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Abstract

Model-based reinforcement learning (RL), which finds an optimal policy after establishing
an empirical model, has long been recognized as one of the cornerstones of RL. It is espe-
cially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the
planning phases, and avoids the non-stationarity problem when all agents are improving
their policies simultaneously. Though intuitive and widely-used, the sample complexity of
model-based MARL algorithms has not been fully investigated. In this paper, we aim to ad-
dress the fundamental question about its sample complexity. We study arguably the most
basic MARL setting: two-player discounted zero-sum Markov games, given only access to
a generative model. We show that model-based MARL achieves a sample complexity of
Õ(|S||A||B|(1− γ)−3ε−2) for finding the Nash equilibrium (NE) value up to some ε error,
and the ε-NE policies with a smooth planning oracle, where γ is the discount factor, and
S,A,B denote the state space, and the action spaces for the two agents. We further show
that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm
is reward-agnostic, where the algorithm queries state transition samples without reward
knowledge, by establishing a matching lower bound. This is in contrast to the usual reward-
aware setting, where the sample complexity lower bound is Ω̃(|S|(|A|+ |B|)(1− γ)−3ε−2),
and this model-based approach is near-optimal with only a gap on the |A|, |B| dependence.
Our results not only illustrate the sample-efficiency of this basic model-based MARL ap-
proach, but also elaborate on the fundamental tradeoff between its power (easily handling
the reward-agnostic case) and limitation (less adaptive and suboptimal in |A|, |B|), which
particularly arises in the multi-agent context.
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1. Introduction

Recent years have witnessed numerous successes of reinforcement learning (RL) in many
applications, e.g., playing strategy games (OpenAI, 2018; Vinyals et al., 2019), playing the
game of Go (Silver et al., 2016, 2017), autonomous driving (Shalev-Shwartz et al., 2016),
and security (Nguyen and Reddi, 2019; Zhang et al., 2019b). Most of these successful
applications involve more than one decision-maker, giving birth to the surging interests and
efforts in studying multi-agent RL (MARL) recently, especially on the theoretical side (Wei
et al., 2017; Zhang et al., 2018a; Sidford et al., 2020; Zhang et al., 2019a; Xie et al., 2020;
Shah et al., 2020; Bai and Jin, 2020; Bai et al., 2020). See also comprehensive surveys on
MARL in Busoniu et al. (2008); Zhang et al. (2021a); Nguyen et al. (2020).

In general MARL, all agents affect both the state transition and the rewards of each
other, while each agent may possess different, sometimes even totally conflicting objectives.
Without knowledge of the model, the agents have to resort to data to either estimate the
model, improve their own policy, and/or infer other agents’ policies. One fundamental chal-
lenge in MARL is the emergence of non-stationarity during the learning process (Busoniu
et al., 2008; Zhang et al., 2021a): when multiple agents improve their policies concurrently
and directly using samples, the environment becomes non-stationary from each agent’s per-
spective. This has posed great challenge to development of effective MARL algorithms based
on single-agent ones, especially model-free ones, as the condition for guaranteeing conver-
gence in the latter fails to hold in MARL. One tempting remedy for this non-stationarity
issue is the simple while intuitive method — model-based1 MARL: one first estimates an
empirical model using data, and then finds the optimal, more specifically, equilibrium poli-
cies in this empirical model, via planning. Model-based MARL naturally decouples the
learning and planning phases, and can be incorporated with any black-box planning algo-
rithm that is efficient, e.g., value iteration (Shapley, 1953) and (generalized) policy iteration
(Patek, 1997; Pérolat et al., 2015). More importantly, after estimating the model, this ap-
proach can potentially handle more than one MARL tasks with different reward functions
but a common transition model, without re-sampling the data. Being able to handle this
reward-agnostic case greatly expands the power of such a model-based approach.

Though intuitive and widely-used, rigorous theoretical justifications for these model-
based MARL methods are relatively rare. In this work, our goal is to answer the following
standing question: how good is the performance of this näıve “plug-in” method in terms
of non-asymptotic sample complexity? To this end, we focus on arguably the most basic
MARL setting since Littman (1994): two-player discounted zero-sum Markov games (MGs)
with simultaneous-move agents, given only access to a generative model. This generative
model allows agents to sample the MG, and query the next state from the transition process,
given any state-action pair as input. The generative model setting has been a benchmark
in RL when studying the sample efficiency of algorithms (Kearns and Singh, 1999; Kakade,
2003; Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2019a). Indeed, this model
allows for the study of sample-based multi-agent planning over a long horizon, and helps

1. Note that we here follow the convention of model-based approach in the generative model setting (Azar
et al., 2013; Agarwal et al., 2019a; Li et al., 2020), which separates these two stages explicitly. In general,
model-based RL approaches do not have to separate the two stages, see e.g., Bayesian RL (Ghavamzadeh
et al., 2015), and model-based RL in online exploration settings (Azar et al., 2017; Bai and Jin, 2020).
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develop better understanding of the statistical properties of the algorithms, decoupled from
the exploration complexity.

Motivated by recent minimax optimal complexity results for single-agent model-based
RL (Agarwal et al., 2019a), we address the question above with a positive answer: the
model-based MARL approach can achieve near-minimax optimal sample complexity — in
terms of dependencies on the size of the state space, the horizon, and the desired accuracy
— for finding both the Nash equilibrium (NE) value and the NE policies. We also provide
a separation in the achievable sample complexity, unique to the multi-agent setting, where,
with regards to the dependencies on the number of actions, the näıve model-based approach
is sub-optimal. A detailed description is provided next.

Contributions. We establish the sample complexities of model-based MARL in zero-
sum discounted Markov games, when a generative model is available. First, observing
that the sampling process in this setting is agnostic to the reward function, we distinguish
between two algorithmic frameworks: reward-aware and reward-agnostic cases, depending
on whether the reward is revealed before or after the sampling. The model-based approach
can inherently handle both cases, especially the latter case with multiple reward functions,
without re-sampling the data. Second, by establishing lower bounds for both cases, we show
that there is indeed a separation in sample complexity, which is unique in the multi-agent
setting. Third, we show that up to some logarithmic factors, the model-based approach
is indeed minimax optimal in all parameters in the more challenging reward-agnostic case,
and has only a gap on the |A|, |B| (both agents’ action space size) dependence in the
reward-aware case. This separation and the (near-)minimax results have not only justified
the sample efficiency of this simple approach, but also highlighted both its power (easily
handling multiple reward functions known in hindsight) and its limitation (less adaptive and
can hardly achieve optimal complexity with reward knowledge), particularly arising in the
multi-agent RL context. These results are first-of-their-kind in model-based MARL, and
among the first (near-)minimax results in general MARL, to the best of our knowledge. We
also believe that this separation may shed some light on the choice of model-free and model-
based approaches in various MARL scenarios in practice, and provide new understandings
for algorithm-design in other MARL settings, e.g., with no generative model, and going
beyond two-player zero-sum MGs.

Related Work. Stemming from the formative work Littman (1994), MARL has been
mostly studied under the framework of Markov games (Shapley, 1953). There has been
no shortage of provably convergent MARL algorithms ever since then (Littman, 2001; Hu
and Wellman, 2003; Greenwald et al., 2003). However, most of these early results are Q-
learning-based (thus model-free) and asymptotic, with no sample complexity guarantees.
To establish non-asymptotic results, Pérolat et al. (2015); Pérolat et al. (2016a,b); Fan et al.
(2019); Zhang et al. (2018b) have studied the sample complexity of batch model-free MARL
methods. There are also increasing interests in policy-based (thus also model-free) methods
for solving special MGs with non-asymptotic convergence guarantees (Pérolat et al., 2018;
Srinivasan et al., 2018; Zhang et al., 2019a). No result on the (near-)minimax optimality of
these complexities has been established prior to the present work.

Specific to the two-player zero-sum setting, Jia et al. (2019) and Sidford et al. (2020)
have considered turn-based MGs, a special case of the simultaneous-move MGs considered
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here, with a generative model. Specifically, Sidford et al. (2020) established near-optimal
sample complexity of Õ((1 − γ)−3ε−2) for a variant of Q-learning for this setting. More
recently, Bai and Jin (2020); Xie et al. (2020) have established both regret and sample com-
plexity guarantees for episodic zero-sum MGs, without a generative model, with focus on
efficient exploration. The work in Shah et al. (2020) also focused on the turn-based setting,
and combined Monte-Carlo Tree Search and supervised learning to find the NE values. In
contrast, model-based MARL theory has relatively limited literature. Brafman and Ten-
nenholtz (2002) proposed the R-MAX algorithm for average-reward MGs, with polynomial
sample complexity. Wei et al. (2017) developed a model-based upper confidence algorithm
with polynomial sample complexities for the same setting. These methods differ from ours,
as they are either specific model-free approaches, or not clear yet if they are (near-)minimax
optimal in the corresponding setups. Concurrent to our work, Bai et al. (2020) developed
model-free algorithms with near-optimal sample complexities in episodic settings without a
generative model. The results are optimal in |S|, |A|, |B| dependence, but not in the hori-
zon H. Finally, we note that MARL in Markov games is not restricted to the competitive
setting of two-player zero-sum, and the studies in (multi-player) cooperative/potential set-
tings (Leonardos et al., 2021; Zhang et al., 2021b; Ding et al., 2022; Sayin et al., 2022) and
general-sum settings (Hu and Wellman, 2003; Liu et al., 2021; Jin et al., 2021; Mao et al.,
2022) also exist, and is not the focus of the present paper.

In the single-agent regime, there has been extensive literature on non-asymptotic effi-
ciency of RL in MDPs; see Kearns and Singh (1999); Kakade (2003); Strehl et al. (2009);
Jaksch et al. (2010); Azar et al. (2013); Osband and Van Roy (2014); Dann and Brunskill
(2015); Azar et al. (2017); Wang (2017); Sidford et al. (2018); Jin et al. (2018); Li et al.
(2020). Amongst them, we highlight the minimax optimal ones: Azar et al. (2013) and
Azar et al. (2017) have provided minimax optimal results for sample complexity and regret
in the settings with and without a generative model, respectively. Specifically, Azar et al.
(2013) has shown that to achieve the ε-optimal value in Markov decision processes (MDPs),
at least Ω̃(|S||A|(1− γ)−3ε−2) samples are needed, for ε ∈ (0, 1]. They also showed that to
find an ε-optimal policy, the same minimax complexity order in 1−γ and ε can be attained,
if ε ∈ (0, (1 − γ)−1/2|S|−1/2] and the total sample complexity is Õ(|S|2|A|), which is in
fact linear in the model size. Later, Sidford et al. (2018) has proposed a Q-learning based
approach to attain this lower bound and remove the extra dependence on |S|, for ε ∈ (0, 1].
More recently, Agarwal et al. (2019a) developed new techniques based on absorbing MDPs,
to show that model-based RL also achieves the lower bound for finding an ε-optimal policy,
with a larger ε range of (0, (1−γ)−1/2]2. Finally, our separation of the reward-agnostic case
is motivated by the recent novel framework of reward-free RL in Jin et al. (2020).

2. Preliminaries

Zero-Sum Markov Games. Consider a zero-sum MG3 G characterized by (S,A,B, P, r, γ),
where S is the state space; A,B are the action spaces of agents 1 and 2, respectively;

2. While preparing the present work, Li et al. (2020) has further improved the minimax optimal results in
Agarwal et al. (2019a), in that they cover the entire range of sample sizes. We believe the improvement
can also be incorporated in the MARL setting here, which is left as our future work.

3. We will hereafter refer to this model simply as a MG.
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P : S × A × B → ∆(S) denotes the transition probability of states; r : S × A × B → [0, 1]
denotes the reward function4 of agent 1 (thus −r is the bounded reward function of agent
2); and γ ∈ [0, 1) is the discount factor. The goal of agent 1 (agent 2) is to maximize
(minimize) the long-term accumulative discounted reward. In MARL, the agents aim to
achieve this goal using data samples collected from the model.

At each time t, agent 1 (agent 2) has a stationary (not necessarily deterministic) policy
µ : S → ∆(A) (ν : S → ∆(B)), where ∆(X ) denotes the space of all probability measures
over X , so that at ∼ µ(· | st) (bt ∼ ν(· | st)). The state makes a transition from st to st+1

following the probability distribution P (· | st, at, bt), given (at, bt). As in the MDP model,
one can define the state-value function under a pair of joint policies (µ, ν) as

V µ,ν(s) := Eat∼µ(· | st),bt∼ν(· | st)

[∑
t≥0

γtr(st, at, bt)

∣∣∣∣ s0 = s

]
.

Note that V µ,ν(s) ∈ [0, 1/(1−γ)] for any s ∈ S as r ∈ [0, 1], and the expectation is taken over
the random trajectory produced by the joint policy (µ, ν). Also, the state-action/Q-value
function under (µ, ν) is defined by

Qµ,ν(s, a, b) := Eat∼µ(· | st),bt∼ν(· | st)

[∑
t≥0

γtr(st, at, bt)

∣∣∣∣ s0 = s, a0 = a, b0 = b

]
.

The solution concept considered is the (approximate) Nash equilibrium, as defined below.

Definition 1 ((ε-)Nash Equilibrium) For a zero-sum MG (S,A,B, P, r, γ), a Nash equi-
librium policy pair (µ∗, ν∗) satisfies the following pair of inequalities5 for any s ∈ S,
µ ∈ ∆(A)|S|, and ν ∈ ∆(B)|S|

V µ,ν∗(s) ≤ V µ∗,ν∗(s) ≤ V µ∗,ν(s). (1)

If (1) holds with some ε > 0 relaxation, i.e., for some policy (µ′, ν ′), such that

V µ,ν′(s)− ε ≤ V µ′,ν′(s) ≤ V µ′,ν(s) + ε, (2)

then (µ′, ν ′) is an ε-Nash equilibrium policy pair.

By Shapley (1953); Patek (1997), there exists a Nash equilibrium policy pair (µ∗, ν∗) ∈
∆(A)|S| ×∆(B)|S| for two-player discounted zero-sum MGs. The state-value V ∗ := V µ∗,ν∗

is referred to as the value of the game. The corresponding Q-value function is denoted by
Q∗. The objective of the two agents is to find the NE policy of the MG, namely, to solve
the saddle-point problem

max
µ

min
ν

V µ,ν(s), (3)

for every s ∈ S, where the order of max and min can be interchanged (Von Neumann et al.,
1953; Shapley, 1953). For notational convenience, for any policy (µ, ν), we define

V µ,∗ = min
ν
V µ,ν , V ∗,ν = max

µ
V µ,ν , (4)

and denote the corresponding optimizers by ν(µ) and µ(ν), respectively. We refer to these
values and optimizers as the best-response values and policies, given µ and ν, respectively.

4. Our results can be generalized to other ranges of reward function by a standard reduction, see e.g.,
Sidford et al. (2018), and randomized reward functions.

5. In game theory, this pair is commonly referred to as saddle-point inequalities.
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Reward-Aware v.s. Reward-Agnostic. We first differentiate between two algorithmic
mechanisms in the generative-model setting. In the reward-aware case, the reward function
is either known to the agents (Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2019a;
Sidford et al., 2020; Li et al., 2020), or can at least be estimated from data. The reward
knowledge can thus be used to potentially guide the sampling process, making the algorithm
adaptive. In the reward-agnostic case, reward knowledge is not used to guide sampling, and
is possibly only revealed after the sampling. This especially fits in the scenario when there
is more than one reward function of interest, or when the reward function is engineered
iteratively, since it can now handle a class of reward functions that are not pre-specified,
without re-sampling the data for each of them. Existing works in single-agent settings
have no such a separation (Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2019b;
Li et al., 2020), as the sample complexity of estimating the reward function is typically
of lower order, and the reward function is thus assumed to be known. In particular, the
model-based approaches in Azar et al. (2013); Agarwal et al. (2019b); Li et al. (2020) are
reward-agnostic, while the model-free approaches in Sidford et al. (2018, 2020) are reward-
aware. Interestingly, in two-agent Markov games, whether the reward is known beforehand
or not may lead to different sample complexity lower-bounds, as we will see in §3.1. We
thus point out this separation here for clarity.

Remark 2 (Reward-Agnostic & Reward-Free) The reward-agnostic case we advocate
here is closely related to the recent novel algorithmic framework of reward-free RL (Jin
et al., 2020), where there are also two phases, exploration and planning, while trajectories
are only collected in the exploration phase, without any reward knowledge, and various
reward functions are fed to the algorithm for evaluation in the planning phase. One key
difference is that the reward-free setting aims to be effective for all reward function in the
planning phase simultaneously, while the reward-agnostic setting only focuses on handling
the underlying single-reward (or a few, e.g., polynomial number of, reward functions) that is
not pre-specified. Being less general than the pure reward-free setting, the sample complexity
bounds are thus possibly better, as we will show in §3.

Model-Based Approach with Generative Model. As a standard setting, suppose
that we have access to a generative model/sampler, which can provide us with samples
s′ ∼ P (· | s, a, b) for any (s, a, b). The model-based MARL algorithm simply calls the sampler
N times at each state-joint-action pair (s, a, b), and constructs an empirical estimate of the
transition model P , denoted by P̂ , following

P̂ (s′ | s, a, b) =
count(s′, s, a, b)

N
.

Here count(s′, s, a, b) is the number of times the state-action pair (s, a, b) forces a transition
to state s′. Note that the reward function is not estimated, in either the reward-aware or
reward-agnostic cases, as for the former, the sample complexity of estimating r is only a
lower order term, and r is thus typically assumed to be known (Azar et al., 2013; Sidford
et al., 2018; Agarwal et al., 2019a; Li et al., 2020); while for the latter, no reward information
is even available in the sampling processes. This model-based approach via estimating P
inherently handles both cases. Such a model-estimation can be implemented by both agents
independently.
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Planning Oracle. The reward function, together with the empirical transition model
P̂ and the components (S,A,B, γ) in the true model G, constitutes an empirical game
model Ĝ. As in Azar et al. (2013); Agarwal et al. (2019a); Jin et al. (2020); Li et al.
(2020) for single-agent RL, we assume that an efficient planning oracle is available, which
takes Ĝ as input, and outputs a policy pair (µ̂, ν̂). This oracle decouples the statistical
and computational aspects of the empirical model Ĝ. The output policy pair, referred
to as being near-equilibrium, is assumed to satisfy certain εopt-order of equilibrium, in
terms of value functions, and we evaluate the performance of (µ̂, ν̂) on the original MG
G. Common planning algorithms include value iteration (Shapley, 1953) and (generalized)
policy iteration (Patek, 1997; Pérolat et al., 2015), which are efficient in finding the (ε-)NE
of Ĝ. In addition, it is not hard to have an oracle that is smooth in generating policies,
i.e., the change of the approximate NE policies can be bounded by the changes of the NE
value. See our Definition 7 later for a formal statement. Finally, we note that our definition
of model-based approach in the generative-model-setting follows from that in (Azar et al.,
2013; Agarwal et al., 2019a; Li et al., 2020), which separates these two stages explicitly.
In general, model-based RL approaches do not have to separate the two stages, see e.g.,
Bayesian RL (Ghavamzadeh et al., 2015), and model-based RL in online exploration settings
(Azar et al., 2017; Bai and Jin, 2020).

