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Abstract

The framework of optimal transport has been leveraged to extend the notion of rank to
the multivariate setting as corresponding to an optimal transport map, while preserving
desirable properties of the resulting goodness-of-fit (GoF) statistics. In particular, the
rank energy (RE) and rank maximum mean discrepancy (RMMD) are distribution-free
under the null, exhibit high power in statistical testing, and are robust to outliers. In
this paper, we point to and alleviate some of the shortcomings of these GoF statistics
that are of practical significance, namely high computational cost, curse of dimensionality
in statistical sample complexity, and lack of differentiability with respect to the data.
We show that all these issues are addressed by defining multivariate rank as an entropic
transport map derived from the entropic regularization of the optimal transport problem,
which we refer to as the soft rank. We consequently propose two new statistics, the soft rank
energy (sRE) and soft rank maximum mean discrepancy (sRMMD). Given n sample data
points, we provide non-asymptotic convergence rates for the sample estimate of the entropic
transport map to its population version that are essentially of the order n−1/2 when the
source measure is subgaussian and the target measure has compact support. This result
is novel compared to existing results which achieve a rate of n−1 but crucially rely on
both measures having compact support. In contrast, the corresponding convergence rate of
estimating an optimal transport map, and hence the rank map, is exponential in the data
dimension. We leverage these fast convergence rates to show that the sample estimates
of sRE and sRMMD converge rapidly to their population versions. Combined with the
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computational efficiency of methods in solving the entropy-regularized optimal transport
problem, these results enable efficient rank-based GoF statistical computation, even in
high dimensions. Furthermore, the sample estimates of sRE and sRMMD are differentiable
with respect to the data and amenable to popular machine learning frameworks that rely
on gradient methods. We leverage these properties towards showcasing their utility for
generative modeling on two important problems: image generation and generating valid
knockoffs for controlled feature selection.

Keywords: optimal transport, multivariate rank, high-dimensional statistics, goodness-
of-fit testing, generative modeling, knockoff filtering

1. Introduction

It is well-known that in one dimension, the notions of rank and quantile with respect to the
distribution of the data are naturally defined via the cumulative distribution function (cdf)
and its generalized inverse, respectively. This is because the set of real numbers has a canon-
ical ordering, which is naturally captured by the cdf. Based on these notions, a number of
statistical tests for independence and goodness-of-fit (GoF) testing have been proposed in
the literature, such as the two-sample Kolmogorov-Smirnov test (Smirnov, 1939), Wilcoxon
signed-rank test (Wilcoxon, 1947), Wald-Wolfowitz runs test (Wald and Wolfowitz, 1940),
and Hoeffding’s D test (Hoeffding, 1994). These statistics possess several desirable prop-
erties such as being computationally feasible, non-parametric, and distribution-free under
the null.

Recently, meaningful multivariate extensions of the notions of rank and quantile maps
were proposed in the pioneering works (Hallin, 2017; Chernozhukov et al., 2017; Hallin
et al., 2021), and more recently in (Deb and Sen, 2023) based on the theory of optimal
transportation (Villani, 2009; Santambrogio, 2015). For a detailed discussion, we refer the
reader to a recent survey on the topic (Hallin, 2021) and references therein. Essentially,
these ideas leverage the geometry of the optimal transport (OT) problem with the squared
Euclidean metric as the ground cost, where under some mild conditions the optimal maps
are gradients of convex functions (Brenier, 1991; McCann, 1995). These extensions and
the corresponding high-dimensional analogues of the rank-based GoF statistics based on
these extensions retain some of the useful properties of their one-dimensional counterparts,
namely they are computationally feasible for small sample sizes and are distribution-free
under the null.

In this paper we focus on the multivariate rank-based GoF statistics proposed in (Deb
and Sen, 2023), namely the rank energy (RE) and rank maximum mean discrepancy (RMMD),
based on a particular choice of the reference measure when defining the multivariate ranks
via optimal transport maps. These statistics are shown to be distribution-free in finite
samples (under the null), consistent against alternatives, exhibit high power in statistical
testing for heavy-tailed distributions, and are robust to outliers.

However, as we discuss in detail in Section 2.2.2, practical use of the RE and RMMD
suffer from the well-known curse of dimensionality associated with the estimation of OT
maps as well as high computational costs for large sample sizes. Furthermore, RE and
RMMD suffer from lack of differentiability with respect to data. This limits a direct use of
iterative gradient-based optimization methods and therefore inhibits their potential utility
in learning a generative model when using these GoF statistics as a loss function, as has been
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successfully done with maximum mean discrepancy (MMD) and the Wasserstein distances
(Li et al., 2017; Arjovsky et al., 2017).

In this context, our paper makes the following main contributions.

(C1) We introduce the notion of soft rank that utilizes the recent developments in com-
putational optimal transport, namely entropic regularization (Peyré et al., 2019). In
particular, we define soft rank as the entropic map (Pooladian and Niles-Weed, 2021)
derived from entropy-regularized optimal transport. Based on this notion, we then
propose the soft rank energy (sRE), a new multivariate GoF statistic, and the related
soft rank maximum mean discrepancy (sRMMD). In Proposition 15 and Proposition
16, we establish the properties of sRE and its convergence to RE, which together
justify its utility as a GoF statistic for two-sample testing.

(C2) We provide a new result (Theorem 13) on the convergence rate of a sample-driven
estimate for general entropic maps which enjoys a fast convergence rate of n−1/2 to
the population entropic map, even in high dimensions. We note that the subgaussian
assumption in Theorem 13 on the source measure is a significant weakening of the
assumptions compared to a recent result of (Rigollet and Stromme, 2022) that assumes
compactness of both measures albeit providing a faster rate of n−1. This result is then
used in Theorem 17 and Theorem 18 to establish the statistical convergence of sample
sRE and sample sRMMD, respectively, to their population versions with rate n−1/2.
Our analysis also clarifies the impact of key problem parameters, such as the data
dimension, entropic regularization strength, support, and subgaussian constants of
the distributions.

(C3) We show the practical utility of the proposed statistics on several real generative
modeling problems. First, we use sRE and sRMMD as the loss functions in a simple
generative model architecture to produce MNIST-digits. Under an appropriate choice
of the entropic regularization parameter, we show that using sRE and sRMMD as the
loss functions can generate all of the digits successfully and does not suffer from mode
collapse. We then utilize the sRMMD in a deep generative model in order to produce
valid knockoffs (Barber and Candès, 2015). We showcase improved tradeoffs between
detection power versus false discovery rate (FDR) compared to other benchmarks of
knockoff generation techniques on different Gaussian and non-Gaussian distributional
settings. We also test our approach for provable biomarker selection in metabolomics.1

Paper outline: The paper is organized as follows. In Section 2, we provide the required
background on optimal transport theory and its entropy-regularized variant as well as dis-
cuss the multivariate RE. In Section 3, we introduce the sRE and the sRMMD, and sample
versions thereof. In Section 4, we state our main theorems which establish the properties
of the sRE and prove finite sample convergence rates for the sample sRE and sRMMD to
their population versions. In Section 5, we provide extensive simulations to establish the
efficacy of sRE and sRMMD as loss functions for learning generative models.

1. Codes are available at https://github.com/ShoaibBinMasud/soft-rank-energy-and-applications
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Notation: We will let X,Y denote random vectors in Rd and we will use superscripts to
denote their entries X = (X1, · · · , Xd). A bold X will denote a matrix. ‖ · ‖ will denote

the Euclidean norm in Rd. d
= will denote equality in distribution. We let P(Rd) denote the

space of Borel probability measures on Rd and Pac(Rd) the space of absolutely continuous
measures (with respect to the Lebesgue measure) on Rd.

Throughout we consider measures of two types, one being measures with bounded sup-
port and the another being those with subgaussian concentration. A measure P is said to

be σ2-subgaussian if the random vector X with law P satisfies E
[
exp

(
‖X‖2
2dσ2

)]
≤ 2; see

Appendix B for details.
We write a . b if there exists a constant C such that a ≤ Cb. The rest of the notation is

standard and clear from the context. We also include in Table 1 a list of notation introduced
later for easy reference.

Symbol Meaning

Bd
2(0, r) Euclidean ball of radius r in Rd

Pλ = λPX + (1− λ)PY Mixture distribution, λ ∈ (0, 1).

T Optimal transport map

Tε Entropic map

Tn,nε Two-sample entropic map

Rλ Rank map. T from Pλ to Unif([0, 1]d)

Rλ,ε Soft rank map. Tε from Pλ to Unif([0, 1]d)

Rm+n
λ,ε Sample soft rank map

REλ Rank energy

REm,n Sample rank energy

sREλ,ε Soft rank energy

sRE
m,n
λ,ε Sample soft rank energy

RMMDλ Rank maximum mean discrepancy

RMMDm,n Sample rank maximum mean discrepancy

sRMMDλ,ε Soft rank maximum mean discrepancy

sRMMD
m,n
λ,ε Sample rank maximum mean discrepancy

σ2 Subgaussian constant

‖F‖2L2(P )

∫
‖F (x)‖22 dP (x) for F : Rn → Rn

‖X‖L2 E[X2]1/2 for a scalar random variable X

Table 1: Frequently used notation throughout the paper.

2. Background on Optimal Transport and Rank Energy

2.1 Optimal Transport

Given two distributions P,Q ∈ P(Rd), the Monge problem (Monge, 1781) seeks a measurable
map T : Rd → Rd that pushes P to Q with a minimal cost. Precisely, it solves

inf
T

∫
1

2
‖x− T (x)‖2dP (x), subject to T#P = Q, (1)
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where T#P denotes the push-forward measure, which satisfies (T#P )[A] = P [T−1(A)] for
all measurable sets A.

Throughout we will make heavy use of the optimal map T which minimizes (1). It is
therefore important to establish the existence, uniqueness, and important properties of T ,
which are established by the following celebrated theorem.

Theorem 1 (Brenier-McCann (Brenier, 1991; McCann, 1995)). Let P ∈ Pac(Rd) and
Q ∈ P(Rd). Then there exists a convex function φ : Rd → R whose gradient ∇φ : Rd → Rd
pushes P forward to Q. Moreover, if P and Q have finite second moments, then ∇φ is the
unique (up to sets of measure 0) solution to the Monge problem (1).

In the rest of the paper we will assume that all measures have finite second moments.

2.1.1 Entropy-regularized Optimal Transport

Towards developing the notion of sRE, we first state a relaxation of the Monge problem,
where instead of a map, one seeks an optimal “coupling” π between a source distribution P
and a target distribution Q. The Kantorovich relaxation (Kantorovich, 1942; Santambrogio,
2015) solves

min
π∈Π(P,Q)

∫
1

2
‖x− y‖2dπ(x, y), (2)

where Π(P,Q) is the set of joint probability measures with marginals P and Q. When
a solution to the Monge problem (1) exists, then the solution to Kantorovich relaxation
coincides with it in the sense that the optimal plan is concentrated on {(x, T (x)) : x ∈
supp(P )} (Santambrogio, 2015).

The statistic we propose relies on an entropy-regularized version of (2). For ε > 0, the
primal formulation of the entropy-regularized optimal transport is given by:

min
π∈Π(P,Q)

∫
1

2
‖x− y‖2dπ(x, y) + εKL(π || P ⊗Q), (3)

where

KL(π|P ⊗Q) ,
∫

log

(
dπ(x, y)

dP (x)dQ(y)

)
dπ(x, y).

This problem has been extensively studied both for its theoretical properties, as well as
for the efficient algorithms that are used to solve it (see (Cuturi, 2013; Genevay et al.,
2016; Peyré et al., 2019) and references therein). Importantly, (3) admits the following dual
formulation, a derivation of which may be found in (Genevay, 2019; Peyré et al., 2019):

max
f,g

∫
f(x)dP (x)+

∫
g(y)dQ(y)−ε

∫∫
exp

[
1

ε

(
f(x) + g(y)− 1

2
‖x−y‖2

)]
dP (x)dQ(y) + ε, (4)

where the maximization is over the pairs f ∈ L1(P ), g ∈ L1(Q). The optimal entropic
potentials for ε are the pair of functions (fε, gε) which achieve the maximum in (4). Fur-
thermore, there is an optimality relation between (3) and (4) given by:

dπε(x, y) = exp

[
1

ε

(
fε(x) + gε(y)− 1

2
‖x− y‖2

)]
dP (x)dQ(y), (5)
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where πε denotes the solution to (3). We emphasize the fact that πε is not a map, but a
diffused coupling, and that the degree of diffusion depends on the entropic regularization
parameter ε (Peyré et al., 2019). In the finite sample setting, entropic regularization of
optimal transport significantly reduces computational complexity (Cuturi, 2013) and also
yields a differentiable loss function (Schmitz et al., 2018).

2.2 Rank and Quantile Maps

Let P ∈ P(Rd) and consider a random variable X ∼ P . When d = 1, the rank map,
or cumulative distribution function, is FX(t) = P{X ≤ t}, and the quantile map is its
generalized inverse, F−1

X (p) = inf{x ∈ R : p ≤ FX(x)}. The rank and quantile maps
are always monotonic increasing and are continuous when P has a density. When FX
is continuous, one can show that the random variable FX(X) is distributed according to
Unif([0, 1]). Similarly, when the quantile map is continuous, F−1

X (U) is distributed according
to X where U ∼ Unif([0, 1]).

The key insight in using the theory of optimal transport to define multivariate rank
and quantile maps comes from noticing that in one dimension, the optimal map between
two measures, P and Q, is given by T = F−1

Q ◦ FP , where FP is the rank map of P and

F−1
Q is the quantile map of Q (Chernozhukov et al., 2017). When Q = Unif([0, 1]), one has

F−1
Q = Id and therefore F−1

Q ◦FP = Id◦FP = FP . By the push-forward constraint we know
that FP#P = Unif([0, 1]) which is just one way of observing that FP (X) ∼ Unif([0, 1]).
The main intuition is that the rank map is exactly the optimal map from P to Unif([0, 1]).
Analogously, with Theorem 1 ensuring the existence of a unique optimal T that is monotone
(being a gradient of a convex function), (Deb and Sen, 2023) generalizes the notion of rank
and quantile maps to dimensions d ≥ 2 as optimal transport maps to and from Unif([0, 1]d).

Definition 2 (Definition 2.1 (Deb and Sen, 2023)). Let P ∈ Pac(Rd) and let Q=Unif([0, 1]d).
The multivariate rank and quantile maps for P are defined as R = ∇φ and Q = ∇φ∗, re-
spectively, where φ is the strictly convex function as in Theorem 1 such that ∇φ optimally
transports P to Q. Here φ∗ denotes the standard convex conjugate2 of the convex function
φ.

With the high-dimensional analogue of the rank defined, we can now state the candidate
GoF statistics proposed in (Deb and Sen, 2023).

Definition 3 (Definition 3.3 (Deb and Sen, 2023)). Let PX , PY ∈ Pac(Rd) and let X,X ′
i.i.d.∼

PX and Y, Y ′
i.i.d.∼ PY . Let Pλ = λPX + (1 − λ)PY denote the mixture distribution for any

λ ∈ (0, 1) and let Rλ be the multivariate rank map of Pλ as in Definition 2. The (population)
rank energy (RE) is defined as:

REλ(PX , PY )2 , Cd

∫
Sd−1

∫
R

(
P
(
a>Rλ(X) ≤ t

)
− P

(
a>Rλ(Y ) ≤ t

))2
dtdκ(a)

= 2E||Rλ(X)− Rλ(Y )|| − E||Rλ(X)− Rλ(X ′)|| − E||Rλ(Y )− Rλ(Y ′)||, (6)

2. For any proper function f : Rd → R, the convex conjugate f∗ :Rd→R is defined as: f∗(y) , supy〈x,y〉−
f(y) for all y ∈ Rd.
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where Sd−1 , {x ∈ Rd : ‖x‖ = 1} is the unit sphere in Rd, κ(·) is the uniform measure on
Sd−1, and Cd = (2Γ(d/2))−1√π(d−1)Γ

(
(d−1)/2

)
is an appropriate normalizing constant.

Note that RE2
λ closely resembles the definition of energy distance (Székely and Rizzo,

2013),

En(PX , PY )2 , Cd

∫
Sd−1

∫
R

(
P
(
a>X ≤ t

)
− P

(
a>Y ≤ t

))2
dtdκ(a),

which is a widely used GoF statistic for two-sample testing. This definition is motivated
by the continuity and uniqueness of characteristic functions. Namely, PX = PY if and only

if a>X
d
= a>Y (that is, equality in distribution) for κ-almost everywhere a; indeed, the

integration over the sphere aggregates the discrepancy in characteristic functions in every
direction. For a discussion showing the equivalence of the formulation in (6) using integrals
over Sd−1 and the formulation in terms of expectations of Rλ, see (Baringhaus and Franz,
2004). One advantage of RE2

λ over the energy distance is that RE2
λ is distribution-free under

the null for all sample sizes (Deb and Sen, 2023).

For the RE, the natural choice for λ is 1/2. This extra parameter is made use of when
one only has access to a finite set of samples as is discussed in the next section.

One can generalize the RE by replacing the pairwise distance with a kernel function
(Phillips and Venkatasubramanian, 2011).

Definition 4. Let PX , PY ∈ Pac(Rd) and let X,X ′
i.i.d.∼ PX and Y, Y ′

i.i.d.∼ PY . Let Pλ =
λPX + (1 − λ)PY denote the mixture distribution for any λ ∈ (0, 1) and let Rλ be the
multivariate rank map of Pλ as in Definition 2. Let k : Rd × Rd → R a characteristic
kernel3. The (population) rank maximum mean discrepancy (RMMD) is defined as:

RMMDλ(PX , PY )2 , E[k(Rλ(X), Rλ(X ′))] + E[k(Rλ(Y ), Rλ(Y ′))]− 2E[k(Rλ(X), Rλ(Y ))]. (7)

Note that RMMDλ(PX , PY )2 closely follows the definition of maximum mean discrepancy
(MMD) (Gretton et al., 2012) which is a widely used statistic in the framework of two-
sample testing: MMD(PX , PY )2 , E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )].

One can view RE2
λ and RMMD2

λ as the “rank-transformed” energy distance and MMD,
respectively, in the sense that they are the energy distance and MMD of the samples after
being transformed by the rank map.

