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Abstract

Datasets in which measurements of two (or more) types are obtained from a common set of
samples arise in many scientific applications. A common problem in the exploratory anal-
ysis of such data is to identify groups of features of different data types that are strongly
associated. A bimodule is a pair (A,B) of feature sets from two data types such that the
aggregate cross-correlation between the features in A and those in B is large. A bimodule
(A,B) is stable if A coincides with the set of features that have significant aggregate cor-
relation with the features in B, and vice-versa. This paper proposes an iterative-testing
based bimodule search procedure (BSP) to identify stable bimodules. Compared to exist-
ing methods for detecting cross-correlated features, BSP was the best at recovering true
bimodules with sufficient signal, while limiting the false discoveries. In addition, we applied
BSP to the problem of expression quantitative trait loci (eQTL) analysis using data from
the GTEx consortium. BSP identified several thousand SNP-gene bimodules. While many
of the individual SNP-gene pairs appearing in the discovered bimodules were identified
by standard eQTL methods, the discovered bimodules revealed genomic subnetworks that
appeared to be biologically meaningful and worthy of further scientific investigation.
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1. Introduction

The continuing development and application of measurement technologies in fields such as
genomics and neuroscience means that researchers are often faced with the task of analyzing
data sets containing measurements of different types derived from a common set of samples.
While one may analyze the measurements arising from different technologies individually,
additional and potentially important insights can be gained from the joint (integrated)
analysis of the data sets. Joint analysis, also called multi-view or multi-modal analysis, has
received considerable attention in the literature, see Lock et al. (2013); Lahat et al. (2015);
Meng et al. (2016); Tini et al. (2019); Pucher et al. (2019); McCabe et al. (2019); Vahabi
and Michailidis (2022) and the references therein for more details.

In this paper we consider a setting in which two data types, Type 1 and Type 2, with
numerical features are obtained from a common set of samples. We refer to correlations
between features of the same type as intra-correlations, and correlations between features of
different types as cross-correlations, noting that this usage differs from that in time-series
analysis. Our primary focus is the problem of identifying pairs (A,B), where A is a set
of features of Type 1 and B is a set of features of Type 2, such that the aggregate cross-
correlation between features in A and B is large (see Figure 1). Moreover, we wish to carry
out this identification in an unsupervised, exploratory setting that does not make use of
auxiliary information about the samples or the features, and that does not rely on detailed
modeling assumptions.

Identifying sets of inter-correlated features within a single data type has been widely
studied, typically through clustering and related methods. By contrast, cross-correlations
provide information about interactions between data types. These interactions are of in-
terest in many applications, for example, in studying the relationships between genotype
and phenotype in genomics (discussed in Section 4 below), temperature and precipitation
in climate science (discussed in Appendix D), habitation of species and their environment
in ecology (see, e.g., Dray et al., 2003), and in identifying brain regions associated with
experimental tasks (McIntosh et al., 1996) in neuroscience (cf. references in Winkler et al.
(2020) for further neuroscience applications).

Borrowing from the use in genomics of the term “module” to refer to a set of correlated
genes, we call the feature set pairs (A,B) of interest to us as bimodules. The term bimodule
has also appeared, with somewhat different meaning, in Wu et al. (2009), Patel et al. (2010),
and Pan et al. (2019). Bimodules provide evidence for the coordinated activity of features
from different data types. Coordination may arise, for example, from shared function, causal
interactions, or more indirect functional relationships. Bimodules can assist in directing
downstream analyses, generating new hypotheses, and guiding the targeted acquisition and
analysis of new data. By definition, bimodules capture aggregate behavior, which may
be significant when no individual pair of features has high cross-correlation, or when the
cross-correlation structure between the feature groups is complex. As such, the search for
bimodules can leverage low-level or complex signals among individual features to find higher
order structure.
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Figure 1: Illustration of a bimodule (A,B) (shaded) arising in two numeric data matrices
X and Y matched by samples (rows). The columns of A and B need not be
contiguous.

1.1 Existing Work

Perhaps the easiest way to identify bimodules is to apply a standard clustering method
such as k-means to a joint data matrix consisting of standardized features from each of
the two data types, and treating any cluster with features from both data types as a
bimodule. While appropriate as a “first look”, this approach requires the analyst to choose
an appropriate number of clusters, imposes the constraint that a feature can belong to at
most one bimodule, and does not distinguish between cross- and intra-correlations.

A better approach is to investigate bimodules via the sample cross-correlation network.
The cross-correlation network is a bipartite network with vertices corresponding to features
of Type 1 and Type 2 such that there is an edge between features of different types with
a weight equal to their correlation, but there are no edges between features of the same
type. The CONDOR (Platig et al., 2016) procedure identifies bimodules by applying a
community detection method to an unweighted bipartite graph obtained by thresholding
the weights of this cross-correlation network. One could, in principle, extend this approach
by leveraging other community detection methods.

In seeking to uncover relationships between two data types, a number of methods identify
sets of latent features that best explain the joint covariation between the two data types,
often by optimizing an objective over the space spanned by the data features (see the survey
Sankaran and Holmes, 2019). Sparse canonical correlation analysis (sCCA) (Waaijenborg
et al., 2008; Witten et al., 2009; Parkhomenko et al., 2009) finds pairs of sparse linear
combinations of features from the two data types that are maximally correlated. One may
regard each such canonical covariate pair as a bimodule consisting of the features appearing
in the linear combination.

In genomics, methods based on Gaussian graphical models (Cheng et al., 2012, 2015,
2016) and penalized multi-task regression (Chen et al., 2012) have been used to find bi-
modules in eQTL analysis (see Section 4 below). In the former work, the authors fit a
sparse graphical model with hidden variables that model interactions between groups of
genes and groups of SNPs. In Chen et al. (2012), the gene and SNP networks derived from
the respective intra-correlations matrices are used in a penalized regression setting to find
a network-to-network mapping that is similar in spirit to bimodules.
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1.2 Our Contributions

In this paper we propose and analyze an exploratory method called BSP (an acronym for
Bimodule Search Procedure) that identifies bimodules in moderate and high dimensional
data sets. The BSP method is unsupervised: it does not rely on external or auxiliary
information about the data at hand. BSP differs fundamentally from the existing methods
described above, in that it does not make use of a detailed statistical model to define
bimodules, and does not treat the sample cross-correlation network as a sufficient statistic
for bimodule discovery. Instead, BSP is based on the notion of a stable bimodule, which is
introduced and studied below. A bimodule (A,B) is stable if A coincides with the features
of Type 1 that have significant aggregate correlation with the features in B, and B coincides
with the features of Type 2 that have significant aggregate correlation with the features in
A. (A formal definition is given in Section 2.) BSP employs an iterative multiple testing
based procedure to identify stable bimodules. Stability provides a statistically principled
criterion for filtering bimodules having significant aggregate cross-correlations.

To handle large datasets with hundreds of thousands of features, we develop and em-
ploy a fast analytical approximation to permutation p-values that are used to assess the
significance of aggregate cross-correlations between features of different types. Importantly,
these p-values account for intra-correlations (between features of the same type) when as-
sessing the significance of observed cross-correlations. Additionally, we provide a method
to extract statistically motivated essential-edge networks from bimodules, enhancing their
interpretability. We validate BSP through a comprehensive and carefully constructed sim-
ulation framework, and demonstrate its practical utility through an extended application
to eQTL analysis.

1.3 Organization of the Paper

The next section presents the testing-based definition of stable bimodules based on p-values
derived from a permutation null distribution and describes the Bimodule Search Procedure
and supplemental details of the methodology. Section 3 is devoted to a simulation study
that uses a complex model to capture some aspects of real bi-view data. Here, we evaluate
the performance of BSP and compare it to that of CONDOR, sCCA, and MatrixEQTL.
Section 4 describes and evaluates the results of BSP, CONDOR, and MatrixEQTL applied
to an eQTL dataset from the GTEx consortium. In particular, we examine the bimodules
produced by BSP using a variety of descriptive and biological metrics, including comparisons
with, and potential extensions of, standard eQTL analysis.

2. Stable Bimodules and the Bimodule Search Procedure

This section defines stable bimodules and describes the Bimodule Search Procedure and
auxiliary details of our methodology. We first describe a permutation null-distribution
(Section 2.2) that will be used to provide a testing-based definition of stable bimodules
(Section 2.3) and the Bimodule Search Procedure (Section 2.4). We conclude the section
with auxiliary details like fast p-value approximation (Section 2.5), post-processing bimod-
ules to address overlap (Section 2.6), a network-based assessment of minimality of bimod-
ules (Section 2.7), tuning the false-discovery parameter using a half-permutation scheme

4



Bimodule Search Procedure

(Section 2.8), and suggestions for a potential practical workflow using our methodology
(Section 2.9).

2.1 Notation

Let X be an n × p matrix containing the data of Type 1, and let Y be an n × q matrix
containing the data of Type 2. The columns of X and Y correspond to features of Type 1
and Type 2, respectively. The ith row of X (Y) contains measurements of Type 1 (Type
2) on the ith sample. Features of Type 1 will be indexed by S = {s1, s2, . . . , sp}, features
of Type 2 by T = {t1, t2, . . . , tq}. Let Xs be the column of X corresponding to feature s,
and let Yt be the column of Y corresponding to feature t. For s ∈ S and t ∈ T let r(s, t)
be the sample correlation between Xs and Yt. For A ⊆ S and B ⊆ T , define the aggregate
squared correlation between A and B by

r2(A,B)
.
=



s∈A,t∈B
r2(s, t). (1)

For singleton sets we will omit brackets, writing r2(s,B) and r2(A, t).
The aggregate correlations r2(A,B) are an obvious starting point for the identification

of bimodules. Maximization of r2(A,B) subject to a penalty on the cardinalities of A and B
is not computationally feasible, would typically involve the introduction of free parameters
whose values might be difficult or time-consuming to specify, and would not account for
intra-correlations. The BSP method attempts to address these issues by taking a different
approach that is based on iterative multiple testing of the statistics r2(s,B) and r2(A, t).
The requisite p-values are described next.

2.2 Permutation P-values

It is assumed in what follows that the data matrices X and Y are given and fixed. In this
setting, we define a permutation null distribution that is obtained by randomly reordering
the rows of X and, independently, the rows of Y.

Definition 1 Let P1, P2 ∈ {0, 1}n×n be chosen independently and uniformly from the set
of all n × n permutation matrices. The permutation null distribution of [X,Y] is the dis-
tribution of the data matrix [X̃, Ỹ] .

= [P1X, P2Y]. Let Pπ and Eπ denote probability and
expectation, respectively, under the permutation null.

For s ∈ S and t ∈ T let R(s, t) be the (random) sample-correlation of X̃s and Ỹt under
the permutation null Pπ. Permutation preserves the sample correlation between the features
si in S, and between the features tj in T , but nullifies cross-correlations between S and T .
The values of R(s, t) will tend to be small, and in particular Eπ[R(s, t)] = 0 for each s ∈ S
and t ∈ T (see Zhou et al. (2013) for more details).

Definition 2 For A ⊆ S and B ⊆ T define the permutation p-value

p(A,B)
.
= Pπ(R

2(A,B) ≥ r2(A,B) ). (2)

Here R2(A,B)
.
=


s∈A,t∈B R2(s, t) is random, while the observed sum of squares r2(A,B),

defined as in (1), is fixed.
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Small values of p(A,B) provide evidence against the null hypothesis that the observed
cross-correlation between the features in A and B could have arisen by chance. At the
same time, the permutation distribution preserves the correlations between features of the
same type. Thus, the p-value p(A,B) accounts for the effects of intra-correlations when
assessing the significance of the aggregate cross-correlation r2(A,B). In practice, we employ
an approximation of the permutation p-values p(A,B), which is described in Section 2.5
below.

2.3 Stable Bimodules

Before describing the bimodule search procedure in the next subsection, we introduce stable
bimodules, which are the targets of the procedure. Stable bimodules are defined using the
multiple testing procedure of Benjamini and Yekutieli (2001) (B-Y). Let p = p1, . . . , pm ∈
[0, 1] be the p-values associated with a family of m hypothesis tests, with order statistics
p(1) ≤ p(2) . . . ≤ p(m). Given a target false discovery rate α ∈ (0, 1), the B-Y procedure
rejects the hypotheses associated with the p-values p(1), . . . , p(k) where

p(k) = max


p(j) : p(j) ≤ α j

m
m

i=1 i
−1


.
= τα(p) (3)

As shown in Theorem 1.3 of Benjamini and Yekutieli (2001), regardless of the joint distri-
bution of the p-values in p, the expected value of the false discovery rate among the rejected
hypotheses is at most α. The value τα(p) acts as an adaptive significance threshold.

