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Abstract

Divide and conquer algorithm is a common strategy applied in big data. Model averaging
has the natural divide-and-conquer feature, but its theory has not been developed in big
data scenarios. The goal of this paper is to fill this gap. We propose two divide-and-
conquer-type model averaging estimators for linear models with distributed data. Under
some regularity conditions, we show that the weights from Mallows model averaging crite-
rion converge in L2 to the theoretically optimal weights minimizing the risk of the model
averaging estimator. We also give the bounds of the in-sample and out-of-sample mean
squared errors and prove the asymptotic optimality for the proposed model averaging es-
timators. Our conclusions hold even when the dimensions and the number of candidate
models are divergent. Simulation results and a real airline data analysis illustrate that the
proposed model averaging methods perform better than the commonly used model selec-
tion and model averaging methods in distributed data cases. Our approaches contribute to
model averaging theory in distributed data and parallel computations, and can be applied
in big data analysis to save time and reduce the computational burden.

Keywords: consistency, distributed data, divide and conquer algorithm, Mallows’ crite-
rion, model averaging, optimality.

1. Introduction

Modern science and technology make data collection easier and easier, and thus more and
more big data have been obtained and stored. Usually, such data are with complicated,
structured, varied, and various characteristics in economy, finance, biology, medicine, in-
dustry, agriculture, transportation, and other fields. See, for example, Misra et al. (2019),
who provided plenty of real data examples that reflect the overall outlook of big data era.
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In this world of explosively large data, estimation faces big computational and statistical
challenges, especially in scalability and storage bottlenecks of hardware and software issues,
and invalidated exogeneous assumptions brought by incidental endogeneity in big data, see-
ing Fan et al. (2014) for a review. In big data applications, one often prefers to suggest a
specific methodology for the problems he/she faces but without theoretical analysis. For
example, Sienkiewicz et al. (2017) solved the computational problems on a single, multi-
core server to describe spiking activity in non-linear dynamic systems with the software
MapReduce and Hoodop, but no theoretical property is discussed. Hence the effective dis-
tributed estimation procedures with theoretical supports are urgently needed to deal with
the computational challenges arisen from large sample size and large number of parameters
in massive data analysis. In this regard, some distributed statistical computing methods
have been proposed. See, for example, Varian (2014) and Wang et al. (2016).

The large-scale datasets may not fit the memory of a single computer and thus are
distributedly stored in multiple machines or servers. So statistical methods should be ad-
justed and modified to accommodate distributed data. The divide and conquer trick is a
practicable and common approach to handle the massive data computation with memory
constraints. It divides data into several groups and then aggregates all group estimators by
a simple average to lessen the computational burden (Zhang et al., 2013b; Chen and Xie,
2014; Zhang et al., 2015; Xu et al., 2019). A number of problems have been studied for the
divide and conquer method, including variable selection (Chen and Xie, 2014), statistical
optimization (Zhang et al., 2013b), logistic regression (Xi et al., 2009), estimation equation
(Lin and Xi, 2011), kernel ridge regression (Zhang et al., 2015; Xu et al., 2019), quantile
regression (Chen et al., 2019, 2020), linear support vector machine (Wang et al., 2019), and
distributed principal component analysis (PCA) (Balcan et al., 2012; Garber et al., 2017).
Some distributed statistical methods based on likelihood framework are also proposed, and
the theoretical upper bound of the information loss for the distributed algorithm is obtained
(c.f., Battey et al., 2018). For data distributed over the nodes, Safarinejadian et al. (2010)
proposed a distributed expectation maximization (DEM) algorithm with two important
advantages of scalability and fault tolerance for density estimation and clustering in sensor
networks, which can also be seen as a divide and conquer method. The DEM algorithm is
scalable and robust under the Gaussian mixture model assumption, where the addition of
more nodes does not affect the performance of the DEM algorithm and it can still produce
the right results even if failures of some nodes occur. The diffusion speed and convergence
of the DEM algorithm have also been studied in Safarinejadian et al. (2010).

However, numerous papers on the divide and conquer algorithm are not involved with
model selection uncertainty. Model averaging is a feasible method to avoid such an un-
certainty. There are four main reasons prompting us to choose model averaging instead
of model selection. First, choosing a single model may not take full information provided
by the training data, especially when it is hard to get a best model. For example, there
may be more than one candidate model with similar quantitative scores under some model
selection criteria. On the other hand, different candidate models capture different data
characteristics. In this dilemma, combining all of those models will not lose the information
from each candidate model and thus may be a better choice. Simple averaging of different
machine learning models to get a more accurate prediction has been a popular method in
some big data applications. Model averaging can result in a smaller risk and get a more
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accurate prediction generally. In fact, model averaging often performs at least as well as
the best algorithm in the candidate models. As commented by Schomaker and Heumann
(2020), model averaging can improve the predictions and should be regarded as attractive
complements for the machine learning and forecasting. Second, model averaging can be
more stable. Based on different statistic analysis goals, model averaging can stabilize esti-
mation and forecast by assigning different weights to candidate models, and is regarded as
a smoothed extension of model selection. Third, model averaging can avoid selecting the
worst candidate model. Last but not the least, model selection criteria based on likelihood,
such as AIC (Akaike, 1974; Matsuda et al., 2021), BIC (Schwarz, 1978), and minimum
description length (MDL, Maggioni and Murphy, 2019), can be invalid for some singular
candidate models including artificial neural networks, normal mixtures, binomial mixtures,
reduced rank regressions, Bayesian networks, and hidden Markov models, as the likelihood
functions of these singular statistical models and learning machines cannot be approxi-
mated by any normal distribution (Watanabe, 2010, 2013). For so many singular models,
model averaging, a valid solution, can be used to get more robust estimates and generalized
machine learning methods. For all these reasons, compared with model selection, model
averaging estimators often get higher prediction precision and better robustness, and thus
have received extensive attention in recent years.

