
Journal of Machine Learning Research 24 (2023) 1-82 Submitted 10/21; Revised 5/23; Published 6/23

Divide-and-Conquer Fusion

Ryan S.Y. Chan rchan@turing.ac.uk
The Alan Turing Institute
London, NW1 2DB, UK

Murray Pollock murray.pollock@newcastle.ac.uk
School of Mathematics, Statistics and Physics
Newcastle University
Newcastle, NE1 7RU, UK

Adam M. Johansen a.m.johansen@warwick.ac.uk
Department of Statistics
University of Warwick
Coventry, CV4 7AL, UK

Gareth O. Roberts gareth.o.roberts@warwick.ac.uk

Department of Statistics

University of Warwick

Coventry, CV4 7AL, UK

Editor: Pierre Alquier

Abstract

Combining several (sample approximations of) distributions, which we term sub-posteriors,
into a single distribution proportional to their product, is a common challenge. Occurring,
for instance, in distributed ‘big data’ problems, or when working under multi-party pri-
vacy constraints. Many existing approaches resort to approximating the individual sub-
posteriors for practical necessity, then find either an analytical approximation or sample
approximation of the resulting (product-pooled) posterior. The quality of the posterior
approximation for these approaches is poor when the sub-posteriors fall out-with a narrow
range of distributional form, such as being approximately Gaussian. Recently, a Fusion ap-
proach has been proposed which finds an exact Monte Carlo approximation of the posterior,
circumventing the drawbacks of approximate approaches. Unfortunately, existing Fusion
approaches have a number of computational limitations, particularly when unifying a large
number of sub-posteriors. In this paper, we generalise the theory underpinning existing
Fusion approaches, and embed the resulting methodology within a recursive divide-and-
conquer sequential Monte Carlo paradigm. This ultimately leads to a competitive Fusion
approach, which is robust to increasing numbers of sub-posteriors.

Keywords: Distributed computing, importance sampling, Markov chain Monte Carlo,
sequential Monte Carlo, stochastic differential equations.

c©2023 Ryan S.Y. Chan, Murray Pollock, Adam M. Johansen and Gareth O. Roberts.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-1274.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-1274.html

Chan, Pollock, Johansen and Roberts

1. Introduction

In this paper, we are interested in the following d-dimensional (product-pooled) target den-
sity (which we term the fusion density),

f(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x), (1)

where x ∈ Rd, fc(x) for c ∈ {1, . . . , C} represent the individual densities which we wish
to unify (termed sub-posteriors in deference to the fact that a major application of this
technique will be the setting in which the posterior is proportional to the product of these
factors), and C represents the total number of sub-posteriors. We assume that we have
access to independent realisations from each sub-posterior, and that it is possible to evaluate
each sub-posterior pointwise up to its normalising constant. Although typically, one would
only have approximate samples from each sub-posterior, we will discuss later that neither
of these assumptions form limiting factors for our methodology.

The need to unify several (sample approximations of) distributions, over a common param-
eter space, into a single sample approximation of the distribution in the manner of (1) is
surprisingly common. For instance, it arises classically in expert elicitation (Albert et al.,
2012; Berger, 1980; Genest and Zidek, 1986) and meta-analysis (Fleiss, 1993). However, it
has proven to be challenging methodologically in a number of modern settings due to prob-
lem specific constraints. These include when dealing with the privacy constraints of the
individual sources (Yıldırım and Ermiş, 2019), in cases where the sheer number of sources
is overwhelming, or if the networking constraints of the sources are truly distributed (Scott
et al., 2016). This in turn has motivated a range of problem specific and pragmatic ap-
proximations. These approximations are invariably distributional, and imposed at the level
of the individual source (for instance, the sub-posteriors being approximately Gaussian).
Such approximations limit the applicability of methodological approaches to particular set-
tings, and outside those settings the unified results can be poorly understood, and even
misleading. We instead focus on developing methodology for an exact Monte Carlo approx-
imation of the unified distribution (1)—one which provides robust inference in a wide range
of practical problems, and yet is amenable to use alongside any problem specific constraints.

The majority of the recent methodological developments for representing or sampling from
(1) have been focused on tackling distributed ‘big data’ problems (see for instance Scott
et al., 2016; Neiswanger et al., 2014; Wang and Dunson, 2013; Minsker et al., 2014; Srivas-
tava et al., 2015; Nemeth and Sherlock, 2018). In this setting, due to its sheer size, the
data is split across a number of cores (say C cores), inference is separately conducted on
each core (often using MCMC), and then the respective methodologies attempt to unify
the sample approximations of the distribution (as per (1), and typically using a convenient
approximation). In this paper, we will compare our methodology with a number of the most
popular approaches, and so will briefly describe these here. The Consensus Monte Carlo
(CMC) approach of Scott et al. (2016) produces approximate samples from (1) by means
of a weighted average of sub-posterior samples. It can be shown that CMC is exact when

2

Divide-and-Conquer Fusion

each sub-posterior is Gaussian, and can be useful in settings where each sub-posterior is
approximately Gaussian, which is often the case in big data settings (Walker, 1969; John-
son, 1970; Le Cam, 1986; Van der Vaart, 1998; Le Cam and Yang, 2000). However, it has
been shown to exhibit large bias in other settings (Wang and Dunson, 2013). Neiswanger
et al. (2014) suggest a strategy (which we term the Kernel Density Estimate Monte Carlo
(KDEMC) approach) based on using a kernel density estimate to approximate the sub-
posterior densities, and in effect approximating (1) by implicitly sampling from the product
of non-parametric density estimates. Finally, the Weierstrass sampler of Wang and Dun-
son (2013) provides an alternative method for approximating (1) by means of using the
product of Weierstrass transforms for each sub-posterior. Interestingly, we find empirically
that for a cheap and crude approximation of (1) then the (simplest) CMC approach out-
performs all other methodologies, but in cases where accuracy is a concern then our (more
computationally expensive) Fusion approach should be used.

The Fusion approach (Dai et al., 2019, 2023) constructs a direct sample approximation
of (1) itself, rather than seeking to obtain an adhoc approximation of f by combining
approximations of the sub-posteriors. Underpinning the Fusion approach is the simple
observation that if we sampled (independently)X(c) ∼ fc for c ∈ {1, . . . , C} then conditional
on the event that X(1) = · · · = X(C), we have that X(1) has density f given in (1).

Clearly the difficulty with exploiting this observation is that we are conditioning on an event
of probability 0. The Monte Carlo Fusion (MCF) approach of Dai et al. (2019) provides
a framework for practically enforcing this conditioning. This is achieved by initialising C
stochastic processes (independently from one another) using a single realisation from each

sub-posterior (i.e. X
(c)
0 ∼ fc for c ∈ {1, . . . , C} where the subscript is a temporal index,

noting that X
(1)
0 6= · · · 6= X

(C)
0), evolving the processes in such a manner that (i) these

processes coalesce at some fixed future time (i.e. X
(1)
T = · · · = X

(C)
T); and (ii), the common

marginal distribution at the coalescence time, T , is f . By repeating this approach multiple
times, MCF provides multiple i.i.d. draws from f .

The Bayesian Fusion (BF) approach of Dai et al. (2023) re-examined the theoretical un-
derpinnings of MCF by introducing a stochastic differential equation (SDE) describing the
coalescence of the C stochastic processes, and exploited this theory together with method-
ology for sequential Monte Carlo (SMC) to gradually coalesce the stochastic processes. The
resulting output of the BF approach is a number of correlated and weighted draws from f .
BF is a far more practical and robust algorithm than MCF. A key advantage of BF over
MCF is that it is possible to give considerable user guidance in its implementation.

Although BF provides significant improvements over MCF, the applicability of the method-
ology is still limited by factors including: (i) the numbers of sub-posteriors being combined;
(ii) the level of sub-posterior correlation; (iii) the dimensionality of the sub-posteriors; (iv)
the degree to which the sub-posteriors conflict ; and (v) the computational cost of the ap-
proach even when the user-specified tuning parameters are optimally chosen. In this paper,
we make two key contributions to address the limitations of MCF and BF: (i) we signifi-
cantly improve upon the computational efficiency of BF by allowing the user to incorporate

3

Chan, Pollock, Johansen and Roberts

global information about each sub-posterior within the SDE formulation, and unify subsets
of the sub-posteriors at any one time—we term this approach Generalised Bayesian Fusion
(GBF), and present it in Section 2 and Algorithm 1; (ii) using the flexibility given by (i)
in which sub-posteriors can be partially unified, we embed our GBF methodology within
the divide-and-conquer paradigm of Lindsten et al. (2017), allowing the user to combine
sub-posteriors in stages to recover the fusion density f . We term this Divide-and-Conquer
Fusion (D&C-Fusion), and present it in Section 3 and Algorithm 2.

The remainder of the paper is organised as follows: In Section 4 we present detailed guid-
ance on implementing our GBF and D&C-Fusion approaches, and in particular choosing any
tuning parameters. In Section 5 we present applications of our methodology for a variety of
models, comparing them to competing approximate methodologies. We conclude by outlin-
ing a variety of ways or Fusion approach could be extended, and used in other application
settings. All technical proofs and detailed calculations are collated in the appendices.

Statistical computations for this paper were written in R (R Core Team, 2022), C++ and
Rcpp (Eddelbuettel, 2013). All code developed for producing numerical results can be
found on GitHub at https://github.com/rchan26/DCFusion.

2. A generalisation of the Fusion approach

In this section we develop theory and methodology to generalise and improve upon the BF
approach of Dai et al. (2023), by incorporating information about the covariance of the
sub-posteriors within the SDE formulation. For completeness in Appendix A we more fully
outline the connections of our methodology to the earlier MCF and BF works, highlighting
explicitly the advantages of our approach, but for ease of presentation here we instead
present our approach directly. In this section we also consider the more abstract problem
of sampling from the density f (C) ∝

∏
c∈C fc, where C is an index set representing the sub-

posteriors we want to unify, and we assume we can sample (independently) X(c) ∼ fc for
c ∈ C. This abstraction is useful for the methodology we develop in Section 3.

For the purposes of simplifying the subsequent notation, we denote by ~x
(C)
t ∈ R|C|×d a vector

composed of x
(c)
t ∈ Rd for c ∈ C (in particular, we have ~x

(C)
t := (x

(c1)
t , . . . ,x

(c|C|)
t), with ci

denoting the ith element of the index set C). We further assume that for c ∈ {1, . . . , C}, fc
is nowhere zero and everywhere differentiable, and that we can compute Ac(x) := log fc(x),
∇Ac(x), and ∇2Ac(x) pointwise (where ∇ is the gradient operator and ∇2 is the Hessian).
A fuller discussion of these assumptions is given in Appendix A, but note that they match
those of the earlier works of Dai et al. (2019, 2023).

We begin by describing the joint distribution of |C| coalescing stochastic processes on [0, T]
that at time T have the common marginal f (C) ∝

∏
c∈C fc. We term this the fusion measure,

F. To aid in the development of the subsequent methodology, we require that the stochastic
processes can be simulated, and so this is done by considering a Radon-Nikodým correction
of the so-called proposal measure (P), which is defined to be the probability law induced

4

https://github.com/rchan26/DCFusion

Divide-and-Conquer Fusion

by |C| interacting d-dimensional parallel continuous-time Markov processes in [0, T] where
each process is given by the SDE,

dX
(c)
t =

X̃t −X(c)
t

T − t
dt+ Λ

1
2
c dW

(c)
t , X

(c)
0 := x

(c)
0 ∼ fc, t ∈ [0, T], (2)

where Λc are (positive semi-definite) user-specified matrices associated to sub-posterior fc

for c ∈ C with Λ
1/2
c being the (positive semi-definite) square root of Λc where Λ

1/2
c Λ

1/2
c =

Λc. Note that for the purposes of our numerical simulations later we use the Schur decom-

position. Furthermore, {W (c)
t }c∈C denotes independent Brownian motions, and

X̃
(c)
t :=

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c X

(c)
t

)
,

denoting the weighted average of the processes at time t. In practice we typically take Λc to
be a user estimate of the covariance matrix of the sub-posterior, Σ̂c which can be computed
using the available sub-posterior samples for fc thereby incorporating problem-specific infor-
mation about covariance structure. We will see that the choice for these matrices influences
the efficiency of the algorithm but not the target distribution itself and thus incurs no bias.

Realisations of the proposal measure are denoted as X := {~x(C)
t , t ∈ [0, T]}. For the purposes

of exposition, we defer discussion on the practical simulation of P to Section 2.1.

Now, we let the Fusion measure F be simply the measure induced by the following Radon-
Nikodým derivative:

dF
dP

(X) ∝ ρ0

(
~x

(C)
0

)
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
, (3)

where {X(c)
t , t ∈ [0, T]} is a Brownian bridge from X

(c)
0 := x

(c)
0 ∼ fc to X

(c)
T := x

(c)
T with

covariance matrix Λc and

ρ0

(
~x

(C)
0

)
:= exp

{
−
∑
c∈C

(x̃
(C)
0 − x(c)

0)ᵀΛ−1
c (x̃

(C)
0 − x(c)

0)

2T

}
, (4)

where

x̃
(C)
t :=

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)
t

)
, (5)

and

φc(x) :=
1

2

(
∇ log fc(x)ᵀΛc∇ log fc(x) + Tr

(
Λc∇2 log fc(x)

))
. (6)

Now, considering the time T marginal of X ∼ F we (almost surely) have:

Theorem 1 Under the fusion measure F, the ending points of the |C| interacting, parallel

processes have a common value at time T , y(C) which has density f (C) and y(C) = x
(c1)
T =

· · · = x
(c|C|)

T almost surely.

5

Chan, Pollock, Johansen and Roberts

Proof See Appendix B. �

Theorem 1 suggests that we can simulate from the fusion target density f (C) by simulating
X ∼ F and retaining the T time marginal, y(C). As suggested by the theory, we do so by
means of simulating a number of proposals X ∼ P and accepting (or importance weight-
ing) the terminal time marginal y(C) with probability proportional to the Radon-Nikodým
derivative in (3). As such, we need to consider: (i), how to simulate proposals from X ∼ P
(outlined in Section 2.1); and (ii), how to compute the Radon-Nikodým correction (3) (out-
lined in Section 2.2). We then present our proposed complete methodology in Section 2.3.
We discuss possible extensions of our approach in Section 2.4.

2.1 Simulating from the Proposal Measure

First, we consider how to simulate proposals from X ∼ P. We begin by noting that the
initialisation of the proposal measure given by (2) at time t = 0 only requires independent
draws from the |C| sub-posteriors that we wish to unify, which in this paper we assume we
have access to. If independent sampling is not feasible, it is possible to obtain approximate
sub-posterior samples using MCMC (see Dai et al. (2023, Section 3.6) for a discussion on the
impacts of using approximate sub-posterior samples for Fusion). Further, although paths
X ∼ P are infinite dimensional random variables (and so we cannot draw entire sample paths
from P), it is sufficient for our needs to simulate (exactly) the paths at a finite collection of
times provided we can ensure that we are able to simulate the path (exactly) at time T . For
clarity, we only consider simulating X at times given by the following auxiliary temporal
partition,

P = {t0, t1, . . . , tn : 0 =: t0 < t1 < · · · < tn := T}. (7)

We let ∆j := tj − tj−1 and for notational simplicity, subscripts are suppressed when consid-

ering the processes at times given in the temporal partition. In particular, let x
(c)
j denote

x
(c)
tj

, and let ~x
(C)
j denote ~x

(C)
tj

. We will see from the following proposition, that algorith-
mically, to simulate from P at the time points in P, we can simply initialise the |C| paths

with x
(c)
0 ∼ fc for c ∈ C and sequentially simulate from the Normal distributions given in

Proposition 2a (for j ∈ {1, . . . , n− 1}) and b (for j = n). The following proposition tells us
how to simulate from the transition density of P:

Proposition 2 Let C := (c1, . . . , c|C|) denote the index set representing the sub-posteriors
we wish to unify, then if X satisfies (2), then under the proposal measure, P, we have

(a) For s < t < T ,

~X
(C)
t

∣∣∣(~X(C)
s = ~x(C)

s

)
∼ N|C|d

(
~M

(C)
s,t ,Vs,t

)
, (8)

6

Divide-and-Conquer Fusion

where ~M
(C)
s,t ∈ R|C|×d :=

(
M

(c1)
s,t , . . . ,M

(c|C|)
s,t

)
with

M
(c)
s,t =

T − t
T − s

x(c)
s +

t− s
T − s

x̃s, (9)

and

Vs,t =

Γ11 Γ12 . . . Γ1|C|
Γ21 Γ22 . . . Γ2|C|

...
...

. . .
...

Γ|C|1 Γ|C|2 . . . Γ|C||C|

 ∈ R|C|d×|C|d, (10)

where for i, j = 1, . . . , |C|,

Γii =
(t− s)(T − t)

T − s
Λci +

(t− s)2

T − s
ΛC ∈ Rd×d, (11)

Γij =
(t− s)2

T − s
ΛC ∈ Rd×d. (12)

(b) For s < t = T , y(C) := x
(c1)
T = · · · = x

(c|C|)

T ∼ Nd(x̃s,ΛC).

(c) For each c ∈ C, the distribution of {X(c)
q , s ≤ q ≤ t} given endpoints X

(c)
s = x

(c)
s and

X
(c)
t = x

(c)
t is a Brownian bridge with covariance matrix Λc, so

X(c)
u

∣∣∣(x(c)
s ,x

(c)
t

)
∼ Nd

(
(t− q)x(c)

s + (q − s)x(c)
t

t− s
,
(t− q)(q − s)

t− s
Λc

)
. (13)

Proof See Appendix C. �

As we can initialise a draw from P, and from Proposition 2 we can simulate from its
transition density, we can now explicitly express the d(n|C| + 1)-dimensional density of
the |C|d-dimensional Markov process at the (n + 1) time marginals given by the temporal
partition under P, by iterative simulation from the transition density:

hC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
∝ f

(
~x

(C)
0

)
·
n−1∏
j=1

N|C|d
(
~x

(C)
j

∣∣∣ ~M (C)
j ,Vj

)
·Nd

(
y(C)

∣∣∣x̃(C)
n−1,ΛC

)
, (14)

where f
(
~x

(C)
0

)
∝
∏
c∈C fc

(
x

(c)
0

)
, and Nd(x|µ,Σ) denotes the density of a d-dimensional

Normal distribution (evaluated at x) with mean µ and covariance Σ. For notational con-

venience we let ~M
(C)
j = ~M

(C)
tj−1,tj

and Vj = Vtj−1,tj .

2.2 Radon-Nikodým correction of the Proposal

Now, we direct our consideration to the second step: computing the Radon-Nikodým cor-
rection of (3), given we have drawn our proposal from P restricted to the times given by the

7

Chan, Pollock, Johansen and Roberts

partition P. Factorising the Radon-Nikodým derivative in (3) according to the temporal
partition P, the d(n|C|+ 1)-dimensional density under F is

gC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
∝ hC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
·
n∏
j=0

ρj , (15)

where ρ0 is given in (4) and for j ∈ {1, . . . , n},

ρj

(
~x

(C)
j−1, ~x

(C)
j

)
=
∏
c∈C

EWΛc,j

[
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)}]
∈ (0, 1], (16)

and where WΛc,j is the law of a Brownian bridge {X(c)
t , t ∈ (tj−1, tj)} from Xtj−1 := x

(c)
j−1

to Xtj := x
(c)
j with covariance Λc, and Φc <∞ is a constant such that φc(x) ≥ Φc for all

x and each c ∈ C. We note that the terms Φc for c ∈ C (the global lower bounds of the
respective φc for c ∈ C) in (16) can be absorbed into normalising constants and, hence, as
we apply sequential Monte Carlo methodology, they need not be evaluated (as shown more
explicitly in Section 2.3).

Whilst ρ0 (given by (4)) can be computed easily, direct computation of ρj in (16) for
j ∈ {1, . . . , n} is not possible as it requires evaluation of path integrals of Brownian motion.
However, it is possible to construct non-negative unbiased estimators for (16) (with finite
variance and computable in finite cost) in a similar fashion to Beskos et al. (2008); Fearnhead

et al. (2008); Dai et al. (2019, 2023). To do so, we require for a given sample pathX
(c)
[tj−1,tj]

∼

WΛc,j that we have upper and lower bounds for φc(X
(c)
t) for each c ∈ C. In general, it is

not possible to find global bounds for φc, so we follow the approach of Beskos et al. (2008)

and Pollock et al. (2016) who noted that if we can bound a sample path X
(c)
[tj−1,tj]

∼WΛc,j ,

then conditional on these layers (or bounds) of the sample path, then we will be able

to find local upper and lower bounds of φc denoted U
(c)
j and L

(c)
j , respectively, such that

φc(X
(c)
t) ∈ [L

(c)
j , U

(c)
j] for t ∈ [tj−1, tj]. In order to practically implement this, we need to

simulate Brownian bridges jointly with a compact region which almost surely constrains
their path (a mechanism for doing this is described in Pollock et al. (2016, Sections 7 and
8)). We now describe one approach for doing this.

To achieve this, let Rc := Rc(X[tj−1,tj]) denote the layer information (i.e the compact region

in which X
(c)
t is constrained in time [tj−1, tj]). We note that it is possible to partition the

sample space into disjoint sets and simulate from associated distribution function (without
having to sample the underlying path), Rc ∼ Rc. If Λc = Id, then we can simulate a

layer to which X
(c)
t ∈ Rc for t ∈ [tj−1, tj] by using algorithms outlined in Pollock et al.

(2016, Sections 7 and 8) (for instance Pollock et al. (2016, Algorithm 14)). In the case
where Λc 6= Id, we can still simulate Rc by appealing to a suitable transformation (which
we detail fully in Appendix F and in Algorithm 5). Furthermore, once we have simulated

layer information for X
(c)
t for t ∈ [tj−1, tj], we can simulate the path at any required time

marginals conditional on the simulated layer, X
(c)
t ∼ WΛc,j |Rc (via a transformation and

applying for instance Pollock et al. (2016, Algorithm 15)).

8

Divide-and-Conquer Fusion

Although it is possible to find tight local bounds for φc in a problem specific manner by
exploiting specific structure, there are some generic strategies that can be followed. In
sufficiently regular settings one might construct the partition necessary by first partitioning
the domain of φc and then looking at the pre-image of that partition under φc, thereby
reducing the problem to a univariate one. Alternatively, it is helpful in practice to note
that it is possible to find generic (less tight) bounds given by the following proposition:

Proposition 3 For all c ∈ C and x ∈ Rc, we have φc (x) ∈
[
L

(c)
j , U

(c)
j

]
, where

L
(c)
j := −1

2

(
d · PΛc

)
, (17)

U
(c)
j :=

1

2

[(∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc

)2

+ d · PΛc

]
, (18)

where d denotes the dimension of x, ‖·‖ is the Euclidean norm, x̂(c) is a user-specified point
central to Rc, and where PΛc is a quantity such that

PΛc ≥ max
x∈Rc

γ
(
Λc∇2 log fc (x)

)
, (19)

with γ denoting the matrix norm, defined as

γ(A) := max
‖x‖6=0

‖Ax‖
‖x‖

. (20)

Proof See Appendix D. �

Once local bounds for φc are obtained, we can unbiasedly estimate ρj (16) for j ∈ {1, . . . , n}
by letting ∆j := tj − tj−1 and computing aj ρ̃j , where aj := exp

(∑
c∈C Φc∆j

)
and

ρ̃j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

∆κc
j · e

−U(c)
j ∆j

κc! · p (κc|Rc)
·
κc∏
kc=1

[
U

(c)
j − φc

(
X

(c)
ξc,kc

)] , (21)

where Rc is the simulated layer information for the Brownian bridge sample path X
(c)
t ∼

WΛc,j from x
(c)
j−1 to x

(c)
j , L

(c)
j and U

(c)
j are constants such that L

(c)
j ≤ φ

(
X

(c)
t

)
≤ U

(c)
j

for all X
(c)
t ∼ WΛc,j |Rc, κc is a discrete random variable with conditional probabilities

P[κc = kc|Rc] := p(κc|Rc) (which at this stage we allow to be arbitrary) and ξc,1, . . . , ξc,κc
iid∼

U [tj−1, tj] for all c ∈ C.

