
Journal of Machine Learning Research 24 (2023) 1-42 Submitted 2/23; Revised 10/23; Published 12/23

LapGym - An Open Source Framework for Reinforcement
Learning in Robot-Assisted Laparoscopic Surgery

Paul Maria Scheikl1, 2 paul.m.scheikl@fau.de

Balázs Gyenes2 balazs.gyenes@kit.edu

Rayan Younis3 rayan.younis@stud.uni-heidelberg.de

Christoph Haas2 christoph.haas@student.kit.edu

Gerhard Neumann2 gerhard.neumann@kit.edu

Martin Wagner3, 4 † martin.wagner@ukdd.de

Franziska Mathis-Ullrich1, 2 † franziska.mathis-ullrich@fau.de
1 Surgical Planning and Robotic Cognition (SPARC),

Department Artificial Intelligence in Biomedical Engineering (AIBE),

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
2 Institute for Anthropomatics and Robotics (IAR),

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
3 Department for General, Visceral and Transplantation Surgery,

Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany
4 Center for the tactile Internet with Human in the loop (CeTI),

Technical University Dresden (TUD), 01062 Dresden, Germany
† These authors contributed equally.

Editor: George Konidaris

Abstract

Recent advances in reinforcement learning (RL) have increased the promise of introduc-
ing cognitive assistance and automation to robot-assisted laparoscopic surgery (RALS).
However, progress in algorithms and methods depends on the availability of standardized
learning environments that represent skills relevant to RALS. We present LapGym, a frame-
work for building RL environments for RALS that models the challenges posed by surgical
tasks, and sofa env, a diverse suite of 12 environments. Motivated by surgical training,
these environments are organized into 4 tracks: Spatial Reasoning, Deformable Object
Manipulation & Grasping, Dissection, and Thread Manipulation. Each environment is
highly parametrizable for increasing difficulty, resulting in a high performance ceiling for
new algorithms. We use Proximal Policy Optimization (PPO) to establish a baseline for
model-free RL algorithms, investigating the effect of several environment parameters on
task difficulty. Finally, we show that many environments and parameter configurations
reflect well-known, open problems in RL research, allowing researchers to continue explor-
ing these fundamental problems in a surgical context. We aim to provide a challenging,
standard environment suite for further development of RL for RALS, ultimately helping
to realize the full potential of cognitive surgical robotics. LapGym is publicly accessible
through GitHub (https://github.com/ScheiklP/lap_gym).

Keywords: reinforcement learning, robot-assisted surgery, environment suite, software
framework, deformable object simulation

c©2023 Paul Maria Scheikl, Balázs Gyenes, Rayan Younis, Christoph Haas, Gerhard Neumann, Martin Wagner, and
Franziska Mathis-Ullrich .

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0207.html.

https://github.com/ScheiklP/lap_gym
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0207.html


Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

1. Introduction

Motivation Robot-assisted laparoscopic surgery (RALS) is nowadays gold-standard and
has proven benefits in prostate surgery (Sood et al., 2014; Stolzenburg et al., 2021). Because
of its faster learning curve it became de facto standard of minimally invasive surgery for
example in gynecology (Jørgensen et al., 2019) and advanced minimally invasive oncological
visceral surgery (Machado and Makdissi, 2021). From a technical perspective, reinforcement
learning (RL) has seen a rapid increase in research interest in the robotics community across
a large range of applications such as legged locomotion and grasping (Ibarz et al., 2021).
Progress on RL in robotics depends on the availability of standardized learning environments
that cover the required features and needs of the considered robotic application. However,
the features required for learning skills that are relevant to RALS are not yet represented
in a standardized suite of RL environments. These features include collision-based interac-
tions with deformable objects, topological changes introduced through surgical preparation,
motion restricted by the remote center of motion (RCM) in trocars for laparoscopic surgery,
and simultaneous control of multiple instruments. In addition, images from the endoscopic
camera are the primary source of information in surgical settings, but many existing envi-
ronment suites do not support image observations. Recent works for automation in RALS
propose algorithmic advances for solving surgical subtasks, but evaluate these algorithms
in a) handcrafted simulation environments that are often not publicly available (Shin et al.,
2019; Scheikl et al., 2021; He et al., 2022; Bourdillon et al., 2022) or b) on expensive robotic
hardware such as the daVinci Research Kit (dVRK) (Tagliabue et al., 2020; Pore et al.,
2021b; Chiu et al., 2021; Varier et al., 2020). This results in a high barrier for researchers to
contribute to the field, and ultimately impedes vital algorithmic development. Furthermore,
comparative validation of algorithms is difficult if not impossible.

Recent RALS learning environments simulate a single, concrete task, and remain fixed
during algorithm development and hyperparameter tuning. This results in a sparse feedback
signal for researchers, as the tasks do not allow for fine-grained comparisons across various
difficulty levels. Thus, incremental improvement may become hard to detect when even
good algorithms are unlikely to solve the task at all. For this reason, we argue that an ideal
environment should represent a class of RL problems where the difficulty can be adjusted
through several parameters.

A large barrier for RL researchers from other domains exists to additionally validate their
approaches for the surgical domain, as easy-to-use, surgically relevant RL environments do
not exist. We aim to provide the scientific community with easy-to-use, surgically relevant
RL environments to enable research seeking to improve over a whole suite of environments,
allow for benchmarking methodologies, and further advance the field as a whole.

Contributions Here, we propose LapGym, an open-source framework for RL in RALS
that includes learning environments for challenging surgical tasks (sofa env), utilities to
implement new tasks and environments (sofa godot and sofa templates), and baseline
RL experiments (sofa zoo). An overview of LapGym is shown in Figure 1. Path planning,
human control, and sensor simulation functions allow generation of robotic and expert
trajectories based on multi-modal sensor data for imitation learning.

sofa env includes a set of 12 learning environments grouped into 4 surgical training
tracks that cover a broad spectrum of skills required for RALS.

2



LapGym - An Open Source Framework for RL in RALS

sofa env & sofa templatessofa zoo

EnvAgent

sofa godot

path planning

human input

Figure 1: Overview of the main components of LapGym. sofa env defines reinforcement
learning environments with SOFA as its physics engine. sofa templates ab-
stracts SOFA components into python classes. sofa godot lets the user visually
create scenes in Godot, and export them to python scenes. sofa zoo contains the
code for the reinforcement learning experiments of this work. Data for imitation
learning can be captured by human experts through human input, or through
path planning.

The environments:

• Employ Simulation Open Framework Architecture (SOFA) as the numerical physics
simulation for finite element method (FEM) simulation of deformable objects.

• Are highly parametrizable, allowing for a gradual increase of their difficulties to facil-
itate incremental algorithm development and hyperparameter tuning.

• Are provided fully open-source and publicly accessible through GitHub under the MIT
license.

The RL experiments in sofa zoo establish a baseline using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to show initial performance of a well established algorithm
across different configurations of the environments.

Open problems in RL and RALS research are represented throughout the environment
suite, making it a suitable testbed for further research into these problems. In summary,
we provide the community with a challenging benchmark that makes it possible to compare
different RL approaches against each other, and advance the state of the art for RL in
RALS.

2. Related Work

Popular reinforcement learning suites cover a multitude of applications: game environ-
ments (Brockman et al., 2016), closed-loop control tasks of articulated rigid objects (Tassa

3



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

et al., 2018; Yu et al., 2020), control of soft robotic actuators (Ménager et al., 2020), robot-
specific learning environments (Varier et al., 2022; Richter et al., 2019; Xu et al., 2021;
Tagliabue et al., 2020), musculoskeletal motor control (Caggiano et al., 2022), and toy
environments with simplified deformations (Laezza et al., 2021; Lin et al., 2020).

Ménager et al. (2020) propose SofaGym, which targets RL for the control of soft robotic
actuators. While SofaGym also uses SOFA as its physics simulator, the software architecture
and implemented features are tailored to control of soft robotics, making it impractical for
extension to RALS. Creation of new learning environments is possible, but requires in-depth
knowledge about the architecture and usage of SOFA, proving to be its main limitation.

In robot-assisted surgery, Richter et al. (2019) propose dVRL, a RL framework to control
a dVRK robot in reaching tasks. These tasks include moving the dVRK’s end-effector to
desired positions to pick up and place objects, or for suction of liquids. The simulation em-
ploys CoppeliaSim (formerly known as VREP, Rohmer et al. (2013)) and does not support
deformable objects. In addition, interaction between objects is static, such that grasping
is implemented by attaching one physical object to another, without actual simulation of
grasping through collision and friction.

Xu et al. (2021) simulate rigid object interaction by employing the Bullet Physics library
in their simulation platform, SurRoL (Coumans, 2015). SurRoL, like dVRL, focuses on the
dVRK as a robotic platform and implements several rigid body tasks such as picking up
needles and performing peg transfer, which present common tasks in surgical training.

Varier et al. (2022) propose AMBF-RL, which implements an RL interface for the robotic
simulator AMBF (Munawar et al., 2019). Varier et al. evaluate their framework on a reach-
ing task, where a dVRK robot is controlled to reach a desired point in Cartesian space,
but do not provide any additional learning environments. AMBF’s deformable object sim-
ulation relies on the Bullet Physics library (Coumans, 2015) for simulation using position
based dynamics (PBD) (Müller et al., 2007). Therefore, while AMBF technically supports
simulation of deformable objects, none of the implemented simulation scenes actually con-
tain deformable objects beyond simple beam structures such as a suturing thread. This is
likely due to the complexity of tuning and the numerical instabilities of deformable object
simulation in Bullet. Furthermore, AMBF-RL depends on the Melodic release of the Robot
Operating System (ROS) (Quigley et al., 2009) and Ubuntu 18.04, most likely for interop-
erability with the dVRK. While ROS can speed up development of robotic systems, it poses
a heavy software liability, and is currently being phased out in favor of ROS 2 with limited
backwards compatibility.

UnityFlexML (Tagliabue et al., 2020) was the first RL framework that supports sim-
ulation of deformable objects. Tagliabue et al. implement the task of tissue retraction in
Unity, using Nvidia Flex as a physics engine. However, Nvidia Flex has been discontin-
ued, and Linux support for Unity is still limited, making it difficult to create reliable RL
environments.

Schmidgall et al. (2023) propose Surgical Gym, which is built around NVIDIA’s Isaac
Sim to feature RL environments with GPU-based simulation and features 5 rigid body
environments for reaching and camera control tasks. For future work, Schmidgall et al.
propose to extend Surgical Gym to more complex tasks including deformable and cuttable
objects.

4



LapGym - An Open Source Framework for RL in RALS

With the exception of Surgical Gym, none of the presented works support image ob-
servations without further manual extension. Image observations are a crucial feature for
RALS, as state observations are difficult to define and extract from endoscopic images in a
real world setting.

This work proposes sofa env, a RL framework built on the SOFA simulation framework.
sofa env has few dependencies other than SOFA, mainly popular Python libraries such as
numpy, pyglet, and Open3D. Using pyglet and Open3D, sofa env supports various image
based observation types such as RGB images, depth images, point clouds, and semantically
segmented images. Using SOFA, sofa env supports simulation of rigid and deformable
objects, topological changes to simulate surgical preparation of deformable objects, contact
rich interaction between objects, and fast FEM simulation, even allowing for interactive
control by a human operator.