In the frequentist viewpoint, a key problem with the model averaging is the choice of
weights assigned to different models. A variety of model averaging criteria have been sug-
gested. See, for example, smoothed information criteria including smoothed AIC, smoothed
BIC (Buckland et al., 1997), and smoothed FIC (Hjort and Claeskens, 2003; Claeskens and
Carroll, 2007; Zhang and Liang, 2011; Zhang et al., 2012; Xu et al., 2014); adaptive method
(Yang, 2001; Yuan and Yang, 2005); and asymptotically optimal methods, such as Mallows
model averaging (MMA) method (Hansen, 2007; Wan et al., 2010), OPT method (Liang
et al., 2011), jackknife model averaging (JMA) method (Hansen and Racine, 2012; Zhang
et al., 2013a; Zhang and Zou, 2020), and leave-subject-out cross-validation method for time
series data (Gao et al., 2016; Liao et al., 2019).

In this paper, we will focus on Hansen’s MMA, which is the first model averaging method
with optimality. Hansen (2007) proved that the Mallows criterion is asymptotically optimal
in the sense of achieving the lowest possible squared error for the nested candidate models
and discrete weight set. Further, Wan et al. (2010) provided an alternative proof for the
non-nested candidate models and continuous model weights. Liu and Okui (2013) proposed
a modified Mallows model averaging for heteroscedasticity data. Gao et al. (2019) suggested
an adjusted MMA criterion for threshold auto-regressive model. Zhu et al. (2019) developed
a Mallows-type model averaging estimator for the varying-coefficient partially linear model.
A corrected Mallows model averaging method for small sample sizes can be found in Liao
and Zou (2020).

In recent years, the property of model weight has attracted much attention. For model
averaging, there are few articles on the uniqueness of the optimal weight choice except
Hansen (2014) in which a unique empirical weight vector is obtained if the candidate mod-
els are appropriately restricted. Hansen (2014) investigated the asymptotic risks of nested
least-squares averaging estimators with minimum mean squared error criterion in a local
asymptotic framework and gave an explicit form of optimal weights based on asymptotic
risk in some common situations. Hansen (2014) also suggested a practical rule that model
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averaging estimators should be based on models where the regressors have been grouped.
This rule will lead to a better implementation of averaging. Charkhi et al. (2016) noticed
the uniqueness of weights of model averaging based on likelihood frameworks and recom-
mended a suitable class of models which are so-called singleton models where each model
includes only one candidate variable. This singleton model trick can result in a drastic
reduction in the computational cost of model averaging and can be applied in big data
area. Another interesting problem with the model averaging is the consistency of weights.
There are a few articles on this topic (c.f., Chen et al., 2018; Liao et al., 2019; Liao and Zou,
2020). Chen et al. (2018) proposed a semi-parametric penalized model averaging method
for marginal regressions of time series and derived the consistency and oracle property with
the assumption that the weights are sparse and some other regularity conditions. Each
candidate model in Chen et al. (2018) can be regarded as a projection from response vari-
able to marginal regressions, and the weights assigned to different models are without any
constraints, as in Li et al. (2015), who proposed a forecasting method by combining all
marginal regressions in applications. Liao et al. (2019) derived the convergence rate of
the weights based on leave-subject-out cross-validation model averaging method for VAR
model. Liao and Zou (2020) proved the consistency of MMA weights. Some articles also
focus on the other statistical limiting properties of Mallows model averaging. For example,
Liu (2015) derived the limiting distributions of the weights based on Mallows criterion and
nested least squares averaging estimators under the local misspecification framework.

For distributed and massive data, except simple averaging and Fang’s et al (2018) ap-
proximating calculations, no model averaging theory is developed. The purpose of this
paper is to fill this gap. We will propose efficient computational strategies and theory for
model averaging on distributed data and divergent dimensional regressions. The contribu-
tions of this article are threefold. First, we prove that the weight vector selected by Mallows
model averaging criterion for least squares estimators in linear regression models is L2 con-
vergent to the theoretical optimal weight. Our results of convergence type are different
from those in Hansen (2014), Liu (2015), Chen et al. (2018), Liao et al. (2019), and Zhang
et al. (2020). Second, we propose two types of model averaging estimators for distributed
or parallel data. From our theoretical analysis, we find that the two tricks of grouping
regressors and singleton models can be used to reduce the computation cost. Before model
averaging, using model selection can throw away some clearly unreasonable models and will
relieve of the computational burden. Based on some suitable candidate models, we may be
able to get a better model averaging estimator. The grouping regressors models and single-
ton models can be used as some alternative tricks to build the candidate model set. Such
tricks have been used by, say, Hansen (2014) and Charkhi et al. (2016) in the literature on
model averaging. In fact, the idea of grouping regressors has been investigated previously
in statistical literature, including Efron and Morris (1973), Berger and Dey (1983), Dey
and Berger (1983), George (1986a), George (1986b), and Mougeot et al. (2013). Grouping
strategies have been shown to improve the prediction performance and interpretability of
the candidate models (Lounici et al., 2011). In model averaging, each learner based on
grouping some similar regressors will be more useful and all these learners can comprise
a candidate model set which will lead to a drastic reduction in the computational cost.
Both singleton models and averaging across singletons are also two popular methods in
data analysis. For example, Hjort and Claeskens (2003) observed that the averaging across
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singletons method does quite well in achieving the smallest risk and leads to low standard
deviation and short confidence intervals. In summary, both group strategies and singleton
models can reduce the computational burden, make the optimal weights be identical and
unique, and lead to a parsimonious model averaging estimator, and thus are useful tools
in big data area. Third, it is inspired that we can use the weight calculated from a simple
random sample without replacement with large size drawn from the extremely massive data
as the weight estimation for the whole collected data.