3. Main Results

We now introduce the main results of this paper. For notational convenience, we use V̂ µ,ν ,
V̂ µ,∗, V̂ ∗,ν , and V̂ ∗ to denote the value under (µ, ν), the best-response value under µ and
ν, and the NE value, under the empirical game model Ĝ, respectively. A similar convention
is also used for Q-functions.

3.1 Lower Bounds

We first establish lower bounds on both approximating the NE value function and learning
the ε-NE policy pair, in both reward-aware and reward-agnostic cases.

Lemma 3 (Lower Bound for Reward-Aware Case) Let G be an unknown zero-sum
MG, and the agents learn in a reward-aware case, i.e., the reward knowledge is available
during sampling. Then, there exist ε0, δ0 > 0, such that for all ε ∈ (0, ε0), δ ∈ (0, δ0),
the sample complexity of learning an ε-NE policy pair, or an ε-approximate NE value, i.e.,
finding a Q̂ such that ‖Q̂−Q∗‖∞ ≤ ε for G, with a generative model with probability at least
1− δ, is Ω̃

(
|S|(|A|+ |B|)(1− γ)−3ε−2 log(1/δ)

)
.

The proof of Lemma 3, via a straightforward adaptation from the lower bounds for MDPs
(Azar et al., 2013; Feng et al., 2019), is provided in §A.1. In particular, one can design a
two-player zero-sum Markov game such that one of the players is dummy – she has no
control on the reward nor the transition dynamics. Then, the existing lower bound in Azar
et al. (2013); Feng et al. (2019) for MDPs leads to the desired result. Note that as in Azar
et al. (2013); Sidford et al. (2018, 2020); Agarwal et al. (2019a); Li et al. (2020), the reward
function is known in this case. As we will show momentarily, our sample complexity is tight
in 1− γ and |S|, while has a gap in |A|, |B| dependence (Õ(|A||B|) versus Ω̃(|A|+ |B|)). In
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§A.1, we discuss that the Ω̃(|A|+|B|) lower bound may not be improved in this reward-aware
case, and might be attainable by model-free algorithms instead (as Õ(|A||B|) is inherent in
model-based approaches due to estimating P ). Interestingly, in the concurrent work Bai
et al. (2020), under a different MARL setting, such an Ω̃(|A| + |B|) complexity is indeed
shown to be attainable by a model-free algorithm with online updates.

On the other hand, note that our model-based approach can inherently also handle the
more challenging reward-agnostic case. Indeed, estimating the transition model P seems
a bit of an overkill for the reward-aware case, in terms of sample complexity. A natural
two-part question then becomes: what is the sample complexity lower bound in this more
challenging reward-agnostic case, and can the model-based approach attain it? We formally
answer the first part of the question in the following theorem, whose proof is deferred to
§A.2, and answer the second part in §3.2 and §3.3.

Theorem 4 (Lower Bound for Reward-Agnostic Case) Let G be an unknown zero-
sum MG, and the agents learn in a reward-agnostic case, i.e., they first call the generative
model for sampling, without reward knowledge, and then are fed with the reward function
r in G, for finding either an ε-NE policy pair, or an ε-approximate NE value for G. Then,
there exist ε0, δ0 > 0, such that for all ε ∈ (0, ε0), δ ∈ (0, δ0), the sample complexity of
achieving either goal with probability at least 1− δ, is

Ω̃

(
|S||A||B|
(1− γ)3ε2

log
(1

δ

))
.

Compared to Lemma 3, the dependence on |A|, |B| is increased from Ω̃(|A| + |B|) to
Ω̃(|A||B|). Several remarks are now in order. First, this suggests that without guidance
from the reward, the reward-agnostic case can be more challenging to tackle. The intuition
is that, when the reward is only given in hindsight, which might be chosen adversarially,
costs the algorithm to at least sample at all |A||B| elements in the Q-value Q(s, ·, ·) at
each state s often enough. Second, when reduced to the single-agent setting (e.g., with
|B| = 1), such a separation disappears, showing its unique emergence in the multi-agent
setting, and explaining why these two cases were not differentiated explicitly in the single-
agent literature. Third, this lower bound is also related to the reward-free setting (Jin et al.,
2020) with a single unknown reward (not infinitely many as in Jin et al. (2020)).

The basic intuition regarding the separation between the lower bounds in reward-aware
and reward-agnostic cases, when compared to the single-agent setting (where there is no such
a separation), is the insensitivity of Nash equilibrium (NE) to the changes in payoff matrices
in two-player zero-sum games (Jansen, 1981). In particular, NE in general depends on the
joint behavior and preferences of both agents. Specifically, to construct the lower bound
(even in the single-agent case, see e.g., Azar et al. (2013); Feng et al. (2019)), we needed
to carefully perturb the Q-value function at each state-action pair of some null hypothesis
instance, so that the solution (which is the maximum in the single-agent case, and Nash
equilibrium in the multi-agent case) is also changed in the perturbed alternative hypothesis
cases. Hence, for each alternative hypothesis case, we need to change the NE by only
changing O(1) elements in the payoff matrix, i.e., the Q-value table. In the reward-aware
setting, since the reward is known (or can be estimated accurately with negligible sample
complexity), we can only perturb the transition matrix to perturb the Q-value table, which
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share the same size (i.e., the degree-of-freedom). Due to the insensitivity, we can hardly
construct Θ(|A||B|) different hard cases (as needed to construct a Ω(|A||B|) lower bound)
while by only perturbing O(1) elements in the transition matrix in each case. Note that
such a perturbation can be effective in the single-agent MDP setting, as by only perturbing
one element in the transition matrix, the maximum of the Q-value can be changed, see e.g.,
Azar et al. (2013); Feng et al. (2019).

In contrast, in the reward-agnostic setting, the reward information is given after the
sampling phase and the estimation of the model. This way, more freedom is allowed to
construct Θ(|A||B|) different hard cases, by adversarially choosing the reward function
afterwards. In particular, the Q-value will be affected by both the transition matrix and
the reward, and with polynomial number of reward functions, we were able to construct
Q-value tables in Θ(|A||B|) different hard cases. Note that taking a union bound over the
polynomial number of reward functions do not affect the total sample complexity, as it is still
dominated by the sample complexity of estimating the transition matrix. In other words,
the freedom of constructing and perturbing the reward functions adversarially afterwards
forces the algorithm to estimate all the elements in the transition matrix well, in order
to handle the reward-agnostic setting. This has been inherently done by our model-based
approach. We defer more details about the lower bounds comparison in Appendix A.

3.2 Near-Optimality in Finding ε-Approximate NE Value

We now establish the near-minimax optimal sample complexities of model-based MARL.
Note that theses results apply to both reward-aware and reward-agnostic cases, as the
implementation of our model-based approach does not rely on the reward function. We
start by showing the sample complexity to achieve an ε-approximate NE value.

Theorem 5 (Finding ε-Approximate NE Value) Suppose that the policy pair (µ̂, ν̂) is
obtained from the Planning Oracle using the empirical model Ĝ, which satisfies

‖V̂ µ̂,ν̂ − V̂ ∗‖∞ ≤ εopt.

Then, for any δ ∈ (0, 1] and ε ∈ (0, 1/(1− γ)1/2], if

N ≥
cγ log

[
c|S||A||B|(1− γ)−2δ−1

]
(1− γ)3ε2

for some absolute constant c, it holds that with probability at least 1− δ,∥∥Qµ̂,ν̂ −Q∗∥∥∞ ≤ 2ε

3
+

5γεopt
1− γ

,
∥∥Q̂µ̂,ν̂ −Q∗∥∥∞ ≤ ε+

9γεopt
1− γ

.

Theorem 5 shows that if the planning error εopt is made small, e.g., with the order of
O((1−γ)ε), then the Nash equilibrium Q-value can be estimated with a sample complexity
of Õ(|S||A||B|(1 − γ)−3ε−2), as N queries are made for each (s, a, b) pair. This planning
error can be achieved by performing any efficient black-box optimization technique over
the empirical model Ĝ. Examples of such oracles include value iteration (Shapley, 1953)
and (generalized) policy iteration (Patek, 1997; Pérolat et al., 2015). Moreover, note that,
in contrast to the single-agent setting, where only a max operator is used, a min max (or

9
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max min) operator is used in these algorithms, which involves solving a matrix game at
each state. This can be solved as a linear program (Osborne and Rubinstein, 1994), with
at best polynomial runtime complexity (Grötschel et al., 1981; Karmarkar, 1984). This in
total leads to an efficient polynomial runtime complexity algorithm.

As per Lemma 3, our Õ(|S||A||B|(1− γ)−3ε−2) complexity is near-minimax optimal for
the reward-aware case, in that it is tight in the dependence of 1− γ and |S|, and sublinear
in the model-size (which is |S|2|A||B|). However, there is a gap on the |A|, |B| dependence
(Õ(|A||B|) versus Õ(|A|+|B|)). Unfortunately, without further assumption on the MG, e.g.,
being turn-based, the model-based algorithm can hardly avoid the Õ(|S||A||B|) dependence,
as it is required to estimate each P̂ (· | s, a, b) accurately to perform the planning. It is only
minimax-optimal if the action-space size of one agent dominates the other’s (e.g., |A| � |B|).

In the reward-agnostic case, as per Theorem 4, Õ(|S||A||B|(1 − γ)−3ε−2) is indeed
minimax-optimal, and is tight in all |S|, |A|, |B| and 1− γ dependence. More significantly,
in this case, more than one reward functions can be handled simultaneously, as long as
the transition model is estimated accurately enough. Specifically, with M reward func-
tions, by letting δ = δ/M in Theorem 5 and using union bounds, the sample complex-
ity of finding ε-approximate NE value corresponding to all M reward functions becomes
Õ(log(M)|S||A||B|(1−γ)−3ε−2), which, with M being polynomial in |S|, |A|, |B|, is of the
same order as that in Theorem 5.

However, this (near-)optimal result does not necessarily lead to near-optimal sample
complexity for obtaining the ε-NE policies. We first use a direct translation to obtain such
an ε-NE policy pair based on Theorem 5, for any Planning Oracle.

Corollary 6 (Finding ε-NE Policy) Let (µ̂, ν̂) and N satisfy the conditions in Theorem
5. Let

ε̃ :=
2

1− γ
·
(
ε+

9γεopt
1− γ

)
,

and (µ̃, ν̃) be the one-step Nash equilibrium of Q̂µ̂,ν̂ , namely, for any s ∈ S(
µ̃(· | s), ν̃(· | s)

)
∈ argmax

u∈∆(A)
min

ϑ∈∆(B)
Ea∼u,b∼ϑ

[
Q̂µ̂,ν̂(s, a, b)

]
.

Then, with probability at least 1− δ,

V ∗,ν̃ − 2ε̃ ≤ V µ̃,ν̃ ≤ V µ̃,∗ + 2ε̃, (5)

namely, (µ̃, ν̃) constitutes a 2ε̃-Nash equilibrium policy pair.

Corollary 6 is equivalently to saying that the sample complexity of achieving an ε-
NE policy pair is Õ((1− γ)−5ε−2). This is worse than the model-based single-agent setting
(Agarwal et al., 2019a), and also worse than both the model-free single-agent (Sidford et al.,
2018) and turn-based two-agent (Sidford et al., 2020) settings, where Õ((1− γ)−3ε−2) can
be achieved for learning the optimal policy. This also has a gap from the lower bound in
both Lemma 3 and Theorem 4. Note that the above sample complexity still matches that
of the Empirical QVI in Azar et al. (2013) if ε ∈ (0, 1] for single-agent RL, but with a larger
choice of ε of (0, (1− γ)−1/2]. As the Markov game setting is more challenging than MDPs,

10
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it is not clear yet if the lower bounds in Lemma 3 and Theorem 4 in finding ε-NE policies
can be achieved, using a general Planning Oracle. In contrast, we show next that a stable
Planning Oracle can indeed (almost) match the lower bounds.

3.3 Near-Optimality in Finding ε-NE Policy

Admittedly, Corollary 6 does not fully exploit the model-based approach, since it finds the
NE policy according to the Q-value estimate Q̂µ̂,ν̂ , instead of using the output policy pair
(µ̂, ν̂) directly. This loses a factor of 1− γ. To improve the sample complexity of obtaining
the NE policies, we first introduce the following definition of a smooth Planning Oracle.

Definition 7 (Smooth Planning Oracle) A smooth Planning Oracle generates poli-
cies that are smooth with respect to the NE Q-values of the empirical model. Specifically,
for two empirical models Ĝ1 and Ĝ2, the generated near-equilibrium policy pair (µ̂1, ν̂1)
and (µ̂2, ν̂2) satisfy that for each s ∈ S, ‖µ̂1(· | s) − µ̂2(· | s)‖TV ≤ C · ‖Q̂∗1 − Q̂∗2‖∞ and

‖ν̂1(· | s) − ν̂2(· | s)‖TV ≤ C · ‖Q̂∗1 − Q̂∗2‖∞ for some constant6 C > 0, where Q̂∗i is the NE

Q-value of Ĝi for i = 1, 2, and ‖ · ‖TV is the total variation distance.

Such a smooth Planning Oracle can be readily obtained in several ways. For example,
one simple (but possibly computationally expensive) approach is to output the average over
the entire policy space, using a softmax randomization over best-response values induced
by Q̂∗. Specifically, for agent 1, the output µ̂ is given by

µ̂(· | s) =

∫
∆(A)

exp
(

min
ϑ∈∆(B)

Ea∼u,b∼ϑ
[
Q̂∗(s, a, b)

]/
τ
)

∫
∆(A) exp

(
min

ϑ∈∆(B)
Ea∼u′,b∼ϑ

[
Q̂∗(s, a, b)

]/
τ
)
du′
· udu,

where τ > 0 is some temperature constant. The output of ν̂ is analogous. With a small
enough τ , µ̂ approximates the exact solution to argmax

u∈∆(A)
min

ϑ∈∆(B)
Ea∼u,b∼ϑ[Q̂∗(s, a, b)], the NE

policy given Q̂∗. Moreover, notice that µ̂ satisfies the smoothness condition in Definition
7. This is because for each u ∈ ∆(A) in the integral: i) the softmax function is Lipschitz
continuous with respect to min

ϑ∈∆(B)
Ea∼u,b∼ϑ

[
Q̂∗(s, a, b)

]
with Lipschitz constant 1/τ (Gao

and Pavel, 2017); ii) the best-response value min
ϑ∈∆(B)

Ea∼u,b∼ϑ
[
Q̂∗(s, a, b)

]
is smooth with

respect to Q̂∗. Thus, such an oracle is an instance of a smooth Planning Oracle.

Another more tractable way to obtain (µ̂, ν̂) is by directly solving a regularized matrix
game induced by Q̂∗. Specifically, one solves(

µ̂(· | s), ν̂(· | s)
)

= argmax
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ
[
Q̂∗(s, a, b)

]
− τ1Ω1(u) + τ2Ω2(ϑ), (6)

for each s ∈ S, where Ωi is the regularizer for agent i’s policy, usually a strongly convex
function, τi > 0 are the temperature parameters. This strongly-convex-strongly-concave

6. We allow C to depend polynomially on |A|, |B|, which, as we will show later, does not affect the sample
complexity as it appears as logC.
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saddle point problem admits a unique solution, and can be solved efficiently (Facchinei and
Pang, 2007; Cherukuri et al., 2017; Liang and Stokes, 2019). This regularization has been
widely used in both single-agent MDPs (Neu et al., 2017; Haarnoja et al., 2018; Chow et al.,
2018; Geist et al., 2019), and learning in games (Syrgkanis et al., 2015; Mertikopoulos and
Sandholm, 2016; Grill et al., 2019), to improve both the exploration and convergence.

With small enough τi (with the order of O(ε), see §B.1), the solution to (6) will be ε-close
to that of the unregularized one (Geist et al., 2019). More importantly, many commonly
used regularizations, including negative entropy (Neu et al., 2017), Tsallis entropy (Chow
et al., 2018) and Rényi entropy with certain parameters (Mertikopoulos and Sandholm,
2016), naturally yield a smooth Planning Oracle; see Lemma 24 in §B.1 for a formal
statement. Note that the smoothness of the oracle does not affect the sample complexity
of our model-based MARL algorithm.

Now we present another theorem, which gives the ε-Nash equilibrium policy pair directly,
with the (near-)minimax optimal sample complexity of Õ(|S||A||B|(1− γ)−3ε−2).

Theorem 8 (Finding ε-NE Policy with a Smooth Planning Oracle) Suppose that the
policy pair (µ̂, ν̂) is obtained from a smooth Planning Oracle using the empirical model Ĝ
(see Definition 7), which satisfies

‖V̂ µ̂,∗ − V̂ ∗‖∞ ≤ εopt, ‖V̂ ∗,ν̂ − V̂ ∗‖∞ ≤ εopt.

Then, for any δ ∈ (0, 1] and ε ∈ (0, 1/(1− γ)1/2], if

N ≥
cγ log

[
c(C + 1)|S||A||B|(1− γ)−4δ−1

]
(1− γ)3ε2

for some absolute constant c, then, letting ε̃ := ε + 4εopt/(1− γ), with probability at least
1− δ,

V ∗,ν̂ − 2ε̃ ≤ V µ̂,ν̂ ≤ V µ̂,∗ + 2ε̃,

namely, (µ̂, ν̂) constitutes a 2ε̃-Nash equilibrium policy pair.