3. Technical Requirements for Robot-Assisted Laparoscopic Surgery

The following are characteristic challenges in laparoscopic surgery, that are essential for
learning useful skills for RALS:

Image observations Most works on RL for RALS hand-craft state observations, which
are comprised of a set of features that are extracted through complex and labor-intensive
image processing pipelines, such as describing the deformed state of organs and tissues.
However, in clinical reality, these complex pipelines are rarely feasible. During surgery,
the only readily available source of information is an endoscope that captures image obser-
vations of the surgical site. In most cases, human surgeons perform laparoscopic surgery
based on visual information on a 2D screen (Zundel et al., 2019). This indicates that human
surgeons have a mental model for spatial reasoning that they built through extensive train-
ing. However, in RALS, the trend is to provide human surgeons with depth information
through stereo cameras (Tsuda et al., 2015). Image observations (RGB and depth), which
also more closely represent the clinical reality, present a core component of sofa env and
can be generated from simulated endoscopic cameras.

Topological changes Topological changes to deformable objects as a result of surgical
preparation (e.g., cutting) is an essential part of the vast majority of surgical interventions.
sofa env supports cutting of deformable objects using the SofaCarving plugin, which re-
moves elements from the object topology based on detected collisions with a cutting in-
strument. SofaCarving is used to simulate electrocautery hooks and laparoscopic scissors
in sofa env.

Pivotized motion Laparoscopic instruments feature fewer than 6 degrees of freedom
due to the RCM constraint imposed by a trocar at which they pass the patient’s abdominal
wall (Nisar et al., 2017), as illustrated in Figure 2. An RL agent must learn to control
the Cartesian position of the end-effector, while satisfying this constraint. We define the
controllable degrees of freedom as Tilt, Pan, Spin, and Depth (TPSD). The first three (i.e.,
pan, tilt, spin) define rotations in relation to the coordinate system defined in the RCM,
while depth is defined as translation along the longitudinal axis of the instrument shaft
from the RCM.

5



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

pan

tilt

spin

depth

abdominal
wall RCM

Figure 2: Laparoscopic surgery is performed with rod-shaped tools that are inserted into
the abdominal cavity through small incisions in the abdominal wall. The pose
of the instrument tip is constrained to pivotized motion around the RCM, such
that the degrees of freedom are reduced to 4 independent values the represent 3
rotations (tilt, pan, spin) and one translation (depth).

An affine transformation describes the forward kinematics of a laparoscopic instrument.
The transformation that maps a TPSD state to the 6D pose of a laparoscopic instrument
inserted at a RCM in world coordinates is described by a homogeneous matrix T :

T = Tt(RCM position)∗Txyz(RCM orientation)∗Txyz(tilt, pan, spin)∗Tt([0, 0, depth]) (1)

with homogeneous matrices Tt to represent a translation and Txyz to define a rotation with
XYZ Euler angles.

Several laparoscopic instruments such as endoscopes, electrocautery hooks, and different
graspers are implemented in sofa templates. These instruments are controlled in TPSD
space and can be constrained with limits in both Cartesian and TPSD workspaces. De-
pending on the instrument, the action space is extended by an instrument specific degree of
freedom such as the opening angle of a laparoscopic grasper, activation of the electrocautery
hook, or constriction of a ligating loop.

4. Software Framework

LapGym builds on the interactive FEM simulation SOFA as a physics simulation to create
RL environments for RALS. The framework further provides utilities that simplify creation
of RL environments for existing SOFA simulation scenes, as well as creating new RALS
scenes without in-depth knowledge of SOFA. The overall interaction of components is illus-
trated in Figure 3 and the workflow of creating a new environment can be summarized as
follows. 1) Implement a scene graph that describes the simulated components of the task,
2) implement a child of the SofaEnv base class to define the task (such as reward function,
action and observation space), 3) employ the environment in any Gymnasium-compatible

6



LapGym - An Open Source Framework for RL in RALS

framework, e.g., for RL, to collect demonstration data, or to test motion-planning algo-
rithms.

SofaEnv

SOFA

Scene Graph

a) sofa godot

created with

b) sofa templates

c) any other way to
define createScene()

RL Algorithm

a) StableBaselines3

from

b) RLlib

c) any Gymnasium-
compatible framework

Figure 3: Environments that inherit from the SofaEnv base class can be used in any
Gymnasium-compatible framework. SofaEnv loads a Scene Graph and man-
ages a SOFA simulation as its physics engine. The Scene Graph can be cre-
ated interactively with sofa godot or through a python script, optionally using
sofa templates.

4.1 SOFA

The simulation framework SOFA is a widely used tool in the field of medical simulations.
Its advanced physics-based modeling capabilities make it an ideal platform for developing
and testing control algorithms for robotic surgical systems. In contrast to other FEM
simulators, SOFA is capable of running simulations at interactive speeds, which is crucial
for methods that require large amounts of data, such as RL. This characteristic not only
enables rapid iteration and optimization of learning algorithms, it also enables realistic
human interaction, which is relevant for recording (expert) demonstrations and validating
human-robot collaboration. SOFA is an active open source project that is continuously
increasing in popularity, attracting new contributors and accruing new features such as
dynamic mesh refinement, control of magnetic continuum robots (Dreyfus et al., 2022),
and synthetic data generation from numerical simulations for training machine learning
models (Mimesis Inria Research Team, 2022; Linkerhägner et al., 2023).

4.2 SOFA for Reinforcement Learning

SOFA simulation scenes are defined by a scene graph (directed acyclic graph) of compo-
nents such as numerical solvers and elements that model object behavior (e.g., deformation,
visual, collision). The scene graph is usually defined in a Python script using the popular So-
faPython3 plugin, which exposes SOFA functions and types through Python bindings. Such
a Python script must implement a createScene() function, which receives the root node
of the scene graph as input and adds desired components to the graph. The runSofa binary
uses this script to load and run the simulation, and opens a GUI for the user to observe the
rendered scene. Instead, the SofaEnv environment base class of sofa env uses SofaPython3
to instantiate a SOFA simulation programmatically based on the createScene() function.
References to objects such as laparoscopic instruments, cameras, or the mechanical state of
a deformable object are passed to the environment after creation, allowing the simulation

7



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

state to be read and manipulated by Python code. Each environment’s step function uses
SOFA object handles to update positions, forces, velocities, etc. and advance the simulation.
Likewise, the environment can read data from the SOFA simulation to calculate rewards
and retrieve observations.

The stability of the SOFA simulation depends on the length of the time step ∆Ts. Lower
∆Ts result in a more accurate and stable simulation. However, the difference between
consecutive observations may become very small (e.g., 0.001 s), which is undesirable in RL,
as this makes it more difficult to learn how actions affect the observed environment state. A
common solution is frame skipping (Mnih et al., 2013), where the same action is applied n
times to the environment, with intermediate observations discarded. SofaEnv environments
use frame skipping to decouple the time scale of the simulation from the time scale of RL.

The SofaEnv base class implements the widely-used Gymnasium interface (Towers et al.,
2023), and adheres to Gymnasium’s specification for observation and action spaces. SofaEnv
environments are thus out-of-the-box compatible with well-known RL environments such
as StableBaselines3 (Raffin et al., 2021) and RLlib (Liang et al., 2018).

4.3 Implementation of New Environments

The main limitation of SOFA is the required specific knowledge about FEM in general
and SOFA’s software architecture in particular to achieve the desired simulation behavior.
This work addresses this limitation by providing the user with a set of high level templates
that combine all required components with sane default values. These templates are pro-
vided through sofa templates and aim to simplify the process of writing SOFA simulation
scenes, also independent of creating RL environments through sofa env. Complex simu-
lation subgraphs in SOFA such as partially rigidifying a deformable volumetric mesh are
abstracted into utility functions that take simple arguments such as the indices of the object
that should be rigidified and create the subgraph automatically. For example, when adding
a deformable object to a simulation scene, the user can instantiate a DeformableObject

class from the sofa templates, passing a volumetric mesh for FEM simulation and op-
tional surface meshes for visual and collision models. This feature obviates the need for
manually defining the numerical solvers, constraint corrections, force fields to describe the
mechanical behavior, collision model behavior, and the correct mappings between the com-
ponents. For users that want more fine-grained control over the behavior, the templates
allow passing functions that overwrite default behavior, e.g. custom collision models or
numerical solvers. Existing SOFA scenes can be converted to RL environments simply by
defining how an agent’s action should affect the objects in the simulation (e.g., by applying
the action as a force on a robotic joint), and by defining a reward function. Most code in
the createScene() function requires no additional modifications.

The aim of these tools is to provide both experienced SOFA users and newcomers with an
easy-to-use framework for RL. To demonstrate sofa env’s ease of use, we port the existing
SOFA simulation from Dreyfus et al. (2022) and define a RL environment for its task. The
scene contains a magnetic continuum robot that is controlled through an external force
field in order to navigate in a model of (a) an aortic arch and (b) a 2D toy scene, as shown
in Figure 4. We decided on this scene as it is comprised of complex simulation components,
and to show that sofa env can be used beyond the scope of RALS. The scene description

8



LapGym - An Open Source Framework for RL in RALS

underwent only minor changes to comply with the most recent SOFA version. We provide
a RL environment for this scene in the source code, but do not consider this environment
for the following experiments, as it is not in the scope of RALS. We also include the code
to reproduce the learning environment of Scheikl et al. (2023), and extend the environment
of Scheikl et al. (2021).

(a) (b)

Figure 4: Magnetic continuum robot scene from Dreyfus et al. (2022) for navigation in (a)
an aortic arch model and (b) a planar toy environment. Images by courtesy
of Dreyfus et al..

4.4 Interactive Scene Creation

Despite the advantages of sofa env and the included sofa templates, correctly placing
objects in the scene and adding motion constraints, such as attachments, is still an arduous
trial-and-error process. The default runSofa binary does not allow the user to edit and
visualize the scene simultaneously. To simplify this process, we introduce sofa godot, a
plugin for the popular free and open-source game engine Godot (Linietsky et al., 2014).
As shown in Figure 5, sofa godot allows interactively building SOFA scenes through a
graphical user interface (GUI) with a 3D scene view. sofa godot features compatibility
with SofaPython3 and sofa templates to further ease prototyping and development of
RL environments. The plugin provides a set of specialized Godot nodes, each of which
implements a SOFA or sofa templates component with corresponding 3D visualization.
The parameters of a component are displayed as node properties and can be changed by the
user through Godot’s GUI, where the effects are visible instantly. sofa godot automatically
translates a Godot scene into a SOFA createScene() function in Python. The scene graph
is traversed in a depth-first manner and every node visited can add Python statements to
the body of the createScene() function. The arguments of these Python statements are
derived from the properties of the respective node. This concept enables highly flexible
wrapping of components, i.e., Python statements, as Godot nodes.

4.5 Human Control and Path Planning

All environments include Python scripts that allow to control the instruments with an Xbox
One controller (Microsoft Corp., USA) and to collect expert trajectories. The collected data
can be used for imitation learning methods, or to establish a human baseline to compare

9



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Figure 5: Graphical user interface of the Godot game engine displaying the prototype scene
of a gallblader removal (Cholecystectomy) built with the sofa godot plugin. Left:
Scene graph comprised of specialized sofa godot nodes corresponding to compo-
nents from SOFA and sofa env. Center: 3D scene view showing visualizations
of deformable objects, e.g., liver and gallblader, as well as a pivotized instru-
ment used for resection. Right: Display of editable properties from the currently
selected node.

learned agent behavior. The values recorded during a trajectory can be flexibly customized
through a callback mechanism. We also provide an environment wrapper that is able to
perform collision free motion planning with rapidly-exploring random trees (RRT) (LaValle
et al., 1998) in Cartesian and TPSD space to automatically generate trajectories.