In practice, the RE2
λ and RMMD2

λ must be estimated from samples, a procedure outlined
in the next subsection.

2.2.1 Sample Rank Map and RE

Given i.i.d. samples X1, . . . , Xm ∼ P , the empirical measure is defined as Pm = 1
m

∑m
i=1 δXi

where δXi is a Dirac distribution placed at Xi. Given the empirical measures Pm and Qm

we can can define the optimal transport map between them as follows:

Definition 5. Let Pm = 1
m

∑m
i=1 δXi , Q

m =
∑m

j=1 δYj be empirical measures of P and
Q respectively. The plug-in estimate Tm of the transport map T between P and Q is the

3. A kernel k is said to be characteristic if the map P →
∫
X k(·, x)dP (x) is injective, where P is a measure

defined on the topological space X .
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solution to

Tm , arg min
T

∫
1

2
‖x− T (x)‖2 dPm(x), subject to T#P

m = Qm. (8)

The minimization problem defining Tm can be converted to a standard linear program
and solved either by tailored methods or general linear program solvers (Peyré et al., 2019).
The plug-in estimate of the transport map can be specialized to obtain the sample rank
map.

Definition 6. The sample rank map Rm for a measure P is the plug-in estimate of the
transport map from P to Q = Unif([0, 1]d).

Even though we have exact knowledge of the target measure Q = Unif([0, 1]d), it is still
desirable to approximate Q using precisely m samples. This is because it ensures that there
is a proper map Rm defined on the sample points X1, ..., Xm. If instead we consider Q or
Qn with n 6= m there may not exist a map transporting Pm to Q. It will still be possible
to come up with an optimal coupling in these cases, however further considerations will be
required to convert that coupling into a statistic.

In practice, one may generate the samples from Unif([0, 1]d) using a pseudo-random
sequence of points. In (Deb and Sen, 2023), Halton sequences (Hofer, 2009) are used and
we do the same in our experiments. Nevertheless, any sequence which weakly converges to
Unif([0, 1]d) can be used.

We can now define the sample RE and sample RMMD.

Definition 7. Let X1, . . . , Xm
i.i.d.∼ PX and Y1, . . . , Yn

i.i.d.∼ PY , define Pm+n as

Pm+n =
1

m+ n

 m∑
i=1

δXi +
n∑
j=1

δYj

 ,

the empirical mixture of the two sets of samples. Let Qm+n = 1
m+n

∑n+m
i=1 δUi where Ui ∼

Unif([0, 1]d). Let Rm+n be the sample rank map obtained from the two empirical measures.
The sample RE is given by:

REm,n(PX , PY )2 ,
2

mn

m∑
i=1

n∑
j=1

‖Rm+n(Xi)− Rm+n(Yj)‖ −
1

m2

m∑
i,j=1

‖Rm+n(Xi)− Rm+n(Xj)‖

− 1

n2

n∑
i,j=1

‖Rm+n(Yi)− Rm+n(Yj)‖. (9)

Definition 8. Consider the same setting as Definition 7, and let k be a characteristic
kernel. The sample RMMD is given by:

RMMDm,n(PX , PY )2 ,
1

m2

m∑
i,j=1

k(Rm+n(Xi), R
m+n(Xj)) +

1

n2

n∑
i,j=1

k(Rm+n(Yi), R
m+n(Yj))

− 2

mn

m∑
i=1

n∑
j=1

k(Rm+n(Xi), R
m+n(Yj)). (10)

8
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Since the sample RE and sample RMMD are transporting from a mixture withm/(m+n)
mass on samples from PX and n/(m+n) mass on samples from PY , in the limit as m+n→
∞, and m/(m+n)→ λ one will have REm,n(PX , PY )2 → REλ(PX , PY )2 (Deb and Sen, 2023).
This is the reason the extra parameter λ is included in the definition of the population RE
(and similarly for the population RMMD).

It is known that both RE2
m,n and RMMD2

m,n are distribution-free when PX = PY for any
fixed sample size (Deb and Sen, 2023). This follows from the fact that when PX = PY one
has (

Rm+n(X1), ..., Rm+n(Xm), Rm+n(Y1), ..., Rm+n(Yn)
)
∼ Unif([0, 1]d)m+n,

i.e., the image of the samples has the same distribution as m+n independent samples from
the uniform distribution on the hypercube (this is a consequence of Proposition 2.2 in (Deb
and Sen, 2023)). As a result, when PX = PY the distributions of REm,n and RMMDm,n are
precisely the same as the energy distance and MMD, respectively, when drawing m and n
samples from Unif([0, 1]d). In particular, this implies REm,n and RMMDm,n are distribution-
free under the null PX = PY .

We note that other simpler OT-based statistics are not distribution-free when PX = PY .
These include the OT distance between PmX and PmY as well as the L2 difference between
the maps from a fixed measure Qm to PmX and PmY (Ramdas et al., 2017).

2.2.2 Practical Issues with RE

While the RE enjoys certain desirable properties, it also suffers from important drawbacks.
We focus on two below.

Complexity, sample and computational: In practice, to compute RE and RMMD
one needs to solve the discrete version of the Monge problem. Given n samples, solving
this problem exactly using typical methods requires O(n3 log n) computations (Peyré et al.,
2019). To make matters worse, when the samples are in Rd, approximating Rλ has a large
sample complexity in the sense that when λ = m/(m + n) and in the absence of further
assumptions, one only has:

1

m+ n
E

 m∑
i=1

‖Rm+n(Xi)− Rλ(Xi)‖+

n∑
j=1

‖Rm+n(Yj)− Rλ(Yj)‖

 . (m+ n)−1/d.

Unfortunately, this rate which depends exponentially on d can be tight (Dudley, 1969),
implying the need for extremely large sample sizes when working in high dimensions to get
a faithful estimate of the map Rλ which is required to estimate RE and RMMD. Together,
these observations mean that RE and RMMD suffer from a statistical-computational bot-
tleneck that precludes their use in high dimension: one needs n large to get a good estimate,
but computing the estimate for large n is computationally infeasible.

Gradient issues: In a similar vein as the MMD (Li et al., 2015), energy distance (Belle-
mare et al., 2017), and Wasserstein-1 distances (Arjovsky and Bottou, 2017), we are in-
terested in utilizing RE or RMMD as a loss function for learning generative models. For
example, if X1, ..., Xm are real samples and Y1, ..., Yn are from a standard model (e.g.,

9
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Yi ∼ N(0, Id)) one may seek to solve4

min
θ

REm,n({Xi}mi=1, {Tθ(Yj)}nj=1)2, (11)

where RE2
m,n is the (squared) sample RE (defined in (9)) and Tθ : Rd → Rd is a learnable

transformation parameterized by θ. In this setting, a small statistic indicates that Tθ
is successfully transforming the samples {Yj}nj=1 in such a way that they are difficult to
distinguish from the {Xi}mi=1. To obtain θ∗, a (near) minimizer of (11), many standard
procedures start at a random θ0 and then use a gradient based procedure which requires
access to ∇θREm,n({Xi}mi=1, {Tθ(Yi)}ni=1)2 to obtain a sequence of improving θi (for example,
θi+1 = θi − η∇θiREm,n({Xi}mi=1, {Tθ(Yj)}nj=1)2 for some learning rate η > 0) (Bottou, 2012;
Boyd and Vandenberghe, 2004).

This gradient descent approach will not work for the RE. First, one needs to rely on
special methods to back-propagate through the construction of the rank map which is the
argmin of a convex optimization problem (one can rely on so-called convex optimization
layers (Agrawal et al., 2019), for example). Second, when n = m, the gradient will either
be undefined or zero (Blondel et al., 2020). This is because either the optimal transport
map does not change, and as a result the RE does not change, or it experiences a jump to
a new transport map which is not differentiable; see Appendix A for a precise description.
In the absence of a non-zero gradient, the methods above will not be able to incrementally
improve the setting of θ, or even choose a direction in the parameter space to search along.
In practice the first-order methods above are by far the most popular and are often the
only feasible methods when θ is extremely high-dimensional (e.g., represents the weights of
a deep neural network). The absence of a proper gradient severely restricts the utility of
the RE in broader contexts.

These two drawbacks are not isolated to the RE but are present whenever an empirical
rank map is involved. This also limits the utility of the RMMD. To alleviate these drawbacks
and to enable the use of these rank-based GoF statistic for learning generative models, in the
next section we propose soft rank energy (sRE) and soft rank maximum mean discrepancy
(sRMMD).

3. Soft Rank and sRE

Our proposed statistics rely on the notion of entropic map derived from entropic regulariza-
tion of the optimal transport problem. Based on the primal-dual relationship in equation
(5), we note the following definition of the entropic map.

Definition 9 (Entropic map (Pooladian and Niles-Weed, 2021)). Given an optimal entropic
plan πε or the optimal entropic potentials (fε, gε) between P and Q, the entropic map is
defined by:

Tε(x) ,
∫
πε(y|x) = Eπε [Y |X = x] =

∫
y exp

(
1

ε

(
gε(y)− 1

2
‖x− y‖2

))
dQ(y)∫

exp

(
1

ε

(
gε(y)− 1

2
‖x− y‖2

))
dQ(y)

, (12)

4. Technically this should be written REm,n(PX , (Tθ)#PY )2, but for clarity we avoid this notation here.

10
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where πε(y|x) denotes the conditional distribution of πε.

In (Pooladian and Niles-Weed, 2021), the latter form is used to define a sample version
of the entropic map. Given samples X1, ..., Xn ∼ P and Y1, ..., Yn ∼ Q and optimal entropic
potentials (fnε , g

n
ε ) solving (4) between Pn, Qn, the sample entropic map is defined as:

Tn,nε (x) ,

n∑
i=1

Yi exp

(
1

ε

(
gnε (Yi)−

1

2
‖x− Yi‖2

))
n∑
i=1

exp

(
1

ε

(
gnε (Yi)−

1

2
‖x− Yi‖2

)) . (13)

We adopt these definitions in constructing the soft rank maps.

Definition 10 (Soft Rank Map). The soft rank map Rε for a measure P is the entropic
map from P to Q = Unif([0, 1]d) as in (12). The sample soft rank map Rnε is defined as the
sample entropic map from Pn to Qn as in (13).

With these alternatives to the original rank map, the definition of the sRE is as follows.

Definition 11 (Soft Rank Energy). Let PX , PY ∈ P(Rd) and let X,X ′
i.i.d.∼ PX , Y, Y

′ i.i.d.∼
PY . Let Pλ = λPX + (1− λ)PY for λ ∈ (0, 1) and let Rλ,ε be the soft rank map of Pλ.

(a) soft rank energy (sRE) is defined as:

sREλ,ε(PX , PY )2 , Cd

∫
Sd−1

∫
R

(
P
(
a>Rλ,ε(X) ≤ t

)
− P

(
a>Rλ,ε(Y ) ≤ t)

)2
dtdκ(a)

= 2E
∥∥Rλ,ε(X)− Rλ,ε(Y )

∥∥− E
∥∥Rλ,ε(X)− Rλ,ε(X

′)
∥∥− E

∥∥Rλ,ε(Y )− Rλ,ε(Y
′)
∥∥, (14)

where Cd and κ are the same as in Definition 3.

(b) Let X1, ..., Xm
i.i.d.∼ PX , Y1, ..., Yn

i.i.d.∼ PY and let Rm+n
λ,ε be an independently estimated

soft rank map using m+ n samples from Pλ. The sample sRE is defined as:

sRE
m,n
λ,ε (PX , PY )2 ,

2

mn

m∑
i=1

n∑
j=1

‖Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Yj)‖

− 1

m2

m∑
i,j=1

‖Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Xj)‖ −
1

n2

n∑
i,j=1

‖Rm+n
λ,ε (Yi)− Rm+n

λ,ε (Yj)‖. (15)

The equivalence of the formulation in terms of integrals over Sd−1 and the formulation
in terms of expectations of Rλ,ε is shown in Proposition 15. Comparing the definition of the
RE (Definition 3) to the sRE, the only change is the use of the soft rank map instead of the
rank map. In the subsequent sections we establish several properties of the soft rank map
and sRE which motivate this choice both practically and theoretically.

We remark that the reason for using separate batches of samples is a technical artifact
and is required only because our analysis requires independence between the samples used
to compute the estimate of the sRE and those used to estimate the map. Imposing this

11
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condition only requires a doubling of the number of samples, and in fact the choice to use
m + n samples to estimate the map is somewhat arbitrary, and we use this convention
to make the notation and statement of the results more compact. In practice, one may
even choose not to use separate batches of samples for map estimation and calculating the
statistic at all, and we adopt this strategy in our experiments in Section 5.

Using a similar approach to the one taken in (7), one can also generalize sRE by using
a kernel function k : Rd × Rd → R instead of pairwise Euclidean distances.

Definition 12. Let k : Rd × Rd → R be a characteristic kernel. Let PX and PY be two

probability measures and let X,X ′
i.i.d.∼ PX , Y, Y

′ i.i.d.∼ PY . Let Rλ,ε denote the soft rank map
of Pλ for λ ∈ (0, 1).

(a) The soft rank maximum mean discrepancy (sRMMD) is defined as:

sRMMDλ,ε(PX , PY )2 , E[k(Rλ,ε(X), Rλ,ε(X
′))] + E[k(Rλ,ε(Y ), Rλ,ε(Y

′))]

− 2E[k(Rλ,ε(X), Rλ,ε(Y ))].

(b) Let X1, ..., Xm
i.i.d.∼ PX , Y1, ..., Yn

i.i.d.∼ PY and let Rm+n
λ,ε be an independently estimated

rank map using m+ n samples from Pλ. The sample sRMMD is defined as:

sRMMD
m,n
λ,ε (PX , PY )2,

1

m2

m∑
i,j=1

k(Rm+n
λ,ε (Xi), R

m+n
λ,ε (Xj))+

1

n2

n∑
i,j=1

k(Rm+n
λ,ε (Yi), R

m+n
λ,ε (Yj))

− 2

mn

m∑
i=1

n∑
j=1

k(Rm+n
λ,ε (Xi), R

m+n
λ,ε (Yj)).

4. Properties of the sRE

4.1 Estimation of the Entropic Map

As a first step for many of our results, we give a convergence rate of the sample entropic
map to the population entropic map. In this work, we consider results in two regimes. The
first regime is when the measure P is subgaussian and Q has bounded support. In this case
we have the following:

Theorem 13. Suppose that Q ∈ P(Bd
2(0, r)) and that P is σ2-subgaussian. Let Tε be the

entropic map from P to Q and let Tn,nε be the estimated entropic map from Pn to Qn. Then:

E||Tn,nε − Tε||2L2(P ) ≤ b1(r, d, σ2, ε)n−1/2,

for some function b1 independent of n.

An exact expression for b1 can be found in (26) in the Appendix. The factor b1 grows
exponentially with r, σ2, d, but can be controlled by taking ε sufficiently large. The proof of
Theorem 13 is deferred to Appendix B. The proof is done in essentially three steps. First,
introduce a “one-sample” Tnε which is the entropic map from P to Qn and use

E||Tn,nε − Tε||2L2(P ) ≤ 2E||Tn,nε − Tnε ||2L2(P ) + 2E||Tnε − Tε||2L2(P ).
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Figure 1: Convergence rate of the entropic map for different source measures and levels
of regularization. The solid lines in the graph depict the mean squared error
between the true map Tε (since there is no closed form available for Tε, we have
used n = 10000 samples to approximate the true entropic map) and the estimated
map Tn,nε with respect to the sample numbers, whereas the dashed lines represent
the best fit and indicate the slopes. For all cases, Q = Unif([0, 1]d).

The second term is the more difficult of the two to control. The second step of the proof is
to build on tools developed in (Pooladian and Niles-Weed, 2021) which allow ||Tnε −Tε||2L2(P )
to be controlled by a supremum over a suitable class of test functions. The final step is to
use tools from empirical process theory in order to control the supremum. A similar but
much simpler strategy is possible for the other term.

The second regime is when both P and Q have bounded support. An important result
in this second regime is Theorem 14, which was shown in (Rigollet and Stromme, 2022) and
provides a useful contrast with Theorem 13.

Theorem 14 ((Rigollet and Stromme, 2022), Theorem 4, adapted). Let P,Q ∈ P(Bd
2(0, r)),

let Tε be the entropic map from P to Q, and let Tn,nε be the estimated entropic map from
Pn to Qn. Then:

E||Tn,nε − Tε||2L2(P ) ≤ b2(r, d, ε)n−1,

for some function b2 independent of n.

The analysis leading to this result requires a strong concavity property of the entropic
dual problem which is only present when both P and Q have bounded support. As such,
this result does not appear to be directly extendable to the case where P has unbounded
support.
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These results stand out against results for the non-regularized transport map in that
the rate is either n−1 or n−1/2 and only requires the source P have bounded support or be
subgaussian and the target Q to have bounded support. In contrast in (Hütter and Rigollet,
2021) the authors showed that under some technical conditions the minimax optimal rate

for the unregularized transport map (up to log factors) is n−
2α

2α−2+d where α is an assumed
smoothness parameter of the optimal map. These rates can be incredibly slow when the
dimension d dominates the smoothness α. This suggests that entropic regularization helps
break the curse of dimensionality for OT map estimation.

In Figure 1, the rate of convergence of the entropic map is observed empirically when
the source measure has bounded and unbounded supports. We observe that when ε = 1, 10
that the convergence rate is always at least as fast as n−1/2, which can be seen by the slopes
of the lines of best fit being −0.5 or less. When ε = 0.1, we see a dimension dependent
rate for d = 10, however this does not contradict Theorems 13 and 14 because we are in
the small sample regime and the constants in b1, b2 may still provide valid upper bounds.
Indeed Theorems 13 and 14 only ensure that for large enough n the convergence rates will
be at least n−1 or n−1/2. Obtaining matching lower bounds which are tight in the small
sample setting is an important direction for future work.

4.2 Fast Convergence of sREm,nλ,ε (PX , PY )2

We first establish a few preliminary facts about sREλ,ε(PX , PY )2 which will be useful when
combined with Theorem 13 and also demonstrate some of the important properties of the
sRE as a GoF statistic.