Definition 3 (Stable Bimodule) Let [X,Y] and α ∈ (0, 1) be given. A pair (A,B) of non-
empty sets A ⊆ S and B ⊆ T is a stable bimodule at level α if

1. A = {s ∈ S : p(s,B) ≤ τα(pB)} and

2. B = {t ∈ T : p(A, t) ≤ τα(pA)}

where pB = {p(s,B)}s∈S and pA = {p(A, t)}t∈T .

A bimodule (A,B) is stable if and only if A is exactly the set of features s ∈ S for
which r2(s,B) is significant, and B is exactly the set of features t ∈ T for which r2(A, t) is
significant. Significance is assessed via the permutation null and the B-Y multiple testing
procedure. Note that the empty bimodule ∅×∅ satisfies conditions 1 and 2 of the definition,
but we reserve the term stable for non-empty bimodules.

WhenB is fixed, the condition p(s,B) ≤ τα(pB) can be written equivalently as r2(s,B) ≥
γ̂(s,B) where γ̂(s,B) is an adaptive correlation threshold depending on s and pB. The lat-
ter condition may be satisfied even if the feature s is not significantly correlated with any
individual feature in B. Similar remarks apply to p(A, t). In this way stable bimodules
can facilitate the aggregation of small effects across feature pairs. Importantly, stable bi-
modules cannot be recovered from the sample cross-correlation matrix or the associated
cross-correlation network alone. This is because the thresholds γ̂(s,B) and γ̂(A, t) also
depend on other aspects of the data, in particular the intra-correlations of features in A
and B, through the p-values in pA and pB.
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2.4 The Bimodule Search Procedure (BSP)

Let 2S be the family of all subsets of features of Type 1, and define 2T similarly. According
to Definition 3, stable bimodules are exactly the non-empty fixed points of the set map
Γ : 2S × 2T → 2S × 2T defined by Γ(A,B) = (A′, B′) where

A′ = {s ∈ S : p(s,B) ≤ τα(pB)} and B′ = {t ∈ T : p(A′, t) ≤ τα(pA′)}.

The bimodule search procedure (BSP) finds stable bimodules by repeatedly applying the
map Γ to an initial pair (A0, B0). As the map Γ is deterministic, and the number of feature
set pairs is finite, repeated application of Γ is guaranteed to yield a fixed point or enter a
limiting cycle. BSP outputs non-empty fixed points, which are stable bimodules at level α.

In practice, BSP is run repeatedly, initializing with every pair (A0, B0), where A0 = {s}
is a single feature in S and B0 is the set of features t ∈ T that are significantly correlated
with s, or B0 = {t} is a single feature in T and A0 is the set of features s ∈ S that are
significantly correlated with t. Pseudocode for BSP is given in Algorithm 1.

Input: Data matrices X and Y, parameter α ∈ (0, 1), and initialization set
(A0, B0), where A0 ⊆ S and B0 ⊆ T .

Output: A stable bimodule (A,B) at level α, if found.

1 initialize: A′ = A0, B
′ = B0, and A = B = ∅;

2 while (A′, B′) ∕= (A,B) do
3 (A,B) ← (A′, B′);
4 Compute p(s,B) for each s ∈ S and let pB ← (p(s,B))s∈S ;
5 A′ ← {s ∈ S : p(s,B) ≤ τα(pB)}; // Indices rejected by B-Y

6 Compute p(A′, t) for each t ∈ T and let pA′ ← (p(A′, t))t∈T ;
7 B′ ← {t ∈ T : p(A′, t) ≤ τα(pA′)}; // Indices rejected by B-Y

8 end
9 if |A||B| > 0 and (A,B) = (A′, B′) then

10 return (A,B);
11 end

Algorithm 1: Bimodule Search Procedure (BSP)

To limit computation time and address the possibility of cycles, the BSP is terminated
after 20 iterations. In our simulations and real-data analyses (discussed below) the 20
iteration limit was rarely reached: cycles were very rare, and most initial conditions led to
empty fixed points.

A likely side effect of any directed search for bimodules (A,B), stable or otherwise, is that
the sample intra-correlations of the features in A and B will be large, often significantly
larger than the intra-correlations of a randomly selected set of features with the same
cardinality. Failure to account for inflated intra-correlations will lead to underestimates of
the standard error of most test statistics, including the sum of squared correlations used
here, which will in turn lead to anti-conservative (optimistic) assessments of significance, and
oversized feature sets. As noted above, the permutation distribution leaves intra-correlations
unchanged, while ensuring that cross-correlations are close to zero, and as such, the p-values
p(s,B) and p(A, t) account for intra-correlations among features in B and A, respectively.
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The false discovery rate α ∈ (0, 1) used in the B-Y multiple testing procedure is the
only free parameter of BSP. While α controls the false discovery rate of the features s or
t selected at each step of the search procedure, it does not guarantee control of the false
discovery rate of pairs (s, t) within stable bimodules. In general, BSP will find fewer and
smaller bimodules when α is small, and will find more and larger bimodules when α is large.
In practice, we employ a permutation based procedure to select α from a fixed grid of values
based on a half-permutation procedure that is described in Section 2.8.

Running BSP with multiple initializations results in a list of stable bimodules. In
order to limit the number of potentially spurious bimodules, and to limit the number of
bimodules where both A and B are singletons, we remove from the list any bimodule (A,B)
for which p(A,B) exceeds the Bonferroni threshold α/|A||B| for singleton bimodules. Once
this preliminary filtering is complete, two, more critical, post-processing issues remain.

The first issue is overlap. This arises from the fact that distinct bimodules can exhibit
substantial overlap. In many applications, e.g., the study of gene regulatory networks,
overlap of interacting feature sets is the norm, and the ability to capture this overlap
is critical for successful exploratory analysis. Nevertheless, extreme overlap can impede
interpretation and downstream analyses. We deal with overlap in two ways. First, our
focus on stable bimodules eliminates most small perturbations from consideration. Second,
in cases where we find two or more stable bimodules with large overlap, we employ a simple
post-processing step to identify a representative bimodule from the overlapping group. This
post-processing step is described in Section 2.6.

In practice, we wish to identify minimal bimodules, those that do not properly contain
another bimodule, as such bimodules are more likely to reveal interpretable interactions
between features. Checking minimality of a stable bimodule can be difficult, and we rely
instead on a notion of robust connectivity that leverages the connection between bimodules
and the sample cross-correlation network. Informally, a robustly connected bimodule cannot
be partitioned into two groups without removing one or more high weight connections
between the groups. See Section 2.7 for a discussion and more details.

Iterative testing procedures have been applied in single data-type settings for community
detection in unweighted (Wilson et al., 2014) and weighted (Palowitch et al., 2018) networks,
differential correlation mining (Bodwin et al., 2018), and association mining for binary data
(Mosso et al., 2021). In these papers a stable set of significant nodes or features is identified
through the iterative application of multiple testing. However, the hypotheses of interest
and the associated test statistics all differ substantially from the setting here. Moreover, the
p-values in these papers were derived from asymptotic normal and binomial approximations
rather than the more complicated permutation moment fitting used here.

2.5 Approximation of Permutation P-Values

The BSP method relies on evaluating the permutation p-values p(s,B) and p(A, t). There
is no closed form expression for these p-values and direct evaluation via permutation is
computationally prohibitive, since in each iteration BSP requires the evaluation of |S|+ |T |
such p-values. As an alternative, we adapt ideas from Zhou et al. (2019) to approximate
the permutation p-value p(A, t) (or p(s,B)) using the tails of a location-shifted Gamma
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distribution that has the same first three moments as the sampling distribution of R2(A, t)
under the permutation null. Details now follow.

Let X̃ and Ỹ be permuted versions of the observed data matrices, as in Definition 1.
Given A ⊆ S let ΣA be the |A| × |A| sample correlation matrix of the columns of X̃ (or
equivalently X). It is shown in Dewaskar (2021) that if the random permutation matrices in
Definition 1 are replaced by random orthogonal matrices that fix the constant vector then,
conditional on ΣA, for each t ∈ T the first three moments of R2(A, t) are given by:

m1
.
= E[R2(A, t)|ΣA] =

|A|
(n− 1)

m2
.
= E[R4(A, t)|ΣA] =

2
|A|

i=1 λ
2
i + |A|2

n2 − 1

m3
.
= E[R6(A, t)|ΣA] =

|A|3 + 6|A|(


i λ
2
i ) + 8


i λ

3
i

(n2 − 1)(n+ 3)
,

where {λi}|A|
i=1 are the eigenvalues of the intra-correlation matrix ΣA. Earlier work of Zhou

et al. (2019) establishes the same relations under the stronger assumption that Ỹt is mul-
tivariate normal and independent of X̃A. We use the above formulas to approximate the
moments of R2(A, t) under the permutation null of Definition 1, yielding approximate tail
probabilities

p(A, t) = P (Y ≥ r2(A, t))

where Y has a location shifted Gamma distribution satisfying E[Y ] = m1, E[Y 2] = m2,
and E[Y 3] = m3. More general moment formulas in Dewaskar (2021) enable us to estimate
p(A,B) when neither A nor B is a singleton.

As noted above, the permutation based p-values employed by BSP explicitly account
for correlations between features of the same type through the eigenvalues of the intra-
correlation matrix ΣA, attenuating the significance of cross-correlations when intra-correlations
are high.

2.6 Post-Processing of Bimodules to Address Overlap

Let B = (A1, B1), . . . (AN , BN ) be the list of stable bimodules found by BSP after initial
filtering to remove bimodules such that p(A,B) exceeds the Bonferroni threshold α/|A||B|
for singletons. In general, the same bimodule may appear multiple times in B, and bimodules
in B may overlap. To address this, we first assess the effective cardinality Ne of B, then
identify Ne groups of related bimodules in B, and finally select a representative bimodule
from each group. Details are given below.

Let Cj = Aj ×Bj be the set of (s, t) pairs in the jth bimodule of B. Following Shabalin
et al. (2009) we define the effective number of bimodules in B as

Ne
.
=



C∈B





1

|C|


(s,t)∈C

1
C′∈B I((s, t) ∈ C ′)




 (4)

Note that 0 ≤ Ne ≤ N , and if B contains r distinct bimodules with disjoint index sets (and
arbitrary multiplicity) in B then Ne = r. With Ne in hand, we apply agglomerative hier-
archical clustering to the bimodules in B using average linkage and a dissimilarity measure
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equal to the Jaccard distance between the index sets,

dJ(C,C
′) = 1− |C1 ∩ C2|

|C1 ∪ C2|
.

We then prune the resulting dendrogram by selecting the horizontal cut that yields closest
to Ne clusters. Finally, from each of the resulting clusters C ⊆ B we select a representative
bimodule C ∈ C maximizing the centrality score

η(C : C) =


(s,t)∈C



C′∈C
I((s, t) ∈ C ′). (5)

The centrality score η(C : C) favors bimodules C whose elements are contained in many of
the other bimodules C ′ falling in the cluster C.

2.7 Network-Based Assessment of Minimality

A stable bimodule is minimal if it does not properly contain another stable bimodule.
Minimal bimodules represent indecomposable structures, which may enhance their inter-
pretability in exploratory tasks. Initializing BSP with singletons encourages the discovery
of minimal bimodules, but in general, the bimodules output by BSP are not guaranteed
to be minimal. As verifying minimality in practice can be computationally prohibitive, we
adopt an alternative, network based approach that assesses the decomposability of stable
bimodules found by BSP.

We begin with the cross-correlation network Gr, which is a weighted bipartite network
with vertex set S ∪ T and edge set E = S × T . Each edge (s, t) has weight w(s, t) equal to
the observed sample correlation r(s, t) between features Xs and Yt. Note that Gr has no
edges between features of the same type. For each τ ≥ 0, let Gr(τ) be the subgraph of Gr

obtained by removing edges (s, t) with absolute weight |w(s, t)| < τ ; let E(τ) denote the
resulting set of edges. We call a pair of feature sets (A,B) connected in Gr(τ) if there is
a path (a sequence of adjacent edges in E(τ) ∩ (A × B)) connecting every distinct pair of
indices u, v ∈ A ∪B that goes only through vertices in A ∪B.