5. Learning Environments

We present a suite of 12 learning environments, which together provide a set of challenging
tasks that span the skills required for RALS. On the basis of surgical experience in learning
and teaching RALS as well as discussions with other surgical experts, the environments
are sorted into 4 surgical training tracks: 1) Spatial Reasoning, 2) Deformable Object Ma-
nipulation and Grasping, 3) Dissection, and 4) Thread Manipulation. Each of these tracks
focuses on specific challenges in skill learning for laparoscopic surgery. Many of the environ-
ments were adapted from common surgical training tasks, e.g., from the Fundamentals of
Laparoscopic Surgery TM (FLS) program (Peters et al., 2004), established surgical training
simulators such as Simbionix (Surgical Science, Sweden) and SimNow (Intuitive Surgical,
USA). This enables meaningful comparison between trained policies and human surgeons.

Observations and Actions All environments define RGB, RGBD, and hand-crafted
state observation spaces and allow for easy adaptation e.g., to multi-modal observations.

10



LapGym - An Open Source Framework for RL in RALS

Wrappers provided by the sofa env utilities can be used to extend the observations to point
clouds and semantically segmented images from one or more cameras (see Figure 6). All
environments support both continuous and discrete actions.

(a) RGB (b) Depth (c) Point Clouds (d) Semantic Seg.

Figure 6: Supported image observation types, visualized for SearchForPointEnv. (a) RGB
and (b) depth images are generated from OpenGL buffers, while (c) point clouds
and (d) semantic segmentation images are generated through the Open3D library.

Reward Functions All environments define a hand-crafted set of reward features ψ, but
all environments can easily be subclassed to customize the reward function arbitrarily. By
default, the total reward rt = Σiwiψi is a weighted sum of these features. We attempt to set
reasonable defaults for these weights w, but they are overridable by the user. Concerning
safety, negative rewards are implemented to punish safety relevant features such as unde-
sired collisions or workspace violations. A description of the environment specific reward
functions and their default weights can be found in Appendix A, Table A.

5.1 Spatial Reasoning Track

The spatial reasoning track mainly incorporates the challenges of estimating depth from 2D
visual observations and navigating under the motion constraints introduced by the RCM.
These challenges are addressed in each environment of this track and get progressively more
difficult, adding additional kinematic constraints that are familiar to laparoscopic surgeons.

ReachEnv contains a surgical robotic end-effector with a sphere
mounted to its end. The goal is to reach a target position, visualized by
a colored sphere, by controlling the end-effector directly in Cartesian
space. The task is finished when the distance between end-effector and
target is lower than a defined threshold.

DeflectSpheresEnv consists of a flat board with N spheres mounted
to the board on flexible stalks. Two electrocautery hooks, one blue and
one red, are controlled in TPSD space. The goal is to collide with and
deflect the highlighted active sphere using the instrument of matching
color, which marks it as complete and changes its color to green. When
M spheres have been deflected correctly, the task is completed.

11



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

SearchForPointEnv contains organ models from the Open Heidelberg
Laparoscopy Phantom (OpenHELP) models (Kenngott et al., 2015).
The instruments in this scene are an oblique-viewing camera with 30◦

optics and an electrocautery hook, both controlled in TPSD space. The
goal is to touch a visual target point on the organ’s surface with the tip
of the hook to complete the task. As the visual observations are limited
to what is observed by the camera, the agent has to control the camera
to locate both the hook and the target point.

ReachEnv is a standard reach task, similar to those in dVRL (Richter et al., 2019) and
AMBF-RL (Varier et al., 2022). DeflectSpheresEnv introduces the additional challenges
of motion in TPSD coordinates around a RCM, physical object interaction, and bimanual
control of instruments. SearchForPointEnv extends the problem of reaching a Cartesian
point with a laparoscopic instrument by introducing a controllable camera, thus reframing
it as an active vision task. Active vision is a core component of laparoscopic surgery,
because most tasks are not solvable from a single camera perspective as the region of
interest frequently changes over the course of the intervention. In most clinical procedures,
a surgical assistant is tasked with adjusting the camera position, direction, and zoom level
according to the current needs of the operating surgeon. Moreover, in laparoscopy, the
camera often features an oblique-viewing optic that allows achieving camera perspectives
that are unattainable with a forward viewing optic as illustrated in Figure 7.

5.2 Deformable Object Manipulation and Grasping Track

Deformable object manipulation and grasping involves learning the relation between the
actions performed with surgical instruments and their effects on the dynamic behavior of
deformable objects. In contrast to rigid objects, the effect of an instrument manipulating
a deformable object cannot be described by an affine transformation. Instead, a complex
relationship must be learned between the movements of the agent and the movements of
the deformable object. The added challenge of grasping can be further subdivided into
two tasks: choosing a location for grasping that makes the downstream task solvable, and
establishing enough physical contact to enable manipulating the object.

TissueManipulationEnv features yellow, deformable tissue that rep-
resents a gallbladder attached to a rigid, red liver. The goal is to manip-
ulate the yellow tissue such that a randomly sampled visual landmark
on the tissue (black dot) reaches a desired point in the image (blue
dot). Tissue is manipulated using a laparoscopic grasper, controlled in
Cartesian coordinates. Initially, the grasper is already attached to a
distal point on the tissue, thus omitting the task of grasping. The task
is finished when the distance between landmark and target in image
coordinates is smaller than a given threshold.

12



LapGym - An Open Source Framework for RL in RALS

PickAndPlaceEnv is comprised of a board with pegs on a 3×3 grid, a
deformable torus, and a laparoscopic grasper controlled in TPSD space
and jaw angle. The goal is to grasp the torus, lift it up to a desired
height, and then place it onto the peg with the same color as the torus.
The task is complete when both the picking and placing phases are
finished.
GraspLiftAndTouchEnv models a sub-task from laparoscopic chole-
cystectomy, i.e., the minimally invasive removal of the gallbladder. Dur-
ing dissection of the yellow gallbladder from the red liver, the blue
grasper has to grasp the distal end (infundibulum) of the partially re-
sected gallbladder. Afterwards, the grasper retracts the gallbladder,
exposing a visual marker, which represents the point that should be
cut next. The green electrocautery hook then navigates to the visual
marker and activates in order to cut the tissue. The task is complete
when the target is visible to the camera and the cauter activates while
touching it.

TissueManipulationEnv, similar to Shin et al. (2019), represents a subtask that is present
in various surgical interventions. Tissue must be tensioned correctly to make a region of
interest visible, make it accessible for cutting, or render the deformations more predictable.
PickAndPlaceEnv is a deformable, single-grasper version of the popular peg transfer task
of the FLS program. In addition to learning spatial perception, this task requires learning
manipulation and control of loose tissue (such as resected lymph nodes) or highly mobile
organs (such as the small bowel) in the operating field during laparoscopic surgery). Gras-
pLiftAndTouch is an extended version of the LiftAndTouch task from Scheikl et al. (2021).
The task combines the challenges of grasping a deformable object, coordinating heteroge-
neous instruments, and performing multiple sequential steps to solve the task. Although
this task models cholecystectomy (i.e., removal of the gallbladder), the task of exposing
and then interacting with a region of interest appears often in surgical contexts.

5.3 Dissection Track

Dissection requires learning to remove elements of deformable objects to achieve a desired
topological state of the surgical site. These topological changes on deformable objects are
what distinguish surgery from other medical specializations. Unwanted topological changes
due to erroneous behavior are generally irreversible and may endanger the patient’s health,
so precision is required on the part of the agent.

RopeCuttingEnv contains N deformable ropes stretched between two
walls. An electrocautery hook is controlled in TPSD space to navigate
to a highlighted green rope and cut it via activation of the electrocautery
hook. Subsequently, another rope from the remaining ropes is randomly
chosen and marked as active by changing its color to green. The task is
complete when M active ropes have been cut. In contrast to previous
environments, the task can fail, if enough incorrect ropes are cut such
that cutting M correct ropes is no longer possible.

13



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

PrecisionCuttingEnv features a deformable cloth on which a desired
cutting path is drawn. The cloth is fixed at the far edge and the corners
near the instrument, to ensure there is enough tension for a cut. The
agent controls the TPSD state and jaw angle of laparoscopic scissors,
and must cut the desired cutting path without damaging the rest of the
cloth. The path can be parameterized to project linear and sine wave
paths onto the cloth. The task is complete when 85% of the desired
path is cut.
TissueDissectionEnv is comprised of a flap of deformable red tissue
that is connected to a rigid board by blue connective tissue. The flap
is pulled back and away from the board with a constant force, exposing
the connective tissue. An electrocautery hook is controlled in TPSD
space, and is able to cut both connective tissue and flap when it is
activated. The goal is to cut the connective tissue and dissect the flap
from the rigid board without damaging the flap. The task is finished
when the flap is completely dissected from the board.

RopeCuttingEnv is based on a common task in surgical training, and is an abstraction
of a crucial step in many interventions, for example in laparoscopic cholecystectomy. For
example, in laparoscopic cholecystectomy, dissecting the gallbladder from the liver requires
cutting connective tissue by separating it into filament-like strands and pulling them away
from gallbladder and liver. These organs should not be cut because (a) damaging the gall-
bladder leads to leakage of bile into the abdominal cavity which should be avoided to reduce
risk of infection, and (b) damaging the liver leads to bleeding, impairs overview of the sur-
gical site, and prolongs the operation. PrecisionCuttingEnv is a simplified version of the
precision cutting task of the FLS program, used to teach surgical students how to manipu-
late tissue to achieve a desired cutting pattern using curved scissors under the constraints
of pivotized motion. The kind of tissue dissection in TissueDissectionEnv is frequently
applied in tissue layer-specific dissection during various procedures and is present in vari-
ous interventions such as transabdominal preperitoneal inguinal hernia operation (TAPP),
laparoscopic cholecystectomy, and total mesorectal excision for rectal cancer (TME).

5.4 Thread Manipulation Track

Thread manipulation involves balancing large motions to reach the overall position of in-
terest with delicate motions to solve the task. Threads are difficult to manipulate, due to
their high flexibility and length-to-diameter ratio. In addition, a thread’s shape can only
be controlled indirectly, which requires versatile manipulation strategies.

ThreadInHoleEnv consists of a laparoscopic grasper that grasps the
upper end of a thread, and a deformable hollow cylinder with a hole.
The goal is to control the grasper in TPSD space and navigate the
hanging end of the thread into the cylinder. The task is complete when
the thread is inserted to a desired target depth.

14



LapGym - An Open Source Framework for RL in RALS

RopeThreadingEnv consists of a board, a set of eyelet screws, a long
piece of thread and two laparoscopic graspers. The goal is to control
both graspers in TPSD space and maneuver the thread through the
eyelets in a specific order and direction. The task is complete when the
rope passes through all eyelets in the correct order.

LigatingLoopEnv consists of a deformable hollow cylinder attached
to a wall, and a ligating loop instrument. The ligating loop instrument
has a deformable loop attached to the end of a rigid shaft. The task is
to control the instrument in TPSD space and navigate the loop over the
cylinder onto the yellow ring, and then close the loop to constrict the
cylinder. The incremental opening and closing of the loop is controlled
through a separate action. The task is complete when the loop is closed
around the marking to a desired loop length.

