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Abstract

Modern approaches to supervised learning like deep neural networks (DNNs) typically im-
plicitly assume that observed responses are statistically independent. In contrast, correlated
data are prevalent in real-life large-scale applications, with typical sources of correlation
including spatial, temporal and clustering structures. These correlations are either ignored
by DNNs, or ad-hoc solutions are developed for specific use cases. We propose to use the
mixed models framework to handle correlated data in DNNs. By treating the effects under-
lying the correlation structure as random effects, mixed models are able to avoid overfitted
parameter estimates and ultimately yield better predictive performance. The key to com-
bining mixed models and DNNs is using the Gaussian negative log-likelihood (NLL) as a
natural loss function that is minimized with DNN machinery including stochastic gradient
descent (SGD). Since NLL does not decompose like standard DNN loss functions, the use
of SGD with NLL presents some theoretical and implementation challenges, which we ad-
dress. Our approach which we call LMMNN is demonstrated to improve performance over
natural competitors in various correlation scenarios on diverse simulated and real datasets.
Our focus is on a regression setting and tabular datasets, but we also show some results
for classification. Our code is available at https://github.com/gsimchoni/lmmnn.

Keywords: deep neural networks, random effects, mixed effects, correlated data, likeli-
hood

1. Introduction

Linear mixed models (LMMs) and generalized linear mixed models (GLMMs) have long been
researched in the statistical literature, with applications in medical statistics, geography,
psychometry and more (see e.g. McCulloch et al., 2008). Searle et al. (1992, chap. 2,
Example 7) give a classic application of estimating the effect of three medications on blood
pressure in patients from 15 randomly chosen clinics across New York City. In each clinic 20
patients are divided into 4 groups (three medications and a placebo), such that each patient
is treated with a single treatment and the effect on blood pressure is measured. Estimating
the effect of treatment while ignoring the correlation between two measurements of blood
pressure from the same clinic, or treating each of the effects of clinics as fixed, might lead
to overfitted estimates (Robinson, 1991). When modeling these data using LMM, each
clinic receives its own random effect (RE) in the model, which is a random variable with a
common predefined zero-mean distribution and a variance component to estimate, reflecting
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the researcher’s assumption that the clinics participating in the experiment are a random
sample taken from a population of clinics, and that they themselves are not of interest.
The resulting treatment effect estimate should have lower variance than an estimate which
ignores the correlation within each clinics’s measurements, and if a true treatment effect
exists in the population, it would be easier to detect (McCulloch et al., 2008).

However, even though this statistical principle has been well understood for years, it
seems to have been ignored in modern machine learning approaches to statistical learn-
ing such as ensemble trees and deep neural networks (DNNs). Typically, within these
frameworks, models assume observations to be statistically independent (see e.g. Sela and
Simonoff, 2012). There are numerous scenarios, where modeling data using LMM and
GLMM might improve the predictive performance of modern machine learning tools. In
our recent work (Simchoni and Rosset, 2021) we focused on one such scenario of handling
high-cardinality categorical features in a regression setting. Our approach, which we call
LMMNN, uses the negative log-likelihood (NLL) as a natural loss function, on top of al-
most any DNN architecture to learn a pair of functions: fixed and random. Handling
such clustered data by adapting mixed modeling methodology to be used within DNNs
while minimizing some form of NLL is the subject of several other papers. These include
MeNets (Xiong et al., 2019a) and DeepGLMM (Tran et al., 2020) which are reviewed in Sec-
tion 4.1. Yet, none of the aforementioned papers, including our own, were concerned with
more complex mixed effects correlation scenarios which are prevalent in modern modeling
tasks. For example, in Duan et al. (2014) the authors discussed the challenge of imputing
the traffic flow for missing freeway detectors at a certain period of time. The input to the
network was the traffic flow of m other such detectors, in this case m = 15K detectors across
the state of California. While the authors ignored the spatial relations between detectors
relying on stacked auto-encoders (SAE) to encode and decode these data, a mixed effects
DNN might posit a proper covariance structure on the data points in space, for example
using a squared exponential kernel on the pairwise distances between detectors.

Another type of data for which LMM and GLMM could be beneficial is longitudinal
data exhibiting temporal dependence. In a recent study Lin et al. (2019) tried to predict
hospital readmission from electronic medical records (EMR) of hospital patients, where
each patient is measured hourly for various metrics such as blood pressure, 48 hours before
discharge. To handle the temporal correlation between these measurements Lin et al. chose
to use a LSTM-based recurrent neural network. Yet it is not clear that such a short time
series necessitates such a complex model which was developed for longer and more varied
sequences such as word sentences and paragraphs. A GLMM-inspired network which would
model the binary result of readmission, could handle the blood pressure sequence by adding
one or two additional variance components parameters to estimate, for an added random
slope at time t, or perhaps an additional quadratic term at t2.

As said, such treatments of correlated data in neural networks are rare, and there is
a growing need to generalize approaches like LMMNN to handle this and other complex
correlation settings. The current paper takes a leap forward from our previous paper (Sim-
choni and Rosset, 2021), as we generalize LMMNN to more complex LMM scenarios and
discuss at length theoretical issues of LMMNN convergence. The paper is organized as
follows: The rest of Section 1 reviews in short the standard LMM approach to regression
and some typical covariance structures. Section 2 describes our approach to LMM in DNNs,
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LMMNN. In Section 3 we further elaborate on the conditions and covariance matrices un-
der which the stochastic gradient descent (SGD) approach used by LMMNN is promised
to converge, building on theoretical work by Chen et al. (2020). Section 4 gives a brief
overview of other attempts at incorporating random effects in DNNs to handle correlated
data. In Section 5 we show results on simulated as well as real datasets, demonstrating
the usefulness of LMMNN in common DNN prediction tasks and its superiority over other
common solutions to handle such datasets. Section 6 introduces GLMM for classification
settings and a preliminary but successful attempt at implementing this in the LMMNN
spirit. Lastly in Section 7 we discuss directions for future research.

1.1 LMM: A Short Review

In a typical LMM setting y ∈ Rn is a dependent variable modeled by X and Z, which are
n× p and n× q model matrices respectively:

y = Xβ + Zb+ ε. (1)

Here β ∈ Rp is a vector of fixed model parameters or effects, ε ∈ Rn is normal i.i.d noise
or ε ∼ N

(
0, σ2eI

)
, and b ∈ Rq is a vector of random effects, meaning random variables.

Typically b is assumed to have a multivariate normal distribution N (0, D) where D is
a q × q positive semi-definite matrix of appropriate structure, holding usually unknown
variance components to be estimated, let these be ψ, so D could be written as D(ψ). The
structure of this covariance matrix is up to the researcher but there are typically simplified
structures used. It is further assumed that there is no dependence between the normal noise
and the random effects, that is cov (ε, b) = 0.

We write the marginal distribution of y as:

y ∼ N (Xβ, V (θ)) , (2)

where V (θ) = ZD(ψ)Z ′ + σ2eI and θ is the vector of all variance components [σ2e , ψ]. To fit
β, θ we use maximum likelihood estimation (MLE), where we maximize the log-likelihood
or equivalently minimize the negative log-likelihood (NLL):

NLL(β, θ|y) =
1

2
(y −Xβ)′ V (θ)−1 (y −Xβ) +

1

2
log |V (θ)|+ n

2
log 2π (3)

To predict ŷte in a machine learning scenario, where (X,Z, y) are typically split into
training and testing sets (Xtr, Ztr, ytr) and (Xte, Zte, yte), one would use y’s fitted conditional
mean:

ŷte = Xteβ̂ + Zteb̂, (4)

where β̂ = (X ′trV̂
−1Xtr)

−1X ′trV̂
−1ytr are the estimated fixed effects once the estimated

variance components θ̂ are input into V , and:

b̂ = D̂Z ′trV (θ̂)−1
(
ytr −Xtrβ̂

)
(5)

is the so called best linear unbiased predictor (BLUP), as b are not actually parameters to
be estimated, but random variables to be predicted.
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The LMM framework may suffer from a few drawbacks. Sometimes, calculating (4) is
not possible such as in the case of the random intercepts model as in Section 1.2.1 with a
single categorical feature with q levels, where Zte holds levels unseen before. In this case
it is customary to use y’s marginal distribution and predict ŷte to be Xteβ̂, without the
random part. More difficulty may arise when computing the BLUP in (5) and the NLL in
(3) if n is so large that inverting V (θ̂) is infeasible, though see Section 1.2 and comments
at the end of Section 2 for considerable speedups when implementing these computations
for specific covariance structures. Another major and obvious drawback of LMM is the
limitation to linear relationships, and indeed non-linear mixed models have been developed
(see e.g. Lindstrom and Bates, 1990). Finally, basic LMM as presented here is targeted
towards modeling continuous response y, with a conditional normal distribution as in (2).
When y is not continuous (for example, binary as in two-class classification), the commonly
used extension is GLMM (McCulloch et al., 2008). We return to this in Section 6, where
we discuss adapting LMMNN to classification.

1.2 LMM: Covariance Structures

There are a few typical specialized models used in LMM, stemming from different choices
for covariance structure in D(ψ). It is worth reviewing these here since in Section 5 we
show many results using these specific models, on simulated and real datasets.

1.2.1 Single categorical feature: random intercepts

The random intercepts model is appropriate for a single RE categorical variable of q levels.
In our previous work (Simchoni and Rosset, 2021) we demonstrated how this model is
especially useful for handling high-cardinality categorical features in DNNs. The Z matrix
of dimension n × q is a binary matrix where Zij = 1 means that observation i has level j
of the categorical variable, and Zij = 0 otherwise, meaning each row has a single non-zero
entry. Therefore, we can mark the l-th measurement of level j (j = 1, . . . , q; l = 1, . . . , nj)
as ylj and write model (1) in scalar form:

ylj = β0 + β′xlj + bj + εlj (6)

This nicely shows how for each level j of the categorical feature we have an additional
random intercept term bj , hence the model’s name. The term bj is distributed N(0, σ2b ),
where σ2b is a single variance component so ψ = σ2b , and D(ψ) = σ2b Iq is diagonal, making
y’s marginal covariance matrix V (θ) block diagonal, since V (θ) = σ2bZZ

′ + σ2eIn. This in
turn allows to avoid its inversion when computing (3) or (5). In fact, it can be shown that
for a given level j the computation of the BLUP is reduced to:

b̂j =
nj σ̂

2
b

σ̂2e + nj σ̂2b

(
ȳtr;j −Xtrβj

)
, (7)

where (σ̂2e , σ̂
2
b ) are the estimated variance components, nj is the number of observations in

level j and ȳtr;j and Xtrβj are the observed and predicted average values of y in cluster j
respectively.
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1.2.2 Multiple categorical features

In the case of K categorical RE variables, each of qk levels, the Z matrix may be seen as
a concatenation of K binary matrices Zk of dimension n × qk, to form a binary matrix
of dimension n × M , where M =

∑
k qk. The vector of REs b is of length M and is

distributed N(0, D(ψ)) where D(ψ) is of dimension M×M . If there are correlations between
the K variables they would be considered as part of the variance components to estimate
and appear in the off diagonal elements of D(ψ). Otherwise D(ψ) is diagonal and ψ =
[σ2b1, . . . , σ

2
bK ]. As for the marginal covariance matrix of y, even when the K categorical

variables are assumed uncorrelated, V (θ) is no longer block-diagonal:

V (θ) =
∑
k

σ2bkZkZ
′
k + σ2eIn (8)

1.2.3 Longitudinal data and repeated measures

In many applications we see repeated measures of the same unit of interest, typically one of
q subjects who are being monitored for some continuous measure y through time. In this
case it is often assumed observations have temporal correlation, and the longitudinal LMM
model is used to predict y at different times. In scalar form for the l-th measurement of
subject j could be modeled with a polynomial of time tlj :

ylj = β0 + β′xlj + b0,j + b1,j · tlj + b2,j · t2lj + · · ·+ bK−1,j · tK−1lj + εlj (9)

A measurement of subject j (j = 1, . . . , q) at time tlj has a random intercept b0,j , a random
slope b1,j , and so on until the polynomial order K − 1. Each bk,j term is distributed
N(0, σ2b,k). The model is also flexible enough to have fixed variables from X varying in
time or to include fixed terms in β for time tlj . Now assume t is the full n-length vector
of times. Let Z0 be the n × q binary matrix where the [l, j]-th entry holds 1 if subject
j was measured at time l. The full Z would be of dimension n × Kq for K polynomial

terms and q subjects. Z would be a concatenation of K matrices: [Z0
...Z1

... . . .
...ZK−1] where

each Zk = diag(tk) · Z0 for k = 0, . . .K − 1. Note that on the [l, j]-th entry Zk will have
tk if subject j has measurement in time tl or 0 else. b of length Kq is still distributed
normally, its covariance matrix D(ψ) is of dimension Kq×Kq with σ2b,0Iq, . . . , σ

2
b,K−1Iq on

the diagonal. If the RE terms are correlated there are additional correlation parameters
to estimate on its off-diagonal, otherwise ψ = [σ2b,0, . . . , σ

2
b,K−1] and D(ψ) is diagonal. In

general it can be shown that V (θ), the marginal covariance matrix of y, is block-diagonal.
We expand on this in Section 3.

1.2.4 Kriging or spatial data

Suppose some continuous measurement y changes across a N-dimensional random field S.
For each element s ∈ S (say a point in space and time), y(s) is the sum of a “deterministic”
component µ and a “stochastic” component e, functions of the “location” element s and
other properties x ∈ Rp and we write: y(s) = µ(x, s) + e(s) + ε. Here µ could be a constant
mean or a x′β regression-like sum which does not depend on element s, and e(s) is usually an
additive variable which is distributed Gaussian, with zero mean and some covariance matrix.
Usually the covariance is assumed to decay as distance between elements hij = |si − sj |
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increases. If the covariance is isotropic, meaning it depends only on hij and covariance
decays in the same pattern in all directions, we could write: cov(y(si), y(sj)) = f(hij),
where f is sometimes called the kernel function, typically denoted as k(si, sj). The most
common kernel is the radial basis function (RBF) kernel, or squared exponential:

cov(y(si), y(sj)) = τ2 · exp

(
−
h2ij
2l2

)
(10)

where τ2 is a variance parameter and l2 a “range” or “lengthscale” rate-of-decay parameter
to estimate. As the distance hij increases the covariance decreases, potentially very quickly,
depending on the kernel used and parameter values.

The above describes the model behind kriging, Gaussian processes (GP) and spatial
analysis, which are very similar at their core (see e.g. Rasmussen and Williams (2005) and
Cressie (1993)). However it is also a description of (1) with Zn×q a binary matrix of q
locations, and b having covariance matrix D(ψ) of dimension q × q:

Dij(ψ) = σ2b0 · exp

(
−|si − sj |

2

2σ2b1

)
, (11)

where ψ = [σ2b0, σ
2
b1] and si, sj are again N-dimensional locations. Usually N is 2 (often lati-

tude and longitude) or 3 (often latitude, longitude and time). Here, the marginal covariance
matrix of y does not have any sparse structure.

2. LMMNN: Proposed Approach

We start with redefining model (1) by allowing both fixed and random parts to have non-
linear relations to y:

y = f (X) + g (Z) b+ ε, (12)

where f and g are non-linear complex functions which we fit using DNNs. Note that f
and g are kept as general as possible, to allow any acceptable DNN architecture, including
convolutional and recurrent neural networks, as previously demonstrated in Simchoni and
Rosset (2021). An additional example to what g could be is given in Section 5.1.4 for the
spatial data case, where we pass the 2-D locations si, sj through a multilayer perceptron
(MLP) which has 1000 neurons in its final layer. Thus, g here is embedding of the 2-D
locations to dimension 1000.