The remainder of this paper is organized as follows. In Section 2, we build a general
Mallows model averaging framework for distributed data. Then, we investigate the theoret-
ical properties of the proposed weights and model averaging estimators in Section 3. Section
4 covers simulations. In Section 5, we apply our model averaging methods for distributed
data to the real airline data. Theoretical proofs are included in Appendices.

2. Model Averaging Based on Distributed Data

2.1 Model averaging for subject

Let {(yi, xi) : i = 1, 2, . . . , N} be an i.i.d. sample from the following data-generating process,

yi = µi + ei =
∞∑
j=1

θjxij + ei, i = 1, 2, . . . , N,

where yi ∈ R, xi = (xi1, xi2, . . .)
T is countably infinite, and ei is an error term. We assume

that {ei}i≥1 are mutually independent with E (ei|xi) = 0 and E
(
e2
i |xi

)
= σ2, and Eµ2

i <∞.
The model set-up follows Hansen (2007). We assume a sequence of linear approximating
models, where the sth model uses the first ps regressors of xi, s = 1, . . . , S. That is, the sth
candidate model is

yi =

ps∑
j=1

θjxij + ei, i = 1, 2, . . . , N.

The approximating error of the sth candidate model is bi(s) =
∑∞

j=ps+1 θjxij . Let β(s) =

(θ1, θ2, . . . , θps)
T , s = 1, . . . , S.

Since N is extremely large, we apply the divide and conquer trick to treat the col-
lected data. Without loss of generality, we let N = Kn, where both K and n are pos-
itive integers. Then we divide the collected data set {(yi, xi), i = 1, . . . , N} evenly and
uniformly at random among a total of K subjects. At each subject, denote the resul-
tant data as

{
Yk, X(k)

}
, k = 1, 2, . . . ,K, where Yk = (yk,1, yk,2, · · · , yk,n)T and X(k) =

(xk,1, xk,2, · · · , xk,n)T with (yk,j , xk,j), j = 1, 2, · · · , n, being a random sample from the

{(yi, xi) , i = 1, . . . , N}. Denote µk = (µk,1, µk,2, · · · , µk,n)T and the error term for the

kth subject as e(k) = (ek,1, ek,2, · · · , ek,n)T accordingly. At subject k, we consider model
averaging procedure.

The estimator of β(s) in the sth candidate model under the kth subject is given by

β̂k,s = (XT
k,sXk,s)

−1XT
k,sYk,

where Xk,s is an n× ps matrix with full column rank, including the first ps columns of X(k)

related to the sth candidate model, s = 1, . . . , S. For simplicity, we denote Xk = Xk,S .
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Then the model averaging estimator for µk has the form

µ̂k(Wk) =

S∑
s=1

wk,sXk,sβ̂k,s

with Wk = (wk,1, . . . , wk,S)T ∈ Q and

Q ,

{
w = (w1, . . . , wS)T :

S∑
s=1

ws = 1, ws ≥ 0, s = 1, 2, . . . , S

}
.

A key problem with the estimator µ̂k(Wk) is the choice of weights. To choose a proper
Wk, we minimize the following Mallows criterion

Ck,n (Wk) =
1

n
(Yk − µ̂k (Wk))

T (Yk − µ̂k (Wk)) +
2

n
σ2tr [Pk (Wk)] (1)

in Q to get

Ŵk = (ŵk,1, ŵk,2, · · · , ŵk,S)T = argmin
w∈Q

Ck,n(w), (2)

where

Pk(Wk) ,
S∑
s=1

wk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,s ,

S∑
s=1

wk,sPk,s,

and tr [Pk (Wk)] =
∑S

s=1wk,sps. When σ2 is unknown, (1) needs to be computed with a
sample estimate. There are several ways to estimate σ2. We use the following estimator

σ̂2
k =

(
Yk −Xk,S β̂k,S

)T (
Yk −Xk,S β̂k,S

)
n− pS

,

which is based on the largest candidate model (Hansen, 2007; Wan et al., 2010) for the kth
subject. The resultant Mallows model averaging estimator for µk is given by

µ̂k(Ŵk) =
S∑
s=1

ŵk,sXk,sβ̂k,s.

2.2 Model averaging for distributed data

Let Πs be a selection matrix for the sth candidate model, so that Xk,s = XkΠ
T
s and

ΠsΠ
T
s = Ips , where Ips is an identity matrix of order ps. The model averaging estimator of

β(S) at subject k is

β̂k(Ŵk) =

S∑
s=1

ŵk,sΠ
T
s β̂k,s

for k = 1, . . . ,K. In the following, we construct two types of model averaging estimators.
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(10) Simple aggregation of model averaging estimators

We aggregate the K local estimators together by simple averaging to obtain the simple
aggregated model averaging estimator of β(S), that is,

β =
1

K

K∑
k=1

β̂k(Ŵk). (3)

Accordingly, the simple aggregated model averaging estimator of µk is given by

µk = Xkβ.

(20) Doubly simple aggregation of model averaging estimators

The other aggregated model averaging procedure is as follows. First, we aggregate the least
squares estimators β̂k,s and the weights ŵk,s respectively, that is,

β̃s =
1

K

K∑
k=1

β̂k,s, s = 1, . . . , S,

and

ws =
1

K

K∑
k=1

ŵk,s, s = 1, . . . , S. (4)

Second, we aggregate β̃s and ws of each candidate model to obtain the doubly simple
aggregated model averaging estimator of β(S), that is

β̃ =
S∑
s=1

wsΠ
T
s β̃s. (5)

The doubly simple aggregated model averaging estimator of µk is

µ̃k = Xkβ̃.

3. Theoretical Results

We first introduce some notations. We use `2 to denote the usual Euclidean norm ‖θ‖ =√∑d
j=1 θ

2
j with θ = (θ1, θ2, · · · , θd)T . The `2-operator norm of a matrix A ∈ Rd1×d2 is its

maximum singular value, defined by

‖A‖2 , sup
v∈Rd2 ,‖v‖≤1

‖Av‖.