Theorem 8 shows that the sample complexity of achieving an ε-NE policy can be near-
minimax optimal for the reward-aware case, and minimax-optimal for the reward-agnostic
case, if a smooth Planning Oracle is used. The dependence on |S| and 1−γ also matches
the only known near-optimal complexity in MGs in Sidford et al. (2020), with a turn-based
setting and a model-free algorithm. Inherited from Agarwal et al. (2019a), this improves
the second result in Azar et al. (2013) that also has Õ((1 − γ)−3ε−2) in finding an ε-
optimal policy, by removing the dependence on |S|−1/2 and enlarging the choice of ε from
(0, (1 − γ)−1/2|S|−1/2] to (0, (1 − γ)−1/2], and removing a factor of |S| in the total sample
complexity for any fixed ε. In addition, Theorem 8 also applies to the multi-reward setting,
as Theorem 5, by taking a union bound argument over all reward functions in the reward-
agnostic case. If the number of reward functions M is of order poly(|S|, |A|, |B|), the sample
complexity of handling multiple reward functions has the same order as that in Theorem 8.

Theorems 5 and 8 together justify that, this simple model-based MARL algorithm is
indeed sample-efficient, in approximating both the Nash equilibrium values and policies.

12
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Moreover, our separation of the reward-aware and reward-agnostic cases highlights both
the power (easily handling multiple reward functions), and the limitation (less adaptive
and can hardly achieve Õ(|A| + |B|)) of the model-based approach, particularly arising in
the multi-agent RL context.

4. Proofs

We first introduce some additional notation for convenience.

Notation. For a matrix X ∈ Rm×n, X ≥ c for some scalar c ∈ R means that each element
of X is no-less than c. For a vector x, we use (x2),

√
x, |x| to denote the component-wise

square, square-root, and absolute value of x. We use P(s,a,b),s′ to denote the transition
probability P (s′ | s, a, b), and Ps,a,b to denote the vector P (· | s, a, b). We also use Pµ,ν to
denote the transition probability of state-action pairs induced by the policy pair (µ, ν),
which is defined as

Pµ,ν(s,a,b),(s′,a′,b′) = µ(a′ | s′)ν(b′ | s′)P (s′ | s, a, b).

Hence, the Q-value function can be written as

Qµ,ν = r + γPµ,νQµ,ν = (I − γPµ,ν)−1r.

Also, for any V ∈ R|S|, we define the vector VarP (V ) ∈ R|S|×|A|×|B| as

VarP (V )(s, a, b) := VarP (· | s,a,b)(V ) = P (V )2 − (PV )2.

Then, we define Σµ,ν
G to be the variance of the discounted reward under the MG G, i.e.,

Σµ,ν
G (s, a, b) := E

[( ∞∑
t=0

γtr(st, at, bt)−Qµ,νG (s, a, b)
)2 ∣∣ s0 = s, a0 = a, b0 = b

]
.

It can be shown (see an almost identical formula for MDPs in (Azar et al., 2013, Lemma
6)) that Σµ,ν

G satisfies some Bellman-type equation for any policy pair (µ, ν):

Σµ,ν
G = γ2 VarP (V µ,ν

G ) + γ2Pµ,νΣµ,ν
G . (7)

It can also be verified that ‖Σµ,ν
G ‖∞ ≤ γ2/(1−γ)2 (Azar et al., 2013; Agarwal et al., 2019a).

Before proceeding further, we provide a roadmap for the proof.

Proof Roadmap. Our proof mainly consists of the following steps:

1. Helper lemmas and a crude bound. We first establish several important lemmas,
including the component-wise error bounds for the final Q-value errors, the variance
error bound, and a crude error bound that directly uses Hoeffding’s inequality. Some
of the results are adapted from the single-agent setting to zero-sum MGs, see Agarwal
et al. (2019a). See §4.1.
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2. Establishing an auxiliary Markov game. To improve the crude bound, we build
up an absorbing Markov game, in order to handle the statistical dependence be-
tween P̂ and some value function generated by P̂ , which occurs as a product in the
component-wise bound above. By carefully designing the auxiliary game, we estab-
lish a Bernstein-like concentration inequality, despite this dependency. See §4.2, more
precisely, Lemmas 17 and 18.

3. Final bound for ε-approximate NE value. Lemma 17 in Step 2 allows us to
exploit the variance bound, see Lemma 11, to obtain an Õ(

√
1/[(1− γ)3]N) order

bound on the Q-value error, leading to a Õ((1 − γ)−3ε−2) near-minimax optimal
sample complexity for achieving the ε-approximate NE value. See §4.3.

4. Final bounds for ε-NE policy. Based on the final bound in Step 3, we then
establish a Õ((1 − γ)−5ε−2) sample complexity for obtaining an ε-NE policy pair,
by solving an additional matrix game over the output Q-value Q̂µ̂,ν̂ . See §4.4. In
addition, given a smooth Planning Oracle, by Lemma 18 in Step 2, and more
careful self-bounding techniques, we establish a Õ((1 − γ)−3ε−2) sample complexity
for achieving such an ε-NE policy, directly using the output policies (µ̂, ν̂). See §4.5.

4.1 Important Lemmas

We start with the component-wise error bounds.

Lemma 9 (Component-Wise Bounds) For any policy pair (µ, ν), it follows that

Qµ,ν − Q̂µ,ν = γ(I − γPµ,ν)−1(P − P̂ )V̂ µ,ν ,

γ(I − γP̂µ,ν(µ))−1(P − P̂ )V µ,∗ ≤ Qµ,∗ − Q̂µ,∗ ≤ γ(I − γPµ,ν̂(µ))−1(P − P̂ )V̂ µ,∗,

γ(I − γP µ̂(ν),ν)−1(P − P̂ )V̂ ∗,ν ≤ Q∗,ν − Q̂∗,ν ≤ γ(I − γP̂µ(ν),ν)−1(P − P̂ )V ∗,ν ,

where we recall that ν(µ) and µ(ν) denote the best-response policy given µ and ν, respectively
(see (4)). Moreover, we have

Qµ,ν ≥ Q∗ − ‖Qµ,ν − Q̂µ,ν‖∞ − ‖Q̂µ,ν − Q̂∗‖∞ − ‖Q̂µ
∗,∗ −Q∗‖∞ (8)

Qµ,ν ≤ Q∗ + ‖Qµ,ν − Q̂µ,ν‖∞ + ‖Q̂µ,ν − Q̂∗‖∞ + ‖Q̂∗,ν∗ −Q∗‖∞ (9)

V µ,∗ ≥ V ∗ − ‖Qµ,∗ − Q̂µ,∗‖∞ − ‖V̂ µ,∗ − V̂ ∗‖∞ − ‖Q̂µ
∗,∗ −Q∗‖∞ (10)

V ∗,ν ≤ V ∗ + ‖Q∗,ν − Q̂∗,ν‖∞ + ‖V̂ ∗,ν − V̂ ∗‖∞ + ‖Q̂∗,ν∗ −Q∗‖∞. (11)

Proof First, note that

Qµ,ν − Q̂µ,ν = (I − γPµ,ν)−1r − (I − γP̂µ,ν)−1r = (I − γPµ,ν)−1[(I − γP̂µ,ν)− (I − γPµ,ν)]Q̂µ,ν

= γ(I − γPµ,ν)−1(Pµ,ν − P̂µ,ν)Q̂µ,ν = γ(I − γPµ,ν)−1(P − P̂ )V̂ µ,ν ,

proving the first equation. Also,

Qµ,∗ − Q̂µ,∗ ≤ Qµ,ν̂(µ) − Q̂µ,∗ = Qµ,ν̂(µ) − Q̂µ,ν̂(µ)

=
(
I − γPµ,ν̂(µ)

)−1
r −

(
I − γP̂µ,ν̂(µ)

)−1
r

=
(
I − γPµ,ν̂(µ)

)−1[
(I − γP̂µ,ν̂(µ))− (I − γPµ,ν̂(µ))

]
Q̂µ,ν̂(µ) = γ(I − γPµ,ν̂(µ))−1(P − P̂ )V̂ µ,ν̂(µ),
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where we recall that ν̂(µ)(· | s) ∈ argmin V̂ µ,ν(s) for all s ∈ S. By similar arguments,
recalling that ν(µ)(· | s) ∈ argminV µ,ν(s) for all s, we have

Qµ,∗ − Q̂µ,∗ ≥ Qµ,ν(µ) − Q̂µ,ν(µ) = (I − γPµ,ν(µ))−1r − (I − γP̂µ,ν(µ))−1r

= (I − γP̂µ,ν(µ))−1[(I − γP̂µ,ν(µ))− (I − γPµ,ν(µ))]Qµ,ν(µ) = γ(I − γP̂µ,ν(µ))−1(P − P̂ )V µ,∗.

Similar arguments yield the third inequality in the first argument.
For the second argument, we have

Qµ,ν −Q∗ = Qµ,ν − Q̂∗ + Q̂∗ −Q∗ ≥ Qµ,ν − Q̂∗ + Q̂µ
∗,∗ −Q∗ ≥ −‖Qµ,ν − Q̂∗‖∞ − ‖Q̂µ

∗,∗ −Q∗‖∞,

which, combined with triangle inequality, yields the first inequality. Similarly, we have

Qµ,ν −Q∗ = Qµ,ν − Q̂∗ + Q̂∗ −Q∗ ≤ Qµ,ν − Q̂∗ + Q̂∗,ν
∗
−Q∗ ≤ ‖Qµ,ν − Q̂∗‖∞ + ‖Q̂∗,ν

∗
−Q∗‖∞.

Using triangle inequality proves the second inequality. For (10)-(11), we similarly have

V µ,∗ − V ∗ = V µ,∗ − V̂ ∗ + V̂ ∗ − V ∗ ≥ V µ,∗ − V̂ ∗ + V̂ µ
∗,∗ − V ∗ ≥ −‖V µ,∗ − V̂ ∗‖∞ − ‖V̂ µ

∗,∗ − V ∗‖∞,
(12)

V ∗,ν − V ∗ = V ∗,ν − V̂ ∗ + V̂ ∗ − V ∗ ≤ V ∗,ν − V̂ ∗ + V̂ ∗,ν − V ∗ ≤ ‖V ∗,ν − V̂ ∗‖∞ + ‖V̂ ∗,ν − V ∗‖∞.
(13)

Notice that for any µ ∈ ∆(A)|S| and ν ∈ ∆(B)|S|,

‖V µ,∗ − V̂ µ,∗‖∞ =
∥∥∥ min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Q̂µ,∗(·, a, b)]
∥∥∥
∞

≤ max
ϑ∈∆(B)

∥∥Ea∼µ(· | s),b∼ϑ[Qµ,∗(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Q̂µ,∗(·, a, b)]
∥∥
∞ ≤ ‖Q

µ,∗ − Q̂µ,∗‖∞

(14)

‖V ∗,ν − V̂ ∗,ν‖∞ =
∥∥∥ max
u∈∆(A)

Ea∼u,b∼ν(· | s)[Q
∗,ν(·, a, b)]− max

u∈∆(A)
Ea∼u,b∼ν(· | s)[Q̂

∗,ν(·, a, b)]
∥∥∥
∞

≤ max
u∈∆(A)

∥∥Ea∼u,b∼ν(· | s)[Q
∗,ν(·, a, b)]− Ea∼u,b∼ν(· | s)[Q̂

∗,ν(·, a, b)]
∥∥
∞ ≤ ‖Q

∗,ν − Q̂∗,ν‖∞.

(15)

Combining (12)-(13) and (14)-(15), together with triangle inequality, we arrive at (10)-(11),
and complete the proof.

We establish the decomposition in (8)-(9) for the following intuition and reasons. The
error in (8)-(9) contains three terms: the first and third terms ‖Qµ,ν − Q̂µ,ν‖∞ and Q̂∗‖∞−
‖Q̂µ∗,∗ − Q∗‖∞ are the differences of the Q-value for some policy pairs in the true and
estimated models, respectively, which will be handled later based on the statistical error of
the model estimation; the second term ‖Q̂µ,ν − Q̂∗‖∞ is the optimization error we obtained
from the algorithm that solves the empirical game, which will be controlled with an efficient
Planning Oracle. To deal with the statistical errors, we first introduce the following
lemma, which is adapted from Lemma 2 in Agarwal et al. (2019a).

Lemma 10 For any policy pair (µ, ν) and vector v ∈ R|S|×|A|×|B|, ‖(I − γPµ,ν)−1v‖∞ ≤
‖v‖∞/(1− γ).
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Proof The proof is straightforward. Letting w = (I−γPµ,ν)−1v, we have v = (I−γPµ,ν)w.
Triangle inequality yields ‖v‖∞ ≥ ‖w‖∞− γ‖Pµ,νw‖∞ ≥ ‖w‖∞− γ‖w‖∞, which completes
the proof.

Next we establish the Bellman property of a policy pair (µ, ν)’s variance and its accu-
mulation. This has been observed for MDPs before in Munos and Moore (1999); Lattimore
and Hutter (2012); Azar et al. (2012); Agarwal et al. (2019a). We establish the counterpart
for Markov games as follows.

Lemma 11 For any policy pair (µ, ν) and MG G with transition model P , we have∥∥∥(I − γPµ,ν)−1
√

VarP
(
V µ,ν
G
)∥∥∥
∞
≤

√
2

(1− γ)3
.

Proof The proof follows that of (Agarwal et al., 2019a, Lemma 3). For any positive vector
v, by Jensen’s inequality, we have

‖(I − γPµ,ν)−1√v‖∞ =
1

1− γ
‖(1− γ)(I − γPµ,ν)−1√v‖∞ ≤

√∥∥∥ 1

1− γ
(I − γPµ,ν)−1v

∥∥∥
∞
.

(16)

Also, observe that

‖(I − γPµ,ν)−1v‖∞ = ‖(I − γPµ,ν)−1(I − γ2Pµ,ν)(I − γ2Pµ,ν)−1v‖∞
=
∥∥[(I − γPµ,ν)−1(1− γ + γ − γ2Pµ,ν)](I − γ2Pµ,ν)−1v

∥∥
∞

=
∥∥[(1− γ)(I − γPµ,ν)−1 + γI](I − γ2Pµ,ν)−1v

∥∥
∞

≤ (1− γ)
∥∥(I − γPµ,ν)−1(I − γ2Pµ,ν)−1v

∥∥
∞ + γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞

≤ 1− γ
1− γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞ + γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞ ≤ 2

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞. (17)

Combining (16) and (17) yields

‖(I − γPµ,ν)−1√v‖∞ ≤
√∥∥∥ 2

1− γ
(I − γ2Pµ,ν)−1v

∥∥∥
∞
. (18)

In addition, by (7), we have Σµ,ν
G = γ2(I − γ2Pµ,ν)−1 VarP (V µ,ν

G ). Letting v = VarP (V µ,ν
G )

in (18) and noticing that ‖Σµ,ν
G ‖∞ ≤ γ2/(1− γ)2 completes the proof.

Finally, if we just apply Hoeffding’s inequality, we obtain the following concentration
argument, upon which we will improve to obtain our final results.

Lemma 12 Let (µ∗, ν∗) be the Nash equilibrium policy pair under the actual model G.
Then, for any δ ∈ (0, 1], with probability at least 1− δ, we have

‖Q∗ − Q̂µ
∗,ν∗‖∞ ≤ ∆δ,N , ‖Q∗ − Q̂µ

∗,∗‖∞ ≤ ∆δ,N , ‖Q∗ − Q̂∗,ν
∗
‖∞ ≤ ∆δ,N , ‖Q∗ − Q̂∗‖∞ ≤ ∆δ,N ,

where

∆δ,N :=
γ

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
.
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Proof First note that V ∗ is fixed and independent of the randomness in P̂ . Due to the
boundedness of V ∗ that ‖V ∗‖∞ ≤ (1 − γ)−1, and the union of Hoeffding bounds over
S ×A× B, we have that with probability at least 1− δ

∥∥(P̂ − P )V ∗
∥∥
∞ ≤

1

1− γ
·
√

2 log(2|S||A||B|/δ)
N

. (19)

On the other hand, let Tµ,ν be the Bellman operator under the true transition model P ,
using any joint policy (µ, ν), i.e., for any s ∈ S and (s, a, b) ∈ S × A × B, V ∈ R|S| and
Q ∈ R|S|×|A|×|B|:

Tµ,ν(V )(s) = Ea∼µ(· | s),b∼ν(· | s)
[
r(s, a, b) + γ · P (· | s, a, b)>V

]
Tµ,ν(Q)(s, a, b) = r(s, a, b) + γ · Es′∼P (· | s,a,b),a′∼µ(· | s′),b′∼ν(· | s′)

[
Q(s′, a′, b′)

]
.

Similarly, let T̂µ,ν be the corresponding operator defined under the estimated transition P̂ .

Note that Q̂µ,ν and Q∗ are the fixed points of T̂µ,ν and Tµ∗,ν∗ , respectively. We thus have

‖Q∗ − Q̂µ,ν‖∞ = ‖Tµ∗,ν∗Q∗ − T̂µ,νQ̂µ,ν‖∞
≤ ‖Tµ∗,ν∗Q∗ − r − γP̂µ

∗,ν∗Q∗‖∞ + ‖r + γP̂µ
∗,ν∗Q∗ − T̂µ,νQ̂µ,ν‖∞

= γ‖Pµ∗,ν∗Q∗ − P̂µ∗,ν∗Q∗‖∞ + γ‖P̂µ∗,ν∗Q∗ − P̂µ,νQ̂µ,ν‖∞
= γ‖PV ∗ − P̂ V ∗‖∞ + γ‖P̂ V ∗ − P̂ V̂ µ,ν‖∞ ≤ γ‖(P − P̂ )V ∗‖∞ + γ‖V ∗ − V̂ µ,ν‖∞. (20)

To show the first argument, letting µ = µ∗ and ν = ν∗, we have

γ‖V ∗ − V̂ µ∗,ν∗‖∞ = γ
∥∥Ea∼µ∗(· | s),b∼ν∗(· | s)[Q∗(·, a, b)]− Ea∼µ∗(· | s),b∼ν∗(· | s)[Q̂µ

∗,ν∗(·, a, b)]
∥∥
∞

≤ γ‖Q∗ − Q̂µ∗,ν∗‖∞. (21)

Using (21) to bound the last term in (20), and solving for ‖Q∗ − Q̂µ∗,ν∗‖∞ from (20), we
obtain the first argument.