Proposition 15. The sRE satisfies the following properties:

(a) Let X,X ′
i.i.d.∼ PX and Y, Y ′

i.i.d.∼ PY . Then the sRE can also be expressed as:

sREλ,ε(PX , PY )2 = 2E
∥∥Rλ,ε(X)− Rλ,ε(Y )

∥∥− E
∥∥Rλ,ε(X)− Rλ,ε(X

′)
∥∥

− E
∥∥Rλ,ε(Y )− Rλ,ε(Y

′)
∥∥.

(b) sREλ,ε(PX , PY )2 = sREλ,ε(PY , PX)2.

(c) sREλ,ε(PX , PY )2 = 0 if PX = PY .

The proof is deferred to Appendix C.1. Property (a) is particularly useful because
it allows one to use an easily computed formula instead of estimating the integrals and
probabilities in (14). Properties (b) and (c) make sREλ,ε(PX , PY )2 a good candidate for
measuring the GoF between distributions.

One can also show that under some regularity conditions that the original RE is recov-
ered by sending ε to 0, which further motivates the notion of the sRE.

Proposition 16. Let PX , PY ∈ Pac([0, 1]d) and λ ∈ (0, 1) be such that for Rλ = ∇φ we
have aI � ∇φ � bI for some 0 < a, b, and R−1

λ ∈ C
α for some α ≥ 2. Then:

lim
ε→0+

sREλ,ε(PX , PY )2 = REλ(PX , PY )2.
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The proof appears in Appendix C.2. Implicit in the proof of Proposition 16 is a result
that also characterizes the degree of approximation of sRE with RE as a function of the
entropy regularization ε.

An important consequence of Theorems 13 and 14 is a matching convergence rate for
the sample sRE:

Theorem 17. Let λ ∈ (0, 1). If PX , PY are σ2-subgaussian for then:

||sREm,nλ,ε (PX , PY )2 − sREλ,ε(PX , PY )2||2L2 .
b1(
√
d, d, σ2, ε)

min(λ, 1− λ)
(m+ n)−1/2 +

d(m+ n)

mn
.

If PX , PY ∈ P(B(0, r)) then:

||sREm,nλ,ε (PX , PY )2 − sREλ,ε(PX , PY )2||2L2 .
b2(max(r,

√
d), d, ε)

min(λ, 1− λ)
(m+ n)−1 +

d(m+ n)

mn
.

The proof, which is deferred to Appendix D.1, relies on four ingredients: Theorem 13
or Theorem 14, Proposition 15 (a), several applications of the triangle and reverse triangle
inequalities, as well as the Efron-Stein inequality ((Boucheron et al., 2013) Theorem 3.1).
The first term in the bound can be thought of as the amount of error incurred from esti-
mating Rλ,ε using m + n samples, while the second term bounds the error incurred from
estimating an expectation by sampling.

The factor of 1
min(λ,1−λ) arises from the use of the bounds like

a+ b =
λa

λ
+

(1− λ)b

(1− λ)
≤ 1

min(λ, 1− λ)
(λa+ (1− λ)b),

which arise when working with Pλ. This is a natural quantity to appear because in
sRE

m,n
λ,ε (PX , PY )2 there is an equal weight given to both {X1, ..., Xm} and {Y1, ..., Yn}, even

if m � n or vice versa. In contrast, the estimate of Rm+n
λ,ε weights PX and PY proportion-

ally to λ and (1− λ), respectively. The intuition here is that if one pays little attention to
constructing a good map on the support of PX then one should expect a large amount of
error for Rλ(Xi) which the weighting scheme only amplifies when computing the statistic.

In a similar vein, one can show that the sample version of sRMMD converges quickly in
expectation to the population version. Again this is a consequence of Theorem 13.

Theorem 18. Let k be a characteristic kernel such that for all x, the function k(x, ·) is
l-Lipschitz with respect to the Euclidean norm. Let λ ∈ (0, 1). If PX , PY are σ2-subgaussian
then:

||sRMMDm,nλ,ε (PX , PY )2−sRMMDλ,ε(PX , PY )2||2L2 .
l2b1(

√
d, d, σ2, ε)

min(λ, 1− λ)
(m+n)−1/2 +

l2d(m+ n)

mn
.

If PX , PY ∈ P(B(0, r)) then:

||sRMMDm,nλ,ε (PX , PY )2−sRMMDλ,ε(PX , PY )2||2L2 .
l2b2(max(r,

√
d), d, ε)

min(λ, 1− λ)
(m+n)−1+

l2d(m+ n)

mn
.

The proof follows essentially the same arguments as the one used to prove Theorem 17,
but uses the Lipschitz assumption in place of the reverse-triangle inequality. A discussion
of this trick is given in Appendix D.2. We remark that many of the most popular kernels do
satisfy a Lipschitz continuity condition, and practically all do when restricted to bounded
domains, so this restriction is not stringent.
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4.3 Utility as a Loss Function

There are many examples in practice where one will try to train a generative model to
create high-dimensional data (for example images, video or, audio signals), which requires
a measure of how closely an artificially generated dataset matches a real dataset. In high
dimensions there is a need for test statistics that converge rapidly since otherwise one
won’t be able to distinguish model performance from statistical fluctuations. This is one of
the main reasons (along with computational ease) that MMD (Li et al., 2015) and energy
distances (Bellemare et al., 2017) have become prominent in generative modeling. These
statistics both have n−1/2 convergence rates to their population variants, which is also
achieved by our proposed sRE and sRMMD. We believe this makes sRE and sRMMD
strong contenders for high-dimensional generative modeling.

Another important note is that the computation of high fidelity estimates of the sRE
and sRMMD can be easily done through the use of Sinkhorn’s algorithm (Cuturi, 2013)
which is based on fixed point iterations. One can perform a fixed number of iterations and
then employ automatic differentiation (Paszke et al., 2017) to obtain a gradient through
this method. This approach is not novel to this work and so-called “Sinkhorn layers” have
become popular in the neural network literature (Adams and Zemel, 2011; Emami and
Ranka, 2018; Feydy et al., 2019). This approach is implemented in our publicly available
code, linked in Section 1.

5. Applications

5.1 sRE and sRMMD as the Loss Function in a Generative Model

Generative modeling is used to implicitly approximate a complex, high-dimensional distri-
bution from a finite number of samples. When trained successfully, it allows one to draw
new samples from the underlying distribution. A seminal framework to learn the generative
model is the generative adversarial network (GAN) (Goodfellow et al., 2014) that optimizes
a minimax program. A simpler approach known as a generative moment matching network
(GMMN) (Li et al., 2015) instead minimizes the differentiable MMD (Gretton et al., 2012).
In this section, we train a generative model to minimize the proposed sRE and sRMMD
and illustrate their effectiveness compared to GMMN on the benchmark MNIST digits data
set (LeCun et al., 1998). A brief description of the model architecture and the training
procedure is given below.

Architecture: We use the same architecture used in (Li et al., 2015) which consists of (a)
a generative network and (b) an auto-encoder (Kingma and Welling, 2013). The generative
network consists of 3 intermediate ReLU nonlinear layers and one logistic sigmoid output
layer. The auto-encoder has 4 layers, 2 for the encoder and 2 for the decoder with sigmoid
nonlinearities. The auto-encoder is used to learn an almost lossless low-dimensional latent
space for the high-dimensional, complex data. The generative network is used to generate
samples in this low-dimensional space. The trained decoder then turns these samples into
meaningful high-dimensional data. For further details, we refer the reader to (Li et al.,
2015).
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(a) MMD (b) sRE (c) sRMMD

Figure 2: Comparison of the MNIST digits generated via minimizing MMD, sRE, and sR-
MMD. Subsamples of digits generated by each method are totally random and
are not handpicked, while the model architecture and training procedure are kept
the same for all methods. Red boxes in (a) indicate the abundance of the same
digit e.g., 8 when using MMD.

Training: We train the auto-encoder and generator network separately. First an auto-
encoder is learned to produce a low-dimensional representation for the MNIST digits with
latent dimension of 8 via minimizing the mean squared error. Then we train the gener-
ative network to learn to generate samples in this low-dimensional representation space
via minimizing either sRE or sRMMD. Both sRE and sRMMD are computed with en-
tropic regularizer ε = 1, where the soft rank maps are obtained via Sinkhorn’s algorithm
(Peyré et al., 2019) with a maximum of 5000 iterations. To compute sRMMD, we employ

a Gaussian mixture kernel k(x, x′) = 1
6

∑6
i=1 exp(−‖x−x

′‖2
2σ2
i

) with the bandwidth parameter

σ = (1, 2, 4, 8, 16, 32). Both the auto-encoder and the generator are trained on a minibatch
size of 256 using the Adam optimizer (Kingma and Welling, 2019) with a learning rate of
0.001 over 100 epochs.

Method GAN-train accuracy GAN-test accuracy

MMD 74.5 88.7

sRE 86.6 95.6

sRMMD 84.2 94.5

Table 2: MNIST image experiments.

Result: It is apparent from Figure 2 that the generator minimizing MMD lacks in diversity
(mostly producing 8’s). Most of the digits are also barely recognizable which indicates that
the generator performs poorly if it is trained to minimize MMD. In contrast, the generator
minimizing either sRE or sRMMD produces a diverse set of digits and almost all of them
are unambiguous.
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To numerically evaluate the performance of the MMD, sRMMD, and sRE-based gener-
ators, we use the GAN-train and GAN-test scores (Shmelkov et al., 2018). The GAN-train
score is the accuracy of a classifier trained on generated images but tested on real images
whereas GAN-test is the accuracy of a classifier trained on real images but tested on gen-
erated images. We train a two-layer convnet classifier on generated images and real images
and report the GAN-train and GAN-test score in Table 2. We observe a better GAN-test
score for sRMMD and sRE compared to MMD. This happens because the MMD-based
generator produces a lot of ambiguous digits. Also, due to the lack of diversity in generated
MNIST digits using MMD, we see a poor GAN-train score, whereas both sRE and sRMMD
perform well enough to capture the diversity in MNIST digits and show comparatively bet-
ter GAN-train scores. This establishes both sRE and sRMMD as potentially better choices
than MMD for generative modeling purposes.

Though in the current setup the generator minimizing sRMMD works well, we empir-
ically observe that the performance (e.g., diversity, unambiguity) heavily depends on the
choice of the bandwidth parameter σ and the entropic regularizer ε. In our case, we find
it beneficial to use smaller σ when using a larger ε. Plots showing the dependency of the
sRMMD generator on ε and σ can be found in Appendix F.1.

5.2 Generating Valid Knockoffs using sRMMD

In applications where the goal is to discover relevant features that can explain certain
outcomes (e.g., metabolites or genes related to Crohn’s disease (Lloyd-Price et al., 2019;
Franke et al., 2010)), it is important that the set of selected features contains as few false
discoveries as possible. One way to do that is to control the false discovery rate (FDR) at
a prespecified level q ∈ (0, 1). The classical setup to control FDR depends on assumptions
on how the features and the outcomes are related (Benjamini and Hochberg, 1995; Gavrilov
et al., 2009). A novel FDR control framework, namely Model-X knockoffs (Candès et al.,
2016), provides an alternative to the traditional methods by assuming no knowledge about
the association between the features and the outcomes. Given the set of explanatory random
variables X = (X1, ..., Xd) ∈ Rd and the outcome variable Y ∈ R, the Model-X knockoff
framework works in four steps to select relevant variables while controlling the FDR.

(a) Generate a synthetic set of features called knockoffs X̃ = (X̃1, . . . , X̃d) which are
independent of Y conditionally on X, and satisfy what is referred to as the pairwise
exchangeability condition:

(X, X̃)swap(B)
d
= (X, X̃), ∀B ⊂ {1, . . . , d}, (16)

where swap(B) exchanges the positions of any variable Xj , j ∈ B, with its knockoff
X̃j .

(b) Produce a knockoff statistic Wj = wj([X, X̃], y) for j ∈ {1, . . . , d} to assess the im-
portance of each feature. Here, wj(·) is any function with the flip sign property5.

5. A function f is said to have flip-sign property if f(u, v) = −f(v, u).
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(c) Find a data dependent threshold τ via,

τ = min
t>0

{
t :

1 + |{j : Wj ≤ −t}|
|{j : Wj ≥ t}|

≤ q
}
. (17)

(d) Select the set of variables: Ŝ = {j : Wj ≥ τ}.

Performance of the Model-X framework depends on the quality of the knockoffs, that
is, to what extent they satisfy pairwise exchangeability. One way to achieve this is to
approximate only the first two moments (mean and covariance) assuming that the joint
distribution of X is a multivariate Gaussian. This is often called a second-order method
(Candès et al., 2016). Other methods proposed in (Salimans et al., 2016; Liu and Zheng,
2018; Romano et al., 2020; Sudarshan et al., 2020) take a generative modeling approach to
satisfy (18) and sample the knockoffs. A brief description of these methods is provided in
Appendix E.1.

In this paper, we take a generative modeling approach where we propose to use sRMMD
as the loss to satisfy the pairwise exchangeability condition (16).

5.2.1 An sRMMD-Based Knockoff Generator

We use a generative model similar to the one used in (Romano et al., 2020). The generative
model has a deep neural network fθ that takes X ∼ PX ∈ Rd and a noise vector V ∼
N (0, Id) ∈ Rd as inputs and returns an approximate copy of knockoff X̃ = fθ(X,V ) ∈ Rd.
Here θ denotes the set of the parameters which is learned from the data. The network is
fed with {Xi}ni=1 ∈ Rd independent observations and generates X̃i = fθ(Xi, Vi) for 1 ≤
i ≤ n. Let X, X̃ ∈ Rn×d be the matrices having these observations and their knockoffs
as row vectors, respectively. To ensure that the knockoffs are of good quality (i.e., the
joint distribution of (Xi, X̃i) satisfies (16) and Xi and X̃i are as different as possible, for
1 ≤ i ≤ n), we minimize the following loss,

`(X, X̃)=sRMMD
[
(X′,X̃′),(X̃′′,X′′)

]
︸ ︷︷ ︸

full-swap

+sRMMD
[
(X′,X̃′),(X′′, X̃′′)swap(B)

]
︸ ︷︷ ︸

partial-swap

+γ`Decor(X, X̃), (18)

where X′,X′′ ∈ Rn/2×d and X̃′, X̃′′ ∈ Rn/2×d are obtained by randomly splitting X and
X̃ in half and B is a chosen random subset of {1, . . . , d}, such that j ∈ B with probability
1/2. We adapt the idea of splitting and swapping from (Romano et al., 2020). The first
two terms in (18) help to achieve pairwise exchangeability. The last term in (18) trades off
power versus FDR by decorrelating the variables with the knockoffs. We adapt this loss
term from (Romano et al., 2020) with hyperparameter γ > 0, which is defined as:

`Decor(X, X̃) = ‖diag(ΣXX̃)− 1 + s∗SDP(ΣXX)‖22.

ΣXX and ΣXX̃ are the empirical covariance matrix of X and the empirical cross covariance

matrix between X and X̃, respectively, and s∗SDP(ΣXX) = arg mins∈[0,1]d
∑p
j=1 |1 − sj | such

that 2ΣXX � diag(s) � 0. The loss (18) is differentiable and therefore any gradient
descent method can be adopted to train the generative model. Generally training is done
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Figure 3: Visualizing two randomly selected dimensions of the original data and the gen-
erated knockoffs, where the original data are sampled from a d = 100 di-
mensional Gaussian mixture model distribution consisting of 4 different modes,

PX =
∑4
k=1τkN (ξk,Σk), with Σk = ρ

|i−j|
k , (ρ1, ρ2, ρ3, ρ4) = (0.6, 0.4, 0.2, 0.1),

(ξ1, ξ2, ξ3, ξ4) = (0, 20, 40, 60), and (τ1, τ2, τ3, τ4) = (0.27, 0.23, 0.23, 0.27). When ε
is small, sRMMD fails to reconstruct the original data accurately. As ε increases,
sRMMD knockoffs get better and capture all four modes eventually. However,
when ε is extremely large, a performance degradation does occur. These results
indicate the importance of selecting an appropriate value of ε for a successful
sRMMD-generator. The last panel shows the performance of the MMD-based
generator on the same dataset, where MMD fails to capture all four modes. These
results demonstrate that sRMMD with an appropriate ε is a better choice than
MMD for the generation of valid knockoffs.

in minibatches size of m � n. At each epoch of training, for each batch of size m, only
one B is picked randomly to compute (18), which may prevent one to achieve pairwise
exchangeability (16) to a great extent. That is why, we recommend generating nb > (n/m)
batches by reshuffling the training set of size n several times at each epoch so that multiple
sets of random B’s are picked. Also, to generate valid knockoffs with sRMMD, choosing
the right ε is crucial. As seen from Figure 3, a very small ε, or an extremely large ε fails to
imitate the original data distribution which results in a poor-quality knockoff generator.

The details of the generative model and the training procedure for any fixed ε and γ
are summarized in Appendix E.2 and Appendix E.3, respectively. In addition, we provide
empirical justification for using sRMMD over sRE in (18) in Appendix F.2.

5.2.2 Knockoff Experiments on Synthetic Benchmarks

We compare the performance of sRMMD knockoffs with other benchmarks, namely second-
order knockoffs (Candès et al., 2016), knockoffGAN (Jordon et al., 2018), deep knockoff
(Romano et al., 2020), and deep direct likelihood knockoff (DDLK) (Sudarshan et al.,
2020) on several synthetic (four Gaussian and non-Gaussian distributional settings adapted
from (Romano et al., 2020)) and a real-world dataset. To be on an equal footing with deep
knockoff, we remove the second-order term from the loss used in (Romano et al., 2020) and
denote it as the MMD knockoff. For all comparisons, we use publicly available implemen-
tations of the code and used their recommended configurations and hyperparameters (if
available).

For each distributional setting, we train the knockoff generator on a set of n = 2000
samples each of dimension d = 100. We compute sRMMD using a Gaussian mixture kernel
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k(x, x′) = 1
8

∑8
i=1 exp(−‖x− x′‖/(2σ2

i ))
2
2 with σ = (1, 2, 4, 8, 16, 32, 64, 128), where the soft

ranks are obtained via Sinkhorn’s algorithm (with a maximum of 5000 iterations). We
update the network via minimizing (18) using stochastic gradient descent with momentum
(Bottou, 2012). The minibatch size, learning rate and the number of epochs is set to 500,
0.01, and 100, respectively. The training procedure is detailed in Algorithm E.3.

