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Abstract

This paper presents a Bayesian model, called the Bayesian Bradley Terry (BBT) model,
for comparing multiple algorithms on multiple data sets based on any metric. The model is
an extension of the Bradley Terry model, which tracks the number of wins each algorithm
has on different data sets. Unlike frequentist methods such as Demsar tests on mean
rank or multiple pairwise Wilcoxon tests, the Bayesian approach provides a more nuanced
understanding of the algorithms’ performance and allows for the definition of the “region of
practical equivalence” (ROPE) for two algorithms. Additionally, the paper introduces the
concept of “local ROPE,” which assesses the significance of the difference in mean measure
between two algorithms using effect sizes, and can be applied in frequentist approaches as
well. Both an R package and a Python program implementing the BBT are available for
use.

Keywords: Bayesian, Bradley-Terry model, Comparison of classifiers, Comparison of
regressors, Multiple data sets, Multiple algorithms

1. Introduction

In the field of Machine Learning, new models or algorithms are often compared to existing
ones using a variety of data sets. These comparisons usually result in a table similar to Table
1, where each line indicates a data set, and each column the algorithms being compared.

Alg A Alg B ... Alg L
DB 1 a1 b1 ... l1
DB 2 a2 b2 ... l2
DB 3 a3 − ... l3

... ... ... ... ...
DB K ak bk ... lk

Table 1: The table of measures of comparing algorithms A, B, ..., L on data sets DB1, DB
2, ..., DB K.
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In the example above a2 is the measure of algorithm A on the data set DB 2. Usually,
this measure is the average of a set of measures of algorithm A on different cross validations
of the data set DB 2.

The different results will be compared using a comparison procedure. The goals of a
comparison procedure are in order of importance:

1. The procedure should tell which algorithm is better, which is second place, which one
is third place, and so on when measured on a particular set of data sets. We will call
this the aggregated ranking of the algorithms for that set of data sets. In particular,
for the example above, the aggregated ranking would result in a total order such as
C ≻ B ≻ E . . . A stating that C is better than B which is better than E, and so
on, and that A is the worse algorithm in the set. We will indicate that algorithm C
is better than algorithm B as C ≻ B. Of course, the meaning of better depends on
the metric being used; higher numbers are better for metrics such as accuracy, F1,
AUC, and lower numbers are better for metrics such as error, execution time, energy
consumption and so on.

2. The procedure should compute how confident or how hopeful one should be that the
ordering will remain true when one tests the same algorithms on a new data set. That
is, the procedure should indicate the confidence in each of the comparisons C ≻ B,
C ≻ E, C ≻ A, B ≻ E, and so on.

3. The procedure should state how much one algorithm is better than another or at least
when one algorithm is not much better than another one, that is, when both algorithms
are equivalent. Ideally one would like a measure dist(C,B) which indicates how much
better C is from B. Or at least one would like such a distance measure that would
indicate when C is not really much better than B and that, for practical purposes,
they are equivalent.

4. The procedure should not require that all algorithms must be evaluated in all data
sets. In the example above, algorithm B did not run for data set B, as indicated by
the “-” entry in the table.

There are numerous methods for aggregating rankings in machine learning. The obvious
method of computing the mean of the measures of each algorithm and ordering them based
on that mean is not considered appropriate for machine learning comparisons. There are
two reasons for that. The first is that there are some metrics used in Machine Learning, and
especially in regression tasks which are non-comparable. Two of such metrics are RMSE
(root mean square error) and MAE (mean absolute error). Let us assume an algorithm
that has an RMSE of $30’000,00 in predicting housing values of Boston suburbs (DB 1)
and an RMSE of 3.3 on predicting the quality of red wine (DB 2). How can one add those
two numbers to obtain an average? In fact, we cannot even compare those two numbers;
which one is higher? But even for comparable metrics, such as accuracy, AUC, and so
on for classification, or MAPE (mean absolute percentage error) for regression, which are
dimensionless quantities, there is a subtle problem in averaging those measures. For example,
an improvement in accuracy from 76% to 78% is less “significant” than an improvement from
96% to 98%, even though both represent a 2% increase. Two algorithms that have a mean
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accuracy of 0.86, but one with 78% and 96% accuracy on two data sets, and the other with
76% and 98% accuracy, would have the same mean accuracy, but the second algorithm would
be considered “better” as its 2% increase on the second data set is more “significant.” Thus,
computing the aggregated ranking based on the mean of the measures, even for comparable
metrics, is not considered a “correct” procedure in Machine Learning.

Another alternative (Benavoli et al., 2016; Stapor et al., 2021) is to compute the median
measure for each algorithm, provided the metric used is comparable. The aggregated ranking
is then determined by ranking the medians. One common method (Demsar, 2006) is to
compute the rank of each algorithm within each data set, assigning 1 to the best, 2 to the
second, and taking the average rank in case of ties. The mean rank of each algorithm is
then calculated, and the ranking of these mean ranks determines the final aggregated rank.

Additionally, there are numerous ranking aggregation methods discussed in other disci-
plines (Langville and Meyer, 2012), such as social choice theory where rankings are referred
to as preferences and a wide range of voting procedures are used to aggregate them (List,
2022). However, it is important to note that these aggregation procedures in other disci-
plines are not usually associated with a measure of confidence in determining which item is
“better” than another in the aggregated rank.

The second goal of evaluating the confidence of the aggregated ranking is only necessary
when a sample of the relevant population is used for comparison. In the case of determining
the winner of an election or a sports championship, the entire population is considered, and
there is no need for a statistical evaluation of the victory. In these cases, the purpose of the
comparison procedure is simply to calculate the aggregated ranking.

However, when comparing machine learning algorithms, the aggregated ranking obtained
from a particular set of data sets is not the ultimate goal. The objective is to make claims
about the ranking of algorithms on future, yet-to-be-seen data sets. To assess the confidence
in the aggregated ranking, statistical tests are often used to determine the trustworthiness
of paired comparisons between algorithms. Historically, the most common approach has
been the frequentist approach, where a null hypothesis significance test is used to make a
binary decision on the significance of the difference between algorithms.

In recent times, there has been a shift towards Bayesian approaches to statistical test-
ing. Bayesian approaches do not provide a binary decision on the significance of paired
comparisons, but instead provide a probability of one algorithm being better than the other.

Regarding the third goal, there is a clear need to state that two algorithms are similar for
practical purposes. However, frequentist methods are not well-suited to make this claim1.
Some researchers mistakenly assume that if there is no statistical difference between two al-
gorithms, they are similar or equivalent. However, a non-significant result from a frequentist
test only indicates that the sample size was not large enough to detect a significant differ-
ence, not that the algorithms are equivalent. With a large enough sample size, all p-values
will go to 0.0 (Shalizi, 2015; Kruschke and Liddell, 2015) and all differences will become
significant. In contrast, Bayesian methods do allow for the claim of practical equivalence,
as we will see in a later section (Section 2).

1. There are frequentist tests that determine when two alternatives do not have practical difference. These
are known as equivalence tests (Wellek, 2010) but are not of common use in Machine Learning or other
areas of Computing.
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Finally, regarding the fourth goal, it is desirable to have the comparison procedure handle
missing measures gracefully, as algorithms may not converge on some data sets, may require
more memory than is available, or may exceed the allotted computational time. This is
particularly relevant in the case of frequentist approaches, as there is no universally agreed-
upon way of handling missing measures.

This paper presents a new comparison procedure that is based on the number of times an
algorithm outperforms another on various data sets. The proposed procedure is as follows:

• The statistical framework used is the Bradley-Terry model for ranks, which assumes
that each algorithm has a latent “merit number” or “ability” that determines the prob-
ability of it outperforming another algorithm.

• The aggregated ranking of algorithms is determined by the ordering of these merit
numbers.

• The proposed procedure utilizes a Bayesian implementation of the Bradley-Terry
model, which allows for the computation of the probability of one algorithm being
better than another, and serves as a measure of confidence in the ordering.

• The Bayesian model also enables the definition of when two algorithms are consid-
ered equivalent for practical purposes through the concept of the region of practical
equivalence (ROPE).

• The ROPE is defined in the probability space, allowing for a generic notion of equiva-
lence that can be understood and modified by researchers, regardless of their experience
with the particular metric being used.

• A concept of local ROPE is also introduced, which is a decision criterion for comparing
two algorithms on a specific data set. The decision is based not only on the difference
between the two mean measures but also takes into consideration the “noise level” or
effect size of the differences.

This paper is laid out as follows: Section 2 is a short tutorial on Bayesian tests. Section 3
discusses the previous frequentist and Bayesian approaches to comparing multiple algorithms
on multiple data sets. Section 4 discusses this proposal, the use of a Bayesian Bradley Terry
model. Section 5 shows some first results of using the BBT model. Section 6 discusses
our proposal of considering more than the mean across different cross-validations when
determining if one algorithm is better than the other. Section 7 discusses the quality of the
BBT model as a predictive estimation of the future behavior of the algorithms on new data
sets. Section 8 discusses some of the advantages and shortcomings of the BBT model, and
section 9 summarizes the main conclusions.