For the second argument, letting µ = µ∗ and ν = ν̂(µ∗) (note that Q̂µ
∗,∗ = Q̂µ

∗,ν̂(µ∗)),
we have

γ‖V ∗ − V̂ µ
∗,∗‖∞ = γ ·

∥∥ min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ[Q∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ[Q̂µ
∗,∗(·, a, b)]

∥∥
∞

≤ γ · max
ϑ∈∆(B)

∥∥Ea∼µ∗(· | s),b∼ϑ[Q∗(·, a, b)]− Ea∼µ∗(· | s),b∼ϑ[Q̂µ
∗,∗(·, a, b)]

∥∥
∞ ≤ γ‖Q

∗ − Q̂µ
∗,∗‖∞,

(22)

where the first inequality is due to the non-expansiveness of the min operator. Using (22)
to bound the last term in (20), and solving for ‖Q∗ − Q̂µ∗,∗‖∞ from (20), we obtain the
second argument. Similarly, we can obtain the third argument.

For the fourth argument, letting µ = µ̂∗ and ν = ν̂∗, the NE policy under P̂ (note that
Q̂µ̂
∗,ν̂∗ = Q̂∗), we have

γ‖V ∗ − V̂ ∗‖∞ = γ ·
∥∥ max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗(·, a, b)]− max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q̂∗(·, a, b)]
∥∥
∞

≤ γ · max
u∈∆(A)

∥∥ min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q̂∗(·, a, b)]
∥∥
∞ ≤ γ‖Q

∗ − Q̂∗‖∞,
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where the inequalities are due to the non-expansivenesses of both the max and the min
operators. This, combined with (20), completes the proof.

The argument above will lead to a crude bound, with an additional 1/(1−γ) dependence
compared to our main results in Theorem 5 and Theorem 8. The key reason is that we used
some self-bounding of the error terms, e.g., ‖Q∗ − Q̂µ∗,ν∗‖∞, which appears on both sides
of the inequality, with a γ discounting on the right-hand side. This way, by subtracting the
term on the right-hand side, we have an additional 1/(1− γ) order after dividing (1− γ) on
both sides. This was essentially due to the fact that the direct concentration argument can
only deal with the concentration of

∥∥(P̂ − P )V ∗
∥∥
∞, where P̂ and V ∗ are not dependent as

V ∗ is a fixed vector. To obtain sharper rates, one has to directly deal with the quantities as∥∥(P̂ − P )V̂
∥∥
∞, where V̂ denotes some value function obtained from the empirical model,

and is correlated with P̂ . Properly handling this interdependence will be the focus of our
proof next.

4.2 An Auxiliary Markov Game

Motivated by the absorbing MDP technique in Agarwal et al. (2019a), we introduce an
absorbing Markov game, in order to handle the interdependence between P̂ and V̂ µ,ν , for
any µ, ν (which may also depend on P̂ ), which will show up frequently in the analysis.

We now define a new Markov game Gs,u as follows (with s ∈ S and u ∈ R a constant):
Gs,u is identical to G, except that PGs,u(s | s, a, b) = 1 for all (a, b) ∈ A× B, namely, state s
is an absorbing state; and the instantaneous reward at s is always (1− γ)u. The rest of the
reward function and the transition model of Gs,u are the same as those of G. For notational
simplicity, we now use Xµ,ν

s,u to denote Xµ,ν
Gs,u , where X can be either the value functions

Q and V , or the reward function r, under the model Gs,u. Obviously, for any policy pair
(µ, ν), V µ,ν

s,u (s) = u for the absorbing state s.

In addition, we define Us for some state s to choose u from, which is a set of evenly
spaced elements in the interval [V ∗(s)−∆, V ∗(s) + ∆] for some ∆ > 0, i.e., Us ⊂ [V ∗(s)−
∆, V ∗(s) + ∆]. An appropriately chosen size of |Us| will be the key in the proof. We also
use P̂Gs,u to denote the transition model of the absorbing MG for the empirical MG Ĝ,

denoted by Ĝs,u. Specifically, at all non-absorbing states, P̂Gs,u is identical to P̂ ; while at

the absorbing state, P̂Gs,u(s | s, a, b) = 1 for any (a, b) ∈ A × B. The corresponding value

functions are for short denoted by V̂ µ,ν
s,u and Q̂µ,νs,u . Similar as in the original MG, we also

use V̂ ∗s,u to denote the NE value under the model Ĝs,u, and use V̂ µ,∗
s,u and V̂ ∗,νs,u to denote

the best-response values of some given µ and ν, under the model Ĝs,u. Now we first have
the following lemma based on Bernstein’s inequality; see a similar argument in Lemma 5 in
Agarwal et al. (2019a).
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Lemma 13 For fixed state s, action (a, b), a finite set Us, and δ > 0, it holds that for all
u ∈ Us, with probability greater than 1− δ,

∣∣(Ps,a,b − P̂s,a,b) · V̂ ∗s,u∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
∗
s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ µ∗,∗
s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
µ∗,∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ ∗,ν∗s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
∗,ν∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ µ∗,ν∗
s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
µ∗,ν∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V µ̂s,u,∗
∣∣ ≤

√
2 log(4|Us|/δ) ·VarPs,a,b(V

µ̂s,u,∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V ∗,ν̂s,u∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
∗,ν̂s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

where Ps,a,b and P̂s,a,b are the transition models extracted from the original game G and its

empirical version Ĝ, respectively (not related to either Gs,u or Ĝs,u), and (µ̂s,a, ν̂s,a) is the

output of the Planning Oracle using the auxiliary empirical model Ĝs,u

Proof The key observation is that the random variables P̂s,a,b and V̂ ∗s,u are independent.
Using Bernstein’s inequality along with a union bound over all u ∈ Us, we obtain the first
inequality. The other inequalities follow similarly, as P̂s,a,b is independent of V̂ µ∗,∗

s,u , V̂ ∗,ν
∗

s,u ,

V̂ µ∗,ν∗
s,u , V µ̂s,u,∗, and V ∗,ν̂s,u . This is because the latter terms are all decided by the origi-

nal game G, and/or the auxiliary empirical game Ĝs,u (not the original empirical game Ĝ).

Note that the arguments in Lemma 13 do not hold, if we replace V̂ ∗s,u by V̂ ∗, or V̂ µ∗,∗
s,u

by V̂ µ∗,∗, or V̂ ∗,ν
∗

s,u by V̂ ∗,ν
∗
. It will neither hold if we replace V̂ µ∗,∗

s,u and V µ̂s,u,∗ by some

V̂ µ,∗ and V µ,∗, for any µ that is dependent on P̂ , e.g., the NE policy µ̂∗ for the original
empirical game Ĝ. This is one of the key subtleties that are worth emphasizing.

Next we establish two helpful lemmas that help guide the choices of Us, so that V̂ ∗s,u
(resp. V̂ µ∗,∗

s,u , V̂ ∗,ν
∗

s,u , and V̂ µ∗,ν∗
s,u ) will be a good approximate of V̂ ∗ (resp. V̂ µ∗,∗, V̂ ∗,ν

∗
, and

V̂ µ∗,ν∗).

Lemma 14 For the absorbing state s, and any joint policy (µ, ν), suppose that u∗ = V ∗G (s),
uµ,∗ = V µ,∗

G (s), u∗,ν = V ∗,νG (s), and uµ,ν = V µ,ν
G (s). Then,

V ∗G = V ∗s,u∗ V µ,∗
G = V µ,∗

Gs,uµ,∗ V ∗,νG = V ∗,νGs,u∗,ν V µ,ν
G = V µ,ν

Gs,uµ,ν .
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Proof For the first formula, we need to verify that V ∗G satisfies the optimal (Nash equilib-
rium) Bellman equation for the game Gs,u∗ . To this end, note that if s′ = s, then u∗ = V ∗G (s)
satisfies the Bellman equation trivially, since s is absorbing with the value V ∗s,u∗(s) = u∗.

On the other hand, for any s′ 6= s, the outgoing transition model at s′ in Gs,u∗ is the
same as that in G, and V ∗G (s′) per se satisfies the Bellman equation in G (which are the
same for Gs,u∗ at these states s′ 6= s). Thus, V ∗G satisfies the Bellman equation in Gs,u∗ for
all states. This proves the first equation. The proofs for the remaining three equations are
analogous.

Perfect choices of u have been specified in Lemma 14 above. Moreover, we need to
quantify how the value changes if we deviate from these perfect choices, i.e., the robustness
to misspecification of u (Agarwal et al., 2019a). This result is formally established in the
following lemma; see also Lemma 7 in Agarwal et al. (2019a) for a similar result.

Lemma 15 For any state s, u, u′ ∈ R, and joint policy pair (µ, ν), we have∥∥V ∗s,u − V ∗s,u′∥∥∞ ≤ |u− u′|, ∥∥V µ,∗
s,u − V

µ,∗
s,u′

∥∥
∞ ≤ |u− u

′|,∥∥V ∗,νs,u − V
∗,ν
s,u′

∥∥
∞ ≤ |u− u

′|,
∥∥V µ,ν

s,u − V
µ,ν
s,u′

∥∥
∞ ≤ |u− u

′|.

Proof Note that ‖rs,u− rs,u′‖∞ = (1− γ)|u− u′|, since the reward functions only differ at
s, where rs,u(s, a, b) = (1− γ)u and rs,u′(s, a, b) = (1− γ)u′. We denote the NE policy pair
in Gs,u by (µ∗s,u, ν

∗
s,u). Thus,

Q∗s,u −Q∗s,u′ = Q
µ∗s,u,ν

∗
s,u

s,u −Q
µ∗
s,u′ ,ν

∗
s,u′

s,u′ ≤ Q
µ∗s,u,ν

∗
s,u′

s,u −Q
µ∗s,u,ν

∗
s,u′

s,u′ (23)

=
(
I − γP

µ∗s,u,ν
∗
s,u′

s,u

)−1
rs,u −

(
I − γP

µ∗s,u,ν
∗
s,u′

s,u′
)−1

rs,u′ (24)

=
(
I − γP

µ∗s,u,ν
∗
s,u′

s,u

)−1(
rs,u − rs,u′

)
(25)

≤
‖rs,u − rs,u′‖∞

1− γ
= |u− u′|, (26)

where (23) uses the fact that at the NE,

V
µ∗s,u,ν

∗
s,u

s,u = min
ν
V
µ∗s,u,ν
s,u ≤ V

µ∗s,u,ν
∗
s,u′

s,u , V
µ∗
s,u′ ,ν

∗
s,u′

s,u′ = max
µ

V
µ,ν∗

s,u′

s,u′ ≥ V
µ∗s,u,ν

∗
s,u′

s,u′ ,

implying the relationships of the corresponding Q-values; (24) is by definition; (25) uses the

observation that P
µ∗s,u,ν

∗
s,u′

s,u is the same as P
µ∗s,u,ν

∗
s,u′

s,u′ (transition is not affected by the value
of u). Similarly, we can establish the lower bound that Q∗s,u − Q∗s,u′ ≥ −|u − u′|, which
proves ‖Q∗s,u −Q∗s,u′‖∞ ≤ |u− u′|. Moreover, we have∥∥V ∗s,u − V ∗s,u′∥∥∞ =

∥∥∥ max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗s,u(·, a, b)]− max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗s,u′(·, a, b)]
∥∥∥
∞

≤ max
u∈∆(A),ϑ∈∆(B)

∥∥∥Ea∼µ(· | s),b∼ϑ[Q∗s,u(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Q∗s,u′(·, a, b)]
∥∥∥
∞

≤
∥∥Q∗s,u −Q∗s,u′∥∥∞ ≤ |u− u′|,
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which proves the first inequality.

For the second one, recalling that the best-response policy of µ under Gs,u being νs,u(µ),
we have

Qµ,∗s,u −Q
µ,∗
s,u′ = min

ν
Qµ,νs,u −Q

µ,∗
s,u′ = min

ν

(
I − γPµ,νs,u

)−1
rs,u −Qµ,∗s,u′ (27)

≤
(
I − γPµ,νs,u′ (µ)

s,u

)−1
rs,u −

(
I − γPµ,νs,u′ (µ)

s,u′
)−1

rs,u′ (28)

=
(
I − γPµ,νs,u′ (µ)

s,u

)−1(
rs,u − rs,u′

)
≤
‖rs,u − rs,u′‖∞

1− γ
= |u− u′|, (29)

where (27) uses the definition of a best-response value, (28) plugs in the best-response policy
νs,u′(µ), and (29) also uses the fact that the transition does not depend on the value u. A

lower bound can be established by noticing that Qµ,∗s,u′ = minν Q
µ,ν
s,u′ ≤ Q

µ,νs,u(µ)
s,u′ . This proves

‖Qµ,∗s,u −Qµ,∗s,u′‖∞ ≤ |u− u
′|. Furthermore, notice that

∥∥V µ,∗
s,u − V

µ,∗
s,u′

∥∥
∞ =

∥∥∥ min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u′(·, a, b)]
∥∥∥
∞

≤ max
ϑ∈∆(B)

∥∥∥Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u′(·, a, b)]
∥∥∥
∞

≤
∥∥Qµ,∗s,u −Qµ,∗s,u′∥∥∞ ≤ |u− u′|,

which proves the second inequality. Similar arguments can also be used to establish the
third and the fourth inequalities. This completes the proof.

We are now ready to show the main result in this section.

21



Zhang, Kakade, Başar, and Yang

Lemma 16 For any state s, joint action pair (a, b), and a finite set Us, with probability
greater than 1− δ, we have

∣∣(Ps,a,b − P̂s,a,b)V̂ ∗∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ·(2 +

√
2 log(4|Us|/δ)

N

)
∣∣(Ps,a,b − P̂s,a,b)V̂ µ∗,∗∣∣ ≤

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

µ∗,∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∣∣V̂ µ∗,∗(s)− u∣∣ ·(2 +

√
2 log(4|Us|/δ)

N

)
∣∣(Ps,a,b − P̂s,a,b)V̂ ∗,ν∗ ∣∣ ≤

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

∗,ν∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∣∣V̂ ∗,ν∗(s)− u∣∣ ·(2 +

√
2 log(4|Us|/δ)

N

)
∣∣(Ps,a,b − P̂s,a,b)V̂ µ∗,ν∗ ∣∣ ≤

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

µ∗,ν∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∣∣V̂ µ∗,ν∗(s)− u∣∣ ·(2 +

√
2 log(4|Us|/δ)

N

)
.

Moreover, recalling that (µ̂s,u, ν̂s,u) is the output of the Planning Oracle using Ĝs,u, we
have

∣∣(Ps,a,b − P̂s,a,b)V µ̂,∗∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
µ̂,∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∥∥V µ̂,∗ − V µ̂s,u,∗∥∥∞
(

2 +

√
2 log(4|Us|/δ)

N

)
,

∣∣(Ps,a,b − P̂s,a,b)V ∗,ν̂∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
∗,ν̂)

N
+

2 log(4|Us|/δ)
3(1− γ)N

+ min
u∈Us

∥∥V ∗,ν̂ − V ∗,ν̂s,u∥∥∞
(

2 +

√
2 log(4|Us|/δ)

N

)
.
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Proof First, for all u ∈ Us and with probability greater than 1− δ, we have∣∣(Ps,a,b − P̂s,a,b)V̂ ∗∣∣ =
∣∣(Ps,a,b − P̂s,a,b)(V̂ ∗ − V̂ ∗s,u + V̂ ∗s,u)

∣∣
≤
∣∣(Ps,a,b − P̂s,a,b)(V̂ ∗ − V̂ ∗s,u)

∣∣+
∣∣(Ps,a,b − P̂s,a,b)V̂ ∗s,u∣∣ (30)

≤ 2 ·
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ +

∣∣(Ps,a,b − P̂s,a,b)V̂ ∗s,u∣∣ (31)

≤ 2 ·
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ +

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

∗
s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

(32)

≤
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞

(
2 +

√
2 log(4|Us|/δ)

N

)
+

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

(33)

where (30)-(31) use triangle inequality, (32) is due to Lemma 13, and (33) uses the facts

that
√

VarPs,a,b(X + Y ) ≤
√

VarPs,a,b(X) +
√

VarPs,a,b(Y ), and
√

VarPs,a,b(X) ≤ ‖X‖∞.

Moreover, by Lemmas 14 and 15, we obtain that∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ =
∥∥V̂ ∗

s,V̂ ∗(s)
− V̂ ∗s,u

∥∥
∞ ≤

∣∣V̂ ∗(s)− u∣∣,
which, combined with (33) and taken minimization over all u ∈ Us, yields the first inequal-
ity. Proofs for the remaining inequalities are analogous, except that for the last two, the
norms ‖V µ̂,∗ − V µ̂s,u,∗‖∞ and ‖V ∗,ν̂ − V ∗,ν̂s,u‖∞ are kept and not further bounded.

Next we establish the important result that characterizes the errors |(P − P̂ )V̂ ∗|, |(P −
P̂ )V̂ µ∗,∗|, |(P − P̂ )V̂ ∗,ν

∗ |, and |(P − P̂ )V̂ µ∗,ν∗ |, which could not have been handled without
the arguments above, due to the dependence between P̂ and V̂ ∗ (and also V̂ µ∗,∗, V̂ ∗,ν

∗
, and

V̂ µ∗,ν∗).

Lemma 17 For any δ ∈ (0, 1], with probability greater than 1− δ, it holds that

∣∣(P − P̂ )V̂ ∗
∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ ∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ µ∗,∗∣∣ ≤
√

2 log
(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ µ∗,∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ ∗,ν
∗∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ ∗,ν∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ µ∗,ν∗
∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ µ∗,ν∗)

N
+ ∆′δ,N

where ∆′δ,N is defined as

∆′δ,N =

√
c log

(
c|S||A||B|/[(1− γ)2δ]

)
N

+
c log

(
c|S||A||B|/[(1− γ)2δ]

)
(1− γ)N

,

and c is some absolute constant.
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Proof Let Us denote a set with evenly spaced elements in the interval [V ∗(s)−∆δ/2,N , V
∗(s)+

∆δ/2,N ], with |Us| = 2/(1 − γ)2, and ∆δ,N being defined in Lemma 12. Lemma 12 shows
that with probability greater than 1− δ/2,

V̂ ∗(s) ∈
[
V ∗(s)−∆δ/2,N , V ∗(s) + ∆δ/2,N

]
(34)

for all s ∈ S. Since each subinterval determined by Us is of length 2∆δ/2,N/(|Us| − 1), and

V̂ ∗(s) will fall into one of them, we know that

min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2∆δ/2,N

|Us| − 1
=

2γ

(|Us| − 1)(1− γ)2

√
2 log(4|S||A||B|/δ)

N
≤ 2γ

√
2 log(4|S||A||B|/δ)

N
,

where we have used the fact that |Us| ≥ 1/(1 − γ)2 + 1. We then choose δ/2 to be
δ/(2|S||A||B|) in Lemma 16, so that it holds for all states and joint actions with prob-
ability greater than 1− δ/2. By substitution and noting that the two events in Lemmas 12
and 16 both fail with probability δ/2, we obtain the first inequality by properly choosing
the constant c. Similarly, for the other two inequalities, note that Lemma 12 can be applied
to show that V̂ µ∗,∗(s), V̂ ∗,ν

∗
(s), and V̂ µ∗,ν∗(s), all lie in the interval in (34) (centered at

V ∗(s)). By similar arguments, the remaining three inequalities can be proved (note that
Lemma 16 can be applied to V̂ µ∗,∗(s), V̂ ∗,ν

∗
(s), and V̂ µ∗,ν∗(s), as well).