Below, we briefly describe each distributional setting and other optimal hyperparameters
e.g., ε, γ for training.

(a) Multivariate Gaussian AR1: An autoregressive model of order one in which X ∼
N (0,Σ), Σij = ρ|i−j|, ρ = 0.5. We set the decorrelation penalty γ = 1, entropic
regularizer ε = 100.

(b) Gaussian Mixture Model (GMM): X ∼
∑4

k=1 τkN (0,Σk), where the covari-

ance matrix is (Σk)ij = ρ
|i−j|
k for k = 1, . . . , 4. (ρ1, ρ2, ρ3, ρ4) = (0.6, 0.4, 0.2, 0.1),

(τ1, τ2, τ3, τ4) = (0.27, 0.23, 0.23, 0.27). We set γ = 1, and ε = 100.

(c) Multivariate Student’s t-Distribution: A heavy-tailed distribution with zero

mean and ν = 3 degrees of freedom, such that X =

√
(ν−2)
ν

Z√
Γ

, where Z ∼ N (0,Σ)

with Σ as in (a) and Γ is independently drawn from a Gamma distribution with shape
and rate parameters both equal to ν/2. We set γ = 1 and ε = 100.

(d) Sparse Gaussian: Given W ∼ N (0, 1) and a random subset A ∈ {1, . . . , p} of size

|A| = L, we set Xj =

√
(Lp)

(L−1
p−1)

.

{
W, if j ∈ A,
0, otherwise.

We set L = 30, γ = 0.1 and ε = 100.

After training, we draw mt = 200 new i.i.d. samples as the test set and simulate the
outcome as y = Xtβ + z, where Xt ∈ Rmt×d, d = 100, y ∈ Rmt , z ∼ N (0, I), and
β ∈ Rd is the coefficient vector. The vector β is all zeros except randomly chosen 20 entries,
each having an amplitude equal to υ/

√
mt, where υ is the amplitude parameter. Then we

generate the knockoff matrix X̃t and perform LASSO regression (Friedman et al., 2010) on
[Xt, X̃t] ∈ Rmt×2d via solving[

β̂
ˆ̃
β

]
= arg min

(β,β̃)

1

mt

∥∥∥y − [Xt, X̃t

] [β
β̃

] ∥∥∥2

2
+ αL

∥∥∥∥ββ̃
∥∥∥∥

1

, (19)

where the β̂ ∈ Rd and
ˆ̃
β ∈ Rd are the coefficient vectors corresponding to the original

variables, and knockoff variables, respectively and αL is the LASSO penalty. We consider
LASSO regression since it works best when the true model is close to linear. We estimate

the coefficient vectors using αL = 0.01 and take the absolute difference Wj = |β̂j | − | ˆ̃βj | as
the knockoff statistic for 1 ≤ j ≤ d. We repeat the experiments 500 times for different
values of υ and compare the power versus FDR tradeoff with the benchmarks.

Result: Figure 4 shows the FDR versus power tradeoff with respect to the amplitude
parameter υ. In the case of Gaussian AR1 setting, all methods showcase similar detection
power and FDR control at level q = 0.1 over the entire amplitude region. In the GMM
setting, we observe that each method achieves similar power and controls the FDR at
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(a) Multivariate Gaussian AR1
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(b) Gaussian Mixture Model
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(c) Multivariate Student’s t
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Figure 4: Average FDR and power computed over 500 independent experiments are shown
on the y-axis for each synthetic benchmark. The FDR level is set to 0.1. The
x-axis represents the amplitude parameter υ.

q = 0.1 like the multivariate Gaussian setting. This can be explained by the fact that
here the GMM and Gaussian settings belong to the same exact family of distributions
since the sum of independent Gaussians is a Gaussian. For the heavy-tailed multivariate
Student’s t-distribution, sRMMD, MMD, and knockoffGAN can control the FDR at q = 0.1,
however, the second-order method fails to control the FDR, likely because it assumes that
the underlying distribution is multivariate Gaussian. DDLK also fails to control the FDR
in this case. For the sparse Gaussian setting, sRMMD knockoffs showcase the best FDR
versus power tradeoff among all methods over the entire amplitude region. Second-order,
and knockoffGAN methods also achieve similar power and control the FDR at q = 0.1. In
contrast, MMD and DDLK knockoffs fail to control the FDR at q = 0.1.

We do acknowledge the fact that in all settings knockoffGAN also achieves high power
and controls the FDR at q = 0.1. KnockoffGAN is a complex generative adversarial archi-
tecture that requires training of four interconnected neural networks. Instead of minimizing
a GoF statistic (e.g., MMD or sRMMD), knockoffGAN minimizes the binary cross-entropy
loss in order to satisfy the pairwise exchangeability condition. In addition, knockoffGAN
uses mutual information loss to make the variables and their knockoffs as independent as
possible which is a much stronger notion than decorrelation. In contrast to knockoffGAN,
our method is simple and easy to implement, yet achieves comparable FDR versus power
tradeoff.
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5.2.3 Application to a Real Metabolomics Dataset

We apply the proposed knockoff filter to a publicly available metabolomics dataset in order
to discover important biomarkers with FDR guarantees. We use a study titled Longi-
tudinal Metabolomics of the Human Microbiome in Inflammatory Bowel Disease (Lloyd-
Price et al., 2019) which is available at the Metabolomics Workbench through the National
Metabolomics Data Repository (NMDR) website https://www.metabolomicsworkbench.

org/ under the project DOI: 10.21228/M82T15 and sponsored by the Common Fund of the
NIH. The study is related inflammatory bowel disease (IBD) and conditions including ul-
cerative colitis (UC) and Crohn’s disease (CD) and seeks to identify important metabolites
(biological products produced as intermediates during metabolism) associated with these
diseases. We use the C18 Reverse-Phase Negative Mode dataset which was collected under
this study. The dataset contains 546 samples, each having an average of 91 metabolites.
Each sample belongs to one of the three classes (UC, CD, and non-IBD) and assigns the
response y to one of {0, 1, 2} to reflect this. We preprocess the dataset in three steps: (i)
removing the metabolites that have more than 20% missing values which retains only 80
metabolites out of 91, (ii) applying k-nearest neighbor (KNN) missing value imputation
technique to fill out the existing missing values, and (ii) standardizing the features by re-
moving the mean and scaling to unit variance. For this dataset, we use the same generative
architecture described in Section 5.2.1. We choose entropic regularizer ε = 50 and kernel
bandwidth σ = (1, 2, 4, 8, 16, 32, 64, 128) to compute sRMMD. We pick γ = 1. We train the
generator on a minibatch of 250 samples according to Algorithm E.3.

After training, we generate the knockoffs, and apply the random forest (RF) classifier
(Trainor et al., 2017) to produce knockoff statistics. The two RF parameters—the number
of features that are randomly selected at each node and the number of trees—are set to 9
(the closest integer to the recommended

√
80) and 500, respectively. We take the difference

between the feature importance scores (Trainor et al., 2017) corresponding to the original
variables and the knockoffs as the knockoff statistics. Since the generated knockoffs are
random, we repeat the whole procedure 100 times and select those metabolites that appear
at least 70 times out of 100 instances, setting the FDR level at q = 0.05. In absence of
the ground truth, to qualitatively analyze the performance we cross-reference the selected
metabolites with published literature. We list the selected metabolites along the references
in Table 3.

Out of 80, we have found 18 metabolites to have an impact on IBD in the published
literature. Though MMD knockoffs detect most of the significant metabolites, the detection
percentage is very low. The second-order method performs better compared to MMD in
terms of power though it misses several significant metabolites. On the other hand, sRMMD
and KnockoffGAN have almost the same detection power, and outperform second-order and
MMD methods.

6. Conclusion and Future Directions

In this paper, we identified some major limitations in use of the recently proposed multi-
variate rank-based GoF statistics based on the theory of optimal transportation, namely
high sample and computational complexity in high dimensions and lack of differentiability,
which limits their use in gradient-based machine learning methods. We show that using
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Metabolites

Method
(N)

sRMMD

(21)
Second-order

(16)
MMD

(27)
KnockoffGAN

(20)
Reference

1.2.3.4-tetrahydro-beta-

carboline-1.3-dicarboxylate
4 4 4 4 (Volkova and Ruggles, 2021)

urobilin 4 4 4 4 (Qin, 2012)
adrenate 4 4 4 4 (Lloyd-Price et al., 2019)

12.13-diHOME 4 4 4 4 (Levan et al., 2019)
salicylate 4 4 4 4 (Caprilli et al., 2009)
saccharin 4 4 4 4 (Qin, 2012)
caproate 4 4 4 4 (Lee et al., 2017)

olmesartan 4 4 4 4 (Saber et al., 2019)
phenyllactate 4 8 4 4 (Lavelle and Sokol, 2020)

taurolithocholate 4 8 4 8 (Bauset et al., 2021)
docosapentaenoate 4 4 4 4 (Solakivi et al., 2011)
docosahexaenoate 4 8 4 4 (Solakivi et al., 2011)
dodecanedioate 4 8 4 8 (Lee et al., 2017)
hydrocinnamate 4 4 4 4 (Lee et al., 2017)
eicosatrienoate 4 8 4 4 (Kuroki et al., 1997)
9.10-diHOME 4 4 4 4 (Lloyd-Price et al., 2019)
arachidonate 8 8 4 4 (Lloyd-Price et al., 2019)

myristate 8 8 8 8 (Fretland et al., 1990)

Total = 18 16 11 17 15

Detection power (%) 76 69 63 75

Table 3: N is the total number of selected metabolites. DDLK finds almost every metabo-
lites as significant, therefore loses its purpose as a FDR control technique. That
is why we refrain from adding it here.

entropic maps derived from entropic regularization of the optimal transportation problem
alleviates these issues and leads to efficient statistics for GoF testing. Furthermore, we show
that this relaxation allows the use of these GoF statistics for generative modeling in high
dimensions.

One future research direction is to evaluate the effect of different distributions as the
target distribution in place of Unif([0, 1]d) such as spherical uniform distribution (Hallin
et al., 2021). It may be important to characterize the effect of this choice for the soft rank
and soft rank-based statistics proposed in this paper.

A related problem concerns the dependence on ε in the entropic regularization. In par-
ticular, the convergence rate of the sRE and sRMMD to the RE and RMMD as ε→ 0+ is
the subject of ongoing work. While Proposition 16 provides a coarse convergence result, we
conjecture that a more precise bound may hold and that the extra smoothness assumptions
on the measures may not be required for this result to be true, and that compactness and
together with weaker smoothness assumptions may suffice. Beyond analyzing the conver-
gence rate in ε, it is important to understand the advantages of taking ε � 0, beyond the
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improvements in statistical and computational complexity. For example, one may wish to
understand the impact ε has on the robustness, or stability, of sRE in response to small
perturbations in the distributions.
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Appendix A. Lack of Gradient Issue of RE from Section 2.2.2

The issue is to estimate the gradient of `(θ) = REm,n(PX , (Tθ)#PY )2. Recalling the definition
of REm,n(PX , (Tθ)#PY )2, we have:

REm,n(PX , (Tθ)#PY )2

=
2

mn

m∑
i=1

n∑
j=1

‖Rm+n(Xi)− Rm+n(Tθ(Yj))‖ −
1

m2

m∑
i,j=1

‖Rm+n(Xi)− Rm+n(Xj)‖

− 1

n2

n∑
i,j

‖Rm+n(Tθ(Yi))− Rm+n(Tθ(Yj))‖

=
2

mn

m∑
i=1

n∑
j=1

‖Uσθ(Xi) − Uσθ(Tθ(Yj))‖ −
1

m2

m∑
i,j=1

‖Uσθ(Xi) − Uσθ(Xj)‖−

1

n2

n∑
i,j

‖Uσθ(Tθ(Yi)) − Uσθ(Tθ(Yj))‖,

where σθ is the optimal permutation for transporting {X1, ..., Xm} ∪ {Tθ(Y1), ..., Tθ(Yn)}
to {U1, ..., Um+n} where Ui ∼ Unif([0, 1]d). From the last expression it is clear that the
expression only changes value when the permutation σθ changes. This poses problems for
the derivative of the loss functions with respect to θ. If Tθ(y) varies smoothly with y then any
small enough change in θ can either leave the value of REm,n(Xm, Tθ(Yn))2 unchanged since
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the permutation is unchanged, or it causes a jump in the objective when the permutation
changes. In the first case the derivative is zero, and in the second it is not well-defined.

Appendix B. Proof of Theorem 13

The proof of this result is quite involved. We first review some background and notation
and then build up to the result using a series of lemmas and propositions. To help with
the exposition, the proofs of these steps are given at the end of the section. We also will
adopt the convention that all constants C,Ci, Cj,r,d do not change values from line to line.
At the end of the section, we include a table of the constants, including their relations to
each other or the source from which they are taken.

We first introduce the notation for the entropy-regularized optimal transport distance
between P,Q:

Sε(P,Q) = inf
π∈Π(P,Q)

∫ ∫
1

2
‖x− y‖2 dπ(x, y) + εDKL(π||P ⊗Q) (20)

= sup
f∈L1(P ),g∈L1(Q)

∫
fdP +

∫
gdQ

−ε
∫ ∫

exp

(
1

ε

[
f(x) + g(y)− 1

2
‖x− y‖2

])
dP (x)dQ(y) + ε. (21)

The optimal coupling of (P,Q) in (20) will be denoted πε, and for (P,Qn) it will be denoted
πnε . These are both guaranteed to exist if P,Q have finite second moment which is always
the case for bounded support or subgaussian distributions. The optimal dual potentials
of (P,Q) in (21) will be denoted (fε, gε). For (P,Qn) the optimal dual potentials will be
denoted (fnε , g

n
ε ). As a consequence of (5), we can always choose fε, gε to satisfy:∫
exp

(
1

ε

[
fε(x) + gε(y)− 1

2
‖x− y‖2

])
dP (x) = 1 for all y ∈ Rd, (22)∫

exp

(
1

ε

[
fε(x) + gε(y)− 1

2
‖x− y‖2

])
dQ(y) = 1 for all x ∈ Rd, (23)

and we will make use of this property many times. This is because

exp

(
1

ε

[
fε(x) + gε(y)− 1

2
‖x− y‖2

])
dP (x)

is the conditional density of πε given y while exp
(

1
ε

[
fε(x) + gε(y)− 1

2 ‖x− y‖
2
])
dQ(y) is

the conditional density of πε given x. For further discussion see (Pooladian and Niles-Weed,
2021).

We also remark that we can add or subtract a constant c from fε and gε, that is, choose
different but still optimal potentials f = fε+c, g = gε−c. As a result of this we can enforce
that

EP [fε(X)] = EQ[gε(Y )] =
1

2
Sε(P,Q), (24)

which will be important for the proof of Proposition 31 below.
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For brevity we introduce the notations:

c(x, y) ,
1

2
‖x− y‖2 and γ(x, y) , exp

(
1

ε
[fε(x) + gε(y)− c(x, y)]

)
.

A final technical tool that we will use is an alternative definition of a subgaussian random
variable. For a scalar random variable X we can define its subgaussian norm (Vershynin,
2018) by:

‖X‖ψ2
, inf

{
t > 0 : E

[
exp

(
X2

t2

)]
≤ 2

}
. (25)

Note that for scalar random variables, that is when d = 1, being σ2-subgaussian implies
‖X‖ψ2

≤
√

2σ, and ‖X‖ψ2
≤ σ implies X is σ2

2 -subgaussian. This shows that the two
notions are equivalent for scalar random variables up to a constant. The norm notation is
much more convenient for describing the concentration of certain random variables we will
use in the proofs below.

To start we borrow a result which shows that one can take the supremum in (21) over
an even larger space of functions.

Proposition 19 ((Pooladian and Niles-Weed, 2021) Proposition 1). Letting πε denote the
optimal coupling in (20) between P and Q. Then:

Sε(P,Q)= sup
η∈L1(πε)

∫
η(x, y)dπε(x, y)−ε

(∫∫
exp

(
1

ε

[
η(x, y)− 1

2
‖x− y‖2

])
dQ(y)dP (x)−1

)
.

This is a very useful formula when combined with a clever restriction of the class of test
functions. The following result does this by considering functions η of the form

η(x, y) = εχ(x, y) + fε(x) + gε(y),

where χ ∈ L1(πnε ).

Proposition 20. Let πnε be the optimal coupling in (20) between P and Qn and let (fε, gε)
be the optimal dual potentials for (P,Q). Then:

sup
χ∈L1(πnε )

∫
χ(x, y)dπnε (x, y)−

(∫ ∫
exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤1

ε

(
Sε(P,Q

n)− Sε(P,Q) +

∫
gε(y)d(Qn −Q)(y)

)
.

For convenience we define G , Sε(P,Q
n)−Sε(P,Q)+

∫
gε(y)d(Qn−Q)(y). Importantly,

G is a random scalar variable, determined by the random batch of samples observed.

Proposition 20 is useful for two reasons. The first reason is that both terms on the right
hand side have been studied before and can be shown to have good convergence properties
as n grows. Indeed, the first term has been analyzed in (Pooladian and Niles-Weed, 2021)
and the second term is easily controlled using standard ideas in Monte Carlo integration.
Therefore, the right hand side is generally easy to control. The second reason is that there
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is still sufficient flexibility for choosing a test function on the left hand side. In particular
we will further restrict the supremum to χ of the form

χ(x, y) = h(x)T (y − Tnε (x))− a||h(x)||2

for a > 0 and h : Rd → Rd. The motivation for this choice is that we don’t know the exact
form of Tnε (x) − Tε(x), since Tnε is itself random, and instead we aim for uniform control
over a function class which surely contains it, regardless of the random samples drawn. The
extra variable a allows us to establish a few useful inequalities later.

