions. A function obeying this equivariance obeys the exact scalings that
are required by the rules of dimensional analysis. These scalings must be obeyed by any
theory or function in use in the natural sciences.

We developed a simple framework for implementing units equivariance into regression
problems. This framework puts burdens on the investigator—burdens of having consistent
units for all inputs, and also a comprehensive list of dimensional constants—but is otherwise
lightweight in terms of modifying existing regression methods. We did not consider the
important problems of learning dimensions, or the discovery of missing dimensionless inputs,
but these are worthy extensions of what we looked at here.

We argued that imposing units equivariance must improve the bias and variance of
regression methods, both because it incorporates correct information, and also because it
reduces model capacity at fixed complexity, often by an enormous factor. The equivariance
also enables out-of-sample generalization, because a test set that doesn’t overlap a training
set in dimensional inputs will often significantly overlap in dimensionless combinations of
those inputs. We illustrated these effects empirically with a few simple experiments.

Units equivariance applies to all functions in the natural sciences. It won’t be useful
everywhere. In particular, it is most useful when there are many independent units at play,
and the full panoply of physical constants is known. This is not true, say, for standard
image-recognition tasks, for which all the inputs have the same units (intensity in image
pixels) and the physical quantities (involved in the identification of pandas and kittens,
say) are not known. It is also not true in natural-science problems where there might be
unknown physical constants or physical laws at play. The discovery of physical laws is often
the discovery of dimensional physical constants, as our black-body radiation law example
problem (Section 5) illustrates.

However, we are very optimistic about the usefulness of units equivariance in problems
of emulation and symbolic regression. In these settings, all symmetries are exact, and often
all inputs (including all fundamental constants) are known (and have known units). In
particular, some of the cleanest physics problems might be in the area of the growth of
structure in the Universe, where there are very few dimensioned quantities and the physics
is dominated by one force (gravity). These problems are of great interest at the present day
and have attracted very promising work with machine learning methods (for example, He
et al. 2019; Berger and Stein 2019; Kodi Ramanah et al. 2020; Tröster et al. 2019).
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Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. Data augmentation as feature
manipulation: A story of desert cows and grass cows. arXiv:2203.01572, 2022.

Richard P. Stanley. Smith normal form in combinatorics. Journal of Combinatorial Theory,
Series A, 144:476–495, 2016.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation- and translation-equivariant neural networks
for 3d point clouds. arXiv:1802.08219, 2018.

25



Villar, Yao, Hogg, Blum-Smith, Dumitrascu

Ambler Thompson and Barry N. Taylor. Guide for the Use of the International System of
Units (SI); Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 ed. National Institute of
Standards and Technology, 2008.
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Appendix A. Generalization improvements

We first explain ideas from Elesedy and Zaidi (2021) developed in the context of invariant
and equivariant functions with respect to actions by compact groups.

Given X ⊆ Rd and G a compact group acting on X, we fix a G-invariant measure µ.
We consider the Hilbert space of functions H = L2(X,µ). The action of G on X induces a
natural action on H via the formula

[λ · f ](x) := f(λ−1 · x)

for x ∈ X and λ ∈ G. We split H into two orthogonal components, the closed ground-truth
G-invariant subspace H̄ consisting of the functions f ∈ H satisfying λ · f = f for all λ ∈ G,
and its orthogonal complement H⊥, so that H = H̄ ⊕ H⊥. Using that µ is G-invariant, it
is noted (Elesedy and Zaidi, 2021) that the orthogonal projection onto H̄ coincides with
averaging along the G-orbit, also known as the Reynolds operator:

Of(x) =

∫
G
f(λ · x)dλ, (20)

where λ is the normalized Haar measure of the group. The proof from Elesedy and Zaidi
(2021) that orthogonal projection to H̄ coincides with O is reproduced below in (23)-(26),
and an alternative proof follows as well.