Definition 4 The connectivity threshold τ∗(A,B) of a feature set pair (A,B) is the largest
τ ≥ 0 such that (A,B) is connected in Gr(τ). The essential edges of (A,B) are the pairs
(s, t) ∈ A×B such that |r(s, t)| ≥ τ∗(A,B).

The consideration of connectivity thresholds and essential edges in our methodology
is motivated by insights from large sample analysis (Dewaskar, 2021). This analysis re-
veals that in the large sample limit, minimal stable bimodules correspond to connected
components of the population cross-correlation network, which consists of feature pairs
(s, t) ∈ S × T with non-zero correlations at the population level.

The threshold τ∗(A,B) measures the strength of the weakest link required to maintain
connectivity of the features A ∪ B in Gr: the set A ∪ B cannot be partitioned into two
non-empty groups such that there are only weak edges (with magnitude less than τ∗(A,B))
between the groups. In this way τ∗(A,B) quantifies the ease with which the bimodule (A,B)
can be decomposed into a disjoint union of smaller bimodules. In practice, the bimodules
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found by BSP have relatively high connectivity thresholds (e.g. see Section 4.4.3), indicating
that these bimodules are robustly connected.

One may also regard E(τ) ∩ (A× B) as an estimate of the feature pairs (s, t) ∈ A× B
that are truly correlated at the population level, with larger values of τ providing more
conservative estimates. The value τ = τ∗(A,B) is the most conservative threshold subject
to the constraint that A ∪B is connected in Gr(τ), and in this case the essential edges are
those of the resulting graph.

2.8 Choice of α Using Half-Permutation Based Edge-Error Estimates

To select the false discovery parameter α ∈ (0, 1) for BSP, we estimate the edge-error for
each value of α from a pre-specified grid. The edge-error is a network-based notion of false
discovery for bimodules, defined as the average fraction of erroneous essential-edges (see
Definition 4 above) among bimodules. Since we do not know the ground truth, we estimate
the edge-error for BSP by running it on instances of the half-permuted dataset in which
the sample labels for half of the features from each data type have been permuted. Further
details are given below.

2.8.1 Half-Permutation

Running BSP on the permuted data (Definition 1) allows us to assess the false discoveries
from BSP when there are no true associations between features from S and T . However, we
expect that there are true associations between features from S and T . Indeed, these are
the ones we wish to find. To create a null distribution where some pairs of features from S
and T are correlated and some are not, we employed a half-permutation scheme. Let (X,Y)
denote the original data. We generate a half-permuted dataset (X̃, Ỹ) as follows:

1. Randomly select half of the features, Ŝ ⊆ S and T̂ ⊆ T , from each data type.

2. Consider the matrix X̃ obtained by randomly permuting the rows of the submatrix
of X corresponding to features in Ŝ. In other words, the sub-matrix corresponding to
the features S \ Ŝ is the same in X and X̃, while the sample labels for the submatrix
of X̃ corresponding to features in Ŝ have been randomly permuted, i.e. X̃Ŝ = P1XŜ
where P1 ∈ {0, 1}n×n is a random permutation matrix.

3. Similarly permute the rows of the sub-matrix of Y corresponding to the features T̂
using another independent permutation matrix P2 ∈ {0, 1}n×n. Call the resulting
matrix Ỹ.

If any covariates are present, we correct for them after the above step. Together, the
half-permutation in steps 2 and 3 nullify the cross-correlation between pairs of features in
Ŝ × T ∪ S × T̂ .

2.8.2 Estimating the Edge-Error Using Half-Permutations

Let B = (A1, B1), (A2, B2), . . . , (AK , BK) be the collection of bimodules obtained by running
BSP on the half-permuted data (X̃, Ỹ). We define the edge-error estimate for the collection
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B as

edge-error(B) = 1

|B|


(A,B)∈B

essential-edges(A,B) ∩

Ŝ × T ∪ S × T̂


|essential-edges(A,B)| , (6)

where the essential-edges(A,B) denotes the essential-edges (Definition 4) for the feature
set pair (A,B) based on the half-permuted data (X̃, Ỹ). Intuitively, the edge-error estimate
captures the probability that a randomly chosen essential-edge from a randomly-chosen
bimodule falls within the nullified feature pairs Ŝ × T ∪ S × T̂ . Small edge-error estimates
provide confidence that the bimodules detected by BSP are not being driven by spurious
correlations.

We use the edge-error estimates from multiple half-permuted datasets to tune the false
discovery parameter α ∈ (0, 1). First, we generate a number of half-permuted datasets.
Then, for each α value in a grid of values, for example {0.01, 0.02, . . . , 0.05}, we run BSP
with parameter α over each of the half-permuted datasets and calculate an average edge-
error value for that α. Finally, we choose an α from the grid that has average edge-error
smaller than a pre-determined value like 0.05. Typically, smaller values of α have smaller
edge-error, so we choose the largest value of α from the grid that has the acceptable edge
error. One may also choose smaller values of α to limit the sizes of bimodules. In our
simulation study, this strategy to tune α successfully controlled the true edge-error under
0.05.

In practice, the edge-error estimates may be quite variable even when averaged over a
large number of half-permuted datasets, due in part to the fact that different Ŝ and T̂ are
picked for each instance of the half-permutation. When we observed such variability, we
chose a more conservative value of α.

2.9 Practical Workflow

Bimodules discovered by BSP can be used similarly as gene modules (e.g. Langfelder and
Horvath, 2008) for downstream data exploration and hypothesis generation. A typical work-
flow will start by using the R package that implements the BSP pipeline, including selection
of α, running BSP, post-processing bimodules, and obtaining essential-edge networks.

One may then identify bimodules of potential relevance to the task at hand. For instance,
in eQTL applications (discussed below), one may identify bimodules enriched for known
gene sets (from the Gene Ontology database) that are associated with biological processes
of interest. If additional clinical outcomes (or measurement modalities) are available for the
individuals under study, one can score BSP bimodules based on the association between
the genes in the bimodule and these outcomes.

Finally, one can apply a variety of analyses, such as identification of hub-nodes or
clustering coefficients, to the essential-edge networks derived from the selected bimodules
to further illuminate cross-correlation relationships that may be of interest for further study.

3. Simulation Study

To assess the performance of BSP and related methods, we simulated a dataset consisting of
n = 200 samples with p ≈ 14×104 and q ≈ 26×103 features of Types 1 and 2, respectively.
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(The values of p and q were chosen to match the number of SNPs and genes in a previous
version of the GTEx thyroid dataset.) The data was generated from a model with K = 1000
disjoint target bimodules of various sizes, (intra- and cross-) correlation strengths, and
network structures at the population level. Previously, simulation studies incorporating
fewer than ten embedded bimodules have been conducted for methods based on sCCA
(Waaijenborg et al., 2008; Parkhomenko et al., 2009; Witten et al., 2009) and graphical
models (Cheng et al., 2016, 2015). Here, motivated by the eQTL analysis application in
Section 4, we considered a more sophisticated simulation model that incorporates a diverse
collection of target bimodules and related network structures. To make the recovery of these
bimodules more challenging, edges were added at random between target bimodules so that
the population cross-correlation network has a so-called giant connected component.

3.1 Data Model

We now describe the simulation model in more detail. Following the notation at the begin-
ning of Section 2.1, we denote the two types of features by index sets S = {s1, s2 . . . sp} and
T = {t1, t2 . . . tq}. For each of the n individuals, the joint p + q dimensional measurement
vector is independently drawn from a multivariate normal distribution with mean 0 ∈ Rp+q

and (p+ q)× (p+ q) covariance matrix Σ. The covariance matrix Σ is designed so that it
has K = 1000 target bimodules of various sizes, network structures, signal strengths, and
intra-correlations.

As it is difficult to generate structured covariance matrices while maintaining non-
negative definiteness, we instead specify a generative model for the p + q dimensional
random row vector (X,Y ) ∼ Np+q(0,Σ). To begin, we partitioned the first-half of the
S-indices {s1, . . . , s⌈p/2⌉} into K disjoint subsets A1, A2, . . . , AK with sizes chosen accord-

ing to a Dirichlet distribution with parameter (1, 1, . . . , 1) ∈ RK . In the same way, we
generated a Dirichlet partition B1, B2, . . . , BK of the first-half of T indices {t1, . . . , t⌈q/2⌉}
independent of the previous partition. The feature set pairs (Ai, Bi) constitute the target
bimodules, while the features in second-half of the S- and T -indices are not part of any
bimodules. Next, the random sub-vectors (XAi , YBi) corresponding to the target bimod-
ules were generated independently for each i ∈ [K] using a graph based regression model
described next.

Let (A,B) be a feature set pair, and suppose that ρ ∈ [0, 1) and σ2 > 0 are given.
Let D ∈ {0, 1}|A|×|B| be a binary matrix, which we regard as the adjacency matrix of a
connected bipartite network with vertex set A ∪B. Then the random row-vector (XA, YB)
is generated as follows:

XA ∼ N|A|(0, (1− ρ)I + ρU) and YB = XAD + , (7)

where  ∼ N|B|(0,σ
2I) and U is a matrix of all ones. To understand the bimodule signal

produced by this model, note that ρ governs the intra-correlation between features in A and
that for any t ∈ B, the variable Yt is influenced by features Xs such that (s, t) is an edge
in the adjacency matrix D. For each of the target bimodules (Ai, Bi) in the simulation,
we independently chose parameters ρi, σ

2
i , and Di to produce a variety of behaviors while

maintaining the inherent constraints between them. See Section 3.1.1 for more details.
Features Xsj with j > ⌈p/2⌉ are independent N (0, 1) noise variables. Features Ytr with

r > ⌈q/2⌉ are either noise (standard normal) or they are bridge variables that connect two
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target bimodules. In more detail, for every pair of distinct bimodules (Ak, Bk) and (Al, Bl)
with 1 ≤ k < l ≤ K, with probability κ = 1.5

K , we connect the two bimodules by selecting
at random (and without replacement) an index r > ⌈q/2⌉ and making it a bridge variable
by defining

Ytr = Xs +Xs′ +  with  ∼ N(0,σ2
r ), (8)

for a randomly chosen s ∈ Ak and s′ ∈ Al. Notice that the bridge variable Ytr now plays
the role of connecting the target bimodules (Ak, Bk) and (Al, Bl) in the population cross-
correlation network, given by vertex set S ∪ T and edges (s, t) ∈ S × T such that there is
non-zero (population) correlation between features Xs and Yt. The noise variance σ2

r in (8)
is chosen so that the correlation between Ytr and Xs (and Xs′) is equal to the average of
the maximum cross-correlation of the bimodules that are being connected. Finally, if Ytr is
not a bridge variable, it is taken to be noise (standard normal).

Prior to the addition of bridge variables, the connected components of the population
cross-correlation network are just the bimodules (Ai, Bi) for i = 1, . . . ,K. Once bridge
variables have been added, the population cross-correlation network will have a so-called
giant connected component comprising a substantial portion of the underlying index space
S∪T . While theoretical support for the presence of giant component in our simulation model
comes from the study of Erdös-Renyi random graphs (Bollobs, 2001), such components
have also been observed in empirical eQTL networks (Fagny et al., 2017; Platig et al.,
2016). Since we only add a relatively small number (752) of bridge variables, the majority
of the cross-correlation signal is still contained in the more densely connected sets (Ai, Bi),
i = 1, . . . ,K.

3.1.1 Simulation Model for Each Target Bimodule

Here we describe further details on how the parameters ρ,σ ∈ [0, 1] and D that appear in
(7) are chosen for each target bimodule (A,B). First, we introduce two new parameters
β, η ∈ [0, 1], where β is the density of edges in the graph D, and η denotes the cross-
correlation between features from B and adjacent features from A in the graph D. Together,
the parameters β, ρ, η ∈ [0, 1] respectively control the network connectivity, intra-, and cross-
correlation strengths of the target bimodule (A,B), and will be used to generate appropriate
D and σ2. For each target bimodule (A,B), these values are independently sampled using
the following steps:

1. Choose a constant β ∈ [0, 1] uniformly at random. With d
.
= ⌈β |A|⌉, let D be the

adjacency matrix of a d-regular bipartite graph on vertex sets A and B formed by
independently connecting each vertex t ∈ B to d randomly chosen vertices from A. We
want to ensure that the graph D is connected. If it is not connected, we repeatedly
increase β to β + ∆β where ∆β = 0.1 and re-instantiate the graph D until it is
connected.