Proposition 21. Let πnε be the optimal coupling in (20) between P and Qn and let (fε, gε)
be the optimal dual potentials for (P,Q). Then for any a > 0,

sup
h

∫
(h(x)T (y − Tnε (x))− a||h(x)||2)dπnε (x, y)

−
(∫ ∫

exp
(
h(x)T (y − Tnε (x))− a||h(x)||2

)
γ(x, y)dQn(y)dP (x)− 1

)
≤ 1

ε
G,

where the supremum is over all h : Rd → Rd such that h(x)T (y−Tnε (x))−a||h(x)||2 ∈ L1(πnε ).

Essentially the proof is just restricting the supremum in Proposition 20 to the class of
test functions of the form h(x)T (y − Tnε (x)) − a||h(x)||2 ∈ L1(πnε ) for some h. In principle
one could go directly from Proposition 19 to Proposition 21 by considering functions of the
form η(x, y) = ε(h(x)T (y−Tnε (x))−a||h(x)||2)+fε(x)+gε(y), however the proof using this
approach is incredibly cumbersome.

Importantly, we have managed to insert Tnε into the left hand side above. The next
result marks a large amount of progress and boils down to a choice of h and a large number
of simplifications.

Lemma 22. Define h0 : Rd → Rd by h0(x) =
1

2a
(Tnε (x)− Tε(x)) . Then in the setting of

Proposition 21 we have:

1

4a
||Tnε −Tε||2L2(P ) ≤

1

ε
G+

(∫∫
exp
(
h0(x)T (y−Tε(x))−a||h0(x)||2

)
γ(x, y)dQn(y)dP (x)−1

)
.

The next step is to swap the trailing “−1” in the bound above for a term which will
make the convergence more explicit. This is done in the following lemma.

Lemma 23. Suppose Q ∈ P(Bd
2(0, r)). For a ≥ C0r

2 and h0 defined as above it holds that:∫ ∫
exp

(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)dQ(y)dP (x) ≤ 1,

where C0 is an absolute constant.

Combining Lemmas 22 and 23 we obtain the following.
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Proposition 24. Suppose Q ∈ P(Bd
2(0, r)). For a ≥ C0r

2 and h0 defined as above we have:

1

4a
||Tnε −Tε||2L2(P ) ≤

1

ε
G+

∫∫
exp

(
h0(x)T (y−Tε(x))−a||h0(x)||2

)
γ(x, y)[dQn−dQ](y)dP (x).

If for a moment one ignores the randomness in h0, the right hand side would be expected
to converge to 0 at rate n−1/2, since it would be the error in Monte Carlo integration of a
single variable function. However, since the function h0 is random one needs to work a bit
harder and introduce tools from empirical process theory.

Lemma 25. Assume P is σ2-subgaussian and Q ∈ P(Bd
2(0, r)). Let C1 = max(C0, 2).

Then with h0 defined as in Lemma 22 and for a ≥ C1r
2 we have:

E
∫ ∫

exp
(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

≤ C2

√
d√
n

exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))(
exp

(
8rdσ2

ε2

)
+ 2

)
,

where C2 is an absolute constant.

Having controlled the right most term in Proposition 24, we now turn our attention to
controlling G. This has already been done in the literature and we state these results for
completeness. The first term of G is controlled by the following result.

Proposition 26 ((Mena and Niles-Weed, 2019)). Let P,Q be σ2-subgaussian. Let ε > 0.
Then:

ESε(P,Qn)− Sε(P,Q) ≤ Kd,0 · ε

(
1 +

σd5d/2e+6

εd5d/4e+3

)
1√
n
.

Note that if σ ≥ r√
2d log 2

and Q ∈ P(Bd
2(0, r)) then Q always satisfies the condition of

Proposition 26, as can be shown by a direct calculation.
For the second term in G we have simply that:

E
∫
gε(y)d(Qn −Q)(y) = 0.

We can now state the “zero-to-one” sample theorem for the convergence of the entropic
map, which follows by combining Proposition 24, Lemma 25, and Proposition 26.

Theorem 27. Assume P is σ2-subgaussian and Q ∈ P(Bd
2(0, r)). Then:

E||Tnε −Tε||2L2(P ) ≤ exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))(
exp

(
8rdσ2

ε2

)
+ 2

)
C3r

2
√
d√

n
+

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
Kd,1r

2

√
n

,

where σ0 = max
(
σ, r√

2d log 2

)
.

A much easier proof is also possible for the “one-to-two” sample theorem for the con-
vergence of the entropic map.
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Theorem 28. Let P be σ2-subgaussian and Q ∈ P(Bd
2(0, r)), let Tn,nε be the entropic map

from Pn to Qn, and let Tnε be the entropic map from P to Qn. Then Tn,nε satisfies:

E ‖Tnε − Tn,nε ‖
2
L2(P ) ≤ r

2Kd,2 ·

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n
,

where σ0 = max
(
σ, r√

2d log 2

)
.

As noted above, this result automatically covers bounded support measures since all
bounded support measures are σ2-subgaussian with σ2 controlled by the radius of the ball
containing the support of Q.

Combining Theorems 27 and 28 we have our result.

Proof (Theorem 13) Applying Theorems 27 and 28, we have:

E||Tn,nε − Tε||2L2(P ) = E||(Tn,nε − Tnε ) + (Tnε − Tε)||2L2(P )

≤ E
(
||(Tn,nε − Tnε )||L2(P ) + ||(Tnε − Tε)||L2(P )

)2
≤ 2E||(Tn,nε − Tnε )||2L2(P ) + 2E||(Tnε − Tε)||2L2(P )

≤ 2C3r
2
√
d√

n
exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))(
exp

(
8rdσ2

ε2

)
+ 2

)
+ 2(Kd,1 +Kd,2)r2

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n
. (26)

B.1 Proof of Proposition 20

Proof Let χ ∈ L1(πnε ) and define η by:

η(x, y) = εχ(x, y) + fε(x) + gε(y).

Note that η ∈ L1(πnε ) since χ, (fε+gε) ∈ L1(πnε ). By Proposition 19 and the fact that P,Qn

are the marginals of πnε it follows:

Sε(P,Q
n) ≥

∫
η(x, y)dπnε (x, y)− ε

(∫∫
exp

(
1

ε

[
η(x, y)− 1

2
‖x− y‖2

])
dQn(y)dP (x)−1

)
=

∫
[εχ(x, y) + fε(x) + gε(y)] dπnε (x, y)

− ε
(∫∫

exp

(
1

ε

[
[εχ(x, y) + fε(x) + gε(y)]− 1

2
‖x− y‖2

])
dQn(y)dP (x)−1

)
= ε

∫
χ(x, y)dπnε (x, y) +

∫
fε(x)dP (x) +

∫
gε(y)dQn(y)

− ε
(∫∫

exp

(
χ(x, y) +

1

ε

[
fε(x) + gε(y)− 1

2
‖x− y‖2

])
dQn(y)dP (x)−1

)
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= ε

∫
χ(x, y)dπnε (x, y) +

∫
fε(x)dP (x) +

∫
gε(y)dQn(y)

− ε
(∫∫

exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
.

Rearranging, we have:∫
χ(x, y)dπnε (x, y)−

(∫ ∫
exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤1

ε
Sε(P,Q

n)− 1

ε

(∫
fε(x)dP (x) +

∫
gε(y)dQn(y)

)
. (27)

Dropping for a moment the 1
ε , we have:

Sε(P,Q
n)−

(∫
fε(x)dP (x) +

∫
gε(y)dQn(y)

)
=(Sε(P,Q

n)− Sε(P,Q))+

(
Sε(P,Q)−

∫
fε(x)dP (x) +

∫
gε(y)dQ(y)

)
+

∫
gε(y)d(Qn −Q)(y)

=Sε(P,Q
n)− Sε(P,Q) +

∫
gε(y)d(Qn −Q)(y). (28)

In the last line we have used that by (22),

−ε
∫ ∫

exp

(
1

ε

[
fε(x) + gε(y)− 1

2
‖x− y‖2

])
dQ(y)dP (x) + ε = −ε

∫
1dQ(y) + ε = 0,

and therefore:

Sε(P,Q) =

∫
fεdP +

∫
gεdQ− ε

∫∫
exp

(
1

ε

[
fε(x)+gε(y)− 1

2
‖x− y‖2

])
dQ(y)dP (x) + ε

=

∫
fεdP +

∫
gεdQ.

This implies

Sε(P,Q)−
∫
fεdP +

∫
gεdQ = 0.

Plugging (28) into (27) we obtain:∫
χ(x, y)dπnε (x, y)−

(∫ ∫
exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤ 1

ε

[
Sε(P,Q

n)− Sε(P,Q) +

∫
gε(y)d(Qn −Q)(y)

]
.

Since χ was chosen arbitrarily in L1(πnε ), this bound holds uniformly over the class. There-
fore, we have:

sup
χ∈L1(πnε )

∫
χ(x, y)dπnε (x, y)−

(∫ ∫
exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤ 1

ε
(Sε(P,Q

n)− Sε(P,Q)) +
1

ε

∫
gε(y)d(Qn −Q)(y),

as desired.
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B.2 Proof of Proposition 21

Proof Define the set

H =

{
H(x, y) = h(x)T (y − Tnε (x))− a||h(x)||2

∣∣∣∣ h : Rd → Rd;
∫ ∣∣h(x)T (y − Tnε (x))− a||h(x)||2

∣∣ dπnε <∞}.

Then H ⊂ L1(πnε ) and by Proposition 20 we have

sup
h

∫
h(x)T (y − Tnε (x))− a||h(x)||2dπnε (x, y)

−
(∫ ∫

exp
(
h(x)T (y − Tnε (x))− a||h(x)||2

)
γ(x, y)dQn(y)dP (x)− 1

)
= sup

H∈H

∫
H(x, y)dπnε (x, y)−

(∫ ∫
exp(H(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤ sup

χ∈L1(πnε )

∫
χ(x, y)dπnε (x, y)−

(∫ ∫
exp(χ(x, y))γ(x, y)dQn(y)dP (x)− 1

)
≤ 1

ε
(Sε(P,Q

n)− Sε(P,Q)) +
1

ε

∫
gε(y)d(Qn −Q)(y) =

1

ε
G.

B.3 Proof of Lemma 22

Proof Using that the first marginal of πnε is P we have∫
(h0(x)T (y − Tε(x))− a||h0(x)||2)dπnε (x, y) =

∫
h0(x)T (y−Tε(x))dπnε (x, y)−

∫
a||h0(x)||2dP (x). (29)

Now let us consider the two integrals separately. For the first we have the following chain:∫
h0(x)T (y − Tε(x))dπnε (x, y)

=

∫ (
1

2a
(Tnε (x)− Tε(x))

)T
(y − Tε(x))dπnε (x, y)

=
1

2a

∫
(Tnε (x)− Tε(x))T ydπnε (x, y)− 1

2a

∫
(Tnε (x)− Tε(x))TTε(x)dπnε (x, y)

=
1

2a

∫
(Tnε (x)− Tε(x))T ydπnε (x, y)− 1

2a

∫
(Tnε (x)− Tε(x))TTε(x)dP (x)

=
1

2a

∫
(Tnε (x)− Tε(x))TTnε (x)dP (x)− 1

2a

∫
(Tnε (x)− Tε(x))TTε(x)dP (x) (30)

=
1

2a

∫
(Tnε (x)− Tε(x))T (Tnε (x)− Tε(x))dP (x)

=
1

2a

∫
||Tnε (x)− Tε(x)||2dP (x) =

1

2a
||Tnε − Tε||2L2(P ). (31)

The third equality uses that P is the marginal of πnε . To see (30), note:∫
(Tnε (x)− Tε(x))T ydπnε (x, y) =

∫ [∫
(Tnε (x)− Tε(x))T ydπnε (y|x)

]
dP (x)
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=

∫
(Tnε (x)− Tε(x))T

[∫
ydπnε (y|x)

]
dP (x) (Linearity)

=

∫
(Tnε (x)− Tε(x))TTnε (x)dP (x). (Eq12)

For the second integral in (29), we have:∫
a||h0(x)||2dP (x) =

∫
a|| 1

2a
[Tnε (x)− Tε(x)]||2dP (x)

=
1

4a
||Tnε − Tε||2L2(P ). (32)

Plugging (31),(32) into (29) we have∫
h0(x)T (y − Tε(x))− a||h(x)||2dπnε (x, y) =

1

2a
||Tnε − Tε||2L2(P ) −

1

4a
||Tnε − Tε||2L2(P )

=
1

4a
||Tnε − Tε||2L2(P ).

Now by Proposition 21 we have:

1

ε
G ≥ sup

h

∫
h(x)T (y − Tε(x))− a||h(x)||2dπnε (x, y)

−
(∫ ∫

exp
(
h(x)T (y − Tε(x))− a||h(x)||2

)
γ(x, y)dQn(y)dP (x)− 1

)
≥
∫
h0(x)T (y − Tε(x))− a||h0(x)||2dπnε (x, y)

−
(∫ ∫

exp
(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)dQn(y)dP (x)− 1

)
=

1

4a
||Tnε −Tε||2L2(P )−

(∫∫
exp

(
h0(x)T (y−Tε(x))−a||h0(x)||2

)
γ(x, y)dQn(y)dP (x)−1

)
.

If we re-arrange the first and last inequality we have:

1

4a
||Tnε −Tε||2L2(P ) ≤

1

ε
G+

(∫∫
exp
(
h0(x)T (y−Tε(x))−a||h0(x)||2

)
γ(x, y)dQn(y)dP (x)−1

)
,

which proves the result.

B.4 Proof of Lemma 23

In order to prove this result we first collect two further facts. The first is proved by a direct
calculation.

Lemma 29. In the setting of Proposition 21, for any h it holds for every x∫
h(x)T (y − Tε(x))γ(x, y)dQ(y) = 0.
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Proof By linearity, we have:∫
h(x)T (y − Tε(x))γ(x, y)dQ(y) = h(x)T

[∫
(y − Tε(x))γ(x, y)dQ(y)

]
and the integral on the inside can be expressed as:∫

(y − Tε(x))γ(x, y)dQ(y)

=

∫
yγ(x, y)− γ(x, y)


∫
y0 exp

(
1

ε
[gε(y0)− c(x, y0)]

)
dQ(y0)∫

exp

(
1

ε
[gε(y1)− c(x, y1)]

)
dQ(y1)

 dQ(y) (Def. of Tε)

=

∫
yγ(x, y)− γ(x, y)


∫
y0 exp

(
1

ε
[gε(y0) + fε(x)− c(x, y0)]

)
dQ(y0)∫

exp

(
1

ε
[gε(y1) + fε(x)− c(x, y1)]

)
dQ(y1)

 dQ(y)

=

∫
yγ(x, y)− γ(x, y)

[∫
y0 exp

(
1

ε
[gε(y0) + fε(x)− c(x, y0)]

)
dQ(y0)

]
dQ(y) (Eq. 23)

=

∫
yγ(x, y)dQ(y)−

∫
γ(x, y)

[∫
y0γ(x, y0)dQ(y0)

]
dQ(y)

=

∫
yγ(x, y)dQ(y)−

[∫
y0γ(x, y0)dQ(y0)

] ∫
γ(x, y)dQ(y)

=

∫
yγ(x, y)dQ(y)−

∫
y0γ(x, y0)dQ(y0) = 0. (Eq 22)

In particular this result holds when h = h0, and going a step further, it holds inde-
pendent of both the choice of x and the form of the random function h0. This is critical
for establishing uniform control. The mean-zero condition also enables us to use a key
inequality which only holds for mean-zero random variables.

Lemma 30. There exists an absolute constant C0 such that for all a ≥ C0r
2 and h0 defined

as in Lemma 22, it holds for all x that:∫
exp(h0(x))T (y − Tε(x))γ(x, y)dQ(y) ≤ exp(a||h0(x)||2).

Proof We need a few facts from (Vershynin, 2018). First, if X is a bounded random
variable such that ||X||∞ < B then:

||X||ψ2 ≤ C4B,

where ||X||ψ denotes the subgaussian norm of X and C4 is an absolute constant (see Ex-
ample 2.5.8.iii in (Vershynin, 2018)). Second, if X is mean-zero, then for all λ ∈ R:

E exp(λX) ≤ exp(C5λ
2||X||2ψ2

), (33)
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where C5 is another absolute constant (See Proposition 2.5.2 or (2.16) in (Vershynin, 2018)).
Now for a fixed x, let Y x be the random variable whose law is the conditional distribution

of πε with X = x. Further define:

Zx , (Tnε (x)− Tε(x))T (Y x − Tε(x)).

First note that since Tε(x), Tnε (x), Y x ∈ Bd
2(0, r) we have:

|Zx| = |(Tnε (x)− Tε(x))T (Y x − Tε(x))|
≤ ||Tnε (x)− Tε(x)||||Y x − Tε(x)||
≤ (2r)||Tnε (x)− Tε(x)||

=⇒ ||Zx||ψ2 ≤ 2rC4||Tnε (x)− Tε(x)||. (34)

Next, we have by Lemma 29

E[Zx]=

∫
(Tnε (x)−Tε(x))T (Y x−Tε(x))dπxε (y)=

∫
(Tnε (x)−Tε(x))T (Y x−Tε(x))γ(x, y)dQ(y)=0.

This shows that Zx satisfies the conditions to use (33). Doing so we obtain:∫
exp(h0(x))T (y − Tε(x))γ(x, y)dQ(y)

=

∫
exp

(
1

2a
(Tnε (x)− Tε(x))T (Y x − Tε(x))

)
γ(x, y)dQ(y)

=E
[
exp

(
1

2a
Zx
)]

≤ exp

(
C5

1

4a2
4C2

4r
2||Tnε (x)− Tε(x)||2

)
(Eq.(33) and (34))

= exp

(
C6
r2

a2
||Tnε (x)− Tε(x)||2

)
,

where C6 = C2
4C5.

From here it is enough to show that

exp

(
C6
r2

a2
||Tnε (x)− Tε(x)||2

)
≤ exp

(
1

4a
||Tnε (x)− Tε(x)||2

)
= exp(a||h0(x)||2).

By monotonicity of exp it is enough to show that

C6
r2

a2
||Tnε (x)− Tε(x)||2 ≤ 1

4a
||Tnε (x)− Tε(x)||2,

and this holds true if a ≥ 4C6r
2. Letting C0 = 4C6 proves the result.