Theorem 4 Let aj := exp
(∑C

c=1 Φc∆j

)
, then for every j = 1, . . . , n, aj ρ̃j is an unbiased

estimator of ρj. In particular, we have

ρj = E
[
E
[
E
[
E
[
aj ρ̃j

∣∣∣{Rc,X(c)
[tj−1,tj]

, κc}c∈C
]∣∣∣{Rc,X(c)

[tj−1,tj]
}c∈C ,

]∣∣∣{Rc}c∈C]]
9

Chan, Pollock, Johansen and Roberts

= ER̄EW̄|R̄EK̄EŪ [aj ρ̃j] , (22)

where (for readability) the expectation subscript denotes the law with which they are taken.
Here, R denotes the law of {Rc ∼ Rc : c = 1, . . . , C}, W̄ denotes the law of the C Brownian
bridges {WΛc,j : c = 1, . . . , C}, K̄ denotes the law of {κc : c = 1, . . . , C} and Ū denotes the

law of {ξc,1, . . . , ξc,κc : c = 1, . . . , C} iid∼ U [tj−1, tj].

Proof See Appendix E. �

We note that this unbiased estimator for ρj allows for significant flexibility in choosing the
law K. Following the discussion in Dai et al. (2023, Appendix B), there are two natural
choices of unbiased estimators that could be used by making particular choices for the
distribution of the discrete random variable used to simulate κc for c ∈ C. We denote
these ρ̃

(a)
j and ρ̃

(b)
j and are based, respectively, upon the GPE-1 and GPE-2 estimators of

Fearnhead et al. (2008):

Definition 5 (GPE-1 for ρj (16)): Choosing the law of κc ∼ Poi
(
(U

(c)
j −L

(c)
j)∆j

)
for c ∈ C

leads to the following estimator:

ρ̃
(a)
j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

e−L(c)
j ∆j ·

κc∏
kc=1

U (c)
j − φc

(
X

(c)
ξc,kc

)
U

(c)
j − L

(c)
j

 , (23)

where exp{
∑C

c=1 Φc∆j} · ρ̃(a)
j is an unbiased estimator for ρj.

Definition 6 (GPE-2 for ρj (16)): Choosing the law of κc ∼ NB(γc, βc) for c ∈ C with

γc := U
(c)
j ∆j −

∫ tj

tj−1

φc

(
x

(c)
j−1 ·

tj − s
∆j

+ x
(c)
j ·

s− tj−1

∆j

)
ds, (24)

leads to the following estimator:

ρ̃
(b)
j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

e−U(c)
j ∆j ·

∆κc
j · Γ(βc) · (βc + γc)

βc+κc

Γ(βc + κc)β
βc
c γ

κc
c

·
κc∏
kc=1

[
U

(c)
j − φc

(
X

(c)
ξc,kc

)] ,

(25)

where exp{
∑C

c=1 Φc∆j} · ρ̃(b)
j is an unbiased estimator for ρj.

The estimators ρ̃
(a)
j and ρ̃

(b)
j can be computed as detailed in Appendix F, and by means of

Algorithm 5, by appealing to Dai et al. (2023, Algorithm 4 and Appendix. B). ρ̃
(a)
j and ρ̃

(b)
j

have particularly desirable properties (by choosing L
(c)
j and U

(c)
j as in Proposition 3):

10

Divide-and-Conquer Fusion

Proposition 7 Let aj := exp{
∑C

c=1 Φc∆j}, then aj ρ̃
(a)
j (~x(C),y(C)) and aj ρ̃

(b)
j (~x(C),y(C))

are unbiased estimators of ρj(~x
(C),y(C)) which are positive with finite variance. In addition,

ρ̃
(a)
j (~x(C),y(C)) ∈ [0, 1].

Proof See Fearnhead et al. (2008). �

As we discuss in Section 2.3, the critical consideration when choosing the law K is to
minimise the variance of the estimator. In our subsequent simulations, we will typically
choose the GPE-2 estimator in Condition 6 as it has been empirically shown to have superior
performance in Fearnhead et al. (2008, Section 5) and Dai et al. (2023, Section 3.5). Note

that the mean run time for both the estimators ρ̃
(a)
j and ρ̃

(b)
j will be random, but will be

finite and proportional to κc for a given layer Rc ∼ Rc.

2.3 Methodology

As we outlined earlier in this section, Theorem 1 suggests that we can simulate from the
fusion target density f (C) by simulating X ∼ F and retaining the T time marginal, y(C). This
can be achieved by simulating a number of proposals X ∼ P and accepting (or importance
weighting) the terminal time marginal y(C) with probability proportional to the Radon-
Nikodým derivative in (3). We are now able to implement each of these steps (as discussed
in Sections 2.1 and 2.2 respectively), but we have considerable freedom over the details of
the methodological approach.

The simplest approach is a rejection sampler : simulate a proposal from hC (14) (by utilising
Proposition 2), accept this proposal with probability

∏n
j=0 ρj , and conditional on acceptance

return y(C). As more fully discussed in Appendix A, this coincides methodologically with
MCF if we set Λc = Id for c ∈ {1, . . . , C} (although the formulation is different). The
benefit of such a rejection sampler is it returns i.i.d. draws from f (C). However, it suffers
from several inefficiencies. In particular, we would expect the acceptance probabilities ρj
given in (4) to decay geometrically with increasing number of sub-posteriors, |C|, as each
term in this product is bounded by 1. Furthermore, the acceptance probability

∏n
j=0 ρj

will typically decay exponentially with increasing T . Consequently, a rejection sampling
approach for this problem will ultimately be impractical in many practical settings as it
will have very small acceptance probabilities. Similarly, the naive importance sampling
adaptation of this approach (in which the proposal of the rejection sampler are all retained
with a un-normalised importance weight of

∏n
j=0 ρ̃j) will ultimately suffer from the same

issues of robustness in practice.

Inspired by the importance sampling approach, the BF approach of Dai et al. (2023) intro-
duced the auxiliary temporal partition P in order to simulate from gC using SMC: allowing
for the gradual coalescence of the C stochastic processes. In particular, we can initialise
an SMC algorithm by simulating N particles from the time 0 marginal in hC (which con-

sists of composing |C| samples from each of the sub-posterior densities to obtain ~x
(C)
0),

11

Chan, Pollock, Johansen and Roberts

and assigning them an initial un-normalised importance weight given by w′0,i := ρ0(~x
(C)
0,i)

for i ∈ {1, . . . , N}. This initial particle set constitutes an approximation to the time 0
marginal of gC , and can be sequentially propagated n times (i.e. |P| − 1 times) through the

temporal time mesh P by simulating ~x
(C)
j,i |~x

(C)
j−1,i ∼ Nd

(
~M

(C)
j,i ,Vj

)
as per (9) and (10) in

Proposition 2. In our SMC formulation at each iteration (j ∈ {1, . . . , n}) the un-normalised

importance weight of every particle is updated by a factor of ρ̃j(~x
(C)
j−1,i, ~x

(C)
j,i) as per (21).

Upon normalisation, the resulting weighted particle set after the nth iteration is an ap-
proximation of both the time T marginal of gC and our fusion target f (C). In particular,

f (C)(y)dy ≈
N∑
i=1

w
(C)
n,i · δy(C)i

(dy). (26)

As we remarked upon in Section 2.2, due to this normalisation of the particle set weights
we can avoid the need to explicitly compute the constants Φc in (16), as they are simply
constants which cancel.

As is common in SMC, to avoid weight degeneracy in which the variance of the importance
weights degrades rapidly in n, we employ a resampling strategy (see for instance Gerber
et al. (2019) for a recent investigation of the properties of many resampling schemes). In
particular, we monitor the particle set for weight degeneracy by estimating its effective
sample size (ESS) Kong et al. (1994). If the ESS falls below some user-specified threshold
then at the beginning of the next iteration we resample the particle set to get N equally
weighted particles. In all of our simulations in the subsequent sections, we used residual
resampling (Higuchi, 1997; Liu and Chen, 1998; Whitley, 1994).

We term our resulting Fusion approach Generalised Bayesian Fusion (GBF) and summarise
it in Algorithm 1.

2.4 Practical extensions of Generalised Bayesian Fusion

We now consider the practicalities of Algorithm 1. To generalise the algorithm further (and
make it amenable to a recursive divide-and-conquer approach as in Divide-and-Conquer
Fusion), we assume we have access to M importance weighted realisations of each sub-

posterior, {x(c)
0,k, w

(c)
k }

M
k=1 for c ∈ C. To initialise the algorithm, we start by compos-

ing M initial weighted particles by pairing the draws from each sub-posterior {~x(C)
0,k}

M
k=1,

and compute the associated (un-normalised) partial weights {w(C)′
0,k }

M
k=1 where w

(C)′
0,k :=(∏

c∈C w
(c)
k

)
· ρ0(~x

(C)
0,k) for k = 1, . . . ,M . If we have M 6= N , we resample to obtain N

samples from each sub-posterior, otherwise, we choose to only resample if the ESS is below
some user-specified threshold. Note that in the Input step of Algorithm 1, we may have
access to different numbers of samples from each sub-posterior: say Mc importance weighted
samples for sub-posterior fc (for c ∈ C). In order to compose our M partial proposals in
Step 1b, there are a number of approaches we could take. As presented above, if Mc = M

12

Divide-and-Conquer Fusion

Algorithm 1 gbf(C, {{x(c)
0,i , w

(c)
i }Mi=1,Λc}c∈C , N,P): Generalised Bayesian Fusion (GBF).

1. Initialisation (j = 0):

(a) Input: Importance weighted realisations {x(c)
0,i , w

(c)
i }Mi=1 for c ∈ C :=

(c1, . . . , c|C|), the user-specified matrices, {Λc : c ∈ C}, the number of parti-
cles required, N , and temporal partition P := {t0, t1, . . . , tn : 0 =: t0 < t1 <
· · · < tn := T}.

(b) Compose the importance weighted realisations {~x(C)
0,k , w

(C)′
0,k }

M
k=1 where w

(C)′
0,k :=(∏

c∈C w
(c)
k

)
· ρ0(~x

(C)
0,k) for k ∈ {1, . . . ,M} as per (4).

(c) w
(C)
0,k : For k in 1 to M , compute normalised weight w0,k = w

(C)′
0,k /

∑M
k′=1w

(C)′
0,k′ .

(d) gM0 : Set gM0 (d~x
(C)
0) :=

∑M
k=1w

(C)
0,k · δ~x(C)

0,k

(d~x
(C)
0)

(e) ~x
(C)
0,i : If M 6= N , for i = 1, . . . , N , resample ~x

(C)
0,i ∼ gM0 and reset w

(C)
0,i = 1

N .

2. Iterative updates. For j ∈ {1, . . . , n}:

(a) Resample: If the ESS :=

(∑N
i=1w

(C)
j−1,i

2
)−1

breaches the lower user-specified

threshold, then for i = 1, . . . , N , resample ~x
(C)
j−1,i ∼ gNj−1 and reset w

(C)
j−1,i = 1

N .

(b) For i in 1 to N ,

i. ~x
(C)
j,i : Simulate ~x

(C)
j,i ∼ Nd

(
~M

(C)
j,i ,Vj

)
as per Proposition 2.

ii. w
(C)′
j,i : Compute un-normalised weight w

(C)′
j,i = w

(C)
j−1,i · ρ̃j(~x

(C)
j−1,i, ~x

(C)
j,i) as per

(21) (using Algorithm 5).

(c) w
(C)
j,i : For i in 1 to N , compute normalised weight w

(C)
j,i = w

(C)′
j,i /

∑N
k′=1w

(C)′
j,k′ .

(d) gNj : Set gNj (d~x
(C)
j) :=

∑N
i=1w

(C)
j,i · δ~x(C)

j,i

(d~x
(C)
j).

3. Output:
{
~x

(C)
0,i , . . . , ~x

(C)
n−1,i,y

(C)
i , w

(C)
n,i

}N
i=1

, where f̂ (C)(dy) := gNn (dy) ≈ f (C)(y)dy.

for c ∈ C, we simply pair the sub-posterior draws index-wise. This is a basic merging
strategy of the sub-posterior realisations and has the advantage that it can be implemented
in O(M) cost (and if Mc 6= M for every c ∈ C one could simply sub-sample to obtain a
common number of samples from each sub-posterior). However, as noted in Lindsten et al.
(2017), while this approach has a low computational cost, it can lead to high variance when
the product

∏
c∈C fc(x

(c)) differs substantially from the corresponding marginal of f (C) —
which one might expect to be the case in our setting when the sub-posteriors disagree.

We found this simple approach more than adequate in our simulations, but there are more
sophisticated options available should they be required in still more challenging settings.

13

Chan, Pollock, Johansen and Roberts

In particular, as described in Lindsten et al. (2017, Section 4.1), at the expense of a com-
putational cost O(

∏
c∈CMc), one could instead compose all possible permutations of the

samples from each sub-posterior before weighting and then resampling to reduce the num-
ber of points in the approximation back to a pre-specified number, arriving at a better
approximation at a greater cost. They termed this approach “mixture resampling” and
also detailed a “lightweight mixture resampling” approach in which more than one permu-
tation, but not all possible permutations, are used and found it to work well; as noted by
Kuntz et al. (2022) such a strategy can be connected directly with the theory of incomplete
U -statistics and consequently one might hope to realise much of the benefit of mixture
resampling at a much reduced cost (see e.g. Kong and Zheng (2021)).

3. A divide-and-conquer approach to Fusion

A key drawback of the Monte Carlo Fusion and Bayesian Fusion approaches of Dai et al.
(2019, 2023), and the Generalised Bayesian Fusion approach we introduced and outlined
in Section 2, is that it lacks robustness with increasing number of sub-posteriors, |C|. This
is unsurprising as the extended target and proposal densities (gC and hC) are d(n|C| + 1)-
dimensional, and these become increasingly mismatched with increasing dimension. In
particular, as a consequence of the definition of ρj in (16), the acceptance probability of
any rejection-based scheme will decrease geometrically with increasing |C|. Fundamentally,
importance sampling variants of this will not address this bottleneck.

As presented both in Dai et al. (2019, 2023), Fusion is an example of a fork-and-join
approach—all of the sub-posteriors are unified in a single step. In particular, within the
GBF framework of Section 2 we set C := {1, . . . , C}. This is illustrated in the tree diagram
of Figure 1, where the leaves of the tree represent the available sub-posterior densities, the
directed edges are used to illustrate the computational flow of MCF, and the root vertex of
the tree is the desired fusion density, f (as given in (1)).

f

f1

11

f2

33

f3

77

· · · fC−2

hh

fC−1

ll

fC

mm

Figure 1: A tree representation of the fork-and-join approach of Monte Carlo Fusion.

As the goal of the methodology is to approximate f in (1), one could envision a recursive
divide-and-conquer approach in which the sub-posteriors are combined in stages to recover
f . There are a number of possible orderings in which we could combine sub-posteriors,
and so we represent these orderings in tree diagrams, and term these hierarchies (see Fig-
ure 2). For instance as illustrated in Figure 2a, one approach would be to combine two
sub-posteriors at a time (we term this a balanced-binary tree approach). In Figure 2a,
the intermediate vertices represent intermediate (auxiliary) densities up to proportionality.

14

Divide-and-Conquer Fusion

The approximation of the distribution associated with any non-leaf vertex is obtained by
an application of Fusion methodology to the densities of the children of that vertex. A
balanced-binary tree approach is perhaps the most natural way to combine sub-posteriors
in a truly distributed setting (where the simulation of each sub-posterior has been conducted
separately, and so the inferences we wish to combine are distributed). Another approach
is given in Figure 2b, whereby sub-posteriors are fused one at a time (which we term a
progressive tree approach). This is perhaps the most natural approach for an online set-
ting. We focus on applying GBF to these two natural hierarchies for the remainder of this
paper, although other hierarchies are certainly possible within our framework, and there is
no limitation in unifying more than two vertices at any level of a tree (as suggested by both
Section 2 and Figure 1).

f

f1f2

···

88

· · · fC−1fC

···

hh

f1

::

f2

OO

· · · fC−1

OO

fC

ee

(a) A balanced-binary tree.

f

∏C−1
c=1 fc

33

f1f2

···
33

f1

77

f2

OO

· · · fC−1

OO

fC

OO

(b) A progressive tree.

Figure 2: Illustrative hierarchies for the Fusion problem of (1).

From this recursive perspective, sample approximations of auxiliary densities obtained at
one level of any tree are themselves treated as sub-posteriors at the next level up. As such,
one can iteratively apply the Fusion methodology of Section 2, working through the levels
of the tree from the leaves to the root, using at each stage the output of one step as the
input for the subsequent step. An advantage of our divide-and-conquer approach is that
as fewer sub-posteriors are combined at each stage, we avoid (at each stage) the rapidly
diminishing and variable importance weights.

A divide-and-conquer variant of Sequential Monte Carlo (D&C-SMC) was recently intro-
duced in Lindsten et al. (2017). D&C-SMC generalises the classical SMC framework from
sequences (or chains) to trees, such as those in Figures 1 and 2. The theoretical properties
of D&C-SMC are increasingly-well characterized and include a strong law of large numbers,
finite sample Lp errors bounds as well as a

√
N -central limit theorem under mild conditions

(see Kuntz et al. (2023)). We thus embed our GBF approach within a D&C-SMC algorithm
to address the robustness of Fusion with increasing |C|, albeit this being a trade-off with
the cost of the repeated application of the methodology. In our recursive setting, we unify
distributed sample approximations by operating on a tree of auxiliary Fusion densities. Let
T = (V, E) denote a tree with vertices V and (directed) edge set E . Let Leaf(T) denote
the leaves of the tree (which represent the sub-posteriors f1, . . . , fC), Root(T) denote the
root of the tree (which represents f) and Ch(v) denote the children of vertex v ∈ V where

15

Chan, Pollock, Johansen and Roberts

Ch(t) = ∅ if t is a leaf. Let V = {v0, v1, . . . , vC , . . .} be the set of vertices, with v0 = Root(T),
{v1, . . . , vC} = Leaf(T) and as many intermediate vertices as are required to specify the tree.

For the purposes of utilising the methodology developed in Section 2, we define the following
notation for non-leaf vertices (i.e. v /∈ Leaf(T)): let Cv := ∪u∈Ch(v)Cu denote the index set
representing the sub-posteriors that we want to unify for vertex v /∈ Leaf(T). In addition,
to simplify the notation and avoid an unnecessary level of subscripts, we index densities
and other quantities by v rather than Cv when it is clear what is intended. In particular,

let Λv := ΛCv , ~x
(v)
t := ~x

(Cv)
t , x̃

(v)
t := x̃

(Cv)
t , y(v) := y(Cv) where y(v) ∼ fv := f (Cv) for

v /∈ Leaf(T). Let WΛv ,j denote the law of a Brownian bridge {X(v)
t , t ∈ [tj−1, tj]} with

X
(v)
tj−1

:= x
(v)
j−1 and X

(v)
tj

:= x
(v)
j with covariance Λv for j ∈ {1, . . . , n}. The extended

target and proposal densities for vertex v /∈ Leaf(T) are denoted gv := gCv and hv :=
hCv , respectively. Lastly, the importance sampling weights for v /∈ Leaf(T) are given by

ρ
(v)
0 (~x(v)) := ρ0(~x(Cv)) and ρ

(v)
j (~x(v),y(v)) := ρj(~x

(Cv),y(Cv)) for all j.

To describe our Divide-and-Conquer Fusion (D&C-Fusion) approach, we specify an al-
gorithm that is carried out at each vertex v ∈ V which leads to a recursive procedure;
an initial call to D&C-Fusion(Root(V), . . .) carries out the overall approach. For v ∈ V,
we define a procedure (as given in Algorithm 2), which returns a weighted particle set

{~x(v)
0,i , . . . , ~x

(v)
n−1,i,y

(v)
i , w

(v)
n,i}Ni=1 where w

(v)
n,i denotes the normalised importance weight of par-

ticle i for vertex v ∈ V. From this particle set, we can take the marginal weighted samples
for y(v) to approximate the fusion density fv ∝

∏
u∈Ch(v) fu for vertex v ∈ V. Recall that

the leaf vertices, vc for c ∈ {1, . . . , C}, represent each of the sub-posteriors. It is possible to
additionally incorporate importance sampling for the leaf vertices, but for simplicity we as-
sume that we have access to unweighted samples for the sub-posteriors. Therefore, at these
leaf vertices, we simply sample from the sub-posteriors. If independent sampling is not
feasible, one could use MCMC to obtain unweighted sample approximations at the leaves.
Formal arguments (under appropriate regularity conditions) could in principle follow an
approach analogous to that in Finke et al. (2020). If v is a non-leaf vertex, we simply call

Algorithm 1 by inputting the importance weighted samples {y(u)
i , w

(u)
i }Ni=1 for u ∈ Ch(v).

As in standard SMC, although the auxiliary distributions are defined on larger spaces we
do not need to retain sampled values which are not subsequently used; to obtain a more
computationally manageable algorithm, we can choose to retain only the final parameter

space marginal at each vertex (i.e. only returning {y(v)
i , w

(v)
i }Ni=1) since we only require this

to compute the importance weights in Algorithm 1 at each vertex v /∈ Leaf(T).

Note that in Algorithm 2, we allow the user to specify different temporal partitions at each
node and level (i.e. {Pu}u∈Ch(v), Pv). As we explore fully in Section 4, when we develop
guidance for user chosen tuning parameters, having this flexibility on the temporal partition
can lead to a far more robust and efficient implementation of Algorithm 2.

16

Divide-and-Conquer Fusion

Algorithm 2 D&C-Fusion(v,N,P): Divide-and-Conquer Fusion (D&C-Fusion).

Given: Sub-posteriors, {fu}u∈Leaf(T), and preconditioning matrices {Λu}u∈T.
Input: Node in tree, v, the number of particles N , and (optionally) the temporal mesh
partitions {Pu}u∈Ch(v), Pv.

1. For u ∈ Ch(v),

(a)
{
~x

(u)
0,i , . . . , ~x

(u)
n−1,i,y

(u)
i , w

(u)
n,i

}N
i=1
← D&C-Fusion(u,N,Pu).

2. If v ∈ Leaf(T),

(a) For i = 1, . . . , N , sample y
(v)
i ∼ fv(y).

(b) Output: {∅,y(v)
i , 1

N }
N
i=1.

3. If v /∈ Leaf(T),

(a) If Pv is not inputted, apply guidance from Section 4.1 and Section 4.2.

(b) Output: Call gbf(Ch(v), {{y(u)
i , w

(u)
i }Ni=1,Λu}u∈Ch(v), N,Pv).

4. Implementational guidance for Generalised Bayesian Fusion

In this section we develop guidance for choosing the parameter T and the temporal partition
P (and so n implicitly) for our Generalised Bayesian Fusion (GBF) approach (Algorithm
1), the guidance for which can be used directly at each node within our Divide-and-Conquer
Fusion approach (Algorithm 2). As GBF is fundamentally a sequential Monte Carlo (SMC)
algorithm, we want to choose these hyperparameters in such a way to ensure that the
discrepancy between subsequent proposal and target distributions are not degenerate. For
this reason, and in common with Dai et al. (2023, Section 3), we look at the incremental
weight changes and study the current effective sample size (CESS) associated with these
weights:

CESSj :=

(∑N
i=1 ρ̃j,i

)2

∑N
i=1 ρ̃

2
j,i

for j = 1, . . . , n; CESS0 :=

(∑N
i=1 ρ0,i

)2

∑N
i=1 ρ

2
0,i

, (27)

where ρ0,i and ρ̃j,i are given in (4) and (21) respectively.

In order to develop heuristics to choose hyper-parameters, we consider the idealised setting
of combining multivariate Gaussian sub-posteriors with mean vector ac and covariance
matrix b|C|Λc/m, for some b > 0, for c ∈ C. The target is f ∼ Nd(ã, b|C|ΛC/m), where

ã :=
(∑

c∈C Λ−1
c

)−1 (∑
c∈C Λ−1

c ac
)

and ΛC :=
(∑

c∈C Λ−1
c

)−1
.

In BF, this idealised setting was used to help select T and n and, by imposing an additional
assumption that the partition was a regular mesh, in turn P. In this section we instead
develop guidance for T (see Section 4.1) in the more sophisticated GBF setting, and then

17

Chan, Pollock, Johansen and Roberts

in Section 4.2 investigate the more challenging selection of P without assumption on its
regularity (i.e. permitting an irregular choice of mesh)—and so we instead implicitly find n.
These ideas can also be directly applied to improve BF itself, which we show later in our
numerical results.