2. A short review of Bayesian tests

Bayesian tests (also known as Bayesian estimation procedures) compute the posterior
joint distribution of some parameters of the model that are important for the analysis. The
simpler case to discuss herein is a Bayesian version of the two samples (non-paired) t-test for
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the means. A simple Bayesian test will model each set of data (X and Y) as samples from
two Gaussian distributions with mean µX and µY and with standard deviation σX and σY
respectively. Additionally, the model assumes that µX and µY are themselves sampled from
another Gaussian with mean µ and standard deviation σ, while σX and σY are sampled
from a uniform distribution between L and H2. This is expressed by the following notation:

xi ∼ Normal(µX , σX)

yi ∼ Normal(µY , σY )

µX ∼ Normal(µ, σ)
µY ∼ Normal(µ, σ) (1)
σX ∼ Unif(L,H)

σY ∼ Unif(L,H)

The variables of interest are called parameters and in this case, are µX and µY (and
maybe σX and σY ).

The distributions Normal(µ, σ) and Unif(L,H) are called hyper-priors. The hyper-
parameters µ, σ, L, and H are set externally so that the distributions for the true data
X and Y are likely. For example, if the measured average of the data in X is 5 and the
measured average of the data in Y is 5.2, then the random variables µX and µY should be
around 5, and thus the mean of the Gaussian from which both µX and µY are sampled
should have mean (the µ hyper-parameter) of 5.

The choice of hyper-priors and the hyper-parameters σ, L, and H, can significantly
impact the results of a Bayesian estimation procedure. Narrow hyper-priors may result in
limited range of values for the parameters, and the results may be driven more by these
constraints than the actual data. On the other hand, overly wide hyper-priors may have
little to no constraints on the parameters, leading to potential convergence issues in the
MCMC algorithm (as discussed in section~2.2). The debate on the appropriate width of
hyper-priors is known as the non-informative vs weakly informative vs strongly informative
prior debate (Lemoine, 2019; Gelman et al., 2017).

In general terms, a Bayesian test will compute (or sample, as we will see below) the
posterior distribution of the parameters of interests, in this case µX and µY given the data.
That is, we want to compute:

P (µX , µY |M,X, Y ) = K P (X,Y |M,µX , µy)P (µX , µY |M)

where X and Y are the data, and M is the model itself (Equations 1), and K is a
constant that normalizes the distribution P (µX , µY |...).

Once the posterior distribution P (µX , µY |M,X, Y ) is computed, one can use it to
make probabilistic statements about the parameters of interest. For example, P (µX >
µY |M,X, Y ) represents the probability that the mean of the distribution that generated the
data X is greater than the mean of the distribution that generated the data Y . If this prob-
ability is 0.8, then the researcher is 80% confident that X comes from a population whose

2. A more complex model for this problem was proposed by Kruschke (2013).
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mean is greater than the population from which Y comes from. This type of probabilistic
statement is different from the claims made using frequentist methods.

2.1 ROPE

Another useful statement to derive from the posterior distribution is the probability that the
difference between µX and µY is of no practical consequence. If δ is the value below which the
difference is considered as insignificant, then the value of P (|µX − µY | < δ|M,X, Y ) repre-
sents the probability that there is no important difference between µX and µY . In Bayesian
analysis, the value δ is referred to as the region of practical equivalence (ROPE).
Differences smaller than the ROPE are considered to be of no practical significance.

2.2 MCMC and convergence

Typically, Bayesian tests do not calculate the probability distribution P (µX , µY |M,X, Y )
analytically, but instead use a method from the Markov Chain Monte Carlo (MCMC) family
of algorithms to sample pairs ⟨µXs, µY s⟩ from that distribution, denoted as ⟨µXs, µY s⟩ ∼
P (µX , µY |M,X, Y ). In this paper, s will be used as the index for samples generated from
the MCMC algorithm. From the sample set ⟨µXs, µY s⟩, determining the probability that
µX > µY simply involves counting the proportion of samples for which µXs > µY s.

MCMC algorithms eventually converge to the target distribution, but in practice, the
algorithm will run for a pre-determined number of steps, and convergence diagnostics are
used to assess whether the samples generated are representative of the target distribution.
A comprehensive discussion of convergence diagnostics can be found in Roy (2019).

It is important to run convergence diagnostics every time a Bayesian model is run, as they
provide information on whether the samples generated by the algorithm are representative
of the posterior distribution of the parameters, or if more steps of the MCMC algorithm
need to be run.

2.3 Posterior Predictive Check

Posterior predictive diagnostics aim to assess the accuracy of the Bayesian model (i.e.,
the model given by Equations 1) in representing the data. Even if the MCMC algorithm
converges and returns samples from the posterior distributions of the parameters, the model
may still not correctly describe the data. The posterior predictive check (PPC) verifies that
the data generated by the model, using the posterior values of the parameters, is similar to
the observed data.

In essence, when the parameters assume the “correct values” (as determined by the
posterior distribution of the parameters), the model can be “run forward” to generate new
values of xis.3 The distribution of the generated data for the first observation x1s should be
compared to the “real data” x1. If the model fits the data well, the real data should be very
similar to the set of generated data.

3. This is a simplification to provide an intuitive understanding. In reality, the MCMC algorithm also
samples from $ P(X_{rep}, Y_{rep} | M, X, Y)$, where Xrep is the data generated from the model
(M) given the real data (X and Y ).
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Other methods for evaluating the fit of a model to the data, such as leave-one-out cross-
validation approximations (e.g., WAIC (Watanabe-Akaike information criteria) (Watanabe
and Opper, 2010) and loo (Vehtari et al., 2017)), are also available. However, we will
not go into detail about these approaches here but we will use them later when discussing
alternative modeling options.

2.4 Bayesian tests for multiple comparisons

The example above involves a Bayesian test on two sets of data (X and Y). If one wants to
compare multiple sets of data, can one repeat the Bayesian test for all pairs? For frequentist
tests, repeating the test for all pairs of comparisons would require some p-value adjustment
procedure. However, the issue of performing multiple Bayesian comparisons is still unclear.
It has been suggested that if the Bayesian model is hierarchical or multilevel, there would
be no problem with performing multiple comparisons (Gelman et al., 2012). A hierarchical
model contains a model step similar to the line 1 in the Bayesian model described above
where the two parameters are sampled from a single distribution.

To perform multiple comparisons, a hierarchical Bayesian model is needed where each
of the parameters of interest µX , µY , µW , . . . µZ are sampled from a common distribution.
This process is known as partial pooling or shrinkage and it helps to pool the different
estimates of the parameters towards each other. An example of such a hierarchical model is
the Bayesian ANOVA (Kruschke, 2014, ch. 19).

2.5 Frequentist versus Bayesian approaches

There are many differences between frequentist and Bayesian approaches. We will not
discuss them in this paper, but we point the reader to Benavoli et al. (2017) discussion on
the limitations of the frequentist approach.

3. Previous Frequentist and Bayesian approaches

In this section, we will discuss the previous approaches to comparing multiple algorithms
on multiple data sets.

3.1 Demsar’s procedure (mean rank plus Nemenyi test) and extensions

The standard frequentist procedure for comparing multiple algorithms on multiple data sets
was introduced by Demsar (2006). The main steps of this comparison procedure are:

• Convert each data set’s results into ranks, with 1 being the best result and 2 being
the second best, etc.

• Treat ties as the average rank. For example, if two algorithms have the same measure
on a data set and they are the fourth best ranked algorithms, then they both receive
a rank of 4.5, which is the average of 4 and 5.

• Determine the final order by decreasing the mean rank across all data sets. In other
words, an algorithm with a lower mean rank is considered to be better than an algo-
rithm with a higher mean rank.
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• The confidence in this order is indicated by a pairwise binary statement on whether
one algorithm is better than another, using the phrase “the difference is statistically
significant.”

• The significance of the pair comparisons is calculated using the Friedman test, followed
by the Nemenyi test. If the difference in mean rank between two algorithms is smaller
than the critical difference computed by the test, the difference is not statistically
significant.

Frequentist tests usually loose power, or in other words, find “less differences than it
should” as the number of comparisons increase. Comparing against a control (or 1xN or
many-to-one comparisons) reflects the situation where the researcher is interested in com-
paring a new algorithm, called the control, against a set of other algorithms viewed as
competitors, but is not interested in ranking the competitors amongst each other. This will
reduce the number of comparisons and may increase the power of the comparisons, finding
more significant differences than a all-pairs or NxN comparisons would. Demsar (2006) also
discusses a different comparison procedure when comparing against a control. In this paper
we will limit ourselves to all-pairs comparisons.