With the preceding lemma in hand, the proof of Lemma 23 becomes straightforward.

Proof (Lemma 23) For a ≥ C0r
2 we have:∫ ∫

exp
(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)dQ(y)dP (x)
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=

∫
exp(−a||h0(x)||2)

[∫
exp

(
h0(x)T (y − Tε(x))

)
γ(x, y)dQ(y)

]
dP (x)

≤
∫

exp(−a||h0(x)||2)
[
exp(a||h0(x)||2)

]
dP (x) (Lemma 30)

=1.

B.5 Proof of Lemma 25

To start we have the following result, which is essentially contained in Proposition A.1 of
(Mena and Niles-Weed, 2019). We include its proof here for completeness and to specify
the bounds to our setting.

Proposition 31. Let P be σ2-subgaussian. Let Q ∈ P(Bd
2(0, r)). Then, there exist smooth

optimal potentials (fε, gε) for Sε(P,Q) such that,

gε(y)− 1

2
‖x− y‖2 ≤ dσ2 + (‖x‖+

√
2dσ)‖y‖ − ‖x‖2,

fε(x) ≤ 1

2
(r + ‖x‖)2.

Proof Let X ∼ P and Y ∼ Q. We note that by Equations (22), (23), and (24) one can
chose fε, gε such that:

fε(x) = −ε log

(
E exp

(
1

ε
(gε(Y )− 1/2‖x− Y ‖2)

))
,

gε(y) = −ε log

(
E exp

(
1

ε
(fε(X)− 1/2‖X − y‖2)

))
,

and E[fε(X)] = E[gε(Y )] = 1
2Sε(P,Q) ≥ 0. Given these choices, we note that by the

convexity of −ε log and Jensen’s inequality that:

gε(y) = −ε log

(
E exp

(
1

ε
(fε(X)− 1/2‖X − y‖2)

))
≤ E

[
−ε log exp

(
1

ε

(
fε(X)− 1/2‖X − y‖2

))]
= E

[
1

2
‖X − y‖2 − fε(X)

]
≤ 1

2
E‖X − y‖2.

This implies that:

gε(y)− 1

2
‖x− y‖2 ≤ 1

2
E‖X − y‖2 − 1

2
‖x− y‖2

=
1

2
(E‖X‖2 + ‖y‖2)− E[X]>y − 1

2
(‖x‖2 + ‖y‖2) + x>y
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≤ dσ2 +
√

2dσ‖y‖ − ‖x‖
2

2
+ ‖x‖‖y‖.

Similarly, applying Jensen’s inequality as above but to fε we obtain:

fε(x) ≤ 1

2
E‖Y − x‖2 ≤ 1

2
(r + ‖x‖)2.

For our analysis this proposition implies the following bound on γ(x, y) for P a.e. x and
for Q a.e. y.

Lemma 32. Under the assumptions of Proposition 31,

γ(x, y) ≤ exp

(
1

ε

[
dσ2 +

√
2dσr + r2 + 2r‖x‖

])
.

Proof Using Proposition 31 we have

ε log γ(x, y) = fε(x) + gε(y)− 1

2
‖x− y‖2

≤ dσ2 +
√

2dσ‖y‖ − ‖x‖
2

2
+ ‖x‖‖y‖+

1

2
(r + ‖x‖)2

= dσ2 +
√

2dσr + ‖x‖r +
1

2
(r2 + 2‖x‖r)

= dσ2 +
√

2dσr + r2 + 2r‖x‖.

Dividing by ε and exponentiating proves the result.

Before continuing to the main proof we require one more basic tool. The following result
is a standard bound in empirical process theory which will help us to control the randomness
of h0. To state it we must introduce the notation N (T, dT , δ) which is the covering number
of the metric space (T, dT ) by balls of radius at most δ whose centers lie in T .

Theorem 33 (Dudley’s Inequality, (Vershynin, 2018) Theorem 8.1.3). Let (Xt)t∈T be a
mean-zero random process on a metric space (T, dT ) with subgaussian increments satisfying
||Xt −Xs||ψ2 ≤ KdT (t, s) for all t, s ∈ T . Then:

E sup
t∈T

Xt ≤ C7K

∫ ∞
0

√
logN (T, dT , δ)dδ.

The following result is a standard bound for the covering numbers of balls in Rd, a proof
of which can be found in (Vershynin, 2018).

Lemma 34. For δ ≥ r we have N (Bd
2(0, r), || · ||, r) = 1 and for 0 < δ < r we have:

N (Bd
2(0, r), || · ||, δ) ≤

(
3r

δ

)d
.
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Having collected the necessary results we now proceed to the proof of Lemma 25.

Proof (Lemma 25) First we re-write our integral in a form that is more convenient for us.∫∫
exp

(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

=

∫∫
exp

(
1

2a
(Tnε (x)−Tε(x))T (y−Tε(x))− 1

4a
||Tnε (x)−Tε(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x).

Now note that Tnε (x) is a vector contained in Bd
2(0, r) so we always have the following bound

(since we can choose v = Tnε (x))∫ ∫
exp

(
1
2a (Tnε (x)− Tε(x))T (y − Tε(x))− 1

4a ||T
n
ε (x)− Tε(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

≤
∫ [

supv∈Bd2 (0,r)

∫
exp

(
1
2a (v − Tε(x))T (y − Tε(x))− 1

4a ||v − Tε(x)||2
)
γ(x, y)[dQn − dQ](y)

]
dP (x).

Taking the expectation of both sides of this inequality, and subsequently changing the order
of integration we have

EY n
∫ ∫

exp
(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

≤EY n
∫ [

supv∈Bd2 (0,r)

∫
exp

(
1
2a (v − Tε(x))T (y − Tε(x))− 1

4a ||v − Tε(x)||2
)
γ(x, y)[dQn − dQ](y)

]
dP (x)

=
∫
EY n

[
supv∈Bd2 (0,r)

∫
exp

(
1
2a (v − Tε(x))T (y − Tε(x))− 1

4a ||v − Tε(x)||2
)
γ(x, y)[dQn − dQ](y)

]
dP (x).

Therefore it is enough to uniformly bound over x the inner expectation, which is what we
do now. From here, x is treated as fixed.

Recall that Qn = 1
n

∑n
i=1 δYi where Y1, ..., Yn are i.i.d. according to Q. We now define

the empirical process (Zv)v∈Bd2 (0,r) where Zv is defined by:

Zv ,
∫

exp

(
1

2a
(v − Tε(x))T (y − Tε(x))− 1

4a
||v − Tε(x)||2

)
γ(x, y)[dQn − dQ](y)

=
1

n

n∑
i=1

exp

(
1

2a
(v − Tε(x))T (Yi − Tε(x))− 1

4a
||v − Tε(x)||2

)
γ(x, Yi)

− EY exp

(
1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2

)
γ(x, Y )

=
1

n

n∑
i=1

Aiv − EAv,

where Aiv , exp
(

1
2a (v − Tε(x))T (Yi − Tε(x))− 1

4a ||v − Tε(x)||2
)
γ(x, Yi).

Our first task is to control the increments of the process Zv. Namely, we seek a bound
of the form:

||Zu − Zv||ψ2 ≤ K||u− v||.
By applying Lemma 2.6.8 and then Proposition 2.6.1 from (Vershynin, 2018) we have

||Zu − Zv||ψ2 = ||( 1

n

n∑
i=1

Aiu − EAu)− (
1

n

n∑
i=1

Aiv − EAv)||ψ2
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= || 1
n

n∑
i=1

(Aiu −Aiv)− E(Au −Av)||ψ2

≤ C8||
1

n

n∑
i=1

(Aiu −Aiv)||ψ2

≤ C8C9
1

n

(
n∑
i=1

||Aiu −Aiv||2ψ2

)1/2

, (35)

where C8 and C9 are absolute constants. Let C10 = C8C9

Now we need to control ||Aiu −Aiv||ψ2 . Define:

Γ(x, r, ε) ,
1

ε

[
dσ2 +

√
2dσr + r2 + 2r‖x‖

]
.

so that by Lemma 32 we have with probability 1

γ(x, Y ) ≤ exp (Γ(x, r, ε)) .

For the moment suppressing the dependence on i, this can be done as follows:

|Au −Av| =
∣∣∣∣ exp

(
1

2a
(u− Tε(x))T (Y − Tε(x))− 1

4a
||u− Tε(x)||2

)
γ(x, Y )

− exp

(
1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2

)
γ(x, Y )

∣∣∣∣
= γ(x, Y )

∣∣∣∣ exp

(
1

2a
(u− Tε(x))T (Y − Tε(x))− 1

4a
||u− Tε(x)||2

)
− exp

(
1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2

) ∣∣∣∣
≤ exp(Γ(x, r, ε))

∣∣∣∣ exp

(
1

2a
(u− Tε(x))T (Y − Tε(x))− 1

4a
||u− Tε(x)||2

)
− exp

(
1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2

)∣∣∣∣ .
Now by the assumption that a ≥ 2r2 and the fact that u, v, Y, Tε(x) ∈ Bd

2(0, r) we have
both

1

2a
(u− Tε(x))T (Y − Tε(x))− 1

4a
||u− Tε(x)||2 ≤ 1

2a
(u− Tε(x))T (Y − Tε(x))

≤ 1

2a
||u− Tε(x)||||Y − Tε(x)||

≤ 4r2

2a
≤ 4r2

4r2
= 1,

and by an analogous computation replacing u be v,

1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2 ≤ 1.
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Using this, and the inequality valid for all a, b ≤ 1 that |ea − eb| ≤ e|a− b|, we have:∣∣∣∣ exp

(
1

2a
(u− Tε(x))T (Y − Tε(x))− 1

4a
||u− Tε(x)||2

)
− exp

(
1

2a
(v − Tε(x))T (Y − Tε(x))− 1

4a
||v − Tε(x)||2

) ∣∣∣∣
≤e
∣∣∣ 1

2a (u− Tε(x))T (Y − Tε(x))− 1
4a ||u− Tε(x)||2 − 1

2a (v − Tε(x))T (Y − Tε(x)) + 1
4a ||v − Tε(x)||2

∣∣∣
=
e

2a

∣∣∣∣(u− v)T (Y − Tε(x)) +
1

2
||v − Tε(x)||2 − 1

2
||u− Tε(x)||2

∣∣∣∣
=
e

2a

∣∣∣∣(u− v)TY +
1

2
||v||2 − 1

2
||u||2

∣∣∣∣
≤ e

2a
||u− v||||Y ||+ e

4a
|(||u|| − ||v||)(||u||+ ||v||)|

≤ re
2a
||u− v||+ re

2a
||u− v||

=
re

a
||u− v||.

Using this and the chain above we can conclude

|Au −Av| ≤ exp(Γ(x, r, ε))
re

a
||u− v||,

which implies (as in the proof of Lemma 30)

||Au −Av||ψ2 ≤ C4 exp(Γ(x, r, ε))
re

a
||u− v||. (36)

Now plugging (36) into (35) we obtain:

||Zu − Zv||ψ2 ≤ C10
1

n

(
n∑
i=1

(
C4 exp(Γ(x, r, ε))

re

a
||u− v||

)2
)1/2

=
1√
n
C11 exp(Γ(x, r, ε))

re

a
||u− v||,

where C11 = C4C10.

Using Theorem 33 above with K(x, r, ε) = 1√
n
C11 exp (Γ(x, r, ε))) rea we have:

EY n
[

sup
v∈Bd2 (0,r)

∫
exp

(
1

2a
(v − Tε(x))T (y − Tε(x))− 1

4a
||v − Tε(x)||2

)
γ(x, y)[dQn − dQ](y)

]
=E sup

v∈Bd2 (0,r)

Zv

≤C6K(x, r, ε)

∫ ∞
0

√
logN (Bd

2(0, r), || · ||, δ)dδ

≤C6K(x, r, ε)

∫ ∞
0

√
d log(3r/δ)dδ
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≤C6K(x, r, ε)

∫ r

0

√
d log(3r/δ)dδ

≤C12K(x, r, ε)r
√
d, (37)

where we have used Lemma 34 and that∫ r

0

√
log(3r/δ)dδ = r

∫ 1

0

√
log(3/δ)dδ

and this integral is finite.
The next step is to unfix x and integrate the bound in (37) against the distribution of

x. This is done as follows:

E
∫ ∫

exp
(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

≤
∫
C12K(x, r, ε)r

√
d dP (x).

=

∫
C12

1√
n
C11 exp (Γ(x, r, ε)))

re

a
r
√
ddP (x)

= C13
r2e
√
d

a
√
n

∫
exp

(
1

ε

(
dσ2 +

√
2dσr + r2 + 2r‖x‖

))
dP (x)

= C13
r2e
√
d

a
√
n

exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))∫
exp

(
2r

ε
‖x‖
)
dP (x).

To conclude the proof we handle the integral by using the subgaussian condition on ‖X‖:

E exp

(
2 ‖X‖ r

ε

)
= E exp

(
2 ‖X‖ r

ε

)
1[‖X‖ < (4rdσ2/ε)] + E exp

(
2 ‖X‖ r

ε

)
1[‖X‖ ≥ (4rdσ2/ε)]

≤ exp

(
8rdσ2

ε2

)
+ E exp

(
‖X‖2

2dσ2

)

≤ exp

(
8rdσ2

ε2

)
+ 2.

Plugging this in above and using that a ≥ C1r
2 completes the proof.

B.6 Proof of Theorem 27

Proof Note that ifQ ∈ Bd2(0, r) thenQ is r2

2d log 2 -subgaussian. Letting σ0 = max
(
σ, r√

2d log 2

)
we have that P and Q are both σ2

0-subgaussian and therefore we can apply Proposition 26
with constant σ0. Taking expectations and applying the bounds in Proposition 24 followed
by Lemma 25 and Proposition 26 we obtain:

E
1

4a
||Tnε − Tε||2L2(P )

≤ E
[

1

ε
G+

∫ ∫
exp

(
h0(x)T (y − Tε(x))− a||h0(x)||2

)
γ(x, y)[dQn − dQ](y)dP (x)

]
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≤ 1

ε

(
Kd,0 · ε

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n

)
+
C2

√
d√
n

exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))(
exp

(
8rdσ2

ε2

)
+ 2

)

= Kd,0

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n

+
C2

√
d√
n

exp

(
1

ε

(
dσ2 +

√
2dσr + r2

))(
exp

(
8rdσ2

ε2

)
+ 2

)
.

Choosing a = C1r
2 and multiplying by both sides proves the result with Kd,1 = 4C1Kd,0

and C3 = 4C1C2.

B.7 Proof of Theorem 28

The main body of the proof is spent in establishing a result similar to Proposition 21. It
starts with the following result:

Proposition 35. Let P,Q be σ2-subgaussian and let Pn, Qn be the random empirical mea-
sures. Then:

E

[
sup

χ∈L1(πnε )

∫
χdπnε −

∫ ∫
[exp(χ(x, y))− 1] γn,nε dP (x)dQn(y)

]
≤ 1

ε
E
[∫

fn,nε [dPn − dP ]

]
,

where πnε is the random optimal coupling of (P,Qn), the function γn,nε (x, y) = exp(1
ε [fn,nε (x)+

gn,nε (y)− 1/2 ‖x− y‖2]), and (fn,nε , gn,nε ) are the optimal potentials for Pn, Qn.

Proof Let (fn,nε , gn,nε ) be the optimal potentials for (Pn, Qn) and define η(x, y) = εχ(x, y)+
fn,nε (x) + gn,nε (y) for any χ ∈ L1(πnε ). Applying Proposition 19 and calculating one has:

Sε(P,Q
n) ≥

∫
ηdπnε − ε

∫ ∫
exp

(
1

ε

[
η(x, y)− 1

2
‖x− y‖2

])
dP (x)dQn(y) + ε

= ε

∫
χ(x, y)dπnε +

∫
fn,nε dP (x) +

∫
gn,nε (y)dQn(y)

− ε
∫ ∫

[exp(χ(x, y))− 1] γn,nε (x, y)dP (x)dQn(y).

Rearranging, one obtains:∫
χ(x, y)dπnε−

∫ ∫
[exp(χ(x, y))− 1] γn,nε (x, y)dP (x)dQn(y) ≤ 1

ε

[
Sε(P,Q

n)−
∫
fn,nε dP −

∫
gn,nε dQn

]
.

Since this holds uniformly over χ ∈ L1(πnε ) we can take the supremum on the left as well:

sup
χ∈L1(πnε )

∫
χ(x, y)dπnε −

∫ ∫
[exp(χ(x, y))− 1] γn,nε (x, y)dP (x)dQn(y)

≤ 1

ε

[
Sε(P,Q

n)−
∫
fn,nε dP −

∫
gn,nε dQn

]
.

We now turn our attention to the right side. Let (fnε , g
n
ε ) be optimal for (P,Qn). By

optimality we have:∫
fn,nε dPn +

∫
gn,nε dQn = Sε(P

n, Qn)

42



Multivariate rank via entropy-regularized OT: sample efficiency and generative modeling

≥
∫
fnε dP

n +

∫
gnε dQ

n − ε
∫ ∫

exp

(
1

ε

[
fnε (x) + gnε (y)− 1

2
‖x− y‖2

])
dPn(x)dQn(y) + ε

=

∫
fnε dP

n +

∫
gnε dQ

n − ε
∫ [∫

exp

(
1

ε

[
fnε (x) + gnε (y)− 1

2
‖x− y‖2

])
dQn(y)

]
dPn(x) + ε

=

∫
fnε dP

n +

∫
gnε dQ

n − ε
∫

1dPn(x) + ε

=

∫
fnε dP

n +

∫
gnε dQ

n.

Comparing the first and last we have shown:∫
fn,nε dPn +

∫
gn,nε dQn ≥

∫
fnε dP

n +

∫
gnε dQ

n.