In our idealised setting, the key consideration is the degree to which the sub-posteriors
disagree with one another. To measure how significant the sub-posterior conflict is we
define

σ2
a :=

1

|C|
∑
c∈C

(ac − ã)ᵀΛ−1
c (ac − ã). (28)

We further consider the two following conditions in order to explore how the algorithm
hyperparameters should change according to sub-posterior heterogeneity:

Condition 8 SH(λ). The sub-posteriors obey the SH(λ) condition (for some constant λ >
0) if

σ2
a =

b(|C| − 1)λ

m
. (29)

Remark 9 Interpretation of λ. Of course SH(λ) will always hold for some λ, and this
condition can alternatively be interpreted as a definition of λ. We will be particularly inter-
ested in moderate values of λ close to 1 which will indicate only weak or no sub-posterior
discrepancy. SH(λ) is a natural condition, arising for instance if m

|C| of the data is randomly

allocated to each sub-posteriors then σ2
a ∼ b

mχ
2
|C|−1 and have mean b(|C|−1)

m . The λ for which

SH(λ) holds is therefore χ2
|C|−1/(|C| − 1) and therefore has mean 1 and variance 2/(|C| − 1).

Consequently for large |C|, we would expect λ to be close to 1. In this idealised i.i.d. case,
these arguments duplicate classical ANOVA calculations.

However the SH(λ) condition for moderate λ > 1 is also of interest indicating weak discrep-
ancy between sub-posteriors. This would occur (for instance) if the data consisted of disjoint
segments of a long ergodic stationary sequence with no long-range dependence where, in this
case, λ is an estimate of the integrated auto-correlation time of the sequence. For this
reason, the scenario λ < 1 would not normally occur (particularly for large |C|).

In the examples later on, we will set λ = 1 as default, since this is the natural iid scenario.
However, as noted above, if we suspect that there is weak discrepancy between the sub-
posteriors, or there is some dependency between the subsets of data, we may also choose λ
to be slightly greater than 1 or alternatively estimate it from the data.

The defining characteristic of SH(λ) is that λ is stable for large data sizes (largem). However
for stronger sub-posterior discrepancy, just as the power of ANOVA tests become larger for
larger data sets, λ will become much larger with m where there is a systematic difference
in the data distributions between sub-posteriors. Now SH(λ) will not adequately describe
this dependence, and so we consider the following scenario instead:

18

Divide-and-Conquer Fusion

Condition 10 SSH(γ). The sub-posteriors obey the super sub-posterior heterogeneity
SSH(γ) condition (for some constant γ > 0) if

σ2
a = bγ. (30)

As with SH(λ), this can alternatively be seen as a definition of γ. This setting can arise if
the sub-posterior heterogeneity does not decay with data size m.

Remark 11 Choice of b: In the case that the user-specified matrices {Λc}c∈C are chosen
to be the estimated covariance matrices for each sub-posterior, then we would set b = m

|C| .

Therefore, the sub-posteriors fc ∼ Nd(ac, b|C|m Λc) have variance which closely matches the

sub-posterior variance. In general, we want to choose b such that b|C|
m Λc is close to the

variance of sub-posterior fc for c ∈ C.

We study empirically our choices of tuning parameter (T , n and P) in the idealised settings
described by the SH(λ) condition (of Condition 8) and SSH(γ) condition (of Condition 10)
in Sections I.1–I.2 respectively.

Note that the implementational guidance we provide in this section is for the general appli-
cation and tuning of GBF methodology. In many practical settings there will be additional
constraints which require further modification to GBF. This includes settings where la-
tency between cores is problematic, or in scenarios where functional evaluations of the
sub-posterior densities fc are not available. In Appendix H we provide further direction on
some of what we envisage to be the most common modifications.

4.1 Guidance for choosing T

In this section, we develop guidance on selecting T for the two idealised settings, SH(λ) and
SSH(γ), defined in Conditions 8 and 10, respectively. In each setting, by first specifying the
lower bound on the initial effective sample size that we desire, we can compute a minimum
value of T which should be used in Algorithm 1. As choosing a larger value of T typically
results in more iterations in GBF, we suggest using the minimum value of T which is
suggested. The time horizon T only directly affects the initial weighting given to each of
the N particles through ρ0 in (4). Thus, to develop guidance for T we study CESS0 in (27):

Theorem 12 Let fc ∼ Nd(ac, b|C|m Λc) for c ∈ C, then considering the initial conditional
effective sample size CESS0 we have that as N →∞, the following convergence in probability
holds

N−1CESS0
p→ exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ·

1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm

− (|C|−1)d

2

. (31)

19

Chan, Pollock, Johansen and Roberts

Proof See Appendix G. �

The following corollary considers the effect of T on CESS0 in the SH(λ) and SSH(γ) settings:

Corollary 13 If for some constant k1 > 0, T is chosen such that T ≥ b|C|3/2k1
m for some

constant k1, then the following lower bounds on CESS0 hold:

(a) If SH(λ) holds for some λ > 0, then

lim
N→∞

N−1CESS0 ≥ exp

{
− λ

k2
1

− d

2k2
1

}
. (32)

(b) If SSH(γ) holds for some γ > 0, and T ≥ k2|C|
1
2 for some constant k2, then

lim
N→∞

N−1CESS0 ≥ exp

{
− bγ

k1k2
− d

2k2
1

}
. (33)

Proof See Appendix G. �

We choose k1 and k2 by means of Remark 14, which in turn allows us to determine T . As
required by Remark 14 we first set λ = 1 (see Remark 9), b (using Remark 11), and σ2

a as
per (28).

Remark 14 Choice of k1, k2: To choose k1 and k2, we first specify ζ ∈ (0, 1) to be a lower
bound on the initial relative effective sample size that we would desire. We then can consider
which situation that we are likely to be in, and then:

1. Under SH(λ), suppose we want to ensure N−1CESS0 is above ζ ∈ (0, 1), from (32),

we have exp
{
− λ
k21
− d

2k21

}
= ζ, which implies we choose k1 =

√
− (λ+ d

2
)

log(ζ) .

2. Under SSH(γ), suppose we want to ensure N−1CESS0 is above ζ ∈ (0, 1), then from
(33), we have

exp

{
− bγ

k1k2
− d

2k2
1

}
= ζ. (34)

Recall that for SSH(γ), we must have T ≥ max
{
b|C|3/2k1

m , |C|
1
2k2

}
. Since we wish T

to be small, we would like k1 and k2 to be small, and thus we set these two terms
equal to each other and find k2 = b|C|k1

m . Substituting into (34), we then choose

k1 =

√
−(γmC + d

2)
log(ζ) .

Given k1 and k2, T can be chosen such that T ≥ b|C|3/2k1
m if SH(λ) holds, and T ≥

max
{
b|C|3/2k1

m , |C|
1
2k2

}
if SSH(γ) holds. Typically we want to minimise iterations of Algo-

rithm 1 Step 2, and so we choose the smallest T which satisfies the user-specified ζ ∈ (0, 1).

20

Divide-and-Conquer Fusion

4.2 Guidance for choosing P

In order to choose the temporal mesh P we consider two approaches, each of which is
considered and optimised by means of our CESS of (27): i) by first fixing n and assuming a
regular mesh (as in Dai et al. (2023)), we then optimise for n by reference to the maximally
tolerable degradation of CESSj over any single iterate (see Section 4.2.1); (ii) by starting at
t0 = 0 we decide on the placement of t1 such that we do not violate the maximally tolerable
degradation of CESS1, and then iterate until we reach T , and so leading to a irregular
(adaptive) mesh and implicitly choosing n (see Section 4.2.2). We summarise these two
mesh constructions in Algorithms 3 and 4

To simplify the analysis of Algorithm 1, for which there is considerable flexibility in the
choice of proposal distribution for our unbiased estimator of the importance weights (see
Theorem 4 of Section 2.2), we assume that we have access to the optimal unbiased estimator.
Fearnhead et al. (2008, Theorem 1) (and Dai et al. (2023, Appendix B)) show that the
variance of the unbiased estimator aj ρ̃j is minimised when p(κc|Rc) ∼ Poi(λc), where

λc :=

[
∆j

∫ tj

tj−1

(
U

(c)
j − φ

(
X

(c)
t

))2
dt

] 1
2

, (35)

for c ∈ C. With this choice the second moment is finite and E
[
(aj ρ̃j)

2
]
≤ 1 < ∞. In

practice choosing this optimal distribution for K is not possible since the integral in (35)
cannot be evaluated directly. This is why in Section 2.2 we choose alternative simulatable
distributions (as described in Conditions 5–6), which try to match this optimal distribution.

With this optimal choice, we establish the following theorem:

Theorem 15 Let p(κc|Rc) in (21) be a Poisson distribution with intensity given in (35),
for c ∈ C, and k3, k4 be positive constants. If lim∆j→0 is taken over sequences of ∆j :=
tj − tj−1 → 0 with

tj − tj−1 ≤ ∆̃j := min

{
b2|C|k3

E [νj]m2
,

(
b2|C|k4

2m2d

) 1
2

}
, (36)

where

νj :=
1

|C|
∑
c∈C

(
x

(c)
j−1 − ac

)ᵀ
Λ−1
c

(
x

(c)
j−1 − ac

)
, (37)

and the expectation E[νj] is taken over ~x
(C)
j−1, we have

plim∆j→0plimN→∞N
−1CESSj ≥ e−k3−k4 , (38)

where plim denotes a limit in probability.

Proof See Appendix G. �

21

Chan, Pollock, Johansen and Roberts

Remark 16 In Theorem 15, νj (as defined in (37)) describes the scaled/weighted average
variation of the |C| trajectories of the distribution of their proposed update locations with

respect to their individual sub-posterior means (i.e. describing how far x
(c)
j−1 is from ac).

Since the GBF approach has |C| trajectories which are initialised from their respective sub-
posterior distributions and coalesce to a common end point, this variation is mainly deter-
mined by a combination of: (i) how large the time horizon T is; (ii) how large the interval
we are simulating over for this iteration (tj−1, tj]; and (iii) how much the sub-posteriors
conflict which we determine by looking at the variation in their means as per (28). Given

a weighted particle set from the (j − 1)th iteration of the algorithm, {~x(C)
j−1,i, w

(C)
j−1,i}Ni=1, a

natural estimator for E [νj] is

Ê [νj] =
N∑
i=1

w
(C)
j−1,i

(
1

|C|
∑
c∈C

(
x

(c)
j−1,i − ac

)ᵀ
Λ−1
c

(
x

(c)
j−1,i − ac

))
. (39)

Following Theorem 15 and Remark 16 we now have the additional problem of specifying k3

and k4, and using the result to develop practical guidance. We do so by means of letting
the user choose the meaning parameter ζ ′ ∈ (0, 1), which is we define to be a lower bound
on the conditional effective sample size that they would tolerate. We can then select k3 and
k4 such that e−k3−k4 = ζ ′ and compute

tj = min
{
T, tj−1 + ∆̃j

}
(40)

recursively at each iteration until j = n such that tn = T .

Remark 17 Note that we expect to have very different performance with different choices
of k3 and k4. For instance, we can obtain a very high CESSj by simply choosing k3 very
small and set k4 = − log(ζ ′)−k3, which ultimately leads to having very small intervals sizes
∆̃j. Choosing small interval sizes may help computationally simulating ρ̃j, but this comes at
the cost of having more iterations of the algorithm, leading to an increased communication
between the cores. Natural choices for jointly specifying k3 and k4 are ones which lead to
the largest interval size which still satisfies N−1CESSj ≥ ζ ′ ∈ (0, 1), as this minimises the
number of iterations of Algorithm 1 Step 2.

We now consider the previously outlined regular and irregular (adaptive) mesh selection of
P in Section 4.2.1 and Section 4.2.2 respectively.

4.2.1 A regular mesh construction

Imposing an additional assumption that the temporal partition P is regular simplifies Al-
gorithm 1 as it avoids us having to dynamically compute (36) at each iteration of Step 2. In
particular, ∆̃j = ∆ for each j ∈ {1, . . . , n} where n = dT/∆e (where dxe denotes the small-
est integer greater than or equal to x). This simplification of regularity was suggested in

22

Divide-and-Conquer Fusion

Dai et al. (2023, Remark 6). They noted that for large datasets in which observations were
randomly allocated to sub-posteriors, that one would expect sub-posterior heterogeneity to
be small. Hence one would expect E[νj] to be small (of O(m−1)). In their simulations, Dai
et al. (2023, Section 3 and 4) set k3 = k4 = 1 and ∆ := tj−1 − tj =

√
(b2|C|k4)/(2m2d) for

all j. The rationale presented for these choices in Dai et al. (2023, Remark 6) does not hold
in full generality so in this section, we instead develop a more systematic way to construct
a regular mesh. In particular, setting k3 = k4 as they suggest is sub-optimal.

Given a user specified lower bound on CESSj that they would tolerate (i.e. some ζ ′ ∈ (0, 1)),
we want to minimise the number of iterations of Algorithm 1 Step 2. This is achieved with
reference to Theorem 15 (and in particular (36)). In particular, we choose a combination
of k3 and k4 such that: (i) exp{−k3 − k4} ≥ ζ ′ (i.e. CESSj for any j does not violate the

chosen ζ ′); and (ii), b2|C|k3
E[νj]m2 ≥

√
b2|C|k4
2m2d

for each j.

The difficulty here is that at each iteration, we need the average variation of the trajectories

E[νj]. Of course, this is not possible directly and so an estimate Ê[νj] is computed as per
the guidance of Remark 16. To ensure the chosen ζ ′ is not violated at any iteration we
follow the guidance of (36) by using a supremum over all intervals of this estimator (i.e.

supj Ê[νj]). This choice allows us to specify k3 and k4, and so in turn n and P.

Remark 18 For ease of practically implementing Algorithm 1, it is desirable to avoid any
recursive definitions of n and P (i.e. they are specified prior to calling Algorithm 1 Step 2

where they are required). In this setting we would need to estimate supj Ê[νj] based upon

only the initial (weighted) sub-posterior realisations {~x(C)
0,i , w

(C)
0,i }Mi=1 obtained in Algorithm

1 Step 1b.

Following Remark 16, we would expect E[νj] to be maximised at t = T (corresponding to
(42)), but in some instance may also occur at t = 0 (corresponding to (43)). In most
practical applications of GBF it will be at t = T as the proposal for the coalescence of the

|C| stochastic processes has a Gaussian distribution with mean x̃
(C)
0 with variance TΛC (as

a consequence of Proposition 2 and considering s = 0 and t = T). On the other hand, if the
sub-posterior means are very close together, the largest variation in the trajectories from
their respective means could occur at the start of the bridge. As such, we propose taking the
larger value of those two scenarios to arrive at the following approximation:

sup
j

Ê [νj] ≈ max{Ψ1,Ψ2}, (41)

where

Ψ1 :=

M∑
i=1

w
(C)
0,i

1

|C|
∑
c∈C

(
x̃

(C)
0,i − ac

)ᵀ
Λ−1
c

(
x̃

(C)
0,i − ac

)
, (42)

Ψ2 :=

M∑
i=1

w
(C)
0,i

1

|C|
∑
c∈C

(
x

(c)
0,i − ac

)ᵀ
Λ−1
c

(
x

(c)
0,i − ac

)
, (43)

23

Chan, Pollock, Johansen and Roberts

and where x̃
(C)
0,i is defined in (5) and w

(C)
0,i are the initial particle weights given in Algorithm

1 Step 1b.

Our approximation of supj Ê [νj] has obvious limitations: it may not be conservative enough
to ensure the user chosen ζ ′ is not breached; it may be too conservative and lead to choosing
n too high. In practice we have found it to be a robust approximation.

Once we have a suitable estimate of supj Ê [νj], we need to find a suitable choice for k3 and
k4 to ensure that we always choose the RHS side of (36) (as that leads to a regular mesh)
and satisfies ζ ′. As there are many combinations of k3 and k4 which can return a regular
mesh, we aim to find the combination which returns the largest interval size. We can do
this by means of the following proposition which considers the jth interval of the partition:

Proposition 19 Considering the jth interval of P (i.e. [tj−1, tj]), given a user-specified

threshold ζ ′ ∈ (0, 1) and estimate Ê[νj] of E[νj], then the largest interval size which satisfies
N−1CESSj ≥ ζ ′ is given by

∆̃j =

√
b2|C|k4,j

2m2d
,

where,

k4,j :=

(
Ê[νj]

2
m2

2b2|C|d − 2 log(ζ ′)

)
−

√(
2 log(ζ ′)− Ê[νj]

2
m2

2b2|C|d

)2

− 4 log(ζ ′)2

2
. (44)

Proof See Appendix G. �

Using Proposition 19, we can substitute our estimate of supj Ê[νj] into (44), and subse-

quently compute the regular interval size ∆ :=
√

b2|C|k4
2m2d

and hence n = dT/∆e. In effect,
here we are setting k4 = supj k4,j . This process is summarised in Algorithm 3.

4.2.2 An adaptive mesh construction

Our presentation of Section 4.2.1 (as opposed to that of Dai et al. (2023)), naturally sug-
gests an adaptive approach, leading to a partition P with an irregular mesh. Since the
construction of the regular mesh is based upon the worst case scenario of the trajectory
variation, this leads to an excessive resolution of P. In this section we will address this.

Instead, suppose we are at the beginning of the jth iteration of Algorithm 1 Step 2. At
this point we have in effect simulated our |C| stochastic processes up to time tj−1 < T .
We can now consider the placement of the next point in the partition (i.e. min(tj , T)) with
reference to the user chosen ζ ′ ∈ (0, 1). In particular, we want the interval to be as large

24

Divide-and-Conquer Fusion

Algorithm 3 Computing regular mesh P.

Input: Time T > 0 and importance weighted particles {~x(C)
0,i , w

(C)
0,i }Mi=1.

1. Compute estimate of supj Ê[νj] as per (41).

2. Compute k4 using the estimate from Step 1 as per (44).

3. Compute ∆ :=
√

b2|C|k4
2m2d

and let n = dT/∆e.

4. For j ∈ {1, . . . , n}, let tj = min{T, tj−1 + ∆}.

5. Output: P := {t0, . . . , tn}.

as possible while ensuring that the CESSj does not degrade by more than ζ ′. To do this
we can compute an estimate of E[νj] as per (39) and appeal to Proposition 19 in order to
choose k4,j , and consequently the interval size ∆j in order to set tj = min(tj−1 + ∆j , T).
Once we reach T we simply halt iterating Algorithm 1 Step 2.

In contrast to the regular mesh construction in Section 4.2.1, we cannot compute the tem-
poral mesh prior to Algorithm 1 Step 2. Therefore, the computation of the interval size for
iteration j must be done immediately after Step 2a and prior to Step 2b of Algorithm 1.
In this setting, the number of steps in Algorithm 1, n, is not known in advance. Given the
construction of the regular mesh assumes the worst case interval in selecting the mesh size,
we would expect that n would be lower in our adaptive approach. Indeed, we show this
empirically in our later simulation studies. We summarise this approach in Algorithm 4.

Algorithm 4 Computing adaptive mesh P (computing ∆j at iteration j immediately after
Algorithm 1 Step 2a).

Input: Time T > 0 and importance weighted particles {~x(C)
j−1,i, w

(C)
j−1,i}Ni=1.

1. Compute Ê[νj] as per (39).

2. Compute k4 with the estimate from Step 1 as per (44).

3. Compute tj = min

{
T, tj−1 +

√
b2|C|k4
2m2d

}
.

4. Output: ∆j := tj − tj−1.

In general, it is known that adaptively specifying the sequence of target distributions in
sequential Monte Carlo type algorithms can introduce a small bias. In practice, this bias is
typically small enough that it can be neglected unless unbiasedness is required specifically,
for example to allow the algorithm to be embedded within another. If the small bias is a
problem it can be eliminated at the expense of a doubling of the computational cost by first

25

Chan, Pollock, Johansen and Roberts

running an adaptive version of the algorithm and then running it a second time with the
sequence of distributions fixed to those learned in the first run.

5. Examples

In this section we consider a number of models applied to a variety datasets, and suppose
the dataset is randomly split into C (disjoint) subsets. We compare the performance of
our Fusion methodologies (GBF and D&C-Fusion) with other established (approximate)
methodologies. To compare performance, we consider their computational run-times and
Integrated Absolute Distance (IAD). To compute the IAD we average across each dimension
the difference between the true target (fusion) density (f), and a kernel density estimate of
the draws realised using a given methodology (f̂). In particular,

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂(θj)− f(θj)
∣∣∣dθj ∈ [0, 1]. (45)

In the case where the true marginal density is not available analytically, we take as a
proxy for the target f a kernel density estimate of f (for instance, obtained by sampling
from f or using the output of an MCMC run). As a benchmark for the target f we use
Stan (Carpenter et al., 2017) to implement an MCMC sampler for the target posterior
distribution using the full dataset. In implementing Fusion methodologies we use the GPE-
2 variants of Algorithm 2c and Algorithm 5 as before. Our implementation is as presented in
Sections 2 and 3, following the guidance presented in Section 4 (but without the inclusion of
any adaptions such as those presented in Appendix H). In implementing D&C-Fusion we use
the balanced-binary tree hierarchy. For brevity of the main paper, all detailed derivations
required for these specific examples have been put in Appendix J.

The established methodologies we consider are Consensus Monte Carlo (CMC) (Scott
et al., 2016) (implemented using the parallelMCMCcombine package in R available from
https://github.com/cran/parallelMCMCcombine (Miroshnikov and Conlon, 2014)), the
kernel density averaging approach of Neiswanger et al. (2014) (which we term KDEMC, and
also implemented using the parallelMCMCcombine R package), and the Weierstrass Rejec-
tion Sampler (WRS) (Wang and Dunson, 2013) (implemented using their R code available
at https://github.com/wwrechard/weierstrass).

5.1 Simulation studies

In Appendix I, we study empirically the robustness of our Fusion algorithms in our two
idealised settings—the SH(λ) setting (Condition 8) and SSH(γ) setting (Condition 10).
We consider a range of different hyperparameter choices and illustrate in both settings
that utilising both the guidance for T and the mesh P, developed in Section 4, drastically
improves the performance of both BF and GBF. By comparing the regular and adaptive
meshes, we found that the adaptive mesh generally performed better as it provided similar

26

https://github.com/cran/parallelMCMCcombine
https://github.com/wwrechard/weierstrass

Divide-and-Conquer Fusion

performance to the regular mesh but at a much reduced computational cost. The full details
of these experiments can be found in Sections I.1 and I.2. In Section I.3 we compare the
performance of Fusion methodologies with increasing dimensionality and found that our
GBF and D&C-Fusion approaches offer the best performance with regards to dimension.

5.2 Robust regression

In this section we consider the ‘Combined Cycle Power Plant’ dataset available from the
UCI Machine Learning Repository (Kaya et al., 2012; Tüfekci, 2014). The dataset comprises
m = 9568 records of the net hourly electrical output of a combined cycle power plant
over 6 years between 2006 and 2011, together with four (hourly averaged) ambient variables:
temperature; ambient-pressure; relative-humidity; and, exhaust-vacuum.

To model electrical output using the ambient variables, we use a robust regression model:

yi ∼ t(ν,Xiβ, σ), i = 1, . . . , n,

βj′ ∼ N1

(
µβj′ , σ

2
βj′

)
, j′ = 0, . . . , p,

where y ∈ Rn is the dependent variable (electrical output), X ∈ Rn×(p+1) is the design
matrix, β ∈ Rp+1 is the vector of predictor (ambient) variables which we want to perform
inference on. For simplicity, we assume that ν, σ, µj′ and σ2

βj′
for j′ = 0, . . . , p are known.

For our dataset p = 4, and so d = 5. We consider C ∈ {4, 8, 16, 32, 64, 128} cores, each of
which is assigned a random split of the data. We use Stan to sample the sub-posteriors
(with µj′ = 0 and σ2

βj′
= 10C for j′ = 0, . . . , p), which we will attempt to unify as in (1).