Let λ1, λ2, · · · , and λd be the real eigenvalues of a matrix A ∈ Rd×d. In particular, we
denote its minimum and maximum eigenvalues by λmin (A) and λmax (A), respectively. Then
its spectral radius ρr(A) is defined as

ρr(A) , max
1≤i≤d

|λi|.
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A convex function F is λ-strongly convex on a set U ⊆ Rd if for arbitrary u ∈ U and v ∈ U ,
we have

F (u) ≥ F (v) + 〈∇F (v), u− v〉+
λ

2
‖u− v‖22,

where ∇F is the derivative of the function F . In addition, if F is not differentiable, we may
replace ∇F by any subgradient of F .

Consider the quadratic loss function

LN (w) =
1

N
‖µ̂ (w)− µ‖2

=
1

nK

K∑
k=1

‖µ̂k(w)− µk‖2,

where w = (w1, w2, · · · , wS)T ∈ Q, and µ̂ (w) =
(
µ̂T1 (w) , µ̂T2 (w) , · · · , µ̂TK (w)

)T
and µ =(

µT1 ,µ
T
2 , · · · ,µTK

)T
are two N × 1 vectors. The population risk RN is given by

RN (w) = ELN (w)

=
1

n
E ‖µ̂1 (w)− µ1‖2 ,

where the second equality is by the assumption that the data are independent and identically
distributed. For the weight w ∈ Q, we can rewrite RN (w) as

R0 (w1, w2, · · · , wS−1) =
1

n
E

∥∥∥∥∥
S−1∑
s=1

wsX1,sβ̂1,s +

(
1−

S−1∑
s=1

ws

)
X1,S β̂1,S − µ1

∥∥∥∥∥
2

(6)

with the constraint of (w1, w2, · · · , wS−1)T ∈ Q0 and

Q0 ,

{
(w1, w2, · · · , wS−1)T

∣∣∣∣∣ws ≥ 0, s = 1, 2, · · · , S − 1; 0 ≤
S−1∑
s=1

ws ≤ 1

}
.

Denote w0 = (w1, w2, · · · , wS−1)T . For the model averaging framework, we need to deter-
mine the weights assigned to candidate models. So, our goal is to estimate the parameter
vector minimizing the risk R0 (w0), namely the quantity

w∗0 , argmin
w0∈Q0

R0 (w0) ,

which is equivalent to estimating

w∗ , argmin
w∈Q

RN (w).

By first calculating the weight Wk at the kth subject by (2), and then averaging the
weights by (4) to get the averaged weight w, where w = (w1, w2, . . . , wS)T , we can show the
consistency of the weight w0 = (w1, w2, . . . , wS−1)T to w∗0. We will establish the theoretical
properties of w0 in Subsection 3.1 and the proposed estimators (3) and (5) in Subsection
3.2.
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3.1 Convergence of the weight estimator

In the following, we assume the candidate models s = 1, 2, . . . , S are nested, and then
0 < p1 < p2 < · · · < pS . Without loss of generality, we assume that Exk,i,j = 0, and the
covariance of xk,i,j and xk,i,j1 is σj,j1 with j 6= j1. Denote Σs = {σj,j1}1≤j,j1≤ps and let the
pseudo-true value of β(s) be

β?,s , arg min
βk,s∈Rps

1

n
E ‖Xk,sβk,s − µk‖2

=
{
E
(
XT
k,sXk,s

)}−1
E
(
XT
k,sµk

)
= (θ1, θ2, . . . , θps)

T + Σ−1
s

 ∞∑
j=ps+1

θjσ1,j ,
∞∑

j=ps+1

θjσ2,j , . . . ,
∞∑

j=ps+1

θjσps,j

T

, β(s) + Σ−1
s γs.

Further, define

R∗N (w) =
1

N

K∑
k=1

E ‖Xkβ? (w)− µk‖2 ,

where

β? (w) ,
S∑
s=1

wsΠ
T
s β?,s.

Accordingly,

R∗0(w0) =
1

N

K∑
k=1

E

∥∥∥∥∥Xk

{
S−1∑
s=1

wsΠ
T
s β?,s +

(
1−

S−1∑
s=1

ws

)
ΠT
Sβ?,S

}
− µk

∥∥∥∥∥
2

.

We now define the error of the pseudo-true model as

δk,s = µk −Xk,sβ?,s

=
(
µk −Xk,sβ(s)

)
−Xk,sΣ

−1
s γs

, bk,s −Xk,sΣ
−1
s γs,

and

Σ∞|s , E
(
δk,sδ

T
k,s|Xk,s

)
, Σ

′

∞|s ,
1

n
E(δk,sδ

T
k,sδk,sδ

T
k,s|Xk,s).

To derive the consistency of our weight estimator, we need the following regularity
conditions.

Condition 1 w∗0 ∈ intQ0.

Condition 2 max
1≤s≤S

E
(
|xT(i)Π

T
s β(s)|η+2 + |xT(i)Π

T
s β?,s|η+2

)
< Cb <∞ for some η ≥ 2, where

x(i) = (xi,1, xi,2, . . . , xi,pS )T , and Ee4
k,i ≤ ω <∞ for k = 1, 2, . . . ,K and i = 1, 2, . . . , n.
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Condition 3 There is a constant σ2
n bounded away from zero such that λmax

(
Σ∞|s

)
+

λmax

(
Σ
′

∞|s

)
≤ σ2

n for s = 1, . . . , S.

Condition 4 S2pSσ
2
n

nλ
2
S

= o(1), where λS = λmin

[
O2R∗0 (w∗0)

]
.