ThreadInHoleEnv can be freely configured to represent a wide variety of peg-in-hole
tasks, from sliding stiff ropes into narrow, deformable cylinders (e.g., urethral catheteriza-
tion) to indirectly manipulating the distal end of long and flexible ropes into stiff cylinders,
simply by changing the dimensions and stiffness of the objects. RopeThreadingEnv often
used for surgical skill training of novice surgeons, as it builds fine motor control using both
hands (i.e., bimanual dexterity) under pivotized motion, and is a prerequisite to suturing.
Moreover, complex camera guidance may be required if the eyelet screws are facing the
camera edge-on, as illustrated in Figure 7 (b). LigatingLoopEnv is inspired by the ligating
loop task of the FLS program and requires a high degree of manual dexterity.

6. Reinforcement Learning Experiments

RL experiments for different configurations of the environments are conducted to establish
a learning baseline against which novel methods can be compared. Instead of exhaustively
tuning the algorithm, hyperparameters, network architecture, and reward functions, the
goal of these experiments is to show the effect of various environment configurations on
task complexity, while keeping the learning setup constant. We train using Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017), as it is a popular algorithm that has
been applied successfully to diverse problems in the literature (Andrychowicz et al., 2020;
Mirhoseini et al., 2021; Pore et al., 2021b), thus making it suitable for use as a baseline.
All environments were tested in several configurations, using either state or image obser-
vations, and varying up to two other environment-specific parameters. A complete list of
available parameters for environment configuration is given in Appendix B, Table B. The
experiments span a diverse spectrum of task complexity, from configurations that meet the
capabilities of a naive RL approach to configurations that exceed them.

This section first presents the individual experiment configurations and their results
for each environment grouped by their respective surgical tracks, and then investigates
the influence of adding a depth channel or increasing image resolution. The frame skip
parameter N is set such that the simulated time between observations ∆To is 0.1 s. If
not stated otherwise, image observations are RGB images with a resolution of 64 × 64. A

15



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

(a) (b)

Figure 7: (a) Oblique-viewing endoscopes (30◦) can obtain views otherwise occluded
(marked in red) with 0◦-endoscopes by rotating an angled optic relative to the
image sensor. (b) To generate different views of the scene, the surgeon pans the
camera head while rotating the optic relative to the camera head, thus looking
from the right side or from the left side while keeping a stable horizon of the
image relative to a global frame of reference.

frame stack of 4 is used in both image- and state-based observations. Environment-specific
hyperparameters, such as time limit for task execution and simulation time step ∆Ts, are
reported in Appendix C, Table C. Size and content of the hand-crafted state observations
are shown in Appendix D, Table D.

Reinforcement Learning Algorithm The StableBaselines3 (Raffin et al., 2021) imple-
mentation of PPO is used with the hyperparameter values reported in Table 5 across all
experiments. Each experiment (i.e., PPO training run) is conducted with 8 random seeds.
The training scripts are publicly available in the sofa zoo repository. Each training run
spans 107 total environment steps, but terminates early if a wall clock time of 48 h is reached
to match the resource constraints of the available compute cluster.

Hyperparameter Value Hyperparameter Value

total environment steps 107 clip range lin(0.1)
parallel environments 8 clip range value function 0.2
environment steps before update 8 ∗ 128 value function coefficient 0.5
minibatch size 256 entropy coeffient 0.0
update epochs 4 maximum gradient norm 0.5
discount factor γ 0.995 learning rate lin(2.5 ∗ 10−4)
λGAE (Schulman et al., 2015) 0.95

Table 5: Hyperparameters of PPO across all RL experiments. lin(x) denotes a linearly
decreasing schedule starting at x and ending at 0.0 when reaching the total envi-
ronment steps.

16



LapGym - An Open Source Framework for RL in RALS

Agent Architectures For state-based observations, the agent consists of two separate
neural networks of similar architecture for policy and value estimation. Both networks
contain two fully connected layers with 256 neurons each and ReLU non-linearities. The
policy network has an output layer of N neurons for an action space of N dimensions to
predict the mean of a diagonal Gaussian distribution, and a learnable log standard deviation
that does not condition on the input. The value network has an output layer with a single
neuron for value estimation. The same network architecture is used in all experiments. No
parameters are shared and the policy agent is trained from scratch for each experiment.

For image-based observations, the architecture is adapted to feature convolutional layers
for feature extraction. Each network processes the image input through three convolutional
layers with square kernel sizes 8, 4, 3 and strides of 4, 2, 1, respectively. The output is passed
to one fully connected layer with 512 neurons. The heads of policy and value network have
the same architecture as in the state-based experiments. This is the same architecture as
used in Scheikl et al. (2023).

6.1 Spatial Reasoning Track

6.1.1 Configurations

ReachEnv Parameter R ∈ {3 mm, 8 mm, 20 mm} controls the radius of the target
sphere’s visual model, and parameter P ∈ {64 × 64, 128 × 128} controls the resolution
of the image observation. The state-based task has only one configuration, as the state
observation includes both the current end-effector and target positions and thus not de-
pend on the parameters above. These configuration parameters are chosen to investigate
the influence of the relative visual features sizes.

DeflectSpheresEnv Parameter M ∈ {1, 2, 5} sets the number of spheres to deflect. Pa-
rameter B controls whether the agent controls one or two electrocautery hooks. The number
of spheres on the board is set to N = 5 across all experiments. These configuration pa-
rameters are chosen to investigate the influence of the task complexity, and of having to
distinguish between both instruments while doubling the size of the action space.

SearchForPointEnv The environment is tested in 1) the full task of active vision, where
the agent controls both camera and electrocautery hook, to touch a highlighted point in
the scene, and 2) the reduced task of camera control. In the reduced task, the goal is
to visualize the highlighted point by centering it in the image observation with a desired
distance between camera and point.

6.1.2 Results

The learning curves of image- and state-based runs for the environments of the spatial
reasoning track are shown in Figure 8. The state-based policies are able to solve all en-
vironments across all configurations. The largest impact on task success is observed for
controlling two instead of one instrument in the DeflectSpheresEnv. The image-based poli-
cies are able to solve the ReachEnv for a large visual target sphere of 20 mm radius, and
fail for all other configurations and environments. The next highest task success is observed
for the DeflectSpheresEnv with roughly 30% for the simplest case (one sphere, one instru-
ment), and to roughly 2% for the most complex case (i.e., five spheres, two instruments).
The simulation speed of SearchForPointEnv is lower than the other environments, because

17



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

0 1 2 3
0

30

60

90

0 1 2 3 0 1 2 3

0 3 6 9
0

30

60

90

0 3 6 9 0 3 6 9

ReachEnv DeflectSpheresEnv SearchForPointEnv

Steps (millions)

S
u
cc
es
s
R
at
e
(%

)

S
ta
te

Im
ag
e

Spatial Reasoning Track

Radius: 3, 8, 20 mm

Resolution:

64× 64 128× 128

Spheres: 1, 2, 5

Instruments:

One Two

With hook:

No Yes

Figure 8: Learning curves for the spatial reasoning track. Success rate is shown over total
environment steps during training. Each curve shows the mean and standard
deviation over n = 8 random seeds. Line color and markers are composed from
the configuration parameters. Top and bottom row show the experiments for
state- and image-based observations, respectively.

collision detection and rendering is costly for scenes with multiple complex shapes. Thus,
the image based runs were ended by the time criterion of 48 h per run and did not reach the
desired 107 environment steps. Both variants of SearchForPointEnv inherently rely on im-
age observations. Thus, the state-based experiments should be regarded as supplementary
information to validate that the reported performance for the image-based experiments is
not due to reward factor misspecification.

6.2 Deformable Object Manipulation and Grasping Track

6.2.1 Configurations

TissueManipulationEnv Threshold T ∈ {2 mm, 5 mm} controls the distance between
landmark and target point in image space required to complete an episode. Parameter N
sets whether the landmark is a fixed point on the tissue, or sampled from a set of points
on the tissue after each environment reset. These configuration parameters are chosen to
investigate whether the agent is able to learn accurate control of the dynamic behavior of
the deformable tissue for multiple points on the tissue.

18



LapGym - An Open Source Framework for RL in RALS

PickAndPlaceEnv The environment is tested with 3 different combinations of phases:
Pick, Place, Pick and Place. For configuration Pick, the episode ends when the torus is
grasped and the instrument reaches the desired lifting height. For configuration Place,
the episode starts with torus already grasped and instrument at desired lifting height, and
ends when the torus is placed on the active peg. Additionally, parameter M controls the
material parameters of the torus to model either a stiff or a soft torus. For the stiff case, the
mechanical beam radius of the torus’ FEM model is increased by a factor of 5 while the mass
is decreased by a factor of 2.5. The phase combinations investigate the relative complexity
of the phases and the added difficulty of a multi-phase task. The material parameters are
investigated to show the difference between manipulating highly deformable and more stiff
objects.

GraspLiftAndTouchEnv The environment is tested in six configurations with different
combinations of phases: Gr, GrLi, GrLiTo, Li, LiTo, To. Phase names Grasp, Lift, and
Touch are abbreviated as Gr, Li, and To, respectively. For configuration GrLi, the task is
finished grasping and lifting phases are complete. For configuration LiTo, the task starts
with the gallbladder already grasped, and ends when the electrocautery hook correctly
activates in the target point.

6.2.2 Results

The learning curves of image- and state-based runs for the environments of the deformable
object manipulation and grasping track are shown in Figure 9. The state-based policies
are able to solve all environments in most configurations. The mechanical parameters of
PickAndPlaceEnv influence the task success for pick and place phases differently. The
highest success rate of almost 100% is reached for picking up a soft torus. Picking up
the stiff torus reaches only 90% task success, same as placing the stiff torus. Placing the
soft torus reaches a maximum of 80% task success at 3 million steps and then declines to
60% before recovering. Task success decreases with the number of phases that have to be
learned by the policy. Learning all phases reaches a success rate of roughly 40% and 8%
for the GraspLiftAndTouchEnv and PickAndPlaceEnv, respectively. Without randomizing
the position of the point on the tissue in TissueManipulationEnv, the image-based policy
is also able to learn the task with roughly 100% task success. Lowering the threshold
for task completion and randomizing the position both slow down learning. The 5 mm
threshold configuration reaches a success rate of roughly 95%, while the 2 mm threshold
configuration converges to 40%. For PickAndPlaceEnv, the image-based policy, in contrast
to the state-based policy, picking up the stiff torus has a higher success rate than picking
up the soft torus. The image-based policy is unable to learn the full task with all phases of
the GraspLiftAndTouchEnv.

6.3 Dissection Track

6.3.1 Configurations

RopeCuttingEnv Parameter R ∈ {5, 10} controls how many random ropes are generated
between the walls at each environment reset. Parameter C ∈ {1, 3} sets the number of active
ropes that must be cut to complete the episode. With more ropes in the scene, navigating
to and cutting the marked rope becomes increasingly difficult. However, this also means

19



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

0 1 2 3 4 5
0

30

60

90

0 1 2 3 4 5 0 1 2 3 4 5

0 3 6 9
0

30

60

90

0 3 6 9 0 3 6 9

TissueManipulationEnv PickAndPlaceEnv GraspLiftAndTouchEnv

Deformable Object Manipulation and Grasping Track

Steps (millions)

S
u
cc
es
s
R
at
e
(%

)

S
ta
te

Im
a
ge

Threshold: 5, 2 mm

Randomized landmark:

No Yes

Phase: Pick, Place, Both

Torus:

Stiff Soft

Phases:

(Gr) (GrLi) (GrLiTo)

(Li) (LiTo) (To)

Figure 9: Learning curves for the deformable object manipulation and grasping track. Suc-
cess rate is shown over total environment steps during training. Each curve
shows the mean and standard deviation over n = 8 random seeds. Line color
and markers are composed from the configuration parameters. Top row shows
state observations; bottom row shows image observations. In TissueManipulatio-
nEnv, the landmark is the point on the tissue that should be aligned with the
target point. In GraspLiftAndTouchEnv, the phases are abbreviated Gr, Li, and
To. Line color indicates the starting phase and pattern indicates the number of
phases to complete.

that more ropes can be cut incorrectly before the task is failed. For example, with R = 5
and C = 3, it is not possible to complete the task if more than two incorrect ropes are cut.