From here we can develop a bound as follows:

Sε(P,Q
n)−

∫
fn,nε dP −

∫
gn,nε dQn

=

∫
fnε dP +

∫
gnε dQ

n −
∫
fn,nε dP −

∫
gn,nε dQn

=

∫
(fnε − fn,nε )dP +

∫
gnε dQ

n +

∫
fnε dP

n −
∫
fnε dP

n −
∫
gn,nε dQn

≤
∫

(fnε − fn,nε )dP +

∫
gn,nε dQn +

∫
fn,nε dPn −

∫
fnε dP

n −
∫
gn,nε dQn

=

∫
fn,nε [dPn − dP ] +

∫
fnε [dP − dPn].

Note that fnε is independent of Pn, and so conditioned on Qn we have:

E
[∫

fnε [dP − dPn]

]
= 0.

Backtracking and taking expectations we have shown:

E

[
sup

χ∈L(πnε )

∫
χdπnε −

∫ ∫
[exp(χ(x, y))− 1] γn,nε (x, y)dP (x)dnQ(y)

]

≤ 1

ε
E
[
Sε(P,Q

n)−
∫
fn,nε dP −

∫
gn,nε dQn

]
≤ 1

ε
E
∫
fn,nε [dPn − dP ] +

∫
fnε [dP − dPn]

=
1

ε
E
∫
fn,nε [dPn − dP ],

which proves the result.

The next step is to control E
∫
fn,nε [dPn − dP ]. Thankfully, this has already been

controlled in the literature. While not explicitly stated in this form, the calculations in the
proof of Theorem 2 in (Mena and Niles-Weed, 2019) show the following.
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Theorem 36. If P,Q are σ2-subgaussian, then:

E
∫
fn,nε [dPn − dP ] ≤ Kd,0 · ε

(
1 +

σd5d/2e+6

εd5d/4e+3

)
1√
n
.

We are now ready to proceed to the proof of Theorem 28.

Proof (Theorem 28) Choose χ(x, y) = h(x)T (y − Tn,nε (x)) − a ‖h(x)‖2 for a and h to be
specified. First note that for fixed x we have:∫

h(x)T (y − Tn,nε (x))γn,nε (x, y)dQn(y) = h(x)T
[∫

yγn,nε (x, y)dQn(y)− Tn,nε (x)

]
= h(x)T [Tn,nε (x)− Tn,nε (x)] = 0.

which means that by Hoeffding’s inequality we have for all fixed x:∫
exp (χ(x, y)) γn,nε (x, y)dQ(y) = exp(−a ‖h(x)‖2)

∫
exp(h(x)T (y − Tn,nε (x)))γn,nε (x, y)dQn(y)

≤ exp(−a ‖h(x)‖2)

∫
exp(C4(h(x)T (y − Tn,nε (x)))2)γn,nε (x, y)dQn(y)

≤ exp(−a ‖h(x)‖2)

∫
exp(C44r2 ‖h(x)‖22)γn,nε (x, y)dQn(y)

= exp((C44r2 − a) ‖h(x)‖2).

In particular for a ≥ C44r2 this gives:∫
exp (χ(x, y)) γn,nε (x, y)dQn(y) ≤ 1.

This implies for all x: ∫
[exp (χ(x, y))− 1] γn,nε (x, y)dQn(y) ≤ 0.

Now set h0(x) = 1
2a(Tnε (x)− Tn,nε (x)). A direct calculation gives:∫

h0(x)T (y − Tn,nε )− a ‖h0(x)‖2 dπnε =

∫
1

4a
‖Tnε (x)− Tn,nε (x)‖2 dP (x)

=
1

4a
‖Tnε − Tn,nε ‖

2
L2(P ) .

Combining this with the fact that
∫

[exp (χ(x, y))− 1] γn,nε (x, y)dQn(y) ≤ 0, we have after
taking expectations and applying the results above that:

E
1

4a
‖Tnε − Tn,nε ‖

2
L2(P ) ≤ E

∫
χdπnε −

∫
[exp (χ(x, y))− 1] γn,nε (x, y)dQn(y)dP (x)

≤ E sup
χ

∫
χdπnε −

∫
[exp (χ(x, y))− 1] γn,nε (x, y)dQn(y)dP (x)
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≤ 1

ε
E
∫
fn,nε [dPn − dP ]

≤ Kd,0 ·

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n
,

where σ0 = max
(
σ, r√

2d log 2

)
, valid for all a ≥ 4C4r

2. Multiplying both sides by this

quantity gives:

E ‖Tnε − Tn,nε ‖
2
L2(P ) ≤ Kd,2r

2 ·

(
1 +

σ
d5d/2e+6
0

εd5d/4e+3

)
1√
n
,

where Kd,2 = 16C4Kd,0.

Constant First Introduction Value or Source

Cd Statement of Definition 3 (2Γ(d/2))−1√π(d− 1)Γ((d− 1)/2)

C0 Statement of Lemma 23 4C2
5C4

C1 Statement of Lemma 25 max(C0, 2)

C2 Statement of Lemma 25 eC13/C1

C3 Statement of Theorem 27 4C1C2

C4 Proof of Lemma 23 (2.5.2) in(Vershynin, 2018)

C5 Proof of Lemma 23 (2.3.8.iii) in (Vershynin, 2018), can be taken as (log 2)−1/2

C6 Proof of Lemma 23 C2
5C4

C7 Proof of Lemma 25 (8.1.3) in (Vershynin, 2018)

C8 Proof of Lemma 25 (2.6.8) in (Vershynin, 2018)

C9 Proof of Lemma 25 (2.6.1) in (Vershynin, 2018)

C10 Proof of Lemma 25 C8C9

C11 Proof of Lemma 25 C5C10

C12 Proof of Lemma 25 C7(
√

log 3 +
√
π/2)

C13 Proof of Lemma 25 C11C12

Kd,0 Statement of Proposition 26 See (Mena and Niles-Weed, 2019)

Kd,1 Statement of Theorem 27 4C1Kd,0

Kd,2 Statement of Theorem 28 16C4Kd,0

Table 4: Table of constants used in the proofs of the theoretical results.

Appendix C.

C.1 Proof of Proposition 15

Proof

(a) Given X,X ′
i.i.d.∼ PX and Y, Y ′

i.i.d.∼ PY . Using Lemmas 2.2, 2.3 from (Baringhaus and
Franz, 2004), we have:

2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖
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= Cd

∫
Sd−1

∫
R

(
P(a>X ≤ t)− P (a>Y ≤ t)

)2
dκ(a)dt.

Following the above expression, for the rank transformed random variables Rλ,ε(X),
Rλ,ε(X

′), Rλ,ε(Y ), and Rλ,ε(Y
′) corresponding to X,X ′, Y , and Y ′, respectively, we

can express the sRE as,

2E‖Rλ,ε(X)− Rλ,ε(Y )‖ − E‖Rλ,ε(X)− Rλ,ε(X
′)‖ − E‖Rλ,ε(Y )− Rλ,ε(Y

′)‖

=Cd

∫
Sd−1

∫
R

(
P(a>Rλ,ε(X) ≤ t)− P(a>Rλ,ε(Y ) ≤ t)

)2
dκ(a)dt.

(b) Following the definition of sREλ,ε,

sREλ,ε(PX , PY )2 = Cd

∫
R

∫
Sd−1

(
P(a>Rλ,ε(X) ≤ t)− P(a>Rλ,ε(Y ) ≤ t)

)2
dκ(a)dt

= Cd

∫
R

∫
Sd−1

(
P(a>Rλ,ε(Y ) ≤ t)− P(a>Rλ,ε(X) ≤ t)

)2
dκ(a)dt

= sREλ,ε(PY , PX)2.

(c) Assuming X
d
= Y , we have P(a>X ≤ t) = P(a>Y ≤ t) for all a ∈ Sd−1 and t ∈ R

(Baringhaus and Franz, 2004). Since Rλ,ε(X), Rλ,ε(Y ) are also mapped random vectors
corresponding to X,Y , respectively, we see that P

(
a>Rλ,ε(X) ≤ t

)
= P

(
a>Rλ,ε(Y ) ≤

t
)

and the result follows.

C.2 Proof of Proposition 16

Proof It is equivalent to show that:

lim
ε→0+

|sREλ,ε(PX , PY )2 − REλ(PX , PY )2| = 0.

Using the original definitions, we have:

|sREλ,ε(PX , PY )2 − REλ(PX , PY )2|

=

∣∣∣∣2E [||Rλ,ε(X)−Rλ,ε(Y )||−||Rλ(X)−Rλ(Y )||]−E
[
||Rλ,ε(X)−Rλ,ε(X ′)||−||Rλ(X)−Rλ(X ′)||

]
− E

[
||Rλ,ε(Y )− Rλ,ε(Y

′)|| − ||Rλ(Y )− Rλ(Y ′)||
] ∣∣∣∣

≤2E
∣∣∣∣||Rλ,ε(X)−Rλ,ε(Y )||−||Rλ(X)−Rλ(Y )||

∣∣∣∣+E
∣∣∣∣||Rλ,ε(X)−Rλ,ε(X ′)||−||Rλ(X)−Rλ(X ′)||

∣∣∣∣
+ E

∣∣∣∣||Rλ,ε(Y )− Rλ,ε(Y
′)|| − ||Rλ(Y )− Rλ(Y ′)||

∣∣∣∣
≤2E||[Rλ,ε(X)−Rλ,ε(Y )]−[Rλ(X)−Rλ(Y )]||+E||[Rλ,ε(X)−Rλ,ε(X ′)]−[Rλ(X)−Rλ(X ′)]||

+ E||[Rλ,ε(Y )− Rλ,ε(Y
′)]− [Rλ(Y )− Rλ(Y ′)]||
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≤4E||Rλ(X)− Rλ,ε(X)||+ 4E||Rλ(Y )− Rλ,ε(Y )||

≤4
√
E||Rλ(X)− Rλ,ε(X)||2 + 4

√
E||Rλ(Y )− Rλ,ε(Y )||2

≤8
√

E||Rλ(X)− Rλ,ε(X)||2 + E||Rλ(Y )− Rλ,ε(Y )||2

≤ 8

min(
√
λ,
√

1− λ)

√
E[λ||Rλ(X)− Rλ,ε(X)||2 + (1− λ)||Rλ(Y )− Rλ,ε(Y )||2]

=
8

min(
√
λ,
√

1− λ)
||Rλ − Rλ,ε||L2(Pλ)

.
8

min(
√
λ,
√

1− λ)

√
ε2I0(Pλ,Unif([0, 1]d)) + εmin(α,3)/2,

where for the final inequality we have used Proposition 1 in (Pooladian et al., 2022) and
where the implicit constant is independent of ε. Here I0 is the integrated Fisher information
along the geodesic from Pλ and Unif([0, 1]d) which under the assumptions made is guaran-
teed to be finite, (Chizat et al., 2020; Pooladian and Niles-Weed, 2021). Taking the limit
in the last expression we have:

0 ≤ lim
ε→0+

|sREλ,ε(PX , PY )2 − REλ(PX , PY )2|

. lim
ε→0+

8

min(
√
λ,
√

1− λ)

√
ε2I0(Pλ,Unif([0, 1]d)) + εmin(α,3)/2 = 0,

which shows indeed limε→0+ |sREλ,ε(PX , PY )2 − REλ(PX , PY )2| = 0.

Appendix D.

D.1 Proof of Theorem 17

Proof Using the notation that Rm+n
λ,ε is the random independently estimated map and

Xm = (X1, ..., Xm), Y n = (Y1, ..., Yn) are the samples used to evaluate the statistic (which
are independent of Rm+n

λ,ε ) we immediately have the following:

||sREm,nλ,ε (PX , PY )2 − sREλ,ε(PX , PY )2||2L2

= E
Rm+n
λ,ε

[
E

Xn,Ym

[(
sRE

m,n
λ,ε (PX , PY )2 − sREλ,ε(PX , PY )2

)2
∣∣∣∣Rm+n
λ,ε

]]
.

We first consider the inner expectation. For brevity we suppress the conditioning on Rm+n
λ,ε

and also introduce the following six collections of random variables:

RX ,
1

m2

m∑
i,j=1

||Rλ,ε(Xi)− Rλ,ε(Xj)||, R̂X ,
1

m2

m∑
i,j=1

||Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Xj)||,

RY ,
1

n2

n∑
i,j=1

||Rλ,ε(Yi)− Rλ,ε(Yj)||, R̂Y ,
1

n2

n∑
i,j=1

||Rm+n
λ,ε (Yi)− Rm+n

λ,ε (Yj)||,
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RXY ,
2

nm

m∑
i=1

n∑
j=1

||Rλ,ε(Xi)− Rλ,ε(Yj)||, R̂XY ,
2

nm

m∑
i=1

n∑
j=1

||Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Yj)||.

These are further compressed into:

R , RXY −RX −RY ,
R̂ , R̂XY − R̂X − R̂Y .

We also introduce the notation:

EX , E
X,X′
||Rλ,ε(X)− Rλ,ε(X

′)||,

EY , E
Y,Y ′
||Rλ,ε(Y )− Rλ,ε(Y

′)||,

EXY , 2 E
X,Y
||Rλ,ε(X)− Rλ,ε(Y )||,

E , EXY − EX − EY .

With this notation we have:

E
[(

sRE
m,n
λ,ε (PX , PY )2 − sREλ,ε(PX , PY )2

)2
]

= E(R̂− E)2

= E([R̂−R]− [R− E])2

≤ 2E(R̂−R)2 + 2E(R− E)2.

We now control the two expectations separately:

E(R̂−R)2 = E
(

[R̂XY −RXY ] + [RX − R̂X ] + [RY − R̂Y ]
)2

≤ 3E(R̂XY −RXY )2 + 3E(R̂X −RX)2 + 3E(R̂Y −RY )2.

Next we control these three expectations separately:

E(R̂XY −RXY )2 = E

 2

nm

m∑
i=1

n∑
j=1

||Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Yj)|| − ||Rλ,ε(Xi)− Rλ,ε(Yj)||

2

≤ 4E
1

nm

m∑
i=1

n∑
j=1

(
||Rm+n

λ,ε (Xi)− Rm+n
λ,ε (Yj)|| − ||Rλ,ε(Xi)− Rλ,ε(Yj)||

)2
≤ 4E

1

nm

m∑
i=1

n∑
j=1

||[Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Yj)]− [Rλ,ε(Xi)− Rλ,ε(Yj)]||2

≤ 4E
1

nm

m∑
i=1

n∑
j=1

(
||[Rm+n

λ,ε (Xi)− Rλ,ε(Xi)||+ ||Rm+n
λ,ε (Yj)− Rλ,ε(Yj)]||

)2
≤ 8E

1

nm

m∑
i=1

n∑
j=1

||[Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||2 + ||Rm+n

λ,ε (Yj)− Rλ,ε(Yj)]||2

= 8E
1

m

m∑
i=1

||[Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||2 + 8E

1

n

n∑
i=1

||[Rm+n
λ,ε (Yi)− Rλ,ε(Yi)||2
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= 8E||Rm+n
λ,ε (X)− Rλ,ε(X)||2 + ||Rm+n

λ,ε (Y )− Rλ,ε(Y )||2

≤ 8

min(λ, 1− λ)
Eλ||Rm+n

λ,ε (X)− Rλ,ε(X)||2 + (1− λ)||Rm+n
λ,ε (Y )− Rλ,ε(Y )||2

=
8

min(λ, 1− λ)
||Rm+n

λ,ε − Rλ,ε||2L2(Pλ)
.

In the third and fourth lines we have used the reverse triangle inequality followed by the
triangle inequality to re-group the terms. In the second to last line we have made use of
the inequality valid for all a, b ≥ 0, λ ∈ (0, 1):

a+ b ≤ λ

min(λ, 1− λ)
a+

1− λ
min(λ, 1− λ)

b =
1

min(λ, 1− λ)
[λa+ (1− λ)b] .

The last line follows from the fact that Pλ = λPX + (1− λ)PY . Next we have:

E(R̂X −RX)2 = E

 1

n2

n∑
i,j=1

||Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Xj)|| − ||Rλ,ε(Xi)− Rλ,ε(Xj)||

2

≤ E
1

n2

n∑
i,j=1

(
||Rm+n

λ,ε (Xi)− Rm+n
λ,ε (Xj)|| − ||Rλ,ε(Xi)− Rλ,ε(Xj)||

)2

≤ E
1

n2

n∑
i,j=1

||[Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Xj)]− [Rλ,ε(Xi)− Rλ,ε(Xj)]||2

≤ E
1

n2

n∑
i,j=1

(
||Rm+n

λ,ε (Xi)− Rλ,ε(Xi)||+ ||Rm+n
λ,ε (Xj)− Rλ,ε(Xj)||

)2

≤ 2E
1

n2

n∑
i,j=1

||Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||2 + ||Rm+n

λ,ε (Xj)− Rλ,ε(Xj)||2

= 4E
1

n

n∑
i=1

||Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||2

= 4E||Rm+n
λ,ε (X)− Rλ,ε(X)||2.

Again in the third and fourth lines we have used the reverse-triangle inequality followed by
the triangle inequality. An exactly analogous calculation for Y shows:

E(R̂Y −RY )2 ≤ 4E||Rm+n
λ,ε (Y )− Rλ,ε(Y )||2.

Combining these two we have similarly to above that:

E(R̂X −RX)2 + E(R̂Y −RY )2 ≤ 4E
[
||Rm+n

λ,ε (X)− Rλ,ε(X)||2 + ||Rm+n
λ,ε (Y )− Rλ,ε(Y )||2

]
≤ 4

min(λ, 1− λ)
||Rm+n

λ,ε − Rλ,ε||2L2(Pλ).

Combining bounds we have:

E(R̂−R)2 ≤ 24

min(λ, 1− λ)
||Rm+n

λ,ε − Rλ,ε||2L2(Pλ) +
12

min(λ, 1− λ)
||Rm+n

λ,ε − Rλ,ε||2L2(Pλ)

=
36

min(λ, 1− λ)
||Rm+n

λ,ε − Rλ,ε||2L2(Pλ).
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Now we turn our attention to E(R− E)2. First we show that R− E is mean-zero:

ER = E
2

nm

m∑
i=1

n∑
j=1

||Rλ,ε(Xi)− Rλ,ε(Yj)|| −
1

m2

m∑
i,j=1

||Rλ,ε(Xi)− Rλ,ε(Xj)||

− 1

n2

n∑
i,j=1

||Rλ,ε(Yi)− Rλ,ε(Yj)||

= 2E||Rλ,ε(X)− Rλ,ε(Y )|| − E||Rλ,ε(X)− Rλ,ε(X
′)|| − E||Rλ,ε(Y )− Rλ,ε(Y

′)||
= EXY − EX − EY = E.