Lastly, with a smooth Planning Oracle, see Definition 7, we can similarly establish
the following error bounds on |(P − P̂ )V µ̂,∗| and |(P − P̂ )V ∗,ν̂ |, thanks to Lemma 16.

Lemma 18 With a smooth Planning Oracle that has a smooth constant C (see Definition
7), for any δ ∈ (0, 1], with probability greater than 1− δ, it holds that

∣∣(P − P̂ )V µ̂,∗∣∣ ≤
√

2 log
(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
·VarP (V µ̂,∗)

N
+ ∆′′δ,N

∣∣(P − P̂ )V ∗,ν̂
∣∣ ≤

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
·VarP (V ∗,ν̂)

N
+ ∆′′δ,N

where ∆′′δ,N is defined as

∆′′δ,N =

√
c log

(
c(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

+
c log

(
c(C + 1)|S||A||B|/[(1− γ)4δ]

)
(1− γ)N

,

for some absolute constant c.

Proof Following the proof of Lemma 17, let Us denote a set with evenly spaced elements
in the interval [V ∗(s)−∆δ/2,N , V

∗(s) + ∆δ/2,N ], with ∆δ,N being defined in Lemma 12. By

Lemma 12, we know that V̂ ∗(s) lies in this interval with probability greater than 1 − δ/2,
for all s ∈ S. Now we choose |Us| = (C + 1)/(1− γ)4, where C is the smooth coefficient in
Definition 7. As V̂ ∗(s) will fall into one of the subintervals determined by Us, we have

min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2∆δ/2,N

|Us| − 1
≤ 2γ(1− γ)2

C
·
√

2 log(4|S||A||B|/δ)
N

, (35)
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which also uses the fact |Us| ≥ C/(1− γ)4 + 1. Furthermore, by Definition 7 and the proof
of Lemma 15, we have

∥∥µ̂− µ̂s,u∥∥TV ≤ C · ‖Q̂∗ − Q̂∗s,u‖∞ ≤ C · ∣∣V̂ ∗(s)− u∣∣. (36)

On the other hand, we have

∥∥V µ̂,∗ − V µ̂s,u,∗
∥∥
∞ ≤ max

ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂,∗(·, a, b)]− Ea∼µ̂s,u(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

≤ max
ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂,∗(·, a, b)]− Ea∼µ̂(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

+ max
ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]− Ea∼µ̂s,u(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

≤
∥∥Qµ̂,∗ −Qµ̂s,u,∗∥∥∞ +

∥∥µ̂− µ̂s,u∥∥TV · ∥∥Qµ̂s,u,∗∥∥∞ (37)

≤ γ
∥∥V µ̂,∗ − V µ̂s,u,∗

∥∥
∞ +

C

1− γ
·
∣∣V̂ ∗(s)− u∣∣, (38)

where (37) uses Hölder’s inequality, and (38) follows by expanding the Q-value functions,
using (36), and noticing that ‖Qµ̂s,u,∗‖∞ ≤ 1/(1− γ). Combining (38) and (35), and taking
min over u ∈ Us, we have

min
u∈Us

∥∥V µ̂,∗ − V µ̂s,u,∗
∥∥
∞ ≤

C

(1− γ)2
· min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2γ ·
√

2 log(4|S||A||B|/δ)
N

.

The rest of the proof follows the arguments of Lemma 17, which combines the last two
inequalities in Lemma 16 to obtain the desired bound. Note that the absolute constant
here might be different from that in Lemma 17. The proof for the second inequality is
analogous.

Note that compared to Lemma 17, Lemma 18 has to additionally deal with the in-
terdependence between P̂ and V µ̂,∗ (as well as that between P̂ and V ∗,ν̂). What can be
guaranteed before, in the absorbing MGs, is that the value function can be controlled to
be close to that in the original MG (see Lemmas 14 and 15, and the proof of Lemma 16).
However, in general, it is unclear how much the NE policy changes, as well as how much
the best-response value in the original true MG changes. This calls for some stability of the
NE policy, and was made possible due to the smoothness of our Planning Oracle (see
(36)-(38)). Lemma 18 will play an important role in obtaining the near-optimal sample
complexity in Theorem 8 (see §4.5).

4.3 Proof of Theorem 5

We are now ready to prove Theorem 5. To this end, we first establish the following lemma.
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Lemma 19 For any policy pair (µ̂, ν̂) that satisfies the condition in Theorem 5, there exists
some absolute constant c such that

∥∥Qµ̂,ν̂ − Q̂µ̂,ν̂∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)

+
1

1− αδ,N
· γεopt

(1− γ)

(
1 +

√
log(c|S||A||B|/[(1− γ)2δ])

N

)
∥∥Q∗ − Q̂µ∗,∗∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)

∥∥Q∗ − Q̂∗,ν∗∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)
,

where

αδ,N =
γ

1− γ

√
2 log(16|S||A||B|/[(1− γ)2δ])

N
.

Proof Note that

‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ = γ
∥∥(I − γP µ̂,ν̂)−1(P − P̂ )V̂ µ̂,ν̂

∥∥
∞ (39)

≤ γ
∥∥(I − γP µ̂,ν̂)−1(P − P̂ )V̂ ∗

∥∥
∞ + γ

∥∥(I − γP µ̂,ν̂)−1(P − P̂ )(V̂ µ̂,ν̂ − V̂ ∗)
∥∥
∞ (40)

≤ γ
∥∥(I − γP µ̂,ν̂)−1

∣∣(P − P̂ )V̂ ∗
∣∣∥∥
∞ +

2γεopt
1− γ

, (41)

where (39) is due to Lemma 9; (40) uses triangle inequality; and (41) is due to the non-
negativeness of the entries in (I − γP µ̂,ν̂)−1, the sub-optimality of (µ̂, ν̂), and Lemma 10.
Since the first term in (41) can be bounded using Lemma 17, we have

‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ ≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1

√
VarP (V̂ ∗)

∥∥∥
∞

+
γ∆′δ,N
1− γ

+
2γεopt
1− γ

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1
(√

VarP (V µ̂,ν̂) +

√
VarP (V µ̂,ν̂ − V̂ µ̂,ν̂)

)∥∥∥
∞

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1
(√

VarP (V̂ µ̂,ν̂ − V̂ ∗)
)∥∥∥
∞

+
γ∆′δ,N
1− γ

+
2γεopt
1− γ
(42)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

(√
2

(1− γ)3
+
‖V µ̂,ν̂ − V̂ µ̂,ν̂‖∞

1− γ
+

εopt
1− γ

)
+
γ∆′δ,N
1− γ

+
2γεopt
1− γ

(43)
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≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞

1− γ
+

εopt
1− γ

)
+
γ∆′δ,N
1− γ

+
2γεopt
1− γ
(44)

= γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞

1− γ

)
+
γ∆′δ,N
1− γ

+

(
2 +

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

)
· γεopt

1− γ
, (45)

where (42) uses the fact that
√

VarP (X + Y ) ≤
√

VarP (X) +
√

VarP (Y ); (43) is due to

Lemma 11, the fact that

√
VarP (V µ̂,ν̂ − V̂ µ̂,ν̂) ≤ ‖V µ̂,ν̂− V̂ µ̂,ν̂‖∞, and ‖V̂ µ̂,ν̂− V̂ ∗‖∞ ≤ εopt;

(44) is due to ‖V µ̂,ν̂ − V̂ µ̂,ν̂‖∞ ≤ ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞. Solving for ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ in (45) yields
the desired inequality.

For the second inequality, by Lemma 9, we first have

γ(I − γPµ
∗,ν∗)−1(P − P̂ )V̂ µ

∗,ν∗︸ ︷︷ ︸
Qµ∗,ν∗−Q̂µ∗,ν∗

≤ Q∗ − Q̂µ
∗,∗ = Qµ

∗,ν∗ − Q̂µ
∗,∗ ≤ γ(I − γPµ

∗,ν̂(µ∗))−1(P − P̂ )V̂ µ
∗,∗︸ ︷︷ ︸

Qµ∗,ν̂(µ∗)−Q̂µ∗,∗

.

Thus, we obtain that∥∥Q∗ − Q̂µ∗,∗∥∥∞ ≤ max
{∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞, ∥∥Qµ∗,ν̂(µ∗) − Q̂µ∗,∗

∥∥
∞
}

(46)

= max
{
γ
∥∥(I − γPµ∗,ν∗)−1(P − P̂ )V̂ µ∗,ν∗

∥∥
∞, γ

∥∥(I − γPµ∗,ν̂(µ∗))−1(P − P̂ )V̂ µ∗,∗∥∥
∞

}
.

For the first term in the max operator above, by similar arguments from (42)-(45), we have∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞ = γ
∥∥(I − γPµ∗,ν∗)−1(P − P̂ )V̂ µ∗,ν∗

∥∥
∞

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ∗,ν∗)−1
√

VarP (V̂ µ∗,ν∗)
∥∥∥
∞

+
γ∆′δ,N
1− γ

(47)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ∗,ν∗)−1
√

VarP (V µ∗,ν∗ − V̂ µ∗,ν∗)
∥∥∥
∞

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ∗,ν∗)−1
√

VarP (V µ∗,ν∗)
∥∥∥
∞

+
γ∆′δ,N
1− γ

(48)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·
∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞

1− γ

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·

√
2

(1− γ)3
+
γ∆′δ,N
1− γ

, (49)

where (47) is due to Lemma 17, (48) uses triangle inequality, and (50) uses Lemma 11.
Solving for

∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞ gives the bound for it.
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Similarly, the second term in the max operator in (46) can be bounded by

∥∥Qµ∗,ν̂(µ∗) − Q̂µ∗,∗
∥∥
∞ ≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·
∥∥Qµ∗,ν̂(µ∗) − Q̂µ∗,∗

∥∥
∞

1− γ

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·

√
2

(1− γ)3
+
γ∆′δ,N
1− γ

, (50)

which can be solved to obtain a bound for
∥∥Qµ∗,ν̂(µ∗)−Q̂µ∗,∗

∥∥
∞. Combining the two bounds

and (46), we prove the second inequality in the lemma. The proof for the third inequality
is analogous.

With Lemma 19 in hand, we are ready to prove Theorem 5. Note that the condition on
N in Theorem 5 makes αδ,N < 1/2. Thus, by (8)-(9) in Lemma 9 with (µ, ν) being replaced
by (µ̂, ν̂), we have

−‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ − γεopt − ‖Q̂µ
∗,∗ −Q∗‖∞ ≤ Qµ̂,ν̂ −Q∗ ≤ ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ + γεopt + ‖Q̂∗,ν

∗
−Q∗‖∞,

where we use

‖Q̂µ̂,ν̂ − Q̂∗‖∞ = γ‖PV̂ µ̂,ν̂ − PV̂ ∗‖∞ ≤ γ‖V̂ µ̂,ν̂ − V̂ ∗‖∞ ≤ γεopt.

Substituting in the bounds of ‖Qµ̂,ν̂−Q̂µ̂,ν̂‖∞, ‖Q∗−Q̂µ∗,∗‖∞, and ‖Q∗−Q̂∗,ν∗‖∞ in Lemma
19, we arrive at the final bound for ‖Qµ̂,ν̂ −Q∗‖∞:

‖Qµ̂,ν̂ −Q∗‖∞ ≤ 4γ

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)
+

4γεopt
1− γ

+ γεopt.

With a certain choice of c, we have ‖Qµ̂,ν̂ −Q∗‖∞ ≤ 2ε/3 + 5γεopt/(1− γ).

For the last argument in Theorem 5, by triangle inequality, with the same constant c
used above, we have

‖Q̂µ̂,ν̂ −Q∗‖∞ ≤ ‖Qµ̂,ν̂ −Q∗‖∞ + ‖Q̂µ̂,ν̂ −Qµ̂,ν̂‖∞ ≤ ε+
9γεopt
1− γ

,

which completes the proof.
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4.4 Proof of Corollary 6

We now prove Corollary 6, based on Theorem 5. For any state s, we have

V ∗(s)− V µ̃,∗(s) = min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
= min

ϑ∈∆(B)
Ea∼µ∗(· | s),b∼ϑ

[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
≤ min

ϑ∈∆(B)
Ea∼µ∗(· | s),b∼ϑ

[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ γ‖V ∗ − V µ̃,∗‖∞

(51)

≤ min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ γ‖V ∗ − V µ̃,∗‖∞

(52)

≤ 2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞ + γ‖V ∗ − V µ̃,∗‖∞, (53)

where (51) uses the fact that

min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
≤ max

ϑ∈∆(B)

∣∣∣∣Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− Ea∼µ̃(· | s),b∼ϑ

[
Qµ̃,∗(s, a, b)

]∣∣∣∣ ≤ γ‖V ∗ − V µ̃,∗‖∞,

and (52) is due to the fact that

− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
≥ 0,

by definition of µ̃. Hence, (53), together with Theorem 5, implies that

V ∗ − V µ̃,∗ ≤
2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞

1− γ
= ε̃. (54)

By similar arguments, we have

V ∗,ν̃ − V ∗ ≤
2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞

1− γ
= ε̃. (55)

Combining (54) and (55) yields

V µ̃,ν̃ − V µ̃,∗ ≤ V ∗,ν̃ − V µ̃,∗ ≤ 2ε̃, V ∗,ν̃ − V µ̃,ν̃ ≤ V ∗,ν̃ − V µ̃,∗ ≤ 2ε̃,

which completes the proof.
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4.5 Proof of Theorem 8

We now prove the second main result, Theorem 8. First, following the proof of Corollary
6, it suffices to prove that V ∗ − V µ̂,∗ ≤ ε̃, V ∗,ν̂ − V ∗ ≤ ε̃, since they together imply that
(µ̂, ν̂) is a 2ε̃-Nash equilibrium. The following analysis is devoted to proving this argument.

The idea is similar to that presented in §4.3, i.e., we use the component-wise error
decompositions in Lemma 9, but use (10)-(11) instead. In particular, letting µ = µ̂ and
ν = ν̂, we have

V µ̂,∗ − V ∗ ≥ −‖Qµ̂,∗ − Q̂µ̂,∗‖∞ − εopt − ‖Q̂µ
∗,∗ −Q∗‖∞ (56)

V ∗,ν̂ − V ∗ ≤ ‖Q∗,ν̂ − Q̂∗,ν̂‖∞ + εopt + ‖Q̂∗,ν∗ −Q∗‖∞. (57)

Note that the bounds for ‖Q̂µ∗,∗−Q∗‖∞ and ‖Q̂∗,ν∗ −Q∗‖∞ have already been established
in Lemma 19 (without dependence on εopt and the Planning Oracle). It now suffices to

bound ‖Qµ̂,∗ − Q̂µ̂,∗‖∞ and ‖Q∗,ν̂ − Q̂∗,ν̂‖∞. For the former term, by Lemma 9, we first
have

γ(I − γP̂ µ̂,ν(µ̂))−1(P − P̂ )V µ̂,ν(µ̂)︸ ︷︷ ︸
Qµ̂,∗−Q̂µ̂,ν(µ̂)

≤ Qµ̂,∗ − Q̂µ̂,∗ ≤ γ(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,ν̂(µ̂)︸ ︷︷ ︸
Qµ̂,ν̂(µ̂)−Q̂µ̂,∗

.

Thus, we know that∥∥Qµ̂,∗ − Q̂µ̂,∗∥∥∞ (58)

≤ max
{
γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,ν̂(µ̂)

∥∥
∞, γ

∥∥(I − γP̂ µ̂,ν(µ̂))−1(P − P̂ )V µ̂,ν(µ̂)
∥∥
∞

}
.

The first term in the max operator, where the policies in the pair (µ̂, ν̂(µ̂)) are both obtained
from the empirical model Ĝ, can be bounded similarly as that for ‖Qµ̂,ν̂−Q̂µ̂,ν̂‖∞ in Lemma
19. Specifically, following (39)-(41), we have

γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,∗∥∥

∞

≤ γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ ∗

∥∥
∞ + γ

∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )(V̂ µ̂,∗ − V̂ ∗)
∥∥
∞ (59)

≤ γ
∥∥(I − γP µ̂,ν̂(µ̂))−1

∣∣(P − P̂ )V̂ ∗
∣∣∥∥
∞ +

2γεopt
1− γ

, (60)

where (59) uses triangle inequality, and (60) is due to the optimization error of µ̂. Then, to

bound γ
∥∥(I−γP µ̂,ν̂(µ̂))−1

∣∣(P−P̂ )V̂ ∗
∣∣∥∥
∞, the rest of the proof is analogous to the derivations

in (42)-(45), by replacing ν̂ therein by ν̂(µ̂), and bound ‖V̂ µ̂,∗ − V̂ ∗‖∞ by εopt. Solving for

‖Qµ̂,ν̂(µ̂) − Q̂µ̂,∗‖∞ yields the desired bound for the first term in the max in (58), namely,
there exists some constant c such that with probability greater than 1− δ,∥∥Qµ̂,ν̂(µ̂) − Q̂µ̂,∗

∥∥
∞

≤ γ

1− α′δ,N

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
1

1− α′δ,N
· γεopt

(1− γ)

(
1 +

√
log(c(C + 1)|S||A||B|/[(1− γ)4δ])

N

)
, (61)
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where α′δ,N is defined as

α′δ,N =
γ

1− γ

√
2 log(8(C + 1)|S||A||B|/[(1− γ)4δ])

N
.