Next we modify the NLL loss criterion (3) to include the DNN outputs f and g:

NLL(f, g, θ|y) =
1

2
(y − f (X))′ V (g, θ)−1 (y − f (X)) +

1

2
log |V (g, θ)|+ n

2
log 2π, (13)

where V (g, θ) = g(Z)D(ψ)g(Z)′ + σ2eIn. We call DNNs using this NLL loss criterion LMM
neural networks or LMMNN. See Figure 1 for a schematic description of LMMNN, in the
case f and g are approximated with a simple MLP. Note how f and g can be represented
using the same network architecture, two different architectures, and in many real data
experiments we found it useful to have g as the identity function, that is to say, not learning
any transformation for the data in Z.
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At each epoch we use SGD on mini-batches to optimize the network’s weights including
the variance components θ which are treated as additional network parameters. For a mini-
batch ξ of size m comprised of (Xξ, Zξ, yξ) we choose to define a version of the NLL criterion
in (13), using the inverse of the sub-matrix V (g, θ)ξ = g(Zξ)D(ψ)g(Zξ)

′ + σ2eIm instead of
the sub-matrix of the inverse (V (g, θ)−1)ξ as formal SGD would require (see discussion in
Section 3):

NLLξ(f, g, θ|yξ) =
1

2
(yξ − f (Xξ))

′ V (g, θ)−1ξ (yξ − f (Xξ)) +
1

2
log |V (g, θ)ξ|+

m

2
log 2π.

(14)
The partial derivative of NLLξ with respect to the variance components can be written
explicitly:

∂NLLξ
∂θ

= −1

2
(yξ − f (Xξ))

′ V −1ξ

∂Vξ
∂θ

V −1ξ (yξ − f (Xξ)) +
1

2
tr

(
V −1ξ

∂Vξ
∂θ

)
, (15)

where we further shorten V (g, θ)ξ as Vξ and the
∂Vξ
∂θ expressions might further be simplified.

In practice, we use existing DNN machinery to fit the network, mainly those of back-
propagation and SGD.

It is worth emphasizing at this stage looking at (14) and (15) that for each mini-batch ξ
the Vξ inversion and computation of log-determinant no longer involve a matrix of size n×n
but a matrix of size m×m where m is the batch size and typically m� n. This “inversion in
parts” is the key element behind LMMNN’s scalability, and therefore we further expand on it
in the next Section and conduct experiments to demonstrate this scalability in Section 5.1.6.
We further note that even with this decrease in dimensionality a smart implementation does
not necessitate an actual inversion of Vξ in (14). Rather, if we mark e = yξ − f (Xξ), we
need to solve a linear system of equations Vξx = e to get V −1ξ (yξ − f (Xξ)) directly, which
further speeds up computations and stability and allows for larger batch sizes.

While training is performed on (Xtr, Ztr, ytr), prediction of yte from (Xte, Zte) is made
using:

ŷte = f̂ (Xte) + ĝ (Zte) b̂, (16)

where f̂ and ĝ are the outputs of the DNNs used to approximate f and g, and b̂ is the
modified version of the BLUP from (5):

b̂ = D(ψ̂)ĝ (Ztr)
′ V (ĝ, θ̂)−1

(
ytr − f̂ (Xtr)

)
. (17)

Now V (ĝ, θ̂) is again of dimension n×n and one needs to calculate its inverse once. In case
of the random intercepts model with a single categorical feature with q levels and g is the
identity function, the formula in (7) can be accommodated as in Simchoni and Rosset (2021)
and no inversion is necessary. In the case of multiple categorical features, the random slopes
model or in general a longitudinal repeated-measures model and g is the identity function,
V (θ̂) is relatively sparse and we can take advantage of that. We mark e = ytr− f̂ (Xtr) and

solve the linear system of equations V (θ̂)x = e to get V (θ̂)−1
(
ytr − f̂ (Xtr)

)
directly. It is

only when V (ĝ, θ̂) is not sparse, such as in the case when g is not the identity function or
when using the spatial model, and n is very large, that we need to resort to different solutions
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X

Z

f (X)

g(Z)

NLL(f, g, θ|y)

Figure 1: Schematic description of LMMNN using a simple deep MLP for fitting f and g,
and combining outputs with the NLL loss layer, in a single-stage training.

for computing the inverse. In our implementation we find a simple sampling approach works
well, other more sophisticated sampling approaches or sparse approximations such as the
inducing points method (Quiñonero-Candela and Rasmussen, 2005) may be used.

3. LMMNN: Justifying the SGD Mini-batch Approximation

In Section 2 we explicitly define in (14) NLLξ – the NLL version using a mini-batch ξ of
size m. In each batch iteration, we calculate the inverse of the m×m sub-matrix V (g, θ)ξ
instead of the sub-matrix of the n × n inverse (V (g, θ)−1)ξ. This “inversion in parts” is
the key element behind LMMNN’s scalability as demonstrated in Section 5.1.6, however it
bears some justification as it does not in general result in the full n × n inverse for any
symmetric matrix V , unless V is block-diagonal with blocks of size m. To demonstrate,
in Figure 2 we profile LMMNN’s performance in terms of variance components estimates
and gradients, and NLL loss, in a multiple high-cardinality categorical features scenario.
Here n = 100000 observations are simulated according to model (12), in identical manner
to simulations in Section 5.1. There are K = 5 categorical RE features, each with q = 1000
levels, so Z is of dimension 100000 × 5000. There are p = 10 fixed features in X, and
f(X) is a complex non-linear function as in (28). g(Z) is either the identity function (left)
or a linear mapping to a lower dimension (right), g(Z) = ZW where W is a 5000 × 500
random matrix with values sampled from a U(−1, 1) distribution. We use SGD with NLLξ
approximation as in (14), a simple MLP architecture, and record each σ̂2bj (j = 1, . . . , 5)
estimate and gradient at the end of each epoch. As described in Section 1.2.1 the V (g, θ)
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Figure 2: A LMMNN simulation with 5 uncorrelated categorical features each with q = 1000
and σ2bj = j for j = 1, . . . , 5. n = 100000, σ2e = 1, there are p = 10 fixed features
in X and f(X) and network architecture are as described in Section 5.1. From top
to bottom: σ2bj estimates, σ2bj gradients and NLL through epochs. The experiment
was repeated five times, and the five results are shown as light lines, bold lines
are average. Left: g(Z) = Z, Right: g(Z) = ZW , where W is a 5, 000 × 500
random U(−1, 1) matrix.
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marginal covariance matrix is not block-diagonal, and with g(Z) = ZW it is not even sparse.
Yet, it is clear that LMMNN’s use of SGD, and in particular the inversion of V (g, θ) and
calculating its log-determinant log |V (g, θ)| from (13) “in parts” works well in the sense of
estimates converging to their true parameters, gradients approaching zero and NLL loss
decreasing. This Section’s purpose is to offer intuition and some mathematical rigor to this
phenomenon.

3.1 Block-diagonal covariance matrix: when the gradient decomposes

Consider the case of a simple random intercepts model: a single categorical feature with q
levels each having nj observations (Xj , Zj , yj), where j = 1, . . . q, and let g be the identity
function. As said above in this setting V (θ) = σ2bZZ

′+σ2eI is a block diagonal matrix and we
can write V (θ) = diag(V1, ..., Vq) where each Vj block is of size nj×nj and Vj = σ2bJnj+σ

2
eInj

where Jnj is a nj × nj all 1s matrix. This means we can write the inverse in (13) as block

diagonal as well, V (θ)−1 = diag(V −11 , ..., V −1q ), and the log determinant in (13) as a sum
of log determinants: log |V (θ)| =

∑q
j=1 log |Vj |. The NLL in (13) can now be written as a

sum: NLL(f, θ|y) =
∑q

j=1
1
2 (yj − f (Xj))

′ V −1j (yj − f (Xj)) + 1
2 log |Vj |+ nj

2 log 2π. Most
importantly, the full variance components gradient in (15) can be decomposed into a sum
of gradients:

∂NLL

∂θ
=

q∑
j=1

[
−1

2
(yj − f (Xj))

′ V −1j

∂Vj
∂ψ

V −1j (yj − f (Xj)) +
1

2
tr

(
V −1j

∂Vj
∂ψ

)]
(18)

Thus if say nj = m for all j and m is a reasonable batch size, we can choose our
mini-batches as the levels of the RE variable. For each mini-batch ξk, (Xξk , Zξk , yξk) are
(Xj , Xj , yj) without stochasticity, and computing the gradient in parts and summing is
identical to computing the whole gradient. If nj 6= m for all j but all nj are small, we could
have the batch size vary for each j.

There are additional cases where the gradient naturally decomposes. For the case of
random intercepts in GLMM see Section 6. Another case is the longitudinal model (9),
where g is the identity function and Z of dimension n×Kq and Z0, . . . , ZK−1 are defined
in Section 1.2.3. D(ψ) is of dimensions Kq×Kq and we can decompose it to sub-matrices:

D(ψ) =


σ2b0Iq ρ0,1σb0σb1Iq . . . ρ0,K−1σb0σbK−1

Iq
ρ0,1σb0σb1Iq σ2b1Iq . . . ρ1,K−1σb1σbK−1

Iq
...

...
. . .

...
ρ0,K−1σb0σbKIq ρ1,K−1σb1σbK−1

Iq . . . σ2bK−1
Iq


Or more compactly:

D(ψ) =


D0,0 . . . D0,K−1
D1,0 . . . D1,K−1

...
. . .

...
DK−1,0 . . . DK−1,K−1


Now we can compose V (θ) into a sum of matrices:

V (θ) = ZD(ψ)Z ′ + σ2eIn =
K−1∑
l=0

K−1∑
m=0

ZlDl,mZ
′
m + σ2eIn (19)

10



Integrating Random Effects in Deep Neural Networks

Figure 3: The marginal covariance matrix V (θ) for a random sample of n = 1000 UK
Biobank subjects with cancer history. Left: RE feature is subject’s location on
the UK map (total q = 900 locations in sample), a simple RBF kernel D(ψ) as in
(11) is used with σ2b0 = σ2b1 = 1, locations are sorted according to first PC weight
from PCA performed on the Euclidean distance matrix. Right: RE features are
5 categorical variables: diagnosis (q = 338 in sample), operation (q = 304 in
sample), treatment (q = 211 in sample), cancer type (q = 151 in sample), tumor
histology (q = 104 in sample). σ2bk = k, and data is sorted according to the first
PC weight from PCA performed on V (θ) without specific order.

If Z0 is sorted, in the sense that all of subject j’s measurements are in adjacent rows
and subjects are ordered from 1 to q, then every Zk is sorted and each of the ZlDl,mZ

′
m

matrices is block-diagonal with the same blocks. Since σ2eIn is diagonal, V (θ) is also block-
diagonal. Therefore, the decomposition of the full gradient in (15) to the sum of q subjects
sub-gradients, will also hold.

For the multiple uncorrelated categorical random intercepts model, V (θ) would not in
general be block-diagonal as explained in Section 1.2.2. A more limiting but not uncommon
structure of the categorical features is when they are nested, for example the first feature is
which school a student goes to and the second is which class in that school she goes to. In
this case V (θ) will be block-diagonal, the block sizes corresponding to the highest level in
the categorical variables hierarchy, that is the school in this example, and the gradient can
be decomposed.

3.2 Block-diagonal approximation of covariance matrix

In Figure 3 we can see actual covariance matrices V (θ) for a sample of n = 1000 UK
Biobank patients with cancer history upon admission. For a detailed description of the UK
Biobank data see Appendix 4. The model on the left is the spatial model with q = 900
locations across the UK in the sample, and a simple RBF kernel D(ψ) with σ2b0 = σ2b1 = 1.
The model on the right is the multiple categorical model with K = 5 high-cardinality
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features: diagnosis, operation, treatment, cancer type and tumor histology. Clearly these
1000× 1000 matrices are not block-diagonal, but one might conjecture that block-diagonal
approximations of them would be useful in calculating their inverses and log-determinants.
We find that using mini-batch gradient descent on the sorted data does just that.

Furthermore, the spatial model with RBF kernel as in (11) is of particular interest in
this regard. As σ2b1 – the lengthscale parameter – gets smaller, the D(ψ) kernel becomes
diagonal and V (θ) the marginal covariance matrix becomes σ2b0ZZ

′+σ2eIn, where Z is binary
of dimension n× q is as defined in Section 1.2.4. In other words V (θ) is block-diagonal at
the limit σ2b1 → 0.

Finally, we would like to offer that this approximation of V (θ) with block-diagonal
matrices that LMMNN in effect does, is reminiscent of a work by Bickel and Levina (2008),
who proved that banding a covariance matrix from a wide variety of classes is useful in
many senses, including calculating its inverse. Specifically, for symmetric covariance matrix
Σ = {mij}, define the k-banding operator Bk(Σ) = [mij1(|i− j| ≤ k)]. Since the k-banding
operator is essentially capping small covariances between distant variables to zero, it is a
form of regularization. Bickel and Levina (2008) give an upper bound on ||Bk(Σ) − Σ||
as well as on ||Bk(Σ)−1 − Σ−1||, where || · || is the matrix L2 norm, under some mild
conditions. They comment it is ideal in the situation where Σ is sorted in such a way that
|i − j| > k ⇒ mij = 0, as in our description above. More theoretical work is needed to
achieve bounds similar to Bickel and Levina (2008) for the block-diagonal approximation
in our settings of interest.

3.3 Applying Chen et al. (2020) theorems

A recent work by Chen et al. (2020) denoted sgGP dealt with a model very similar to
the spatial model presented in Section 1.2.4, a zero-mean Gaussian process (GP) trained
with a neural network’s mini-batch SGD. The authors managed to bypass the question
of inversion “in parts” and offer theoretical bounds on the variance components estimates
and on the NLL gradient magnitude as the iterates progress. This is of relevance to our
current discussion when we cannot show that the gradient decomposes (Section 3.1) or
that inversion in parts is valid (Section 3.2). Using this result we can show that the full
gradient of the LMMNN loss in (13) converges to 0 using SGD for the spatial covariance and
multiple categorical features scenarios, where the covariance matrix is not block-diagonal,
thus concluding that LMMNN should reach at least a critical point for these scenarios as
well, if not a local minimum.

Here, the model is not dependent on any “fixed” features X, so it can be written as:

y = Zb+ ε,

ε ∼ N(0, σ2eIn),

b ∼ N(0, D(ψ)),

(20)

where D(ψ) is the GP standard RBF kernel from (11), which the authors mark as the
kernel function k(·, ·). To be consistent with Chen et al. (2020) mark θ = [θ1, θ2] = [σ2b0, σ

2
e ].

Note that the order we write these parameters is reversed here, and that Chen et al. (2020)
knowingly leave out σ2b1 – the lengthscale parameter – since as they write it is inside the
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exponent in (11), therefore it would be difficult to take into account in their proof, but they
use SGD to fit it nonetheless.

For a full description of Chen et al. (2020)’s results see their paper. Here we bring their
main assumption on the covariance matrix and their second theorem, bounding the NLL
gradient magnitude:

Assumption 1 (Exponential eigendecay, Chen et al. (2020)) The eigenvalues of ker-
nel function k(·; ·) w.r.t. probability measure P are {Ce−bj}∞j=0, where C ≤ 1 is regarded as

a constant 1

This fits the RBF kernel D(ψ) or k(·, ·). The authors of sgGP comment that polynomial
decay is also valid, and indeed in an extended work (Chen et al., 2021) they also treat this
case. This fast eigendecay quality of the covariance matrix is used to bound the trace in
(15) and eventually to bound the full gradient.

Theorem 1 (Convergence of full gradient, Chen et al. (2020)) The full gradient is
bounded:
For 3

2γ ≤ α1 ≤ 2
γ , γ = 1

4θ2max
, and 0 < ε < C log logm

logm w.p. at least 1− CK exp{−cm2ε},

||∇NLL(θK)||22 ≤ C
[

G2

K + 1
+m−

1
2
+ε

]
(21)

Where α1 is the initial learning rate of SGD, m is the batch size, θmin, θmax are lower and
upper bounds on both true variance components in θ (Assumption 2, Chen et al. (2020)),
G is an upper bound on the stochastic gradient (Assumption 3, Chen et al. (2020)) and
c, C > 0 depend only on θmin, θmax, b. Most importantly, K is the number of SGD iterations,
so the gradient’s magnitude should approach zero.