2. Randomly choose ρ ∈ [0, 1] and η ∈ [0, .8] subject to the constraint δ
.
= 1+ ρ(d− 1) ≥

η2d. We satisfy this constraint by first uniformly generating ρ and then generating η
uniformly from [0,min(

√
δd−1, .8)].

3. Finally let σ =

√
δ(δ−η2d)

η .
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Lemma 5 in Appendix B shows that, with this choice of parameters, features connected by
the adjacency matrix D have population cross-correlation equal to η.

3.2 Evaluation and Comparison of Methods

We ran BSP, CONDOR, sCCA, and MatrixEQTL on the simulated dataset. The parameter
α = 0.02 for BSP was chosen to keep the edge-error estimates based on half-permuted data
(see Section 2.8) under 0.05. The q-value cutoff for MatrixEQTL was also taken to be 0.05.
More details on how the various methods were run are provided in Appendix B.

3.2.1 Assessment Metrics

We compared the results from each method to the ground truth to assess (a) the recovery
of target bimodules by each method, and (b) the presence of spurious associations within
the bimodules detected by these methods. We considered the following metrics.

1. Jaccard similarity for each target bimodule. We calculated the largest Jaccard simi-
larity between each target bimodule and a detected bimodule. Jaccard similarity is
computed by regarding a bimodule (A,B) as the set of pairs A×B.

2. Recall for each target bimodule. We calculated the largest fraction of pairs from each
target bimodule that were included in a detected bimodule.

3. Edge-error for each detected bimodule. The edge-error of a detected bimodule is
defined as the fraction of essential-edges (Definition 4) from the detected bimodule
that are false, i.e. not contained within any true bimodule or the set of confounding
edges.

The Jaccard and recall metrics above provide two different ways to assess recovery of target
bimodules, while edge-error provides a way to assess spurious associations. While the
Jaccard similarity measures the exact recovery of target bimodules, recall measures recovery
relative to inclusion. In defining edge-error, we focus on false discoveries among essential-
edges, since all pairs within a bimodule need not be correlated.

Since MatrixEQTL only finds significant feature pairs, and not bimodules, for this
method recall is defined as the fraction of pairs from each target bimodule that are dis-
covered by the method, while edge-error is defined as the fraction of pairs detected by the
method that are false.

3.2.2 Results From Evaluation

Figure 2 (left) shows the recovery of target bimodules by BSP. The performance of BSP

was influenced primarily by the cross-correlation strength


r2(A,B)
|A||B| of the target bimodule,

though the intra-correlation strength, measured by the parameter ρ appearing in (7), also
had an effect. Most target bimodules with cross-correlation strength above 0.4 were com-
pletely recovered, while those with strength below 0.2 were not recovered. For strengths
between 0.2 to 0.4, there was a variation in recovery, with smaller Jaccard recovery for
bimodules having larger intra-correlation strength. The effect of intra-correlation strength
on recovery was expected as BSP accounts for the intra-correlations among features of the
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Figure 2: Recovery of target bimodules under the equality based metric Jaccard and the
inclusion based metric recall. Left: dependence of cross-correlation strength and
intra-correlation parameter of target bimodules on BSP Jaccard. Right: the
averaged recovery curves for target bimodules under CONDOR, BSP, and Ma-
trixEQTL as a function of their cross-correlation strength.

same type. BSP does a good job of controlling false discoveries: the average edge-error for
BSP bimodules was 0.041, and 90% of the BSP-bimodules had edge-error under 0.11.

The results from sCCA, CONDOR, and MatrixEQTL on the simulation study are de-
scribed in detail in Appendix B, but we summarize the important results here. The recovery
of target bimodules by CONDOR was rather insensitive to intra-correlation strength, so we
only considered the effect of cross-correlations. As CONDOR bimodules often contained
multiple target bimodules, it had better performance in terms of recall than Jaccard similar-
ity. For the recall metric, the average recovery curves for CONDOR, MatrixEQTL, and BSP,
as a function of the cross-correlation strength, were comparable (Figure 2, right). CON-
DOR bimodules had an average edge-error of 0.09. Finally, MatrixEQTL found 436,616
significant pairs, 10% of which were false discoveries. The inflated type-1 error for the last
two methods (despite using the q-value cutoff of 0.05) may be due to the fact that these
methods do not account for intra-correlations.

Concerning sCCA, the detected bimodules were very large and had a high average edge-
error of 0.94 when we used the default parameter choice. We also ran the procedure with a
range of parameters that yielded smaller bimodules, but the recovery and edge-error of the
procedure continued to lag behind those of BSP and CONDOR.

We also studied the performance of BSP and CONDOR on a simulation study with
larger sample size n = 600 (see Appendix B.3). As expected, both methods were able to
recover bimodules with lower cross-correlation strengths than earlier, in terms of recall.
However, in terms of Jaccard similarity, both BSP and CONDOR had lower recovery than
in the n = 200 simulation. We briefly discuss this behavior in Section 5.
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4. Application of BSP to eQTL Analysis

Much of the existing work on bimodules is focused on the integrated analysis of genomic
data. In this section we present an extended application of BSP to expression quantitative
trait loci (eQTL) analysis based on data from the Genotype Tissue Expression (GTEx)
project. An application of BSP to discover regions of temperature and precipitation corre-
lations in North America can be found in Appendix D.

The next subsection provides a brief overview of eQTL analysis. The application of BSP
to this problem is discussed in Section 4.2.

4.1 Expression Quantitative Trait Loci Analysis

Genetic variation within a population is commonly studied through single nucleotide poly-
morphisms, referred to as SNPs. A SNP is a particular location in the genome where there
is at least moderate variation in the paired nucleotides among members of a population.
The value of a SNP for an individual is the number of reference nucleotides appearing at
that site, which takes the values 0, 1, or 2. After normalization and covariate correction,
the value of a SNP may no longer be discrete.

eQTL analysis seeks to identify SNPs that affect the expression of one or more genes.
A SNP-gene pair for which the expression of the gene is correlated with the value of the
SNP is referred to as an eQTL. Identification of eQTLs is an important first step in the
study of genomic pathways and networks that underlie disease and development in human
and other populations (see Nica and Dermitzakis, 2013; Albert and Kruglyak, 2015).

In modern eQTL studies it is common to have measurements of 10-20 thousand genes
and 2-5 million SNPs on hundreds (or in some cases thousands) of samples. Identification
of putative eQTLs or genomic “hot spots” is carried out by evaluating the correlation of
numerous SNP-gene pairs, and identifying those meeting an appropriate multiple testing
based threshold. In studies with larger sample sizes it may be feasible to carry out trans-
eQTL analyses, which consider all SNP-gene pairs regardless of genomic location. However,
it is more common to carry out cis-eQTL analyses, in which one restricts attention to SNP-
gene pairs for which the SNP is within some fixed genomic distance (often 1 million base
pairs) of the gene’s transcription start site, and in particular, on the same chromosome (c.f.
Westra and Franke, 2014; GTEx Consortium, 2017). We use the prefixes cis- and trans-
to refer to the type of eQTL analyses, while using adjectives local and distal to denote
the proximity of the discovered SNP-gene pairs. In particular, cis-eQTL analyses seek
to discover local eQTLs, while trans-eQTL analyses seek to discover both local and distal
eQTLs.

As a result of multiple testing correction needed to address the large number of SNP-
gene pairs under study, both trans- and cis-eQTL analyses can suffer from low power.
Several methods have been proposed to improve the power of standard eQTL analyses,
including penalized regression schemes that try to account for intra-gene or intra-SNP
interactions (Tian et al., 2014, and references therein), and methods that consider gene
modules as high-level phenotypes to reduce the burden of multiple-testing (Kolberg et al.,
2020). For instance, Huang et al. (2009) proposed a network-based approach for improving
the discovery of eQTLs by creating a tripartite graph involving genes, SNPs, and samples.
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They utilized maximal cliques as a heuristic to reduce the search space over SNP-gene pairs
to test for eQTL associations.

As an alternative, one may shift attention from individual SNP-gene pairs to SNP-gene
bimodules. Cheng et al. (2015, 2016) refer to such bimodules as “group-wise eQTLs”.
As genes often act in concert with one another, bimodule discovery methods can gain
statistical power from group-wise interactions, by borrowing strength across individual SNP-
gene pairs. Further, it is known that activity in a cell may be the result of a regulatory
network of genes rather than individual genes (Chakravarti and Turner, 2016). Hence,
bimodules may represent a group of SNPs that disrupt the functioning of gene regulatory
networks and contribute to diseases (Platig et al., 2016).

4.2 eQTL Analysis of GTEx Thyroid Data

Here we describe the application of bimodules to the problem of expression quantitative
trait loci (eQTL) analysis. The NIH funded GTEx Project has collected and created a large
eQTL database containing genotype and expression data from postmortem tissues of human
donors. We applied BSP, CONDOR, and standard eQTL-analysis (using MatrixEQTL)
to p = 556, 304 SNPs and q = 26, 054 thyroid expression measurements from n = 574
individuals. A detailed account of data acquisition, preprocessing, and covariate correction,
along with additional details about the results and analysis in this section, can be found in
Appendix C.

4.3 Running BSP and Other Methods

We applied BSP to the thyroid eQTL data with false discovery parameter α = 0.03, selected
using a permutation-based procedure to keep the edge-error estimates under 0.05. The
search Algorithm 1 was run p/2+q ≈ 300K times starting from initial conditions consisting
of all genes and half of the randomly chosen SNPs. The majority (≈277K) of these searches
found an empty fixed point within the first few iterations. Of the remaining 27K searches,
the great majority identified a non-empty fixed point within 20 steps. Only 20 searches
cycled and did not terminate in a fixed point. The search produced 3744 unique stable
bimodules; the effective number of bimodules was 3304. We applied the filtering procedure
described in Section 2.6 to select a subfamily of 3304 bimodules that were substantially
disjoint.

We also performed standard cis- and trans-eQTL analysis on the thyroid eQTL data
using MatrixEQTL (Shabalin, 2012), and applied CONDOR (Platig et al., 2016) and sCCA
(Witten et al., 2009) to produce bimodules. CONDOR produced six bimodules in total,
while sCCA was tasked with identifying 50 bimodules. Figure 3 shows the sizes of the
bimodules identified by the various methods. All bimodules identified by sCCA were very
large, making them difficult to analyze and interpret. The identified bimodules also ex-
hibited moderate overlap (the effective number was 25). As such, we excluded the sCCA
bimodules from subsequent comparisons. Analysis of sCCA on the simulated data suggests
that the method may be able to recover smaller bimodules with a more tailored choice of
its parameters, but we did not pursue this here.
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Figure 3: The sizes of bimodules detected by
BSP, CONDOR and sCCA, and sizes
of bimodules detected by BSP under
the 5 permuted datasets.

Figure 4: BSP is able to detect weak sig-
nals. Correlations corresponding to
SNP-gene pairs that appear as es-
sential edges (Section 2.7) in one or
more BSP bimodules with mean size
(


|A||B|) above 10. Local pairs to
the left of the blue line (cis-analysis
threshold) and distal pairs to the
left red line (trans-analysis thresh-
old) show importance at the net-
work level but were not discovered
by standard eQTL analyses.

4.4 Quantitative Validation

In this subsection, we apply several objective measures to validate and understand the
bimodules found by BSP and CONDOR.

4.4.1 Permuted Data

In order to assess the propensity of each method to detect spurious bimodules, we applied
BSP and CONDOR to five data sets obtained by jointly permuting the sample labels for
the expression measurements and most covariates (all except the five genotype PCs), while
keeping the labels for genotype measurements and genotype covariates unchanged. Each
data set obtained in this way is a realization of the permutation null from Definition 1.
BSP found very few (5-12) bimodules in the permuted datasets compared to the real data
(3344). CONDOR found no bimodules in any of the permuted datasets.