Remark 1 Condition 1 is common in optimization theory to ensure the solution can be
calculated by some gradient descent algorithms or iterative algorithms. Since R0 (w0) is
twice differentiable with respect to w0, and Condition 1 requires that R0 (w0) have a local
minimum at the interior point w∗0 of Q0, which means that RN (w) has a local minimum at
the interior point w∗ of the simplex Q, we have

λn , λmin[O2R0 (w∗0)] > 0.

Condition 1 may hold when all the candidate models are useful or competitive. This condi-
tion is a valuable alternative to Definition 2 of Watanabe (2010), by which Bayesian learning
theory can be investigated directly.

Condition 2 places some bounds on the moments of error term ek,i, candidate models
and pseudo-true candidate models. When xk,i,j are independent and Gaussian, with the
assumption E |µi|η+2 <∞, Condition 2 is easily satisfied even for S tending to ∞.

Condition 3 gives an upper bound for the maximum eigenvalues of Σ∞|s and Σ
′

∞|s that

depends on n (here we omit a set with zero probability). Noting that

Σ∞|s =
{

E
[(
µk,i − xT(k,i,s)β?,s

)
·
(
µk,j − xT(k,j,s)β?,s

)∣∣∣x(k,i,s), x(k,j,s)

]}
1≤i,j≤n

,

where x(k,i,s) is the transpose of the ith row of the matrix Xk,s, it is not difficult to show
that

λmax

(
Σ∞|s

)
≤ max

1≤j≤n

{
E

[(
µk,j − xT(k,j,s)β?,s

)2
∣∣∣∣x(k,j,s)

]

+
∑
i 6=j

∣∣∣E [(µk,i − xT(k,i,s)β?,s) · (µk,j − xT(k,j,s)β?,s)∣∣∣x(k,i,s), x(k,j,s)

]∣∣∣
 .

Let us consider a special scenario where µk,i− xT(k,i,s)β?,s are mutually independent random
variables conditionally given Xk,s. Then it follows that

E
[(
µk,i − xT(k,i,s)β?,s

)
·
(
µk,j − xT(k,j,s)β?,s

)∣∣∣x(k,i,s), x(k,j,s)

]
= E

[(
µk,i − xT(k,i,s)β?,s

)∣∣∣x(k,i,s)

]
E
[(
µk,j − xT(k,j,s)β?,s

)∣∣∣x(k,j,s)

]
.

Clearly, as n→∞, E
[
µk,i − xT(k,i,s)β?,s

∣∣∣x(k,i,s)

]
plays a decisive role in the size of λmax

(
Σ∞|s

)
.

Similarly, let qil =
∣∣∣E [(µk,i − xT(k,i,s)β?,s)

l
∣∣∣x(k,i,s)

]∣∣∣, l = 1, 2, 3, 4, then

λmax

(
Σ′∞|s

)
≤ 1

n
max

1≤j≤n

qj4 +
∑
i 6=j

qi2qj2 +
∑
i 6=j

(qi3qj1 + qj3qi1) +
∑
h6=i,j

qh2qi1qj1

 .

10
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As n2 − n of the n2 terms on the right-hand side of the above inequality contain qi1, i =

1, . . . , n, λmax

(
Σ′∞|s

)
is also influenced by E

[
µk,i − xT(k,i,s)β?,s

∣∣∣x(k,i,s)

]
, i = 1, . . . , n. Ob-

serving that E
[
µk,i|x(k,i,s)

]
is the optimal estimator of µk,i in L2 sense, E

[
µk,i − xT(k,i,s)β?,s

∣∣∣
x(k,i,s)

]
represents the gap between the optimal L2 estimator and the linear minimum vari-

ance estimator based on the sth candidate model. Specially, when xk,i,j is jointly Gaussian,

it follows that E
[
µk,i − xT(k,i,s)β?,s

∣∣∣x(k,i,s)

]
= 0 and

Σ∞|s =


∞∑

j1,j2=ps+1

θj1θj2σj1,j2 − γTs Σ−1
s γs

 In = σ2
∞|sIn,

hence Σ
′

∞|s = n+2
n σ4

∞|sIn. Thus, σ2
n = max

1≤s≤S
(σ2
∞|s + 3σ4

∞|s) satisfies Condition 3.

Condition 4 allows λS to tend to zero at a rate slower than
√
S2pSσ2

nn
−1 with the

dimension of regressor vector and/or the number of candidate models being divergent when
n tends to ∞. Further, with the assumption that the data are independent and identically
distributed, after some calculations, it can be seen that,

∇2R∗0 (w∗0) = 2E

[{(
ΠT
s1β?,s1 −ΠT

Sβ?,S
)T
x(i)x

T
(i)

(
ΠT
s2β?,s2 −ΠT

Sβ?,S
)}

1≤s1,s2≤S−1

]
= 2

{(
ΠT
s1β?,s1 −ΠT

Sβ?,S
)T

ΣS

(
ΠT
s2β?,s2 −ΠT

Sβ?,S
)}

1≤s1,s2≤S−1
,

which is similar to Condition A6 of Chen et al. (2018). Like Chen et al. (2018), if we do
not take account of the constraint

∑S
s=1ws = 1, then

∇2R∗N (w∗) = 2E

[{(
ΠT
s1β?,s1

)T
x(i)x

T
(i)

(
ΠT
s2β?,s2

)}
1≤s1,s2≤S

]
.

In this case, Condition 4 only requires that

S
√
pSσn√

nλmin

[
O2R∗N (w∗)

] = o(1),

which is weaker than Condition A6 of Chen et al. (2018) when S2pS = o(n).

Now, denoting Ŵk,0 = (ŵk,1, ŵk,2, · · · , ŵk,S−1)T and then w0 = 1
K

∑K
k=1 Ŵk,0, we have

the following theoretical results.