The above theorem is proven not only for a single spatial RBF kernel k(·, ·) with fast
eigendecay, but also for the sum

∑
l σ

2
l kl(·, ·) of L general kernels each having fast eigendecay.

We would naturally like to see if we can apply Chen et al. (2020) theorems to the covariance
structures often encountered in LMMNN other than the RBF kernel, most importantly for
structures for which the covariance matrix V (θ) is not block-diagonal. This leaves us with
the multiple categorical case, which can indeed be considered as the sum of L kernels as
can be seen by (8). In Appendix 1 we show how each of these kernel matrices may in fact
present polynomial or even exponential eigendecay, which makes Chen et al. (2020) and
Chen et al. (2021) bounds apply to this scenario as well.

4. Related Methods

We will now describe some previous approaches to handling correlated data in neural net-
works, focusing on those which we later use in Section 5 to compare our approach to.

1. When the authors write “w.r.t. probability measure P” they refer to a work by Braun (2006), where
this exponential decay of the kernel matrix eigenvalues is shown assuming X1, ..., Xn on which the kernel
matrix is calculated, are a random sample from some probability space X , with probability measure P
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4.1 Categorical features in DNNs

The most prominent approach to using categorical features in any machine learning frame-
work is one-hot encoding (OHE). If variable v has q distinct levels, OHE would add q binary
features z1, ..., zq, one for each level, with zli = 1 if observation i has level l in feature v,
and 0 otherwise. While OHE is deterministic, fast and explainable, it is hard to scale. As q
reaches 10000 and more, even when using sparse data structures to store such wide datasets,
many algorithms are challenged by this huge number of features. Features weights resulting
from OHE also tend to carry little information and have no way of expressing complex
relations between categories, for example similarity between categories.

Entity embeddings improve on OHE, by mapping each of the categorical feature’s q
levels into a Euclidean space of a low dimensionality d (Typically d� q, see e.g. Guo and
Berkhahn (2016)). After it had been one-hot encoded, the feature enters a neural network,
and using the network’s loss function and back propagation, a dictionary or a lookup-table
E of dimension q× d is learned, which is essentially a collection of q vector representations
or “embeddings”. Thus if two levels are “similar”, this would be reflected by their vector
representations being close. These vectors may also later be re-used via transfer learning
where the representation learned for one task can serve for other tasks, see e.g. Do and Ng
(2006). Entity embeddings have sparse implementations in a way which allows q to scale.
However the E lookup table consumes much space, it may need to be learned for each new
task and the resulting representations are usually hard to interpret.

A recent attempt at treating categorical features or clustering variables as RE in DNNs
has been made by Xiong et al. (2019a) and Xiong et al. (2019b). The authors propose the
following model named MeNets to learn fixed effects β and random effects b:

y = f(X)β + f(X)b+ ε. (22)

Here, the RE features are necessarily learned, by the same neural network that is applied to
the fixed features to learn f using standard squared loss and SGD. In LMMNN, in contrast,
we allow for a different transformation g which can also be the identity function. In order
to learn β and b the authors use variational expectation maximization (V-EM) combined
with SGD: An E-Step in which β̂, b̂ are updated while minimizing the standard squared
loss with a DNN, followed by an M-Step where the variance components θ̂ are updated so
as to maximize a NLL loss similar to (13). MeNets is relevant for (and was demonstrated
on) a single categorical feature with q levels treated as RE with diagonal prior, which is a
crucial limitation in comparison to LMMNN which generalizes to a wide variety of common
covariance scenarios and combinations of these. In addition, MeNets uses two-stage training
with two different loss functions, while LMMNN uses a single training stage with a single
loss function. Furthermore, MeNets makes it necessary to invert all q levels nj×nj matrices
in each SGD iteration, hence for some datasets it may not even be feasible (when q is ultra-
high and/or when there are many small categories and one huge category which is very
common in Pareto-like data). Hence, MeNets is slow per iteration (5 times longer than
LMMNN on average) and in our experience also slow to converge, see runtime tables in
Appendix 5.1.1 and results on real datasets in our previous paper (Simchoni and Rosset,
2021).
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4.2 Longitudinal data in DNNs

The go-to approach to feeding DNNs with temporal data is using recurrent neural networks
(RNN), with structured cells such as LSTM (Hochreiter and Schmidhuber, 1997) suitable
for remembering and forgetting previous data, in order to predict upcoming data. RNN with
LSTM cells are typically used in the field of natural language processing, where sentences,
paragraphs and even full documents can be thought of as long time series being fed into
the DNN. However, RNN with LSTM cells may not be suitable for longitudinal data, such
as growth curves and repeated measures, which tend to be very short and irregular time
series exhibiting simple temporal dependence. Such data are often encountered in EMR
where a patient is being followed for several hospitalization sessions, at a varied schedule
(see Section 5 for simulated and real datasets which demonstrate this).

Tran et al. (2020) is the only work we know of which takes inspiration from LMM
explicitly for handling temporal data in DNNs. These authors base their work on a very
specific LMM model, in which each subject i is repeatedly measured at the same set of times
t1, ...tT for some response yi,tj (j = 1, . . . , T ), which can be continuous as well as discrete,
as modeled by generalized linear models (GLM). In such a model it makes sense to not only
have a random intercept for each subject but also a random slope ai. In a similar fashion to
MeNets the authors propose to learn a set of features from a neural network zit;j = z(xit;j)
where j = 1, . . . ,m, the units in the last hidden layer, and have a random slope aij for
each unit, as well as a random intercept ai0. In the GLM framework we model not y but
µ = E(y|x), via some link function g, for instance the logit function for binary y, and the
authors get:

g(µit) = β0 + ai0 + (β1 + ai1)zit;1 + · · ·+ (βm + aim)zit;m = f(xit, w, β + ai), (23)

where w are the network parameters. The authors further note that the fixed and random
parts of the model can be separated such that the random part is linear with the appropriate
input:

g(µit) = f(x
(1)
it , w, β

(1)) + (β(2) + ai)
′x

(2)
it . (24)

Here x(1) and x(2) are the fixed and random features expected to have nonlinear and linear
effects respectively, and β(1) and β(2) are the linear fixed and random effects respectively.
Tran et al. (2020) then write the likelihood for (24), which is intractable, therefore they use
a Bayesian approach based on variational approximation.

We note that (24) is similar to our criterion in (12), when g is the identity function and
y is linear in Z, the RE features matrix. However, the variational approximation algorithm
proposed in DeepGLMM, which combines numerous elements such as importance sampling,
factor covariance, variable selection and choice of priors, makes it challenging to implement,
let alone use as a “plug-in” for different DNN architectures and covariance structures as we
strive to do. Finally, as with MeNets, DeepGLMM has been demonstrated in a very limited
context. The number of subjects and number of time steps are both small, in the simulated
as well as the real data experiments.

4.3 Spatial data in DNNs

In contrast to the few DNN adaptations of LMM for clustered and longitudinal data, when
it comes to modeling spatial data there are many theoretical papers, most dealing with
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scaling Gaussian processes. We already expanded on sgGP (Chen et al., 2020), in this
section we also explore papers which appear to be the SOTA in this field – deep kernel
learning (DKL) and stochastic variational deep kernel learning (SVDKL), originating from
the same authors (Wilson et al., 2016b,a). These approaches are in wide use since they also
have mature implementations in the GPyTorch library (Gardner et al., 2018). DKL applies
a kernel function on the data features after they have been transformed via a DNN. Instead
of fitting k(xi, xj |θ) where θ are the kernel parameters, we fit k(g(xi, w), g(xj , w)|θ), where g
is the DNN architecture and w are the DNN weights. All parameters w, θ are jointly learned
through minimizing NLL. The real ingenuity of DKL, however, comes from replacing the
kernel matrix K (or covariance matrix V in our case) needed for NLL computation and
derivation, by the KISS-GP covariance matrix (Wilson and Nickisch, 2015):

K ≈MKUM, (25)

where M is a sparse matrix of interpolation weights and KU is the kernel matrix K eval-
uated at m inducing points U . All downstream computations become substantially more
efficient, to the extent that even if g is the identity function (like we use it in Section 5.1.4),
DKL scales to datasets with millions of observations, without learning on mini-batches.
SVDKL, in contrast, allows for mini-batch training and is even more scalable. Wilson et al.
(2016a) use variational inference to optimize a factorized approximation of the NLL, thus
bypassing the issue of decomposing the actual NLL gradient and allowing the use of SGD.
The use of variational inference, combined with a fast sampling scheme, makes SVDKL
suitable in classification settings as well. Both DKL and SVDKL however are based on
approximations to the NLL, and are focused on scaling GPs for regression in general as
opposed to handling specific correlations within the data features, such as temporal corre-
lation in longitudinal datasets or within-cluster correlations in high-cardinality categorical
features. In Section 5 we compare LMMNN’s performance to SVDKL, and indeed find that
for spatial data SVDKL gives comparable results to LMMNN including runtime, however
when spatial data and categorical variables are both present, LMMNN can take advantage
of the covariance structure induced by both random effects types (See Tables 5, 11).

In addition to theoretically sound approaches, there are also numerous practical solutions
for handling spatio-temporal data in DNNs, for varied applications such as crime and traffic
prediction (Wang et al., 2017; Yuan et al., 2018) and weather forecasting (Liu et al., 2016).
For an extensive review see Wang et al. (2020). One of those practical solutions which
may work for 2-D coordinates features which are in our focus, is treating those coordinates
as points on 2-D maps or images, and feeding them into a convolutional neural network
(CNN). Once those images go through a standard series of convolutions and max pooling,
their output could be flattened and concatenated to the output of a standard MLP for the
other features, and entered into a standard loss function. In essence this strategy embeds
those location features into a d-length Euclidean space, in a way which preserves spatial
structure. As can be seen in Section 5.1.4 these embeddings are considerably more useful in
prediction than embeddings which are the result of treating q locations as a set of q levels
of a regular categorical feature, however they are still generally inferior to the approach of
using a random field covariance structure in LMMNN and CNN is considerably slower (See
Tables 4, 11 and Section 5.1.6).
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4.4 Relation to Multitask Learning

The relation between LMM and multitask learning (MTL) has been addressed since the
very early days of MTL. Bakker and Heskes (2003) applied MTL for the goal of predicting
students’ test results for a collection of 139 UK schools, each treated as a “task” – a
problem which could very well have been dealt with the random intercepts model discussed
in Section 1.2.1. The NLL loss in (13) is in fact reminiscent of many contemporary DNN
losses used for performing MTL at scale. As an example consider the paper by Zhao et al.
(2019), which presents the AdaReg algorithm. The AdaReg loss aims at regularizing the
weights of a DNN in an adaptive data-dependent way to “borrow statistical strength”
from one another (Efron, 2010), and it is demonstrated to work on MTL applications,
where typically datasets for each task are small. For simplicity consider a single hidden
layer network in which xi ∈ Rp is mapped into d neurons via matrix W of order d × p,
before a non-linear activation function is applied and a final linear layer produces prediction
ŷi ∈ R. Let W have a matrix-variate normal prior W ∼ MN (0,Σr,Σc), where Σr,Σc are
row and column covariance matrices of order d × d and p × p respectively, and define
Ωr := Σ−1r ; Ωc = Σ−1c , that is the row and column precision matrices. Then, the AdaReg
loss seeks to find W,Ωr,Ωc which minimize the loss:

LossAR =
1

2n

∑
i

(ŷi − yi)2 + λ||Ω1/2
r WΩ1/2

c ||2F − λ(p log |Ωr|+ d log |Ωc|)

s.t. uId � Ωr � vId, uIp � Ωc � vIp,
(26)

where λ is a constant, 0 ≤ u ≤ v;uv = 1, and the constraints are added to make the loss
well formulated. The relation between (26) and NLL loss (13) is not clear at first sight.
Specifically, the NLL loss was reached by integrating out the RE b to reach the marginal
distribution of y and writing its marginal negative likelihood. A different route could have
been to write the joint negative likelihood of y, b and minimize this loss to achieve predictions
for both y and b. Let ŷ = f(X) + g(Z)b, then:

Lossjoint =
1

2σ2e
(y − ŷ)′(y − ŷ) +

1

2
b′Db+

1

2
log |σ2eIn|+

1

2
log |D|. (27)

In fact, it has been shown that the loss in (27) will produce for b the same BLUP estimate
as in (17) (Robinson, 1991). Finally, in order to reach (26) one needs only assume σ2e is
known, and consider “b” as a RE matrix W rather then a vector, coming from a prior
distribution as above with full covariance matrices on its rows and columns.

AdaReg could therefore be thought of as fitting a specific LMM with a proper covariance
prior. LMMNN in turn represents a different approach to the one taken by AdaReg: instead
of jointly optimizing for the “RE matrix” W and “variance components” Σr,Σc, we choose
to first optimize for Σr,Σc and then plug those estimates to predict W . We leave this
direction for AdaReg for future research, and note that AdaReg and MTL might prove
useful for some of the scenarios examined in this paper. There are however a few critical
differences between MTL and LMMNN, which make LMMNN more useful especially for
large tabular datasets. First, the LMMNN approach scales to a much higher number of
“tasks” (q in our notation). Indeed most MTL DNN architectures have q neurons in their
final output layer, one for each task, whereas here we consider datasets where q can reach
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tens of thousands and even 469K in one of the real datasets used in Section 5. Second,
it isn’t always natural to model each of a categorical feature’s levels as a “task”. Some
categorical features can only be thought of as “just another feature” for tabular datasets,
such as the doctor in a large electronic healthcare records dataset. Finally, some of the
scenarios examined in this paper would be very hard to tackle with MTL. The multiple
high-cardinality categorical features is one such scenario (a combination of a doctor, a
medicine, a treatment, etc.). The combination of RE features of different types is another
scenario which LMMNN would handle much more naturally than MTL, as we demonstrate
in Section 5.2.3, with datasets having both a high-cardinality categorical feature and spatial
features.

5. Results

In this Section we present an extensive set of experiments demonstrating LMMNN’s per-
formance compared to other well-tested approaches. In Section 5.1 we apply LMMNN to
a series of simulated datasets derived from the different dependence scenarios discussed
in Section 1.2. In Section 5.2 we apply it to real datasets from various applications, ex-
hibiting similar dependence structures. All experiments in this paper were implemented
in Python using Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015), run
on Google Colab with NVIDIA Tesla V100 GPU machines, and are publicly available in
https://github.com/gsimchoni/lmmnn.

5.1 Simulated Data

5.1.1 Single categorical feature: random intercepts

We start by simulating the model in (12) with a single categorical feature with q levels
and variance σ2b , where q is varied in {100, 1000, 10000} and σ2b is varied in {0.1, 1, 10}.
n = 100000 and σ2e = 1 always. The q levels are not evenly distributed among the n
observations, rather we use a multinomial distribution sampling where the q probabilities
are obtained by sampling q Poisson(30) random variables, and standardizing them to sum
to 1 (see category level sizes distribution in Figure 4). There are 10 fixed features in X
sampled from a U(−1, 1) distribution, non-linearly related to y:

y = (X1 + · · ·+X10) · cos(X1 + · · ·+X10) + 2 ·X1 ·X2 + g(Z)b+ ε, (28)

where Z is of dimension n × q as described in Section 1.2.1. g(Z) is either the identity
function or g(Z) = ZW , where W is a linear transformation Wq×d with values sampled from
a U(−1, 1) distribution, and d = 0.1·q, or g(Z) is a non-linear function (Zi ·W ′)∗cos(Zi ·W ′),
where Zi is the ith row of Z, ∗ is elementwise multiplication and g is applied rowwise. We
perform 5 iterations for each (q, σ2b , g) combination (27 combinations in total), in which we
sample the data, randomly split it into training (80%) and testing (20%), train our models
to predict ŷte and compare the bottom-line MSEs in predicting yte. We compare its MSE
to those of R’s lme4 package results (i.e. standard LMM) (Bates et al., 2015), MeNets,
OHE, entity embeddings and ignoring the categorical feature in Z altogether. We use the
same DNN architecture for all neural networks, that is 4 hidden layers with 100, 50, 25,
12 neurons, a Dropout of 25% in each, a ReLU activation and a final output layer with a
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single neuron. When g(Z) is not the identity function we use an embedding layer on Z to
learn g (in case g(Z) = ZW it is the “correct” transformation to use and in case g(Z) is
not linear it is “incorrect” and thus more challenging). The loss we use is mean squared
error (MSE) loss for OHE, embeddings and ignoring the RE, and NLL for LMMNN and
MeNets (as mentioned above, MeNets uses squared loss for estimating fixed effects and NLL
for variance components only). In all experiments in this paper we use a batch size of 100
and an early stopping rule where training is stopped if no improvement in 10% validation
loss is seen within 10 epochs, up to a maximum of 500 epochs. For prediction in LMMNN,
in case g(Z) = Z the formula in (7) is used adjusted for LMMNN output f̂(Xtr), and
when g(Z) = ZW we sample 10000 observations when calculating (17), in order to avoid
inverting V (θ) which is of dimension 80000 × 80000. We initialize both σ̂2e , σ̂

2
b to be 1.0

where appropriate: R’s lme4 and LMMNN, and compare the resulting final estimates for
these two methods.