4.4.2 Bimodule Sizes

Most (89%) of the bimodules found by BSP have fewer than 4 genes and 50 SNPs, but
BSP also identified moderately sized bimodules having 10-100 genes and 30-1000 SNPs (see
Figure 3). The bimodules found by CONDOR were moderately sized, with 10-100 genes
and several hundred SNPs, except for one smaller bimodule with 5 genes and 43 SNPs. On
the permuted data, most bimodules found by BSP have fewer than 2 genes and 2 SNPs.
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4.4.3 Connectivity Threshold and Network Sparsity

Stable bimodules capture aggregate association between groups of SNPs and genes. In
some cases one may wish to identify individual SNP-gene associations of interest within
discovered bimodules. A natural starting point for this is the network of essential edges of
the bimodule, defined in Section 2.7. To better understand the structure of this network of
essential edges, we calculate the tree-multiplicity

TreeMul(A,B)
.
=

|essential-edges(A,B)|
|A|+ |B|− 1

, (9)

which measures the number of essential edges relative to the number of edges in a tree on
the same vertex set. TreeMul(A,B) is never less than 1, and takes the value 1 exactly when
the essential edges form a tree.

For bimodules found by BSP, the connectivity thresholds ranged from 0.14 to 0.59, and
tree-multiplicities ranged from 1 to 10 (see Figure 9 in Appendix C). Smaller bimodules had
larger connectivity thresholds and smaller tree multiplicities. As such, these bimodules had
tree-like essential edge networks comprised of strong (and typically local) SNP-gene associa-
tions. Larger bimodules had lower connectivity thresholds and larger tree multiplicities. As
such, these bimodules had more redundant essential edge networks comprised of weaker (and
often distal) SNP-gene associations. While the essential edge networks for larger bimodules
had tree-multiplicities around 10, these networks were still sparsely connected compared to
the complete bipartite graph on the same nodes.

4.5 Biological Validation

In order to assess the potential biological utility of bimodules found by BSP, we compared
the SNP-gene pairs in bimodules to those found by standard cis- and trans-eQTL analyses.
In addition, we studied the locations of the SNPs, and examined the gene sets for enrichment
of known functional categories.

4.5.1 Comparison With Standard eQTL Analysis

As described earlier, the bimodules produced by CONDOR are derived in a direct way
from SNP-gene pairs identified by cis- and trans-eQTL analyses. Table 1 compares the
eQTL pairs identified by standard analyses with those found in bimodules identified by
BSP. Recall that cis-eQTL analysis considers only local SNP-gene pairs, which improves
detection power by reducing multiple testing, while trans-eQTL analysis and BSP do not
use any information about the absolute or relative genomic locations of the SNPs and genes.
We find that half of the pairs identified by cis-eQTL analysis and most of the pairs identified
by trans-eQTL analysis appear in at least one bimodule.

Bimodules capture subnetworks of SNP-gene associations rather than individual eQTLs,
and as such all SNP-gene pairs in a bimodule need not be eQTLs. In fact, as noted above, the
detected networks underlying large bimodules are typically sparse relative to the complete
network on the genes and SNPs of the bimodule. A bimodule (A,B) is connected by a set of
eQTLs if the bipartite graph with vertex set A∪B and edges restricted to the set of eQTLs is
connected. As shown in Table 1, a substantial fraction of BSP bimodules are not connected
by SNP-gene pairs obtained by cis-eQTL or trans-eQTL analyses. The discovery of such
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Analysis type % eQTLs found among bimodules % bimodules connected by eQTLs

trans-eQTL analysis 84% 70%
cis-eQTL analysis 51% 88%

Table 1: Comparison of BSP and standard eQTL analyses. A gene-SNP pair is said to be
found among a collection bimodules if the gene and SNP are both part of some
common bimodule. On the other hand, we say that a bimodule is connected by a
collection of eQTLs if the bimodule forms a connected graph when the gene-SNP
pairs from the collection are treated as edges.

bimodules suggests that the subnetworks identified by BSP cannot be found by simple post-
processing of results from standard eQTL analyses. Hence, the subnetworks identified by
BSP may provide new insights and hypotheses for further study.

To identify potentially new eQTLs using BSP, we examine bimodule connectivity under
the combined set of cis- and trans-eQTLs. All of the bimodules with one SNP or one gene
are connected by the combined set of eQTLs, and therefore all edges in these singleton
bimodules are discovered by standard analyses. On the other hand, 224 out of the 358
bimodules with mean size (


|A||B|) larger than 10 were not connected by the combined

set of eQTLs. In Figure 4, we plot the correlations corresponding to SNP-gene pairs that
appear as essential edges in one or more bimodules with mean size above 10, along with the
correlation thresholds for cis-eQTL (blue line) and trans-eQTL (red line) analyses. Around
300 local edges (i.e. the SNP is located within 1MB of the gene transcription start site) and
8.8K distal edges do not meet the correlation thresholds for cis- and trans-eQTL analysis,
respectively, but show evidence of importance at the network level, and may be worthy of
further study.

4.5.2 Genomic Locations

We studied the chromosomal location and proximity of SNPs and genes from bimodules
found by BSP and CONDOR. While CONDOR uses genomic locations as part of the cis-
eQTL analysis in its first stage, BSP does not make use of location information. Genetic
control of expression is often enriched in a region local to the gene (GTEx Consortium,
2017). All CONDOR bimodules, and almost all (99.3%) BSP bimodules, have at least one
local SNP-gene pair, i.e. the SNP is located within 1MB of the gene transcription start
site. In 94% of smaller BSP bimodules (


|A||B| ≤ 10) and 55% of medium to large BSP

bimodules (


|A||B| > 10) each gene and each SNP had a local counterpart SNP or gene
within the bimodule.

For each bimodule, we examined the chromosomal locations of its SNPs and genes. All
SNPs and many of the genes from the six CONDOR bimodules were located on Chromosome
6; two CONDOR bimodules also had genes located on Chromosome 8 and Chromosome 9.
The SNPs and genes from the BSP bimodules were distributed across all 23 chromosomes:
170 of the 2947 small bimodules spanned 2 to 5 chromosomes and 152 of the 358 medium
to large bimodules spanned 2 to 11 chromosomes; the remaining bimodules were localized
to a single chromosome, which varied from bimodule to bimodule.
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Figure 5: Two examples of SNP-gene essential edge networks from bimodules discovered
by BSP, mapped onto the genome. The edges in these networks were obtained
by thresholding the cross-correlation matrix for the bimodule at the connectivity
threshold (Section 2.7). Comparing such networks to known gene regulatory
networks may aid in identifying new SNP-gene interactions.

Figure 5 illustrates the genomic locations of two bimodules found by BSP, with SNP
location on the left and gene location on the right (only active chromosomes are shown).
In addition, the figure illustrates the essential edges (Section 2.7) of each bimodule. The
resulting bipartite graph provides insight into the underlying associations between SNPs
and genes that constitute the bimodule. Additional examples can be found in Appendix C.

4.5.3 Gene Ontology Enrichment for Bimodules

The Gene Ontology (GO) database contains a curated collection of gene sets that are
known to be associated with different biological functions (Gene Ontology Consortium, 2015;
Ashburner et al., 2000; Rhee et al., 2008). We used the topGO (Alexa and Rahnenfuhrer,
2023) package to assess, via multiple Fisher’s tests, which sets in the GO database are
enriched within a given gene set when compared to the set of all expressed genes. For each
of the 145 BSP bimodules having a gene set B with 8 or more elements, we used topGO to
assess the enrichment of B in 6463 GO gene sets of size more than 10, representing biological
processes. We retained results with significant BH q-values (α = .05). Of the 145 gene sets
considered, 18 had significant overlap with one or more biological processes. Repeating this
with randomly chosen gene sets of the same size yielded no results. The table of significant
GO terms for BSP and CONDOR is summarized in Appendix C.
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5. Discussion

The Bimodule Search Procedure (BSP) is an exploratory tool that searches for pairs of fea-
ture sets with significant aggregate cross-correlation, which we refer to as bimodules. Rather
than relying on an underlying generative model, BSP makes use of iterative hypothesis-
testing to identify bimodules satisfying a natural stability condition. The false discovery
threshold α ∈ (0, 1) is the only free parameter of the procedure. Efficient approximation of
the p-values used for iterative testing allow BSP to run on large datasets.

Using a complex, network-based simulation study, we found that BSP was able to re-
cover most target bimodules with significant cross-correlation strength, while simultaneously
controlling the false discovery of edges having network-level importance. Among target bi-
modules with moderate cross-correlation strength, BSP required the bimodules with higher
intra-correlations to demonstrate higher cross-correlation strength in order to be recovered.

When applied to eQTL data, BSP bimodules identified both local and distal effects,
capturing half of the eQTLs found by standard cis-analysis and most of the eQTLs found
by standard trans-analysis. Further, a substantial proportion of bimodules contained SNP-
gene pairs that were important at the network level within the BSP bimodules but not
deemed significant under the standard (pairwise) eQTL-analyses.

At root, the discovery of bimodules by BSP and CONDOR is driven by the presence
or absence of correlations between features of different types. A key issue for these, and
related, methods is how they behave with increasing sample size. In general, increasing
sample size will yield greater power to detect cross-correlations, and therefore one expects
the sizes of bimodule to increase. While this is often a desirable outcome, in applications
where non-zero cross-correlations (possibly of small size) are the norm, this increased power
may yield very large bimodules with little interpretive value. Evidence of this phenomenon
is found in the simulation study where, due to the presence of confounding edges between
target bimodules, increasing the sample size from n = 200 to n = 600 yields larger BSP
bimodules, which often contain multiple target bimodules (Appendix B.3). This may well
reflect the underlying biology of genetic regulation: the omnigenic hypothesis of Boyle et al.
(2017) suggests that a substantial portion of the gene-SNP cross-correlation network might
be connected at the population level.

An obvious way to address “super connectivity” of the cross-correlation network is to
change the definition of bimodule to account for the magnitude of cross-correlations, rather
than their mere presence or absence. Incorporating a more stringent definition of connec-
tivity in BSP would require modifying the permutation null distribution and addressing
the theory and computation behind such a modification, both of which are areas of future
research.

SUPPLEMENTARY MATERIAL

Appendix: The appendix section below contains further details on BSP implementation
(Section A), the simulation study (Section B), and eQTL analysis (Section C). We
also provide a climate science application of BSP for discovering temperature and
precipitation correlations in North America (Section D).

BSP R package: https://github.com/miheerdew/cbce
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Appendix A. BSP implementation details

A.1 Dealing With Cycles and Large Sets

In practice, we do not want the sizes of the sets (Ak, Bk) in the iteration to grow too large
as this slows computation, and large bimodules are difficult to interpret. Therefore, the
search procedure is terminated when the geometric size of (Ak, Bk) exceeds 5000. In some
cases, the sequence of iterates (Ak, Bk) for k ∈ {1, . . . , kmax} will form a cycle of length
greater than 1, and will therefore fail to reach a fixed point. To search for a nearby fixed
point instead, when we encounter the cycle (Ak, Bk) = (Al, Bl) for some l < k − 1, we set
(Al+1, Bl+1) to (Ak ∩Ak−1, Bk ∩Bk−1) and continue the iteration.

A.2 Initialization Heuristics for BSP

In practice, BSP is initialized with each singleton pair ({s}, ∅) for s ∈ S, and each singleton
pair (∅, {t}) for t ∈ T . When either of the sets S or T is large, we use additional strategies
to speed up computation. When |S| ≫ |T |, we initialize BSP from all the features in T ,
but only from a subset of randomly chosen features in S.

BSP sometimes discovers identical or almost identical bimodules when starting from
different initializations, often from features within the said bimodule. This problem is
particularly prominent for large bimodules which may be rediscovered by thousands of
initializations. Hence, to avoid some of this redundant computation, we provide an option
to skip initializing BSP from features in the bimodules that have already been discovered.
This option was not however used for the examples in this paper.

A.3 Covariate Correction

In some cases the data matrices [X,Y] ∈ Rn×(p+q) are accompanied by one or more covariates
like sex, platform details and PEER factors that must be accounted for by removing their
effects before discovering bimodules. Suppose we are given m such linearly independent
covariates v1, . . . , vm ∈ Rn. Here we describe how to modify BSP to remove their effects.
First, we residualize each column of the original data [X,Y] by setting up a linear model with
explanatory variables v1, . . . , vm. Denote the resulting matrix by [X′,Y′] ∈ Rn×(p+q) that has
columns which are projections of those of [X,Y] onto the subspace orthogonal to v1, . . . vm.
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Figure 6: Assessing the accuracy of our p-value estimate p̂(A, t): We used the eQTL data
from Section 4 and chose a bimodule with 24 SNPs (used as A) and selected t to
be a gene from the same bimodule. We then performed 105 random permutation
of the sample labels for the gene t and repeatedly estimated p̂(A, t) for each
permutation after removing the effects of covariates (Appendix A.3).