Theorem 1 Under Conditions 1-4, we have

E ‖w0 − w∗0‖
2 = O

(
SpS(S + σ2

n)

Knλ
2
S

)
+O

(
S3p2

S(S + σ2
n)

n2λ
4
S

)
,

and so

E ‖w − w∗‖2 = O

(
S2pS(S + σ2

n)

Knλ
2
S

)
+O

(
S4p2

S(S + σ2
n)

n2λ
4
S

)
.

11
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Proof See Appendix B.

Corollary 1 Under Conditions 1,2 and 4, if the covariates xk,i,j are jointly Gaussian, and
S and ps, s = 1, 2, · · · , S are fixed, then

E ‖w − w∗‖2 = O

(
1

Kn

)
+O

(
1

n2

)
.

3.2 Mean squared errors of model averaging estimators for regression
coefficients

In this subsection, we first show some limiting results about minw∈QRN (w) and the pro-
posed two model averaging estimators of β(S), and then provide the upper bounds of the
mean squared errors of Mallows model averaging estimators.

Condition 5 pSσ
2
n

nξ?,N
= o(1), where ξ?,N = infw∈QR

∗
N (w).

Remark 2 Condition 5 requires that the rate of nξ?,N tending to ∞ should be faster than
that of pSσ

2
n, which is similar to Condition (C4) of Zhang et al. (2020). If xk,i,j is jointly

Gaussian, then σ2
n = max

1≤s≤S
(σ2
∞|s+3σ4

∞|s), and in this case, this condition is easily satisfied.

Theorem 2 Under Conditions 1-5, we have

sup
w∈Q

∣∣∣∣RN (w)

R∗N (w)
− 1

∣∣∣∣ = o(1), (7)

and

RN (w∗)

ξ?,N
= 1 + o(1). (8)

Proof See Appendix B.

Remark 3 From Theorem 2, ξ?,N can be seen as the limit of RN (w∗), the optimal risk of
Mallows model averaging estimator. Condition 5 and (8) show that the rate of NRN (w∗)
tending to ∞ should be faster than that of KpSσ

2
n. This property is also consistent with

the requirement that the true model should not be in the candidate model set, which is a
condition commonly arisen in optimal model averaging. When the true model is an infinite
dimensional model, NRN (w∗) /KpSσ

2
n → ∞ is an alternative to Assumption 2 of Zhang

(2021).

In the following, we derive the differences between (3), (5) and β? (w∗), respectively.
Define

mS = max
1≤s≤S

∥∥∥E [Σ1/2
S

{
β̂k,s − β?,s

}]∥∥∥ .
12
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Condition 6 tr

(
E

[(
XT
k,sXk,s

)−1
]

Σs

)
= O

(ps
n

)
, 1 ≤ s ≤ S.

Remark 4 This condition places restriction on the upper bound of tr(E[(XT
k,sXk,s)

−1]Σs).
The upper bound nearly matches the risk for Gaussian design. The sufficient conditions for
Condition 6 are given in Theorem 3 of Mourtada (2022). From Mourtada (2022), it can be
seen that our Condition 6 is mild. When x(k,i,s) is Gaussian with the covariance matrix is
Σs, it is easy to verify that

E
[(
XT
k,sXk,s

)−1
]

Σs = (n− ps − 1)−1Ips ,

and so
tr
(
E
[(
XT
k,sXk,s

)−1
]

Σs

)
=

ps
n− ps − 1

.

Theorem 3 Under Conditions 1-4 and 6, we have

E
∥∥∥Σ

1/2
S

{
β − β? (w∗)

}∥∥∥2
= O

(
pSσ

2
n

n

)
+O

(
S3pS(S + σ2

n)

Knλ
2
S

)
+O

(
S5p2

S

(
S + σ2

n

)
n2λ

4
S

)
,

and

E
∥∥∥Σ

1/2
S

{
β̃ − β? (w∗)

}∥∥∥2
= O

(
m2
S

)
+O

(
S3pS(S + σ2

n)

Knλ
2
S

)
+O

(
S5p2

S(S + σ2
n)

n2λ
4
S

)
.

Proof See Appendix B.

Remark 5 When xk,j,i is jointly Gaussian, the ordinary least squares estimator β̂k,s is an
unbiased estimator of pseudo-true parameter β?,s, i.e., mS = 0. So Theorem 3 means that
when λS has a uniform lower bound away from zero, if K = O(1), then (3) and (5) have
the same convergence rates to β? (w∗); if K tends to ∞, then (5) has a faster convergence
rate to β? (w∗) than (3).

3.3 Mean squared errors of model averaging estimators for conditional mean

We now consider the mean squared errors of model averaging estimators for estimating
conditional mean.

(10) Out-of-sample mean squared errors

Let (yv, xv) be an independent copy of (yi, xi), where xv = (xv1, xv2, . . .) is countably infinite,
xv,s = (xv1, xv2, . . . , xvps)

T , µv =
∑∞

j=1 θjxvj . The simple aggregated model averaging
estimator of µv is

µv = xTv,Sβ.

The doubly simple aggregated model averaging estimator for µv is

µ̃v = xTv,S β̃.

Define the out-of-sample mean squared errors for µv and µ̃v as E (µv − µv)
2 and E

(
µ̃v − µv

)2
,

respectively, for which we give bounds in the following theorem.

13
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Theorem 4 Under Conditions 1-6, we obtain

E (µv − µv)
2

ξ?,N
= 1 +O

(√
pSσ2

n

nξ?,N
+
S3pS(S + σ2

n)

Knλ
2
Sξ?,N

+
S5p2

S(S + σ2
n)

n2λ
4
Sξ?,N

)
,

and

E
(
µ̃v − µv

)2
ξ?,N

= 1 +O

(√
m2
S

ξ?,N
+
S3pS(S + σ2

n)

Knλ
2
Sξ?,N

+
S5p2

S(S + σ2
n)

n2λ
4
Sξ?,N

)
.

Proof See Appendix B.