We use the approximate CMC, KDEMC and WRS approaches to do this, together with our
D&C-Fusion approach. In implementing D&C-Fusion we set N = 10000, ζ = 0.5, ζ ′ = 0.05,
and consider both the regular and adaptive mesh variants of the temporal partition, P. We
resample if the ESS falls below 0.5N . The results are presented in Figure 3.

Figure 3a clearly shows that of all the approaches considered, D&C-Fusion provides the
highest quality and most reliable sample approximation for f , and is the most robust to
increasing C. Although more expensive computationally, D&C-Fusion has a cost which
grows at the same rate as the approximate methodologies considered.

5.3 Negative Binomial regression

Here we consider the ‘Bike Sharing’ dataset available on the UCI Machine Learning Repos-
itory (Fanaee-T and Gama, 2014). The dataset contains m = 17379 records of the total
count of bikes on rental each hour, together with seven variables: seasonality (a
categorical variable with four levels: spring, summer, autumn, winter); weekend (binary,
taking value 1 if a weekend, and 0 if not); holiday; (binary, taking value 1 if a holiday, and
0 if not); rush-hour (binary, taking value 1 if recorded on a weekday between 7AM-9AM

27

Chan, Pollock, Johansen and Roberts

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

log(C, 2)

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(a) Integrated Absolute Distance.

log(C, 2)

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
)

2 3 4 5 6 7

−
2

0
2

4
6

8
1
0

1
2

1
4

1
6

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(b) Computational cost.

Figure 3: Comparison of competing methodologies to D&C-Fusion applied to a robust
regression model using the power plant dataset (see Section 5.2).

or 4PM-7PM, and 0 if not); weather (binary, taking value 1 if ‘clear’, and 0 if not); tem-
perature (continuous); and, wind-speed (continuous). We use treatment contrast coding
to encode the seasonality via three binary variables.

To model the total count of bikes on rental, we use the following Negative binomial (NB)
regression model:

yi ∼ NB(µi, r), where log(µi) = Xiβ, i ∈ {1, . . . , n},

βj′ ∼ N1

(
µβj′ , σ

2
βj′

)
, j′ ∈ {0, . . . , p},

where y ∈ Rn is our total count of bikes on rental, X ∈ Rn×(p+1) is the design matrix,
β ∈ Rp+1 is the vector of predictor variables. For simplicity, r, µβj′ , σ

2
βj′

for j′ = 0, . . . , p

are assumed known.

For this data set p = 9, and so d = 10. As in Section 5.2, we split the dataset amongst
C ∈ {4, 8, 16, 32, 64, 128} cores, and use Stan with µj′ = 0 and σ2

βj′
= 10C for j′ = 0, . . . , p,

to recover the respective sub-posteriors. To implement D&C-Fusion we set N = 10000,
ζ = 0.2, ζ ′ = 0.05, and consider both regular and adaptive mesh variants of P, and resample
if the ESS drops below 0.5N .

The results in Figure 4 again show that, when contrasted with existing (approximate)
approaches, D&C-Fusion provides the most accurate sample approximation, and is robust
and consistent with increasing C.

28

Divide-and-Conquer Fusion

log(C, 2)

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(a) Integrated Absolute Distance.

log(C, 2)

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
)

2 3 4 5 6 7

−
2

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(b) Computational cost.

Figure 4: Comparison of competing methodologies to D&C-Fusion applied to a Negative
Binomial regression model using the bike sharing dataset (see Section 5.3).

5.4 Logistic regression

In this section, we apply a logistic regression model to two different datasets (each of which
highlight an aspect of Fusion):

yi =

{
1 with probability

exp{xᵀ
i β}

1+exp{xᵀ
i β}

,

0 otherwise.
(46)

5.4.1 Small data

Here we consider a small data size scenario (m = 1000), in which the data is simulated from
a logistic regression model (46). This is a variant of Scott et al. (2016, Section 4.3), and is
of interest as when the data is (randomly) split among the available cores both exact and
approximate Fusion approaches struggle. This is due to the resulting sub-posteriors being
naturally conflicting and lacking fully overlapping support with one another.

Each record of the simulated design matrix contained four covariates in addition to an
intercept. The ith entry of the design matrix is given by xi = [1, ζi,1, ζi,2, ζi,3, ζi,4]ᵀ, where
ζi,1, ζi,2, ζi,3, ζi,4 are random variables generated from a mixture density with a point-mass at
zero (and so are either activated or not). In particular, we have for j ∈ {1, . . . , 4} that ζi,j ∼
pjN1(1, 1)+(1−pj)δ0. For this example we chose p1 = 0.2, p2 = 0.3, p3 = 0.5 and p4 = 0.01
(corresponding to a rarely activated covariate). Upon simulating the design matrix, binary
observations were obtained by simulation using the parameters β = [−3, 1.2,−0.5, 0.8, 3]ᵀ.
In total there were a relatively small number of positive responses (

∑
i yi = 129).

29

Chan, Pollock, Johansen and Roberts

To conduct Fusion we first equally split the data between C ∈ {4, 8, 16, 32, 64} cores. We
again use Stan with Gaussian prior distributions with mean 0 and variance C on each
parameter to find a sample approximation of each sub-posterior.

Together with the approximate methodologies, we implemented our D&C-Fusion approach
with N = 10000, ζ = 0.2, ζ ′ = 0.05, and both regular and adaptive temporal partition
meshes. Here, we also consider applying Generalised Bayesian Fusion (GBF) (i.e. directly
applying Algorithm 1 with C := {1, . . . , C} (which is equivalent to D&C-Fusion within a
fork-and-join tree hierarchy, as per Figure 1)). We present the results in Figure 5.

Considering Figure 5a, we see again that D&C-Fusion achieves the best sample approxi-
mation, and the quality of the sample approximation is robust to increasing C. Note that
our divide-and-conquer framework offers significant gains, with D&C-Fusion outperforming
GBF in terms of robustness with C (even with the same tuning parameter guidance being
followed). Note that CMC outperforms all other approximate methodologies, which leaves
the practitioner with a clear decision: if a cheap but approximate methodology is needed
use CMC, but if accuracy is the goal then D&C-Fusion should be used.

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

log(C, 2)

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
GBF (adaptive mesh)
CMC
KDEMC
WRS

(a) Integrated Absolute Distance.

log(C, 2)

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
)

2 3 4 5 6

−
4

−
2

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
GBF (adaptive mesh)
CMC
KDEMC
WRS

(b) Computational cost.

Figure 5: Comparison of competing methodologies to D&C-Fusion applied to a logistic
regression model using a simulated small data set (see Section 5.4.1).

5.4.2 NYC Flights 2013 Data

Finally, we study Fusion approaches for a logistic regression model (46) applied to the
nycflights13 dataset (obtained from the nycflights13 R package available on CRAN
(Wickham, 2021)). In this study we predict on-time arrival of airplanes, by creating binary
observations for arrival-delay (taking the value 1 if the flight arrived 1 minute or more
late, and 0 otherwise). We model this using p = 20 predictor variables (so d = 21). After
removing any entries with NA values, in total the dataset was of size m = 327346. This
dataset was split randomly across C ∈ {4, 8, 16, 32, 64, 128} cores, and we used Stan to

30

Divide-and-Conquer Fusion

find sample approximations of each sub-posterior (using Gaussian priors with mean 0 and
variance C for each parameter). D&C-Fusion was implemented with N = 30000, ζ = 0.2
and ζ ′ = 0.05. The results are shown in Figure 6.

As before, D&C-Fusion provides the best sample approximation and is robust to increas-
ing C, but comes at the expense of increased computational cost. Although approximate
methodologies have been specifically developed to tackle Bayesian big-data problems, here
we see that they struggle to recover f even in this idealised scenario. They additionally
(and critically) lack robustness when scaled with C.

0
.0

0
.1

0
.2

0
.3

0
.4

log(C, 2)

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

0
.4

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(a) Integrated Absolute Distance.

log(C, 2)

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
)

2 3 4 5 6 7

−
2

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

(b) Computational cost.

Figure 6: Comparison of competing methodologies to D&C-Fusion applied to a logistic
regression model using the nycflights13 dataset (see Section 5.4.2).

To further compare the methodologies, we consider fixing C = 64 and varying the compu-
tational budget for each method by varying the sample size N in order to study the effect
of increased computation on IAD. We again compute the IAD against the same benchmark
for the target f that was used above (based upon N = 30000 samples using Stan). Our
results are shown in Figure 7.

The IAD of the approximate methodologies considered in Figure 7 had large variance,
and so we run each of these methods 10 times and took an average of the IAD. To show
the variability we also plot the minimum and maximum IAD achieved in the 10 runs.
The longest run for each approximate methodology was one hour, or when it had become
apparent that further computation was not improving IAD. As such, the CMC and KDEMC
approaches were considered for a range of sample sizes from N = 500 to N = 200000, but
KDEMC was only considered for N = 500 to N = 50000. For CMC and WRS, the average
and variance of the IAD decreases with more computation, but both methods quickly reach
a point where IAD no longer decreases. In Figure 7 we additionally plot a pink dashed line
which is the minimum mean value IAD achieved for CMC, as this seems to the point which
the IAD of CMC converges to. For KDEMC increased computation does not improve
the average IAD or its variability. As such CMC is clearly the best of the approximate

31

Chan, Pollock, Johansen and Roberts

−
6

−
5

−
4

−
3

−
2

−
1

0
1

log(Time elapsed in seconds, 2)

lo
g

(I
n

te
g

ra
te

d
 A

b
s
o

lu
te

 D
is

ta
n

c
e

,
2
)

−2 0 2 4 6 8 10 12 14 16 18

−
6

−
5

−
4

−
3

−
2

−
1

0
1

D&C−GBF (regular mesh)
D&C−GBF (adaptive mesh)
CMC
KDEMC
WRS

Figure 7: Integrated absolute distance against computational budget for competing method-
ologies to D&C-Fusion applied to a logistic regression model using the nycflight and fixing
C = 64 (see Section 5.4.2).

methods, with it achieving the lowest computational cost and lowest IAD. For D&C-Fusion,
we considered N = 500 to N = 30000. We did not perform replicate runs for D&C-Fusion
due to the comparative lack of variability in results for this methodology. Of course, being
an exact methodology Monte Carlo error can be further decreased by simply increasing N ,
but does achieve better IAD than CMC for its increased computational cost.

As there is a reasonably large number of data points on each core (m/64 ≈ 5000) the
sub-posteriors are approximately Gaussian, and hence CMC performs unsurprisingly well.
Taking into account accuracy and computational budget, then CMC performs the best out
of all approximate methodologies here. We are however left with the same conclusion: if
the practitioner values accuracy, or they have a poor understanding of the biases induced
by an approximate approach, then our D&C-Fusion methodology should be used.

6. Conclusion

The Fusion approach to unifying sub-posteriors into a coherent sample approximation of
the posterior (as in (1)), offers fundamental advantages over approximation based ap-
proaches. In particular, Fusion avoids imposing any distributional approximation on the
sub-posteriors, and so is more robust to a wider range of models, and circumvents needing
to understand the impact of imposed approximations on the unified posterior. To date,
Fusion approaches have had impractical computational cost in realistic settings, lacking
robustness when considering: the number of sub-posteriors being unified; when unifying
highly correlated sub-posteriors; the dimensionality of the sub-posteriors; and when consid-
ering conflicting sub-posteriors. In this paper, we have substantially addressed the practical
issues of Fusion approaches by means of several theoretical and methodological extensions.

32

Divide-and-Conquer Fusion

In Section 2 we introduced Generalised Bayesian Fusion (GBF), which is a sequential Monte
Carlo algorithm that incorporates available global information for each sub-posterior in
order to construct informative proposals. As shown in Section 5.1, GBF addresses the lack
of robustness when the sub-posteriors have strong correlation structure. By embedding GBF
within the Divide-and-Conquer Sequential Monte Carlo (D&C-SMC) framework (Lindsten
et al., 2017; Kuntz et al., 2023) in Section 3, we introduced Divide-and-Conquer Fusion
(D&C-Fusion), together with a number of tree hierarchies, which allow the sub-posteriors
to be combined in stages to recover f . By using the provided guidance for selecting the
hyperparameters required for the GBF approach (and developed in Section 4), we saw in
Section I.3 that our D&C-Fusion approach was the most scalable Fusion approach to date
with regards to dimension. In Section 5, we applied our D&C-Fusion methodology to a
variety of models with realistic data sets and compared its performance with competing
approximate methodologies. In all of these settings, our implementation of D&C-Fusion
offered the best performance in terms of Integrated Absolute Distance to an appropriate
benchmark, at a modest computational cost. Furthermore, the examples in Section 5 showed
that D&C-Fusion is a robust approach to unifying large numbers of sub-posteriors.

There are a number of interesting avenues for extending the work of this paper. Perhaps
most interesting is to adapt the D&C-Fusion approach to constraints in practical settings.
As discussed in the introduction, one particularly promising direction is when considering
(1) under privacy constraints of the individual sources (Yıldırım and Ermiş, 2019). In
this setting, we may have a number of parties that wish to combine their distributional
analysis on a common parameter space and model but cannot reveal their distribution due
to confidentiality. This of course requires careful modifications to our approach and is an
active area of research of the authors, and motivates variant tree hierarchies in D&C-Fusion.

Another application is when considering a truly distributed ‘big data’ setting where we have
much larger datasets than ones considered in Section 5. In such settings, we may consider
a large number of sub-posteriors C since the computational benefit of parallelisation for a
divide-and-conquer method is typically proportional to the number of available processors
(Nemeth and Sherlock, 2018). Although our divide-and-conquer approach is scalable with
C, communication between different cores is expensive in a parallel setting (Scott et al.,
2016). We discussed several practical implementation considerations in Appendix H.1,
which aim to limit the amount of communication between cores for Algorithm 1, but a
considered implementation of these techniques have yet to be explored. To make our Fusion
methodology more applicable to large data settings, it would be particularly interesting to
investigate embedding a sub-sampling approach within the Fusion algorithms (akin to the
approaches of Pollock et al. (2020); Bouchard-Côté et al. (2018); Baker et al. (2019); Bierkens
et al. (2019)). First steps in integrating sub-sampling into our D&C-Fusion are considered
in Appendix H.2. We also note that there is a growing literature on implementing SMC
approaches in parallel and distributed settings (see for instance Doucet and Lee (2018,
Section 7.5.3)) which may also be interesting to integrate within Fusion.

From a theoretical perspective, current Fusion methodologies only consider sub-posteriors
on a common parameter space. One direction of interest is extending Fusion methodology to

33

Chan, Pollock, Johansen and Roberts

combine sub-posteriors with varying dimension. The Markov Melding framework of Goudie
et al. (2019) where separate sub-models (potentially of differing dimension) are fitted to
different data sources and then joined, is promising. In this setting, the tree hierarchies
could be defined by the model itself. To mitigate computational robustness of Fusion with
increasing dimension in this setting, it may be possible to further utilise the methodology
in Lindsten et al. (2017).

Acknowledgments

We would like to thank Louis Aslett, Hector McKimm, Krzysztof Latuszyński, Nicolas
Chopin and Hongsheng Dai for helpful discussions on aspects of the paper. This work
was supported by the Engineering and Physical Sciences Research Council under grant
numbers EP/K034154/1, EP/K014463/1, EP/N510129/1, EP/R034710/1, EP/R018561/1
and EP/T004134/1 and by The Alan Turing Institute Doctoral Studentship and two Alan
Turing Institute programmes; the Lloyd’s Register Foundation programme on ‘Data-centric
engineering’ and the UK Government’s ‘Defence and security’ programme.

The data used in this paper are openly available from the following links: the code to
reproduce the simulated data used for the simulation studies in Sections 5.1 and 5.4.1
can be found at https://github.com/rchan26/DCFusion; the ‘Combined Cycle Power
Plant’ dataset (Section 5.2) can be accessed via the UCI Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant; the ‘Bike
Sharing’ dataset (Section 5.3) can be accessed via the UCI Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset; the nycflights13
dataset (Section 5.4.2) is available through the nycflights13 R package on CRAN available
at https://github.com/tidyverse/nycflights13.

34

https://github.com/rchan26/DCFusion
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://github.com/tidyverse/nycflights13

Divide-and-Conquer Fusion

Appendix A. Connections with Monte Carlo Fusion and Bayesian Fusion

In this appendix, we more explicitly draw connections with the earlier Monte Carlo Fusion
(MCF) approach of Dai et al. (2019), and Bayesian Fusion (BF) approach of Dai et al.
(2023). In particular, we outline how our Generalised Bayesian Fusion (GBF) approach,
which we develop in Section 2, improves upon these approaches. We do so by considering
several toy examples to illustrate the benefits of the algorithmic developments we have
presented in this paper.

Firstly, the theory and methodology developed in Section 2 admits the Monte Carlo Fusion
Dai et al. (2019) and Bayesian Fusion (Dai et al., 2023) approaches as a special case and is
established in the following corollaries:

Corollary 20 Setting P := {0, T}, Λc = Id for c ∈ C := {1, . . . , C}, where Id is the identity
matrix of dimension d and accepting a proposal y(C) as a sample from (1) with probability

(ρ0 · ρ̃(a)
1)(~x(C),y(C)) · exp{

∑
c∈C ΦcT}, we recover the Monte Carlo Fusion approach of Dai

et al. (2019, Algorithm 1).

Corollary 21 Setting Λc = Id for c ∈ C := {1, . . . , C}, where Id is the identity matrix
of dimension d, and applying the approach outlined in Algorithm 1 recovers the Bayesian
Fusion approach of Dai et al. (2023, Algorithm 1).

We note however that the MCF formulation to arrive at this algorithm is different and is
based on the following proposition:

Proposition 22 Suppose that pc is the transition density of a Markov chain on Rd with a
stationary probability density proportional to f2

c . Then the (|C|+1)d-dimensional probability
density proportional to the integrable function

gMCF
C

(
~x(C),y(C)) :=

∏
c∈C

[
f2
c

(
x(c)

)
· pc
(
y(C)∣∣x(c)

)
· 1

fc(y(C))

]
, (47)

admits marginal density f (C) ∝
∏
c∈C fc for y(C) ∈ Rd.

Proof By integrating out ~x(C), we have∫
Rd
· · ·
∫
Rd
gMCF
C

(
~x(C),y(C)

)
dx(c1) · · · dx(c|C|)

=
∏
c∈C

[∫
Rd
f2
c

(
x(1)

)
· pc
(
y(C)

∣∣∣x(c)
)
· 1

fc
(
y(C)

) dx(c)

]

=
∏
c∈C

[
f2
c

(
y(C))

fc
(
y(C)

)]

35

Chan, Pollock, Johansen and Roberts

=
∏
c∈C

fc

(
y(C)

)
= f (C)

(
y(C)

)
. (48)

Hence, y(C) has marginal density f (C). �

Dai et al. (2019) exploited Proposition 22 by noting that if the index set C := {1, . . . , C},
then we recover the target fusion density f (as given in (1)). Since gMCF

C will not typically
be accessible directly, Dai et al. (2019) proposed sampling from gMCF

C by constructing a
suitable (|C|+1)d-dimensional proposal density (say, hC) for use within a rejection sampling
algorithm (Dai et al., 2019, Algorithm 1), and then simply retaining the y(C) marginal of any
accepted draw as a realisation of f (C). Dai et al. (2019) showed that if pc in Proposition 22
was chosen to be the transition density of a constant volatility Langevin diffusion at time T
with invariant measure f2

c for each c ∈ C respectively, then for a (easily accessible) proposal
hC constructed by sampling a single draw from each sub-posterior (x(c) ∼ fc for c ∈ C),
and then a single Gaussian random variable parameterised by the sub-posterior realisations
(corresponding to the y(C)-marginal), the acceptance probability was readily computable.
Although the formulation of the approach was different, this corresponds algorithmically to
a rejection sampling variant of GBF and setting Λc = Id for all c ∈ C with P := {0, T}.

The advantage of the BF and GBF approaches is that our formulation allows for a general
temporal mesh P. We have seen in Section 4 and Section 5.1 that the choice of T and P can
drastically alter the performance of the algorithm and so a clear advantage of BF and GBF
over MCF is having a greater flexibility in hyperparameter selection. By being restricted
to choosing P := {0, T}, in many cases, it will not be possible to choose a T which is large
enough for initialisation of the algorithm (i.e. to ensure CESS0 is large) and to choose T
small enough for CESS1 to be sufficently large. This trade-off in choice of T in MCF is
ultimately why it can fail in many practical settings.

As discussed in the introduction, the existing MCF and BF approaches lack robustness in
various key practical settings. For the remainder of this section, we re-visit these settings,
and with the aid of illustrative examples, show that our new approach addresses these key
bottlenecks. Since many of the key limitations are present with both approaches, we focus
on comparing against MCF approach by setting P := {0, T} in Algorithm 1. We call this
variant of GBF with P := {0, T} Generalised Monte Carlo Fusion (GMCF). In particular,
in Section A.1 we consider the effect of increasing sub-posterior correlation, in Section A.2
we consider the robustness with increasing numbers of sub-posteriors, and in Section A.3
we consider how to address conflicting sub-posteriors. Throughout this section we use the
GPE-2 estimator of ρj as given in Definition 6, and use the Trapezoidal rule to estimate
the mean γc in (24) and fix βc = 10 for c ∈ C. To compare the methodology, we compute
both the computational run-times of each methodology and a metric which we term the
Integrated Absolute Distance (IAD) (45).

36

Divide-and-Conquer Fusion

A.1 Effect of correlation

One of our key contributions in this paper was the generalisation of BF which incorporated
covariance information of the sub-posteriors within our algorithm. In this example, we focus
on the illustrative case in which we wish to recover a bi-variate Gaussian target distribution,
f ∝ f1f2, where fc ∼ N2(0,Σ) with,

Σ =

(
1.0 ρcorr

ρcorr 1.0

)
.

As we are only considering combining two sub-posteriors in this section, we in effect con-
sider only the GMCF approach. To study the impact of sub-posterior correlation on the
robustness of MCF and GMCF (Algorithm 1 with P := {0, T}) we can simply consider
varying the single parameter ρcorr, and compute the Effective Sample Size (ESS) per sec-
ond averaged across 50 runs in order to compare the efficiency of each methodology. For
simplicity, we assume we are able to sample directly from each sub-posterior, and for both
methodologies we set T = 1. For the purposes of implementing GMCF, we simply set
Λc = Σ̂c, where Σ̂c is the estimated covariance matrix from the sub-posterior samples for
c = 1, 2 (and so in effect we have incorporated global information into our proposals), and
use a particle set size of N = 10000. The results are presented in Figure 8, which clearly
show that GMCF is robust to increasing sub-posterior correlation, and offers a significant
computational advantage over MCF (which in this case exhibits a strong degradation in
efficiency and performance).

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Correlation

E
S

S
 /
 s

e
c
o

n
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

MCF

GMCF

Figure 8: ESS per second (averaged over 50 runs) when contrasting Monte Carlo Fusion
and Generalised Monte Carlo Fusion, along with increasing sub-posterior correlation, as per
the example in Section A.1.

A.2 Effect of hierarchy

In our new formulation outlined in Section 2, we consider the more abstract setting of
sampling from f (C) ∝

∏
c∈C fc, where C is the index set of sub-posteriors which we want

37

Chan, Pollock, Johansen and Roberts

to unify. This abstraction of combining facilitates the recursive use of the algorithms to
develop our Divide-and-Conquer Fusion (D&C-Fusion) approach in Section 3 - benefits of
which are highlighted clearly in Section 5.4.1 (Here D&C-Fusion outperforms GBF as we
increase C).

In this example, we consider the illustrative case of attempting to recover a univariate stan-
dard Gaussian target distribution. In particular, we have f ∝

∏C
c=1 fc, where fc ∼ N (0, C)

for c = 1, . . . , C. By simply varying C, we can study the robustness with increasing numbers
of sub-posteriors of MCF (in effect the fork-and-join approach illustrated in Figure 1), and
both our suggested versions of Divide-and-Conquer Generalised Monte Carlo Fusion (the
balanced-binary tree approach illustrated in Figure 2a, and the progressive tree approach
illustrated in Figure 2b). Note that in our chosen idealised setting, there is no advantage
conferred with our embedded Generalised Monte Carlo Fusion methodology of Section 2,
and so we are simply contrasting hierarchies. In all cases we use a particle set of size
N = 10000 with resampling if ESS < N/2, set T = 1, use an appropriately scaled identity
as the preconditioning (scalar) matrix, and average across 50 runs. The results are pre-
sented in Figure 9, which clearly show that, in contrast to the fork-and-join tree approach,
both the balanced-binary tree and progressive tree approaches are robust in recovering the
correct posterior distribution in the case of increasing C at the cost of modestly increased
computational cost.