Subtracting E from the first and last shows E[R− E] = 0. Using this we have:

E[(R− E)2] = E[(R− E)2]− E[R− E]2 = Var(R− E).

To control the variance we apply the Efron-Stein inequality ((Boucheron et al., 2013) The-
orem 3.1) to the function:

f(X1, ..., Xm, Y1, ..., Yn) =
2

nm

m∑
i=1

n∑
j=1

||Rλ,ε(Xi)−Rλ,ε(Yj)||−
1

m2

m∑
i,j=1

||Rλ,ε(Xi)−Rλ,ε(Xj)||

− 1

n2

n∑
i,j=1

||Rλ,ε(Yi)− Rλ,ε(Yj)||.

First note that we have the bounds:

|f(X1, ..., Xi−1, Xi, Xi+1, ..., Xm, Y1, ..., Yn)− f(X1, ..., Xi−1, X
′
i, Xi+1, ..., Xm, Y1, ..., Yn)|

=

∣∣∣∣∣ 2

nm

n∑
j=1

(
||Rλ,ε(Xi)− Rλ,ε(Yj)|| − ||Rλ,ε(X ′i)− Rλ,ε(Yj)||

)
− 1

m2

m∑
j 6=i

(
||Rλ,ε(Xi)− Rλ,ε(Xj)|| − ||Rλ,ε(X ′i)− Rλ,ε(Xj)||

) ∣∣∣∣∣
≤ 2

nm

n∑
j=1

∣∣||Rλ,ε(Xi)− Rλ,ε(Yj)|| − ||Rλ,ε(X ′i)− Rλ,ε(Yj)||
∣∣

+
1

m2

m∑
j 6=i

∣∣||Rλ,ε(Xi)− Rλ,ε(Xj)|| − ||Rλ,ε(X ′i)− Rλ,ε(Xj)||
∣∣

≤ 2

nm

n∑
j=1

||Rλ,ε(Xi)− Rλ,ε(X
′
i)||+

1

m2

m∑
j 6=i
||Rλ,ε(Xi)− Rλ,ε(X

′
i)||

≤ 3

m
||Rλ,ε(Xi)− Rλ,ε(X

′
i)||

≤ 3
√
d

m
,
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where we have in the last line used the Rλ,ε maps into [0, 1]d and the diameter is
√
d. A

completely analogous computation shows:

|f(X1, ..., Xm, Y1, ..., Yi−1, Yi, Yi+1, ..., Yn)−f(X1, ..., Xm, Y1, ..., Yi−1, Y
′
i , Yi+1, ..., Yn)|≤3

√
d

m
.

Using this bound in the Efron-Stein inequality we have:

E[(R− E)2]

=Var(R− E)

≤1

2

m∑
i=1

E
(
f(X1,...,Xi−1,Xi, Xi+1, ...,Xm, Y1, ...,Yn)−f(X1,...,Xi−1,X

′
i,Xi+1,...,Xm,Y1, ..., Yn)

)2
+

1

2

n∑
i=1

E
(
f(X1, ...,Xm, Y1, ...,Yi−1, Yi, Yi+1, ..., Yn)−f(X1, ..., Xm, Y1, ..., Yi−1, Y

′
i , Yi+1, ..., Yn)

)2
≤1

2

m∑
i=1

E

(
3
√
d

m

)2

+
1

2

n∑
i=1

E

(
3
√
d

n

)2

=
9d

2m
+

9d

2n

=
9d(m+ n)

2mn
.

Collecting terms we have, conditionally on the estimate of Rm+n
λ,ε , that:

E
[(

sRE
m,n
λ,ε (PX , PY )2−sREλ,ε(PX , PY )2

)2
]
≤2E(R̂−R)2+2E(R−E)2

≤ 72

min(λ,1− λ)
||Rm+n

λ,ε −Rλ,ε||
2
L2(Pλ)+

9d(m+ n)

mn
.

Unconditioning and applying either Theorem 13 or Theorem 14, with Q = Unif([0, 1]d) ∈
P(B(0,

√
d)) completes the proof.

D.2 Proof of Theorem 18

The proof is essentially the same as the proof of Theorem 17. The key difference is that we
require a kernel analog of the reverse-triangle, followed by triangle inequality trick:

|||Rm+n
λ,ε (Xi)− Rm+n

λ,ε (Yj)|| − ||Rλ,ε(Xi)− Rλ,ε(Yj)|||
≤ ||[Rm+n

λ,ε (Xi)− Rm+n
λ,ε (Yj)]− [Rλ,ε(Xi)− Rλ,ε(Yj)]||

≤ ||Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||+ ||Rm+n

λ,ε (Yj)− Rλ,ε(Yj)||.

This is achieved through:

|k(Rm+n
λ,ε (Xi), R

m+n
λ,ε (Yj))− k(Rλ,ε(Xi), Rλ,ε(Yj))|

=|[k(Rm+n
λ,ε (Xi), R

m+n
λ,ε (Yj))− k(Rλ,ε(Xi), R

m+n
λ,ε (Yj))]
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+ [k(Rλ,ε(Xi), R
m+n
λ,ε (Yj))− k(Rλ,ε(Xi), Rλ,ε(Yj))]|

≤|k(Rm+n
λ,ε (Xi), R

m+n
λ,ε (Yj))− k(Rλ,ε(Xi), R

m+n
λ,ε (Yj))|

+ |k(Rλ,ε(Xi), R
m+n
λ,ε (Yj))− k(Rλ,ε(Xi), Rλ,ε(Yj))|

≤l||Rm+n
λ,ε (Xi)− Rλ,ε(Xi)||+ l||Rm+n

λ,ε (Yj)− Rλ,ε(Yj)||.

With this key inequality established, one can show the result by following the proof of
Theorem 17, substituting this inequality in the two places where the reverse-triangle followed
triangle inequality is used. In both places these inequalities are done inside of a squaring
so ultimately, we gain a factor of l2.

Appendix E.

E.1 Related Works on Knockoff Generation

The seminal work (Candès et al., 2016) assumes that the joint feature distribution follows a
multivariate Gaussian distribution and satisfies the pairwise exchangeability condition (18)
via approximating only the first two moments (mean and covariance). In cases where the
distributions are not multivariate Gaussian, the second order method in (Candès et al.,
2016) cannot guarantee any control of the FDR. In contrast, methods like knockoffGAN
(Salimans et al., 2016), deep knockoff (Romano et al., 2020), auto-encoding knockoff (Liu
and Zheng, 2018) focus on learning generative models to sample knockoffs. KnockoffGAN
is a complex architecture which consists of four different neural networks and optimizes a
difficult minimax problem. A comparatively simpler approach adopted by deep knockoff
employs MMD (Gretton et al., 2012) as the discriminating statistic for testing pairwise
exchangeability in (18). As we see in Figure 3, the generator learned using the MMD
performs poorly in high dimensions, and fails to approximate the input distribution prop-
erly. The auto-encoding knockoff method employs a variational auto-encoder (Kingma and
Welling, 2019) to learn a low-dimensional latent space for high-dimensional data, assuming
that the data lies close to a low-dimensional manifold. However, if the covariates violate
this low-dimensional assumption, a more appropriate model may require learning a higher
dimensional latent space. This comes with a risk of retaining more information about
the original data, which could potentially result in diminished power. Another method,
called deep direct likelihood knockoff (DDLK) (Sudarshan et al., 2020) minimizes the KL
(Kullback-Leibler) divergence to test for pairwise exchangeability.

E.2 Schematic of the Knockoff Generator

Figure 5 shows the schematic of the deep generative model used for the knockoff generator
(Section 5.2.1). The model has a fully connected neural network fθ, where θ represents
the parameters of the network (weights w and biases b). fθ has 6 has hidden layers, each
of them having 6 · d units. The first layer of the neural network takes a vector of original
variables X ∈ Rd and a d-dimensional noise vector V ∼ N (0, I). Each unit in the hidden
layers is produced by first taking linear combinations of the input followed by applying
to each a nonlinear activation function. A parametric rectified linear unit is used as the
activation function (Xu et al., 2015). The output layer returns a d-dimensional knockoff
vector as depicted in Figure 5.
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X ∼ PX fθ(X,V )

noise: V ∼ N (0, Id)

X̃

`(X, X̃)

input output

...

...

...
...

...

x1

xd

v1

vd

x̃1

x̃d

input

noise

Input H1 H2 Output

Figure 5: Left: schematic of the deep generative model for knockoff generation. Right:
schematic of fθ is shown for 2 hidden layers (in applications, we use 6 layers).

E.3 Algorithm to Train Knockoff Generator

Algorithm 1: Training of the Knockoff Generator

Input : training data: X ∈ Rn×d, learning rate: η, entropic regularizer: ε,
decorrelation parameter: γ, initialization of network parameters: θ0, no
of epochs: T, batch size: m, no of batches: nb

Output: knockoff generator: fθT
1 for t← 0 to T do
2 for j ← 0 to nb do
3 Xi, for all 1 ≤ i ≤ m // samples for a minibatch

4 Vi ∼ N (0, I) for all 1 ≤ i ≤ m // noise sampling.

5 X̃i ← fθt(Xi, Vi), for all 1 ≤ i ≤ m // knockoff generation.

6 B ⊂ {1, . . . , d} // picking a random subset.

7 Jθt(Xm, X̃m)← `(Xm, X̃m) // loss calculation using (18)
8 θt+1 = θt − η∇θt(Jθt) // parameter update

9 end for

10 end for

E.4 Compute Resources

We use NVIDIA TESLA-K80 24 GB GPU for each simulation. Table 5 shows the com-
parison of wall-clock time between sRMMD and MMD. Compared to just MMD (O(n2d)),
sRMMD requires an additional step that is the computation of entropy-regularized optimal
transport via the Sinkhorn algorithm (O(n2/ε2)). Therefore, sRMMD can be computed
in total O(n2d + n2/ε2) steps. The smaller the ε, the longer time it takes to compute
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sRMMD. However, a few recent works (Li et al., 2023; Luo et al., 2023) improve the com-
putational time to O(n2/ε), which we believe will significantly reduce the training time for
both MNIST and knockoff generator with sRMMD and will be explored in future work.

Method
Experiment Type

MNIST
Knockoff

Synthetic Real

MMD 1155.89 2446.23 750.34

sRMMD 2634.78 7092.96 1979.45

Table 5: Average training time (in seconds) comparison between MMD and sRMMD-based
generators to reproduce the main results of the paper (keeping the same batch-size
and same generative structure).

E.5 Baseline Models for Knockoff Generation

For KnockoffGAN, code is used from https://bitbucket.org/mvdschaar/mlforhealthlabpub/

src/master/. For DDLK, code from https://github.com/rajesh-lab/ddlk is used. For
second-order and MMD, we use code from https://github.com/msesia/deepknockoffs.

Appendix F. Additional Experiments

F.1 Effect of ε, σ on sRMMD-Based MNIST Image Generator (Section 5.1)

(a) (b) (c) (d)

Figure 6: sRMMD-based MNIST image generator (latent space dimension 8) using (a)
ε = 10, σ = (1, 2, 4, 8, 16, 32). (b) ε = 10, σ = (0.01, 0.02, 0.04, 0.06, 0.08)
(c) ε = 20, σ = (0.01, 0.02, 0.04, 0.06, 0.08), and (d) ε = 20, σ =
(0.001, 0.002, 0.004, 0.006, 0.008).
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MNIST-image generator minimizing the sRMMD loss produces a lot of ambiguous digits
of similar shape when ε = 10 and σ = (1, 2, 4, 8, 16, 32) are used (Figure 6). To under-
stand why this may be the case, we plot the generator’s loss over the training epochs
(Figure 7). We observe that the loss is nearly zero at the beginning of the training,
does not decrease smoothly and becomes very unstable after few epochs. This insta-
bility consequently leads to a poorly trained generator. In contrast, for ε = 10, using
σ = (0.01, 0.02, 0.04, 0.06, 0.08) maintains a smooth and decreasing loss over the epochs
and the generator converges rapidly which brings about an improved image generator
(Figure 6(b)). We also observe that if we increase ε further e.g., ε = 20, using σ =
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Figure 7: The plots show the generator’s loss (sRMMD) on the y-axis and the training
epoch on the x-axis, for ε = 10 with two different values of σ. On the left, where
σ is large, the loss fluctuates and the model fails to converge. On the right, where
σ is small, the loss gradually decreases with each epoch and the model converges
faster.

(0.01, 0.02, 0.04, 0.06, 0.08) still leads to a poor generator (Figure 6c). This situation can
be avoided by reducing σ to (0.001, 0.002, 0.004, 0.006, 0.008). Based on this empirical ev-
idence, it can be said that using smaller bandwidth in case of larger ε leads to a better
generator. Note that the choices of ε and σ we mentioned are specific to our case where we
use latent space with dimension 8. It may require finding the optimal combination of ε and
σ to get a good generator in case a different latent space dimension is used.

F.2 Why sRMMD not sRE?

Figure 8 shows that unlike sRMMD, the generator minimizing sRE in (18) cannot capture
all four modes perfectly with ε = 100 when d = 100. Though similar to sRMMD, the
reconstruction ability gets better with ε, sRE still fails to capture every mode even when ε
is doubled. Moreover, a direct comparison between sRE and sRMMD when ε = 20, 50, 200
indicates that sRMMD outperforms sRE in reconstructing the original distribution.
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Figure 8: Visualizing two randomly selected dimensions of the original data used in Figure 3
and the generated knockoffs. The sRE-based knockoff generator did not converge
when using ε = 1 and 10 (we encountered ‘nan’ after few epochs). That is why
we refrain from adding it here.

F.3 Impact of Choice of Decorrelation Parameter γ

The selection of the optimal decorrelation parameter γ is difficult as we cannot perform
cross-validation due to lack of access to the ground truth. Therefore, we pick the optimal
γ for each distributional setting by investigating the sensitivity of the results to different
values of γ. Figure 9 shows the FDR versus power tradeoff w.r.t. the amplitude parameter
for several values of γ for each distributional setting considered in Section 5.2.2.
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(b) Gaussian Mixture Model
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(c) Multivariate Student’s t
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Figure 9: Average FDR and power computed over 200 independent experiments are shown
on the y-axis for each synthetic benchmark. The FDR level is set to 0.1. The
x-axis represents the amplitude parameter υ.
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For multivariate Gaussian, GMM and multivariate Student’s t distributions, sRMMD-
based knockoff generator is not sensitive to the value of γ. In these cases, each γ, sRMMD
controls the FDR at q = 0.1 and achieves nearly identical power over the entire amplitude
region. In the case of sparse Gaussian setting, γ = 0.1 controls the FDR at q = 0.1. As γ
increases (e.g., 0.5, 1), the power also increases but fails to keep the FDR below 0.1.

F.4 Quality of the sRMMD Knockoffs with Respect to ε
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Figure 10: Boxplot showing the quality of the knockoff generator w.r.t. ε. Lower MMD
indicates better quality knockoffs compared to higher value of MMD.

In this section, we measure the GoF of knockoffs for each distributional setting con-
sidered in Section 5.2.2 w.r.t. different entropic regularization parameters ε. For a fixed
covariate distribution PX and corresponding conditional distribution PX̃|X of the knockoffs,
we test the following hypothesis:

Hpartial
0 : P(X,X̃) = P(X,X̃)partial(B)

,

where B is a random subset of {1, . . . , d}, such that each j ∈ B with probability 1/2 indepen-
dent of other elements. We draw n independent observations from P(X,X̃) and P(X,X̃)partial(B)

and generate two matrices Z,Z′ ∈ Rn×2d, n = 200, d = 100, respectively. Then, we compute
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(d) Sparse Gaussian

Figure 11: Average FDR and power computed over 200 independent experiments are shown
on the y-axis for each synthetic benchmark. The FDR level is set to 0.1. The
x-axis represents the amplitude parameter ν.

an estimate of MMD to measure the GoF via:

MMD(Z,Z′) ,
1

n(n− 1)

n∑
i,j=1

k(Zi, Zj)−
2

n2

n,n∑
i,j=1

k(Zi, Z
′
j) +

1

n(n− 1)

n∑
i,j=1

k(Z ′i, Z
′
j),

where k(·, ·) is a Gaussian mixture kernel with σ = (1, 2, 4, 8, 16, 32, 64, 128). A small value
of MMD indicates that the knockoffs achieve greater pairwise exchangeability (16) compared
to the knockoffs that yield higher values of MMD.

Figure 10 shows the quality of the knockoffs produced by the sRMMD-based knockoff
generator w.r.t. different ε. For each distributional setting, we observe that knockoffs
generated with smaller entropic regularizer (e.g., ε = 1, 20) have poor quality, hence fail
to control the FDR below the predefined level (Figure 11). As we increase the entropic
regularizer (e.g., ε = 100, 1000), the quality of the knockoffs improves, and consequently
FDR is controlled below the predefined level. However, as ε increases significantly, for
example when ε = 5000, the quality of the knockoffs begins to degrade, and sRMMD loses
its ability to control the FDR across most distributional settings.

F.5 Comparison Between Deep Knockoff and sRMMD Knockoff

The effect of adding the second-order term to the MMD knockoff, hence known as the Deep
knockoff and its comparison with the sRMMD knockoffs are shown in Figure 12. In the
case of multivariate Gaussian, GMM, and multivariate Student’s t distributional settings,
the addition of the second-order term to the MMD knockoff does not improve the FDR vs.
power tradeoff to a great extent.

However, in the sparse Gaussian setting, a noticeable improvement is achieved in FDR
control compared to the case where we do not add the second-order term to the MMD
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Figure 12: Average FDR and power computed over 200 independent experiments are shown
on the y-axis for each synthetic benchmark. The FDR level is set to 0.1. The
x-axis represents the amplitude parameter υ.

knockoff (Figure 4). On the contrary, sRMMD knockoffs without the second-order term
control the FDR and achieve either comparable or better FDR vs. power tradeoff than
Deep knockoff in all cases.
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