We would like to now run BSP on [X′,Y′], however since the columns of D′ = [X′,Y′] lie
on an n′ = n −m′ dimensional subspace, the permutation p-values (Section 2.2) based on
data D′ will tend to be significant even if X and Y were generated independently. However,
following Zhou et al. (2013), the p-value approximation can be corrected by replacing the
sample size n with the effective sample size of n′ in the moment calculations.

A.4 Uniformity of Our P-Value Estimates

For a quick check of the uniformity of our p-value approximation under the permutation null,
we chose a bimodule (A,B) found in Section 4 and a t ∈ B. Then we randomly permuted
the labels of gene t (105 times), computing our estimate p̂(A, t) of the permutation p-value
p(A, t) (Section 2.2) in each case. Hence we are assessing the uniformity of p̂(A, t) under
the permutation null distribution. The result in Figure 6 shows that the computed p-
values are almost uniform but extremely small p-values show anti-conservative behavior. A
potential reason for this anti-conservative behavior is that the tails of test statistic under
the permutation distribution may be heavier compared to the tails of the location-shifted
Gamma distribution that we use to approximate it, since the permutation distribution is a
discrete distribution which explicitly depends on the exact entries of the data matrices.
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Appendix B. Simulation Details

B.1 Theory to Justify Simulation Parameter Choice

Lemma 5 Fix ρ, η ∈ [0, 1], a, b ∈ N, and d ∈ {1, 2 . . . a} so that δ
.
= 1 + ρ(d − 1) ≥ η2d.

Suppose X is an a-dimensional random column vector with covariance matrix Cov(X) =
ρUa + (1 − ρ)Ia, where Ua ∈ Ra×a is the matrix of all ones and Ia ∈ Ra×a is the identity
matrix. Next suppose D is a {0, 1} valued a× b dimensional matrix that has exactly d ones
in each column. Finally, let σ =


δ(δ − η2d)/η and suppose the b-dimensional random

column vector Y is given by
Y = DtX+ 

where  is another b-dimensional random vector independent of X with Cov() = σ2Ib.
Then

Cor(X,Y)⊙D = ηD (10)

where Cor(X,Y) ∈ Ra×b is the cross-correlation matrix between random vectors X and Y,
and ⊙ represents the element-wise product of matrices (i.e., the Hadamard product).

Proof Since we are concerned with covariances, we can assume by mean centering that
EX = 0 ∈ Ra and EY = E = 0 ∈ Rb. Note that Dtea = deb and Ua = eae

t
a, where

er
.
= (1, . . . , 1)t ∈ Rr for r ∈ {a, b} is the r-dimensional vector with all entries equal to one.

Using independence of X and :

Cov(Y) = E(YYt) = DtE(XXt)D +E(t)

= DtCov(X)D +Cov() = Dt(ρeae
t
a + (1− ρ)Ia)D + σ2Ib

= ρ(Dtea)(D
tea)

t + (1− ρ)DtD + σ2Ib

= ρd2ebe
t
b + (1− ρ)DtD + σ2Ib.

Since all the diagonal entries of DtD have the value d,

diag[Cov(Y)] = (ρd2 + (1− ρ)d+ σ2)Ib = (dδ + σ2)Ib =


δ

η

2

Ib (11)

where for any square matrix A, diag[A] denotes the diagonal matrix obtained from A by
setting all the off-diagonal entries of A to 0.

We can similarly calculate the cross-covariance between X and Y

Cov(X,Y) = E(XYt) = E(XXt)D = (ρeae
t
a + (1− ρ)Ia)D

= ρdeae
t
b + (1− ρ)D.

(12)

Thus, using (11), (12), and diag[Cov(X)] = Ia, the cross-correlation between X and Y is
equal to:

Cor(X,Y) = diag[Cov(X)]−
1
2 Cov(X,Y) diag[Cov(Y)]−

1
2

=
η

δ


ρdeae

t
b + (1− ρ)D


=

η

δ


ρdD̄ + (1− ρ+ ρd)D



= ηD + ηρdδ−1D̄.

where D̄
.
= eae

t
b −D is the complement of D, i.e. Dij = 1− D̄ij for i, j. In particular this

shows (10).
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B.2 Running BSP and Related Methods

We applied BSP to the simulated data using the false discovery parameter α = 0.02, which
was selected to keep the edge-error estimates under 0.05 (see Section 2.8). This tuning
procedure is purely based on the observed data, and does not use any knowledge of the
ground truth. The search was initialized from singletons consisting of all the features in
T ∪ S. In what follows, feature set pairs identified by BSP (or some other method, when
clear from context) will be referred to as detected bimodules. BSP detected 708 unique
bimodules while the effective number (see Section 2.6) of detected bimodules was 644.87.

To obtain bimodules via CONDOR (Platig et al., 2016), we first applied MatrixEQTL
(Shabalin, 2012) to the simulated dataset with S considered as the set of SNPs and T
considered as the set of genes, to extract feature pairs (s, t) ∈ S × T with q-value less than
0.05. Next, we formed a bipartite graph on the vertex set S∪T with edges given by 436,616
significant feature pairs found by MatrixEQTL. The largest connected component of this
graph, made up of 48,455 features from S and 11,045 features from T , was passed through
a bipartite community detection software (Platig, 2016) which partitioned the nodes of the
subgraph into 178 bimodules.

We applied the sCCA method of Witten et al. (2009) to the simulated data to find 100
bimodules. More precisely, for various penalty parameters λ ∈ [0, 1], we ran sCCA (Witten
et al., 2020) to find 100 canonical covariate pairs with the ℓ1 norm constraint of λ

√
p and

λ
√
q on the coefficients of the linear combinations corresponding to S and T respectively.

Initially, we considered λ = 0.1, chosen by the permutation based procedure provided with
the software. However, the resulting bimodules were very large and had high edge-error
(further details are provided in Section B.2.2). Based on a rough grid search, we then ran
the procedure with each value λ ∈ {.01, .02, .03, .04} to obtain smaller bimodules.

B.2.1 Comparing Performance of the Methods

In the simulation study described above, we measure the recovery of a target bimodule
(At, Bt) by a detected bimodule (Ad, Bd) using the two metrics:

recall =
|At ∩Ad||Bt ∩Bd|

|At||Bt|
and Jaccard =

|At ∩Ad||Bt ∩Bd|
|(At ×Bt) ∪ (Ad ×Bd)|

.

Recall captures how well the target bimodule is contained inside the detected bimodule,
while Jaccard measures how well the two bimodules match. When assessing the recovery
of a target bimodule under a collection of detected bimodules (like the output of BSP),
we choose the detected bimodule with the best recall or Jaccard, depending on the metric
under consideration.

As shown in Figure 2, the BSP Jaccard for target bimodules was influenced primarily by

the cross-correlation strength


r2(A,B)
|A||B| of the target bimodule, though the intra-correlation

parameter ρ used in the simulation (7) was also seen to have an effect (Figure 2, left). Most
bimodules with cross-correlation strength above 0.4 were completely recovered, while those
with strength below 0.2 were not recovered. For strengths between 0.2 to 0.4, there was a
variation in Jaccard, with smaller Jaccard for bimodules having larger values of ρ (Figure 2,
left). The effect of ρ on Jaccard was expected since BSP accounts for the intra-correlation
among features of the same type.
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The intra-correlation parameter ρ did not have significant effect on CONDOR Jaccard,
since the method does not account for intra-correlations. Hence, here we only consider the
effects of the cross-correlation strength of target bimodules on CONDOR Jaccard (Figure
2, right). Regardless of the cross-correlation strength, CONDOR Jaccard remained low.
This was because CONDOR bimodules often overlapped with multiple target bimodules;
indeed, 155 of the 178 CONDOR bimodules overlapped with two or more (up to 14) target
bimodules, compared with only 58 of the 708 BSP bimodules. However, the results for
CONDOR recall (Figure 2, right) show that most target bimodules with significant cross-
correlation strengths were contained inside some CONDOR bimodule.

To assess the false discoveries in detected bimodules, we measured the edge-error of
detected bimodules. The edge-error is the fraction of the essential-edges (Definition 4) of a
detected bimodule that are not part of the simulation model, that is, edges not contained
in any target bimodule and not in the set of bridge edges. The average edge-error for BSP
bimodules was 0.041, and 90% of the detected bimodules had edge-error under 0.11. In
contrast, the average edge-error for CONDOR bimodules was 0.09, and 90% of the detected
bimodules had edge-error under 0.20. The larger edge-error among CONDOR bimodules
may have arisen because the method does not account for intra-correlations.

Concerning sCCA, the sizes of the detected bimodules were at least an order of magni-
tude larger than sizes of the target bimodules when λ exceeded 0.04 (see Figure 7 in Section
B.2.2). Thus we only considered λ ≤ 0.04. For λ = 0.02, 0.03, and 0.04, the detected
bimodules had large edge-error (average error 0.47, 0.76 and 0.89, respectively), while for
λ = 0.01 the target bimodules had poor recall (99% of the target bimodules had recall below
0.1). Further details of these results are given in Section B.2.2.

A potential shortcoming of our application of sCCA was that we chose the same penalty
parameter λ for each of the 100 bimodules. We expect that the results of sCCA would
improve if one chose a different penalty parameter for each bimodule. However, Witten
et al. (2009) does not provide explicit guidelines to choose different penalty parameters for
each component (bimodule), and directly doing a permutation-based grid search each time
would be exceedingly slow.

B.2.2 Results From sCCA

As described earlier, we ran sCCA on the simulated data to search for 100 canonical co-
variates for a range of values of the penalty parameter λ. The sizes of the bimodules for
various values of λ can be seen in Figure 7. For λ ∈ {0.01, 0.02, 0.03, 0.04, 0.1}, the first two
columns of the following table show the number of target bimodules (TB) that overlapped
with each detected bimodule (DB) and the edge-error of each DB, both averaged over all
DBs. The last column shows the top 1 (or bottom 99) percentile recall among the target
bimodules.

λ # TBs that overlap with each DB edge-error recall of TB (99%-tile)

.01 .93 0.24 0.1

.02 1.04 0.47 0.98

.03 5.69 0.76 1

.04 24.88 0.89 1
.1 156.28 0.94 1
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Figure 7: The sizes of sCCA bimodules for various values of the penalty parameter λ, along
with sizes of the target bimodules in gray.

The parameter value λ = 0.01 has small edge-error, but poor recall. The recall improves
on increasing λ, but the edge-error degrades.

B.3 Performance of BSP and CONDOR on Increasing Sample Size

We also increased that sample size of our simulation study to n = 600, and re-ran BSP
and CONDOR with the same parameters as earlier. The average edge-error for BSP and
CONDOR was 0.05 and 0.10 respectively. As seen in Figure 8, based on recall, BSP and
CONDOR both recover most bimodules with cross-correlation strength above 0.3, however
Jaccard for BSP and CONDOR has degraded. This can be explained by noting that 25% of
BSP bimodules now overlapped with two or more target bimodules compared to 8% when
n = 200.

Appendix C. GTEx Results

C.1 Data Acquisition and Preprocessing

We obtained genotype and thyroid expression data for 574 individuals from the dbGap
website (accession number: phs000424.v8.p1). We directly used the filtered and normalized
gene expression data and covariates provided for eQTL analysis but filtered the SNPs in the
genotype data using the LD pruning software SNPRelate (Zheng et al., 2012). The software
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Figure 8: Average recall and Jaccard for target bimodules in the simulation with 600 sam-
ples.

retained 556K autosomal SNPs with minor allele frequency above 0.1 such that all pairs of
SNPs within each 500KB window of the genome had squared correlation under (0.7)2. The
latter threshold was chosen to balance the number of retained SNPs and information loss.
As SNPs exhibit local correlation due to linkage disequilibrium (LD), the selection process
should not reduce the statistical power of BSP.