PrecisionCuttingEnv The function projected onto the cloth to mark the desired cutting
path is either a linear function l(x) = ax + b or a sine function s(x) = c sin fx + d, where
x is along the depth dimension of the cloth. The parameters for these functions are either
fixed or sampled randomly for each trajectory. The specific function controls how complex
the desired cutting path is, while randomizing parameters of the path forces the agent to
condition on the observed desired cutting path, instead of solving the task by memorizing
a specific trajectory. For the fixed case, the parameters are a = 0, b = 0.5, c = 15,
d = 0.6, and f = 1

75 , and x is limited to the interval [0, 0.5]. For the random case,
the parameters are uniformly sampled as follows: a ∼ U(−0.5, 0.5), b ∼ U(0.3, 0.7), c ∼
U(10, 20), d ∼ U(0.3, 0.7), f ∼ U(0.5

75 ,
1.5
75 ), and x is limited to the interval [0, xhigh], where

20



LapGym - An Open Source Framework for RL in RALS

xhigh ∼ U(0.5, 0.7). The values are unitless and represent coordinates relative to the size of
the cloth.

TissueDissectionEnv Parameter R ∈ {2, 4} represents the number of rows of connective
tissue must be cut to complete the task. Parameter V controls whether a visual indicator
marking the point on the connective tissue that is closest to the electrocautery hook’s tip is
enabled or disabled. While R controls the overall complexity of the task, the visual marker
represents an initial guide for task-driven visual feature extraction.

6.3.2 Results

0

30

60

90

0 3 6 9
0

30

60

90

0 3 6 9 0 3 6 9

RopeCuttingEnv PrecisionCuttingEnv TissueDissectionEnv

Steps (millions)

Dissection Track

S
u
cc
es
s
R
at
e
(%

)

S
ta
te

Im
ag
e

Ropes to cut: 1, 3

Total ropes:

5 10

Function: Line, Sine

Function parameters:

Fixed Randomized

Rows to cut: 2, 4

Visual helper point:

No Yes

Figure 10: Learning curves for the dissection track. Success rate is shown over total environ-
ment steps during training. Each curve shows the mean and standard deviation
over n = 8 random seeds. Line color and markers are composed from the config-
uration parameters. Top and bottom row show the experiments for state- and
image-based observations, respectively.

The learning curves of image- and state-based runs for the environments of the dissection
track are shown in Figure 10. The difference in the number of total environment steps
between policies that learn quickly and those that do not is caused by the time required
to reset environments that feature topological changes. Such a reset requires creating a
process at the operating system level and initializing a new simulation instance. Better
policies cause environment resets more often, resulting in an overall decrease in sampled
steps per second by a factor of 3 to 10. For example in RopeCuttingEnv, a successful policy
is able to complete the easiest configuration in 40 steps, which results in 10 times more

21



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

resets compared to an unsuccessful policy that times out after 400 steps. Consequently,
learning runs of successful policies are more often terminated by the time limit of 48 h than
by the limit of total environment steps.

For RopeCuttingEnv the number of total ropes in the scene has a higher impact on
task success than the number of ropes that should be cut. Compared to the state-based
policies, the image-based policies reach much lower task success rate with roughly 40%
for the simplest (cut 1 rope out of 5) and 0% for the most complex (cut 3 ropes out of
10) configuration. For PrecisionCuttingEnv, introducing noise to the function parameters
strongly impacts the final task success rate and learning speed. The final success rate
drops from around 95% for the non-randomized case to 50% for the image- and 60% for
the state-based policies in the randomized case. State-based policies are not able to solve
the TissueDissectionEnv and reach a final task success rate of less than 10%. Image-based
policies learn the task to a mean success rate of roughly 60%, albeit with a large variance
across runs. PrecisionCuttingEnv and TissueDissectionEnv are the first environments where
image-based policies were able to compete with, and even surpass the success rate of state-
based policies.

6.4 Thread Manipulation Track

6.4.1 Configurations

ThreadInHoleEnv Parameter M ∈ {normal , flexible, inverted} controls the mechanical
properties of thread and hole as illustrated in Figure 11 (a)-(c). The flexible case has a longer
and more flexible thread, compared to the normal case. The agent thus has to learn a more
complex dynamical behavior of the thread. The inverted case is challenging because the
hole must be deformed with the indirectly controlled tip of the thread to insert, due to the
constrained motion of the pivotized grasper. Parameter N controls whether the camera

(a) (b) (c) (d)

Figure 11: ThreadInHoleEnv configurations of the mechanical parameters for the a) normal,
b) flexible, c) inverted case. d) possible strategy of navigating the loop over the
cavity in the soft case of the LigatingLoopEnv. The interactions with cavity are
necessary to implicitly control the shape of the loop and finish the task.

pose is randomized for each trajectory. This investigates whether the agent is able to learn
a visual feature extraction that is robust to changes in camera perspective.
RopeThreadingEnv For all configurations, the number of loops on the board is reduced
to a single one, as preliminary experiments with more than one loop were unsuccessful.
Parameter M ∈ {base, bimanual} controls the criterion that marks the episode as done. In
the base case, the episode is marked as done, when 5% of the rope is passed through the
loop. In the bimanual case, the episode is marked as completed, when the rope is passed

22



LapGym - An Open Source Framework for RL in RALS

through the loop, and grasped by the second grasper on the other side of the loop. The
bimanual case adds a phase to the task that brings it closer to behavior that can solve the
iterative threading and regrasping required to solve the task with more loops on the board.
Parameter N controls whether noise is added to the position and orientation of the loop
at each environment reset. Each episode starts with the rope grasped by the right grasper
between 10% and 30% of the rope length from the tip of the 200 mm long rope. So even in
the case where the loop pose is not randomized, a memorized trajectory is not able to solve
the task.

LigatingLoop The environment is tested in configurations C ∈ {soft , stiff } that control
the mechanical parameters of the loop. The mechanical behavior of the loop heavily influ-
ences the difficulty of the task. A stiff loop maintains its overall round shape, so navigating
the loop over the cavity is easier compared to the soft case. In the soft case, the agent has
to learn a strategy that uses the cavity to control the shape of the loop through physical
interaction, in order to make navigating the loop over the cavity possible as illustrated in
Figure 11 (d).

6.4.2 Results

0

30

60

90

0 3 6 9
0

30

60

90

0 3 6 9 0 0.2 0.4 0.6

ThreadInHoleEnv RopeThreadingEnv LigatingLoopEnv

Steps (millions)

Thread Manipulation Track

S
u
cc
es
s
R
at
e
(%

)

S
ta
te

Im
ag
e

Rope: Norm., Flex., Inv.

Randomized camera:

No Yes

Randomized loop: No, Yes

End criterion:

Base Bimanual

Loop:

Stiff Soft

Figure 12: Learning curves for the thread manipulation track. Success rate is shown over
total environment steps during training. Each curve shows the mean and stan-
dard deviation over n = 8 random seeds. Line color and markers are composed
from the configuration parameters. Top and bottom row show the experiments
for state- and image-based observations, respectively.

23



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

The learning curves of image- and state-based runs for the environments of the thread
manipulation track are shown in Figure 12. State-based policies are able to learn all tasks
across all configurations, except for LigatingLoopEnv (20% and 0% task success) and the
bimanual configuration of RopeThreadingEnv (0% task success). The image-based policies
deliver comparable results, even outperforming the state-based policy on LigatingLoopEnv
in the stiff configuration with 40% task success. The image-based policies are unable to solve
the task for randomizing camera pose in ThreadInHoleEnv or loop pose in RopeThreadin-
gEnv. The simulation speed of LigatingLoopEnv is much slower compared to the previous
environments, limiting the total number of environment steps to under 106. Constricting
the cavity with a loop is very computationally expensive for both collision detection and
deformation including complex constraint resolution.

6.5 Image Resolution

We additionally test the effect of image resolution on environments where precision might be
limited by low-resolution images. In ReachEnv, the configurations with a higher resolution
of 128 × 128 do not outperform the lower resolution configurations. When increasing the
resolution in DeflectSpheresEnv, the success rate increases by roughly 5%, however, only in
the configurations with one instrument. The most notable difference occurs for TissueMa-
nipulationEnv, where a 128×128 resolution with a threshold of 2 mm reaches a task success
rate of 100%, compared to only 40% for a resolution of 64 × 64. For a threshold of 5 mm,
the final success rate is the same but learning is faster with a resolution of 128× 128.

6.6 Depth Information

We additionally investigate the effect of adding depth information to image observations in
all environments, as this greatly increases the information available to the agent. We use
the same configurations as for RGB image-based policies, yet adding a depth channel to
create RGBD images. Across environments, adding depth information usually resulted in
only minor increases in success rate of around 5% to 10%. These results are aligned with
the findings of Barnoy et al. (2021) that compare various different image-based observation
types on a reach and a suturing task in RALS. The learning curves for these experiments
on the spatial reasoning track are shown in Figure 13. ReachEnv shows the most noticeable
difference between RGB and RGBD observations. For a radius of 20 mm, the policy learns
faster and reaches a higher final success rate, and this improvement is also observed for a
radius of 8 mm, but only for the higher resolution variant.

7. Discussion

In this section, we show how our results reflect several well-known open problems in RL
research. We present overall trends in the environment parameters with the largest effect
on task complexity, which include using high-dimensional image observations instead of
compact state observations, cooperation between multiple agents, and multi-phase tasks.
We also discuss reward design and learning policies with safety constraints, two prominent
topics in the community that are particularly relevant to surgical robotics. By showing that

24



LapGym - An Open Source Framework for RL in RALS

0 3 6 9
0

30

60

90

0 3 6 9 0 3 6 9

0 3 6 9
0

30

60

90

0 3 6 9 0 3 6 9

ReachEnv DeflectSpheresEnv SearchForPointEnv

Steps (millions)

S
u
cc
es
s
R
at
e
(%

)

R
G
B

R
G
B
D

Radius: 3, 8, 20 mm

Resolution:

64× 64 128× 128

Spheres: 1, 2, 5

Instruments:

One Two

With hook:

No Yes

Figure 13: Learning curves for the spatial reasoning track for experiments with additional
depth information. Success rate is shown over total environment steps during
training. Each curve shows the mean and standard deviation over n = 8 random
seeds. Line color and markers are composed from the configuration parameters.
Top and bottom row show the experiments for RGB and RGBD image-based
observations, respectively.

these open problems are represented throughout the environment suite, we substantiate that
LapGym is an appropriate proving ground for further research into these problems.