1 2 3 4 5 6 7 8

log(C, 2)

0
.0

0
.1

0
0
.2

0
0
.3

0
0
.4

0
0
.5

0
0
.6

0

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

fork−and−join
balanced
progressive

(a) Integrated Absolute Distance.

1 2 3 4 5 6 7 8

log(C, 2)

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
) fork−and−join

balanced
progressive

(b) Computational cost.

Figure 9: Illustrative comparison of the effect of using different hierarchies in Section A.2
(averaged over 50 runs).

A.3 Dealing with conflicting sub-posteriors

Directly unifying C conflicting sub-posteriors (sub-posteriors which have little common
support and have high total-variation distance) using a fork-and-join approach as in MCF
and Figure 1 is impractical. This can be understood with reference to (4) and (16), which
indicates that importance weights will degrade rapidly in this setting.

38

Divide-and-Conquer Fusion

An approach to deal with conflicting sub-posteriors is to temper the sub-posteriors (to
an inverse temperature β ∈ (0, 1] such that there is sufficient sub-posterior overlap), and
then propose a suitable tree for which the recursive Divide-and-Conquer Generalised Monte
Carlo Fusion approach we introduced in Section 3 could then be applied to recover (1). In
particular,

f(x) ∝
1/β∏
i=1

[
C∏
c=1

fβc (x)

]
, for

1

β
∈ N. (49)

One such generic tree is provided in Figure 10, in which the tempered sub-posteriors are
first unified into 1/β ∈ N tempered posteriors, which are then again unified into f .

f

∏C
c=1 f

β
c

···

33

· · ·
∏C
c=1 f

β
c

···

kk

fβ1

···
::

· · · fβC

···
dd

· · · fβ1

···
::

· · · fβC

···
dd

Figure 10: Illustrative tree approach for the Fusion problem in the case of conflicting sub-
posteriors as in Section A.3. 1/β copies of the C tempered (and over-lapping) sub-posteriors
represent the leaves of the tree, which are unified into 1/β tempered versions of f (using a
suitable tree and D&C-GMCF as in Section 3), and then unified again (using another tree,
and D&C-GMCF) to recover f .

To illustrate the advantage of our D&C-GMCF and tempering approach in the case of
conflicting sub-posteriors, we consider the scenario of unifying two Gaussian sub-posteriors
with the same variance (1), but with different mean (±µ). In particular, we have f ∝
f1f2 where f1 ∼ N (−µ, 1) and f2 ∼ N (µ, 1). By simply increasing µ we can emulate
increasingly conflicting sub-posteriors and study how MCF (which is equivalent to the fork-
and-join approach of Figure 1), behaves in terms of the IAD metric and computational
time. We contrast this with our tempering approach, considering a range of temperatures
1/β ∈ {2, 4, 8, 16}, and then following the guidance of Figure 10. In particular, we use
our D&C-GMCF approach to unify the tempered sub-posteriors with the balanced-binary
approach of Figure 2a for both the first and second stage in Figure 10. In all cases, we
use a particle set size of N = 10000 with resampling if ESS < N/2, set T = 1, and
average across 50 runs. The results are presented in Figure 11, and show clearly that our
D&C-GMCF approach is significantly more robust to conflicting sub-posteriors than the
MCF approach where no tempering is applied. A natural trade-off arises when applying
the tempering approach suggested, in that decreasing β results in tempered sub-posteriors
which are less conflicting and are easier to combine, but there is an increased computational
cost in recovering f as an increased number of levels are added to the resulting tree.

39

Chan, Pollock, Johansen and Roberts

1 2 3 4 5 6 7 8

log(Difference in sub−posterior means, 2)

0
0
.2

0
.4

0
.6

0
.8

1
.0

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

direct combination
β = 1/2
β = 1/4
β = 1/8
β = 1/16

(a) Integrated Absolute Distance.

1 2 3 4 5 6 7 8

log(Difference in sub−posterior means, 2)

0
2

4
6

8
1
0

1
2

lo
g

(T
im

e
 e

la
p

s
e
d

 i
n

 s
e
c
o

n
d

s
,
2
) direct combination

β = 1/2
β = 1/4
β = 1/8
β = 1/16

(b) Computational cost.

Figure 11: Illustrative comparison of using no tempering (solid line), and tempering at
4 different levels together with D&C-GMCF, to combat conflicting sub-posteriors as per
Section A.3 (averaged over 50 runs).

Appendix B. Proof of Theorem 1

Proof Following the approach of Dai et al. (2019, Appendix A), we begin by proving

that the law of |C| independent Brownian motions initialised at x
(c)
0 ∼ fc for c ∈ C and

conditioned to coalesce at time T satisfies (2). Here, we use Doob h-transforms (Rogers
and Williams, 2000, Chapter IV, Section 6.39) and define the following space-time harmonic
function

h
(
t, ~x

(C)
t

)
=

∫ ∏
c∈C

1√
2π(T − t)|Λc|

exp

{
−(y − x(c)

t)ᵀΛ−1
c (y − x(c)

t)

2(T − t)

}
dy, (50)

which represents the integrated density of coalescence at time T given the current state

~x
(C)
t . Then the |C| conditioned processes satisfy a SDE of the form,

d ~X
(C)
t = ~Λ

1
2 d ~W

(C)
t + ~Λ∇ log

(
h(t, ~X

(C)
t)
)

dt, (51)

where ∇ log
(
h(t, ~x

(C)
t)
)

=:
(
v

(c1)
t , . . . ,v

(c|C|)
t

)
is a collection of |C|d-dimensional vectors and

~Λ
1
2 =

Λ

1
2
c1 0d×d . . . 0d×d

0d×d Λ
1
2
c2 . . . 0d×d

...
. . .

...
...

0d×d 0d×d . . . Λ
1
2
c|C|

 , ~Λ =

Λc1 0d×d . . . 0d×d
0d×d Λc2 . . . 0d×d

...
. . .

...
...

0d×d 0d×d . . . Λc|C|

 ,

where Λ
1
2
c is the (positive semi-definite) square root of Λc where Λ

1
2
c Λ

1
2
c = Λc for c ∈ C, and

0d×d denotes the d× d matrix with all elements equal to 0.

40

Divide-and-Conquer Fusion

Considering the cth term and letting Λ−1
C =

∑
c∈C Λ−1

c , then

v
(c)
t =

∫ (Λ−1
c (y−x(c)

t)
T−t

)∏
c∈C

1√
2π(T−t)|Λc|

exp

{
−

(
y−x(c)

t

)ᵀ
Λ−1
c

(
y−x(c)

t

)
2(T−t)

}
dy

∫ ∏
c∈C

1√
2π(T−t)|Λc|

exp

{
−

(
y−x(c)

t

)ᵀ
Λ−1
c

(
y−x(c)

t

)
2(T−t)

}
dy

=

∫ (Λ−1
c y
T−t

)
exp

{
− (y−x̃t)ᵀΛ−1

C (y−x̃t)
2(T−t)

}
dy∫

exp
{
− (y−x̃t)ᵀΛ−1

C (y−x̃t)
2(T−t)

}
dy

− Λ−1
c x

(c)
t

T − t

=
Λ−1
c

(
x̃t − x(c)

t

)
T − t

.

Consequently, we have

∇ log
(
h(t, ~x

(C)
t)
)

=

Λ−1
c1

(
x̃t − x(c1)

t

)
T − t

, . . . ,
Λ−1
c|C|

(
x̃t − x

(c|C|)
t

)
T − t

 , (52)

and (2) holds.

Next, we show that under F this common value has density f . Since P is the measure for
|C| coalesced Brownian motions (shown above), from (3), we can write F as

dF(X) ∝ dP(X) · ρ0

(
~x

(C)
0

)
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]

∝

[∏
c∈C

fc

(
x

(c)
0

)]
· exp

{
−

(y(C) − x̃(C)
0)ᵀΛ−1

C (y(C) − x̃(C)
0)

2T

}
· dW̄Λ(X)

· exp

{
−
∑
c∈C

(x̃
(C)
0 − x(c)

0)ᵀΛ−1
c (x̃

(C)
0 − x(c)

0)

2T

}
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]

=

[∏
c∈C

fc

(
x

(c)
0

)]
· exp

{
−
∑
c∈C

(y(C) − x(c)
0)ᵀΛ−1

c (y(C) − x(c)
0)

2T

}
· dW̄Λ(X)

·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
, (53)

where W̄Λ denotes the law of |C| independent Brownian bridges {X(c)
t , t ∈ [0, T]}c∈C starting

at X
(c)
0 := x

(c)
0 and ending at X

(c)
T := y(C) (with covariance Λc). Let gC(~x

(C)
0 ,y(C)) denote

the marginal distribution of F at ~x
(C)
0 and ~x

(C)
T =: y(C), then we have

gC(~x
(C)
0 ,y(C)) ∝

∏
c∈C

[
fc

(
x

(c)
0

)]
· exp

{
−
∑
c∈C

(y(C) − x(c)
0)ᵀΛ−1

c (y(C) − x(c)
0)

2T

}

41

Chan, Pollock, Johansen and Roberts

·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
,

=
∏
c∈C

[
f2
c

(
x

(c)
0

)
· pc
(
y(C)

∣∣∣x(c)
0

)
· 1

fc
(
y(C)

)] , (54)

where

pc

(
y(C)

∣∣∣x(c)
0

)
∝
fc
(
y(C))

fc

(
x

(c)
0

) · exp

{
−(y(C) − x(c)

0)ᵀΛ−1
c (y(C) − x(c)

0)

2T

}

· EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
. (55)

Using the Dacunha-Castelle representation (Dacunha-Castelle and Florens-Zmirou, 1986,
Lemma 1), this is the transition density density of a Langevin diffusion with covariance
matrix Λc over time t ∈ [0, T]. Critically, this diffusion process has invariant density
proportional to f2

c , so ∫
p
(
y(C)

∣∣∣x(c)
0

)
f2
c

(
x

(c)
0

)
dx

(c)
0 = f2

c

(
y(C)

)
.

By integrating out ~x
(C)
0 in (54), we can see that gC(~x

(C)
0 ,y(C)) admits f (C) as a marginal. �

Appendix C. Proof of Proposition 2

Proof Theorem a: We begin by deriving the joint density of ~X
(C)
t conditional on the state at

time s, ~x
(C)
s . Firstly, consider the d(|C|+1) dimensional joint density of ~X

(C)
t and end-point

y(C) conditional on ~x
(C)
s , which we denote as p1, then

−2 log p1 = D1 +D2,

where D1 is the log-density of y(C) conditional on ~x
(C)
s and given by

D1 =
∑
c∈C

(y(C) − x(c)
s)ᵀΛ−1

c (y(C) − x(c)
s)

T − s
+ k1

where k1 is a constant; D2 is the log-density of ~X
(C)
t conditional on ~x

(C)
s and y(C) (which is

simply the log-density of |C| Brownian bridges with respective covariance matrices Λc for
c ∈ C), given by

D2 =∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

t− s
T − s

y(C) − T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

t− s
T − s

y(C) − T − t
T − s

x(c)
s

]

42

Divide-and-Conquer Fusion

+ k2,

where k2 is a constant. We therefore have

−2 log p1 =
(y(C) − x̃(C)

s)ᵀΛ−1
C (y(C) − x̃(C)

s)

T − s

+
∑
c∈C

[
t− s

(T − t)(T − s)
y(C)ᵀΛ−1

c y
(C) − 2

T − t
y(C)ᵀΛ−1

c x
(c)
t +

2

T − s
y(C)ᵀΛ−1

c x
(c)
s

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k3

=
1

T − s

[
y(C)ᵀΛ−1

C y
(C) − 2y(C)ᵀΛ−1

C x̃
(C)
s

]
+

[
t− s

(T − t)(T − s)
y(C)ᵀΛ−1

C y
(C) − 2

T − t
y(C)ᵀΛ−1

C x̃
(C)
t +

2

T − s
y(C)ᵀΛ−1

C x̃
(C)
s

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=

[
1

T − s
+

t− s
(T − t)(T − s)

]
y(C)ᵀΛ−1

C y
(C) − 2

T − t
y(C)ᵀΛ−1

C x̃
(C)
t

+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=
1

T − t

[
y(C)ᵀΛ−1

C y
(C) − 2y(C)ᵀΛ−1

C x̃
(C)
t

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=
1

T − t

[
(y(C) − x̃(C)

t)ᵀΛ−1
C (y(C) − x̃(C)

t)
]
− 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t

+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4,

where k3 and k4 are constants, and ΛC :=
(∑

c∈C Λ−1
c

)−1
.

Next, we integrate out y(C) to obtain the d|C|-dimensional density of ~X
(C)
t conditional on

~x
(C)
s , which we denote p2:

− 2 log p2

= − 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t +

∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k5

= − 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t +

∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t

ᵀ
Λ−1
c x

(c)
t − 2

(
T − t
T − s

)
x

(c)
t

ᵀ
Λ−1
c x

(c)
s

]
+ k6,

43

Chan, Pollock, Johansen and Roberts

where k5 and k6 are constants. Noting that

x̃
(C)ᵀ
t Λ−1

C x̃
(C)
t =

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)
t

)ᵀ(∑
c∈C

Λ−1
c

)(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)
t

)
=

(∑
c∈C

Λ−1
c x

(c)
t

)ᵀ
ΛC

(∑
c∈C

Λ−1
c x

(c)
t

)
=
∑
i,j∈C

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t .

So we have,

−2 log p2 = − 1

T − t
∑
i,j∈C

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t +

T − s
(t− s)(T − t)

∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
t

− 2

t− s
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
s + k6

=
T − s

(t− s)(T − t)
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
t −

1

T − t
∑
c∈C

x
(c)
t

ᵀ (
Λ−1
c ΛCΛ

−1
c

)
x

(c)
t

− 1

T − t
∑
i,j∈C
i 6=j

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t −

2

t− s
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
s + k6

= ~xᵀtV
−1
s,t ~x

(C)
t −

2

t− s
~xᵀtL

−1~x(C)
s + k6

where

V −1
s,t =

Σ−1

11 Σ−1
12 . . . Σ−1

1|C|
Σ−1

21 Σ−1
22 . . . Σ−1

2|C|
...

...
. . .

...

Σ−1
|C|1 Σ−1

|C|2 . . . Σ−1
|C||C|

 ∈ R|C|d×|C|d, (56)

with

Σ−1
ii =

T − s
(t− s)(T − t)

Λ−1
ci −

1

T − t
(
Λ−1
ci ΛCΛ

−1
ci

)
∈ Rd×d,

Σ−1
ij = − 1

T − t

(
Λ−1
ci ΛCΛ

−1
cj

)
∈ Rd×d,

for i, j = 1, . . . , |C|, and

L−1 =

Λ−1
c1 0d×d . . . 0d×d

0d×d Λ−1
c2 . . . 0d×d

...
. . .

...
...

0d×d 0d×d . . . Λ−1
c|C|

 ∈ R|C|d×|C|d,

where 0d×d is the d× d with all elements zero. We finally complete the square to get

−2 log p2 = ~x
(C)
t V −1

s,t ~x
(C)
t − 2~x

(C)
t V −1

s,t
~M

(C)
s,t + k6,

44

Divide-and-Conquer Fusion

where

~M
(C)
s,t =

Vs,tL
−1~x

(C)
s

t− s
.

Inverting V −1
s,t in (56), we obtain (10) and subsequently we can get the expression for M

(c)
s,t

in (9) to prove the statement in part a of Theorem 1.

For part b, for c ∈ C, the law of {X(c)
t , t ∈ (0, T)} conditional on endpoints x

(c)
0 and y(C)

is that of a Brownian bridge. This statement in the theorem holds from the standard
properties of Brownian bridges (with covariance matrix Λc). In particular, considering the

distribution of X
(c)
q at an intermediate point q ∈ (s, t) given the positions X

(c)
s = x

(c)
s and

X
(c)
t = x

(c)
t at times s and t respectively, then we have

P
(
Xq = w

∣∣∣X(c)
s = x(c)

s ,X
(c)
t = x

(c)
t

)
∝ P

(
X

(c)
t = x

(c)
t

∣∣∣X(c)
s = x(c)

s ,Xq = w
)
· P
(
Xq = w

∣∣∣X(c)
s = x(c)

s

)
∝ P

(
X

(c)
t = x

(c)
t

∣∣∣Xq = w
)
· P
(
Xq = w

∣∣∣X(c)
s = x(c)

s

)
∝ exp

(
−(x

(c)
t −w)ᵀΛ−1

c (x
(c)
t −w)

2(t− q)

)
· exp

(
−(w − x(c)

s)ᵀΛ−1
c (w − x(c)

s)

2(q − s)

)
,

and hence we arrive at the result in the statement. �

Appendix D. Proof of Proposition 3

Proof First note that we can rewrite (6) as follows,

φc (x) =
1

2

(∥∥∥∥Λ 1
2
c ∇ log fc (x)

∥∥∥∥2

+ Tr
(
Λc∇2 log fc (x)

))
. (57)

Let Rc := Rc
(
X

(c)
[0,T]

)
denote a compact subset of Rd for which X

(c)
t is constrained in time

[0, T] for c ∈ C, then to bound the first term in (57), we first use the triangle inequality by
noting

max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x)

∥∥∥∥ = max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x̂

(c)) + Λ
1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥

≤
∥∥∥∥Λ 1

2
c ∇ log fc(x̂

(c))

∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ 1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥,
(58)

where x̂(c) is a user-specified point in Rd. Focusing now on bounding the second term of
(58), then we express this as a line integral between x and x̂(c) so

max
x∈Rc

∥∥∥∥Λ 1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥ = max

x∈Rc

∥∥∥∥∥Λ− 1
2

c

∫ ‖x−x̂(c)‖

0
Λc∇2 log f(x+ un)n du

∥∥∥∥∥,
45

Chan, Pollock, Johansen and Roberts

where u = x+ un, where n is a unit-vector. We have

max
x∈Rc

∥∥∥∥∥Λ− 1
2

c

∫ ‖x−x̂(c)‖

0
Λc∇ log f(x+ un)n du

∥∥∥∥∥ ≤ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥
· sup
n;x∈Rc

∥∥Λc∇2 log f(x+ un)n
∥∥

≤ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc , (59)

where PΛc is defined in (19). Putting together (58) and (59), we have

max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x)

∥∥∥∥ ≤ ∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc .

Since for a matrix A ∈ Rd, Tr(A) ≤ d · γ(A), we can bound the second term in (57) as
follows:

max
x∈Rc

∣∣Tr
(
Λc∇2 log fc(x)

)∣∣ ≤ d · PΛc ,

and hence we can bound φc as follows:

max
x∈Rc

|φc (x)| ≤ 1

2

[(∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc

)2

+ d · PΛc

]
.

Noting that in (57) that the first term is squared, then the lower and upper bounds of φc (x)
for x ∈ Rc are given by (17) and (18) respectively. �

Appendix E. Proof of Theorem 4

Proof Following in the style of Beskos et al. (2006, 2008); Fearnhead et al. (2008) and Dai
et al. (2023, Appendix B), for j = 1, . . . , n, we have

ER̄EW̄|R̄EK̄EŪ [aj ρ̃j]

= ER̄EW̄|R̄EK̄EŪ

∏
c∈C

∆κc
j · e

−(U
(c)
j −Φc)∆j

κc! · p (κc|Rc)

κc∏
kc=1

(
U

(c)
j − φc

(
X

(c)
ξc,kc

))
= ER̄EW̄|R̄EK̄

∏
c∈C

∆κc
j · e

−(U
(c)
j −Φc)∆j

κc! · p (κc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

κc
= ER̄EW̄|R̄

∏
c∈C

 ∞∑
kc=0

∆kc
j · e

−(U
(c)
j −Φc)∆j

kc! · p (kc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

kc

= ER̄EW̄|R̄

∏
c∈C

e−(U
(c)
j −Φc)∆j ·

 ∞∑
kc=0

∆kc
j

kc! · p (kc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

kc

46

Divide-and-Conquer Fusion

= ER̄EW̄|R̄

[∏
c∈C

e−(U
(c)
j −Φc)∆j · exp

{∫ tj

tj−1

(
U

(c)
j − φc

(
X

(c)
t

))
dt

}]

=
∏
c∈C

EWΛc,j

[
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)
dt

}]
=: ρj ,

and hence aj ρ̃j is an unbiased estimator for ρj . �

Appendix F. Unbiased Estimation of ρj

Computing ρ̃
(a)
1 and ρ̃

(b)
1 by means of layer information in the case where Λc = Id is detailed

explicitly in Dai et al. (2023, Algorithm 4, Appendix B). In the case where Λc 6= Id, we
simulate layers by appealing to a suitable transformation. In particular, we transform

the start and end points of the Brownian bridge with transformation matrix Λ
− 1

2
c , letting

z
(c)
j−1 := Λ

− 1
2

c x
(c)
j−1 and z

(c)
j := Λ

− 1
2

c x
(c)
j . The resulting Brownian bridge sample path,

z
(c)
t := Λ

− 1
2

c X
(c)
t , has identity covariance structure and thus we can use existing methods

for simulating layered Brownian bridge sample paths z
(c)
t with law WId from z

(c)
j−1 to z

(c)
j .

By finding a bounding hyper cube for the reverse transformed bounds, we are able to
find appropriate layer information for the case Λc 6= Id. We are now able with minimal
modification to apply the approach of Dai et al. (2023), as given in Algorithm 5.

Appendix G. Proof of Theorem 12, Corollary 13, Theorem 15,
Proposition 19

Proof (Theorem 12) Considering the initial conditional effective sample size, CESS0, we
have

N−1CESS0 := N−1

(∑N

i=1 ρ0,i

)2

∑N
i=1 ρ

2
0,i

→ (E[ρ0,i])
2

E[ρ2
0,i]

=

E
[
exp

{
−
∑

c∈C
(x̃

(C)
0 −x

(c)
0)ᵀΛ−1

c (x̃
(C)
0 −x

(c)
0)

2T

}]2

E
[
exp

{
−
∑

c∈C
(x̃

(C)
0 −x

(c)
0)ᵀΛ−1

c (x̃
(C)
0 −x

(c)
0)

T

}]

=

E
[
e−
|C|σ2
2T

]2

E
[
e−
|C|σ2
T

] , (60)

where σ2 := 1
|C|
∑

c∈C(x̃
(C)
0 − x(c)

0)ᵀΛ−1
c (x̃

(C)
0 − x(c)

0) where x
(c)
0 ∼ Nd(ac,

b|C|
m Λc). To get an

expression for N−1CESS0, we begin by obtaining the moment generating function (mgf)

47

Chan, Pollock, Johansen and Roberts

Algorithm 5 Simulating ρ̃j .

1. For c ∈ C

(a) z
(c)
j−1, z

(c)
j : Transform the path, setting z

(c)
j−1 := Λ

− 1
2

c x
(c)
j−1, and z

(c)
j := Λ

− 1
2

c x
(c)
j .

(b) Rc: Set Rc := Λ
1
2
c R

(z)
c , where R

(z)
c ∼ R(z)

c as per Pollock et al. (2016, Algorithm
14).

(c) L
(c)
X , U

(c)
X : Compute lower and upper bounds, L

(c)
X and U

(c)
X , of φc(x) for x ∈ Rc

(as per (17) and (18), or otherwise).

(d) pc: Choose p(·|Rc) using either GPE-1 (Condition 5) or GPE-2 (Condition 6).

(e) κc, ξ: Simulate κc ∼ p(·|Rc), and simulate ξc,1, . . . , ξc,κc ∼ U [tj−1, tj].

(f) z(c): Simulate z
(c)
ξc,1
, . . . ,z

(c)
ξc,κc
∼WId |R

(z)
c as per Pollock et al. (2016, Algorithm

15).

(g) X(c): Reverse transform the path, setting X
(c)
ξc,kc

= Λ
1
2
c z

(c)
ξc,kc

for kc ∈ {1, . . . , κc}.