Table 1 summarizes the test MSE results and Table 14 in Appendix 2 summarizes the
estimated variance components results. As can be seen LMMNN reaches the smallest test
MSE on average and with a considerable gap from the other methods, when standard errors
are taken into account. This is particularly true when RE variance σ2b and cardinality q are
high and when g(Z) isn’t the identity function. As for the estimated variance components
σ̂2e , σ̂

2
b , LMMNN reaches a good estimation for both when g(Z) = Z, while R’s lme4 reaches

a poor estimation for σ2e without adding appropriate non-linear and interaction terms,
resulting in worse prediction performance. When g(Z) is not the identity function LMMNN
struggles to reach good estimates for σ2e , σ

2
b , but they are still considerably better than R’s

lme4. Here we note that when g(Z) = ZW we found that additional training of the
network until the variance components estimates converge may sometimes lead to improved
estimates. Finally Table 20 in Appendix 3 summarizes mean runtime and number of epochs,
and in Figure 4 we show predicted RE and ŷte versus true RE and yte in two of the scenarios.

5.1.2 Multiple categorical features

Table 2 and Table 15 in Appendix 2 summarize a simulation where K = 3 high-cardinality
categorical features are used. We have as above n = 100000, q1 = 1000, q2 = 2000, q3 =
3000, so Z is of dimension 100000×6000 in a model identical to (28). We keep σ2e = 1, vary
[σ2b1, σ

2
b2, σ

2
b3] in (0.3, 3.0) and g(Z) is one of the three options as in the single categorical

simulation, a total of 24 combinations. We use the same MLP architecture and training
details as in previous simulation, where here MeNets is no longer applicable.

As can be seen LMMNN is the clear winner in terms of mean test MSE and in terms of
variance components estimates. Its performance is especially impressive as the RE variance
components increase, failing well-tested solutions like OHE and entity embeddings. As
with a single categorical feature, when g(Z) is not the identity function LMMNN’s variance
components estimates are no longer accurate but they are much closer to the true values
than those of R’s lme4. Mean running times and number of training epochs are summarized
in Table 21 in Appendix 3.
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Table 1: Simulated model with a single categorical feature, mean test MSEs and standard
errors in parentheses. Bold results are within 2 SEs of the best result in a paired
test, where SEs are calculated across the 5 folds. Hence, LMMNN is significantly
better than all competitors in all scenarios.

g(Z) = Z

σ2b q Ignore OHE Embeddings lme4 MeNets LMMNN

0.1 102 1.24 (.01) 1.18 (.02) 1.16 (.01) 2.93 (.03) 1.16 (.02) 1.10 (.01)
103 1.22 (.02) 1.28 (.00) 1.21 (.01) 2.93 (.02) 1.33 (.06) 1.09 (.01)
104 1.22 (.01) 1.57 (.02) 1.58 (.01) 2.96 (.02) 1.65 (.26) 1.18 (.01)

1 102 2.09 (.10) 1.23 (.03) 1.18 (.01) 2.93 (.02) 1.18 (.02) 1.10 (.00)
103 2.15 (.03) 1.36 (.02) 1.28 (.02) 2.94 (.02) 1.53 (.17) 1.10 (.01)
104 2.15 (.03) 1.70 (.02) 1.67 (.01) 3.22 (.02) 1.60 (.06) 1.24 (.01)

10 102 10.8 (.45) 1.55 (.07) 1.55 (.06) 2.93 (.02) 1.85 (.22) 1.11 (.01)
103 11.1 (.15) 1.60 (.02) 1.65 (.07) 2.93 (.03) 2.01 (.17) 1.09 (.01)
104 11.2 (.06) 2.37 (.07) 2.12 (.04) 3.32 (.02) 2.80 (.36) 1.29 (.01)

g(Z) = ZW

0.1 102 1.48 (.08) 1.19 (.01) 1.17 (.03) 2.91 (.02) 1.25 (.08) 1.15 (.02)
103 4.45 (.16) 1.40 (.02) 1.39 (.03) 2.95 (.02) 1.44 (.06) 1.25 (.01)
104 36.1 (.7) 3.95 (.25) 3.34 (.07) 3.42 (.04) 7.35 (1.95) 2.40 (.03)

1 102 4.48 (.71) 1.39 (.06) 1.37 (.04) 2.88 (.02) 1.40 (.11) 1.12 (.01)
103 34.6 (2.2) 2.20 (.21) 2.51 (.24) 2.96 (.05) 7.00 (1.9) 1.28 (.01)
104 332.6 (9.7) 13.8 (1.9) 15.21 (2.7) 4.29 (.10) 143.3 (32.5) 4.49 (.10)

10 102 35.9 (3.3) 2.36 (.10) 2.87 (.27) 2.90 (.02) 12.03 (3.03) 1.14 (.02)
103 381.9 (16.9) 9.3 (1.7) 15.1 (2.6) 2.96 (.03) 163.7 (17.9) 1.31 (.03)
104 3365.9 (42.3) 81.3 (16.3) 153.5 (14.4) 13.8 (1.2) 2880.6 (463.5) 13.9 (1.6)

g(Z) = ZW * cos(ZW)

0.1 102 1.27 (.01) 1.19 (.02) 1.16 (.01) 2.93 (.01) 1.14 (.00) 1.14 (.02)
103 2.93 (.21) 1.39 (.02) 1.36 (.03) 2.92 (.02) 1.69 (.09) 1.28 (.02)
104 19.1 (.46) 2.87 (.11) 2.54 (.06) 3.36 (.03) 3.71 (.81) 2.25 (.02)

1 102 2.91 (.26) 1.23 (.01) 1.25 (.02) 2.91 (.02) 1.48 (.11) 1.12 (.01)
103 21.0 (.94) 1.96 (.10) 2.22 (.17) 2.95 (.02) 2.82 (.40) 1.26 (.02)
104 178.9 (4.7) 7.37 (.80) 8.31 (1.2) 3.91 (.11) 78.8 (19.5) 3.51 (.16)

10 102 23.8 (3.5) 1.86 (.22) 1.96 (.10) 2.90 (.02) 2.20 (.30) 1.13 (.02)
103 161.1 (10.2) 6.05 (.72) 10.5 (1.2) 2.92 (.01) 79.9 (10.7) 1.32 (.02)
104 1797.4 (48.0) 36.3 (4.0) 90.7 (9.7) 13.6 (2.3) 725.1 (75.3) 14.1 (.89)
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Figure 4: Simulation results with a single categorical feature when n = 100000, g(Z) =
Z, q = 1000, σ2b = 1 (top) and σ2b = 10 (bottom)
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Table 2: Simulated model with 3 categorical features, with q1 = 1000, q2 = 2000, q3 = 3000.
Mean test MSEs and standard errors in parentheses. Bold results are within 2 SEs
of the best result in a paired test, where SEs are calculated across the 5 folds.

g(Z) = Z

σ2b1 σ2b2 σ2b3 Ignore OHE Embed. lme4 LMMNN

0.3 0.3 0.3 2.06 (.01) 1.62 (.01) 1.48 (.01) 3.04 (.01) 1.16 (.01)
3.0 4.85 (.04) 1.87 (.01) 1.63 (.02) 3.05 (.01) 1.17 (.01)

3.0 0.3 4.72 (.05) 1.83 (.02) 1.60 (.02) 3.05 (.01) 1.15 (.01)
3.0 7.61 (.11) 2.05 (.02) 1.79 (.04) 3.12 (.01) 1.18 (.02)

3.0 0.3 0.3 4.89 (.07) 1.79 (.04) 1.61 (.04) 3.02 (.01) 1.16 (.01)
3.0 7.62 (.13) 2.00 (.04) 1.81 (.03) 3.05 (.03) 1.16 (.02)

3.0 0.3 7.36 (.14) 1.93 (.03) 1.70 (.02) 3.05 (.02) 1.15 (.02)
3.0 10.2 (.14) 2.17 (.03) 1.92 (.05) 3.07 (.01) 1.17 (.01)

g(Z) = ZW

0.3 0.3 0.3 62.0 (.88) 4.36 (.22) 3.65 (.24) 3.12 (.03) 1.90 (.04)
3.0 333.9 (9.23) 12.8 (1.69) 15.5 (1.12) 3.17 (.02) 1.96 (.03)

3.0 0.3 242.5 (6.63) 11.2 (.71) 12.8 (1.71) 3.19 (.02) 1.92 (.02)
3.0 509.4 (18.1) 13.2 (1.8) 25.3 (1.61) 3.18 (.02) 2.41 (.02)

3.0 0.3 0.3 151.3 (7.38) 7.67 (.73) 8.14 (.92) 3.13 (.02) 1.93 (.05)
3.0 429.6 (10.4) 17.1 (1.98) 22.8 (2.68) 3.18 (.02) 2.31 (.05)

3.0 0.3 358.7 (18.3) 16.82 (1.23) 21.5 (2.04) 3.19 (.02) 2.05 (.04)
3.0 611.3 (14.1) 23.7 (2.6) 31.4 (2.02) 3.25 (.03) 2.50 (.06)

g(Z) = ZW * cos(ZW)

0.3 0.3 0.3 32.1 (.72) 3.34 (.04) 2.71 (.10) 3.12 (.02) 1.77 (.03)
3.0 187.2 (10.8) 6.60 (.69) 11.2 (.78) 3.13 (.01) 1.89 (.02)

3.0 0.3 123.3 (3.5) 7.00 (.52) 7.07 (.68) 3.10 (.01) 1.88 (.01)
3.0 280.4 (11.2) 12.3 (.53) 14.1 (1.7) 3.16 (.03) 2.15 (.02)

3.0 0.3 0.3 90.2 (4.4) 6.37 (.35) 4.53 (.48) 3.12 (.02) 1.85 (.02)
3.0 217.1 (4.4) 7.41 (.58) 11.5 (1.4) 3.19 (.02) 2.05 (.01)

3.0 0.3 172.7 (11.8) 8.95 (1.8) 8.86 (1.4) 3.13 (.02) 1.93 (.02)
3.0 316.8 (5.2) 11.0 (1.5) 15.1 (2.0) 3.21 (.02) 2.30 (.04)
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5.1.3 Longitudinal data and repeated measures

For the longitudinal model we take a model very similar to (9), except now y is related to
X via the non-linear function f shown in (28), and K = 3 so time t has intercept, linear
and quadratic terms:

yij = f(xij) + b0,j + b1,j · tij + b2,j · t2ij + εij (29)

We sample a variable number of nj measurements from each of q = 10000 subjects, the total
being n = 100000 as before. t is taken from a sequence of maxnj equally sized steps between
0 and 1. If maxnj = 6 for example, the possible sequence is [0, 0.2, 0.4, 0.6, 0.8, 1], and a
subject with nj = 2 will have measurements in times 0 and 0.2, while a subject with nj = 6
will have measurements in times [0, 0.2, 0.4, 0.6, 0.8, 1]. To challenge LMMNN we also add
two of the possible three correlations: between the intercept and slope terms ρ01, between
the intercept and quadratic terms ρ02, but not between the slope and quadratic terms. This
gives a total of 6 variance components to estimate: θ = [σ2e , σ

2
b0
, σ2b1 , σ

2
b2
, ρ01, ρ02]. We fix

σ2e at 1 as before, we fix ρ01 = ρ02 at 0.3 and vary [σ2b0 , σ
2
b1
, σ2b2 ] in (0.3, 3.0). To make

the simulation more realistic we not only include a “Random” mode where the data is split
randomly to 80% training and 20% testing sets, but also a “Future” mode where the testing
set are those 20% observations which occur latest in time t across all n observations, meaning
that the model is only trained on past observations. This means a total of 16 experiments.
As before, we compare LMMNN’s results to ignoring the temporal dependence, one-hot
encoding the q patients, embedding them and using standard LMM in R’s lme4 package.
All training details and networks baseline architectures are identical to those described in
Section 5.1.1. Here we also compare LMMNN’s results to performing LSTM on these short
time series, where the LSTM architecture was chosen via performing grid search on optional
parameters and choosing a single LSTM layer with 5 neurons.

Table 3 and Table 16 in Appendix 2 summarize the mean test MSE and estimated
variance components results. As can be seen LMMNN’s performance is superior to all other
methods, and especially that of standard LMM with R’s lme4. The Future mode is generally
more challenging to all methods, but LMMNN still performs best by a considerable margin.
Looking at the variance components results, the “higher” the term the more challenging it
is for LMMNN to reach a good estimate (namely, estimating σ2b2 and ρ02 versus estimating
σ2b0 and ρ01). Its estimates are still much better than those of R’s lme4. Mean running
times and number of training epochs are summarized in Table 22 in Appendix 3.

5.1.4 Spatial data

For spatial data we use the standard model:

yij = f(xij) + bj + εij , (30)

where bj is a 2-D location random effect with zero mean and covariance matrix D(ψ)
as described in Section 1.2.4 with the RBF kernel in (11), and f is non-linear as shown
in (28). We sample q 2-D locations from the U(−10, 10) × U(−10, 10) grid, where q is
varied in {100, 1000, 10000}. We sample a variable number of measurements from each
of the q locations, the total being n = 100000 as before. We fix σ2e at 1 and vary the
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Table 3: Simulated model with longitudinal data for q = 10000 subjects. Mean test MSEs
and standard errors in parentheses. Bold results are within 2 SEs of the best result
in a paired test, where SEs are calculated across the 5 folds.

Mode: Random

σ2b0 σ2b1 σ2b2 Ignore OHE Embed. lme4 LSTM LMMNN

0.3 0.3 0.3 1.47 (.01) 1.61 (.01) 1.63 (.01) 3.18 (.03) 1.40 (.01) 1.23 (.01)
3.0 1.51 (.01) 1.63 (.01) 1.64 (.01) 3.15 (.04) 1.44 (.01) 1.23 (.02)

3.0 0.3 1.67 (.03) 1.65 (.01) 1.66 (.01) 3.18 (.04) 1.58 (.03) 1.25 (.01)
3.0 1.73 (.03) 1.68 (.01) 1.66 (.01) 3.15 (.02) 1.63 (.02) 1.26 (.03)

3.0 0.3 0.3 4.29 (.04) 1.87 (.02) 1.80 (.02) 4.55 (.24) 4.23 (.03) 1.29 (.02)
3.0 4.44 (.04) 1.95 (.02) 1.88 (.03) 5.00 (.54) 4.35 (.04) 1.26 (.01)

3.0 0.3 4.58 (.03) 1.96 (.04) 1.85 (.01) 5.06 (.26) 4.50 (.05) 1.27 (.01)
3.0 4.72 (.04) 1.96 (.05) 1.88 (.03) 5.10 (.36) 4.55 (.02) 1.29 (.01)

Mode: Future

0.3 0.3 0.3 1.65 (.02) 1.74 (.02) 1.72 (.02) 3.38 (.06) 1.49 (.01) 1.27 (.01)
3.0 1.75 (.03) 1.84 (.02) 1.83 (.02) 3.44 (.05) 1.65 (.02) 1.36 (.02)

3.0 0.3 2.17 (.08) 2.01 (.03) 2.01 (.06) 3.60 (.05) 2.12 (.04) 1.43 (.03)
3.0 2.29 (.05) 2.04 (.03) 2.11 (.03) 3.69 (.07) 2.17 (.03) 1.47 (.02)

3.0 0.3 0.3 4.58 (.04) 1.94 (.03) 1.93 (.04) 4.64 (.49) 4.43 (.06) 1.29 (.02)
3.0 4.90 (.05) 2.17 (.05) 2.06 (.07) 4.73 (.44) 4.71 (.05) 1.35 (.01)

3.0 0.3 5.51 (.07) 2.20 (.04) 2.14 (.03) 5.17 (.45) 5.29 (.11) 1.43 (.02)
3.0 5.56 (.08) 2.23 (.06) 2.25 (.04) 4.82 (.54) 5.47 (.10) 1.47 (.02)
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RBF kernel variance components [σ2b0, σ
2
b1] in (0.1, 1, 10), for a total of 27 combinations.