State vs Image Observations Across tested environments and configurations, state-
based policies usually outperform their image-based counterparts. However, the opposite is
observed for TissueDissectionEnv and LigatingLoopEnv, where image-based policies reach
30% and 60% greater task success, respectively. Additionally, state observations did not
perform much better than image observations on PrecisionCuttingEnv. These environments
require localizing a pattern or a piece of tissue that is deformed in a complex way, making
it difficult to capture the relevant information with a hand-crafted state vector based on a
limited number of points. In these cases, state-based policies must deal with uncertainty
about their environment, where image-based policies do not. As environments and tasks
increase in complexity through greater deformability and more topological changes, the
capabilities of state-based approaches may be limited, motivating the shift towards image-
based policies in robotic surgery Scheikl et al. (2023).

However, image observations can be non-Markovian on first-person navigation tasks.
For example, in SearchForPointEnv, the agent can get lost if it reaches a position where it
can only see the abdominal wall or some other featureless surface, as it can only condition on

25



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

the most recent observation. Similarly, in the multi-instrument variant, the electrocautery
hook is difficult to locate if it moves off frame, especially because it does not necessarily
stay at its last seen position. Short of using a recurrent policy architecture, proprioception
or sensor fusion can also be used to mitigate this failure mode.

Several image-based training runs did not converge within the total 107 environment
steps, indicating that learning relevant visual features further complicated learning and
would benefit from further training or more sample efficient algorithms.

Image Resolution The optimal resolution for a particular task depends on the sizes of
relevant objects in the scene and the sizes of the kernels in the agent’s convolutional layers.
In TissueManipulationEnv, the relevant features are the landmark and target points, as
well as the distance between them. Because the sizes of these points are well matched
to the kernel size, increasing the resolution provides the agent with more information and
increases success rate. Note that this is only the case for randomized landmark points, since
otherwise the policy can simply learn to manipulate the tissue as a whole without paying
attention to the specific landmark.

In ReachEnv, not only is the target sphere relevant, but also the relative depths of the
target sphere and the end-effector. Estimating this depth is only possible through minute
changes in the sizes of the spheres. Because the kernel sizes appear to be mismatched for
features of this scale, increasing the resolution does not significantly change the outcome,
other than slowing down learning due to a larger model size. Optimizing the network
parameters may improve success rate on this task, but is outside of the scope of this work.

Preliminary experiments that employ larger visual feature extractors, pretrained models
on self-supervised image reconstruction, and semantically segmented images as observations
did not yield any benefits but would very likely benefit from further investigation.

Multi-Instrument Collaboration The presented environments require different types
of collaboration between instruments to solve the tasks at hand. Sequential coordina-
tion, where only one instrument is active at a time, is present in GraspLiftAndTouchEnv,
RopeThreadingEnv, and DeflectSpheresEnv. Simultaneous coordination, where multiple
instruments are active at the same time, is present in the active vision task of Search-
ForPointEnv, the two-instrument variants of PrecisionCuttingEnv and LigatingLoopEnv,
as well as the variant of TissueDissectionEnv where the force pulling back on the tissue
is controllable. Initial investigations with these environments showed that simultaneous
coordination is significantly harder to learn than sequential coordination.

Simultaneous coordination can exacerbate the problem of credit assignment. For ex-
ample, in the active vision task of SearchForPointEnv, actions that control the camera are
uncorrelated with the shaped reward, which only depends on the position of the movement
of the electrocautery hook. Although it is possible to add further shaped rewards that
depend on the camera movement, reward engineering is at best tedious and at worst can
lead to a bias in task execution or suboptimal learning. We will add more tasks that require
simultaneous coordination to sofa env, in order to better support research into algorithms
for this particular challenge, for example multi-agent RL.

Multi-Phase Tasks Many surgical procedures are comprised of several distinct phases,
often at multiple levels of granularity. In sofa env, multi-phase tasks include the single-
instrument task of PickAndPlaceEnv and the multi-instrument task of GraspLiftAndTouchEnv.

26



LapGym - An Open Source Framework for RL in RALS

When learned by a single agent, multi-phase tasks are comparable to learning a task with
sequential coordination. Designing reward functions for such tasks is challenging, and learn-
ing is increasingly difficult as more phases are added. Alternative approaches to the general
problem of multi-phase tasks include multi-agent RL (Scheikl et al., 2021), hierarchical
RL (Pateria et al., 2021), or meta-learning (Yu et al., 2020). Multi-agent and hierarchical
RL may address the challenge by learning specific policies and their coordination for each
phase, while meta-learning may view a multi-phase task as different tasks from the same
family.

Reward Hacking RL algorithms generally learn faster when given shaped rewards (Pathak
et al., 2017). Recent algorithms are able to learn from sparser rewards (Hafner et al., 2022)
but are often more computationally expensive. A practical challenge with shaped rewards
is reward hacking, where the policy is able to maximize the return without actually solving
the task. For example, LigatingLoopEnv contains a reward factor for the overlap between
the loop and the target marking, intended to help the policy learn this subtle difference
between successful and unsuccessful trajectories. If this reward factor is set too high, the
policy only tries to maximize the overlap instead of solving the task, as this would end the
episode early and decrease the total return. Time step costs and control costs may mitigate
this issue in this case, but also introduce more reward factors that must be tuned correctly.
Curriculum learning (Narvekar et al., 2022) addresses this problem by incrementally reduc-
ing the magnitude of the shaped rewards throughout training, ultimately leaving only the
sparse rewards that truly represent task success.

Safety Constraints Especially in a surgical context, it is desirable for an RL agent to
learn to avoid certain unsafe behaviors as it completes the task (Pore et al., 2021a). Al-
though these undesired behaviors cause no real damage while learning in simulation, they
are unacceptable during task execution. Punishments (i.e., negative rewards) are the typ-
ical solution for this scenario, however, care must be taken to ensure that exploration is
not hindered. This balance is especially precarious if desired and undesired states appear
very similar in observation space, for example in PrecisionCuttingEnv. One possible solu-
tion to this challenge is curriculum learning Scheikl et al. (2023), where punishments for
safety violations are incrementally increased throughout training, without curtailing initial
exploration.

Early termination of the trajectory upon violation of safety constraints made learning
more likely to fail in our early experiments, presumably because it makes reward hacking
easier. If rewards are negative in expectation, it can be advantageous to accept a one-
time punishment that ends the episode instead of allowing negative rewards to accumulate.
Instead, in all environments with the exception of RopeCuttingEnv, only successful task
completion ends an episode early, and the discount factor incentivizes the agent to solve
the task faster.

7.1 Technical Limitations and Future Roadmap

LapGym as a Benchmark In the near future, we intend to host a challenge where
research groups can submit their trained RL models to be evaluated by the challenge host.
Prior to this, we will make the code open source and allow the community to decide on a

27



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

relevant set of standard configurations for the challenge. A set of human expert trajectories
will also be provided to serve as a baseline and as data for imitation learning approaches.
Furthermore, new features will be added incrementally as the need arises in the community
and in our own research.

Simulation Speed Environments that simulate complex deformations of large volumes
are highly computationally demanding. This may especially be a limitation for on-policy
RL algorithms, which typically have lower sample efficiency and require more environment
steps. SofaCuda is an active effort to implement GPU-based physics simulation as a drop-in
replacement for CPU-based SOFA components.

Realistic Rendering SOFA focuses on fast and accurate FEM simulation. The rendering
capabilities of SOFA are thus rather limited and cannot compete with modern rendering
pipelines, like in the Unity game engine, for example. For generating point cloud and
semantically segmented image observations, sofa env already uses the rendering tools of
Open3D. The same approach may be employed to outsource rendering of RGB images to
an external library, such as Pytorch3D. Alternatively, sim-to-real transfer of visuomotor
policies can be achieved through domain randomization (Tobin et al., 2017) or domain
adaptation (Scheikl et al., 2023). As stereo cameras are commonly used in RALS, we will
extend the implemented endoscopes to feature two image sensors to generate stereo image
observations.

Haptic Feedback for Human Control SOFA is used for training surgeons in virtual
reality settings with detailed force feedback (Courtecuisse et al., 2015). We plan to include
haptic feedback in the environments as additional sensor feedback for the learning algorithms
as well as to extend support for teleoperation. The aim of this extension is to contribute to
the democratization of surgical skill via the tactile internet (Fitzek et al., 2021).

8. Conclusion

This work proposes LapGym, an open-source environment framework for RL in RALS. The
framework contains 12 challenging and highly parametrizable RL environments that are
adapted to the unique requirements of RALS. Baseline RL experiments with PPO across
different configurations of the environments show the limitations of current RL methods
for learning clinically relevant skills in RALS. The framework provides researchers with
utilities to rapidly create new RL environments, collect expert data for imitation learning,
and test out path planning methods such as RRT. Environment wrappers allow for flexible
integration of simulated sensors to acquire point clouds or semantically segmented images.
The use of SOFA as the underlying simulator offers a powerful and flexible platform for the
development and testing of advanced control algorithms for robotic surgical systems.

The goal of this software is to spur further development of RL algorithms tailored specif-
ically for the challenges of RALS, which include low-level control as well as a difficult explo-
ration problem. The issue of exploration may be aided by the use of imitation learning with
expert demonstrations, or with the help of model-based RL methods. Many environments
additionally require multi-agent coordination, which is a relatively little-explored topic in
the field of RALS. Finally, sofa env offers an exciting benchmark for transfer learning and

28



LapGym - An Open Source Framework for RL in RALS

meta-learning approaches, since each environment can be parametrized to increase its com-
plexity, and some environments can be modified in even more fundamental ways. We are
convinced that improving on our baseline results through solving the challenges relating to
RALS and open RL problems will lead to a considerable leap towards cognitive surgical
robotics.

Acknowledgments

The present contribution is supported by the Helmholtz Association under the joint research
school “HIDSS4Health – Helmholtz Information and Data Science School for Health”, the
Helmholtz Association’s Initiative and Networking Fund on the HAICORE@KIT partition,
and the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part
of Germany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of
Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische
Universität Dresden. We would like to thank Tim Wöldecke, Viet Pham, Pit Henrich, Tom
Eckardt, and Marius Steger for their help with this project.