2. Output:

ρ̃j =
∏
c∈C

∆κc
j · e

−U(c)
j ∆j

κc! · p (κc|Rc)

κc∏
kc=1

(
U

(c)
j − φc

(
X

(c)
ξc,kc

)) .

for σ2. First note

1

|C|
∑
c∈C

(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã) = σ2 +

1

|C|
∑
c∈C

(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã). (61)

Considering the term 1
|C|
∑

c∈C(x
(c)
0 −ã)ᵀΛ−1

c (x
(c)
0 −ã) and letting Yc := Λ

− 1
2

c (x
(c)
0 −ã), then

Yc has mean Λ
− 1

2
c (ac− ã) and variance b|C|

m Id. Hence
√

m
b|C|Yc has mean

√
m
b|C|Λ

− 1
2

c (ac− ã)

and variance Id, and so let

λ =
∑
c∈C

∥∥∥∥√ m

b|C|
Λ
− 1

2
c (ac − ã)

∥∥∥∥2

=
m

b|C|
∑
c∈C

(ac − ã)ᵀΛ−1
c (ac − ã) =

m

b
σ2
a,

then m
b|C|
∑

c∈C ‖Yc‖
2 ∼ χ2(|C|d, λ) distribution (i.e. m

b|C|
∑

c∈C(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã) has

a non-central χ2(|C|d, λ) distribution) with mgf

M1(s) :=
exp

{
λs

1−2s

}
(1− 2s)

|C|d
2

. (62)

Secondly, consider 1
|C|
∑

c∈C(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã) = 1

|C|(x̃
(C)
0 − ã)ᵀΛ−1

C (x̃
(C)
0 − ã), where

Λ−1
C :=

∑
c∈C Λ−1

c . Then since x̃
(C)
0 ∼ Nd(ã, b|C|m ΛC), then Z :=

√
m
b|C|Λ

− 1
2 (x̃

(C)
0 − ã) ∼

48

Divide-and-Conquer Fusion

Nd(0, Id) and so ‖Z‖2 ∼ χ2
d (i.e. m

b|C|
∑

c∈C(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã) has χ2

d distribution)
with mgf

M2(s) := (1− 2s)−
d
2 . (63)

From (61), we have

σ2 =
b

m

[
m

b|C|
∑
c∈C

(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã)

]
︸ ︷︷ ︸

∼χ2(|C|d,λ)

− b

m

[
m

b|C|
∑
c∈C

(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã)

]
︸ ︷︷ ︸

∼χ2
d

,

where λ = mσ2
a
b . Therefore, using (62) and (63), the mgf for σ2 is given by

Mσ2(s) =
M1(sbm)

M2(sbm)
= exp

{
mσ2

as

m− 2sb

}
·
(

1− 2
sb

m

)− (|C|−1)d
2

, where
sb

m
<

1

2
. (64)

Given the mgf of σ2, then

N−1CESS0 →
E
[
e−
|C|σ2
2T

]2

E
[
e−
|C|σ2
T

] =
Mσ2

(
− |C|2T

)2

Mσ2

(
− |C|T

)

=

[
exp

{
mσ2

a

(
− |C|

2T

)
m−2

(
− |C|b

2T

)
}
·
(

1− 2
(
− |C|2T

)
b
m

)− (|C|−1)d
2

]2

exp

{
mσ2

a

(
− |C|
T

)
m−2

(
− |C|b

T

)
}
·
(

1− 2
(
− |C|T

)
b
m

)− (|C|−1)d
2

=

exp

{
−
mσ2

a

(
|C|
T

)
m+

|C|b
T

}
·
(

1 + |C|b
Tm

)−(|C|−1)d

exp

{
−

mσ2
a

(
|C|
T

)
m+2

(
|C|b
T

)
}
·
(

1 + 2
(
|C|b
Tm

))− (|C|−1)d
2

= exp

{
− σ2

a
T
|C| + b

m

}
· exp

{
σ2
a

T
|C| + 2b

m

}
·

(

1 + |C|b
Tm

)2

1 + 2
(
|C|b
Tm

)

− (|C|−1)d

2

= exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ·

1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm

− (|C|−1)d

2

,

and so Theorem 12 immediately follows. �

Proof (Corollary 13) Under Condition 8, σ2
a = (|C|−1)λ

m < |C|λ
m , so for the first term in (31),

exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ≥ exp

{
−σ

2
ab|C|2

T 2m

}

49

Chan, Pollock, Johansen and Roberts

≥ exp

{
−b

2|C|3λ
T 2m2

}
≥ exp

{
− λ

k2
1

}
, (65)

where T ≥ b|C|3/2k1
m for some constant k1 > 0, and for the second term in (31), then1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm

− (|C|−1)d

2

≥

exp

(
|C|b
Tm

)2

1 + 2|C|b
Tm

− (|C|−1)d

2

= exp

−
(
|C|b
Tm

)2
(|C| − 1)d

2(1 + 2C
Tm)

≥ exp

−
(
|C|3b2
T 2m2

)
d

2

≥ exp

{
− d

2k2
1

}
, (66)

with T ≥ b|C|3/2k1
m . Hence, under Condition 8 and choosing T ≥ b|C|3/2k1

m , combining the
bounds from (65) and (66) gives (32). Under Condition 10, σ2

a = bγ, if we assume T ≥
b|C|3/2k1

m for some constant k1 > 0, and T ≥ |C|
1
2k2 for some constant k2 > 0, then(

T

|C|
+

b

m

)(
T

|C|
+

2b

m

)
≥ T 2

|C|2
≥ bk1k2

m
,

and so we have

exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ≥ exp

{
−

b2γ
m

bk1k2
m

}
= exp

{
− bγ

k1k2

}
. (67)

Hence, under Condition 10 and choosing T such that T ≥ b|C|3/2k1
m and T ≥ |C|

1
2k2, we can

combine the bounds from (67) and (66) to obtain the bound in (33). �

Proof (Theorem 15) As N →∞, we have

N−1CESSj := N−1

(∑N

i=1 ρ̃j,i

)2

∑N
i=1 ρ̃

2
j,i

 =

(
N−1

∑N
i=1 aj ρ̃j,i

)2

N−1
∑N

i=1 (aj ρ̃j,i)
2

→ E [aj ρ̃j]
2

E
[
(aj ρ̃j)

2
] ,

where aj := exp{
∑

c∈C Φc∆j}. Since aj ρ̃j is an unbiased estimate of ρj (see Theorem 4),
then

E [aj ρ̃j] =
∏
c∈C

EWΛc,j

(
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)})

50

Divide-and-Conquer Fusion

= EW̄Λ

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)})
· aj

where W̄Λ denotes the law of the collection of Brownian bridges {WΛc,j : c ∈ C} for each j.
Note that under the optimal distribution for p(κc|Rc) (a Poisson distribution with intensity

given in (35)), then E
[
(aj ρ̃j)

2
]
≤ 1 (Fearnhead et al., 2008; Dai et al., 2023), so

lim
N→∞

N−1CESSj ≥ E [aj ρ̃j]
2 =

[
EW̄Λ

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)})]2

· a2
j .

If fc ∼ Nd(ac, b|C|m Λc), then φc(x) = 1
2

((
m
b|C|

)2
(x− ac)ᵀΛ−1

c (x− ac)− md
b|C|

)
which has

global lower bound Φc = −1
2

(
md
b|C|

)
(since the minimum of φc occurs at the mean, ac).

Then by considering small intervals (tj−1, tj) and taking the limit of ∆j := tj − tj−1 → 0,
then

lim
∆j→0

lim
N→∞

N−1CESSj

≥ lim
∆j→0

[
E

(
E

{
E

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)
dt

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

· a2
j

≥ lim
∆j→0

[
E

(
E

{
E

(
exp

{
−∆j

2

∑
c∈C

(
m

b|C|

)2

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac)

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

≥

[
E

(
E

{
lim

∆j→0
E

(
exp

{
−∆j

2

∑
c∈C

(
m

b|C|

)2

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac)

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

,

(by using a trapezoidal rule approximation of the integral and exploiting the use of small
intervals) where lim∆j→0 and expectations are exchanged using the dominated convergence
theorem (as the exponential term is bounded above by 1 and its expectation exists (Dai
et al., 2023, Appendix C)).

From (75) in Corollary 23, we note that x
(c)
j only depends x

(c)
j−1 through ξj and ζ

(c)
j for all

c ∈ C, and we have

x
(c)
j

∣∣∣ξj , ~x(C)
j−1 ∼ Nd

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
,
T − tj
T − tj−1

∆jΛc

)
,

and consequently,(
T − tj
T − tj−1

∆j

)−1∑
c∈C

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac) ∼ χ

2(|C|d, λ′j),

with moment generating function Mj(s) := exp
{

λ′js

1−2s

}
· (1− 2s)−

|C|d
2 , where

λ′j =

(
T − tj
T − tj−1

∆j

)−1∑
c∈C

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)ᵀ
Λ−1
c

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)

51

Chan, Pollock, Johansen and Roberts

=

(
T − tj
T − tj−1

∆j

)−1

|C|σ2
tj ,

with

σ2
tj :=

1

|C|
∑
c∈C

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)ᵀ
Λ−1
c

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)
.

Letting s = −1
2

(
m
b|C|

)2 (T−tj
T−tj−1

)
∆2
j , then

lim
∆j→0

lim
N→∞

N−1CESSj ≥
[
E
(
E
{

lim
∆j→0

exp

{
λ′js

1− 2s

}∣∣∣∣~x(C)
j−1

})]2

· (1− 2s)−|C|d

≥

E
E

 lim
∆j→0

exp

−
1
2

(
m2

b2C

)
σ2
tj∆j

1− 2s

∣∣∣∣∣∣~x(C)
j−1

2

· (1− 2s)−|C|d.

From (75), we have

E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
=

[
∆2
j

T − tj−1

] 1
2

ξj +
T − tj
T − tj−1

x
(c)
j−1 +

tj − tj−1

T − tj−1
x̃j−1,

and so we have lim∆j→0 σ
2
tj =: νj where νj is given in (37). Using Jensen’s inequality, we

can get

lim
∆j→0

lim
N→∞

N−1CESSj ≥ lim
∆j→0

exp

−
1
2E [νj]

(
m2

b2|C|

)
∆j

1− 2s

2

· (1− 2s)−|C|d

≥ lim
∆j→0

exp

−E [νj]
(
m2

b2|C|

)
∆j

1− 2s

 · (1− 2s)−|C|d. (68)

Consider the first term in (68), then taking the limit ∆j → 0 implies that s → 0, and if

∆j ≤ b2|C|k3
E[νj]m2 for some k3 > 0, then

exp

−E [νj]
(
m2

b2|C|

)
∆j

1− 2s

 ≥ exp {−k3} . (69)

Similarly for the second term in (68), if ∆j ≤
(
b2|C|k4
2m2d

) 1
2
, we have

(1− 2s)−|C|d ≥ exp {4s|C|d}

= exp

{
4|C|d

(
−1

2

(
m

b|C|

)2(T − tj
T − tj−1

)
∆2
j

)}

= exp

{
−2

(
m2

b2|C|

)
d∆2

j

}
≥ exp {−k4} . (70)

52

Divide-and-Conquer Fusion

Combining the bounds in (69) and (70), and taking the limit ∆j → 0 over sequences of
tj − tj−1 → 0, with (36), we arrive at the result given in the theorem. �

Proof (Proposition 19 Using Theorem 15, then for iteration j, we want to choose exp{−k3,j−
k4,j} = ζ ′ ∈ (0, 1), and so k3,j = − log(ζ ′) − k4,j . By substituting this into (36), we can
choose the mesh size as

∆̃j = min

{
b2|C|[− log(ζ ′)− k4,j]

E[νj]m2
,

(
b2|C|k4,j

2m2d

) 1
2

}
, (71)

where k4,j < − log(ζ ′) (in order to ensure that k3,j > 0). Here, we want the largest interval
which satisfies N−1CESSj ≥ ζ ′. This corresponds to choosing k4,j with

b2|C|[− log(ζ ′)− k4,j]

E[νj]m2
=

(
b2|C|k4,j

2m2d

) 1
2

=⇒ b4|C|2[− log(ζ ′)− k4,j]
2

E[νj]2m4
=
b2|C|k4,j

2m2d

=⇒ [− log
(
ζ ′
)
− k4,j]

2 =
E[νj]

2m2

2b2|C|d
k4,j

=⇒ log
(
ζ ′
)2

+ 2k4,j log
(
ζ ′
)

+ k2
4,j =

E[νj]
2m2

2b2|C|d
k4,j

=⇒ k2
4,j +

(
2 log

(
ζ ′
)
− E[νj]

2m2

2b2|C|d

)
k4,j + log

(
ζ ′
)2

= 0. (72)

Applying the quadratic formula to solve (72) gives

k4,j =

(
E[νj]

2m2

2b2|C|d − 2 log(ζ ′)
)
±
√(

2 log(ζ ′)− E[νj]2m2

2b2|C|d

)2
− 4 log(ζ ′)2

2
.

Note that we have the constraints that 0 < k4,j < − log(ζ ′), and since from (72), we have

k2
4,j +

(
2 log

(
ζ ′
)
− E[νj]

2m2

2b2|C|d

)
k4,j = − log

(
ζ ′
)2
,

then we will always choose the smaller root and arrive at the statement of the theorem. �

Appendix H. Practical implementation considerations

In many practical settings there will be additional constraints which require us to modify
Algorithm 1 appropriately. Examples include settings where latency between cores is prob-
lematic, or in scenarios where functional evaluations of the sub-posterior densities fc are
not available. In this section, consider several modifications to Algorithm 1 to make it more
amenable to certain application areas. To clarify, the implementation of our methodology
in examples presented in Section 5 do not exploit these modifications that we present below.

53

Chan, Pollock, Johansen and Roberts

H.1 Reducing communication between the cores

For our GBF approach, we highlight two steps where communication between cores could
be reduced. In particular, it is possible to limit the amount of communication necessary
when initialising the particle set, and also when we propagate the particles in the iterative
steps of the algorithm. In a distributed/parallel setting, it is desirable to reduce the number
of communication between cores since there is a latency penalty for each communication
leading to a more computationally expensive algorithm.

In Algorithm 1 Step 1b, the particles are composed by pairing the sub-posterior draws

index-wise to obtain {~x(C)
0,i }Mi=1 which requires a communication between the cores. To fully

initialise the algorithm, we must assign importance weights to the particles which requires
an additional two communications between the cores; namely a communication back to the
individual cores to provide the weighted mean of the particles x̃0,i, and a communication

between the cores to compute ρ0,i(~x
(C)
0,·) (since (4) can be decomposed into a product of |C|

terms corresponding to the individual contributions from each sub-posterior. Following the
approach of Dai et al. (2023, Section 3.7.1), let θ̃ ∈ Rd be a weighted average of approximate
modes (or means) of each sub-posterior. Noting that this can be computed in a single pre-
processing step prior to initialisation, then we can modify the proposal mechanism for the
initial draw to be from the density

f̃c

(
x

(c)
0

)
∝ exp

{
−(x

(c)
0 − θ̃)ᵀΛ−1

c (x
(c)
0 − θ̃)

2T

}
· fc
(
x

(c)
0

)
, (73)

then by modifying the algorithm by replacing ρ0 with

%̃0 := exp

{
(x̃

(C)
0 − θ̃)ᵀΛ−1

C (x̃
(C)
0 − θ̃)

2T

}
, (74)

where Λ−1
C := (

∑
c∈C Λ−1

c), we can see that

%̃0

(
~x

(C)
0

)
·
∏
c∈C

f̃c

(
x

(c)
0

)
∝ ρ0

(
~x

(C)
0

)
·
∏
c∈C

fc

(
x

(c)
0

)
.

Since we subsequently re-normalise the importance weights, we do not need to compute any
constant of proportionality for %̃0. Adopting this approach means that we can sample from
f̃c on each core independently and evaluate the modified importance weight without any
further communication between the cores. This therefore reduces the number of communi-
cations required to initialise the particle set from three (in the original formulation) to two
(since this approach does require one communication in order to compute θ̃). The modified
initialisation is summarised in Algorithm 6.

There is also scope to reduce the number of communications required to propagate the
particle set in Algorithm 1 Step 2(b)i. To propagate the particles, there is a communication

between the cores in order to compute ~M
(C)
j := ~M

(C)
tj−1,tj

as per (9) since this requires the

54

Divide-and-Conquer Fusion

Algorithm 6 Particle set initialisation modification (to replace Algorithm 1 Step 1b).

1(b) For k in 1 to M ,

(i) ~x
(C)
0,k : For c ∈ C, simulate x

(c)
0,k ∼ f̃c (73). Set ~x

(C)
0,k := (x

(c1)
0,k , . . . ,x

(c|C|)

0,k).

(ii) Compute un-normalised weight w
(C)′
0,k :=

(∏
c∈C w

(c)
k

)
· %̃0(~x

(C)
0,k) as per (74).

current position of each of the |C| trajectories. Once we have computed this and propagated
the samples, a further communication back to the cores would be necessary so that each
core can compute their contribution to the ρ̃j importance weight. Alternatively, we can
utilise Corollary 23 so that each of the |C| processes can propagate their own individual

particles to compose ~x
(C)
j .

Corollary 23 Simulating ~x
(C)
j ∼ Nd

(
~M

(C)
j ,Vj

)
, the required transition from ~x

(C)
j−1 to ~x

(C)
j

in Algorithm 1 Step 2(b)i, can be expressed as

x
(c)
j =

[
∆2
j

T − tj−1

] 1
2

ξj +

[
T − tj
T − tj−1

∆j

] 1
2

η
(c)
j +M

(c)
j , (75)

where ξj ∼ Nd(0,ΛC), η
(c)
j ∼ Nd(0,Λc) and M

(c)
j is the sub-vector of ~M

(C)
j corresponding

to the cth component given by (9).

Proof From Proposition a, we have ~x
(C)
j ∼ Nd

(
~M

(C)
j ,Vj

)
where ~M

(C)
j := ~M

(C)
tj−1,tj

is given

by (9) and Vj := Vtj−1,tj is given by (10). From (75), the mean and covariance matrix of

~x
(C)
j given ~x

(C)
j are also given by ~M

(C)
j and Vj as required. �

By using Corollary 23, we can see that the interaction between the |C| trajectories occurs
through their weighted mean x̃j−1 at the previous iteration. This can be computed at the
previous iteration, and we can communicate this along with the common Gaussian vector
ξj at the same time. This therefore removes an unnecessary additional communication
between the cores at every iteration, resulting in a much more efficient algorithm if latency
is a concern. This approach is presented in Algorithm 7.

Algorithm 7 Particle set propagation modification (to replace Algorithm 1 Step 2(b)i).

2(b)i.

(A) For c ∈ C, simulate x
(c)
j,i |(x̃j−1,i,x

(c)
j−1,i) in (75).

(B) Set ~x
(C)
j,i := (x

(c1)
j,i , . . . ,x

(c|C|)

j,i) and compute x̃j,i := (
∑

c∈C Λ−1
c)−1(

∑
c∈C Λ−1

c x
(c)
j,i).

55

Chan, Pollock, Johansen and Roberts

H.2 Alternative methods for updating the particle set weights

In this paper, we have assumed that we have been able to compute functionals of each
sub-posterior fc for c ∈ C, however there are many settings where it may be impractical
or infeasible to do so. This may be case if there is some form of intractability of the sub-
posteriors (see for instance Andrieu and Roberts (2009)), or maybe the evaluation of such
quantities may be simply too computationally expensive (for instance in large data settings
(Pollock et al., 2020; Bouchard-Côté et al., 2018; Bierkens et al., 2019; Dai et al., 2023)).
In these settings, we no longer are able to evaluate φc in (6) which is necessary to update
the particle weights in the iterative steps of the BF algorithm. However, it is possible to
consider alternative unbiased estimators for ρ̃j in Step 2c.

Corollary 24 (Dai et al., 2023, Corollary 3) The estimator

%̃j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

∆κc
j · e−Ū

(c)
X ∆j

κc! · p (κc|Rc)

κc∏
kc=1

(
Ū

(c)
X − φ̃c

(
X

(c)
ξc,kc

)) , (76)

where φ̃c is an unbiased estimator of φc and Ū
(c)
j is a constant such that φ̃c(x) ≤ Ū

(c)
j for

x ∈ Rc.

Proof This follows directly from Theorem 4. �

The estimator %̃j in Corollary 24 can therefore be used as a substitute for ρ̃j in Algorithm
1 Step 2c. However, we must be careful in constructing %̃j since its introduction typically
increases the variance of the estimator which ultimately causes higher variance in the particle
set weights in the BF algorithm. In particular, by using Corollary 24, the number of
expected functional evaluations will change from K to K ′ and so we must consider the
growth in the ratio K ′/K as mc → ∞ (Pollock et al., 2020; Dai et al., 2023). However,
as noted, introducing an alternative unbiased estimator may be necessary to apply the BF
approach to some settings.

For instance, consider the example setting provided in Dai et al. (2023, Appendix E), where
we have a large number of data points associated to each sub-posterior (i.e we have mc � 1
data points for core c ∈ C) then computing φc in (6) is an expensive O(mc) operation.
However, since φc is linear in terms terms of ∇ log fc(x) and ∇2 log fc(x), it is simple to
construct an unbiased estimator φ̃c for φc. In the setting, we also assume the sub-posteriors
admit a structure with conditional independence and can be factorised as follows,

fc(x) ∝
mc∏
i=1

li,c(x). (77)

Then since φc is linear in terms of ∇ log li,c(x) and ∇ log li,c(x), then we could use the
following naive unbiased estimator for φdlc :

φ̃c(x) =
mc

2

(
∇ log lI,c(x

∗)ᵀΛc∇ log lJ,c(x
∗) + Tr

(
Λc∇2 log lI,c(x

∗)
))
, (78)

56

Divide-and-Conquer Fusion

where I, J
iid∼ U{1, . . . ,mc}. Although using such an estimator has the advantage of having

O(1) cost when evaluating, this comes at the cost of an O(mc) inflation in the expected
number of evaluations when evaluating %̃j over ρ̃j . However, following the approach of
Pollock et al. (2020, Section 4) and Dai et al. (2023, Appendix E), we first want to suitable
choose some control variates to construct our estimator, and compute ∇ log fc and ∇2 log fc
at points close to either the mode of the sub-posterior, x̂c, or the mode of the target

posterior x̂ (where close means within O(m
− 1

2
c) of the true respective modes). Computing

these control variates will typically be one-time O(mc) computations.

Let

α̃I,c(x) := n · [∇ log lI,c(x)−∇ log lI,c(x
∗)], (79)

H̃I,c(x) := n · [∇2 log lI,c(x)−∇2 log lI,c(x
∗)], (80)

then since log fc(x) =
∑mc

i=1 log li,c(x), we have

EA [α̃I,c(x)] = αc(x), EA
[
H̃I,c(x)

]
= Hc(x). (81)

where αc(x) := ∇ log fc(x)−∇ log fc(x
∗) and Hc(x) := ∇2 log fc(x)−∇2 log fc(x

∗) and A
is the law of I ∼ U{1, . . . , n}.

Noting that φc(x) in (6) can be re-expressed as

φc(x) =
1

2
[αc(x)ᵀΛc(2∇ log fc(x

∗) + αc(x)) + Tr(ΛcHc(x))] + C∗, (82)

where C∗ := 1
2

(
∇ log fc(x

∗)ᵀΛc∇ log fc(x
∗) + Tr

(
Λc∇2 log fc(x

∗)
))

, then this leads to the
following unbiased estimator for φc:

φ̃c(x) :=
1

2

[
αI,c(x)ᵀ(2∇ log fc(x

∗) + αJ,c(x)) + Tr
(
ΛcH̃I,c(x)

)]
+ C∗, (83)

where I, J
iid∼ U{1, . . . ,mc}, i.e. if now we let A be the law of I, J

iid∼ U{1, . . . ,mc}, we have

EA
[
φ̃c(x)

]
= φc(x).

Here the evaluations of the constants ‖∇ log fc(x
∗)‖2, Tr

(
∇2 log fc(x

∗)
)

are of O(mc) cost,
but they only need to be computed once prior to calling Algorithm 1. The unbiased esti-
mator φ̃c(x) uses only double draws from {1, . . . ,mc}, although Pollock et al. (2020) notes
that it would be possible to replace this by averaging over multiple draws (sampling from
{1, . . . ,mc} with replacement) which could have advantages of reducing the variance of the
estimator at the cost of increasing the number of data points to evaluate at.