There were 68 covariates provided for the Thyroid tissue consisting of the top 5 genotype
principal components; 60 PEER covariates, and 3 additional covariates for sequencing plat-
form, sequencing protocol, and sex. We accounted for these covariates by the modification
to BSP mentioned in Appendix A.3.

C.2 Running BSP

We applied BSP to the thyroid eQTL data with false discovery parameter α = 0.03 selected
to keep the edge-error estimates under 0.05. The search was initialized from singleton sets
of all genes and half of the available SNPs, chosen at random. Thus the search procedure in
Section 2.4 was run p/2 + q ∼ 304K times. BSP took 4.7 hours to run on a computer with
a 20-core 2.4 GHz processor (further processor details are provided in Appendix C.5). The
search identified 3744 unique bimodules with p-values below the significance threshold of
α
pq = 3.45× 10−12 (see Section 2.4). The majority (277K) of the searches terminated in the
empty set after the first step; of the remaining 27K searches, the great majority identified
a non-empty fixed point within 20 steps. Only 20 searches cycled and did not terminate in
a fixed point. Among the searches taking more than one iteration, 94% terminated by the
fifth step. Among searches that found a non-empty fixed point, 92.3% of the fixed points
contained the seed singleton set of the search.
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The effective number (see Section 2.6) of bimodules was 3304, slightly smaller than the
number of unique bimodules. We applied the filtering procedure described in Section 2.6
to select from the unique bimodules a subfamily of 3304 bimodules that were substantially
disjoint. The selected bimodules had SNP sets ranging in size from 1 to 1000, and gene sets
ranging in size from 1 to 100 (Figure 3); the median size of the gene and SNP sets was 1
and 7, respectively.

If required, BSP can be run in a faster (less exhaustive) or slower (more exhaustive)
fashion by selecting a smaller or larger fraction of SNPs from which to initialize the search
procedure. The effective number of discovered bimodules was only slightly smaller (3258)
when initializing with 10% of the SNPs.

C.3 Running Other Methods

Standard eQTL analysis was performed by applying Matrix-eQTL (Shabalin, 2012) twice to
the data, first to perform a cis-eQTL analysis within a distance of 1MB and next to perform
a trans-eQTL analysis. In each case, SNP-gene pairs with BH q-value less than 0.05 were
identified as significant. Matrix-eQTL identified 186K cis-eQTLs and 73K trans-eQTLs.

To obtain CONDOR bimodules (Platig et al., 2016), we applied Matrix-eQTL to identify
both cis- and trans-eQTLs with BH q-value under the threshold .2, chosen as in Fagny et al.
(2017). The resulting gene-SNP bipartite graph formed by these eQTLs was passed through
CONDOR’s bipartite community detection pipeline (Platig et al., 2016), which partitioned
the nodes of the largest connected component of this graph into 6 bimodules.

We also applied the sCCA method of Witten et al. (2009) using the permutation based
parameter selection procedure (Witten et al., 2020) on the covariate-corrected genotype
and expression matrices to identify 50 bimodules. The identified bimodules were large,
containing roughly 100K SNPs and 4K-8K genes (Figure 3), making them difficult to analyze
and interpret. The identified bimodules also exhibited moderate overlap: the effective
number was 25. As such, we excluded the sCCA bimodules from subsequent comparisons.
Analysis of sCCA on the simulated data (Section B.2.1) suggests that the method may be
able to recover smaller bimodules with a more tailored choice of its parameters.

C.4 Choice of BSP parameter α

We chose the false discover parameter α for BSP from the grid {0.01, 0.02, 0.03, 0.04, 0.05}
by finding the largest α that kept the average edge-error estimates based on N = 5 half-
permutations under 0.05 (Section 2.8). However our error estimates were variable as we
obtained α = 0.05 in one instance and α = 0.03 in another. We conservatively chose
α = 0.03.

C.5 Hardware and Software Stack

The various methods used is this analysis were run on a dedicated computer that had Intel
(R) Xeon (R) E5-2640 CPU with 20 parallel cores at 2.50 Hz base frequency, and a 512
GB random access memory along with L1, L2 and L3 caches of sizes 1.3, 5 and 50 MB
respectively. The computer ran Windows server 2012 R2 operating system and we used the
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Figure 9: Connectivity-threshold and tree-multiplicity for BSP bimodules compared to their
geometric size. The horizontal dotted line represents the threshold obtained from
standard trans-analysis.

Microsoft R Open 3.5.3 software to perform most of our analysis, since it has multi-core
implementations of linear algebra routines.

C.6 Bimodule Connectivity Thresholds and Network Sparsity

Figure 9 shows two network statistics for bimodules found by BSP: connectivity threshold
and tree-multiplicity. All bimodules have tree multiplicity under 10. This shows that the
association network for large bimodules, particularly having low connectivity-thresholds, is
sparse.

C.7 Connectivity of Bimodules Under Edges From Combined eQTL Analysis

Here we examine which bimodules are connected under the combined edges from cis-eQTL
and trans-eQTL analysis, based on geometric-mean size of the bimodule. Figure 10 (left)
shows that all the bimodules that have either one gene or one SNP are connected. Hence,
these bimodules could have been recovered using standard eQTL analysis. On the other
hand if we restrict to bimodules with two or more genes and SNPs, we see that (Figure 10;
right) the fraction of connected bimodules tends to decrease as the geometric-mean size of
the bimodules increases.

C.8 Bimodule Association Networks

See the plots in Figure 11.
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Figure 10: Connectivity of BSP bimodules under combined edges from cis-eQTL and trans-
eQTL analysis. Left: the number of bimodules that are connected and are one
bimodules (i.e. have one gene or one SNP). Right: Among bimodules having two
or more genes and SNPs (i.e. are not one bimodules), the geometric-mean size
of the bimodules and their connectivity based on eQTLs from standard analysis.

C.9 Gene Ontology

Among the gene sets that we considered with 8 or more genes, 18 out of the 145 BSP gene
sets, and 1 out of the 5 CONDOR gene sets had significant overlap with GO categories.
Among the 40 GO terms detected by CONDOR, 27 terms were also found among the
135 terms detected by BSP. The complete list of the GO terms for the two methods now
follows. We indicate statistical significance using * based on adjusted p-values. Notably, *
is 10−2—10−3, ** is 10−3—10−5, *** is 10−5—10−10, and **** is < 10−10.

Significant GO terms for BSP:

Signifier GO.ID Term Bimodule

**** GO:0060333 interferon-gamma-mediated signaling path... 1
**** GO:0002478 antigen processing and presentation of e... 1
**** GO:0019884 antigen processing and presentation of e... 1
**** GO:0048002 antigen processing and presentation of p... 1
*** GO:0019882 antigen processing and presentation 1
*** GO:0071346 cellular response to interferon-gamma 1
*** GO:0034341 response to interferon-gamma 1
*** GO:0019886 antigen processing and presentation of e... 1
*** GO:0002495 antigen processing and presentation of p... 1
*** GO:0002504 antigen processing and presentation of p... 1
** GO:0045087 innate immune response 1
** GO:0050776 regulation of immune response 1
** GO:0006952 defense response 1
** GO:0031295 T cell costimulation 1
** GO:0031294 lymphocyte costimulation 1
* GO:0050852 T cell receptor signaling pathway 1
* GO:0002768 immune response-regulating cell surface ... 1
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* GO:0002764 immune response-regulating signaling pat... 1
* GO:0050851 antigen receptor-mediated signaling path... 1
* GO:0002682 regulation of immune system process 1
* GO:0022409 positive regulation of cell-cell adhesio... 1
* GO:0002253 activation of immune response 1
* GO:0002429 immune response-activating cell surface ... 1

GO:0006950 response to stress 1
GO:0006955 immune response 1
GO:0019221 cytokine-mediated signaling pathway 1
GO:0002757 immune response-activating signal transd... 1
GO:0050870 positive regulation of T cell activation 1
GO:0002479 antigen processing and presentation of e... 1
GO:1903039 positive regulation of leukocyte cell-ce... 1
GO:0042590 antigen processing and presentation of e... 1
GO:0045806 negative regulation of endocytosis 8

** GO:0050911 detection of chemical stimulus involved ... 11
** GO:0007608 sensory perception of smell 11
** GO:0050907 detection of chemical stimulus involved ... 11
* GO:0009593 detection of chemical stimulus 11
* GO:0007606 sensory perception of chemical stimulus 11
* GO:0035459 cargo loading into vesicle 11
* GO:0050906 detection of stimulus involved in sensor... 11

GO:0000038 very long-chain fatty acid metabolic pro... 14
GO:0006732 coenzyme metabolic process 14
GO:0006417 regulation of translation 33
GO:0034248 regulation of cellular amide metabolic p... 33
GO:0010608 posttranscriptional regulation of gene e... 33

*** GO:0046597 negative regulation of viral entry into ... 55
** GO:0035455 response to interferon-alpha 55
** GO:0035456 response to interferon-beta 55
** GO:0046596 regulation of viral entry into host cell 55
** GO:0045071 negative regulation of viral genome repl... 55
** GO:1903901 negative regulation of viral life cycle 55
** GO:0060337 type I interferon signaling pathway 55
** GO:0071357 cellular response to type I interferon 55
** GO:0034340 response to type I interferon 55
* GO:0045069 regulation of viral genome replication 55
* GO:0048525 negative regulation of viral process 55
* GO:0019079 viral genome replication 55
* GO:0046718 viral entry into host cell 55
* GO:1903900 regulation of viral life cycle 55
* GO:0030260 entry into host cell 55
* GO:0044409 entry into host 55
* GO:0051806 entry into cell of other organism involv... 55
* GO:0051828 entry into other organism involved in sy... 55
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* GO:0043901 negative regulation of multi-organism pr... 55
GO:0034341 response to interferon-gamma 55
GO:0050792 regulation of viral process 55
GO:0051607 defense response to virus 55
GO:0051701 interaction with host 55
GO:0043903 regulation of symbiosis, encompassing mu... 55
GO:0009615 response to virus 55

*** GO:0051225 spindle assembly 68
*** GO:0007030 Golgi organization 68
*** GO:0007051 spindle organization 68
** GO:0010256 endomembrane system organization 68
** GO:0000226 microtubule cytoskeleton organization 68
* GO:0007017 microtubule-based process 68
* GO:0070925 organelle assembly 68

GO:0007010 cytoskeleton organization 68
**** GO:0007156 homophilic cell adhesion via plasma memb... 70
**** GO:0098742 cell-cell adhesion via plasma-membrane a... 70
*** GO:0098609 cell-cell adhesion 70
** GO:0007155 cell adhesion 70
** GO:0022610 biological adhesion 70
* GO:0007416 synapse assembly 70
* GO:0007267 cell-cell signaling 70
* GO:0006355 regulation of transcription, DNA-templat... 71
* GO:1903506 regulation of nucleic acid-templated tra... 71
* GO:2001141 regulation of RNA biosynthetic process 71
* GO:0006351 transcription, DNA-templated 71
* GO:0097659 nucleic acid-templated transcription 71
* GO:0032774 RNA biosynthetic process 71
* GO:0051252 regulation of RNA metabolic process 71
* GO:2000112 regulation of cellular macromolecule bio... 71
* GO:0010556 regulation of macromolecule biosynthetic... 71
* GO:0019219 regulation of nucleobase-containing comp... 71
* GO:0031326 regulation of cellular biosynthetic proc... 71
* GO:0034654 nucleobase-containing compound biosynthe... 71

GO:0009889 regulation of biosynthetic process 71
GO:0018130 heterocycle biosynthetic process 71
GO:0019438 aromatic compound biosynthetic process 71
GO:0010468 regulation of gene expression 71
GO:1901362 organic cyclic compound biosynthetic pro... 71
GO:0016070 RNA metabolic process 71