Garcia and Herrera (2008) proposed and tested different extensions to Demšar’s pro-
cedure, including Shaffer’s static and Bergmann-Hommel’s procedures, which they claimed
were stronger than the Nemenyi test. Garcia et al. (2010) proposed new omnibus tests,
such as the Friedman aligned ranks and Quade tests, and tested other post-hoc procedures
for p-value adjustments. The authors concluded that procedures such as Holm, Hochberg,
Hommel, Holland and Rom produce equivalent results.

In summary, Demsar (2006) and its extensions are a family of non-parametric and paired
multiple comparison procedures that are based on the rank of the algorithms within each
data set. The omnibus procedure can be the Friedman test or other tests proposed by Garcia
et al. (2010), and the post-hoc procedures can be critical difference on the ranks (Demsar,
2006; Garcia and Herrera, 2008) or Wilcoxon pairwise procedures on the rank data, followed
by various p-value adjustment procedures (Garcia et al., 2010).

3.2 Pairwise Wilcoxon plus p-value adjustment procedures

Benavoli et al. (2016) highlights a problem with comparison procedures based on mean
ranks, that the results of the comparison between two algorithms can be dependent on
the other algorithms being compared. To address this issue, they suggest using a pairwise
Wilcoxon signed rank test between the measures obtained by each algorithm for all data
sets, followed by an appropriate multiple comparisons adjustment procedure. This approach
is also suggested by Stapor et al. (2021).

This procedure computes the aggregated ranking based on the median measure of each
algorithm across the data sets. Of course, such a procedure requires comparable metrics.

Before we proceed, let’s address the issues regarding missing data in frequentist ap-
proaches — the cases where an algorithm did not execute for a particular data set. The
problem lies in the lack of a universally accepted method for handling missing data. For
mean rank approaches, such as Demsar’s procedure, one option is to exclude the rank of
the algorithm that did not run for a specific data set from the calculation of the mean rank.
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However, this suggests that not running an algorithm on a data set indirectly attributes to
it its mean rank. While this is a possibility, it is not a standard practice. For instance,
Fernandez-Delgado et al. (2014) adopted a similar approach, but this method was criticized
by Wainberg et al. (2016) for introducing a positive bias to the algorithm that did not run
on the data set. The same could be done for pairwise Wilcoxon tests, but this would imply
that an algorithm that did not execute on a data set would be assigned its median measure
for that data set. We do not hold a firm opinion on whether this is the right approach, or
if one should assign the worst rank to the algorithm. The main issue remains that there is
no universally agreed-upon method for handling missing data in frequentist tests.

3.3 Bayesian pairwise signed-rank test

Benavoli et al. (2017) developed two forms of a Bayesian version of the Wilcoxon signed
rank test (BSR), and argued for their use within the Machine Learning practice. The first,
simpler form uses a single measure per algorithm and data set, usually the mean of various
measures obtained through cross-validation. The second form is more complex, it is referred
to as the Bayesian hierarchical correlated t-test, and it uses the measures from each cross-
validation fold in the computation. However, the authors suggest that practitioners use the
simpler form.

The model’s parameter is the mean of the pairwise difference between of the accuracy of
the algorithms on the different data sets, and the model computes a probability distribution
for this parameter. The authors state that if this parameter is between -0.01 and 0.01 (or a
ROPE of 1%) there is no practical difference between the two algorithms being compared.
The justification for the 1% ROPE for accuracy is not presented in the paper, but that
number is not too different from the ROPE threshold proposed by Wainer (2016) and twice
as large than the one proposed by Wainer and Cawley (2021), based on different sets of
empirical evidence.

For each data set a 1% of difference may or may not be important, depending on the
accuracy itself. A 1% change for a 79% accuracy is likely insignificant but a 1% change
for an accuracy of 98% is impressive. Given the range of accuracy values that appear in
practical cases of comparing two classifiers (some high, some low) the authors are claiming
that changes on the mean value of less than 1% are irrelevant from a practical point of view.

Even if one accepts the 0.01 ROPE for accuracy, there is no agreed upon, or even
proposed (as far as this author is aware) ROPEs for other classification metrics such as
AUC, F1, MCC, and for other comparable regression metrics. Additionally, there is no
ROPE for incomparable metrics, nor will the Bayesian signed rank method be applicable to
incomparable metrics, given that the mean of the pairwise differences is not well defined.

The Bayesian signed rank test was defined for comparing two algorithms on multiple
data sets, and there may be issues when applying it to multiple comparisons. Benavoli et al.
(2017) do not perform any multiple comparison in the paper. They do perform many signed-
rank procedures with different algorithms but not with the goal of ranking those algorithms.
The paper acknowledge that the Bayesian signed rank model lacks a hierarchical component
and therefore its use in multiple comparisons is problematic. However, they argue that
using ROPE would mitigate the false alarm rate (the rate of false positive claims), but this
argument is not widely accepted and would require the use of ROPEs for all comparisons.
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Since the authors only propose a ROPE for accuracy, it would be imprudent to use the
Bayesian signed rank test for other metrics without further proposals for ROPEs for those
metrics.

4. Bradley-Terry model

The Bradley-Terry (BT) model (Bradley and Terry, 1952) is a method for ranking “players”
in “tournaments” where the payers compete pairwise in matches, such as soccer teams or
chess payers. The model assigns to each player Xi an intrinsic value or ability wi ≥ 0. The
intrinsic value relates to the probability that player i will win player j in a match by:

P (Xi wins Xj) = P (Xi ≻ Xj) =
wi

wi + wj

The final ranking of the players is defined by the rank of their intrinsic values wi.
The intrinsic values are invariant to a multiplicative constant, that is, if the set {wi}

correctly models all the probabilities P (a ≻ b), so will {αwi}. Therefore, to specify a single
set of intrinsic values, one also requires that

∑
wi = 1.

An alternative to wi is to use their natural logarithms βi = logwi. The useful formula
regarding β is:

logit(i ≻ j) = log
P (i ≻ j)

1− P (i ≻ j)
= log

P (i ≻ j)

P (j ≻ i)
= βi − βj

The β values are invariant to additive constant, since the wi were invariant to multi-
plicative constants. To specify a single set of solutions, a common practice is to require that∑

βi = 0.
The standard BT model does not deal with ties, meaning that 1−P (i ≻ j) = P (j ≻ i).

However, there have been extensions to the model that incorporate ties (Rao and Kupper,
1967; Davidson, 1970; Baker and Scarf, 2021). The model proposed by Davidson (1970) will
be discussed in Section 6.2.

In the case of ties, a common approach is to change the data used for estimation so that
a tie between players i and j is counted as both a victory for i and for j or sometimes as
half a victory for each. This will be further explained in Section 6.2.

4.1 Bayesian estimation of the w or β

Let us assume that players i and j play Nij = Nji matches against each other, and Wij

is the number of matches that i wins and Wji is the number of matches j wins (and thus
Nij = Wij +Wji given that there are no ties). Let us also assume that Wii = 0, and that
there are t players.

The Bayesian model for BT is based on the beta coefficients:

Wij ∼ Binomial(Nij ,
eβi

eβi + eβj
) (2)

βi ∼ Normal(0, σ)
σ ∼ LogNormal(0, 0.5)
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The binomial expression captures the fact that the number of times i wins from j is
a binomial distribution given the total number of matches between i and j (Nij) and the
probability that i will win each match (P (i ≻ j) = wi

wi+wj
).

The β parameters can have positive and negative values and thus it is reasonable to
sample them from a normal distribution with mean 0, and variance σ (a hyper-parameter).
This is the hierarchical component of the Bayesian BT model (BBT): all βi are sampled
from the same distribution and thus the model can be used to compare multiple algorithms,
since there will be partial pooling. The hyper-prior for σ is a log-normal distribution, as
proposed by Carpenter (2018), but there is no difference on using other hyper-priors such
as half-normal or Cauchy, as reported in the longer version of this paper (Wainer, 2022).

5. Exploration of the BBT

This section presents an analysis of the BBT model applied to a specific set of algorithms
and data sets (detailed in Section 5.1). The outputs of the model are be discussed in Section
5.2. Additionally, two forms of diagnostic checks are examined in Sections 5.3 and 5.4, as
well as the concept of ROPE appropriate for the model in Section 5.5. The section concludes
with a discussion of the two interpretations of the parameters of the model in Section 5.6.

5.1 Data

We will explore the use of the BBT model on four use-cases regarding the comparison of
machine learning algorithms on multiple data sets. The four use cases are called small-small,
small-large, medium-medium, and large-large.

The large-large (ℓℓ) use-case involves the evaluation of 16 out-of-the-box classifiers on
132 data sets. These classifiers were trained without any tuning of their hyper-parameters
and the data sets are the first 132 smallest data sets from the PMLB data set curated by
Olson et al. (2017). The accuracy metric was used for comparison with the BSR procedure.
Details of the algorithms used are discussed in the longer version of this paper (Wainer,
2022).