Appendix I. Simulation studies

In this section we study empirically the performance of our Fusion algorithms (Sections 2
and 3), and selection of tuning parameters (T , n and P as discussed in Section 4) in our

57

Chan, Pollock, Johansen and Roberts

two idealised key settings—the SH(λ) setting (Condition 8) and SSH(γ) setting (Condition
10) described in Section 4. We do this in Sections I.1 and I.2 respectively. For simplicity,
here we focus on BF and GBF, noting that GBF is simply D&C-Fusion with a fork-and-
join tree hierarchy (as in Figure 1). Finally, in Section I.3 we compare the performance of
Fusion methodologies (including D&C-Fusion with a balanced-binary tree hierarchy) with
increasing dimensionality. In Section 5, we consider more substantive examples using real
data. Note that the earlier Bayesian Fusion approach is simply a special case of our GBF
approach with Λc = Id for c ∈ C, and so comparison with this work is straight-forward.

To compare the performance of different approaches we consider their computational cost
(both the total run time, and n which represents the number of iterations of Algorithm 1
Step 2 and so is a proxy for the amount of communication between cores), and Integrated
Absolute Distance (IAD) defined in (45).

Throughout this section we use the GPE-2 estimator of ρj as given in Definition 6, and use
the Trapezoidal rule to estimate the mean γc in (24) and set βc = 10 for c ∈ C. Code to
run these simulation studies can be found at https://github.com/rchan26/DCFusion.

I.1 Sub-posterior Homogeneity

We first study the guidance developed for T and P in Section 4 for GBF (Algorithm 1)
in the SH(λ) setting of Condition 8. Recall, this is the setting in which we are combining
homogeneous sub-posteriors, and would naturally arise if a dataset was split randomly
across several cores. To study this setting, we consider the idealised scenario of combining
C = 10 bi-variate Gaussian sub-posteriors, with a range of data sizes from m = 1000 to
m = 40000, which have been randomly split across the C = 10 cores. In particular, each

sub-posterior has mean 0 = (0, 0) and variance C
mΣ, where Σ =

(
1 ρ
ρ 1

)
with ρ = 0.9. For

this example, we apply both BF and GBF with a fixed particle set size of N = 10000.

To verify the guidance for T and P, we consider varying T and P with increasing data size
m, and the impact this has on CESS0 and CESSj (for j ∈ {1, . . . , n}). We consider the four
following choices of T and P:

1. a fixed choice of T and n to obtain P (for GBF, T = 1 and n = 5, and for BF,
T = 0.005 and n = 5),

2. using the recommended T from Section 4.1 and fixed n = 5 to obtain P,

3. using the recommended T and P using a regular mesh (as outlined in Algorithm 3
and Section 4.2.1),

4. using the recommended T and P using an adaptive mesh (as outlined in Algorithm 4
and Section 4.2.2).

58

https://github.com/rchan26/DCFusion

Divide-and-Conquer Fusion

In implementing the BF and GBF, we set our lower tolerable bounds for the initial (CESS0)
and the iterative (CESSj) conditional effective sample sizes to be 0.5N (i.e. we set ζ = ζ ′ =
0.5), resampling if ESS falls below 0.5N . To summarise how one might practically use our
guidance to choose T and P, we present our approach in Remark 25.

Remark 25 We set the tuning parameters for BF and GBF (for the SH(λ) setting of
Section I.1) as follows:

1. Following the guidance outlined in Remark 14, and with ζ = 0.5, λ = 1 and d = 2, we

have k1 =

√
− (λ+ d

2
)

log(ζ) ≈ 1.7. For GBF, Λc is the estimated covariance matrices for sub-

posterior c ∈ {1, . . . , C}, so b = m
C (see Remark 11), and we choose T = C

1
2k1. For

BF, Λc = Id for c ∈ {1, . . . , C}, so we have b = 1 and so we choose T = C3/2k1/m.

2. When using the regular mesh, we use Algorithm 3 to obtain P. First let ζ ′ = 0.5 then

for GBF we have b = m
C , and so ∆j = ∆ =

√
k4

2Cd for each j, where k4 is computed as

per (44) and computing an estimate of the supremum of Ê[νj] as per (41). For BF,

b = 1, so ∆j = ∆ =
√

Ck4
2m2d

for each j.

3. When using the adaptive mesh, we use Algorithm 4 to obtain ∆j recursively at each
iteration to construct P. We let ζ ′ = 0.5 and for GBF (where b = m

C) we compute

tj = min{T, tj−1 + ∆j} where ∆j =
√

k4
2Cd at each iteration of Algorithm 1, until we

have tj = T . For the standard BF approach, note that b = 1 so we must compute

∆j =
√

Ck4
2m2d

instead at each iteration.

The conditional effective sample size of the GBF and (standard) BF approaches with in-
creasing data size in this SH(λ) setting are shown in Figure 12.

First considering the results from fixing T and n in Figure 12a, we can see that BF lacks
robustness with increasing data size. Here CESS0 improves with increasing data size (m),
which is due to the sub-posteriors becoming increasingly similar with m in this idealised sce-
nario. However, as we increase m the fixed choice for T (and hence the size of the intervals)
becomes increasingly inappropriate for the sub-posteriors, which leads to a degradation in
average CESSj . In contrast, GBF incorporates global information about the sub-posteriors
(i.e. the variance of the sub-posteriors), so there is no change in performance with m. Here
there is a trade-off with the choice of T : a small T leads to poor behaviour on initialisation
(i.e. low CESS0), but good behaviour at each iteration (i.e. high average CESSj).

Considering Figure 12b, we see that scaling T following the guidance developed in Section
4.1 immediately stabilises CESS0, although CESSj performance is still poor (n is too small).
In Figure 12c and Figure 12d, we see that utilising both the guidance for T and the mesh P
drastically improves the performance of both BF and GBF. In both cases GBF outperforms

59

Chan, Pollock, Johansen and Roberts

BF: it achieves higher average CESSj , and the variance of CESSj is lower. Given BF is a
special case of GBF, this improvement can be ascribed to the use of estimated covariance
matrices for Λc. In particular, this choice leads to a lower variance unbiased estimator for
ρj , and an improved proposal hbf (14) for gbf (15).

From Figure 12e we see that with BF that without our guidance on T and P, average IAD
is poor, and the variance of the IAD is very large. In contrast, GBF with our guidance is
robust across the different scenarios. Comparing the regular and adaptive meshes simply
using CESS0 and CESSj would imply that the regular mesh is performing better (since
it has slightly better CESSj), however the adaptive mesh is slightly more computationally
efficient as shown by having a smaller mesh size, n, (illustrated in Figure 12f) and having a
faster algorithm run-time (illustrated in Figure 12g). By looking at the IAD obtained for
these approaches, we can see that we are able to obtain similar performance at a lower cost
with the adaptive mesh construction.

I.2 Sub-posterior Heterogeneity

Now we study the guidance for T and P for GBF (Algorithm 1) developed in Section 4
in the SSH(γ) setting of Condition 10. This represents the setting where sub-posterior
heterogeneity does not decay with data size. Here, we consider the scenario of combining
C = 2 bi-variate Gaussian sub-posteriors, fc ∼ N

(
µc,

2
mΣ

)
, where µ1 = −(0.25, 0.25) and

µ2 = (0.25, 0.25) and Σ =

(
1 ρ
ρ 1

)
, with ρ = 0.9. We again consider a range of data sizes,

which ranges from m = 250 to m = 2500 and are randomly split between C = 2 cores. We
apply BF and GBF with a fixed particle set size of N = 10000.

In this setting as m increases the sub-posterior heterogeneity increases, which is a con-
sequence of the sub-posteriors having diminishing overlapping support. In BF (where
Λ1 = Λ2 = Id) this heterogeneity is not captured, and σ2

a = 0.125 irrespective of m.
By contrast, the generalised approach is able to capture the heterogeneity with m with
simply the inclusion of the estimated covariance matrices {Λc}c=1,2.

As with the previous example in Section I.1, we will investigate the effect of varying T and
P with m, and its impact upon CESS0 and CESSj . We consider the following choices for
T and P:

1. a fixed choice of T and n to obtain P (for GBF, T = 2 and n = 5, and for BF,
T = 0.01 and n = 5),

2. using the recommended T from Section 4.1 and fixed n = 5 to obtain P,

3. using the recommended T and P using a regular mesh (as outlined in Algorithm 3
and Section 4.2.1),

4. using the recommended T and P using a, adaptive mesh (as outlined in Algorithm 4
and Section 4.2.2).

60

Divide-and-Conquer Fusion

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(a) Fixed user-specified T and n.

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(b) Recommended T and fixed n.

Figure 12: Bivariate Gaussian example in SH(λ) setting with increasing data size. In
Figures 12a, 12b, 12c, 12d solid lines denote initial CESS (CESS0), and dotted lines denote
averaged CESS in subsequent iterations (1

n

∑n
j=1 CESSj), and crosses denote CESSj for

each j ∈ {1, . . . , n}.

61

Chan, Pollock, Johansen and Roberts

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(c) Recommended T and recommended regular mesh P.

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(d) Recommended T and recommended adaptive mesh P.

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(i) BF

1000 10000 20000 30000 40000

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(ii) GBF

(e) Integrated absolute distance: lines connect the mean IAD (averaged over ten runs) while the
points denote the individual IAD achieved on each run.

Figure 12: Bivariate Gaussian example in SH(λ) setting (continued).

62

Divide-and-Conquer Fusion

1000 10000 20000 30000 40000

Data Sizes

0
1
0
0

2
0
0

n

Regular mesh
Adaptive mesh

(i) BF

1000 10000 20000 30000 40000

Data Sizes
0

1
0
0

2
0
0

n

Regular mesh
Adaptive mesh

(ii) GBF

(f) Comparison of mesh sizes between regular and adaptive schemes.

1000 10000 20000 30000 40000

Data Sizes

2
3

4
5

6
7

8
9

1
0

1
1

lo
g

(E
la

p
s
e
d

 t
im

e
 i
n

 s
e
c
o

n
d

s
) Fixed T, fixed n

Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(i) BF

1000 10000 20000 30000 40000

Data Sizes

2
3

4
5

6
7

8
9

1
0

1
1

lo
g

(E
la

p
s
e
d

 t
im

e
 i
n

 s
e
c
o

n
d

s
) Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(ii) GBF

(g) Mean average computational run-times (based on ten runs).

Figure 12: Bivariate Gaussian example in SH(λ) setting (continued).

63

Chan, Pollock, Johansen and Roberts

When applying the guidance, we set the lower tolerable bounds on the initial (CESS0) and
iterative (CESSj) conditional effective sample sizes to be 0.5N (i.e. we set ζ = ζ ′ = 0.5),
and re-sample if ESS drops below 0.5N . Again, for helping with the practical interpretation
of our extensive guidance for selecting T and P, we summarise our approach in Remark 26:

Remark 26 We set the tuning parameters for BF and GBF (for the SSH(γ) setting of
Section I.2) as follows:

1. We follow the guidance outlined in Remark 14, noting that ζ = 0.5 and d = 2. For
GBF, Λc=1,2 are the estimated covariance matrices for each of the sub-posteriors,
so b = m

C (see Remark 11), and γ = mσ2
a/C (where σ2

a is estimated from the sub-

posterior samples). Consequently, we can compute k1 = k2 =

√
−(γmC + d

2)
log(ζ) , and choose

T = C
1
2k1. For BF, Λc=1,2 = Id, so b = 1 and γ = σ2

a, and so we can compute

k1 =

√
−(γmC + d

2)
log(ζ) and k2 = Ck1

m , and choose T = C3/2k1
m = C

1
2k2.

2. When using the regular mesh, we use Algorithm 3 to obtain P. As ζ ′ = 0.5, we have

for GBF b = m
C , and so ∆j = ∆ =

√
k4

2Cd for each j where k4 is computed as per (44)

(with supj Ê[νj] computed as per (41)). For BF we have b = 1, so ∆j = ∆ =
√

Ck4
2m2d

for each j.

3. When using the adaptive mesh, we use Algorithm 4 to obtain ∆j recursively at each
iteration to construct P. With ζ ′ = 0.5 for the GBF (where b = m

C) we compute

tj = min{T, tj−1 + ∆j} where ∆j =
√

k4
2Cd at each iteration of Algorithm 1 until we

have tj = T . For BF with b = 1 we have instead ∆j =
√

Ck4
2m2d

at each iteration.

CESS for BF and GBF with increasing m in this SSH(γ) setting are shown in Figure
13. We can immediately see that the SSH(γ) setting is much more challenging than the
idealised SH(λ) setting of Section I.1 and Figure 12, which is unsurprising as in this case
the sub-posteriors are becoming increasingly mismatched as data size increases.

In Figure 13a, we see that fixing T and n is not ideal for either BF or GBF. As shown
in Figure 13b, there is a positive effect for both BF and GBF in using our recommended
scaling of T in the quality of the initialisation. In Figure 13c and Figure 13d, where both the
guidance for T and P are implemented, we see a substantial improvement in the performance
of both approaches with respect to CESS, with again our new GBF approach outperforming
BF.

In Figure 13c we see that the use of a regular mesh in choosing P, following our guidance,
provides robust CESSj with low variance. Indeed, it appears to outperform the adaptive
mesh approach for P (see Figure 13d). However, as discussed in Section 4.2.2, the regular
mesh is overly conservative, and when we factor in the reduced number of iterations required

64

Divide-and-Conquer Fusion

in the adaptive case (Figure 13f), along with the overall reduction in computational cost
(Figure 13g) for comparable IAD (Figure 13e), we see that the use of an adaptive mesh is
preferable.

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(a) Fixed user-specified T and n.

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(b) Recommended T and fixed n.

Figure 13: Bivariate Gaussian example in SSH(γ) setting with increasing data size. In
Figures 13a, 13b, 13c, 13d solid lines denote initial CESS (CESS0), and dotted lines denote
averaged CESS in subsequent iterations (1

n

∑n
j=1 CESSj), and crosses denote CESSj for

each j ∈ {1, . . . , n}.

65

Chan, Pollock, Johansen and Roberts

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(c) Recommended T and recommended regular mesh P.

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(i) BF

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
E

S
S

 /
 N

(ii) GBF

(d) Recommended T and recommended adaptive mesh P.

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(i) BF

500 1000 1500 2000 2500

Data Sizes

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(ii) GBF

(e) Integrated absolute distance: lines connect the mean IAD (averaged over ten runs) while the
points denote the individual IAD achieved on each run.

Figure 13: Bivariate Gaussian Example in SSH(γ) setting (continued).

66

Divide-and-Conquer Fusion

500 1000 1500 2000 2500

Data Sizes

1
2

3
4

lo
g

(n
,
1
0
)

Regular mesh
Adaptive mesh

(i) BF

500 1000 1500 2000 2500

Data Sizes
1

2
3

4

lo
g

(n
,
1
0
)

Regular mesh
Adaptive mesh

(ii) GBF

(f) Comparison of mesh sizes between regular and adaptive schemes.

500 1000 1500 2000 2500

Data Sizes

2
3

4
5

6
7

8
9

1
0

1
1

lo
g

(E
la

p
s
e
d

 t
im

e
 i
n

 s
e
c
o

n
d

s
) Fixed T, fixed n

Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(i) BF

500 1000 1500 2000 2500

Data Sizes

2
3

4
5

6
7

8
9

1
0

1
1

lo
g

(E
la

p
s
e
d

 t
im

e
 i
n

 s
e
c
o

n
d

s
) Fixed T, fixed n
Recommended T, fixed n
Recommneded T, regular mesh
Recommended T, adaptive mesh

(ii) GBF

(g) Mean average computational run-times (based on ten runs).

Figure 13: Bivariate Gaussian Example in SSH(γ) setting (continued).

67

Chan, Pollock, Johansen and Roberts

I.3 Dimension Scaling

In this section we empirically study the performance of Fusion approaches (BF, GBF and
D&C-Fusion) with increasing dimensionality. To do so we consider a d-dimensional multi-
variate Gaussian f ∝

∏C
c=1 fc, where we let C = 8 and fc ∼ Nd(0, CΣ), and where

Σii = 1, for all i ∈ {1, . . . , d},
Σij = 0.9, for all i 6= j, (i, j) ∈ {1, . . . , d},

and simply vary d (in steps from d = 1 to d = 100). For BF and GBF we use an adaptive
mesh for P, and for D&C-Fusion we consider both a regular and adaptive mesh for P with a
balanced-binary tree hierarchy. In all cases we use the guidance developed in Section 4. As
we are in the SH(λ) setting (the true sub-posterior means are the same), we set λ = 1. The
lower bounds of the tolerable initial and iterative CESS are set to 0.05N (i.e. ζ = ζ ′ = 0.05)
and we resample if the ESS drops below 0.5N , where here we have N = 10000. The results
are presented in Figure 14.

0 10 20 30 40 50 60 70 80 90 100

Dimension

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

In
te

g
ra

te
d

 A
b

s
o

lu
te

 D
is

ta
n

c
e

D&C−GBF (regular)
D&C−GBF (adaptive)
GBF
BF

(a) Integrated Absolute Distance.

0 1 2 3 4 5 6

log(Dimension, 2)

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

lo
g

(E
la

p
s
e
d

 t
im

e
 i
n

 s
e
c
o

n
d

s
,
2
) D&C−GBF (regular)

D&C−GBF (adaptive)
GBF
BF

(b) Computational cost.

Figure 14: Comparison of Fusion methodologies with increasing dimensionality (in the
setting of Section I.3). In Figure 14a, lines connect the mean IAD (averaged over ten runs)
while the points denote the individual IAD achieved on each run.

As shown in Figure 14a, the performance of all Fusion methods degrades with increasing di-
mensionality: both in terms of the average IAD and also the variance. As our target exhibits
high correlation between components, BF struggles here even in low dimensions, whereas
the GBF and D&C-Fusion approaches we have developed in this paper offer much better
scaling with dimension. D&C-Fusion comfortably outperforms existing Fusion approaches
for even moderate dimensionality in terms of IAD and computational cost.

68

Divide-and-Conquer Fusion

Appendix J. Calculations for examples

In this section, we provide the calculations necessary to implement the Fusion algorithms
discussed in this paper. In particular, to implement Generalised Bayesian Fusion (Section
2) and Divide-and-Conquer Fusion (Section 3), we must be able to compute φc given in
(6). This requires the computation of the first and second order derivatives of the log
sub-posterior densities.

Furthermore, it is necessary to compute bounds of φc. As noted in Section 2.2, if it is
not possible to (or simply difficult to) find tight bounds for φc, we can use the general
bounds given in Proposition 3. To use these general bounds, we must find a upper bound
on the matrix norm of Λc∇2 log fc(x) for x ∈ Rc (i.e. find PΛc given in (19)), which can be
done by computing the matrix norm of the matrix which bounds the matrix Λc∇2 log fc(x)
element-wise.

We note that in some cases, it may be easier to find the bound on the matrix norm of the

Hessian of the transformed sub-posterior, f
(z)
c (z) where z := Λ

− 1
2

c x. In particular, rather
than finding a bound in (19), we can focus on finding the bound

PΛc ≥ max
z∈R(z)

c

γ
(
∇2 log f (z)

c (z)
)
, (84)

which is equivalent to finding the bound in (19).

In Appendix F, we detailed how we can simulate ρ̃j . In particular, in Algorithm 5, we
perform a transformation on the space and in Step 1b, we compute the layer information

R
(z)
c and so we can directly use this to find local element-wise bounds ∇2 log f

(z)
c (z) for

z ∈ R(z)
c . Therefore, to find PΛc , we just need to find bounds on the second order derivatives

of the log-sub-posterior in the transformed space z := Λ
− 1

2
c x so that we can compute the

matrix norm of the matrix which bounds ∇2 log f
(z)
c (z) element-wise.

J.1 Logistic Regression

In Section 5.4, we considered applying our Fusion methodologies to a logistic regression ex-
ample with Gaussian prior distributions for the parameters. In particular, our sub-posterior
densities were given by the posterior for Bayesian logistic regression with Nd(µj , Cσ2

βj
) prior

for βj for j = 0, . . . , p is given by

fc(β) := π(β|y) =

[
n∏
i=1

eXiβ·yi

1 + eXiβ

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) (85)

69

Chan, Pollock, Johansen and Roberts

where X ∈ Rn×(p+1) is the design matrix so Xiβ = β0 +β1Xi1 + · · ·βpXip. The log-posterior
is given by

log fc(β) =
n∑
i=1

[
Xiβ · yi − log

(
1 + eβXi

)]
−

p∑
j=0

(βj − µj)2

2Cσ2
βj

+ constant. (86)

The first derivative of the log-posterior with respect to βk for k = 0, . . . , p, is given by

∂ log fc(β)

∂βk
=

n∑
i=1

[
Xik · yi −

Xike
Xiβ

1 + eXiβ

]
− (βk − µk)

Cσ2
βk

=
n∑
i=1

[
Xik ·

(
yi −

1

1 + e−Xiβ

)]
− (βk − µk)

Cσ2
βk

(87)

and the second order derivatives of the log-posterior are given by

∂2 log fc(β)

∂β2
k

= −
n∑
i=1

X2
ike

Xiβ

(1 + eXiβ)2
− 1

Cσ2
βk

, (88)

∂2 log fc(β)

∂βk∂βl
= −

n∑
i=1

XikXile
Xiβ

(1 + eXiβ)2
for k 6= l, (89)

for k, l = 0, . . . , p. We can use these directly to compute φc given in (6).

To compute the bounds of φc, we can utilise the bounds provided in Proposition 3 (or in
(17) and (18)). To do so, we must be able to compute an upper bound of the matrix norm
Λc∇2 log fc(x) for x ∈ Rc where Rc denotes the simulated layer information, i.e. to compute
(19). While this can be done by computing the matrix norm of the matrix which bounds
the matrix Λc∇2 log fc(x) element-wise, we noted above that it is typically easier to find

bounds on the matrix norm of ∇2 log f
(z)
c (z) where z := Λ

− 1
2

c β, and instead we can focus
on finding a bound in the transformed space, i.e. compute (84).

In this logistic regression setting, let z = Λ
− 1

2
c β then the transformed posterior density is

given by
f (z)
c (z) = π(β|X,y)|J |, (90)

where J = Λ
− 1

2
c is the Jacobian matrix with elements Jij = ∂zi

∂βj
= Λ

− 1
2

c,ij . We have

log f (z)
c (z) = log π(β|X,y) + log |J |. (91)

Since β = Λ
1
2
c z, we have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=

[
n∏
i=1

eXiβ·yi

1 + eXiβ

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) · |Λ− 1
2

c |

70

Divide-and-Conquer Fusion

=

 n∏
i=1

eXi(Λ
1
2
c z)·yi

1 + eXi(Λ
1
2
c z)

 ·

p∏
j=0

1√
2πCσ2

βj

exp

−
(

(Λ
1
2
c z)j − µj

)2

2Cσ2
βj

 · |Λ− 1

2
c |, (92)

so

log f (z)
c (z) =

n∑
i=1

[
Xi(Λ

1
2
c z) · yi − log

(
1 + eXi(Λ

1
2
c z)

)]
−

p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσ2
βj

+ constant.

(93)

We first note that since β = Λ
1
2
c z, then βi = (Λ

1
2
c z)i =

∑
k Λ

1
2
ikzk. So we have

∂(XiΛ
1
2
c)z

∂zk
=

∂

∂zk

∑
j

Xijβj

=
∂

∂zk

∑
j

Xij

(∑
k

Λ
1
2
jkzk

)

=
∑
j

XijΛ
1
2
jk

= (XΛ
1
2
c)ik (94)

and also we have

∂(Λ
1
2
c z)i

∂zk
=

∂

∂zk

∑
j

Λ
1
2
ijzj = Λ

1
2
ik (95)

Using (94) and (95), then the first derivative of the log transformed posterior with respect
to βk for k = 0, . . . , p, is given by

∂ log f
(z)
c (z)

∂zk
=

n∑
i=1

[
(XΛ

1
2
c)ik ·

(
yi −

1

1 + e−(XiΛ
1
2
c)z

)]
−

p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

. (96)

Then the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= −

n∑
i=1

(XΛ
1
2
c)ik(XΛ

1
2
c)ile

(XiΛ
1
2
c)z(

1 + e(XiΛ
1
2
c)z

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

, (97)

for k, l = 0, . . . , p.