Remark 6 Theorems 4 suggests the following points:

1. Noting that by Lemma 6 in Appendix A

m2
S ≤ max

1≤s≤S
E
∥∥∥Σ

1/2
S

{
β̂k,s − β?,s

}∥∥∥2
= O

(
pSσ

2
n

n

)
,

the doubly simple aggregation may be a better choice than simple aggregation since it
has a smaller out-of-sample mean squared errors bound. Specifically, when the least
squares is close to the unbiased estimator of the pseudo-true value (for example, when
xk,i,j is jointly Gaussian, all m2

s = 0), the advantages of doubly simple aggregation
will be more prominent.

2. The results can be used to determine the optimal number of subjects for the fixed
total number of observations N = nK. To obtain a simple solution, we treat the

term S3pS(S+σ2
n)

Knλ
2
Sξ?,N

as fixed, and then let the remaining two terms be equal to this term,

respectively, to reach the minimum upper bounds of MSEs. Thus, we suggest that the
optimal choice of the number of subjects K with the two methods satisfy

K∗ �


(

σ2
nλ

2
S

(S+σ2
n)S3 +

√
S2pS

Nλ
2
S

)−1

, for simple aggregation,(
m2
Snλ

2
S

(S+σ2
n)S3pS

+

√
S2pS

Nλ
2
S

)−1

, for doubly simple aggregation.

In fact, as long as σ2
n is monotonically increasing and σ2

n/n is monotonically decreas-
ing with respect to n (by Remark 1, this condition is easily satisfied), the above K∗

minimizes the upper bounds of MSEs for the fixed N with S and p1, p2, . . . , pS de-
pending only on N . Here we use symbol an � bn, which means both an = O(bn)
and bn = O(an). The optimality of K implies that choosing any K = O(K∗) cannot
reduce the upper bound of out-of-sample mean squared errors (instead, n will increase
and so more storage space and computational resources are needed at each subject),
while choosing any K with K/K∗ tending to ∞ will increase the upper bound of out-
of-sample mean squared errors. If xk,i,j is jointly Gaussian, it follows that the optimal

14
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choice of K with the doubly simple aggregation method satisfies K∗ �
(
Nλ

2
S

S2pS

)1/2

. In

such a setting, the boundedness of σ2
n can be obtained, so that the optimal K∗ with the

simple aggregation method satisfies

K∗ � min

S4

λ̄2
S

,

(
Nλ

2
S

S2pS

)1/2
 ,

as n→∞.

3. In practical prediction, it is difficult to determine the value of λS. To facilitate the
selection of K, we can assume that λS � 1 holds and xk,i,j is jointly Gaussian. In this

case, the optimal K∗ � min

{
S4,
(

N
S2pS

)1/2
}

and K∗ �
(

N
S2pS

)1/2
for the proposed

methods, respectively. Assumption λS � 1 is not restricted, and it is consistent with
Condition A6 of Chen et al. (2018). Essentially, λS � 1 represents the eigenvalues of
a positive definite information matrix based on S pseudo-true models to be away from
0.

(20) In-sample mean squared errors

The in-sample mean squared errors for simple aggregated model averaging estimator and
doubly simple aggregated model averaging estimator are defined as

MSE =
1

N

K∑
k=1

E ‖µk − µk‖
2 ,

and

M̃SE =
1

N

K∑
k=1

E
∥∥µ̃k − µk∥∥2

,

respectively.

Theorem 5 Under Conditions 1-6, we obtain

MSE

ξ?,N
= 1 +O

ξ− 1
2

?,N ·

S3pS(S + σ2
n)

nλ
2
S

+
S
η+4
η+2

K

(
S2pS

(
S + σ2

n

)
nλ

2
S

) η
η+2


1
2

 , (9)

and

M̃SE

ξ?,N
= 1 +O

ξ− 1
2

?,N ·

m2
S + S

η+4
η+2

(
S2pS

(
S + σ2

n

)
Knλ

2
S

+
S4p2

S

(
S + σ2

n

)
n2λ

4
S

) η
η+2


1
2

 , (10)

where

mS = max
1≤s≤S

∥∥∥E [xk,1ΠT
s

{
β̂k,s − β?,s

}]∥∥∥ .
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Proof See Appendix B.

Remark 7 Theorems 5 suggests the following points:

1. By Lemma 5 in Appendix A, we see that m2
s = O

(
pSσ

2
n/n

)
, so by some simple calcu-

lations and Condition 4, for any K with(
nλ

2
S

SpS(S + σ2
n)

) 2
η

/K = o(1), (11)

the doubly simple aggregation is a more appropriate choice when we focus on the in-
sample mean squared errors. When η is large, (11) is easy to satisfy.

2. Similar to Remark 6, for the total number of observations N = nK, the optimal
selection of K is given by

K∗ �


(

Nλ
2
S

SpS(S+σ2
n)

) 2
η+4

, for simple aggregation,

min

{√
Nλ

2
S

S2pS
,

Nλ
2
Sm

η+2
η

S√
S5+4/η(S+σ2

n)pS

}
, for doubly simple aggregation.

When xk,i,j is jointly Gaussian, mS = 0, and η can be sufficiently large. So it follows
that the optimal values of K∗ for simple aggregation and doubly simple aggregation
satisfy

K∗ �

(
Nλ

2
S

S2pS

)2/(η+4)

and K∗ �

(
Nλ

2
S

S2pS

)1/2

,

respectively. This shows that for simple aggregation, as N tends to infinity, the optimal
K is always smaller than that for doubly simple aggregation.