For the second term in the max in (58), note that µ̂ is obtained from Ĝ, while ν(µ̂)
is obtained from the true model G. Note that this mismatch is one key difference from
the single-agent setting (Agarwal et al., 2019a) and the above proof for the first term. By
Lemma 18, it holds that

γ
∥∥(I − γP̂ µ̂,ν(µ̂))−1

∣∣(P − P̂ )V µ̂,∗
∣∣∥∥
∞

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

∥∥∥(I − γP̂ µ̂,ν(µ̂))−1
√

VarP (V µ̂,∗)
∥∥∥
∞

+
γ∆′δ,N
1− γ

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

·
[∥∥∥(I − γP̂ µ̂,ν(µ̂))−1

(√
VarP̂ (V̂ µ̂,ν(µ̂)) (62)

+

√
VarP̂ (V µ̂,∗ − V̂ µ̂,ν(µ̂))

)∥∥∥
∞

+
∥∥∥(I − γP̂ µ̂,ν(µ̂))−1

∣∣∣√VarP (V µ̂,∗)−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞

]
+
γ∆′δ,N
1− γ

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞

1− γ

)
+
γ∆′δ,N
1− γ

(63)

+
γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

∥∥∥∣∣∣√VarP (V µ̂,∗)−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞
,

where (62) uses the norm-like triangle-inequality property of
√

VarP (V ) and triangle in-

equality, (63) is due to Lemma 11, and the facts that
√

VarP (X) ≤ ‖X‖∞, ‖V µ̂,∗ −
V̂ µ̂,ν(µ̂)‖∞ ≤ ‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞, and Lemma 10. Moreover, notice that

∥∥∥∣∣∣√VarP (V µ̂,∗)−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞

≤
∥∥∥∣∣∣√VarP (V µ̂,∗)−

√
VarP (V ∗)

∣∣∣∥∥∥
∞

+
∥∥∥∣∣∣√VarP̂ (V µ̂,∗)−

√
VarP̂ (V ∗)

∣∣∣∥∥∥
∞

+
∥∥∥∣∣∣√VarP (V ∗)−

√
VarP̂ (V ∗)

∣∣∣∥∥∥
∞

(64)

≤
∥∥∥√VarP (V µ̂,∗ − V ∗)

∥∥∥
∞

+
∥∥∥√VarP̂ (V µ̂,∗ − V ∗)

∥∥∥
∞

+
∥∥∥√∣∣∣VarP (V ∗)−VarP̂ (V ∗)

∣∣∣∥∥∥
∞

(65)

≤ 2
∥∥V µ̂,∗ − V ∗∥∥∞ +

√∥∥∥VarP (V ∗)−VarP̂ (V ∗)
∥∥∥
∞
, (66)

where (64) uses triangle inequality, (65) uses the norm-like triangle inequality of
√

VarP (V )

and
√

Var
P̂

(V ), and the fact |
√
X −

√
Y | ≤

√
|X − Y | for X,Y ≥ 0, and (66) uses√

VarP (X) ≤ ‖X‖∞ and the definition of ‖·‖∞. In addition, we know that with probability
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at least 1− δ,∥∥∥VarP (V ∗)−Var
P̂

(V ∗)
∥∥∥
∞

=
∥∥∥(P − P̂ )(V ∗)2 −

(
(PV ∗)2 − (P̂ V ∗)2

)∥∥∥
∞

≤
∥∥∥(P − P̂ )(V ∗)2

∥∥∥
∞

+
∥∥∥(PV ∗)2 − (P̂ V ∗)2

∥∥∥
∞

≤ 1

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
+

2

1− γ
∥∥(P − P̂ )V ∗

∥∥
∞ ≤

3

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
,

(67)

due to Hoeffding bound and ‖V ∗‖∞ ≤ 1/(1− γ). Combining (63), (66), and (67) yields∥∥∥Qµ̂,∗ − Q̂µ̂,ν(µ̂)
∥∥∥
∞

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞

1− γ

)
+
γ∆′δ,N
1− γ

+
γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗∥∥∞

+

√
3

(1− γ)2

√
2 log(2|S||A||B|/δ)

N

)
.

Solving for ‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞ further leads to∥∥Qµ̂,∗ − Q̂µ̂,ν(µ̂)
∥∥
∞

≤ γ

1− α′δ,N

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
1

1− α′δ,N
· γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗

∥∥
∞

+
1

1− γ
4

√
c log(c(C + 1)|S||A||B|/δ)

N

)
, (68)

for some absolute constant c.
Now we substitute (61) and (68) into (58), to complete the bound in (56). If the first

term in the max in (58) is larger, and noticing that the choice of N in the theorem can
make α′δ,N < 1/5, (56), (58), (61), and Lemma 19 together lead to

V ∗ − V µ̂,∗ ≤ 5γ

2

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
5γεopt

2(1− γ)
+ εopt, (69)

with some absolute constant c, where we have replaced the term log(1/(1 − γ)2) in the

bounds for ‖Q∗−Q̂µ∗,∗‖∞ and ‖Q∗−Q̂∗,ν∗‖∞ in Lemma 19 (including that in the definition
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of αδ,N ) by log((C + 1)/(1 − γ)4), a larger number. If the second term in the max in (58)
is larger, (56), (58), (68), and Lemma 19 together yield

V ∗ − V µ̂,∗ ≤ 5γ

2

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
5

4
· γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗∥∥∞

+
1

1− γ
4

√
c log(c(C + 1)|S||A||B|/δ)

N

)
+ εopt,

where we have used the fact that α′δ,N < 1/5. Taking infinity norm on both sides and

solving for ‖V µ̂,∗ − V ∗‖∞, we have

V ∗ − V µ̂,∗ ≤
∥∥V µ̂,∗ − V ∗

∥∥
∞ ≤ 5γ

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+ (70)

c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)
+

5γ

2(1− γ)2

(c log(c(C + 1)|S||A||B|/δ)
N

)3/4
+ 2εopt,

with some absolute constant c (which can be different from that in (69)). Using the choice of
N in the theorem, and combining (69) and (70), we finally have V ∗−V µ̂,∗ ≤ ε+4εopt/(1−γ).
Note that on the right-hand side of (70), the N that makes the third term to be O(ε) is
Õ(1/[(1−γ)8/3ε4/3]), which is dominated by Õ(1/[(1−γ)3ε2]) when ε ∈ (0, 1/(1−γ)1/2]. In
addition, to make α′δ,N < 1/5, N should be larger than Õ(1/(1 − γ)2), which is consistent

with both the first and third terms on the right-hand side of (70) to be Õ(1/(1 − γ)1/2),
determining the allowed range of ε to be (0, 1/(1 − γ)1/2]. This proves the first bound in
the theorem.

The proof for completing the bound in (57) is analogous: using Lemmas 18 and 9 to
bound ‖Q∗,ν̂ − Q̂∗,ν̂‖∞, which is then substituted into (57). This completes the proof.

5. Concluding Remarks

In this paper, we have established the first (near-)minimax optimal sample complexity
for model-based MARL, when a generative model is available. Our setting was focused
on the basic model in MARL — infinite-horizon discounted two-player zero-sum Markov
games (Littman, 1994). By noticing that reward is not used in the sampling process of this
model-based approach, we have separated the reward-aware and reward-agnostic cases, and
established sample complexity lower bounds correspondingly, a unique separation in the
multi-agent context. We have then shown that this simple model-based approach is near-
minimax optimal in the reward-aware case, with only a gap in the dependence on |A|, |B|;
and is indeed minimax-optimal in the reward-agnostic case. This separation and the (near-
)optimal results have not only justified the sample-efficiency of this simple approach, but
also reflected both its power (easily handling multiple reward functions known in hindsight),
and its limitation (less adaptive and can hardly achieve the optimal Õ(|A|+|B|)). We believe
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that our results may shed light on the choice of model-free and model-based approaches in
various MARL scenarios in practice.

Our results naturally open up the following interesting future directions. First, besides
the turn-based setting in Sidford et al. (2020) and the episodic setting in the concurrent
work Bai et al. (2020), the minimax-optimal sample complexity in all parameters for model-
free algorithms is still open. As discussed in §3, in the reward-aware case, the Ω̃(|A|+ |B|)
lower bound may only be attainable by model-free ones. It would be interesting to compare
the results with our model-based ones, in both reward-aware and reward-agnostic cases, to
better understand their pros and cons in various MARL settings. It would also be interesting
to explore the (near-)optimal sample complexity or regret of model-based approaches in
other MARL scenarios, such as when no generative model is available, episodic and average-
reward settings, general-sum Markov games, and the setting with function approximation.
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Julien Pérolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic
programming for two-player zero-sum Markov games. In International Conference on
Machine Learning, pages 1321–1329, 2015.
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verse reinforcement learning. In Advances in Neural Information Processing Systems,
pages 9482–9493, 2019b.

Appendix A. Lower Bounds

Now we discuss lower bounds of the sample complexity given in §3.1.

A.1 Reward-Aware Case

Proof of Lemma 3. The proof follows by recalling the hard cases of MDPs considered in
Azar et al. (2013) or Feng et al. (2019), and replacing each action a therein by a joint-action
(a, b). Without loss of generality, suppose |A| ≥ |B|. Then, we design a Markov game such
that agent 2 has no effect on the reward or the transition. Thus, finding an NE is now the
same as agent 1 finding the optimal value/policy. By the arguments in Azar et al. (2013);
Feng et al. (2019), the sample complexity is at least Ω̃

(
|S| ·max{|A|, |B|} · (1 − γ)−3ε−2

)
,

where Ω̃ suppresses some log factors of |S|, |A|, |B| and 1/δ. Noticing that max{|A|, |B|} =
(|A|+ |B|+

∣∣|A| − |B|∣∣)/2, we obtain the lower bound.

Challenge in Obtaining Ω̃(|A||B|). Note that the proof of a Ω̃
(
|S|(|A| + |B|) · (1 −

γ)−3ε−2
)

lower bound is a straightforward adaptation from the single-agent result. The
lower bound can also be obtained in several other ways (via a treatment of turn-based
Markov games, or the attempts to be introduced next). Nevertheless, these attempts can
hardly lead to a lower bound of Ω̃(|A||B|), in this reward-aware case. We highlight the
challenges as follows.

The core proof idea of Azar et al. (2013); Feng et al. (2019) for the single-agent setting
lower bound is to create a class of O(|S||A|) number of MDPs, which are hard to distinguish
from each other. When the reward function is given (i.e., in the reward-aware setting), one
can only change the transition model to obtain different hard MDPs. Hence, in Azar et al.
(2013), their approach is to first create a null hypothesis, in which the optimal Q-value
and ε-optimal actions at every state are fixed. Then in each of the O(|S||A|) alternative
hypothesis, they change the transition probability of a distinct state-action pair (s, a) in
the null case to make the Q-value slightly differ from the null-setting and such that a is
an ε-optimal action at state s. They construct the hard instance cleverly such that if
an algorithm correctly outputs the optimal Q-value (or optimal policy) in an alternative
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hypothesis with high probability, then it must have sampled Ω̃((1−γ)−3ε−2) samples at the
corresponding (s, a) pair in the null hypothesis. As this holds for all O(|S||A|) alternative
hypotheses, we obtain an Ω̃(|S||A|(1− γ)−3ε−2) sample lower bound.

In the game setting, however, the above idea requires to change the Nash equilibrium
(say, a unique pure strategy) to a different state-action-action tuple at any state while only
make changes to the probability transition of the corresponding state-joint-action tuple.
Nevertheless, this is challenging to achieve in general, as the NE value of zero-sum matrix
games is not sensitive to the small number of element changes in the payoff matrices. This
can be evidenced either by the stability of the NE in this case against the payoff perturbation
(Jansen, 1981), or by the sensitivity analysis of the equivalent linear program of the game
(Luce and Raiffa, 1989) against the problem data (Dantzig, 1998). Indeed, one can verify
that only changing O(1) elements in the transition probability matrix, and thus changing
O(1) elements in the Q-value table at each state, by a small amount, can hardly change
the NE value/policy too much. Some order of O(|A|) (or O(|B|)) number of changes may
suffice, but will eventually yields O(|B|) (or O(|A|)) hard alternative cases, leading to the
same Ω̃(|A|+ |B|) result as Lemma 3. In other words, one can hardly obtain the sufficient
number of required hard cases (Ω̃(|A||B|) in total) by changing only O(1) elements in the
transition probability matrix of each alternative hypothesis case.

On the other hand, interestingly, we note that there are some results on the payoff query
complexity, i.e., the number of queries for the elements in the payoff matrix, for finding the
NE (Fearnley et al., 2015; Fearnley and Savani, 2016). It is possible to use O(k log(k)/ε2)
queries to find the ε-NE in zero-sum matrix games when |A| = |B|, where k = |A| = |B|
(Fearnley and Savani, 2016). Note that the lower bound given in Fearnley and Savani
(2016), though being Ω(k2), requires the accuracy ε ≤ 1/k to be small, which cannot be
used in our previous analysis with a dimension-free choice of ε. From a different angle, these
results imply that it may indeed be unnecessary to accurately estimate all elements in the
matrix, in order to obtain an approximate Nash equilibrium.

In light of these observations, we have conjectured that with reward knowledge, the
lower bound of Ω̃(|A|+ |B|) is indeed unimprovable, which might be matched by some other
(possibly model-free) MARL algorithms, as general model-based approaches inherently re-
quire Ω̃(|A||B|) for transition model estimation. Such a Ω̃(|A|+ |B|) lower bound on regret
has been provided recently in Bai and Jin (2020), though in a different setting. More inter-
estingly, though not entirely comparable to us, in the concurrent work Bai et al. (2020), the
Õ(|A|+ |B|) complexity is indeed shown to be attainable by a model-free Nash-V learning
algorithm in the episodic setting, with the reward information guiding the online update.

A.2 Reward-Agnostic Case

Now we establish the lower bound for the reward-agnostic case, i.e., the proof of Theorem
4. The idea to construct hard cases is similar to that discussed in §A.1, which is motivated
by Azar et al. (2013); Feng et al. (2019), but with additional flexibility to design the reward
function that is unknown in the sampling stage. Our hard cases apply to both finding the
ε-NE policy pair and finding the ε-approximate NE value. For the sake of presentation, we
focus on proving the lower bound for the ε-NE policy. Let us first formally define the notion
of a correct algorithm in terms of learning an ε-NE policy in this reward-agnostic case.

41



Zhang, Kakade, Başar, and Yang
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Figure 1: The class of zero-sum Markov games G considered in the proof of Theorem 4.
Circles denote the states and arrows denote the transitions. White, yellow, and blue circles
denote the three disjoint subsets of states X , Y1, and Y2, respectively.

Definition 20 ((ε, δ)-correct reward-agnostic algorithm) We say that an RL algorithm A
is (ε, δ)-correct in the reward-agnostic case, if for any unknown MG G = (S,A,B, r, P, γ),
A first calls a generative model on (S,A,B, P, γ), and is then fed with the reward r, and
outputs an ε-NE policy (µ, ν) with probability at least 1− δ.

Note that r is only revealed to A after the sampling, and such an A should be able to
output an (ε, δ)-correct NE policy for any single r in the underlying model. Thus, for M
reward functions defined over the same (S,A,B, P, γ), using a union bound argument, the
ε-NE policy corresponding to all M reward functions can be obtained simultaneously with
probability greater than 1−Mδ (of course with a small enough δ). To prove the theorem,
we will construct a class of Markov game models. We show that if algorithm A only draws
samples much fewer than the lower bound, there exists an MG G such that A cannot be
an (ε, δ)-correct reward-agnostic algorithm for. Compared to the reward-aware case, we
now allow more freedom to construct hard instances, by not only perturbing the transition
matrix, but also choosing the reward function judiciously. This would eventually allow us
to obtain Θ(|A||B|) hard cases, combating the insensitivity of NE to the perturbation of
the payoff matrices (c.f. discussion in §A.1).

Construction of the Hard Case. We define a family of MGs G. See illustrations in
Figure 1. The state space S consists of three disjoint subsets X , Y1, and Y2. The set X
includes K states {x1, x2, . . . , xK} and each of them has L1 > 1 available max-player actions
{a1, a2, . . . , aL1} =: A, and L2 > 1 min-player actions {b1, b2, . . . , bL2} =: B. Each state in
Y1 := {y1,x,a,b : ∀x ∈ X , a ∈ A, b ∈ B} and Y2 := {y2,x,a,b : ∀x ∈ X , a ∈ A, b ∈ B} only
has a single joint-action pair to choose. In total, there are N := 3KL1L2 state-joint-action
pairs. For state x ∈ X , by taking a joint-action (a, b) for a ∈ A, b ∈ B, it transitions to
a state y1,x,a,b ∈ Y1 with probability 1. For state y1,x,a,b ∈ Y1, there is only a single joint-
action for both players to choose from, which is the (a, b) pair that leads to this y1,x,a,b. It
then transitions to itself with probability pG,x,a,b ∈ (1/2, 1) and to a corresponding state
y2,x,a,b ∈ Y2 with probability 1 − pG,x,a,b. Note that pG,x,a,b can be different for different
state-joint-action tuples. All states in Y2 are absorbing. The reward function is: for any
y1,x,a,b ∈ Y1, R(y1,x,a,b) = ιG,x,a,b for some ιG,x,a,b ∈ [0, 1] (to be specified later); and for all
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other states, R(s) = 0. And the Q-function of the MGs can be computed as

QG(x, a, b) =
γιG,x,a,b

1− γpG,x,a,b
, ∀ (x, a, b) ∈ X ×A× B, (71)

which is fully characterized by pG,x,a,b and ιG,x,a,b.

Transition Model Hypotheses of G. We restrict γ ∈ (1/2, 1). Let p0 = γ and α1, α2 ∈
(0, 1). We consider M+1 possibilities of the transition models of G, where M := K[L1(L2−
1)] — the null hypothesis is:

G1 :


pG1,xk,a1,b1 = p0 − α1, ∀ k ∈ [K],

pG1,xk,al,b1 = p0 − 2α1, ∀ k ∈ [K], l ∈ [L1]\{1},
pG1,xk,al1 ,bl2 = p0, ∀ k ∈ [K], l1 ∈ [L1], l2 6= 1;

(72)

and for all k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1} the M alternative hypotheses are:

Gk,l1,l2 :


pGk,l1,l2 ,xk,al1 ,bl2 = pG1,xk,al1 ,bl2 − α2 = p0 − α2,

pGk,l1,l2 ,xk,al′1
,bl2

= pG1,xk,al′1
,bl2

= p0, ∀l′1 6= l1,

pGk,l1,l2 ,xk′ ,al′1
,bl′2

= pG1,xk′ ,al′1
,bl′2
, ∀(k′, l′1, l′2) 6= (k, l1, l2),

(73)

where α1 = c′(1− γp0)2ε/γ, α2 = c(1− γp0)2ε/γ for some ε ∈ (0, 1) and absolute constants
c′, c > 0 to be determined later. Note that each alternative hypothesis only has one element
in the transition model different from the null one.