71

Chan, Pollock, Johansen and Roberts

To find bounds for φc, we must now try to find bounds on the second derivatives given above
and compute the matrix norm of the matrix made up of these bounds (which ultimately

bounds ∇2 log f
(z)
c (z) element-wise). For this example, we can find global and lower bounds

of the second derivatives. Note however, we typically will expect better performance with
the local bounds on PΛc (84) (as this will typically lead to the expected number of points we
need to evaluate while performing Poisson thinning, κc, to be lower) despite these bounds
being slightly more expensive to compute in practice.

J.1.1 Global bounds of PΛc

We first note that ex

(1+ex)2
≤ 1

4 for all x (and this maximum occurs at x = 0). We can utilise

this to obtain a global bound:

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=

n∑
i=1

|XΛ
1
2
c |ik · |XΛ

1
2
c |il

4
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (98)

J.1.2 Local bounds of PΛc

Local bounds can be obtained if we can find local bounds for

G1(z) :=
e(XiΛ

1
2
c)z(

1 + e(XiΛ
1
2
c)z

)2 , (99)

for i = 1, . . . , n. In that case, we have

sup
z∈R(z)

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

[
|XΛ

1
2
c |ik · |XΛ

1
2
c |il · max

z∈R(z)
{G1(z)}

]
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (100)

To compute maxz∈R(z) {G1(z)}, see Section J.3.2 and Algorithm 8 and set r = 1.

J.2 Robust Regression

In Section 5.2, we considered a robust regression example (using a student-t distribution)
with Gaussian prior distributions for the parameters. In particular, our sub-posterior den-
sities were given by the posterior for Bayesian robust regression with Nd(µj , Cσ2

βj
) prior for

βj for j = 0, . . . , p is given by

fc(β) = π(β|X,y) :=

 n∏
i=1

Γ(ν+1
2)

Γ(ν2)
√
πνσ

(
1 +

1

ν

(
yi −Xiβ

σ

)2
)−(ν+1

2)

72

Divide-and-Conquer Fusion

·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) . (101)

The log-posterior is given by

log fc(β) = −
(
ν + 1

2

) n∑
i=1

log

(
1 +

1

νσ2
(yi −Xiβ)2

)
−

p∑
j=0

(βj − µj)2

2Cσ2
βj

+ constant. (102)

The first derivative of the log-posterior with respect to βk for k = 0, . . . , p is given by

∂ log π(β|X,y)

∂βk
= −

(
ν + 1

2

) n∑
i=1

−2Xik
νσ2 (yi −Xiβ)

1 + 1
νσ2 (yi −Xiβ)2

− (βk − µk)
Cσ2

βk

= (ν + 1)
n∑
i=1

Xik(yi −Xiβ)

νσ2 + (yi −Xiβ)2
− (βk − µk)

Cσ2
βk

, (103)

and the second order derivatives of the log-posterior are given by

∂2 log π(β|X,y)

∂β2
k

= (ν + 1)

n∑
i=1

X2
ik

(
(yi −Xiβ)2 − νσ2

)
(νσ2 + (yi −Xiβ)2)2 − 1

Cσ2
βk

, (104)

∂2 log π(β|X,y)

∂βk∂βl
= (ν + 1)

n∑
i=1

XikXil

(
(yi −Xiβ)2 − νσ2

)
(νσ2 + (yi −Xiβ)2)2 for k 6= l, (105)

for k, l = 0, . . . , p. We can use these derivatives directly to compute φc given in (6).

Following in the same approach as Section J.1.2, we can compute the bounds of φc (in (6))
by utilising the bounds provided in (17) and (18). As noted in Section J.1.2, we must be able

to find an upper bound on the matrix norm of ∇2 log f
(z)
c (z) where z := Λ

− 1
2

c β, i.e. compute

(84). To do so, we can compute the matrix norm of the matrix which bounds ∇2 log f
(z)
c (z)

element-wise. Now, let z = Λ
− 1

2
c β then f

(z)
c (z) = π(β|X,y)|J |, where J = Λ

− 1
2

c is the
Jacobian matrix, so we have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=

 n∏
i=1

Γ(ν+1
2)

Γ(ν2)
√
πνσ

1 +
1

ν

yi −Xi(Λ
1
2
c z)

σ

2−(ν+1
2)

·

p∏
j=0

1√
2πCσ2

βj

exp

−
(

(Λ
1
2
c z)j − µj

)2

2Cσ2
βj

 · |Λ− 1

2
c |. (106)

73

Chan, Pollock, Johansen and Roberts

so

log f (z)
c (z) = −

(
ν + 1

2

) n∑
i=1

log

(
1 +

1

νσ2

(
yi −Xi(Λ

1
2
c z)

)2
)

−
p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσ2
βj

+ constant. (107)

Recall from (94) and (95), then The first derivative of the log transformed posterior with
respect to βk for k = 0, . . . , p is given by

∂ log f
(z)
c (z)

∂zk
=

(
ν + 1

2

) n∑
i=1

−2(XΛ
1
2
c)ik

νσ2

(
yi − (XiΛ

1
2
c)z

)
1 + 1

νσ2

(
yi − (XiΛ

1
2
c)z

)2 −
p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

= (ν + 1)
n∑
i=1

(XΛ
1
2
c)ik

(
yi − (XiΛ

1
2
c)z

)
νσ2 +

(
yi − (XiΛ

1
2
c)z

)2 −
p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

(108)

Then the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= (ν + 1)

n∑
i=1

(XΛ
1
2
c)ik(XΛ

1
2
c)il

((
yi − (XiΛ

1
2
c)z

)2

− νσ2

)
((

yi − (XiΛ
1
2
c)z

)2

+ νσ2

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

(109)

for k, l = 0, . . . , p.

J.2.1 Global bounds of PΛc

To compute PΛc for this example, first note that we can write

∂2 log f
(z)
c (z)

∂zk∂zl
= (ν + 1)

n∑
i=1

(XΛ
1
2
c)ik(XΛ

1
2
c)il

[
1

Ei + b
− 2b

(Ei + b)2

]
−

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

, (110)

for k, l = 0, . . . , p, where b = νσ2 and Ei =

(
yi − (XiΛ

1
2
c)z

)2

. Now let

K(Ei) =
1

Ei + b
− 2b

(Ei + b)2
,

74

Divide-and-Conquer Fusion

then the derivative is given by

K ′(Ei) = − 1

(Ei + b)2
+

4b

(Ei + b)3
.

Setting K ′(Ei) = 0 gives Ei = 3b, and we have K(Ei = 3b) = 1
8b . So the supremum of the

second derivative is given by

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
(ν + 1)

8νσ2

n∑
i=1

|XΛ
1
2
c |ik · |XΛ

1
2
c |il −

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (111)

We can therefore use this to compute PΛc to compute bounds for φc as per (17) and (18).

J.3 Negative Binomial Regression

In Section 5.3, we considered a negative Binomial regression example with Gaussian prior
distributions for the parameters. In particular, our sub-posterior densities were given by
the posterior density with Nd(µj , Cσ2

βj
) priors for βj for j = 0, . . . , p, is given by

fc(β) := π(β|X,y)

=

[
n∏
i=1

Γ(yi + r)

yi!Γ(r)

(
µi

µi + r

)yi (r

µi + r

)r]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

)
=

[
n∏
i=1

Γ(yi + r)

yi!Γ(r)

exp(Xiβ · yi) · rr

(exp(Xiβ) + r)yi+r

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) (112)

The log-posterior is given by

log fc(β) =

n∑
i=1

[Xiβ · yi − (yi + r) log (exp(Xiβ) + r)]−
p∑
j=0

(βj − µj)2

2Cσβj
+ constant. (113)

The first order derivative of the log-posterior with respect to βk for k = 0, . . . , p, is given by

∂ log fc(β)

∂βk
=

n∑
i=1

[
Xikyi −

(yi + r)Xik exp(Xiβ)

exp(Xiβ) + r

]
− (βk − µk)

Cσ2
βk

,

=
n∑
i=1

[
Xik ·

(
yi −

(yi + r) exp(Xiβ)

exp(Xiβ) + r

)]
− (βk − µk)

Cσ2
βk

, (114)

and the second order derivatives of the log-posterior are given by

∂2 log fc(β)

∂β2
k

= −
n∑
i=1

(yi + r)rX2
ik exp(Xiβ)

(exp(Xiβ) + r)2 − 1

Cσ2
βk

, (115)

75

Chan, Pollock, Johansen and Roberts

∂2 log fc(β)

∂βk∂βl
= −

n∑
i=1

(yi + r)rXikXil exp(Xiβ)

(exp(Xiβ) + r)2 for k 6= l, (116)

for k, l = 0, . . . , p. We can use these directly to compute φc given in (6).

Following in the same approach as Section J.1.2, we can compute the bounds of φc (in
(6)) by utilising the bounds provided in (17) and (18). As noted in Section J.1.2, we must
compute (84). To do so, we can compute the matrix norm of the matrix which bounds

∇2 log f
(z)
c (z) element-wise. We have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=

n∏
i=1

Γ(yi + r)

yi!Γ(r)

exp

(
Xi(Λ

1
2
c z) · yi

)
· rr(

exp

(
Xi(Λ

1
2
c z)

)
+ r

)yi+r

·

p∏
j=0

1√
2πCσ2

βj

exp

−
(

(Λ
1
2
c z)j − µj

)2

2Cσ2
βj

 · |Λ− 1

2
c |, (117)

and

log f (z)
c (z) =

n∑
i=1

[
(XiΛ

1
2
c)z · yi − (yi + r) log

(
exp

(
(XiΛ

1
2
c)z

)
+ r

)]

−
p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσβj
+ constant. (118)

Recall from (94) and (95) that we have ∂(XiΛ
1
2
c)z

∂zk
= (XΛ

1
2
c)ik and ∂(Λ

1
2
c z)i
∂zk

= Λ
1
2
ik. Then first

derivative of the log transformed posterior with respect to βk is given by

∂ log f
(z)
c (z)

∂zk
=

n∑
i=1

(XΛ
1
2
c)ik ·

yi − (yi + r) exp

(
(XiΛ

1
2
c)z

)
exp

(
(XiΛ

1
2
c)z

)
+ r

−
p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

(119)

and the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= −

n∑
i=1

(yi + r)r(XΛ
1
2
c)ik(XΛ

1
2
c)il exp

(
(XiΛ

1
2
c)z

)
(

exp

(
(XiΛ

1
2
c)z

)
+ r

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (120)

76

Divide-and-Conquer Fusion

To find bounds for rc, we must now try to find bounds on the second derivatives given above
and compute the matrix norm of the matrix made up of these bounds (which ultimately

bounds ∇2 log f
(z)
c (z) element-wise). For this example, we can find global and lower bounds

of the second derivatives. Note however, we typically will expect better performance with
the local bounds on PΛc (as this will typically lead to the expected number of points we
need to evaluate while performing Poisson thinning, κc, to be lower) despite these bounds
being slightly more expensive to compute in practice.

J.3.1 Global bounds of PΛc

Note that eax

(eax+r)2
≤ 1

4r for all x (where a is some constant), so we can use this to obtain

global bounds on the matrix norm in the transformed space. Note that this maximum
occurs at x = 1

a log(r). To find global bounds, we can use

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

(yi + r)r|XΛ
1
2
c |ik · |XΛ

1
2
c |il

4r
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (121)

J.3.2 Local bounds of PΛc

Local bounds can be obtained if we can find local bounds for

Gr(z) :=

exp

(
(XiΛ

1
2
c)z

)
(

exp

(
(XiΛ

1
2
c)z

)
+ r

)2 (122)

for z ∈ R(z) and i = 1, . . . , n. In that case, we have

sup
z∈R(z)

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

[
(yi + r)r|XΛ

1
2
c |ik · |XΛ

1
2
c |il · max

z∈R(z)
{Gr(z)}

]
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

.

(123)

We can obtain bounds for Gr(z) by noting that exp(x)
(r+exp(x))2

≤ 1
4r for all x and this maximum

is attained at x = log(r). Further note that exp(x)
(r+exp(x))2

≤ 1
4r is a uni-modal function (with

mode at x = log(r) as noted). Now let

Fi(z) := (XiΛ
1
2
c)z =

d∑
j=1

(XiΛ
1
2
c)jzj , (124)

then let F ↓i := minz∈R(z) Fi(z) and F ↑i := maxz∈R(z) Fi(z) denote the minimum and maxi-
mum of Fi(z) for z ∈ R(z) respectively. Then we note that this can simply be computed in

77

Chan, Pollock, Johansen and Roberts

with a linear cost with d. Now, noting that Fi(z) is linear and exp(x)
(r+exp(x))2

≤ 1
4r is uni-modal,

after computing F ↓i and F ↑i , there are two cases:

1. If we have log(r) ∈ [F ↓i , F
↑
i], then we know that for this hypercube R(z), we will attain

the maximum 1
4r .

2. If log(r) /∈ [F ↓i , F
↑
i], then the maximum of Gr(x) occurs at which ever point is the

closest to log(r).

Therefore local bounds can be obtained by minimising and maximising Fi(z) for z ∈ R(z).
If this interval includes log(r), then the local maximum attains the global maximum, other-
wise, the local maximum occurs at either of these intervals (which ever is closer to log(r)).

This method for finding local bounds requires two optimisations of Fi(z), but we note that
we can actually obtain the bounds by only performing one optimisation. In particular,
we can evaluate Fi(z) at any arbitrary value ẑ ∈ R(z) (we can simply take this to be the
centre of the hypercube). If we have Fi(ẑ) > log(r), then we just need only need minimise

the function Fi(z), since if we have F ↓i < log(r), then we know that log(r) ∈ [F ↓i , F
↑
i], so

the global maximum is attained. If F ↓i > log(r), then the maximum of G(x) just occurs

at F ↓i and we can avoid the need to maximise the function Fi(z). However, if conversely,
we evaluate Fi(z) at z = ẑ and we have Fi(ẑ) < log(r), then we just need to maximise
Fi(z) for z ∈ R(z) and apply the inverse of the same trick. To summarise, in order to find
maxz∈R(z) {Gr(z)}, we can apply Algorithm 8.

Algorithm 8 Computing the local bounds of Gr(z) given in (122) for z ∈ R(z).

1. Compute Fi(ẑ) at some arbitrary value ẑ ∈ R(z).

2. If Fi(ẑ) > log(r):

(a) Compute F ↓i := minz∈R(z) Fi(z).

(b) maxz∈R(z)

 exp

(
(XiΛ

1
2
c)z

)
(

exp

(
(XiΛ

1
2
c)z

)
+r

)2

 =

1
4r if F ↓i < log(r),

G(F ↓i) =
exp

(
F ↓i

)
(

exp
(
F ↓i

)
+r

)2 otherwise.

3. Else (if Fi(ẑ) < log(r)):

(a) Compute maxz∈R(z) Fi(z).

(b) maxz∈R(z)

 exp

(
(XiΛ

1
2
c)z

)
(

exp

(
(XiΛ

1
2
c)z

)
+r

)2

 =

1
4r if F ↑i > log(r),

G(F ↑i) =
exp

(
F ↑i

)
(

exp
(
F ↑i

)
+r

)2 otherwise.

78

Divide-and-Conquer Fusion

References

Isabelle Albert, Sophie Donnet, Chantal Guihenneuc-Jouyaux, Samantha Low-Choy, Ker-
rie Mengersen, and Judith Rousseau. Combining Expert Opinions in Prior Elicitation.
Bayesian Analysis, 7(3):503–532, 2012.

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient
Monte Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. Control variates for
stochastic gradient MCMC. Statistics and Computing, 29(3):599–615, 2019.

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York,
1980.

Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O. Roberts. Retrospective exact
simulation of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098, 2006.

Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O. Roberts. A Factorisation of
Diffusion Measure and Finite Sample Path Constructions. Methodology and Computing
in Applied Probability, 10(1):85–104, 2008.

Joris Bierkens, Paul Fearnhead, and Gareth O. Roberts. The Zig-Zag Process and Super-
Efficient Sampling for Bayesian Analysis of Big Data. The Annals of Statistics, 47(3):
1288–1320, 2019.

Alexandre Bouchard-Côté, Sebastian J. Vollmer, and Arnaud Doucet. The Bouncy Particle
Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method. Journal
of the American Statistical Association, 113(522):855–867, 2018.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A prob-
abilistic programming language. Journal of Statistical Software, 76(1), 2017.

Didier Dacunha-Castelle and Danielle Florens-Zmirou. Estimation of the Coefficients of a
Diffusion from Discrete Observations. Stochastics: An International Journal of Probabil-
ity and Stochastic Processes, 19(4):263–284, 1986.

Hongsheng Dai, Murray Pollock, and Gareth O. Roberts. Monte Carlo Fusion. Journal of
Applied Probability, 56(1):174–191, 2019.

Hongsheng Dai, Murray Pollock, and Gareth O. Roberts. Bayesian Fusion: Scalable unifi-
cation of distributed statistical analyses. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 85(1):84–107, 2023.

Arnaud Doucet and Anthony Lee. Sequential Monte Carlo Methods. In Handbook of
Graphical Models, pages 165–188. CRC Press, 2018.

Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New York, 2013.

79

Chan, Pollock, Johansen and Roberts

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and back-
ground knowledge. Progress in Artificial Intelligence, 2(2):113–127, 2014.

Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O. Roberts. Particle Filters for Par-
tially Observed Diffusions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(4):755–777, 2008.

Axel Finke, Arnaud Doucet, and Adam M. Johansen. Limit Theorems for Sequential MCMC
Methods. Advances in Applied Probability, 52(2):377–403, 2020.

Joseph L. Fleiss. The statistical basis of meta-analysis. Statistical Methods in Medical
Research, 2(2):121–145, 1993.

Christian Genest and James V. Zidek. Combining Probability Distributions: A Critique
and an Annotated Bibliography. Statistical Science, 1(1):114–135, 1986.

Mathieu Gerber, Nicolas Chopin, and Nick Whiteley. Negative association, ordering and
convergence of resampling methods. Annals of Statistics, 47(4):2236–2260, 2019.

Robert J.B. Goudie, Anne M. Presanis, David Lunn, Daniela De Angelis, and Lorenz
Wernisch. Joining and splitting models with Markov Melding. Bayesian Analysis, 14
(1):81–109, 2019.

Tomoyuki Higuchi. Monte Carlo filter using the genetic algorithm operators. Journal of
Statistical Computation and Simulation, 59(1):1–23, 1997.

Richard A. Johnson. Asymptotic expansions associated with posterior distributions. The
Annals of Mathematical Statistics, pages 851–864, 1970.

Heysem Kaya, Pınar Tüfekci, and Fikret S. Gürgen. Local and global learning methods for
predicting power of a combined gas & steam turbine. In Proceedings of the International
Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE,
pages 13–18, 2012.

Augustine Kong, Jun S. Liu, and Wing Hung Wong. Sequential Imputations and Bayesian
Missing Data Problems. Journal of the American Statistical Association, 89(425):278–
288, 1994.

Xiangshun Kong and Wei Zheng. Design Based Incomplete U-Statistics. Statistica Sinica,
31:1593–1618, 2021.

Juan Kuntz, Francesca R. Crucinio, and Adam M. Johansen. Product-form estimators:
exploiting independence to scale up Monte Carlo. Statistics and Computing, 32(12):1–22,
2022.

Juan Kuntz, Francesca R. Crucinio, and Adam M. Johansen. The divide-and-conquer
sequential Monte Carlo algorithm: Theoretical properties and limit theorems. Annals of
Applied Probability, 2023. In press.

Lucien Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Science &
Business Media, New York, 1986.

80

Divide-and-Conquer Fusion

Lucien Le Cam and Grace Lo Yang. Asymptotics in Statistics: Some Basic Concepts.
Springer Science & Business Media, New York, 2000.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick,
Thomas B. Schön, John A.D. Aston, and Alexandre Bouchard-Côté. Divide-and-Conquer
with Sequential Monte Carlo. Journal of Computational and Graphical Statistics, 26(2):
445–458, 2017.

Jun S. Liu and Rong Chen. Sequential Monte Carlo methods for dynamic systems. Journal
of the American Statistical Association, 93(443):1032–1044, 1998.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David B. Dunson. Scalable and
Robust Bayesian Inference via the Median Posterior. In International Conference on
Machine Learning, pages 1656–1664, 2014.

Alexey Miroshnikov and Erin M. Conlon. ParallelMCMCcombine: an R package for
Bayesian Methods for Big Data and Analytics. PloS one, 9(9):e108425, 2014.

Willie Neiswanger, Chong Wang, and Eric P. Xing. Asymptotically Exact, Embarrassingly
Parallel MCMC. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, UAI’14, page 623–632, Arlington, Virginia, USA, 2014. AUAI Press.

Christopher Nemeth and Chris Sherlock. Merging MCMC Subposteriors through Gaussian-
process Approximations. Bayesian Analysis, 13(2):507–530, 2018.

Murray Pollock, Adam M. Johansen, and Gareth O. Roberts. On the exact and ε-strong
simulation of (jump) diffusions. Bernoulli, 22(2):794–856, 2016.

Murray Pollock, Paul Fearnhead, Adam M. Johansen, and Gareth O. Roberts. Quasi-
stationary Monte Carlo and the ScaLE algorithm. Journal of the Royal Statistical Society.
Series B: Statistical Methodology, 82(5):1167–1221, 2020.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2022. URL http://www.R-project.org/.

L. Chris G. Rogers and David Williams. Diffusions, Markov processes and martingales:
Volume 2, Itô calculus, volume 2. Cambridge University Press, Cambridge, 2000.

Steven L. Scott, Alexander W. Blocker, Fernando V. Bonassi, Hugh A. Chipman, Edward I.
George, and Robert E. McCulloch. Bayes and Big Data: The Consensus Monte Carlo
Algorithm. International Journal of Management Science and Engineering Management,
11(2):78–88, 2016.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David B. Dunson. WASP: Scalable
Bayes via barycenters of subset posteriors. In Artificial Intelligence and Statistics, pages
912–920, 2015.

Pınar Tüfekci. Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. International Journal of
Electrical Power & Energy Systems, 60:126–140, 2014.

81

http://www.R-project.org/

Chan, Pollock, Johansen and Roberts

A. W. Van der Vaart. Asymptotic Statistics. Cambridge University Press, Cambridge, 1998.

Andrew M. Walker. On the Asymptotic Behaviour of Posterior Distributions. Journal of
the Royal Statistical Society: Series B (Methodological), 31(1):80–88, 1969.

Xiangyu Wang and David B. Dunson. Parallelizing MCMC via Weierstrass Sampler. Statis-
tics e-print 1312.4605, arXiv, 2013.

Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.

Hadley Wickham. nycflights13: Flights that Departed NYC in 2013, 2021.

Sinan Yıldırım and Beyza Ermiş. Exact MCMC with differentially private moves. Statistics
and Computing, 29(5):947–963, 2019.

82

	Introduction
	A generalisation of the Fusion approach
	Simulating from the Proposal Measure
	Radon-Nikodým correction of the Proposal
	Methodology
	Practical extensions of Generalised Bayesian Fusion

	A divide-and-conquer approach to Fusion
	Implementational guidance for Generalised Bayesian Fusion
	Guidance for choosing T
	Guidance for choosing the temporal mesh
	A regular mesh construction
	An adaptive mesh construction

	Examples
	Simulation studies
	Robust regression
	Negative Binomial regression
	Logistic regression
	Small data
	NYC Flights 2013 Data

	Conclusion
	Connections with Monte Carlo Fusion and Bayesian Fusion
	Effect of correlation
	Effect of hierarchy
	Dealing with conflicting sub-posteriors

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Theorem 4
	Unbiased Estimation of rho j
	Proof of Theorem 11, Corollary 12, Theorem 14, Proposition 18
	Practical implementation considerations
	Reducing communication between the cores
	Alternative methods for updating the particle set weights

	Simulation studies
	Sub-posterior Homogeneity
	Sub-posterior Heterogeneity
	Dimension Scaling

	Calculations for examples
	Logistic Regression
	Global bounds of the matrix norm
	Local bounds of the matrix norm

	Robust Regression
	Global bounds of the matrix norm

	Negative Binomial Regression
	Global bounds of the matrix norm
	Local bounds of the matrix norm