29



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Appendix A. Reward Functions

Reward feature ψi Weight wi

ReachEnv
Distance between end effector and target −1.0
Change in distance between end effector and target −10.0
Time step cost 0.0
Action would have violated the workspace 0.0
Successful task 100.0

DeflectSpheresEnv
Number of instruments that violate their Cartesian workspace 0.0
Number of instruments that violate their state limits 0.0
Collision between instruments 0.0
Distance from the instrument tip to the active sphere 0.0
Change in distance from the instrument tip to the active sphere −5.0
Sum of the deflections of the inactive spheres −0.005
Deflection of the active sphere 0.0
Change in deflection of the active sphere 1.0
Done with active sphere 10.0
Successful task 100.0

SearchForPointEnv (without hook)
Point of interest (poi) is in the camera frame 0.01
Error in desired distance between camera and poi −0.01
Change in error in desired distance between camera and poi −0.01
Distance between the image center and the poi in the image −0.001
Change in distance between the image center and the poi in the image −0.001
Successful task 100.0

SearchForPointEnv (with hook)
Electrocautery hook (cauter) in collision −0.001
Distance between the cauter and the poi −0.0005
Change in distance between the cauter and the poi −5.0
Cauter touches the poi 0.0
Action would have violated the state limits 0.0
Successful task 100.0

TissueManipulationEnv
Distance to target point −1.0
Policy is stuck −5.0
Action would have violated the workspace 0.0
Unstable simulation 0.0
Successful task 10.0

PickAndPlaceEnv
Grasper is grasping the torus 0.0
Grasper lost its grasp on the torus −30.0
Grasper established a new grasp on the torus (only in pick phase) 30.0

30



LapGym - An Open Source Framework for RL in RALS

Distance between the grasper and the torus’ center of mass (only in pick
phase)

0.0

Change in distance between the grasper and the torus’ center of mass
(only in pick phase)

0.0

Distance between the grasper and point on the torus (only in pick phase) 0.0
Change in distance between the grasper and point on the torus (only in
pick phase)

−10.0

Distance between the minimum lift height and torus’ center of mass (only
in pick phase)

0.0

Change in distance between the minimum lift height and torus’ center of
mass (only in pick phase)

−50.0

Distance to the active peg (only in place phase) 0.0
Change in distance to the active peg (only in place phase) −100.0
Collision between grasper and peg −0.01
Collision between grasper and board −0.01
Unstable simulation −0.01
Velocity of the torus 0.0
Velocity of the grasper 0.0
Torus not on the board 0.0
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Successful task 50.0

GraspLiftAndTouch
Collision between cauter and grasper −0.1
Collision between cauter and gallbladder −0.1
Collision between cauter and liver −0.1
Collision between grasper and liver −0.1
Distance between cauter and target (touch phase, else) (−5.0, −0.5)
Change in distance between cauter and target −1.0
Target is visible 0.0
Gallbladder is grasped 20.0
Established new grasp on gallbladder 10.0
Lost grasp on gallbladder −10.0
Grasp contacts between grasper and gallbladder 0.0
Change in grasp contacts between grasper and gallbladder 0.0
Grasper retracts gallbladder 0.005
Force exerted on gallbladder −0.003
Action would have violated the grasper state limits 0.0
Action would have violated the cauter state limits 0.0
Action would have violated the grasper workspace 0.0
Action would have violated the cauter workspace 0.0
Completed the active phase 10.0
Pushed gallbladder into liver −0.1
Change in pushing gallbladder into liver −0.01

31



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Distance between grasper and gallbladder infundibulum (only in grasp
phase)

−0.2

Change in distance between grasper and gallbladder infundibulum (only
in grasp phase)

−10.0

Cauter activated in target (only in touch phase) 0.0
Change in cauter activation in target (only in touch phase) 1.0
Cauter touches target (only in touch phase) 0.0
Successful task 200.0

RopeCuttingEnv
Distance to the active rope 0.0
Change in distance to the active rope −5.0
Cut the active rope 5.0
Cut an inactive rope −5.0
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Failed task −20.0
Successful task 10.0

PrecisionCuttingEnv
Unstable simulation −0.0001
Distance to cutting path −1.0
Change in distance to cutting path −500.0
Cut on cutting path 0.0
Cut outside cutting path −0.1
Cut ratio of cutting path 0.0
Change in cut ratio of cutting path 10.0
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Remote center of motion not respected 0.0
Successful task 50.0

TissueDissectionEnv
Unstable simulation −1.0
Minimal distance to connective tissue −10.0
Change in minimal distance to connective tissue −10.0
Cut connective tissue 0.5
Cut tissue flap −0.1
Collision with board −0.1
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Remote center of motion not respected 0.0
Successful task 50.0

ThreadInHoleEnv
Distance between thread tip and hole −0.1
Change in distance between thread tip and hole −0.1
Distance between thread center of mass and hole −0.0
Change in distance between thread center of mass and hole −0.0

32



LapGym - An Open Source Framework for RL in RALS

Unstable simulation 0.0
Velocity of the thread 0.0
Velocity of the grasper 0.0
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Ratio of thread in hole 0.1
Change of ratio of thread in hole 1.0
Gripper collision −0.1
Successful task 100.0

RopeThreadingEnv
Done with active loop 10.0
Rope slipped out of loop −20.0
Distance between rope tip and active loop 0.0
Change in distance to active loop −200.0
Lost grasp on rope −0.1
Collision between loop and grasper −0.1
Collision between board and grasper −0.1
Action would have violated the state limits 0.0
Action would have violated the workspace 0.0
Distance between grasper and rope (if not grasped) 0.0
Change in distance between grasper and rope (if not grasped) 0.0
Ratio of rope passed through active loop 0.0
Change in ratio of rope passed through active loop 200.0
Established grasp with both graspers (only in bimanual case) 100.0
Distance between second grasper and rope (only in bimanual case) 0.0
Change in distance between second grasper and rope (only in bimanual
case)

−200.0

Successful task 100.0
LigatingLoopEnv

Distance between loop center of mass and marking −0.05
Change in distance between loop center of mass and marking −100.0
Loop center of mass is inside cylinder 0.0
Instrument shaft not withing cylinder 0.0
Instrument shaft collides with cylinder 0.0
Overlap between loop and marking 0.8
Loop closes around marking 0.5
Loop closes in thin air −0.1
Successful task 100.0

Table A: Features ψ and weights w of the environments’ reward functions.

33



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Appendix B. Environment Parameters

Environment Parameters

ReachEnv RCM position; whether to randomize the starting position;
camera pose; sphere radius; threshold distance for task comple-
tion; minimum distance between target and end-effector after
reset.

DeflectSpheresEnv Dimensions of board and workspace; number of spheres; mini-
mum distance between spheres; stiffness of the stalks; amount
of noise applied to instrument pose on reset; single instrument
version; number of deflections required for task completion;
minimum deflection amount per sphere; whether to allow de-
flection with instrument shaft; whether to sample the active
sphere with or without replacement of completed spheres.

SearchForPointEnv Whether to add surgeon and assistant grippers to the scene;
desired distance between target point and camera; threshold
distance between target point and camera; threshold distance
between target point and image center; threshold distance be-
tween target point and electrocautery hook; whether to add the
electrocautery hook (active vision); whether the cauter has to
activate in the target to complete the episode.

TissueManipulationEnv Whether to randomize the grasping point; whether to random-
ize the landmark; camera pose; minimum distance between
target and landmark after reset.

PickAndPlaceEnv Amount of noise applied to instrument pose on reset; mechan-
ical parameters of the torus; number of active pegs for placing
the torus; whether to randomize the colors of pegs and torus;
number of points on the torus for state observations; whether
to start with a grasped torus; whether to end the episode af-
ter picking is complete; minimum height to lift the torus for
completing the pick phase; whether to not mark the episode
as complete when the simulation is unstable.

GraspLiftAndTouch Pair of start and end phase; threshold distance for collision
checking between instruments; threshold distance between tar-
get point and electrocautery hook.

34



LapGym - An Open Source Framework for RL in RALS

RopeCuttingEnv Mass of the ropes; stiffness of the ropes; minimum distance
between ropes; number of ropes; number of ropes to cut; di-
mensions of the walls; number of points per rope for state
observations.

PrecisionCuttingEnv Dimensions of the cloth; discretization of the cloth; stroke
width of the cutting path; function to project onto the cloth as
cutting path; amount of noise applied to instrument pose on
reset; amount of noise applied to camera pose on reset; whether
to add a grasper to the scene; whether to render the closest
point between scissors and cutting path; number of points on
the cloth for state observations; number of points on the cut-
ting path for state observations; ratio of cutting path to cut for
task completion; whether to control the scissors in Cartesian
or TPSD space.

TissueDissectionEnv Rows of connective tissue to cut; whether to add a collision
model to the board; whether to render the closest point be-
tween instrument and connective tissue; amount of noise ap-
plied to instrument pose on reset; amount of noise applied
to camera pose on reset; deadzone for instrument activation;
whether to make the force that pulls back the flap controllable;
number of points on the connective tissue for state observa-
tions; number of points on the flap for state observations.

ThreadInHoleEnv Mechanical parameters and dimensions of the thread; mechan-
ical parameters and dimensions of the hole; amount of noise
applied to instrument pose on reset; amount of noise applied
to hole pose on reset; amount of noise applied to camera pose
on reset; number of points on the thread for state observations;
ratio of thread to insert to complete the episode.

RopeThreadingEnv Whether to randomize the graspers’ poses; whether to start
with the rope grasped; whether to randomize the grasp; num-
ber and poses of the eyelets; amount of noise applied to eyelet
poses on reset; number of points on the rope for state obser-
vations; whether to color the eyelets according to their state;
single grasper version; fraction of rope to pass through an eye-
let to mark it as finished; whether a bimanual grasp is required
to finish an eyelet.

35



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

LigatingLoopEnv Whether to add a grasper to the scene; stiff or soft loop; num-
ber of points to model the loop; radius of the loop; width of
the cavity marking; whether to randomize the marking; tar-
get constriction of the loop; target overlap between loop and
marking; number of points on the loop for state observations;
number of points on the cavity for state observations; number
of points on the marking for state observations.

All environments State velocity limits to scale the normalized agent action;
step size of a discrete action; observation type (RGB, RGBD,
STATE).

Table B: Environment parameters that can be used to adjust task complexity.

Appendix C. Simulation Parameters

Environment ∆Ts N Time Limit [steps]

ReachEnv 0.1 1 500
DeflectSpheresEnv 0.1 1 500 ·#spheres to deflect
SearchForPointEnv 0.1 1 500
TissueManipulationEnv 0.1 1 500
PickAndPlaceEnv 0.05 2 300 ·#phases
GraspLiftAndTouch 0.05 2 400 + 100 ·#phases
RopeCuttingEnv 0.1 1 max(400, 200 ·#ropes to cut)
PrecisionCuttingEnv 0.025 4 500
TissueDissectionEnv 0.01 10 max(400, 200 ·#rows to cut)
ThreadInHoleEnv 0.01 10 300
RopeThreadingEnv 0.01 10 200
LigatingLoopEnv 0.05 2 500

Table C: Simulation time step ∆Ts, frame skip N , and time limit for each environment.
Symbol # means number of.

Appendix D. State Observations

Environment Size Content

ReachEnv 6 Positions of end-effector and target.
DeflectSpheresEnv 29 Positions of spheres and active sphere; pose

and TPSD state of instruments; id of active
instrument.

SearchForPointEnv 14/26 Position of target; poses and TPSD states
of camera / and hook; activation of hook.

36



LapGym - An Open Source Framework for RL in RALS

TissueManipulationEnv 9 Positions of grasper, tissue point, and target
point.

PickAndPlaceEnv 37 Pose, TPSD state, jaw angle, and grasping
state of grasper; positions of 5 points on the
torus, the center of mass, and the active peg.

GraspLiftAndTouch 59 Poses, TPSD states, jaw angle/activation
state of instruments; current phase id; po-
sitions of target and 10 points on the gall-
bladder.

RopeCuttingEnv 12 + 9 · (N + 1) Pose, TPSD state, and activation of instru-
ment; positions of 3 points on all N ropes
and 3 points on the active rope.

PrecisionCuttingEnv 75 Pose, TPSD state, and jaw angle of the scis-
sors; positions of 10 points on the cutting
path, of 10 points on the rest of the cloth,
and of the closest point between scissors and
cutting path.

TissueDissectionEnv 75 Pose, TPSD state, and activation of the in-
strument; positions of 10 points on the flap,
of 10 points on the connective tissue, and
of the closest point between instrument and
connective tissue.

ThreadInHoleEnv 29 Pose and TPSD state the instrument; posi-
tions of the thread’s center of mass, the hole
opening, and 4 points on the thread.

RopeThreadingEnv 50/63 Pose, TPSD state, jaw angle, and grasp-
ing state of the grasper/graspers (biman-
ual); pose of the active loop; positions of
the rope tip and 10 points on the rope.

LigatingLoopEnv 59 Pose, TPSD state, and closed ratio of the in-
strument; positions of 9 points on the cylin-
der, 3 points on the marking, and 6 points
on the loop.