**** GO:0001580 detection of chemical stimulus involved ... 74
**** GO:0050912 detection of chemical stimulus involved ... 74
**** GO:0050913 sensory perception of bitter taste 74
**** GO:0050909 sensory perception of taste 74
**** GO:0050907 detection of chemical stimulus involved ... 74
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**** GO:0009593 detection of chemical stimulus 74
**** GO:0007606 sensory perception of chemical stimulus 74
**** GO:0050906 detection of stimulus involved in sensor... 74
*** GO:0007600 sensory perception 74
*** GO:0051606 detection of stimulus 74
*** GO:0050877 nervous system process 74
** GO:0003008 system process 74
** GO:0007186 G-protein coupled receptor signaling pat... 74
* GO:0006355 regulation of transcription, DNA-templat... 84
* GO:1903506 regulation of nucleic acid-templated tra... 84
* GO:2001141 regulation of RNA biosynthetic process 84
* GO:0006351 transcription, DNA-templated 84
* GO:0097659 nucleic acid-templated transcription 84
* GO:0032774 RNA biosynthetic process 84
* GO:0051252 regulation of RNA metabolic process 84
* GO:2000112 regulation of cellular macromolecule bio... 84
* GO:0010556 regulation of macromolecule biosynthetic... 84
* GO:0019219 regulation of nucleobase-containing comp... 84
* GO:0031326 regulation of cellular biosynthetic proc... 84
* GO:0034654 nucleobase-containing compound biosynthe... 84

GO:0009889 regulation of biosynthetic process 84
GO:0018130 heterocycle biosynthetic process 84
GO:0019438 aromatic compound biosynthetic process 84
GO:0010468 regulation of gene expression 84
GO:1901362 organic cyclic compound biosynthetic pro... 84
GO:0016070 RNA metabolic process 84

*** GO:1901685 glutathione derivative metabolic process 93
*** GO:1901687 glutathione derivative biosynthetic proc... 93
** GO:0006749 glutathione metabolic process 93
** GO:0042178 xenobiotic catabolic process 93
** GO:0042537 benzene-containing compound metabolic pr... 93
* GO:0006575 cellular modified amino acid metabolic p... 93
* GO:0044272 sulfur compound biosynthetic process 93
* GO:0046854 phosphatidylinositol phosphorylation 95
* GO:0046834 lipid phosphorylation 95

GO:0048015 phosphatidylinositol-mediated signaling 95
GO:0048017 inositol lipid-mediated signaling 95

** GO:0006882 cellular zinc ion homeostasis 113
** GO:0055069 zinc ion homeostasis 113
** GO:0010273 detoxification of copper ion 113
** GO:1990169 stress response to copper ion 113
* GO:0061687 detoxification of inorganic compound 113
* GO:0097501 stress response to metal ion 113
* GO:0071294 cellular response to zinc ion 113
* GO:0071280 cellular response to copper ion 113
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GO:0046916 cellular transition metal ion homeostasi... 113
GO:0071276 cellular response to cadmium ion 113
GO:0046688 response to copper ion 113
GO:0055076 transition metal ion homeostasis 113
GO:0072488 ammonium transmembrane transport 137
GO:0006089 lactate metabolic process 139
GO:0006882 cellular zinc ion homeostasis 142
GO:0055069 zinc ion homeostasis 142
GO:0006882 cellular zinc ion homeostasis 143
GO:0055069 zinc ion homeostasis 143

Significant GO terms for CONDOR

Signifier GO.ID Term Bimodule

* GO:0050852 T cell receptor signaling pathway 1
* GO:0050851 antigen receptor-mediated signaling path... 1

GO:0006355 regulation of transcription, DNA-templat... 1
GO:1903506 regulation of nucleic acid-templated tra... 1
GO:2001141 regulation of RNA biosynthetic process 1

* GO:0060333 interferon-gamma-mediated signaling path... 2
**** GO:0002478 antigen processing and presentation of e... 4
**** GO:0019884 antigen processing and presentation of e... 4
**** GO:0048002 antigen processing and presentation of p... 4
**** GO:0019886 antigen processing and presentation of e... 4
*** GO:0002495 antigen processing and presentation of p... 4
*** GO:0002504 antigen processing and presentation of p... 4
*** GO:0019882 antigen processing and presentation 4
*** GO:0031295 T cell costimulation 4
*** GO:0031294 lymphocyte costimulation 4
*** GO:0060333 interferon-gamma-mediated signaling path... 4
** GO:0050852 T cell receptor signaling pathway 4
** GO:0050870 positive regulation of T cell activation 4
** GO:1903039 positive regulation of leukocyte cell-ce... 4
** GO:0050778 positive regulation of immune response 4
** GO:0002253 activation of immune response 4
** GO:0050851 antigen receptor-mediated signaling path... 4
** GO:0022409 positive regulation of cell-cell adhesio... 4
** GO:0071346 cellular response to interferon-gamma 4
** GO:0051251 positive regulation of lymphocyte activa... 4
* GO:1903037 regulation of leukocyte cell-cell adhesi... 4
* GO:0034341 response to interferon-gamma 4
* GO:0002696 positive regulation of leukocyte activat... 4
* GO:0050863 regulation of T cell activation 4
* GO:0050867 positive regulation of cell activation 4
* GO:0007159 leukocyte cell-cell adhesion 4
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* GO:0050776 regulation of immune response 4
* GO:0002429 immune response-activating cell surface ... 4
* GO:0002684 positive regulation of immune system pro... 4
* GO:0006955 immune response 4
* GO:0022407 regulation of cell-cell adhesion 4

GO:0045087 innate immune response 4
GO:0002768 immune response-regulating cell surface ... 4
GO:0045785 positive regulation of cell adhesion 4
GO:0002455 humoral immune response mediated by circ... 4
GO:0051249 regulation of lymphocyte activation 4
GO:0019221 cytokine-mediated signaling pathway 4
GO:0042110 T cell activation 4

Appendix D. Application of BSP to North American Temperature and
Precipitation Data

D.1 Introduction

The relationship between temperature and precipitation over North America has been well
documented (Madden and Williams, 1978; Berg et al., 2015; Adler et al., 2008; Livneh and
Hoerling, 2016; Hao et al., 2018) and is of agricultural importance. For example, Berg
et al. (2015) noted widespread correlation between summertime mean temperature and
precipitation at the same location over various land regions. We explore these relationships
using the Bimodule Search Procedure. In particular, the method allows us to search for
clusters of distal temperature-precipitation relationships, known as teleconnections, whereas
previous work has mostly focused on analyzing spatially proximal correlations.

We applied BSP to find pairs of geographic regions such that summer temperature in the
first region is significantly correlated in aggregate with summer precipitation in the second
region one year later. We will refer to such region pairs as T-P (temperature-precipitation)
bimodules. T-P bimodules reflect mesoscale analysis of region-specific climatic patterns,
which can be useful for predicting impact of climatic changes on practical outcomes like
agricultural output.

D.2 Data Description and Processing

The Climatic Research Unit (CRU TS version 4.01) data (Harris et al., 2014) contains daily
global measurements of temperature (T) and precipitation (P) levels on land over a .5o× .5o

(360 pixels by 720 pixels) resolution grid from 1901 to 2016. We reduced the resolution of
the data to 2.5o×2.5o (72 by 144 pixels) by averaging over neighboring pixels and restricted
to 427 pixels corresponding to the latitude-longitude pairs within North America. For each
available year and each pixel/location we averaged temperature (T) and precipitation (P)
over the summer months of June, July, and August. Each feature of the resulting time series
was centered and scaled to have zero mean and unit variance. The data matrix X, reflecting
temperature, had 115 rows containing the annual summer-aggregated temperatures from
1901 to 2015 for each of the 427 locations. The data matrix Y, reflecting precipitation, had
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Figure 11: Out of 31 BSP bimodules that had genes on 3 or more chromosomes and SNPs
on 2 or more chromosomes, we selected 9 bimodules that looked interesting. The
bipartite graph for each bimodule is formed out of the essential edges (Section
4.4.3).
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CRU: T(JJA)-P(JJA, offset), 1901-2016, α = .045

Figure 12: Bimodules of summer temperature and precipitation in North America from CRU observations
from 1901-2016. The left bimodule (1) contains 149 temperature locations (pixels) and 6
precipitation locations. The right bimodule (2) contains 53 temperature and 5 precipitation
locations.

115 rows containing the annual summer-aggregated precipitation from 1902 to 2016 (lagged
by one year from temperature) for each of the 427 locations.

Analysis of summer precipitation versus summer temperatures lagged by 2 years, and
temperatures from different seasons (winter T; summer P of the same year) in the same
year did not yield any bimodules.

D.3 Bimodules Search Procedure and Diagnostics

We applied BSP on the climate data with the false discovery parameter α = 0.045, selected
using the procedure in Section 2.8, to keep edge-error under 0.1 (see Figure 13, Appendix
E). BSP searches for groups of temperature and precipitation pixels that have significant
aggregate cross-correlation. Temperature and precipitation data exhibit both spatial and
temporal auto-correlations. The BSP procedure does not make use of the pixel locations.
While the permutation null employed by BSP directly accounts for spatial-correlations
within the temperature and the precipitation data, we note that it does not directly account
for temporal correlations, which violate a sample exchangeablilty assumption used in the
p-value approximations. The temporal auto-correlation in our data was moderate, ranging
from 0.10 to 0.30 for various features.

BSP found five distinct bimodules; the effective number of bimodules was three. After
filtering, the two bimodules illustrated in Figure 12 and another bimodule with 80 temper-
ature pixels and 5 precipitation pixels remained. We omitted a further analysis of the third
bimodule as its precipitation pixels were same as those of Bimodule 2 in Figure 12 and its
temperature pixels were geographically scattered.

Temperature pixels in Bimodules 1 and 2 are situated distally from the precipitation
pixels, but the temperature and precipitation pixels within each bimodule form blocks of
contiguous geographical regions. Since BSP did not make use of any location information
when searching for bimodules, these effects might have a common spatial origin.

40



Bimodule Search Procedure

The locations regions identified by the bimodules occupy large geographical areas. The
precipitation pixels from Bimodule 1 form a vertical stretch around the eastern edge of the
Great Plains and are correlated with temperature pixels in large areas of the Pacific North-
west, Alaska, and Mexico. In Bimodule 2 precipitation in the southern Great Plains around
Oklahoma is strongly correlated with temperature in the Northwestern Great Plains. An
anomalously hot summer Oregon in one year in the Northwest suggests an anomalously
rainy growing season in the following year in the Southern Great Plains. Pixel-wise positive
correlations are discussed in Appendix E. The coastal proximity of all the temperature clus-
ters suggest influences of oscillations in sea surface temperatures. Aforementioned patterns
from both bimodules map to locations of agricultural productivity, such as in Oklahoma
and Missouri (Figure 12).

The bimodules found by BSP only consider the magnitudes of correlations between tem-
perature and precipitation. Further analysis of these bimodules shows that the significant
correlations between temperature and precipitation are positive in the Great Plains region.
These results agree with findings on concurrent T-P correlations in the Great Plains (Zhao
and Khalil, 1993; Berg et al., 2015; Wang et al., 2019), which noted widespread correlations
between summertime mean temperatures and precipitation at the same location over land
in various parts of North America, notably the Great plains. Our findings show strong cor-
relations between northwestern (coastal) temperatures and Great Plains precipitation and
generally agree with findings in the literature. For example, Livneh and Hoerling (2016)
considered the relationship between hot temperatures and droughts in the Great Plains,
noting that hot temperatures in the summer are related to droughts in the following year
on the overall global scale. The results of Livneh and Hoerling (2016) preface the results
contained within the above bimodules, but the latter are additionally able to find regions
where this effect is significant.

Our findings demonstrate the utility of BSP in finding insights into remote correlations
between precipitation and temperature in North America. Further research may build on
these exploratory findings and create a model that can forecast precipitation in agricultur-
ally productive regions around the world.

Appendix E. Climate Analysis Details

Figure 13 shows the edge-error estimates we used to choose α. Table 4 shows a summary
of cross-correlations for each precipitation pixel from the two BSP bimodules.
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Figure 13: Average edge-error estimates for BSP results for the climate data based on 100 half-
permutations (Section 2.8.1) for α ranging from 0.01 to 0.05. The edge-error estimates exceed
0.05 for the first time at α = 0.045.

A

P Pixel Mean SD

1 0.28 0.07
2 0.27 0.06
3 0.28 0.08
4 0.27 0.08
5 0.31 0.06
6 0.30 0.08

B

P Pixel Mean SD

1 0.31 0.04
2 0.35 0.03
3 0.29 0.04

Table 4: Summary of the cross-correlations for each precipitation (P ) pixel in the two BSP
bimodules A and B from the climate data. Each entry shows the mean and
standard deviation of the cross-correlations of each P in the bimodule with other
T pixels in the same bimodule. Results show that all of the cross-correlations tend
to be strong and positive.
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