The large-large results reflect the scenario where a large number of algorithms are com-
pared on a large number of data sets. Most curated sets of data sets, such as PMLB (Olson
et al., 2017), KEEL imbalanced data sets (Alcala-Fdez et al., 2011), and the OpenML-CC18
Curated Classification benchmark (Bischl et al., 2019), include around 100 data sets. In
this scenario, a researcher might typically compare around 20 algorithms, although there
are some studies that test up to 50 (Wainer and Fonseca, 2021) or 100 (Fernandez-Delgado
et al., 2014; Wang et al., 2021). However, these studies do not perform statistical tests to
confirm the statistical significance of their results within the frequentist framework or make
any other probabilistic claims within a Bayesian framework. The ℓℓ-results are part of the
R package developed for this research (Section 8.1).

The other use cases are:

• the small-small (ss) use-case, which represents the comparison of a small number of
algorithms (5) on a small number of data sets (20).
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db dt lda lgbm xgb svm

biomed 0.837 0.842 0.876 0.890 0.886
breast 0.931 0.951 0.964 0.961 0.957
breast_w 0.940 0.950 0.961 0.961 0.961
buggyCrx 0.790 0.861 0.867 0.867 0.861
clean1 1.000 1.000 1.000 1.000 0.968

cmc 0.455 0.513 0.525 0.524 0.544
colic 0.761 0.837 0.815 0.815 0.641
corral 1.000 0.900 1.000 1.000 1.000
credit_g 0.668 0.718 0.766 0.769 0.724
diabetes 0.714 0.772 0.747 0.742 0.758

ionosphere 0.869 0.866 0.940 0.932 0.934
irish 1.000 0.740 1.000 1.000 0.988
molecular_b...y_promoters 0.727 0.689 0.896 0.887 0.802
monk3 0.975 0.792 0.980 0.986 0.964
prnn_crabs 0.880 1.000 0.950 0.935 0.960

prnn_synth 0.800 0.852 0.824 0.828 0.856
saheart 0.626 0.723 0.660 0.671 0.712
threeOf9 0.996 0.809 1.000 0.998 0.992
tokyo1 0.902 0.920 0.928 0.926 0.931
vote 0.929 0.956 0.945 0.959 0.956

Table 2: The base results.

• the small-large (sl) use-case which represents the comparison of 5 algorithms on 100
data sets.

• the medium-medium (mm) use case which represents the comparison of 10 algorithms
on 50 data sets.

In this paper, the ss, the sl, and the mm cases will be used in repeated experiments to
test some general claim regarding the BBT procedure, by sampling from the ℓℓ-results 10
random ss and mm results, and 5 random sl results.

A fixed ss result will be used to illustrate the BBT procedure throughout this paper.
This result is called the base results. For the base results we selected lgbm (LightGBM),
xgb (XGBoost), svm (SVM with RBF kernel), lda (Linear discriminant analysis), and dt
(CART decision trees) as the classification algorithms, and selected 20 arbitrary data sets
from the 132 in the ℓℓ-results.

The table of values for the base results is displayed in Table 2. The table represents the
mean accuracy on the same 4-fold evaluation of the algorithms on each data-set.
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5.2 Basic outputs of the model

A win/loss table is the representation of the number of wins and losses for each pair of
algorithms. This data is the input for the Bayesian model.

alg1 alg2 win1 win2 ties

dt lda 6 13 1
dt lgbm 0 17 3
dt xgb 0 17 3
dt svm 5 14 1
lda lgbm 6 13 1
lda xgb 5 14 1
lda svm 5 15 0
lgbm xgb 9 8 3
lgbm svm 10 9 1
xgb svm 11 8 1

(a) The win/loss table for the base results.
The win/loss table lists all win, ties, and losses
for each pair of algorithms.

alg1 alg2 win1 win2

dt lda 7 14
dt lgbm 2 19
dt xgb 2 19
dt svm 6 15
lda lgbm 7 14
lda xgb 6 15
lda svm 5 15
lgbm xgb 11 10
lgbm svm 11 10
xgb svm 12 9

(b) The final win/loss table for the
base results once the ties have been
added as half-victories (rounded up in
the final) to both algorithms.

Table 3: The win/loss tables pre as post processing of the ties.

Table 3a displays some ties between algorithms, such as dt and lda both having accuracy
of 1.0 in the clean1 data set. The BBT model does not handle ties. To address this, we
implement the “spread” policy, which considers half (rounded up) of the ties as partial
victories for both algorithms. Alternatives to the spread policy are discussed in Section 6.2.
The resulting win/loss table is presented in Table 3b.

The MCMC solution to the BBT model in Equations 1 for the data in Table 3b is a
set of tuples for the parameters βi, and for σ. In our case, we are interested in using, for
example, each βas and βbs to compute Ps(a ≻ b). This computation is performed for all
pairs of algorithms, and the results can be visualized and summarized in a plot or table.

The Bayesian approach to the BT model presents a challenge in determining the aggre-
gated ranking of the algorithms. One commonly used solution is to calculate the ranking for
each sample generated by the MCMC algorithm by ordering the algorithms based on their
decreasing values of βis (Carpenter, 2018, Issa Mattos and Martins Silva Ramos (2021)).
However, this approach results in a distribution of rankings, making it unclear how to arrive
at a single, final ordering. One can choose the most frequent ranking among the samples,
or compute the rank of each algorithm in each ranking and order them based on the mean
rank.

We believe that determining the order of the algorithms is a crucial part of the com-
parison process, so we propose a different solution. We order the algorithms based on their
mean β across all samples, resulting in a single, aggregated ranking for the BBT comparison
procedure.

13



Wainer

lda > dt

svm > dt

svm > lda

lgbm > dt

lgbm > lda

lgbm > svm

xgb > dt

xgb > lda

xgb > svm

xgb > lgbm

0.2 0.4 0.6 0.8 1.0

Figure 1: The graphical representation of the distribution of P(a > b). The pair of algorithms
are ordered best > worse. The central dot represents the median of the distribution of P (a >
b), and the wider line represents the 89% highest density interval (HDI) of the distribution.
The thin line represents the full range of the distribution. The two vertical gray lines
represent the ROPE region from [0.45, 0.55] (discussed in section 5.5 below).

Figure 1 presents the distributions of Ps(a ≻ b). The algorithms are ordered from the
best to the worst, where the best algorithm is compared with all others, the second best with
the remaining worse, and so on. The central dot represents the mean of the distribution
of Ps(a ≻ b), and the wider line represents the 89% highest density interval (HDI) of the
distribution. The thin line represents the full range of the distribution. The figure also
includes the ROPE region, the two vertical lines, as discussed in Section 5.5

Some Bayesian estimation researchers use 89% (instead of 95%) to distinguish a credible
interval, which is an interval that contains a specified amount of the mass of a distribution
(in this case 89%), from the “95% confidence interval” concept in frequentist statistics, which
has a slightly different meaning (Makowski et al., 2019). There are infinitely many intervals
that contain 89% of the mass of a distribution, and the HDI is the smallest of these intervals
for unimodal distributions (Kruschke, 2014).

Some of the information presented in Figure 1 can be condensed into Table 4, which
includes the mean, as well as the low and high limits of the 89% HDI. The column above.50
is the mass of probability above the 0.50 threshold, the column in.rope is the mass of
probability within the ROPE region (discussed in Section 5.5). above.50 is further discussed
in Section 5.6.

5.3 Convergence Diagnostics and execution times

As previously mentioned, it is important to assess the convergence of an MCMC algorithm
with every run. In this study, we utilized Stan (Stan Development Team, 2022) as the
tool to implement the BBT model (2) and to perform the MCMC. Stan provides various
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pair mean low high delta above.50 in.rope

xgb > lgbm 0.51 0.40 0.63 0.23 0.55 0.52
xgb > svm 0.56 0.45 0.68 0.23 0.80 0.36
xgb > lda 0.72 0.62 0.82 0.20 1.00 0.00
xgb > dt 0.83 0.76 0.91 0.14 1.00 0.00
lgbm > svm 0.55 0.45 0.67 0.22 0.77 0.40

lgbm > lda 0.71 0.62 0.81 0.19 1.00 0.01
lgbm > dt 0.83 0.75 0.90 0.15 1.00 0.00
svm > lda 0.66 0.57 0.77 0.21 0.99 0.05
svm > dt 0.79 0.71 0.88 0.16 1.00 0.00
lda > dt 0.66 0.55 0.77 0.22 0.98 0.06

Table 4: The table representation of the distributions of probabilities P(a > b). Pair is the
pair of better/worse algorithms, mean is the mean probability; low and high are the lower
and higher limits of the 89% HDI of the distribution; delta is the difference between high and
low. above.50 is the proportion of probabilities samples > 0.50; and in.rope is the proportion
of probabilities samples that falls within the ROPE range [0.45 to 0.55] (discussed in section
5.5 below).

convergence diagnostics data, which are analyzed to determine whether the convergence is
acceptable or not. The results of the simplified Stan check are presented below.