The Reynolds operator has good algebraic properties. It can be alternatively characterized
as the unique G-invariant projection H → H̄, i.e., the unique linear map O : H → H̄ that
restricts to the identity on H̄ and satisfies

O(λ · f) = Of (21)

for λ ∈ G and f ∈ H. Yet another characterization is that it restricts to the identity on any
subspace consisting of invariants, and to zero on any G-stable closed subspace not containing
nontrivial invariants. The Hilbert space H contains the algebra of compactly-supported
continuous functions Cc(X) as a dense subspace, and the Reynolds operator has the property
that its restriction to this algebra commutes with multiplication by invariant such functions,
i.e., it satisfies

O(fh) = fOh (22)

for all f ∈ Cc(X)G (the subalgebra of invariant compactly-supported continuous functions)
and h ∈ Cc(X). In other words, O restricts to a Cc(X)G-module projection Cc(X) → Cc(X)G.

Now we verify the observation from Elesedy and Zaidi (2021) that O is the orthog-
onal projection in H onto the space of invariants; equivalently, given f ∈ H, we have
argminh∈H̄ ∥h − f∥2µ = O(f). In order to show this, it suffices to observe that O is self-
adjoint with respect to the inner product in L2(X,µ):

⟨Of, h⟩µ =

∫
X

〈∫
G
f(λ · x)dλ, h(x)

〉
dµ(x) (23)

=

∫
X

∫
G
⟨f(λ · x), h(x)⟩dλ dµ(x) (24)

=

∫
X

∫
G
⟨f(x), h(λ−1 · x)⟩dλ dµ(x) (25)

= ⟨f,Oh⟩µ. (26)
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Note that (25) holds due to µ being G-invariant. An alternative, more conceptual way to
see that O is an orthogonal projection to H̄ under the assumption that µ is G-invariant is
as follows. Because µ is G-invariant, the inner product on H = L2(X,µ) is also G-invariant.
Thus G acts by unitary transformations on H. This implies that every G-invariant element of
H is orthogonal to every G-stable closed subspace not containing any nontrivial G-invariants.
This is because if f ∈ H is invariant and h ∈ V ⊂ H where V is a closed, G-stable subspace
containing no nontrivial invariants, then ⟨f, h⟩ =

∫
G⟨λ · f, λ · h⟩dλ = ⟨f,Oh⟩ = ⟨f, 0⟩ = 0.

The integral is with respect to the normalized Haar measure on G. The first equality is the
fact that λ is unitary, the second is because f is invariant so the integral can be pushed into
the inner product, and the third is because Oh is both invariant and in V , therefore trivial.
As discussed above, O acts as the identity on invariants and annihilates G-stable closed
subspaces containing no nontrivial invariants (and this also follows from the calculation just
performed). Since the former is orthogonal to the latter, this means O is the orthogonal
projection onto the subspace of invariants in H.

Now, given f∗ : X → Rk, f∗ ∈ H̄, Elesedy and Zaidi (2021) consider data y = f∗(x) + ξ
where ξ is sampled from a zero-mean, finite variance distribution in Rk. The risk of a function
f is the expected value of the prediction error

R(f) = Ex∼µ∥y − f(x)∥22 (27)

and given two functions f and f ′ the generalization gap is

∆(f, f ′) = R(f)−R(f ′). (28)

In Elesedy and Zaidi (2021) a regression problem is considered in which the regression is
performed on a subspace U ⊂ H that is closed under (20). Then U can be decomposed into
closed subspaces U = Ū ⊕ U⊥ where Ū ⊂ H̄ and U⊥ ⊂ H⊥. Given a function f ∈ U , let
f̄ := ΠŪf and f⊥ := ΠU⊥f the respective orthogonal projections of f . Note that under the
present hypothesis f̄ := Of and f⊥ := f − Of since O restricted to U is the orthogonal
projection to Ū .