Here we exclude results for ignoring the spatial correlation for brevity and since they are
clearly the worst. We further tried to perform standard kriging using R’s gstat package
yet it failed to scale to this magnitude of problem. For LMMNN we used two approaches:
LMMNN-R was trained assuming a standard RBF kernel, and LMMNN-E was trained
without such assumption, demonstrating an additional use of a non-linear g(Z) as described
in Section 2. LMMNN-E passes the 2-D locations si, sj through a standard MLP with 6
layers of (1000, 500, 200, 100, 500, 1000) neurons, before entering a standard NLL layer as if
it were a single RE feature of dimension 1000 with a single variance parameter σ2b0 . As for
SOTA methods, we compared LMMNN to using DKL and SVDKL with 500 inducing points
as described in Section 4.3 and run in GPyTorch. A standard baseline MLP for the fixed
features is used as the mean of a multivariate normal distribution and a standard RBF kernel
for the 2-D locations as its covariance, fitted via NLL minimization. We report here only the
SVDKL results for brevity and since they didn’t differ that much from those of DKL. We
also compared our approach to using a CNN on locations treated as images, as described in
Section 4.3. For CNN we used a standard architecture of four 2D convolutions layers with
[32, 64, 32, 16] filters and a kernel of size 2, separated by max pooling, concatenated with a
standard baseline MLP for the fixed features. All other training details such as batch size,
hardware and baseline MLP architectures are identical to those described in Section 5.1.1.

Table 4 summarizes the mean test MSE results. LMMNN’s main competition is SVDKL
(and DKL) performing similar in most experiments, but it performs better in the extreme
scenarios of a very low lengthscale σ2b1 = 0.1, a medium to high scaling variance σ2b0 = 1
or 10 and a large q. LMMNN is also faster than SVDKL by a typical factor of 2-5 as can
be seen in Table 23 in Appendix 3, and in those extreme scenarios even by a factor of 10,
where DKL reaches the limit of 500 epochs. It is also interesting to note that LMMNN
without assuming a known RBF kernel (LMMNN-E) but passing the locations through
a deep embedding network, also performs quite well in most experiments. In Table 17 in
Appendix 2 we present LMMNN’s variance components estimates, where it finds estimating
the lengthscale σ2b1 considerably more challenging. We also show in Figure 5 predicted RE
and ŷte versus true RE and yte for two spatial scenarios.

5.1.5 Combination of spatial data and multiple categorical features

For our final simulation we wanted to use a combination of spatial data and multiple high-
cardinality features, such as often seen in various tabular data applications (See the Airbnb
and Craigslist cars examples in Section 5.2.3). Here we have two uncorrelated categorical
features with random terms bj and ck and a spatial 2-D location feature with term dl:

yijkl = f(xijkl) + bj + ck + dl + εijkl, (31)

where f is as before, both categorical features have q = 3000 levels, and the spatial feature
has q = 10000 2-D locations from the U(−10, 10) × U(−10, 10) grid. We thus estimate 5
variance components: θ = [σ2e , σ

2
b , σ

2
c , σ

2
d0
, σ2d1 ], where σ2b , σ

2
c are the variances of the two

categorical features and σ2d0 , σ
2
d1

are the location feature’s RBF kernel variances. We vary
[σ2b , σ

2
c , σ

2
d0

] in (0.3, 3) for a total of 8 combinations, where σ2e and σ2d1 are fixed at 1 and in
total n = 100000 as before. Here we compare LMMNN to ignoring the RE features, one-hot
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Table 4: Simulated model with spatial data with a RBF kernel. Mean test MSEs and
standard errors in parentheses. Bold results are within 2 SEs of the best result in
a paired test, where SEs are calculated across the 5 folds.

σ2b0 σ2b1 q OHE Embed. CNN SVDKL LMMNN-E LMMNN-R

0.1 0.1 102 1.22 (.01) 1.25 (.00) 1.19 (.02) 1.09 (.01) 1.22 (.02) 1.10 (.02)
103 1.30 (.01) 1.29 (.02) 1.18 (.02) 1.14 (.02) 1.20 (.02) 1.13 (.01)
104 1.54 (.01) 1.60 (.01) 1.26 (.02) 1.17 (.01) 1.23 (.01) 1.17 (.01)

1.0 102 1.21 (.02) 1.20 (.02) 1.18 (.02) 1.12 (.02) 1.13 (.01) 1.11 (.01)
103 1.29 (.01) 1.27 (.01) 1.17 (.01) 1.14 (.01) 1.19 (.03) 1.10 (.01)
104 1.55 (.01) 1.60 (.01) 1.22 (.02) 1.10 (.01) 1.23 (.01) 1.10 (.01)

10.0 102 1.23 (.01) 1.22 (.01) 1.18 (.02) 1.10 (.02) 1.12 (.01) 1.10 (.02)
103 1.28 (.01) 1.28 (.02) 1.16 (.01) 1.12 (.01) 1.12 (.02) 1.12 (.01)
104 1.55 (.01) 1.62 (.01) 1.19 (.01) 1.10 (.01) 1.11 (.01) 1.12 (.02)

1.0 0.1 102 1.26 (.02) 1.27 (.02) 1.25 (.04) 1.13 (.02) 1.12 (.01) 1.14 (.02)
103 1.35 (.01) 1.34 (.01) 1.28 (.02) 1.26 (.03) 1.26 (.02) 1.29 (.07)
104 1.70 (.01) 1.73 (.01) 1.42 (.02) 1.45 (.02) 1.66 (.02) 1.30 (.02)

1.0 102 1.28 (.02) 1.27 (.02) 1.21 (.02) 1.10 (.01) 1.11 (.01) 1.10 (.01)
103 1.33 (.01) 1.34 (.02) 1.27 (.02) 1.12 (.01) 1.18 (.02) 1.13 (.02)
104 1.68 (.01) 1.73 (.01) 1.31 (.01) 1.11 (.01) 1.18 (.01) 1.16 (.01)

10.0 102 1.28 (.01) 1.29 (.03) 1.20 (.02) 1.11 (.01) 1.13 (.01) 1.11 (.02)
103 1.34 (.01) 1.30 (.02) 1.22 (.02) 1.09 (.03) 1.10 (.01) 1.10 (.01)
104 1.62 (.01) 1.68 (.02) 1.24 (.03) 1.11 (.01) 1.11 (.01) 1.09 (.01)

10.0 0.1 102 1.66 (.05) 1.72 (.02) 1.32 (.03) 1.11 (.01) 1.17 (.02) 1.09 (.00)
103 1.67 (.05) 1.86 (.09) 2.12 (.16) 1.38 (.02) 1.52 (.02) 1.24 (.02)
104 2.33 (.04) 2.45 (.07) 2.73 (.09) 2.38 (.06) 2.92 (.33) 1.57 (.02)

1.0 102 1.64 (.07) 1.81 (.06) 1.34 (.06) 1.15 (.02) 1.11 (.01) 1.09 (.01)
103 1.62 (.04) 1.75 (.06) 1.63 (.06) 1.12 (.02) 1.25 (.00) 1.14 (.01)
104 2.35 (.09) 2.50 (.14) 1.74 (.03) 1.15 (.02) 1.30 (.01) 1.15 (.01)

10.0 102 1.57 (.04) 1.56 (.06) 1.29 (.06) 1.12 (.02) 1.12 (.01) 1.11 (.01)
103 1.62 (.04) 1.81 (.07) 1.49 (.06) 1.14 (.02) 1.14 (.01) 1.12 (.01)
104 2.14 (.04) 2.20 (.07) 1.53 (.08) 1.13 (.02) 1.13 (.01) 1.12 (.01)
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Figure 5: Spatial data simulation results with q = 10000 locations, n = 100000, σ2b1 = 1,
and σ2b0 = 1 (top) and σ2b0 = 10 (bottom)
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Table 5: Simulated model with two high-cardinality categorical features and a spatial fea-
ture with 2-D locations with a RBF kernel. Mean test MSEs and standard errors
in parentheses. Bold results are within 2 SEs of the best result in a paired test,
where SEs are calculated across the 5 folds.

σ2b σ2c σ2d0 Ignore OHE Embed. LMMNN

0.3 0.3 0.3 2.05 (.03) 1.85 (.02) 1.78 (.01) 1.38 (.02)
3.0 2.98 (.07) 2.24 (.03) 2.02 (.03) 1.42 (.02)

3.0 0.3 4.82 (.05) 2.12 (.03) 2.05 (.04) 1.70 (.03)
3.0 5.58 (.04) 2.51 (.03) 2.28 (.03) 1.68 (.01)

3.0 0.3 0.3 4.76 (.05) 2.12 (.04) 2.01 (.02) 1.72 (.01)
3.0 5.67 (.04) 2.61 (.04) 2.19 (.04) 1.73 (.02)

3.0 0.3 7.51 (.03) 2.38 (.02) 2.18 (.02) 2.12 (.03)
3.0 8.40 (.08) 2.74 (.03) 2.50 (.05) 2.13 (.02)

encoding each of them and embedding each of them. All training details and baseline MLP
architectures are identical to those described in Section 5.1.1.

Table 5 and Table 18 in Appendix 2 summarize the mean test MSE and estimated
variance components results. As can be seen LMMNN’s performance is best by a margin,
and it also reaches excellent variance components estimates.

5.1.6 Scalability of LMMNN

We give detailed results regarding mean runtime and number of epochs for each and every
experiment in Appendix 3. However, to demonstrate the scalability of LMMNN compared
to other methods we choose to add here an additional set of experiments on one of the
challenging covariance scenarios - the spatial data case. In Figure 6 (left) we record the
mean runtime for running 50 epochs of LMMNN and other methods where we keep q fixed
on 1000 locations and vary the total number of observations n from 1000 to 1 million. In
Figure 6 (right) we keep n fixed on 100000 observations and vary the number of locations q
from 100 to 10000. Both plots show how LMMNN in the spatial scenario scales similar to
SVDKL and much better than treating locations as images and applying CNN. Furthermore,
LMMNN suffers little in performance when q is increasing, as opposed to OHE, for which
a vanilla implementation hardly scales for q over 10000. Similar profiles can be seen for the
rest of the covariance scenarios discussed in this paper.

5.2 Real Data

5.2.1 Multiple categorical features

We show a number of real tabular datasets with two to five high-cardinality categorical
features. For additional examples using a single categorical feature see our previous paper
(Simchoni and Rosset, 2021). Table 6 describes key characteristics of these datasets, with
q ranging from 14 to 72K. For more details and where to obtain these publicly available
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Figure 6: Testing the scalability of LMMNN in the spatial data scenario, running 50 epochs,
a batch size of 1000 and all else as described in Section 5.1.4. Left: q is fixed on
1000 locations and n is varied; Right: n is fixed on 100000 and q is varied. Note
both axes are in the log10 scale.

datasets see Appendix 4. For all datasets we used a MLP with two hidden layers of 10
and 3 neurons, and a 5-CV procedure. All other details including batch size and early
stopping are identical to those described in Section 5.1.1. Table 7 summarizes the mean
test MSE results, where LMMNN performs the best with lme4 in close second. Notice
that in the UKB-blood example, where there seems to be little advantage to using the
categorical features, OHE and entity embeddings tend to overfit and perform worse than
ignoring those features, while LMMNN does not, due to its ability to fit very low variance
components to these features, thus performing a type of regularization. Finally we note for
the UKB-blood example we tried modeling other blood substance levels for cancer patients,
such as protein, calcium, glucose and vitamin D – in all LMMNN achieved the best mean
test MSE. Additional summaries of mean running times and number of epochs appear in
Table 26 in Appendix 3, and plots of category size distribution and predicted yte versus
true appear in Figure 8 in Appendix 5.

5.2.2 Longitudinal data and repeated measures

Table 8 summarizes key features of some datasets in which q units of measurement are
repeatedly measured through time. q varies from about 1000 stores in the Rossmann dataset
with 25-32 monthly measures of total sales, to almost 470K patients in the UK Biobank
dataset, with 1-4 measurements of systolic blood pressure (SBP). For more details and
where to obtain these publicly available datasets see the Appendix 4. As in Section 5.1.3
for each dataset we either perform a random 5-CV where 80% of the data is used to predict
20% of the data (Random mode), or perform 5-CV on past 80% observations, to predict
the latest 20% observations (Future mode). For the Rossmann and AUimport datasets we
use the four layer MLP architecture used in simulations in Section 5.1 and random terms
in t up to a quadratic with no correlations between these terms. For the UKB-SBP dataset
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Table 6: Real datasets with K categorical features: summary table

Dataset n K p categorical q y

Imdb 86K 2 159 director 38K Movie avg. score (1-10)
movie type 1.7K

News 81K 2 176 source 5.4K News item FB
title 72K no. of shares (log)

InstEval 73K 3 3 student 2.9K Teacher ratings (1-5)
teacher 1.1K
department 14

Spotify 28K 4 14 artist 10K Song danceability (0-1)
album 22K
playlist 2.3K
subgenre 553

UKB-blood 42K 5 19 treatment 1.1K Cancer patient
operation 2.0K Triglycerides level
diagnosis 2.1K (mmol/L, standardized)
cancer type 446
histology 359

Table 7: Real datasets with K categorical features: Mean test MSEs and standard errors
in parentheses. Bold results are within 2 SEs of the best result in a paired test,
where SEs are calculated across the 5 folds.

Dataset Ignore OHE Embed. lme4 LMMNN

Imdb 1.44 (.01) – 1.26 (.12) 0.99 (.01) 0.97 (.01)
News 3.22 (.02) – 1.89 (.02) 1.80 (.01) 1.81 (.02)
InstEval 1.77 (.01) 1.48 (.01) 1.50 (.01) 1.45 (.01) 1.45 (.00)
Spotify .015 (.002) – .016 (.001) .011 (.000) .009 (.000)
UKB-blood 0.88 (.01) 1.01 (.01) 1.04 (.02) 0.88 (.01) 0.86 (.01)
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Table 8: Longitudinal datasets with q measurement units: summary table

Dataset n nj p unit q t y

Rossmann 33K 25-31 23 store 1.1K 2013-2015 (mon.) Total $ sales (in 100K)
AUimport 125K 1-29 8 commodity 5K 1988-2016 (year) Total $ import (log)
UKB SBP 528K 1-4 50 person 469K 38-83 (age) Systolic BP (in 100s)

Table 9: Longitudinal datasets with q measurement units: Mean test MSEs and standard
errors in parentheses. Bold results are within 2 SEs of the best result in a paired
test, where SEs are calculated across the 5 folds.