## Checking sampler transitions treedepth.
## Treedepth satisfactory for all transitions.
##
## Checking sampler transitions for divergences.
## No divergent transitions found.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
##
## Effective sample size satisfactory.
##
## Split R-hat values satisfactory all parameters.
##
## Processing complete, no problems detected.

The MCMC sampling of the model is unproblematic – in all the examples presented in
this paper, including those in later sections, we used 1000 steps of warm-up and 1000 steps
of sampling, across 4 chains. The execution time on a modern laptop, such as an Intel i5
running at 1.4 GHz, took no more than 0.5 seconds per chain, with all four chains running
simultaneously on the different cores.
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0 5 10 15

dt > lda

0 5 10

dt > lgbm

0 5 10

dt > xgb

0 5 10

dt > svm

0 5 10 15

lda > lgbm

0 5 10 15

lda > xgb

0 5 10 15

lda > svm

0 5 10 15 20

lgbm > xgb

0 5 10 15 20

lgbm > svm

0 5 10 15 20

xgb > svm

Figure 2: Graphical representation of the PPC. For each observered variable (number of
wins of first algorithm over the second) , the histogram represents the distribution of the
generated data, and the wider bar represents the observed number of wins.

hdi proportion

0.50 0.8
0.90 1.0
0.95 1.0
1.00 1.0

Table 5: The table representation of the PPC. Hdi indicates a HDI interval (50%, 90%,
95% and 100%), and proportion is the proportion of the observed data that falls within the
corresponding HDI.

5.4 Posterior Predictive Check and WAIC

Figure 2 illustrates the results of the posterior predictive check (PCC). The histogram rep-
resents the data generated by the Bayesian model, while the vertical bar shows the actual
value of the win1 variable from the win/loss table, associated with each pair of algorithms.
If the Bayesian model accurately generates the data, the actual values should be centered
in the histogram of possible values for that variable.

We also present a non-graphical representation of the PPC by computing the 50%, 90%,
95%, and 100% HDI (highest density interval) of the generated values for each variable.
We then calculate the proportion of the true data that falls within each HDI. Ideally, the
proportion of data values that fall within the 90% HDI should be at least 0.9. Table 5
provides this alternative representation of the PPC.
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5.5 ROPE

As discussed above, the Bayesian approach offers the advantage of defining a difference
between parameters that may not be meaningful in practical terms, and allows one make
statements regarding the likelihood of these parameters being equivalent in a practical sense.

The BBT model provides a simple way to adopt the concept of practical equivalence.
The ultimate measure from the BBT model is the probability that a particular algorithm
outperforms another. A universal ROPE can be defined for making probability statements,
regardless of the metric used to determine superiority between algorithms. We propose that
if the probability that one algorithm is better than another falls within the range of 0.45 to
0.55, it can be concluded that the two algorithms are practically equivalent.

This claim is not based on an established community understanding or the author’s
personal experience with comparing multiple algorithms, but rather on a universal ROPE
for probability statements. The choice of the ROPE limits, [0.45, 0.55], is somewhat arbi-
trary, reflecting the author’s belief that an algorithm whose probability of being better than
another is below 55% (and above 45%) is not significantly better than the other. Other re-
searchers may have different intuitions and are free to adjust the ROPE to suit their specific
applications.

Figure 1 and Table 4, shown above, also include information regarding the ROPE.

5.6 Strong and weak interpretations of the probability estimates

We believe that the four important columns to report are: mean, delta (the difference
between the high and low values of the HDI) in.rope, and above.50. In particular, the mean
and the above.50 measures measures play a crucial role in what we refer to as the strong
and the weak interpretations of the probability estimates. The BBT model generates a
set of numbers Ps(A ≻ B) which we interpreted as probabilities that algorithm A is better
than algorithm B. And in fact, these numbers are used in the BBT model as the parameters
of the binomial distribution that are interpreted as probabilities of the event happening.

Under the strong interpretation, we understand each of Ps(A ≻ B) as a probability
estimate that A is better than B in the sense that in the long run, for a large number of
data sets, the proportion of times A wins from B should approach that number. In the
strong interpretation, the mean column is the best estimation of how much better algorithm
A is compared to algorithm B. The delta column or both low and high are estimates of the
uncertainty surrounding that probability.

The weak interpretation views each Ps(A ≻ B) as a measure of the superiority of A
over B, expressed as a number ranging from 0.0 to 1.0. A value less than 0.5 indicates that
B is better than A. Under this interpretation, Ps(A ≻ B) represents evidence in favor of
A’s superiority over B, rather than a guarantee of future outcomes. The value of above.50
reflects the degree of confidence one can have in the superiority of A over B. For example,
if 90% of the evidence (Pk(A ≻ B)) is above 0.5, one can have 90% confidence that A is
better than B.”

The in.rope measure combines elements of both interpretations. While it calculates the
proportion of evidence that falls within a specific interval (from 0.45 to 0.55), this range was
determined based on the strong interpretation’s perspective.
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5.7 Further results: missing data and too many comparisons

Regarding missing values, the cases where an algorithm cannot run on one or more data sets,
the BBT model simply does not count it as a win or a loss for that algorithm in comparison
to the others.

For example, let us assume that the algorithm xgb does not run on the first two data
sets in Table 2 (data sets biomed and breast). The resulting win/loss table is displayed in
Table 6a, which should be contrasted with the win/loss table in Table 3b, and the summary
results are displayed in Table 6b, which should be contrasted with the results in Table 4.

alg1 alg2 win1 win2

dt lda 7 14
dt lgbm 2 19
dt xgb 2 17
dt svm 6 15
lda lgbm 7 14
lda xgb 6 13
lda svm 5 15
lgbm xgb 10 9
lgbm svm 11 10
xgb svm 10 9

(a) The win/loss table

pair mean delta above.50 in.rope

lgbm > xgb 0.51 0.23 0.55 0.50
lgbm > svm 0.54 0.23 0.74 0.42
lgbm > lda 0.70 0.20 1.00 0.01
lgbm > dt 0.82 0.15 1.00 0.00
xgb > svm 0.53 0.23 0.68 0.47
xgb > lda 0.69 0.20 1.00 0.02
xgb > dt 0.81 0.16 1.00 0.00
svm > lda 0.66 0.21 0.99 0.05
svm > dt 0.79 0.17 1.00 0.00
lda > dt 0.66 0.22 0.99 0.06

(b) Results for the corresponding BBT model

Table 6: Results when *xrg* does not run on the first two data sets.

In all-pairs comparisons, when dealing with a very large number of algorithms, one either
avoids statistical tests altogether (as discussed above), or performs a two step procedure. If
the algorithms can be naturally grouped into (few) families, one compares the algorithms
within a single family, to select the best of that family, and then compare the “best rep-
resentatives” of each family among each other (using the full frequentist tests). This was
done, for example within the context of comparing imbalanced data algorithms by López
et al. (2013).

For BBT, under the strong interpretation, there is no need to perform the two steps
procedure; there is no large and biased difference between the probability estimates when
comparing a large number of algorithms and a small one. Figure 3 displays the results of
comparing the mean probability Ps(A ≻ B) of a random sample of three algorithms when all
the 16 algorithms’ results are fed to the BBT procedure, contrasted to the mean when only
the results from those 3 algorithms are fed to BBT. In these test we randomly selected 20
data sets for each experiment and 40 experiments were run. The difference between the two
mean estimates has mean 0.006, median 0.010, 1st quartile -0.020, and 3th quartile 0.030.
That is, although the new mean probability is not necessarily the same as when tested for
all algorithms, the difference in magnitude is small, and there is no bias - the difference is
as likely to be positive as it is to be negative.
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Figure 3: The results for mean P(a>b) of comparing 3 algorithms when all 16 algorithms’
results are fed to BBT (on a random sample of 20 data sets) and when only the results
for the three algorithms are fed to the BBT procedure. The inset is the distribution of the
differences between the two average probability of winning.

Unfortunately, the insensibility to large number of comparisons is not true for the weak
interpretation. Figure 4 compare the above.50 results for the full 16 algorithms comparison
and for a limited 3 algorithm comparison. There is a clear bias in the limited number of
comparisons but the direction of the bias is surprising. The above.50 numbers when only
comparing 3 algorithms are smaller than the corresponding numbers when the full set of
algorithms, which indicates that with more algorithms being compared, the procedure will
be more sure of the difference between them. That is in the opposite direction one would
expect from the frequentist tests: many more algorithms will decrease the power of the test
and reduce the number of pairs which will be classified as statistically significant.