The goal is to compute ∆(f, f̄), namely what is the excess risk of doing the regression on
the function space U instead of restricting to the invariant subspace Ū , which corresponds
to the ground truth. A simple computation shows that if x is sampled from µ, then

∆(f, f̄) = ∥f⊥∥2µ; (29)

this in particular shows that there is always a benefit to restricting to the ground truth
subspace. For instance, if the target is a group invariant function, and we do a regression in a
space of polynomials, we might as well restrict the regression to group invariant polynomials,
since the generalization error will be strictly smaller.

The rest of the analysis in Elesedy and Zaidi (2021) focuses on computing ∥f⊥∥2µ for
data models, for instance, assuming U is the space of linear functions (they discuss both
over and under-parameterized), and the input is Gaussian with mean zero and identity
covariance (assuming the spherical Gaussian distribution is G-invariant). A slightly more
general formulation allows them to express the same ideas for equivariance. This work has
been extended to kernel regressions (Elesedy, 2021).
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Reynolds projection onto scaling invariant functions via Weyl’s unitarian trick
Let X = (R,Zk)d where each of the d features xi has base units exponents ui = (ui1, . . . uik) ∈
Zk expressed in terms of k base units. The Buckingham Pi theorem discussed in Section 3
shows that units-equivariant functions are in a one-to-one correspondence with functions of
(finitely many) dimensionless features (constructed as products of powers of input features).
This characterization also implies that the dimensionless functions are exactly the functions
that are invariant with respect to unit rescalings. For each base units, represented here by
the index j ∈ {1, . . . , k}, we consider uij , its exponent in each feature xi. Then f is scaling
invariant (i.e. dimensionless4) if and only if for all g ∈ R>0 and all j ∈ {1, . . . , k} we have

f(gu1jx1, . . . , g
udjxd) = f(x1, . . . , xd); (30)

this property is also known as self-similarity (Barenblatt, 1996). The rescalings can be seen
as an action by the appropriate renormalization group, in this case G = (R>0)

k, defined as

(g1, . . . , gk) · (x1, . . . , xd) =

(

k∏
j=1

g
−u1j

j )x1, . . . , (

k∏
j=1

g
−udj

j )xd

 . (31)

Since the group is not compact, the results of Elesedy and Zaidi (2021) are not directly
applicable. However, it is closely related to the reductive real algebraic group (R×)k, so some
of the concepts can be generalized by using Weyl’s unitarian trick. (This will require us to
work in complex space.) However, the key property from Elesedy and Zaidi (2021), that the
Reynolds projection coincides with the orthogonal projection with respect to the measure,
will not hold in real space.

We consider U a space of real analytic functions (for instance, rational monomials).
We can define a Reynolds projection to the G-invariant functions Ū , analogous to (20), by
using Weyl’s unitarian trick. If f : Rd → R is a real analytic function it has an analytic
continuation, fC : Cd → C, such that fC|Rd = f . Weyl’s unitarian trick is to replace the
group G = (R>0)

k with the torus Tk = {z ∈ Ck : |zi| = 1}. Both groups are Zariski-dense in
the group (C×)k—in other words, any polynomial that vanishes identically on either G or Tk

actually vanishes identically on all of (C×)k. (For background on Weyl’s trick, see (Fulton
and Harris, 2013, pp. 129–131); for more on the Zariski topology and Zariski-denseness, see
(Shafarevich, 1994, pp. 22–24).) It follows, because the group action (31) is described by
rational functions, that all three groups have the same invariants. On the other hand, the
torus Tk is compact, so we can average over it to obtain a projection

Qf(x1, . . . , xd) =

∫
Tk

fC
(
(z1, . . . , zk) · (x1, . . . , xd)

)
dλC(z), (32)

where the Haar measure λC coincides with the (normalized) Lebesgue measure on the
torus—namely, the Lebesgue measure scaled by 1

(2π)k
.