Reward Functions. We define a class ofM+1 reward functions R = {r1}
⋃
{rk,l1,l2 : ∀k ∈

[K], l1 ∈ [L1], l2 ∈ [L2]\{1}}, which is unknown to A during sampling, and is defined as
follows (recall that other than the value specified by ιG,x,a,b, rewards are all zero):

r1 :


ιG,xk,a1,b1 = 1, ∀ k ∈ [K],

ιG,xk,al,b1 = 1, ∀ k ∈ [K], l ∈ [L1]\{1},
ιG,xk,al1 ,bl2 = 1, ∀ k ∈ [K], l1 ∈ [L1], l2 6= 1;

rk,l1,l2 :


ιG,xk,al1 ,bl2 = 1,

ιG,xk,al′1
,bl2

=
1−γpG1,xk,al′1

,bl2

1−γ
(
pG1,xk,al′1

,bl2
−2α2

) , ∀l′1 6= l1,

ιG,xk′ ,al′1
,bl′2

= 1, ∀(k′, l′1, l′2) 6= (k, l1, l2),

for all k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}.
By the construction above, if the reward function rm ∈ R is assigned to the correspond-

ing transition model in Gm, for either m = 1 or any m = (k, l1, l2), then the corresponding
Q-values become

for G1 :


QG1(xk, a1, b1) = γ

1−γ(p0−α1) , ∀ k ∈ [K],

QG1(xk, al, b1) = γ
1−γ(p0−2α1) , ∀ k ∈ [K], l ∈ [L1]\{1},

QG1(xk, al1 , bl2) = γ
1−γp0 , ∀ k ∈ [K], l1 ∈ [L1], l2 6= 1;

(74)
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and ∀k ∈ [K], l1 ∈ [L1], l2 ∈ [L2]\{1},

for Gk,l1,l2 :


QGk,l1,l2 (xk, al1 , bl2) = γ

1−γ
(
pG1,xk,al1 ,bl2

−α2

) ,
QGk,l1,l2 (xk, al′1 , bl2) = γ

1−γ
(
pG1,xk,al′1

,bl2
−2α2

) , ∀l′1 6= l1,

QGk,l1,l2 (xk′ , al′1 , bl′2) = γ
1−γpG1,xk′ ,al′1

,b
l′2

, ∀(k′, l′1, l′2) 6= (k, l1, l2).

(75)

We then select α1 such that for (l1, l2) 6= (1, 1),∣∣QG1(xk, a1, b1)−QG1(xk, al1 , bl2)
∣∣

≥ min
( γ

1− γp0
− γ

1− γ(p0 − α1)
,

γ

1− γ(p0 − α1)
− γ

1− γ(p0 − 2α1)

)
≥ 20ε (76)

and α2 is selected such that α2 ≥ 2α1 and

48ε ≥ |QGk,l1,l2 (xk, al1 , bl2)−QGk,l1,l2 (xk, al′1 , bl′2)| ≥ 20ε (77)

for all (l′1, l
′
2) 6= (l1, l2). Moreover, we require that p0 ∈ (1/2 + 2α1 + 2α2, 1), α2/(1− p0) ∈

(0, 1/2) and α2/(p0 − 2α1 − 2α2) ∈ (0, 1/2). Hence, ε ≤ O(1/(1− γ)).
In the sequel, we denote E1 and P1 to measure the expectation and probability of an

event under the transition model hypothesis G1. Similarly, we denote Ek,l1,l2 and Pk,l1,l2
to measure the expectation and probability of an event under hypothesis Gk,l1,l2 . It is not
hard to verify that in the above case (with rm being assigned to Gm correspondingly, for
m = 1 or m = (k, l1, l2)), there is a unique NE policy pair under hypothesis G1: for x ∈ X ,
µ∗1(x) = a1 and ν∗1(x) = b1; and that there is a unique NE policy under hypothesis Gk,l1,l2
for all l1 ∈ [L1] and l2 ∈ [L2]\{1}: for k′ 6= k, µ∗k,l1,l2(xk′) = a1, ν∗k,l1,l2(xk′) = b1, and
µ∗k,l1,l2(xk) = al1 , ν∗k,l1,l2(xk) = bl2 .

Moreover, one can verify that if any reward rk,l1,l2 with k ∈ [K], l1 ∈ [L1], and l2 ∈
[L2]\{1} (instead of r1 as in (74)) is assigned to the transition model of G1, then the NE
policy at xk can never be the pure strategy µ∗1(xk) = al1 , ν∗1(xk) = bl2 (it can be some mixed
NE policy). As a consequence, for algorithm A, after estimating the transition model of G1,
if rk,l1,l2 is revealed, then it will output some ε-NE policy with probability greater than 1−δ;
this ε-NE policy pair, which can be mixed strategies at xk, should output the joint-action
(al1 , bl2) with a small probability, which is smaller than

β :=

γ
1−γ(p0−α1) −

γ
1−γ(p0−2α2) + ε

γ
1−γp0 −

γ
1−γ(p0−2α2)

= 1−
γ

1−γp0 −
γ

1−γ(p0−α1) − ε
γ

1−γp0 −
γ

1−γ(p0−2α2)

≤ 1− 19

96
≤ 1− 19ε(1− γp0)

γ
,

(78)

(implying that ε ≤ γ/[96(1− γp0)]), where the first inequality is due to (76)-(77), and the
last one follows by upper-bounding γ/(1− γp0)−γ/[1− γ(p0 − 2α2)] simply by γ/(1− γp0).
This is because otherwise, the value of the ε-NE policy at xk, denoted by V ∗G1(xk) satisfies

V ∗G1(xk) ≥ β ·
γ

1− γp0
+ (1− β) · γ

1− γ(p0 − 2α2)
=

γ

1− γ(p0 − α1)
+ ε, (79)

where the first inequality is because with reward rk,l1,l2 being assigned to model G1, at
state xk and with the joint-action (al1 , bl2), the Q-value is γ/(1− γp0), while the small-
est Q-value at state xk is γ/[1− γ(p0 − 2α2)]; the last equation is due to the definition
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of β in (78). However, one can verify that the NE-value in this case lies in the range
[γ/(1− γ(p0 − 2α1)), γ/(1− γ(p0 − α1))], by finding the minimax and maximin elements in
the payoff matrix, i.e., the Q-value table at xk (using Lemma 25). Thus, (79) contradicts
the fact that this policy is an ε-NE policy (thus making V ∗G1(xk) ε-close to the NE-value).
If we define the following events for every k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}:

Bk,l1,l2 =
{

when fed with rk,l1,l2 ∈ R, A outputs (µ, ν) s.t. at xk,
(
al1 , bl2

)
is generated w.p. ≤ β

}
,

(80)

then the above argument can be written as P1

(
Bk,l1,l2

)
≥ 1− δ.

Now, we fix ε ∈ (0, ε0) and δ ∈ (0, δ0), where ε0 and δ0 will be determined later. Let

t∗ =
c1

(1− γ)3ε2
log
( 1

4δ

)
,

where c1 > 0 is an absolute constant to be determined later. We also define Tk,l1,l2 to be
the number of samples that algorithm A calls from the generative model with input state
y1,xk,al1 ,bl2

till A stops (these sample calls are not necessarily consecutive). Note that no
reward information is used/revealed to the agent in this sampling process of A. For every
k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}, we define the following two events:

Ak,l1,l2 = {Tk,l1,l2 ≤ 4t∗}, (81)

Ck,l1,l2 =
{
Sk,l1,l2 − pG1,xk,al1 ,bl2Tk,l1,l2 ≤

√
2pG1,xk,al1 ,bl2 (1− pG1,xk,al1 ,bl2 )Tk,l1,l2 log(1/4δ)

}
,

(82)

where Sk,l1,l2 is the number of transitions to itself in the Tk,l1,l2 calls to the generative model
with input state y1,xk,al1 ,bl2

. For these events, we have the following lemmas.

Lemma 21 For any k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}, if E1[Tk,l1,l2 ] ≤ t∗, P1(Ak,l1,l2) >
3/4.

Proof Notice that

t∗ ≥ E1[Tk,l1,l2 ] > 4t∗P1(Tk,l1,l2 > 4t∗) = 4t∗(1− P1(Tk,l1,l2 ≤ 4t∗)).

Thus, P1(Ak,l1,l2) > 3/4.

Lemma 22 For any k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}, if δ < 1/16, P1(Ck,l1,l2) ≥ 3/4.

Proof We denote outcome to be 1 if the transition from y1,xk,al1 ,bl2
ends up on itself; oth-

erwise 0. By definition, the outcomes from state y1,xk,al1 ,bl2
are i.i.d. Bernoulli-pG1,xk,al1 ,bl2

random variables. Let ε :=
√

2pG1,xk,al1 ,bl2 (1− pG1,xk,al1 ,bl2 )Tk,l1,l2 log(1/4δ). By Chernoff-
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Hoeffding bound and pG1,xk,al1 ,bl2 ≥ p0 − 2α1 > 1/2, we have that

P1

(
Sk,l − pG1,xk,al1 ,bl2Tk,l1,l2 ≤ ε

)
≥ 1− exp

(
−KL

(
pG1,xk,al1 ,bl2 +

ε

Tk,l1,l2

∣∣∣∣∣∣ pG1,xk,al1 ,bl2
)
· Tk,l1,l2

)
≥ 1− exp

(
− ε2

2pG1,xk,al1 ,bl2 (1− pG1,xk,al1 ,bl2 )Tk,l1,l2

)
≥ 1− 4δ. (83)

Additional application of δ < 1/16 proves the lemma.

Let δ0 = 1/16 and ε0 = γ/[96(1− γp0)]. Then, for δ ∈ (0, δ0) and ε ∈ (0, ε0), and with
the transition model of G1 being input, by the argument after (80), we have P1(Bk,l1,l2) ≥
1 − δ ≥ 1 − 1/16 ≥ 3/4, for all k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}. Define the event
Ek,l1,l2 := Ak,l1,l2 ∩ Bk,l1,l2 ∩ Ck,l1,l2 . Combining Lemmas 21 and 22 and P1(Bk,l1,l2) ≥ 3/4,
we have that

P1(Ek,l1,l2) > (3/4)3 > 1/4, ∀ k ∈ [K], l1 ∈ [L1], l2 ∈ [L2]\{1}, (84)

if E1[Tk,l1,l2 ] ≤ t∗, δ ∈ (0, δ0) and ε ∈ (0, ε0). Next, we show that if the expectation of the
number of samples in A on any y1,xk,al1 ,bl2

is no greater than t∗ under the hypothesis G1,
then Bk,l1,l2 occurs with probability greater than δ under the hypothesis Gk,l1,l2 .

Lemma 23 Let ε0 = min
{

γ
96(1−γp0) , c

′′min
{

γ
(1−γp0)2

, 1
1−γ

}}
for some constant c′′ > 0.

For any k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}, when ε ∈ (0, ε0), if E1[Tk,l1,l2 ] ≤ t∗, then
Pk,l1,l2(Bk,l1,l2) ≥ δ.

Proof Let W be the length-Tk,l1,l2 random sequence of the next states by calling the
generative model Tk,l1,l2 times with the input state y1,xk,al1 ,bl2

. To simplify notation, we
represent W as a binary sequence where 1 represents the next state from y1,xk,al1 ,bl2

to itself
and 0 otherwise. If (l1, l2) 6= (1, 1) and G = G1, W forms an i.i.d. Bernoulli-pG1,xk,al1 ,bl2
sequence; if G = Gk,l1,l2 , this is an i.i.d Bernoulli-pGk,l1,l2 ,xk,al1 ,bl2 sequence. We define the
likelihood function Lk,l1,l2 as

∀w ∈ {0, 1}Tk,l1,l2 : Lk,l1,l2(w) = Pk,l1,l2 [W = w] and L1(w) = P1[W = w].

Recall that the notation Sk,l1,l2 denotes the total number of 1’s in W . For convenience, let
us denote

p1 = pG1,xk,al1 ,bl2 , and p2 = pGk,l1,l2 ,xk,al1 ,bl2 .

Note that

p1 − p2 = α2.
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To additionally simplify the notation, we define T = Tk,l1,l2 and S = Sk,l1,l2 . With these
new notations, we compute Lk,l1,l2(W )/L1(W ) as follows

Lk,l1,l2(W )

L1(W )
=

(p2)S(1− p2)T−S

(p1)S(1− p1)T−S
=

(
1 +

α2

p1

)S (
1− α2

1− p1

)T−S
=

(
1 +

α2

p1

)S (
1− α2

1− p1

)S 1−p1
p1

(
1− α2

1− p1

)T−S/p1
. (85)

Note that p0−2α1 ≤ p1 ≤ p0. By our choice of p0, α1, α2, and ε, it holds that α2/(1−p1) ∈
(0, 1/2) and α2/p1 ∈ (0, 1/2). With the fact that log(1− u) ≥ −u− u2 for u ∈ [0, 1/2] and
exp(−u) ≥ 1− u for u ∈ [0, 1], we have that(

1− α2

1− p1

) 1−p1
p1

≥ exp

(
1− p1

p1

(
− α2

1− p1
−
( α2

1− p1

)2)) ≥ (1− α2

p1

)(
1− α2

2

p1(1− p1)

)
.

(86)

Thus

Lk,l1,l2(W )

L1(W )
≥
(

1− α2
2

p2
1

)S (
1− α2

2

p1(1− p1)

)S (
1− α2

1− p1

)T−S/p1
(87)

≥
(

1− α2
2

p2
1

)T (
1− α2

2

p1(1− p1)

)T (
1− α2

1− p1

)T−S/p1
(88)

due to S ≤ T . Next, we proceed on the event Ek,l1,l2 . By definition, if Ek,l1,l2 occurs, event
Ak,l1,l2 has occurred. Using log(1− u) ≥ −2u for u ∈ [0, 1/2], it follows that(

1− α2
2

p2
1

)T
≥
(

1− α2
2

p2
1

)4t∗

≥ exp

(
−8t∗

α2
2

p2
1

)
≥ (4δ)128c2c1 ,

where we use the fact that

t∗ · α
2
2

p2
1

=
c1

(1− γ)3ε2
log
( 1

4δ

)
· c

2(1− γp0)4ε2

γ2p2
1

≤ c1

(1− γ)3
log
( 1

4δ

)
· c

2(1− γp0)4

γ2p2
1

≤ 16c1c
2(1− γ) · log(1/4δ).

Using log(1− u) ≥ −2u for u ∈ [0, 1/2], we also have that(
1− α2

2

p1(1− p1)

)T
≥
(

1− α2
2

p1(1− p1)

)4t∗

≥ exp

(
−8t∗

α2
2

p1(1− p1)

)
≥ (4δ)64c2c1 ,

where we use

t∗ · α2
2

p1(1− p1)
=

c1

(1− γ)3ε2
log
( 1

4δ

)
· c

2(1− γp0)4ε2

γ2p1(1− p1)

≤ c1

(1− γ)3
log
( 1

4δ

)
· c

2(1− γp0)4

γ2(p1)(1− p0)
≤ 8c1c

2 · log(1/4δ).
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Further, we have that when Ek,l1,l2 occurs, Ck,l1,l2 also occurs. Therefore,

(
1− α2

1− p1

)T−S/p1
≥
(

1− α2

1− p1

)√
1−p1
p1

T log(1/4δ)

≥
(

1− α2

1− p1

)√
1−p1
p1

4t∗ log(1/4δ)

≥ exp

(
−

√
16

α2
2

p1(1− p1)
t∗ log(1/4δ)

)
≥ (4δ)

√
16c1c2 .

By taking c1 small enough, e.g., c1 = 10−5c−2, we have Lk,l1,l2(W )/L1(W ) ≥ 4δ. Note that
by (73), the probability measure of the whole sample sequence under the two hypotheses
G1 and Gk,l1,l2 only differ at (k, l1, l2). By a change of measure, we deduce that

Pk,l1,l2(Bk,l1,l2) ≥ Pk,l1,l2(Ek,l1,l2) = Ek,l1,l2 [1Ek,l1,l2 ] = E1

[
Lk,l1,l2(W )

L1(W )
1Ek,l1,l2

]
≥ 4δ ·1/4 = δ,

(89)
which completes the proof.

If A is an (ε, δ)-correct reward-agnostic algorithm, then under transition model hypoth-
esis Gk,l1,l2 , when fed with rk,l1,l2 , it produces an ε-NE policy pair (µ, ν) with probability at
least 1 − δ. At state xk, this ε-NE policy should generate the joint-action (al1 , bl2) with a
high probability. To see this, note that now (al1 , bl2) is the unique NE strategy at state xk,
which is a pure strategy. By Lemma 26, (µ(· |xk),1b=bl2 ) is an 2ε-NE strategy at xk. Let
ζ ∈ [0, 1] denote the probability of choosing al1 , i.e., ζ = µ(al1 |xk). Then, the value at xk
under (µ(· |xk),1b=bl2 ), denoted by Vµ,bl2 (xk), is

Vµ,bl2 (xk) = ζ · γ

1− γ(p0 − α2)
+ (1− ζ) · γ

1− γ(p0 − 2α2)
≤ γ

1− γ(p0 − α2)
,

which, by the 2ε-NE property, should satisfy

Vµ,bl2 (xk) ≥
γ

1− γ(p0 − α2)
− 2ε =⇒ ζ ≥ 1− 2ε

γ
1−γ(p0−α2) −

γ
1−γ(p0−2α2)

≥ 1− 2ε

20ε
=

9

10
.

Similarly, let ξ = ν(bl2 |xk), we have

Val1 ,ν(xk) ≥ ξ ·
γ

1− γ(p0 − α2)
+ (1− ξ) ·

[ γ

1− γ(p0 − α2)
+ 20ε

]
=

γ

1− γ(p0 − α2)
+ 20(1− ξ)ε,

where the inequality is due to (77). As (1a=al1
, ν(· |xk)) is an 2ε-NE at xk, we have

Val1 ,ν(xk) ≤ γ/[1− γ(p0 − α2)] + 2ε, leading to ξ ≥ 9/10. Thus, for the ε-NE (µ, ν), the
probability of generating (al1 , bl2) is at least ζ · ξ ≥ 81/100.

Hence, recalling the definition in (80) and the fact that β ≤ 1 − 19/96 < 81/100, we
have Pk,l1,l2

(
Bk,l1,l2

)
< δ for all k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}. From Lemma 23, this

does not happen unless E1[Tk,l1,l2 ] > t∗ for all k ∈ [K], l1 ∈ [L1], and l2 ∈ [L2]\{1}. By
linearity of expectation, the expected number of samples required by A under hypothesis
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G1 is at least K[L1(L2 − 1)]t∗ = Ω
(

N
(1−γ)3ε2

log(1/δ)
)

, which proves the lower bound for

finding the ε-NE policy.