Mode: Random

Dataset Ignore OHE Embed. lme4 LSTM LMMNN

Rossmann .179 (.01) .052 (.01) .052 (.01) .013 (.00) .505 (.01) .010 (.00)
AUimport 7.78 (.70) 4.91 (.30) 3.35 (.45) 0.72 (.01) 8.44 (.35) 0.71 (.01)
UKB SBP .0321 (.00) – .0327 (.00) .0310 (.00) – .0307(.00)

Mode: Future

Rossmann .215 (.01) .067 (.01) .087 (.02) .026 (.00) .336 (.00) .020 (.00)
AU Import 7.69 (.48) 5.60 (1.22) 3.70 (.12) 1.77 (.00) 11.7 (1.1) 1.48 (.02)
UKB SBP .0387 (.00) – .0396 (.00) .0383 (.00) – .0379 (.00)

we use the two layer MLP architecture used in Section 5.2.1, with random terms in t up to
linear (a.k.a random slopes) and no correlations between these terms. Table 9 summarizes
the mean test MSE results and as can be seen LMMNN performs best. R’s lme4 performs
considerably better than any DNN approach, but it is inferior to LMMNN which has the
benefit of introducing non-linearity to the fixed features. Additional summaries of mean
running times and number of epochs appear in Table 27 in Appendix 3, and plots of the
distribution of number of repeated measures nj and predicted yte versus true appear in
Figure 9 in Appendix 5.

5.2.3 Spatial data and spatial-categorical combinations

Table 10 summarizes key features of some datasets in which q geographical locations are
repeatedly measured for different quantities. q varies from about 1.2K locations in Japan
where radiation was measured by the Safecast organization, to 12K locations across the
United States where used cars were sold through Craigslist. The first three datasets come
from the US census and the CDC, where each of 3K counties has a few census tract-level
measurements of mean annual income, asthma rate in adults and PM2.5 particles. Two of
the datasets also fit our spatial and categorical combination scenario: the Craigslist cars
dataset, which has 15K cars models, and the Airbnb dataset from Kalehbasti et al. (2019)
which has NYC Airbnb listings from 40K hosts. For more details and where to obtain these
publicly available datasets see Appendix 4.
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Table 10: Spatial datasets with q locations and an optionally high-cardinality categorical
feature: summary table

Dataset n nj p q locations categorical y

Income 71K 1-2K 30 3K US counties – Ann. income $ (log)
Asthma 69K 1-2K 31 3K US counties – Adult asthma %
AirQuality 71K 1-2K 32 3K US counties – PM2.5 1/1/2016 (log)
Radiation 650K 1-40K 3 1.2K Japan locs. – CPM (log)
Airbnb 50K 1-404 196 2.8K NYC locs. host (40K) Price $ (log)
Cars 97K 1-632 73 12K US locs. model (15K) Price $ (log)

As usual, a 5-CV procedure is performed where 80% of the data is used to predict 20%
of the data. For all datasets we use a simple two layer MLP with 10 and 3 neurons, ReLU
activation and train until no improvement is seen in 10 epochs, in 10% validation set. As
in simulations, LMMNN-E is the LMMNN version without assuming a RBF kernel, where
the 2-D locations pass through a standard MLP with 7 layers of (100, 50, 20, 10, 20, 50, 100)
neurons, before entering a standard NLL layer as if it were a single RE feature of dimension
100 with a single variance parameter. As can be seen LMMNN assuming a RBF kernel
(LMMNN-R) achieves the best or not inferior from the best mean test MSE. When in
addition to the spatial data we take into account high-cardinality features such as a car’s
model, in a single covariance structure, the improvement in test MSE is substantial. The
mean test MSE achieved for the Airbnb dataset is far better than the best test MSE (0.147)
reported by Kalehbasti et al. (2019), who also tried using boosting and support vector
machines. More details such as mean running times appear in Table 28 in Appendix 3,
and plots of the distribution of nj measurements in location and predicted yte versus true
appear in Figure 10 in Appendix 5.

6. Classification Setting: A Prelude

In this section we start with revisiting the random intercepts model. Let yij |bj be the i-th
measurement of cluster j, which is dependent on some random intercept bj . j = 1, . . . , q
and i = 1, . . . , nj , where nj is as before the number of observations for cluster j, and we
usually assume bj ∼ N(0, σ2b ), where σ2b is a variance component as before. Let us develop
the marginal NLL from scratch, writing fY , fb and fY |b for y’s, b’s and y|b’s distribution
functions respectively:

NLL(σ2b |y) = − logL(σ2b |y) = − log
∏
ij

fY (yij)

= − log
∏
ij

∫
fY |b(yij |bj)fb(b) db = −

q∑
j=1

log{
nj∏
i=1

∫
fY |b(yij |bj)fb(bj) dbj}

(32)

Previously we utilized the assumption of fY |b, fb distributed normal, therefore the marginal
fY was normal as well, and the integral in (32) could be written in closed form. When
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Table 11: Spatial datasets with q locations: Mean test MSEs and standard errors in paren-
theses. Bold results are within 2 SEs of the best result in a paired test, where
SEs are calculated across the 5 folds.

Without high-cardinality categorical features

Dataset Ignore Embed. CNN SVDKL LMMNN-E LMMNN-R

Income .034 (.00) .032 (.00) .032 (.00) .030 (.00) .027 (.00) .028 (.00)
Asthma .352 (.01) .226 (.01) .259 (.01) .240 (.01) .258 (.01) .209 (.00)
AirQuality .285 (.02) .260 (.04) .163 (.06) .044 (.01) .088 (.02) .035 (.00)
Radiation .354 (.01) .254 (.02) .251 (.01) .217 (.00) .222 (.00) .219 (.00)
Airbnb .156 (.00) .196 (.01) .154 (.00) .151 (.00) .148 (.00) .150 (.00)
Cars .152 (.00) .118 (.00) .137 (.00) .149 (.00) .136 (.00) .109 (.00)

With high-cardinality categorical features

Airbnb .156 (.00) .177 (.01) – – – .139 (.00)
Cars .152 (.00) .092 (.00) – – – .084 (.00)

dealing with generalized linear mixed models (GLMM), however, where the response y
is far from normal, we see the marginal NLL contains an integral over the RE which is
difficult to write in closed form and to minimize over the variance component parameters.
In some cases however, such as random intercepts with a single categorical variable and a
binary response variable y, we can approximate the NLL with Gauss-Hermite quadrature
(McCulloch et al., 2008). Having done that, we can proceed within the LMMNN framework,
to handle high-cardinality categorical features in DNNs for classification settings as well.

A binary response yij |bj ∈ {0, 1} is usually modeled with a Bernoulli distribution. We
write yij |bj ∼ B(pij), where pij is the expectation of yij |bj in [0, 1]. Replacing in (32) the
Bernoulli distribution function for fY |b and the normal distribution for fb we get:

NLL(σ2b , pij |y) = −
q∑
j=1

log{
nj∏
i=1

∫
p
yij
ij (1− pij)1−yij

e−b
2
j/2σ

2
b√

2πσ2b

dbj} (33)

Now in GLMM one models not the expectation pij directly. Instead, a link function
η(pij) is used, which maps pij into (−∞,+∞). For some explaining variables xij ∈ Rp we
write η(pij) = x′ijβ + bj , where β ∈ Rp are fixed parameters to estimate. In the LMMNN
framework we write:

η(pij) = f(xij) + bj , (34)

where f is a non-linear function which we model via a DNN. As before, the RE bj might
pass through another function g, modeled by the same or different network. Now mark
f(xij) = fij and introduce the logit function, which is the most common link function for
a Bernoulli response variable. The model in (34) becomes:

log
pij

1− pij
= fij + bj = ηij , (35)
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Back to the NLL in (33), after some algebraic manipulation, we can write:

NLL(σ2b , f |y) = −
q∑
j=1

log{
∫

exp{
∑
i

yijηij − log(1 + eηij )}e
−b2j/2σ2

b√
2πσ2b

dbj}, (36)

For using Gauss-Hermite quadrature we need each of the q integrals to be of form∫
h(v)e−v

2
dv. Define:

hj(bj) = exp{
nj∑
i=1

yijηij − log(1 + eηij )}

h∗j (z) = hj(
√

2σbz)/
√
π

, (37)

where bj enters hj via ηij , the logits. Then:

NLL(σ2b , f |y) = −
q∑
j=1

log{
∫
h∗j (vj)e

−v2j dvj}, (38)

where vj = bj/
√

2σb.
Now we can use Gauss-Hermite quadrature to approximate each of the q integrals with

a sum over K elements: ∫
h∗j (vj)e

−v2j dvj ≈
K∑
k=1

h∗j (xk)wk, (39)

where xk is the kth zero of Hn(x), the Hermite polynomial of degree n, and both xk, wk can
be obtained from any mathematical software (not to be confused with the xij covariates!).
The approximation should be better the higher we take K. The NLL now simplifies to a
relatively simple sum:

NLL(σ2b , f |y) ≈ −
q∑
j=1

log{
K∑
k=1

exp

[ nj∑
i=1

(
yij(fij +

√
2σbxk)− log (1 + efij+

√
2σbxk)

)] wk√
π
}

(40)
For prediction of b, we use quadrature in a very similar way, following McCulloch et al.
(2008). Finally, note that the NLL and therefore its gradient can be naturally decomposed
to q separate computations, each on the group of nj observations for cluster j, thus using
gradient descent in mini-batches to optimize it, is once again justified.

To demonstrate how non-linear GLMM can be fitted in the LMMNN framework, we
perform a simulation in which y is binary, and its expectation depends on X in a very
similar way to (28):

logit(pij) = (X1 + · · ·+X10) · cos(X1 + · · ·+X10) + 2 ·X1 ·X2 + Zb (41)

We have a single categorical variable with q varying in {100, 1000, 10000}, and σ2b varying
in {0.1, 1, 10}. As in Section 5.1 we sample different nj observations for each level j of the
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Table 12: Simulated binary GLMM model with g(Z) = Z, mean test AUCs and standard
errors in parentheses (higher is better). Bold results are within 2 SEs of the best
result in a paired test, where SEs are calculated across the 5 folds.

σ2b q Ignore OHE Embeddings lme4 LMMNN

0.1 102 0.79 (.001) 0.79 (.002) 0.79 (.002) 0.67 (.003) 0.80 (.001)
103 0.79 (.001) 0.75 (.001) 0.77 (.001) 0.66 (.001) 0.79 (.001)
104 0.79 (.001) 0.67 (.002) 0.67 (.002) 0.66 (.001) 0.79 (.001)

1 102 0.77 (.002) 0.82 (.003) 0.83 (.003) 0.73 (.005) 0.82 (.003)
103 0.76 (.003) 0.79 (.002) 0.81 (.002) 0.73 (.002) 0.83 (.001)
104 0.76 (.002) 0.71 (.002) 0.71 (.002) 0.70 (.001) 0.80 (.001)

10 102 0.67 (.005) 0.93 (.002) 0.93 (.001) 0.90 (.004) 0.92 (.001)
103 0.67 (.003) 0.91 (.002) 0.92 (.001) 0.90 (.001) 0.92 (.001)
104 0.66 (.002) 0.87 (.001) 0.87 (.001) 0.87 (.001) 0.90 (.001)

categorical feature, the X features come from a uniform distribution and n = 100000 always.
We split the data to 80% training and 20% testing and use the same network architecture,
batch size and early stopping details as in Section 5.1. The loss for regular DNNs is the
standard binary cross-entropy, and for LMMNN the NLL in (40) is used. For Gauss-Hermite
quadrature we use K = 5 roots. We use the area under the ROC curve (AUC) to compare
LMMNN’s results to ignoring the categorical feature, using OHE and entity embeddings.
We also compare results to the lme4’s glmer function. Table 12 summarizes the mean test
AUC and Table 19 in Appendix 2 summarizes the σ2b estimates of LMMNN and glmer. As
can be seen, for low cardinality q LMMNN’s performance is not significantly better than
the best competitors, while for high q it performs better, though with a considerable cost
in runtime, as can be seen in Table 25 in Appendix 3.

We further tested LMMNN on real datasets encountered in Section 5.2.3. For the Airbnb
dataset we predict whether a listing has air conditioning or not (84% do). The categorical
feature here is the listing’s host with q = 40K, and p = 196 features as before. For the
Cars dataset we predict whether a car is located at the west of USA or not, by checking
whether its longitude coordinate is larger than 100 (66% are). The categorical feature here
is the car’s model with q = 15K, and p = 73 features as before. We use the same two-
layer architecture of 10 and 3 neurons and a 5-CV training procedure, with all other details
identical to previous simulations. Table 13 summarizes the mean test AUC, where it is clear
that our approach performs best. Table 29 in Appendix 3 summarizes mean runtime and
number of epochs.

7. Conclusion

In this paper we presented LMMNN as a general framework for dealing with covariance
structures for correlated data, including clustering due to categorical variables, spatial and
temporal structures and combinations of these. One important aspect of our contribution is
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Table 13: Classification datasets with a single categorical feature: Mean test AUCs and
standard errors in parentheses. Bold results are within 2 SEs of the best result
in a paired test, where SEs are calculated across the 5 folds.

Dataset Ignore OHE Embed. lme4 LMMNN

Airbnb 0.79 (.005) – 0.76 (.002) – 0.82 (.003)
Cars 0.70 (.001) 0.68 (.003) 0.69 (.002) 0.66 (.002) 0.72 (.002)

the use of NLL loss within the deep learning framework. Since this loss does not naturally
decompose to a sum over observations, the use of standard SGD approaches is challenging,
and in Section 3 we demonstrated that the approach of inverting small sub-matrices to make
SGD practical has some theoretical justifications and works well in practice. We showed
in extensive simulations and real data analyses that LMMNN’s predictive performance is
never inferior to common solutions for handling correlated data in DNNs, and in many
cases superior to these solutions, especially when compared to OHE and entity embeddings
for encoding categorical features, and LSTM for longitudinal datasets. We find LMMNN
to be especially useful for handling tabular datasets as often encountered in business and
healthcare applications, where a few features inject correlations of different nature into the
data. In the Airbnb and Cars datasets for example, we showed how using LMMNN with a
single covariance structure to handle both spatial and high-cardinality categorical features
can perform very well, with a reasonable cost in running time. We also offered in Section 6
preliminary methodology for extending LMMNN to classification settings, with promising
results.

In the future we hope to make LMMNN more efficient, easy to use in additional common
DNN frameworks such as PyTorch, and relevant to complex classification settings. All
simulations and code used for making the experiments and visualizations in this paper are
available on Github at https://github.com/gsimchoni/lmmnn/.
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Appendix 1. The eigendecay of the multiple categorical features
covariance matrix

Suppose we model L uncorrelated features each having ql levels, using (8). Let σ20 = σ2e and
Z0 = I. Then we can write (8) as a sum of L+ 1 covariance matrices:

V (θ) =
L∑
l=0

σ2l ZlZ
′
l (42)

Each of the Vl = σ2l ZlZ
′
l could be written as a block-diagonal matrix with ql blocks, if Zl is

properly sorted, let this be V ∗l . In this case V ∗l ’s eigenvalues are those blocks eigenvalues.
Each block j is of size nj×nj , where nj is the number of observations of level j (j = 1, . . . , ql),
and can be written as σ2l 11

′, where 1 is an all ones vector of length nj . Hence each block
is of rank 1 and has nj − 1 zero eigenvalues, the remaining eigenvalue has to be positive
and equal to the block’s trace σ2l nj . The entire spectrum of the block-diagonal V ∗l then,
are those ql eigenvalues σ2l nj and the remaining n − ql are zeros. The range of the block-
diagonal V ∗l ’s spectrum is therefore [0, σ2l maxnj ], and its eigendecay depends on the decay
of nql , . . . , n1 where we assume these are sorted. At any case the eigenvalues starting from
the ql-th location are all zeros. While Vl isn’t necessarily block-diagonal (since Zl isn’t
necessarily sorted), its eigenvalues and eigendecay remain unchanged from those of V ∗l . To
see this consider the fact that V ∗l is a symmetric matrix whose rows and columns have been
permuted in the exact same manner, which is equivalent to left and right multiplying it by
an orthogonal matrix P of dimension ql × ql. Vl could be written as PV ∗l P

′, and from here
it is easy to see its characteristic polynomial and therefore its eigenvalues are identical to
those of V ∗l . Finally as mentioned in the text since each of Vl can be seen as a kernel with
a fast eigendecay with rate Cl · i−p, their sum V is also a kernel with a fast eigendecay with
rate C · i−p, where Cl, C are some constants. Therefore Chen et al. (2020) theorems apply
to it.