6. What counts as a win? Folds and local rope

Typically, the final performance measure for a particular algorithm for a particular data set
is obtained by averaging the results from some form of repeated cross-validation, where the
algorithm is trained on different subsets of the data set and its performance is measured
on the corresponding test subsets. Standard forms of repeated cross-validations are k-fold,
repeated k-folds, repeated train/test split, and bootstrapped samples of the data set. In
each case, the data set is divided into k pairs of subsets, TRi (train) and TEi (test) such
that TRi∪TEi = DS and TRi∩TEi = ∅ (DS is the whole data set). The term fold will be
used to refer to each TEi, although we do not assume that k-fold cross-validation is being
used – almost all cross-validation procedures can be used.

For the data in this research, the mean of a 4-fold cross-validation was calculated for
each algorithm on each data set. Additionally, the folds were fixed and identical for all
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Figure 4: The results for above.50 of comparing 3 algorithms when all 16 algorithms’ results
are fed to BBT (on a random sample of 20 data sets) and when only the results for the three
algorithms are fed to the BBT procedure. The inset is the distribution of the differences
between the two average probability of winning.

db dt lda lgbm xgb svm

cmc 0.455 0.513 0.525 0.524 0.544

Table 7: Detail of the base results for the cmc data set

algorithms, meaning that for the first fold, all algorithms were trained on TR1 and tested
on TE1, and so on.

Let us consider the entries for the “cmc” data set from Table 2, repeated in Table 7.
The entries for the lgbm and xgb algorithms are 0.525 and 0.524, respectively. Although
the difference between these two values is small, it still counts as a win for lgbm, just as the
much larger difference in accuracy between dt and lgbm also counts as a win.

If we examine the performance of the algorithms on each fold separately, as displayed
in Table 8 for the “cmc” data set, the small difference in accuracy between lgbm and xgb
becomes even less convincing as a win for lgbm. In this case, since we used the same fold 1,
fold 2, etc. for all algorithms, it is reasonable to compare the performance of each algorithm
on each fold. In this scenario, lgbm wins on two of the four folds, but loses on the other two.
As a result, if we use the individual folds as evidence instead of the mean of their results,
lgbm would receive two wins and xgb would receive two wins, rather than a single win for
lgbm based on the mean accuracy.

From another perspective, if we take into account the standard deviations of the measures
on the folds for each algorithm, as shown in Table 8, the difference in the means of both
algorithms (0.001) is much smaller compared to the standard deviations (0.02 and 0.03).
In some intuitive sense, the difference in the averages that led to the win for lgbm is much
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db fold lgbm xgb diff

cmc 1 0.547 0.531 0.016
cmc 2 0.522 0.538 -0.016
cmc 3 0.503 0.481 0.022
cmc 4 0.527 0.546 -0.019
sd 0.018 0.029 0.001

Table 8: Detail of the base results for the cmc data set

smaller than the “noise level” of the evaluation procedure itself, given the variability of the
measures within each classifier in the folds.

There are two ways of interpreting the results: one that takes into account each fold
as individual sources of evidence to determine the wins and losses of the algorithms, and
another that considers the difference between the means across all folds while also taking
into account the “noise level” derived from the variability among the folds. Both methods
aim to reduce the strength of evidence that lgbm won over xgb, resulting in a tie between
the two algorithms.

In this research, we will adopt the latter approach, the one that considers the “noise
level.” We argue that a difference of 0.001 in the means, given that the variability of the
measures in the folds for each classifier is at least 10 times higher, should not be considered
a win, but rather a tie between the two algorithms. We refer to this approach as the local
ROPE, which is a threshold below which differences between two classifiers are considered
unimportant and would not count as a victory to one of the algorithms. However, as we will
see, the local ROPE is not a fixed value but it depends on the results of the two algorithms
on the different folds.

In regards to the first line of reasoning, where the folds are used as the source of evidence
for wins and losses, we believe that issues such as the dependence of the fold results on each
other would make the analysis too complex. This conclusion was also reached by Benavoli
et al. (2017) in their analysis, and as such, we will leave this approach for exploration in
future research.

6.1 Local ROPE threshold

In almost all statistical tests, one has two sets of measures and the goal is to determine
whether there is enough evidence that the difference of the means (or some other summary
measure) of the two sets is “real” or not. This is exactly the problem in hand: should one
consider the difference of the means of the folds as “real” – and thus that one algorithm wins
over the other – or not?

Cohen’s D is a measure of effect size between two sets of data. If the two sets have the
same number of data, as it is our case, the Cohen’s D is computed as the difference between
the means, divided by an “average” standard deviation of the two sets, where the “average”
standard deviation is actually the square root of the average variance of the two sets. This
is displayed in Equation 3 where µ1 and σ1 are the mean and standard deviation of the fold
measures for the first algorithm, and similarly µ2 and σ2 for the second algorithm.
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Cohen’s D is the measure of the separation between the the means of two sets of measures
as a proportion of the standard deviation, and can be seen as a signal-to-noise ratio measure:
the difference in means is the signal, and the “average” standard deviation is the noise.

d =
µ1 − µ2√

σ2
1+σ2

2
2

(3)

We can compute the Cohen’s D of two sets of fold measures, and consider that there
is no important difference, and thus, a tie between the two algorithms, if the D is below a
threshold dmin which we will call the local ROPE threshold. Therefore, if:

|µ1 − µ2| ≤ dmin

√
σ2
1 + σ2

2

2
(4)

we should consider that there was a tie between algorithms 1 and 2 for that data set.
We will argue that the threshold can be safely set to the value of 0.4 using the theory

of power analysis for t-tests. Type 1 and type 2 errors in statistical test are a false positive
(claiming that there is a difference when there is no difference) and a false negative error
(claiming that there is no difference when there is one), and their probabilities are indicated
by α and β. The power analysis relates α, β, the effect size of the measure, and the number
of samples in each set. Unfortunately, the relation between these variables is almost never
displayed as an equation, but as tables (Cohen, 1988, ch. 2) or embedded into programs,
such as G*power (Faul et al., 2007) or the pwr R package (Champely, 2020). We will show
the results of running the pwr package.

For our present goals, there is no conceptual difference between false positive and false
negative errors. We want to find out whether the two sets of fold measures indicate that the
difference between the means is “real” or “not real”, and erring to one side is not worse than
erring to the other. Thus, let us assume a 30% probability of making a mistake, both false
positive or false negative, that is, α = 0.3 and β = 0.3. Assuming a Cohen’s D of 0.4, the
necessary number of data in each set is given by running the pwr function. In that function
sig.level is α, poweris 1− β, and d is Cohen’s D.

pwr.t.test(n = NULL, d = 0.4, sig.level = 0.3, power = 0.7)

Two-sample t test power calculation
n = 30.18637
d = 0.4

sig.level = 0.3
power = 0.7

alternative = two.sided
NOTE: n is number in *each* group

That is, one would need at least 30 measures in each set to be able to find a true
difference or a true non-difference with 70% probability. But the traditional cross-validations
in machine learning are from 3 to 10 folds. That is, using the usual cross-validation in
machine learning, a minimum effect size of 0.4 is very safe - one would not be able to
detect differences whose effect sizes are 0.4 or below, if one requires a 70% of sensitivity
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and specificity. If one is using 10 repetitions of 10-folds as cross-validation, one can use
dmin = 0.2.

The discussion above assumes that the two samples of fold measures are not paired, that
is, that possibly different folds were used in the evaluation of the different algorithms. But if
researchers have control over it, they can use the same folds for all algorithms. For the paired
case, the definition of Cohen’s D is somewhat different than the one presented in Equation
3. Instead of dealing with the mean and standard deviations of the two sets, one should
compute the mean and standard deviation of the differences between the corresponding
paired data in the two sets. In Equation 5, µX1 −X2 is the mean and σX1−X2 the standard
deviation of the pairwise differences of the corresponding folds for algorithm 1 and 2,

dz =
µX1−X2

σX1−X2

=
µ1 − µ2

σX1−X2

(5)

The power analysis for paired samples is also somewhat different, and with the same
numbers as before (α = 0.3 and β = 0.3), and using Equation 5 for the effect size calculation,
the resulting lower bound for the number of samples is 15, lower than the case for unrelated
samples, but still well above the usual number of folds used in machine learning evaluations.

pwr.t.test(n = NULL, d = 0.4, sig.level = 0.3, power = 0.7, type="paired")

Paired t test power calculation
n = 15.53464
d = 0.4

sig.level = 0.3
power = 0.7

alternative = two.sided
NOTE: n is number of *pairs*

The same decision process as described in 4 can be followed, using the same dmin thresh-
old of 0.4, but using the paired definition for the effect size.

µ1 − µ2 ≤ dminσX1−X2 (6)

6.2 How to deal with ties?

The local ROPE concept introduces new ties to the win/loss table, as it is designed to do.
The standard ways of dealing with ties in the Bradley-Terry model are:

• add: add the ties as victories to both players involved.