In order to explain how the projection Q behaves, we first note that the rational
monomials define characters for the group action. Namely,

xa =
d∏

i=1

xaii , (z1, . . . zk) · xa = (
k∏

j=1

z
∑d

s=1 usjaj
j )xa, (33)

4. We assume the output is dimensionless for simplicity, without loss of generality a dimensioned output
function F ∗ : Z → Xv can be obtained as F ∗(x) = gx,u(f

∗(x)) where gx,u is fixed.
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therefore

χxa : (C>0)
k → C>0 (34)

(z1, . . . , zk) 7→
k∏

j=1

z
∑d

s=1 usjaj
j (35)

is a continuous group homomorphism (same for the real characters). Therefore, the rational
monomials are eigenvectors of Q:

Q(xa) =

∫
Tk

z · xadλC(z) =

∫
Tk

χxa(z)xadλC(z) = xa

∫
Tk

χxa(z)dλC(z). (36)

A standard computation shows that if χ is a character of a compact group with Haar measure
λ, then

∫
G χ(g)dλ = λ(G) if χ is trivial, and 0 otherwise. In particular, this shows

Q(xa) =

{
xa if

∑d
s=1 usjaj = 0 for all j = 1, . . . , k

0 otherwise.
(37)

In other words, comparing (37) with (8), a rational monomial is either invariant under the
group action (i.e. dimensionless), or it is in the kernel of Q. Thus Q is a Reynolds operator
for the group of scalings.

Generalization gap for (complex) units equivariant regressions In order to use the
results from Elesedy and Zaidi (2021) it is not enough to have a projection Q. We need Q
to be an orthogonal projection in an L2 space. To this end, we consider a space of functions
of the original input features, where the units equivariant functions are a linear subspace.
The characterization from the dimensional analysis discussed above suggests focusing on
rational monomials. Unfortunately, the rational monomials may have poles when features are
zero, so in order to define the inner product we will restrict the measure µ to have bounded
support which does not include zero. In particular we can consider Xd = ([−b,−a] ∪ [a, b])d,
and µ the standard (Lebesgue) measure in Rd restricted to Xd and 0 outside X. We let
H = L2(Rd, µ). We note that µ is not scaling invariant, and indeed, no compactly-supported
measure is scaling-invariant. Relatedly, Q is not an orthogonal projection in L2(Rd, µ) for
any real measure µ. But we will salvage what we can.

Since we extended the class of functions to a complex domain to use Weyl’s trick, we
also need to extend the measure µ to µCd . We consider the Lebesgue measure in Cd with
support (XC)

d where XC = {z ∈ C : a < |z| < b}. Now HC = L2(Cd, µCd). We will see that
even though µCd is a complex analog of µ, the resulting Hilbert spaces are not necessarily
comparable. In particular, Q is an orthogonal projection in L2(Cd, µCd), due to the fact
that µCd is rotationally symmetric (i.e., invariant under the action by Td).

Proposition 3 If U ⊆ HC is a linear subspace closed under scalings, then Q defined in
(32) is the orthogonal projection onto the space of scaling invariant functions. In particular
U = Ū ⊕ U⊥ where Ū = Image(Q) and U⊥ = kernel(Q).
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Proof It suffices to show: (a) Q(U) ⊂ U . (b) f is scaling invariant if and only if Q(f) = f .
(c) Q is self adjoint for ⟨·, ·⟩µCd

. This can be shown with a similar argument to (23)-(26):

⟨Qf, h⟩µCd
=

∫
Xd

C

〈∫
Tk

f(z · x)dλC(z), h
∗(x)

〉
dµCd(x) (38)

=

∫
Xd

C

∫
Tk

⟨f(z · x), h∗(x)⟩dλC(z) dµCd(x) (39)

=

∫
Xd

C

∫
Tk

⟨f(x), h∗(z−1 · x)⟩dλC(z) dµCd(x) (40)

= ⟨f,Qh⟩µCd
, (41)

where h∗ is the complex conjugate of h. Note that (40) holds because the measure µCd is
invariant with respect to scalings in Tk (namely, µCd is rotationally symmetric).