Figure 7 presents actual eigendecays for the UKB sample described in Figure 3, with a
simple decay function such as C · i−p, where p = 1 but can be larger. We see nicely how
in realistic situations the number of observations for levels of a high-cardinality categorical
feature decays fast. For these covariance matrices it is therefore suitable to apply Chen
et al. (2020)’s theorems for bounding the NLL gradient by fitting the LMMNN model using
SGD.
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Figure 7: Eigendecay of covariance matrices of a sample of n = 1000 UK Biobank subjects
with cancer history (black points) and a C · i−p function (red line). All σ2bk are 1.
Left: a single categorical feature of diagnosis (q = 338 in sample), C = 1000, p =
1. Right: The entire V (θ) of 5 categorical features as described in Figure 3,
C = 5000, p = 1

Appendix 2. Simulated Data: variance components estimates

Table 14: Simulated model with a single categorical feature, estimated variance components
on average.

g(Z) = Z g(Z) = ZW g(Z) = ZW*cos(ZW)
lme4 LMMNN lme4 LMMNN lme4 LMMNN

σ2b q σ̂2e σ̂2b σ̂2e σ̂2b σ̂2e σ̂2b σ̂2e σ̂2b σ̂2e σ̂2b σ̂2e σ̂2b
0.1 102 2.92 0.10 1.14 0.11 2.92 0.49 1.09 1.37 2.92 0.12 1.10 1.03

103 2.90 0.10 1.12 0.10 2.91 3.52 0.28 1.28 2.90 1.71 0.28 1.12
104 2.90 0.10 1.14 0.10 2.91 33.8 0.12 0.33 2.91 17.6 0.11 0.26

1 102 2.92 1.03 1.12 1.08 2.91 2.44 1.08 3.41 2.89 2.17 1.09 2.66
103 2.91 0.98 1.12 1.03 2.90 32.0 0.29 2.49 2.90 20.4 0.29 2.10
104 2.91 0.98 1.13 1.00 2.92 336.7 0.18 1.14 2.91 175.2 0.16 0.81

10 102 2.90 10.5 1.12 8.80 2.89 32.9 1.08 9.63 2.90 17.3 1.08 9.23
103 2.89 10.0 1.12 8.68 2.89 337.8 0.33 5.48 2.91 179.7 0.31 4.36
104 2.91 10.0 1.12 10.0 2.90 3305.6 0.30 4.73 2.92 1724.7 0.27 3.33
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Table 15: Simulated model with 3 categorical features, with q1 = 1000, q2 = 5000, q3 =
10000. Estimated variance components on average.

g(Z) = Z

lme4 LMMNN
σ2b1 σ2b2 σ2b3 σ̂2e σ̂2b1 σ̂2b2 σ̂2b3 σ̂2e σ̂2b1 σ̂2b2 σ̂2b3
0.3 0.3 0.3 2.89 0.30 0.29 0.31 1.12 0.29 0.31 0.30

3.0 2.91 0.28 0.30 3.00 1.12 0.30 0.30 3.01
3.0 0.3 2.91 0.30 2.93 0.29 1.12 0.30 2.94 0.30

3.0 2.90 0.29 3.04 3.00 1.12 0.31 2.94 3.08

3.0 0.3 0.3 2.92 2.94 0.30 0.31 1.13 2.95 0.31 0.30
3.0 2.90 3.09 0.32 3.01 1.13 2.93 0.30 2.96

3.0 0.3 2.91 2.90 2.98 0.30 1.12 2.97 3.12 0.31
3.0 2.90 3.08 3.01 3.03 1.12 3.11 2.92 2.98

g(Z) = ZW

0.3 0.3 0.3 2.91 9.14 19.4 31.0 0.16 1.47 1.11 0.97
3.0 2.9 10.2 20.1 291.6 0.19 1.09 0.73 2.21

3.0 0.3 2.93 10.4 189.3 29.2 0.17 1.15 3.02 0.67
3.0 2.91 8.19 196.2 302.9 0.2 1.15 3 2.11

3.0 0.3 0.3 2.91 101.2 18.0 31.6 0.16 5.07 0.89 0.85
3.0 2.92 99.5 20.8 304.9 0.19 4.62 0.76 2.18

3.0 0.3 2.93 98.1 195.7 28.6 0.17 4.58 2.92 0.64
3.0 2.93 97.9 205.5 293.9 0.2 4.08 2.51 1.84

g(Z) = ZW * cos(ZW)

0.3 0.3 0.3 2.89 5.28 10.3 16.33 0.15 0.90 0.74 0.70
3.0 2.90 5.20 9.70 162.1 0.18 0.70 0.56 1.85

3.0 0.3 2.90 4.64 104.3 15.9 0.16 0.77 2.45 0.65
3.0 2.90 5.32 104.6 150.8 0.19 0.62 2.29 1.74

3.0 0.3 0.3 2.90 45.7 11.54 15.6 0.16 4.03 0.76 0.71
3.0 2.92 49.8 10.03 158.8 0.18 3.24 0.57 1.71

3.0 0.3 2.88 51.2 96.61 16.3 0.16 3.47 2.22 0.54
3.0 2.91 50.9 97.98 169.3 0.19 3.25 2.07 1.57

39



Simchoni and Rosset

Table 16: Simulated model with longitudinal data for q = 10000 subjects. Estimated vari-
ance components on average.

Mode: Random

lme4 LMMNN
σ2b0 σ2b1 σ2b2 σ̂2e σ̂2b0 σ̂2b1 σ̂2b2 ρ̂01 ρ̂02 σ̂2e σ̂2b0 σ̂2b1 σ̂2b2 ρ̂01 ρ̂02
0.3 0.3 0.3 2.90 0.32 1.93 3.2 0.04 -0.25 1.14 0.31 0.47 0.33 0.17 0.18

3.0 2.91 0.32 1.88 5.50 -0.11 0.08 1.12 0.31 0.76 2.16 0.08 0.30
3.0 0.3 2.92 0.33 4.13 4.59 0.21 -0.14 1.13 0.31 2.74 1.88 0.32 0.12

3.0 2.92 0.31 4.44 4.85 0.24 0.28 1.14 0.31 2.85 2.84 0.29 0.40

3.0 0.3 0.3 2.89 3.02 1.44 4.68 0.15 0.02 1.13 3.01 0.34 0.57 0.36 -0.01
3.0 2.9 2.99 2.42 5.38 0.15 0.51 1.11 2.98 0.59 2.33 0.29 0.24

3.0 0.3 2.91 2.96 4.62 3.02 0.42 -0.12 1.11 3.00 2.71 1.78 0.32 0.12
3.0 2.89 3.00 4.37 8.26 0.28 0.49 1.13 3.04 3.02 3.45 0.34 0.16

Mode: Future

0.3 0.3 0.3 2.89 0.32 1.36 16.09 0.28 -0.25 1.12 0.31 0.69 0.99 0.11 0.21
3.0 2.90 0.31 1.32 8.84 -0.5 0.49 1.12 0.31 0.69 1.19 0.13 0.36

3.0 0.3 2.91 0.31 3.12 17.91 0.52 -0.01 1.13 0.31 2.62 2.29 0.28 0.29
3.0 2.90 0.32 4.09 24.28 0.28 -0.14 1.12 0.30 2.65 2.28 0.31 0.53

3.0 0.3 0.3 2.88 3.02 1.05 10.97 -0.09 0.47 1.12 3.02 0.53 0.73 0.27 0.11
3.0 2.92 3.00 0.52 33.25 -0.31 0.42 1.12 3.06 0.66 0.78 0.27 0.05

3.0 0.3 2.90 2.99 3.54 31.5 0.69 -0.22 1.13 2.99 2.85 2.77 0.35 -0.02
3.0 2.94 2.97 3.34 12.67 0.69 -0.31 1.12 2.99 2.70 2.82 0.39 0.17
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Table 17: Simulated model with spatial data with a RBF kernel. Estimated variance com-
ponents on average.

σ2b0 σ2b1 q σ̂2e σ̂2b0 σ̂2b1
0.1 0.1 102 1.12 0.12 0.71

103 1.12 0.10 0.27
104 1.13 0.11 0.12

1.0 102 1.13 0.11 1.77
103 1.12 0.10 1.12
104 1.13 0.10 1.08

10.0 102 1.13 0.13 2.16
103 1.15 0.12 3.11
104 1.13 0.11 7.71

1.0 0.1 102 1.13 0.90 1.29
103 1.12 0.99 0.48
104 1.13 0.98 0.10

1.0 102 1.13 0.93 1.11
103 1.12 1.10 1.49
104 1.15 0.91 0.83

10.0 102 1.12 0.91 3.05
103 1.11 0.74 4.93
104 1.11 1.13 8.69

10.0 0.1 102 1.12 8.07 0.50
103 1.11 8.99 0.12
104 1.13 10.11 0.11

1.0 102 1.12 8.39 1.01
103 1.12 9.24 0.86
104 1.12 9.00 0.99

10.0 102 1.13 7.04 2.68
103 1.12 6.54 4.51
104 1.11 9.42 8.24
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Table 18: Simulated model with 2 high-cardinality categorical features and a spatial fea-
ture with 2-D locations with a RBF kernel. Estimated variance components on
average.

σ2b σ2c σ2d0 σ̂2e σ̂2b σ̂2c σ̂2d0 σ̂2d1

0.3 0.3 0.3 1.12 0.30 0.31 0.28 1.06
3.0 1.14 0.29 0.29 2.98 0.95

3.0 0.3 1.12 0.30 3.03 0.30 1.03
3.0 1.12 0.29 3.04 3.06 1.04

3.0 0.3 0.3 1.13 2.97 0.31 0.28 1.03
3.0 1.12 2.98 0.30 2.76 0.97

3.0 0.3 1.13 3.05 3.10 0.32 1.16
3.0 1.14 2.91 2.90 3.01 0.98

Table 19: Simulated binary GLMM model with a single categorical feature, estimated vari-
ance components on average.

σ2b q lme4 LMMNN

0.1 102 0.06 0.08
103 0.06 0.09
104 0.06 0.1

1 102 0.52 0.77
103 0.6 0.87
104 0.56 0.95

10 102 6.47 3.64
103 6.22 3.59
104 5.77 5.35
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Appendix 3. Mean runtime and number of epochs

Table 20: Simulated model with a single categorical feature, mean runtime (minutes) and
number of epochs in parentheses.

g(Z) = Z

σ2b q Ignore OHE Embeddings lme4 MeNets LMMNN

0.1 102 0.5 (26) 0.7 (31) 0.7 (24) 0.01 (–) 26.4 (96) 2.2 (40)
103 0.7 (35) 0.6 (16) 0.6 (20) 0.01 (–) 48.3 (259) 2.9 (56)
104 0.6 (29) 1.4 (12) 0.4 (14) 0.02 (–) 47.5 (275) 2.4 (43)

1 102 0.5 (22) 0.6 (31) 0.7 (26) 0.01 (–) 21.2 (82) 2.5 (47)
103 0.8 (34) 0.4 (16) 0.6 (21) 0.01 (–) 79.3 (434) 2.5 (47)
104 0.5 (26) 1.7 (13) 0.5 (15) 0.02 (–) 51.1 (300) 2.2 (41)

10 102 0.6 (32) 0.4 (20) 0.8 (29) 0.01 (–) 17.6 (65) 2.1 (41)
103 0.6 (31) 0.5 (18) 0.6 (21) 0.01 (–) 34.5 (196) 2.2 (37)
104 0.7 (33) 1.8 (16) 0.6 (20) 0.02 (–) 50.9 (300) 2.8 (50)

g(Z) = ZW

0.1 102 0.8 (33) 0.5 (24) 1.0 (37) 0.01 (–) 13.3 (63) 1.8 (31)
103 0.8 (42) 0.5 (17) 0.6 (22) 0.01 (–) 44.1 (279) 0.9 (14)
104 0.8 (36) 1.6 (17) 1.0 (30) 0.02 (–) 54.9 (300) 1.5 (17)

1 102 0.7 (32) 0.4 (19) 0.7 (26) 0.01 (–) 15.3 (76) 2.3 (42)
103 0.7 (34) 0.9 (33) 1.0 (37) 0.01 (–) 23.9 (148) 1.0 (16)
104 0.7 (33) 2.0 (21) 0.7 (26) 0.02 (–) 27.1 (146) 2.2 (27)

10 102 0.7 (34) 0.6 (24) 0.6 (21) 0.01 (–) 10.8 (55) 2.5 (46)
103 0.5 (25) 0.4 (14) 0.3 (11) 0.01 (–) 2.9 (17) 1.4 (24)
104 0.4 (18) 2.2 (23) 0.7 (22) 0.02 (–) 6.0 (32) 3.1 (39)

g(Z) = ZW * cos(ZW)

0.1 102 0.8 (35) 0.7 (28) 1.0 (29) 0.02 (–) 20.7 (97) 1.6 (30)
103 1.0 (44) 0.6 (17) 0.6 (20) 0.01 (–) 20.0 (148) 0.8 (14)
104 0.8 (34) 1.7 (17) 0.9 (27) 0.02 (–) 51.7 (300) 1.6 (14)

1 102 0.9 (39) 0.6 (24) 0.7 (23) 0.01 (–) 12.5 (68) 1.9 (38)
103 0.7 (29) 0.7 (25) 1.0 (32) 0.01 (–) 23.7 (172) 0.9 (15)
104 0.7 (29) 1.9 (21) 1.5 (47) 0.01 (–) 23.0 (146) 2.5 (23)

10 102 0.7 (30) 0.7 (29) 1.1 (35) 0.02 (–) 13.8 (58) 2.0 (41)
103 0.6 (26) 0.4 (12) 0.4 (11) 0.01 (–) 2.1 (15) 1.1 (20)
104 0.4 (18) 2.5 (32) 0.5 (15) 0.01 (–) 3.1 (19) 3.6 (35)
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Table 21: Simulated model with 3 categorical features, mean runtime (minutes) and number
of epochs in parentheses.

g(Z) = Z

σ2b1 σ2b2 σ2b3 Ignore OHE Embed. lme4 LMMNN

0.3 0.3 0.3 0.8 (40) 1.0 (16) 0.6 (16) 0.07 (–) 4.1 (65)
3.0 0.7 (31) 1.1 (17) 0.6 (16) 0.07 (–) 3.2 (44)

3.0 0.3 0.6 (30) 1.2 (21) 0.6 (16) 0.07 (–) 3.4 (45)
3.0 0.5 (24) 1.2 (20) 0.7 (19) 0.07 (–) 3.7 (47)

3.0 0.3 0.3 0.8 (36) 1.1 (18) 0.7 (17) 0.08 (–) 3.3 (38)
3.0 0.6 (27) 1.2 (21) 0.8 (20) 0.06 (–) 3.9 (45)

3.0 0.3 0.6 (27) 1.3 (23) 0.8 (20) 0.07 (–) 4.4 (50)
3.0 0.7 (32) 1.1 (19) 0.7 (18) 0.07 (–) 4.4 (49)

g(Z) = ZW

0.3 0.3 0.3 0.6 (28) 1.1 (18) 1.5 (40) 0.1 (–) 1.2 (16)
3.0 0.6 (27) 1.0 (15) 0.6 (14) 0.1 (–) 2.2 (33)

3.0 0.3 0.7 (34) 0.9 (14) 0.6 (16) 0.1 (–) 1.9 (29)
3.0 0.5 (25) 1.6 (32) 0.8 (20) 0.1 (–) 2.4 (37)

3.0 0.3 0.3 0.5 (22) 1.0 (17) 0.9 (24) 0.1 (–) 1.5 (22)
3.0 0.6 (27) 1.0 (14) 0.5 (12) 0.1 (–) 2.1 (33)

3.0 0.3 0.7 (32) 0.9 (13) 0.5 (12) 0.1 (–) 2.1 (32)
3.0 0.5 (23) 0.9 (13) 0.5 (13) 0.1 (–) 2.8 (45)

g(Z) = ZW * cos(ZW)

0.3 0.3 0.3 0.8 (35) 1.2 (21) 1.3 (30) 0.1 (–) 1.2 (15)
3.0 0.5 (22) 1.1 (17) 0.5 (12) 0.1 (–) 1.6 (24)

3.0 0.3 0.6 (27) 0.9 (14) 0.7 (16) 0.1 (–) 1.4 (20)
3.0 0.8 (33) 0.9 (13) 0.7 (16) 0.1 (–) 1.9 (28)

3.0 0.3 0.3 0.9 (31) 0.9 (13) 1.4 (33) 0.1 (–) 1.2 (17)
3.0 0.6 (25) 1.0 (15) 0.7 (15) 0.1 (–) 1.7 (26)

3.0 0.3 0.7 (30) 1.1 (18) 1.0 (24) 0.1 (–) 1.6 (25)
3.0 0.6 (25) 1.2 (21) 1.0 (23) 0.1 (–) 2.1 (32)
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Table 22: Simulated model with longitudinal data, mean runtime (minutes) and number of
epochs in parentheses.