• spread: add the ties as half a victory to each player involved

• forget: do not add ties as victories to any of the players.

Another alternative is to use an extension of the Bradley-Terry model that includes ties,
for example, the one proposed by Davidson (1970). The Davidson model is displayed in
Equation 7 and it includes a new parameter ν, similar to the βi. ν controls how likely are
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ties “in that sport”, despite the differences between the players. If ν → −∞, the probability
of a tie between player i and player j will be 0, meaning there are no ties; if ν → ∞,
P (i ties j) will be 1, regardless of the players’ different β. Finally, for ν = 0, and if βi = βj
then the probability of a tie is 1/3.

P (i ≻ j| no tie ) =
expβi

expβi + expβj + exp(ν + (βi + βj)/2)
(7)

P (i ties j) =
exp(ν + (βi + βj)/2)

expβi + expβj + exp(ν + (βi + βj)/2)

We will compare the various policies for dealing with ties, using a repeated experiment
as described above. To evaluate how well each policy fits the actual data, we will use the
posterior predictive check and the WAIC. With respect to the WAIC, while the numerical
value itself can be difficult to interpret, when comparing two models, a lower WAIC value
indicates a better fit.

Table 9 presents the average results of the WAIC and PPC for the repeated experiments
comparing various methods for handling ties. These results are based on averaging across
the ss, mm, sl use cases, and the ℓℓ-results, taking into account whether the local ROPE or
the paired local ROPE was used. The results clearly demonstrate that the Davidson model
is significantly inferior to the others in terms of both WAIC and PPC. The add, forget,
and spread policies are all equivalent, and for the purpose of this paper, we have arbitrarily
chosen to use the spread policy.

The poor performance of the Davidson model is unexpected, given that it was specifically
designed to handle ties, while the other policies are ad hoc in nature. Table 10 further
illustrates this point, as the PPC summary shows that the wins and ties are not well-
calibrated according to their corresponding HDI.

7. BBT as a prediction

Frequentist methods can be seen as decision procedures: given the data available, which
algorithms can be said to be better than others. However, they do not make predictions
about future data. The result of a frequentist test, such as a non-significant difference
between two algorithms does not necessarily indicate that future data from new data sets will
also not be significantly different. Given new data, the previously non-significant difference
may become significant.

On the other hand, Bayesian methods can make predictions. For example, the output
of the BBT model as shown in Table 4 can be considered as probabilities of one algorithm
being better than the others for future data sets. There are two different predictions in the
BBT model, as discussed in Section 5.6. In the strong interpretation, the mean measure
predicts the proportion of wins for the better algorithm compared to the worse for future
data sets. In the weak interpretation, the above.50 measure predicts the proportion of wins
for the better algorithm compared to the worse. In this section, we will test both of these
predictions.

We conducted a series of experiments with the aim of determining the accuracy of pre-
dictions on future data sets. For each sample of a training ss table, we sampled 10 additional
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policy waic h50 h90 h95 h100

ss
add 42.41 0.87 1.00 1.00 1.00
davidson 118.59 0.40 0.78 0.86 1.00
forget 40.27 0.78 0.99 1.00 1.00
spread 41.41 0.82 1.00 1.00 1.00

mm
add 225.51 0.73 1.00 1.00 1.00
davidson 873.01 0.29 0.58 0.66 0.88
forget 227.61 0.61 0.96 0.99 1.00
spread 223.76 0.68 0.99 1.00 1.00

sl
add 61.62 0.81 0.97 0.99 1.00
davidson 325.65 0.21 0.51 0.56 0.78
forget 65.46 0.67 0.95 0.97 0.99
spread 62.25 0.75 0.97 0.99 1.00

ll
add 760.49 0.57 0.95 0.97 1.00
davidson 4730.36 0.17 0.38 0.43 0.70
forget 823.52 0.39 0.85 0.91 0.99
spread 773.98 0.47 0.92 0.95 1.00

Table 9: The PPC for the different policies. WAIC is the mean WAIC result; h50 is the
proportion of observed valies that fall in the 50% HDI; h90, h95, and h100 are the proportions
for the 90%, 95% and 100% HDIs.

hdi proportion ties

0.50 0.23 0.23
0.90 0.48 0.45
0.95 0.52 0.48
1.00 0.89 0.81

Table 10: The Davidson model on the large-large results. Ties is the proportion of ties that
fall within the corresponding HDI for the ties generated data.
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data sets not used in the training sample, and evaluated the performance of each pair of
algorithms on these test data sets. We counted the number of times one algorithm out-
performed the other and referred to this count as “win1” for algorithm A1 and “win2” for
algorithm A2. We did not apply local ROPE to the test data. The ratio win1/(win1+win2)
is the empirical estimate of the probability that algorithm A1 is better than algorithm A2
on future test data sets.

For the strong interpretation, we examine the fit between the distribution of probability
estimates Ps(1 ≻ 2) and the empirical probability win1/(win1+win2). Similar to the PPC
summary table, we calculate the 50%, 70%, and 90% highest density intervals (HDIs) of each
distribution (for each pair of algorithms) and compare the proportion of empirical probabil-
ities that fall within these intervals. In a well-calibrated distribution, 50% of the empirical
probabilities should fall within the 50% HDI and so on. We also determine the proportion
of empirical probabilities that fall outside of the 90% HDI, both above its maximum value
and below its minimum value. Finally, we calculate the mean error and the median absolute
difference (MAD) between the mean prediction and the empirical probability.

For the weak interpretation, we do not have a distribution and therefore cannot use
the same evaluation procedure as previously described. The above.50 measure provides a
probability statement, and we want to assess its accuracy. We will use the calibration plot
procedure commonly used for classifiers. We divide the range of above.50 values into three
bins and compare the actual and expected number of cases where win1 > win2. The actual
number of cases is determined from the test data where above.50 falls within the limits of
the bin. The expected number of cases is the sum of above.50 values in that bin. Typically,
calibration plots divide probability estimates into 10 bins, but for this analysis, we have
divided above.50 into three bins: from 0.5 to 0.7, from 0.7 to 0.9, and from 0.9 to 1.0.
This division represents low confidence (0.5 to 0.7), middle confidence (0.7 to 0.9), and high
confidence (0.9 to 1.0) in the superiority of algorithm A over B.

Table 11 shows the results of the strong interpretation evaluation. The predictions made
by the BBT are not well-calibrated, as a much smaller proportion of empirical probabilities
falls within the different HDIs than expected. In all cases, less than 50% of the empirical
probabilities fall within the 90% HDI, which should contain 90% of them. The values of
above90 and below90 are somewhat similar, indicating that the BBT model is not systemat-
ically overestimating or underestimating the probability that one algorithm is better than
another. The miss-calibration of the strong interpretation of the parameter is a problem
of variance (incorrectly predicting the range of possible values) rather than a problem of
bias (incorrectly predicting the most probable value). The mean prediction errors are low,
ranging from 0.02 to 0.01, suggesting low bias. Therefore, we conclude that the BBT is
calibrated for its mean prediction, but too overconfident in the range of possible values, its
credal interval.

The inclusion of the local ROPE was intended to serve both aesthetic and practical
purposes. On one hand, it was included to address the issue of small differences that occur
when computing average of cross-validations still counted as wins for one algorithm. On the
other hand, local ROPE also aimed to reduce the model’s overconfidence in its certainty
regarding the estimates. The local ROPE reduces the number of wins for one algorithm
over another, which should result in a decrease in the BBT’s confidence in the probability
that one algorithm is better than the other, thereby widening the credal interval. However,
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lrope paired within.90 within.70 within.50 above90 below90 err mad

ss
F F 0.39 0.25 0.15 0.33 0.28 0.00 0.13
T F 0.44 0.25 0.14 0.33 0.23 -0.01 0.12
T T 0.42 0.23 0.13 0.33 0.25 -0.01 0.13

mm
F F 0.33 0.22 0.16 0.37 0.31 0.00 0.08
T F 0.34 0.22 0.14 0.39 0.27 -0.01 0.08
T T 0.32 0.22 0.16 0.41 0.27 -0.01 0.08

sl
F F 0.40 0.22 0.14 0.48 0.12 -0.06 0.07
T F 0.38 0.26 0.14 0.50 0.12 -0.07 0.07
T T 0.34 0.20 0.12 0.54 0.12 -0.06 0.06

Table 11: Prediction results - strong interpretation. Lrope and paired indicate whether local
rope and the paired version of local rope was used. Within90 indicates the proportion of
empirical win probability that falls within the 90% HDI. Similarly for within70 and within50.
Above90 is the proportion of empirical win probability that falls above the higher limit for
the 90% HDI; err is the mean error between the mean and the empirical win probability;
and mad is the mean absolute error.

as Table 11 indicates, the introduction of the local ROPE has limited impact in widening
the credal interval, although it did have a small impact in reducing the error.