On the lower bound for finding ε-approximate NE value, the hard cases above can also
be used. In fact, suppose some algorithm A returns some Q̂ such that ‖Q̂ − Q∗‖∞ ≤ ε/4
with probability at least 1− δ, then it can identify the pure NE strategy as described in the
paragraph before (80) for the Q-values given in (74)-(75) (when reward rm is assigned to
transition model of Gm correspondingly), under our choices of the parameters. This can be
done by solving for the NE of the corresponding Q̂. Moreover, when rk,l1,l2 is assigned to G1

(instead of r1 as in (74)), this procedure of solving the NE policy for Q̂ will also output some
policy that makes Bk,l1,l2 in (80) hold with P1(Bk,l1,l2) ≥ 1− δ, following similar arguments
around (79). Indeed, otherwise, if this procedure outputs µ(xk) = al1 , ν(xk) = bl2 with a
high probability, then the NE value under payoff matrix Q̂(xk, ·, ·) will be at least ε/2 away
from the NE value under payoff matrix Q∗(xk, ·, ·), due to our choice of α1. However, as
one-step of the max min operation onto Q̂(xk, ·, ·) (and Q∗(xk, ·, ·)) is non-expansive, the NE
values under these two payoff matrices should differ no greater than ε/4, as ‖Q̂−Q∗‖∞ ≤ ε/4.
This shows P1(Bk,l1,l2) ≥ 1−δ. Then, using almost identical arguments as above, we obtain
a lower bound of the same order, and thus prove Theorem 4.

Appendix B. Auxiliary Results

B.1 A Smooth Planning Oracle

We now show that solving the regularized matrix game induced by Q̂∗, see (6), leads to a
smooth Planning Oracle with certain smoothness coefficient C (see Definition 7).

Lemma 24 Suppose that the nonnegative regularizers Ωi for i = 1, 2 in (6) are twice con-
tinuously differentiable, strongly convex, and bounded over the simplex. Suppose that for
each s ∈ S, the solution policy pair (µ̂(· | s), ν̂(· | s)) of (6) with τ1 = τ2 = (1 − γ)2ε > 0
lies in the relative interior of the simplexes ∆(A) and ∆(B), respectively. Then, (µ̂, ν̂) is
smooth with respect to Q̂∗, namely, this Planning Oracle follows Definition 7, with some
constant C = poly(|A|, |B|, |S|, 1/ε, 1/(1 − γ)), and meanwhile ‖V̂ µ̂,∗ − V̂ ∗‖∞ ≤ O((1 −
γ)ε), ‖V̂ ∗,ν̂ − V̂ ∗‖∞ ≤ O((1− γ)ε), namely, εopt in Theorem 8 satisfies εopt ≤ O((1− γ)ε).

Proof Let Qs := Q̂∗(s, ·, ·) ∈ R|A|×|B| denote the payoff matrix of the game at state s. Note
that Qs ∈ [0, (1− γ)−1]|A|×|B|, u ∈ [0, 1]|A| and ϑ ∈ [0, 1]|B|. Also, note that by the simplex
constraints on u, ϑ, there are |A| − 1 and |B| − 1 free variables, and the last dimension

can be represented as 1 −
∑|A|−1

i=1 u(ai), where we use ai to denote the i-th element in
A = {a1, a2, · · · , a|A|}. Thus, we introduce new vectors ũ = [u(a1), u(a2), · · · , u(a|A|−1)]>

and ϑ̃ = [ϑ(a1), ϑ(a2), · · · , ϑ(a|A|−1)]> of dimensions R|A|−1 and R|B|−1, respectively. As the

solution to (6) lies in the relative interior of the simplex, we know that 1−
∑|A|−1

i=1 u(ai) > 0

and 1−
∑|B|−1

i=1 ϑ(bi) > 0. We can then redefine the objective in (6) as

f(ũ, ϑ̃) := Λ1(ũ)>QsΛ2(ϑ̃)− τ1Ω1(Λ1(ũ)) + τ2Ω2(Λ2(ϑ̃)) (90)
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where u = Λ1(ũ) =

[
I
−1>

]
ũ + e|A| and ϑ = Λ2(ϑ̃) =

[
I
−1>

]
ϑ̃ + e|B|, 1 denotes the all-

one vector of proper dimension, and ei denotes the vector of proper dimension whose i-th
element is one and all other elements are zero.

Since the solution lies in the relative interior of ∆(A) and ∆(B), by first-order optimality,
we have that for each s ∈ S

∇ũf(ũ, ϑ̃) = −τ1∇ũΩ1(Λ1(ũ)) +
[
I −1

]
QsΛ2(ϑ̃) = 0, (91)

∇
ϑ̃
f(ũ, ϑ̃) = τ2∇ϑ̃Ω2(Λ2(ϑ̃)) +

[
I −1

]
Q>s Λ1(ũ) = 0, (92)

whose solution is unique since (90) is still a strongly-convex-strongly-concave minimax
problem. In particular, note that by the chain rule, the Hessians of f are ∇2

ũf(ũ, ϑ̃) =[
I −1

]
∇2
ug(u, ϑ)

[
I
−1>

]
and ∇2

ϑ̃
f(ũ, ϑ̃) =

[
I −1

]
∇2
ϑg(u, ϑ)

[
I
−1>

]
, where

g(u, ϑ) := u>Qsϑ− τ1Ω1(u) + τ2Ω2(ϑ)

is the original objective used in (6). Let ηi > 0 be the strong-convexity coefficient for Ωi,
then, we have ∇2

ũf(ũ, ϑ̃) � −τ1η1 ·I and ∇2
ϑ̃
f(ũ, ϑ̃) � τ2η2 ·I, since for any vector x ∈ R|A|−1

(or x ∈ R|B|−1) that is not 0,

[
I
−1>

]
x is not 0.

Define a function F : R|A|−1×R|B|−1×R|A||B| → R|A|+|B|−2 as follows, such that (91)-(92)
is equivalent to

F
(
ũ, ϑ̃, vec(Qs)

)
:=

[
τ1∇ũΩ1(Λ1(ũ))−

[
I −1

]
QsΛ2(ϑ̃)

τ2∇ϑ̃Ω2(Λ2(ϑ̃)) +
[
I −1

]
Q>s Λ1(ũ)

]
= 0.

As the solution to (91)-(92) lies in the relative interior of the simplexes, for any choice of
Qs ∈ R|A|×|B| (not just [0, (1− γ)−1]|A|×|B|), the domain of F can be specified as ∆o(A)×
∆o(B) × Qo, where ∆o(A) and ∆o(B) denote the sets of ũ and ϑ̃ whose corresponding u
and ϑ lie in the interiors of ∆(A) and ∆(B), respectively, and Qo ⊂ R|A||B| denotes some
open set that contains [0, (1− γ)−1]|A||B|.

Notice that the Jacobian of F with respect to [ũ> ϑ̃>]> is

M
(
ũ, ϑ̃, vec(Qs)

)
:=
[
∂F
∂ũ

∂F

∂ϑ̃

]
=

τ1
[
I −1

]
∇2
uΩ1(Λ1(ũ))

[
I
−1>

]
−
[
I −1

]
Qs

[
I
−1>

]
[
I −1

]
Q>s

[
I
−1>

]
τ2
[
I −1

]
∇2
ϑΩ2(Λ2(ϑ̃))

[
I
−1>

]
 ,

(93)

which is always invertible for any point in ∆o(A) × ∆o(B) × Qo. This is because Ωi are
strongly convex, and thus the real parts of the eigenvalues of the matrix, which are the
eigenvalues of (M +M>)/2, are always positive and uniformly lower bounded. Specifically,
we have

min
i
λi
(
M(ũ, ϑ̃, vec(Qs)) +M>(ũ, ϑ̃, vec(Qs))

)
≥ 2 min{τ1η1, τ2η2} = 2(1− γ)2 min{η1, η2} · ε > 0,
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with λi(·) being the i-th largest eigenvalues of the corresponding matrix. This further
implies that for any (ũ, ϑ̃, vec(Qs)) ∈ ∆o(A)×∆o(B)×Qo,

∥∥M(ũ, ϑ̃, vec(Qs))
−1
∥∥

2
=

1

mini σi(M(ũ, ϑ̃, vec(Qs)))
(94)

≤ 2

mini λi(M(ũ, ϑ̃, vec(Qs)) +M>(ũ, ϑ̃, vec(Qs)))
≤ 1

min{η1, η2}(1− γ)2 · ε
, (95)

where σi(·) is the i-th largest singular value of the corresponding matrix.

By the implicit function theorem (Krantz and Parks, 2012), for any point that solves

F (ũ, ϑ̃, vec(Qs)) = 0, since M(ũ, ϑ̃, vec(Qs)) is invertible, there exists a neighborhood U ⊆
∆o(A), V ⊆ ∆o(B), and W ⊆ Qo around it, such that [ũ> ϑ̃>]> ∈ U × V is a unique
function of vec(Qs) for all vec(Qs) ∈W , and

∂[ũ> ϑ̃>]>

∂vec(Qs)
= −

[
∂F
∂ũ

∂F

∂ϑ̃

]−1

· ∂F

∂vec(Qs)
= −M(ũ, ϑ̃, vec(Qs))

−1 ·
[
−Λ2(ϑ̃)> ⊗

[
I −1

][
I −1

]
⊗ Λ1(ũ)>

]
,

where ⊗ denotes the Kronecker product. Thus, we have

∥∥∥∥∂[ũ> ϑ̃>]>

∂vec(Qs)

∥∥∥∥
2

≤
∥∥M(ũ, ϑ̃, vec(Qs))

−1
∥∥

2
·
∥∥∥∥ ∂F

∂vec(Qs)

∥∥∥∥
2

≤
√

(|A|+ |B| − 2)|A||B|
min{η1, η2}(1− γ)2 · ε

·
∥∥∥∥ ∂F

∂vec(Qs)

∥∥∥∥
∞
≤

2(|A|
√
|B|+ |B|

√
|A|)

min{η1, η2}(1− γ)2 · ε
,

where we have used (94), the fact that for matrix A ∈ Rm×n, ‖A‖2 ≤
√
mn‖A‖∞, and the

fact that ∥∥∥∥ ∂F

∂vec(Qs)

∥∥∥∥
∞

= 2 ·max
{
‖Λ2(ϑ̃)‖1, ‖Λ1(ũ)‖1

}
= 2.

Notice that this is a uniform bound on the gradient of the implicit function, at any point
in ∆o(A)×∆o(B)×Qo, which together with the mean-value theorem leads to

∥∥[ũ>1 ϑ̃>1 ]− [ũ>2 ϑ̃>2 ]
∥∥

2
≤

2(|A|
√
|B|+ |B|

√
|A|)

min{η1, η2}(1− γ)2 · ε
·
∥∥vec(Qs,1)− vec(Qs,2)

∥∥
2
,

where the pair (ũi, ϑ̃i) is the unique solution of F = 0 corresponding to Qs,i. By the
equivalence of norms and considering all s ∈ S, we can find some constant C (which depends
on |A|, |B|, |S|, as well as 1/ε and 1/(1 − γ) polynomially) as the smooth coefficient, and
this completes the first argument of the result.

Now, it suffices to prove that the obtained solution (µ̂, ν̂) with parameter τ1 = τ2 =
(1− γ)2ε also leads to small εopt. Let Di > 0 denotes the upper bound of the regularizer Ωi
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over the simplex. Then, we have that for any s ∈ S

0 ≤ V̂ ∗(s)− V̂ µ̂,∗(s) = min
ϑ∈∆(B)

Ea∼µ̂∗(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̂(· | s),b∼ϑ
[
Q̂µ̂,∗(s, a, b)

]
= min

ϑ∈∆(B)
Ea∼µ̂∗(· | s),b∼ϑ

[
Q̂∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̂(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̂(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̂(· | s),b∼ϑ
[
Q̂µ̂,∗(s, a, b)

]
≤ min

ϑ∈∆(B)
Ea∼µ̂∗(· | s),b∼ϑ

[
Q̂∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̂(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
+ γ‖V̂ ∗ − V̂ µ̂,∗‖∞

(96)

≤ min
ϑ∈∆(B)

Ea∼µ̂∗(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
−

(
min

ϑ∈∆(B)
Ea∼µ̂(· | s),b∼ϑ

[
Q̂∗(s, a, b)

]
− τ1Ω1(µ̂(· | s))

+ τ2Ω2(ϑ)

)
+ τ2D2 + γ‖V̂ ∗ − V̂ µ̂,∗‖∞ (97)

≤ min
ϑ∈∆(B)

Ea∼µ̂∗(· | s),b∼ϑ
[
Q̂∗(s, a, b)

]
−

(
min

ϑ∈∆(B)
Ea∼µ̂∗(· | s),b∼ϑ

[
Q̂∗(s, a, b)

]
− τ1Ω1(µ̂∗(· | s))

+ τ2Ω2(ϑ)

)
+ τ2D2 + γ‖V̂ ∗ − V̂ µ̂,∗‖∞ (98)

≤ E
a∼µ̂∗(· | s),b∼ϑ̃

[
Q̂∗(s, a, b)

]
−

(
min

ϑ∈∆(B)
Ea∼µ̂∗(· | s),b∼ϑ

[
Q̂∗(s, a, b)

]
+ τ2Ω2(ϑ)

)
+ τ1D1 + τ2D2 + γ‖V̂ ∗ − V̂ µ̂,∗‖∞ (99)

≤ τ1D1 + τ2D2 + γ‖V̂ ∗ − V̂ µ̂,∗‖∞ (100)

where (µ̂∗, ν̂∗) denotes a Nash equilibrium policy in the empirical model Ĝ, with V̂ ∗ =
V̂ µ̂∗,ν̂∗ , (96) uses Bellman equation to relate Q-function and V -function, (97) uses the
boundedness of Ω2, (98) uses (6), and in (99) ϑ̃ denotes the argmin of ϑ ∈ ∆(B) in the
second term in (98). By the choices of τ1 = τ2 = (1 − γ)2ε and (100), we have that
‖V̂ ∗ − V̂ µ̂,∗‖∞ ≤ O(max{τ1, τ2}/(1 − γ)) = O((1 − γ)ε). The proof for ‖V̂ ∗,ν̂ − V̂ ∗‖∞ ≤
O((1− γ)ε) is symmetric and analogous. This completes the proof.

To ensure that the solution (µ̂(· | s), ν̂(· | s)) of (6) lies in the relative interior of the sim-
plexes, the common choice of steep regularizers will suffice (Mertikopoulos and Sandholm,
2016). The steep regularizer means that for any u (resp. ϑ) on the boundary of the simplex
∆(A) (resp. ∆(B)), and for every interior sequence un → u (resp. ϑn → ϑ) that approaches

it, it holds that
∥∥dΩ1(u)

du

∣∣
u=un

∥∥
2
→∞ (resp.

∥∥dΩ2(ϑ)
dϑ

∣∣
ϑ=ϑn

∥∥
2
→∞). This way, the optimizer

is not on the boundary of the simplexes. Examples of steep regularizers in Lemma 24 in-
clude the commonly used negative entropy, Tsallis entropy and Rényi entropy with certain
parameters; see Mertikopoulos and Sandholm (2016) for more discussions. Also note that
they are bounded over simplex for standard choices of the parameters, and thus satisfy the
conditions in our Lemma 24.
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B.2 Properties of (ε-)NE in Zero-Sum Matrix Games

Now we establish several properties of the (ε-)NE strategies in zero-sum matrix games,
which have been used in the proof in §A.2.

Lemma 25 (NE Value Range) Consider a two-player zero-sum matrix game M with
the action spaces A and B, and the payoff matrix M ∈ R|A|×|B| with = {mij}i∈[|A|],j∈[|B|]
for the maximizer (agent-1). Then, the NE value of the game V ∗ is bounded between the
maximin and minimax elements in M , i.e.,

max
i

min
j

mij ≤ V ∗ ≤ min
j

max
i

mij .

Proof Note that

max
u∈∆(A)

min
j

u>Mej = max
u∈∆(A)

min
ϑ∈∆(B)

u>Mϑ = V ∗ = min
ϑ∈∆(B)

max
u∈∆(A)

u>Mϑ = min
ϑ∈∆(B)

max
i

e>i Mϑ,

where ei denote the all-zero vector except a single 1 at element i, with proper dimensions.
Also, notice that

min
ϑ∈∆(B)

max
i

e>i Mϑ ≤ min
j

max
i

e>i Mej = min
j

max
i

mij ,

where the inequality is due to that ei ∈ ∆(B) and the min on the right is taken over a
smaller set, thus has a larger value. This proves the right-hand side of the inequality. Proof
for the other side is analogous.

Lemma 26 (ε-NE Strategy Interchangeability) Consider the game as above in Lemma
25. Let u1, u2 ∈ ∆(A) and ϑ1, ϑ2 ∈ ∆(B) be strategies such that (u1, ϑ1) is a Nash equilib-
rium strategy, and (u2, ϑ2) is an ε-NE strategy. Then, both (u1, ϑ2) and (u2, ϑ1) are 2ε-NE
strategy pairs.

Proof Let V (u, ϑ) := u>Mϑ denote the value under any strategy pair (u, ϑ). By definition,
we have that for any u ∈ ∆(A) and ϑ ∈ ∆(B)

V (u, ϑ1) ≤ V (u1, ϑ1) ≤ V (u1, ϑ), V (u, ϑ2)− ε ≤ V (u2, ϑ2) ≤ V (u2, ϑ) + ε.

Then, we have

V (u1, ϑ1) ≥ V (u2, ϑ1) ≥ V (u2, ϑ2)− ε, V (u1, ϑ1) ≤ V (u1, ϑ2) ≤ V (u2, ϑ2) + ε.

Combining the two, we have

V (u, ϑ2)− 2ε ≤ V (u2, ϑ2)− ε ≤ V (u1, ϑ1) ≤ V (u1, ϑ2)

≤ V (u2, ϑ2) + ε ≤ V (u1, ϑ1) + 2ε ≤ V (u1, ϑ) + 2ε

for any u ∈ ∆(A) and ϑ ∈ ∆(B), showing that (u1, ϑ2) is an 2ε-NE. The proof for the pair
(u2, ϑ1) is analogous.
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