Mode: Random

σ2b0 σ2b1 σ2b2 Ignore OHE Embed. lme4 LSTM LMMNN

0.3 0.3 0.3 0.9 (42) 1.4 (13) 0.5 (15) 0.9 (–) 27.1 (104) 2.9 (47)
3.0 0.7 (32) 1.4 (13) 0.4 (15) 0.6 (–) 31.2 (110) 3.0 (50)

3.0 0.3 0.7 (29) 1.4 (13) 0.4 (14) 0.7 (–) 35.8 (118) 2.8 (46)
3.0 0.8 (34) 1.4 (13) 0.5 (15) 0.7 (–) 29.9 (107) 2.5 (41)

3.0 0.3 0.3 0.7 (30) 1.4 (13) 0.5 (16) 0.6 (–) 30.1 (104) 3.5 (58)
3.0 0.6 (25) 1.5 (14) 0.5 (16) 0.4 (–) 35.3 (132) 3.3 (55)

3.0 0.3 0.6 (25) 1.4 (14) 0.5 (16) 0.8 (–) 41.5 (147) 3.8 (63)
3.0 0.6 (28) 1.5 (14) 0.5 (16) 0.5 (–) 41.0 (128) 2.8 (45)

Mode: Future

0.3 0.3 0.3 0.5 (22) 1.5 (13) 0.5 (15) 1.68 (–) 39.1 (129) 3.0 (48)
3.0 0.7 (31) 1.4 (13) 0.4 (15) 1.38 (–) 32.5 (114) 3.1 (51)

3.0 0.3 0.6 (27) 1.5 (13) 0.4 (15) 1.21 (–) 29.7 (102) 2.8 (46)
3.0 0.8 (36) 1.4 (13) 0.4 (14) 1.39 (–) 40.1 (133) 2.8 (45)

3.0 0.3 0.3 0.7 (32) 1.5 (14) 0.5 (17) 1.29 (–) 35.6 (116) 3.4 (55)
3.0 0.7 (31) 1.5 (14) 0.5 (17) 1.14 (–) 42.0 (154) 3.3 (54)

3.0 0.3 0.7 (33) 1.5 (14) 0.5 (17) 0.81 (–) 32.0 (118) 3.0 (48)
3.0 1.0 (43) 1.5 (13) 0.6 (18) 1.22 (–) 42.2 (140) 3.1 (51)
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Table 23: Simulated model with spatial data with a RBF kernel. Mean runtime (minutes)
and number of epochs in parentheses.

σ2b0 σ2b1 q OHE Embed. CNN SVDKL LMMNN-E LMMNN-R

0.1 0.1 102 0.8 (34) 0.7 (25) 3.9 (31) 8.9 (46) 2.4 (36) 3.0 (55)
103 0.6 (20) 0.6 (21) 6.4 (52) 8.0 (41) 3.5 (54) 2.8 (53)
104 1.5 (14) 0.5 (16) 3.6 (27) 9.6 (44) 2.9 (45) 3.2 (47)

1.0 102 0.7 (30) 1.2 (44) 4.4 (36) 10.1 (51) 3.0 (46) 2.3 (43)
103 0.5 (17) 0.6 (21) 5.5 (45) 5.8 (29) 3.3 (51) 2.9 (54)
104 1.4 (13) 0.4 (15) 3.3 (26) 7.8 (36) 1.8 (28) 3.8 (59)

10.0 102 0.7 (33) 0.7 (26) 3.8 (31) 6.3 (32) 2.7 (42) 2.4 (45)
103 0.5 (17) 0.6 (22) 3.4 (28) 5.8 (29) 4.0 (62) 1.9 (34)
104 1.4 (13) 0.5 (16) 3.3 (25) 8.4 (37) 2.5 (38) 2.8 (42)

1.0 0.1 102 0.6 (28) 0.8 (28) 5.3 (43) 7.8 (40) 2.3 (35) 2.1 (38)
103 0.5 (19) 0.8 (29) 6.2 (50) 14.1 (71) 5.0 (79) 2.7 (48)
104 1.5 (15) 0.5 (19) 7.1 (56) 16.5 (76) 5.7 (92) 3.5 (55)

1.0 102 0.5 (22) 1.0 (37) 4.6 (37) 7.7 (39) 3.2 (51) 2.3 (42)
103 0.5 (18) 0.7 (25) 5.8 (47) 8.8 (45) 2.3 (36) 3.0 (55)
104 1.5 (15) 0.5 (17) 4.3 (34) 9.8 (45) 2.7 (42) 2.4 (36)

10.0 102 0.5 (21) 0.8 (27) 5.0 (40) 7.3 (37) 3.7 (60) 2.6 (47)
103 0.6 (19) 0.7 (26) 5.2 (43) 8.9 (45) 3.6 (58) 2.5 (44)
104 1.4 (13) 0.5 (17) 5.5 (43) 7.1 (33) 3.0 (47) 3.4 (56)

10.0 0.1 102 0.6 (26) 1.4 (48) 4.6 (38) 8.2 (41) 4 (60) 3.4 (53)
103 0.6 (21) 1.0 (36) 6.4 (52) 29.0 (144) 8.5 (127) 2.9 (49)
104 1.6 (16) 0.9 (30) 10.8 (85) 51.2 (236) 23.1 (100) 2.7 (41)

1.0 102 0.7 (34) 1.1 (39) 5.8 (47) 5.4 (29) 3.9 (58) 2.6 (45)
103 0.7 (24) 1.0 (34) 6.2 (51) 11.6 (60) 5.4 (81) 3.2 (58)
104 1.9 (22) 0.9 (31) 7.9 (62) 10.6 (49) 4.4 (66) 2.9 (45)

10.0 102 0.5 (24) 1.2 (43) 5.2 (42) 5.8 (34) 4.0 (60) 2.7 (49)
103 0.8 (28) 0.7 (25) 5.2 (42) 5.7 (33) 2.8 (40) 2.4 (42)
104 1.9 (22) 1.0 (34) 5.4 (42) 6.3 (30) 4.0 (61) 3.1 (51)
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Table 24: Simulated model with 2 high-cardinality categorical features and a spatial feature
with 2-D locations with a RBF kernel. Mean runtime (minutes) and number of
epochs in parentheses.

σ2b σ2c σ2d0 Ignore OHE Embed. LMMNN

0.3 0.3 0.3 0.7 (32) 2.3 (15) 0.7 (18) 3.7 (53)
3.0 1.3 (62) 2.7 (19) 0.8 (22) 3.1 (42)

3.0 0.3 0.8 (37) 2.7 (18) 1.0 (26) 3.8 (57)
3.0 1.5 (72) 3.1 (22) 1.1 (29) 3.7 (54)

3.0 0.3 0.3 0.7 (30) 2.8 (17) 0.9 (22) 3.6 (52)
3.0 1.8 (84) 3.3 (24) 1.0 (27) 3.6 (54)

3.0 0.3 0.7 (34) 2.9 (18) 0.9 (23) 2.8 (39)
3.0 1.4 (66) 2.8 (17) 1.1 (30) 3.3 (47)

Table 25: Simulated binary GLMM model with a single categorical feature. Mean runtime
(minutes) and number of epochs in parentheses.

σ2b q Ignore OHE Embeddings lme4 LMMNN

0.1 102 2.1 (20) 2.1 (20) 3.0 (20) 1.3 (–) 8.4 (21)
103 2.4 (23) 1.6 (14) 2.1 (14) 1.4 (–) 10.8 (23)
104 2.9 (28) 2.3 (11) 1.9 (12) 2.8 (–) 28.4 (25)

1 102 2.8 (26) 2.4 (22) 3.8 (26) 1.2 (–) 12.5 (30)
103 2.7 (26) 1.6 (14) 2.4 (16) 1.7 (–) 15.9 (34)
104 3.2 (30) 2.3 (11) 2.0 (12) 9.4 (–) 35.3 (31)

10 102 3.2 (30) 2.6 (24) 3.6 (24) 1.4 (–) 9.4 (23)
103 2.8 (27) 1.6 (14) 2.5 (16) 1.9 (–) 17.5 (38)
104 3.1 (30) 2.5 (12) 2.0 (13) 6.4 (–) 33.5 (28)

Table 26: Real datasets with K categorical features: mean runtime (minutes) and number
of epochs in parentheses.

Dataset Ignore OHE Embed. lme4 LMMNN

Imdb 0.9 (38) – 0.9 (28) 0.6 (–) 2.41 (31)
News 0.5 (16) – 0.5 (23) 0.7 (–) 1.4 (25)
InstEval 0.3 (37) 0.5 (40) 0.9 (55) 0.2 (–) 1.5 (23)
Spotify 0.2 (13) – 0.3 (39) 0.1 (–) 1.0 (39)
UKB-blood 0.5 (28) 0.4 (11) 0.5 (12) 0.6 (–) 2.0 (34)
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Table 27: Longitudinal datasets: mean runtime (minutes) and number of epochs in paren-
theses.

Mode: Random

Dataset Ignore OHE Embed. lme4 LSTM LMMNN

Rossmann 1.3 (100) 0.4 (24) 0.9 (54) 0.1 (–) 8.6 (32) 1.3 (42)
AUimport 1.4 (34) 1.2 (17) 1.8 (36) 0.1 (–) 15.8 (139) 2.9 (34)
UKB SBP 5.0 (36) – 4.6 (24) 1.4 (–) – 14.2 (49)

Mode: Future

Rossmann 1.0 (90) 0.3 (23) 0.5 (38) 0.1 (–) 10.0 (37) 1.1 (46)
AUimport 1.3 (43) 2.8 (55) 1.9 (48) 0.1 (–) 14.4 (129) 2.4 (36)
UKB SBP 3.6 (33) – 4.3 (28) 1.3 (–) – 11.6 (47)

Table 28: Spatial datasets with an optionally high-cardinality categorical feature: mean
runtime (minutes) and number of epochs in parentheses.

Without high-cardinality categorical features

Dataset Ignore Embed. CNN SVDKL LMMNN-E LMMNN-R

Income 1.0 (55) 1.2 (54) 4.3 (44) 17.6 (130) 2.0 (46) 1.8 (29)
Asthma 0.7 (41) 1.0 (46) 2.5 (25) 12.6 (109) 1.6 (35) 2.5 (25)
AirQuality 0.8 (39) 1.5 (56) 3.4 (34) 24.6 (162) 2.5 (51) 1.5 (28)
Radiation 1.3 (8) 4.1 (21) 13.2 (15) 34.5 (30) 6.9 (18) 5.1 (10)
Airbnb 0.4 (26) 0.2 (12) 3.0 (43) 4.2 (42) 1.3 (41) 0.7 (18)
Cars 1.3 (52) 1.5 (47) 4.7 (34) 9.6 (54) 3.7 (50) 6.9 (78)

With high-cardinality categorical features

Airbnb 0.4 (33) 1.5 (79) – – – 2.8 (22)
Cars 0.8 (26) 1.8 (38) – – – 6.5 (69)

Table 29: Spatial datasets with an optionally high-cardinality categorical feature: mean
runtime (minutes) and number of epochs in parentheses.

Dataset Ignore OHE Embed. lme4 LMMNN

Airbnb 0.4 (24) – 0.3 (13) – 8.9 (35)
Cars 0.70 (21) 2.5 (13) 0.6 (12) 133 (–) 5.5 (32)
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Appendix 4. Real datasets additional details

Table 30: Real datasets description: Part I

Multiple categorical features

Dataset Source Availability Reference Description

Imdb Kaggle Free Wrandrall
(2021)

86K movie titles scraped from imdb.com
along with their genre, director, date of re-
lease a 1-10 mean score and a textual descrip-
tion which is processed to top 1-gram tokens
count, see ETL.

News UCI ML Free Moniz and
Torgo (2018)

81K news items and their number of shares
on Facebook. Headline is processed to top
1-gram tokens count, see ETL.

InstEval lme4 Free Bates et al.
(2015)

73K students 1-5 evaluations of professors
from ETH Zurich

Spotify Tidy Tuesday Free Mock (2022) 28K songs with their date release, genre,
artist, album as well as 12 audio features
from which we chose to predict the first one,
danceability.

UKB-
blood

UK Biobank Authorized Sudlow et al.
(2015)

Subset of 42K UK Biobank with cancer his-
tory. To predict triglycerides and other
chemicals level in blood we use features such
as gender, age, height, weight, skin color and
more, see ETL.

Longitudinal data and repeated measures

Rossmann Kaggle Free Rossmann
(2016)

Total monthly sales in $ from over 1.1K
stores around Europe. Features include
month, number of holiday days, number of
days with promotion and more, see ETL.

AUimport Kaggle Free United-
Nations
(2017);
Ritchie et al.
(2020)

Total yearly import in $ of 5K commodi-
ties in Australia 1988-2016. Features come
by joining to various yearly data from our-
worldindata.org such as surface temperature,
population size, CO2 emissions and wheat
yield. See ETL.

UKB-
SBP

UK Biobank Authorized Sudlow et al.
(2015)

469K subjects of the UK Biobank cohort for
which we have 1-4 SBP measures. Time-
varying features include gender, age, height,
different food intakes, smoking habits and
many more, see ETL.
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Table 31: Real datasets description: Part II

Spatial data and spatial-categorical combinations

Income Kaggle Free MuonNeutrino
(2019)

Mean yearly income in $ for 71K US census
tracts, data was previously downloaded from
the US Census Bureau. In addition to longi-
tude and latitude features include population
size, share of men, rate of employment and
more, see ETL.

Asthma CDC Free CDC (2017) Adult asthma rate in 69K US census tracts
according to CDC in 2019. Additional fea-
tures come from the income data, see ETL.

AirQuality CDC Free CDC (2020) PM2.5 particles level in 71K US census tracts
according to CDC, on 1/1/2016. Additional
features come from the income data, see
ETL.

Radiation Kaggle Free Safecast
(2020)

A 10% sample from 6.5M radiation measure-
ments in over 1K locations in Japan in 2017
by Safecast.

Airbnb Google Drive Free Kalehbasti
et al. (2019)

50K Airbnb listings in NYC scraped by Kale-
hbasti et al. (2019), ETL follows their steps
exactly. In addition to longitude and lati-
tude, features include floor number, neigh-
borhood, is there a bathtub, some top 1-
ngram tokens counts from description and
more, see ETL.

Cars Kaggle Free Reese (2020) 97K cars and trucks with unique VIN from
Cragslist and their price in $, price was fil-
tered from 1K$ to 300K$. In addition to
longitude and latitude, features include man-
ufacturer, year of make, size, condition and
more, see ETL.
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Appendix 5. Additional figures

Figure 8: Selected multiple categorical datasets predicted vs. true results and category size
distribution, only one categorical feature is presented.

Figure 9: Longitudinal datasets predicted vs. true results and number of repeated measures
distribution.
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Figure 10: Selected spatial datasets predicted vs. true results and number of measurements
in location distribution.
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