Table D: Size and content of the state-observations for each environment.

37



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

References

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al.
Learning dexterous in-hand manipulation. The International Journal of Robotics Re-
search, 39(1):3–20, 2020.

Yotam Barnoy, Molly O’Brien, Will Wang, and Gregory D. Hager. Robotic surgery with
lean reinforcement learning. arXiv preprint arXiv:2105.01006, 2021.

Alexandra T Bourdillon, Animesh Garg, Hanjay Wang, Y Joseph Woo, Marco Pavone, and
Jack Boyd. Integration of reinforcement learning in a virtual robotic surgical simulation.
Surgical Innovation, page 15533506221095298, 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Ku-
mar. A contact-rich simulation suite for musculoskeletal motor control. Proceedings of
Machine Learning Research, 168:1–16, 2022.

Zih-Yun Chiu, Florian Richter, Emily K Funk, Ryan K Orosco, and Michael C Yip. Biman-
ual regrasping for suture needles using reinforcement learning for rapid motion planning.
In IEEE International Conference on Robotics and Automation (ICRA), pages 7737–7743,
2021.

Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, 2015.

Hadrien Courtecuisse, Yinoussa Adagolodjo, Hervé Delingette, and Christian Duriez. Hap-
tic rendering of hyperelastic models with friction. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 591–596, 2015.

Roland Dreyfus, Quentin Boehler, and Bradley J. Nelson. A simulation framework for
magnetic continuum robots. IEEE Robotics and Automation Letters, 7(3):8370–8376,
2022.

Frank HP Fitzek, Shu-Chen Li, Stefanie Speidel, Thorsten Strufe, Meryem Simsek, and
Martin Reisslein. Tactile internet: With human-in-the-Loop. Academic Press, 2021.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning
from pixels. In Advances in Neural Information Processing Systems, 2022.

Xian He, Shuai Zhang, Shanlin Yang, and Bo Ouyang. Manipulating constrained soft
tissue while avoiding obstacles using reinforcement learning with self-attention. In IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 845–850, 2022.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine.
How to train your robot with deep reinforcement learning: lessons we have learned. The
International Journal of Robotics Research, 40(4-5):698–721, 2021.

38



LapGym - An Open Source Framework for RL in RALS

Siv Lykke Jørgensen, Ole Mogensen, Chunsen Wu, Ken Lund, Maria Iachina, Malene Kor-
sholm, and Pernille Tine Jensen. Nationwide Introduction of Minimally Invasive Robotic
Surgery for Early-Stage Endometrial Cancer and Its Association With Severe Complica-
tions. JAMA Surgery, 154(6):530–538, 2019.

HG Kenngott, JJ Wünscher, M Wagner, A Preukschas, AL Wekerle, P Neher, S Suwelack,
S Speidel, F Nickel, D Oladokun, et al. Openhelp (heidelberg laparoscopy phantom):
development of an open-source surgical evaluation and training tool. Surgical endoscopy,
29(11):3338–3347, 2015.

Rita Laezza, Robert Gieselmann, Florian T Pokorny, and Yiannis Karayiannidis. Reform: A
robot learning sandbox for deformable linear object manipulation. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4717–4723, 2021.

Steven M LaValle et al. Rapidly-exploring random trees: A new tool for path planning.
1998.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed
reinforcement learning. In International Conference on Machine Learning, pages 3053–
3062, 2018.

Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep rein-
forcement learning for deformable object manipulation. In Conference on Robot Learning,
2020.

Juan Linietsky, Ariel Manzur, and Rémi Verschelde. Godot. https://github.com/

godotengine/godot, 2014.

Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, and
Gerhard Neumann. Grounding graph network simulators using physical sensor obser-
vations. In Accepted as a poster at The Eleventh International Conference on Learning
Representations (ICLR), 2023.

Marcel Autran C Machado and Fabio F Makdissi. Aso author reflections: The role of the
robot in pancreatoduodenectomy. Annals of Surgical Oncology, 28(11):6262–6263, 2021.

Etienne Ménager, Pierre Schegg, Christian Duriez, and Damien Marchal. Sofagym: An
openai gym api for sofa simulations. https://github.com/SofaDefrost/SofaGym, 2020.

Mimesis Inria Research Team. Deepphysx. https://github.com/mimesis-inria/

DeepPhysX, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori,
Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph
placement methodology for fast chip design. Nature, 594(7862):207–212, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

39

https://github.com/godotengine/godot
https://github.com/godotengine/godot
https://github.com/SofaDefrost/SofaGym
https://github.com/mimesis-inria/DeepPhysX
https://github.com/mimesis-inria/DeepPhysX


Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based
dynamics. Journal of Visual Communication and Image Representation, 18(2):109–118,
2007.

A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer. A real-time dynamic simulator
and an associated front-end representation format for simulating complex robots and
environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1875–1882, 2019.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: A framework and survey.
Journal of Machine Learning Research, 21(1), 2022.

Sajid Nisar, Takahiro Endo, and Fumitoshi Matsuno. Design and kinematic optimization
of a two degrees-of-freedom planar remote center of motion mechanism for minimally
invasive surgery manipulators. Journal of Mechanisms and Robotics, 9(3):031013, 2017.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical rein-
forcement learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):
1–35, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787, 2017.

Jeffrey H Peters, Gerald M Fried, Lee L Swanstrom, Nathaniel J Soper, Lelan F Sillin, Bruce
Schirmer, Kaaren Hoffman, Sages FLS Committee, et al. Development and validation
of a comprehensive program of education and assessment of the basic fundamentals of
laparoscopic surgery. Surgery, 135(1):21–27, 2004.

Ameya Pore, Davide Corsi, Enrico Marchesini, Diego Dall’Alba, Alicia Casals, Alessandro
Farinelli, and Paolo Fiorini. Safe reinforcement learning using formal verification for
tissue retraction in autonomous robotic-assisted surgery. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4025–4031, 2021a.

Ameya Pore, Eleonora Tagliabue, Marco Piccinelli, Diego Dall’Alba, Alicia Casals, and
Paolo Fiorini. Learning from demonstrations for autonomous soft-tissue retraction. In
International Symposium on Medical Robotics (ISMR), pages 1–7, 2021b.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5, 2009.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021.

Florian Richter, Ryan K Orosco, and Michael C Yip. Open-sourced reinforcement learning
environments for surgical robotics. arXiv preprint arXiv:1903.02090, 2019.

40



LapGym - An Open Source Framework for RL in RALS

Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable robot
simulation framework. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1321–1326. IEEE, 2013.

Paul Maria Scheikl, Balázs Gyenes, Tornike Davitashvili, Rayan Younis, André Schulze,
Beat P. Müller-Stich, Gerhard Neumann, Martin Wagner, and Franziska Mathis-Ullrich.
Cooperative Assistance in Robotic Surgery through Multi-Agent Reinforcement Learning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1859–1864, 2021.

Paul Maria Scheikl, Eleonora Tagliabue, Balázs Gyenes, Martin Wagner, Diego Dall’Alba,
Paolo Fiorini, and Franziska Mathis-Ullrich. Sim-to-real transfer for visual reinforcement
learning of deformable object manipulation for robot-assisted surgery. IEEE Robotics and
Automation Letters, 8(2):560–567, 2023.

Samuel Schmidgall, Axel Krieger, and Jason Eshraghian. Surgical gym: A high-performance
gpu-based platform for reinforcement learning with surgical robots. arXiv preprint
arXiv:2310.04676, 2023.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

Changyeob Shin, Peter Walker Ferguson, Sahba Aghajani Pedram, Ji Ma, Erik P. Dutson,
and Jacob Rosen. Autonomous tissue manipulation via surgical robot using learning based
model predictive control. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3875–3881, 2019.

Akshay Sood, Wooju Jeong, James O. Peabody, Ashok K. Hemal, and Mani Menon. Robot-
assisted radical prostatectomy: Inching toward gold standard. Urologic Clinics of North
America, 41(4):473–484, 2014.

Jens-Uwe Stolzenburg, Sigrun Holze, Petra Neuhaus, Iason Kyriazis, Hoang Minh Do, Anja
Dietel, Michael C Truss, Corinn I Grzella, Dogu Teber, Markus Hohenfellner, et al.
Robotic-assisted versus laparoscopic surgery: outcomes from the first multicentre, ran-
domised, patient-blinded controlled trial in radical prostatectomy (lap-01). European
urology, 79(6):750–759, 2021.

Eleonora Tagliabue, Ameya Pore, Diego Dall’Alba, Enrico Magnabosco, Marco Piccinelli,
and Paolo Fiorini. Soft tissue simulation environment to learn manipulation tasks in
autonomous robotic surgery. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3261–3266, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

41



Scheikl, Gyenes, Younis, Haas, Neumann, Wagner, and Mathis-Ullrich

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 23–30, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tris-
tan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo
Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and
Omar G. Younis. Gymnasium, 2023. URL https://zenodo.org/record/8127025.

Shawn Tsuda, Dmitry Oleynikov, Jon Gould, Dan Azagury, Bryan Sandler, Matthew Hut-
ter, Sharona Ross, Eric Haas, Fred Brody, and Richard Satava. Sages tavac safety and
effectiveness analysis: da vinci R© surgical system (intuitive surgical, sunnyvale, ca). Sur-
gical endoscopy, 29(10):2873–2884, 2015.

Vignesh Manoj Varier, Dhruv Kool Rajamani, Nathaniel Goldfarb, Farid Tavakkolmoghad-
dam, Adnan Munawar, and Gregory S Fischer. Collaborative suturing: A reinforcement
learning approach to automate hand-off task in suturing for surgical robots. In IEEE
International Conference on Robot and Human Interactive Communication (RO-MAN),
pages 1380–1386, 2020.

Vignesh Manoj Varier, Dhruv Kool Rajamani, Farid Tavakkolmoghaddam, Adnan Mu-
nawar, and Gregory S Fischer. Ambf-rl: A real-time simulation based reinforcement
learning toolkit for medical robotics. In International Symposium on Medical Robotics
(ISMR), pages 1–8, 2022.

Jiaqi Xu, Bin Li, Bo Lu, Yun-Hui Liu, Qi Dou, and Pheng-Ann Heng. Surrol: An open-
source reinforcement learning centered and dvrk compatible platform for surgical robot
learning. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1821–1828, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on robot learning, pages 1094–1100, 2020.

Sabine Zundel, Dirk Lehnick, Marie Heyne-Pietschmann, Mike Trück, and Philipp Szavay.
A suggestion on how to compare 2d and 3d laparoscopy: a qualitative analysis of the
literature and randomized pilot study. Journal of Laparoendoscopic & Advanced Surgical
Techniques, 29(1):114–120, 2019.

42

https://zenodo.org/record/8127025

	Introduction
	Related Work
	Technical Requirements for Robot-Assisted Laparoscopic Surgery
	Software Framework
	SOFA
	SOFA for Reinforcement Learning
	Implementation of New Environments
	Interactive Scene Creation
	Human Control and Path Planning

	Learning Environments
	Spatial Reasoning Track
	Deformable Object Manipulation and Grasping Track
	Dissection Track
	Thread Manipulation Track

	Reinforcement Learning Experiments
	Spatial Reasoning Track
	Configurations
	Results

	Deformable Object Manipulation and Grasping Track
	Configurations
	Results

	Dissection Track
	Configurations
	Results

	Thread Manipulation Track
	Configurations
	Results

	Image Resolution
	Depth Information

	Discussion
	Technical Limitations and Future Roadmap

	Conclusion