Table 12 presents the results of the weak interpretation calibration. The results indicate
better calibration compared to the strong interpretation. The predictions for the range of 0.5
to 0.7 are few and align closely with the empirical results for all three use cases. Similarly,
the predictions for the range of 0.7 to 0.9 are accurate. However, for the high confidence
range of 0.9 to 1.0, the predictions appear to be slightly overconfident, slightly higher than
the empirical value. The BBT model seems to have an over-confidence in its predictions,
and the introduction of the local ROPE and paired local ROPE had no effect on reducing
this over-confidence.

8. Discussion

The Bradley-Terry formalism seems simple but sufficiently complex to model a comparison
of machine learning algorithms on multiple data. The predictive posterior check shows that
the Bayesian model is indeed a good model of the data that was given, and it showed that a
more complex model such as Davidson’s is not needed and it worsens the fitness between the
model and the data. The model is not sensitive to different reasonable hyper priors (Wainer,
2022), and the test on different policies to deal with ties (Section 6.2), besides using the
Davidson model, are basically equivalent. All this should point to the conclusion that the
model is stable to different decisions, and it is generally a good fit to the data.
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lrope paired pred50-70 real50-70 pred70-90 real70-90 pred90-100 real90-100

ss
F F 4.3 3 13.8 11 75.3 64
T F 8.1 7 10.7 7 73.3 63
T T 6.1 4 11.1 8 75.2 65

mm
F F 11.5 7 27.4 25 394.8 361
T F 9.9 8 25.2 20 398.4 370
T T 9.0 12 33.1 25 392.0 363

sl
F F 1.9 2 0.0 0 46.6 45
T F 2.0 3 0.0 0 46.5 45
T T 2.0 3 0.0 0 46.5 45

Table 12: Prediction results - weak interpretation. Lrope and paired indicate whether local
rope and the paired version of local rope was used. Pred50-70 is the expected number of
examples whose empirical win probability should fall within the [0.50,0.70] probability range;
real50-70 is the observed number of empirical wins in that range. Similarly for the other
pairs of columns.

As we already mentioned, the model is simple, the MCMC converges well with few
samples, and our implementation (thanks to Stan’s MCMC) runs in less than a second in a
modern laptop.

Regarding the “predictive” part of the model it is yet unclear whether the apparent
overconfidence of the model, specially under the strong interpretation is a problem. Since
no frequentist test can make predictions, and the BSR did not test its predictive fitness, we
do not have an alternative to compare against.

8.1 Code and data availability

An R package (bbtcomp) that implements the BBT model is available at https://github.
com/jwainer/bbtcomp. To install it use remotes::install_github("jwainer/bbtcomp").
The R package uses the cmdstanr package to interface with Stan, which implements the
MCMC sampler. At the time of the writing, cmdstanr is not available in CRAN, and
should be installed following the instructions in https://mc-stan.org/cmdstanr/.

A Python program that implements all functionalities of the R package implementation
the BBT model with the exception of the graphic generating functions, is available in the
github directory above, in the folder python. The program also uses the cmdstanpy interface
to Stan. The Rmarkdown version of this paper is available in the github directory above, in
the folder paper.

28

https://github.com/jwainer/bbtcomp
https://github.com/jwainer/bbtcomp
https://mc-stan.org/cmdstanr/


BBT: Comparison of multiple algorithms on multiple data sets

8.2 How to use the BBT model - weak interpretation and 0.95 probabilities

We believe that there are two main approaches to utilizing the BBT model in research. For
researchers or audiences who are more familiar with the frequentist approach, we recom-
mend using the summary values related to the weak interpretation of the parameters (the
above.50 and in.rope values) and a 0.95 probability threshold. This approach utilizes familiar
threshold numbers such as 0.95 or 95%.

The guidelines for this approach are as follows:

• If the in.rope value is 0.95 or above, the researchers can claim that the two algorithms
are equivalent (according to the definition of ROPE).

• If above.50 is 0.95 or above, the researchers can claim that one algorithm is better
than the other. If both in.rope and above.50 are above 0.95, the first rule applies, and
researchers should claim that the algorithms are equivalent.

• For all other cases, researchers should not make any claim.

The BBT model also allows one to make claims of equivalence (when in.rope ≥ 0.95)
that are not possible in the frequentist case.

As we will see in Section 8.4 below, the weak interpretation will find more examples of
significant differences that both frequentist and the BSR approaches.

Finally, the BBT model is reasonably well-calibrated although slightly overconfident
regarding high values of above.50, so for the pairs with “significant” differences the researcher
can make the claim that, likely with 90% probability or better, the best algorithm should
perform better than the worse for future data sets. The claim for future data sets can be
made even for comparisons that are not “significantly” different. If algorithm A has an
above.50 of 0.8 in relation to B, then it is not “significantly” different than B, but one still
can make the claim that A will perform better than B with 80% probability (or a bit lower)
on future data sets.

8.3 How to use the BBT model - strong interpretation and 0.70 probabilities

If researchers and their audiences are more comfortable with Bayesian results, we recommend
following the strong interpretation (and the mean summary of the probabilities) and choosing
a threshold of 0.70. The procedure is as follows:

• If mean is below 0.55, one can claim that both algorithms are equivalent.

• If mean is above 0.70, one can claim that one algorithm is “significantly” better than
the other.

As we will see in Section 8.4, the strong interpretation will find the same number of
significant differences that the other methods for a low number of algorithms and data
sets. For cases of a high number of algorithms or a high number of data sets, the strong
interpretation may find less significant differences.

For future data sets, the researcher can make the claim that the most likely value for the
probability that A is better than B is 70% or better. The low predictive bias allows for such
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ss mm sl ll

Method sig not
sig

sig not
sig

sig not
sig

sig not
sig

strong 49 51 180 270 23 27 54 66
weak 70 30 380 70 45 5 112 8
Demsar 31 69 177 273 34 16 70 50
Wilcoxon 45 55 226 224 40 10 92 28
BST 65 35 313 137 41 9 92 28

Table 13: The comparions of BBT and the previous comparison procedures. sig is the
number of pairs of comparisions found significant by each method.

a claim, but the high variance does not allow for a credal interval to be defined for these
estimates. Again, the claim of probabilities of performing better for future data sets can be
made also for differences that are not “significant” according to the 0.70 threshold.

Finally, as discussed in section 5.7, the strong interpretation is somewhat independent
of the number of algorithms being compared, and thus can be used in these situations.

8.4 Comparison with previous procedures

Table 13 compares the number of significant pairs found using the different comparison
procedures: BBT under the strong and weak interpretations, Demsar, pairwise Wilcoxon,
and BSR. We should remind the reader that it is unclear whether the BSR should be used
in multiple comparisons. Also Benavoli et al. (2017) suggest that is a decision procedure
similar to BBT’s weak interpretation if the probability that the difference between the means
falls above the 0.01 ROPE is above 0.95, one can declare the difference as “significant”.

Table 13 shows that BBT under the weak interpretation find more significantly different
pairs of comparisons than the other methods. BBT under the strong interpretation, is
comparable to the other method for a small number of algorithms and datasets, but as each
of those to sized increase, BBT under the stong interpretation will find less significantly
different pairs.

9. Conclusion

The BBT model is a comparison procedure based on the Bradley-Terry model that assigns a
merit value to each of the competing algorithms. The merit values determine the probability
of an algorithm performing better than another on a data set. The BBT model is a Bayesian
implementation of the Bradley-Terry model and offers several advantages over traditional
frequentist approaches:

• It allows for a more nuanced description of the relationships between each pair of algo-
rithms in the aggregated ranking, beyond simply determining whether the difference
is significant or not.
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• It enables the definition of a threshold below which two algorithms are considered
equivalent for practical purposes and allow researchers to make claims about whether
two algorithms are equivalent or not.

• It provides an understanding of the uncertainties associated with the claims.

In addition to the advantages of Bayesian estimation, the BBT model also:

• Works with any metric of interest, regardless of whether it is comparable or not.

• The main parameters are probabilities, making it easier to understand the definition
of ROPEs, uncertainties, and so on.

• Accommodates missing data for algorithms that did not run on certain data sets.

Finally, we also introduced the idea of local ROPE, which is a method for determining
when one algorithm can be considered truly better than another for a specific data set, based
on their average performance across different folds. We believe that local ROPE can also be
a useful addition to frequentist tests, particularly rank-based tests.

This paper did not dedicate extensive space to the defense of Bayesian testing methods.
For a more in-depth examination of the advantages of Bayesian testing, we refer the reader
to the work of Benavoli et al. (2017), which not only presents the BSR model but also
makes compelling arguments for the machine learning community to transition away from
frequentist tests and towards Bayesian tests. The author of this paper agrees with these
arguments and recommendations.
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