Note this argument is not possible for µ. We’ll see at the end of this section that Q is
not self-adjoint with respect to any real inner product in general.

Our argument in the previous section shows that when U is a space generated by rational
monomials, the projection onto Ū is easy to characterize. In particular, a simple computation
(Proposition (4)) shows that the complex rational monomials are orthogonal in L2(Cd, µCd).

Proposition 4 Let U be the space of rational monomials, spanned by

B :=

{
xa :=

d∏
i=1

xaii : a = (a1, . . . , ad) ∈ Zd

}
. (42)

Then for all xa,xa′ ∈ B with a ̸= a′ we have ⟨xa,xa′⟩µ = 0.

Proof Let a ̸= a′, then

⟨xa,xa′⟩µC =

∫
XCd

d∏
i=1

xaii x̄
a′i
i dµCd (43)

=

∫
XCd

d∏
i=1

rie
jaiθirie

−ja′iθidµCd , (44)

where xi = ejθi and j =
√
−1. Now since a ̸= a′ we can choose s such that as ≠ a′s. Using

Fubini-Tonelli’s theorem we can write:

⟨xa,xa′⟩µC =

∫
XCd−1

d∏
i=1
i ̸=s

rie
j(ai−a′i)θidµCd−1

∫
XC

rse
j(as−a′s)θsdµC1 , (45)

where the last term is zero because as ̸= a′s and the measure µC1 is rotationally symmetric.

This setting allows generalizing the results from Elesedy and Zaidi (2021) to complex
scalings of complex functions.
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Proposition 5 Let X ∼ µCd where µCd is a rotation invariant distribution in A ⊂ Cd.
Let Y = f∗(X) + ξ ∈ C, where ξ is a random element of C that is independent of X with
zero mean and finite variance, and f∗ : A → C is scaling invariant. Then, for any f , the
generalization gap satisfies

∆(f,Qf) = ∥f⊥∥2µCd
. (46)

Discussion of real units-equivariant functions Even though some dimensional quanti-
ties can be complex, for example, electromagnetic field amplitudes in Fourier space, most
dimensional quantities are real-valued, and the dimensional scalings are always real, therefore
the above theory is not directly applicable.

Unfortunately, the analysis above will not hold for the real case. Note that the Reynolds
operator defined in (32) is well-defined for real-analytic functions and delivers the same
projection in the rational monomials case (i.e. it drops the non-dimensionless rational
monomials). However, this projection does not correspond to an orthogonal projection with
respect to any nontrivial measure µ. One way to see this is by observing that the monomials
cannot be orthogonal for any non-trivial real measure µ.

For example, suppose we have two input features x, y, and the dimensionless space
is generated by xy. Then the Reynolds projection Q will satisfy that Q(xy−1) = 0 (see
Eq. (37)). However, no non-trivial real measure will satisfy that ⟨xy, xy−1⟩µ = 0 because
⟨xy, xy−1⟩µ =

∫
(xy)(xy−1)dµ =

∫
x2dµ = ⟨x, x⟩µ > 0.

The underlying question here is, what is the right notion of projection of a real function
onto the space of units-equivariant functions? The Reynolds projection is the most natural
projection from an algebraic point of view, per the discussion following (20). The orthogonal
projection with respect to the L 2-norm of the measure of the data is the one corresponding
to the estimator risk (27). The fact that these two projections diverge in the present case
stems from the fact that the measure from which the data is drawn cannot itself be scaling-
invariant. Furthermore, there is no reason to expect that the space spanned by rational
monomials is closed under the orthogonal projection in L 2(Rd, µ).

Note that our algorithm does not perform a projection, it directly optimizes in a space
of invariant functions. The generalization gap one may want to investigate is ∆(f̂ , f̄) where
f̂ is the output of a baseline regression, and f̄ is our units-equivariant regression. We show
specific examples in Section 5.
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