3.4 Asymptotic optimality

This subsection focuses on the optimality of the proposed methods in the asymptotic sense.
In the distributed data framework, the definition of asymptotic optimality of model aver-
aging estimator differs a little from the traditional definition. Since the least squares β̂k,s
at each subject uses only n observations, the average loss

RN (w∗) =
1

n
E

∥∥∥∥∥
S∑
s=1

w∗sX1,sβ̂1,s − µ1

∥∥∥∥∥
2

cannot represent the risk of the optimal model averaging estimator using the full N ob-
servations. To address this issue, we note that as long as n → ∞, the least squares es-
timator based on either n observations or N observations converges to the pseudo-true
value, so R∗N (w∗) defined in Subsection 3.1 can be used to represent the minimum risk
of model averaging estimator in the distributed data case. Thus, we define that a model
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averaging estimator has asymptotic optimality if its mean squared error (MSE) satisfies
MSE/R∗N (w∗)→ 1.

Theorem 6 below reveals that under the framework of distributed data, our proposed
model averaging methods are asymptotically optimal for both out-of-sample and in-sample
estimations.

Theorem 6 Under Conditions 1-6, and S3pS(S+σ2
n)

ξ?,Nλ
2
Sn

= o(1), we have

(i) for out-of-sample mean squared errors,

E (µv − µv)
2

R∗N (w∗)
= 1 + o(1) and

E
(
µ̃v − µv

)2
R∗N (w∗)

= 1 + o(1);

(ii) for in-sample mean squared errors,

MSE

R∗N (w∗)
= 1 + o(1) and

M̃SE

R∗N (w∗)
= 1 + o(1). (12)

Specifically, when N →∞ and K = 1, (12) degenerates to a typical form

RN (ŵ)

infw∈QRN (w)
= 1 + o(1). (13)

Proof This theorem is a direct corollary of Theorems 2, 4 and 5.

Remark 8 Theorem 6 shows that our simple aggregated model averaging estimators and
doubly simple aggregated model averaging estimators achieve the optimality in out-of-sample
and in-sample mean squared errors.

Unlike the existing literature on the asymptotic optimality based on the loss function,
(13) indicates that the Mallows’ model averaging method has an asymptotic optimality in
the sense of minimizing risk. This is an interesting finding, which also shows that RN (ŵ) ≤
C infw∈QRN (w), where C is a constant that depends only on θj , j = 1, 2, . . . ,∞.

3.5 Minimaxity of model averaging estimators

In this subsection, we turn to deriving the minimax optimal convergence rate of proposed
estimators. For simple and doubly simple aggregation model averaging estimators, denote

Mse (W1,W2, . . . ,WK) =
1

N

K∑
k=1

E

∥∥∥∥∥Xk
1

K

K∑
l=1

β̂l(Wl)− µk

∥∥∥∥∥
2

,

M̃se(W1,W2, . . . ,WK) =
1

N

K∑
k=1

E

∥∥∥∥∥∥Xk

S∑
s=1

(
1

K

K∑
l=1

wl,s

)
ΠT
s

 1

K

K∑
j=1

β̂j,s

− µk
∥∥∥∥∥∥

2

,
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and then MSE = Mse(Ŵ1, Ŵ2, . . . , ŴK) and M̃SE = M̃se(Ŵ1, Ŵ2, . . . , ŴK). We assume
that the candidate models are fixed, i.e., p1, . . . , pS and S are fixed integers.

Now, for any q ≥ 4, we consider the true parameter θ = (θ1, θ2, . . .)
T in the Banach

space

`q =

θ :

∞∑
j=1

|θj |q <∞


with the norm

‖θ‖ =

 ∞∑
j=1

|θj |q
 1

q

.

We construct

Θ = Θ(ε0, ε1, ε2, ε3) = S1 ∩ S2 ∩ S3 (14)

with

S1 =

{
θ ∈ `q : w∗∗s ∈ [ε0, 1− ε1], s = 1, . . . , S − 1, (w∗∗1 , . . . , w

∗∗
S−1)T = argmin

w∈Q0

R∗N (w)

}
,

S2 =

{
θ ∈ `q : λmin

[
∇2R∗0 (w∗0)

]
≥ ε2, inf

w∈Q
R∗N (w) ≥ ε2

}
,

and

S3 = {θ ∈ `q : ‖θ‖ ≤ ε3},

where ε0, ε1 ∈ (0, 1) with ε0 < 1− ε1, and ε2, ε3 > 0 are constants.

Theorem 7 Assume Conditions 3 and 6 hold, and σ2
n = o(n). If supj≥1 E|xk,i,j |q < ∞,

and Ee4
k,i ≤ ω <∞ for k = 1, 2, . . . ,K and i = 1, 2, . . . , n, then we have

sup
θ∈Θ

MSE =

{
1 +O

(
σ2
n

n
+

1

K

(
σ2
n

n

) q−2
q

)}
inf
w∈Q

sup
θ∈Θ

R∗N (w) (15)

and

sup
θ∈Θ

M̃SE =

{
1 +O

(
σ2
n

n
+

(
σ2
n

N
+
σ2
n

n2

) q−2
q

)}
inf
w∈Q

sup
θ∈Θ

R∗N (w), (16)

where Θ is defined by (14). Moreover,

inf
W1∈Q,W2∈Q,...,WK∈Q

sup
θ∈Θ

Mse (W1,W2, . . . ,WK) =

{
1 +O

(
σ2
n

n

)}
inf
w∈Q

sup
θ∈Θ

R∗N (w) (17)

and

inf
W1∈Q,W2∈Q,...,WK∈Q

sup
θ∈Θ

M̃se (W1,W2, . . . ,WK) =

{
1 +O

(
σ2
n

n

)}
inf
w∈Q

sup
θ∈Θ

R∗N (w). (18)
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Proof See Appendix B.

Remark 9 (15) and (16) of Theorem 7 imply that the simple and doubly simple aggregation
model averaging estimators proposed in this paper are both asymptotically minimax for the
parameter set Θ. Further, (17) and (18) illustrate that in the large sample sense, the
maximum risks of our proposed model averaging estimators cannot be improved.

4. Simulation

In this section, we conduct simulation experiments to compare the finite sample performance
of our distributed model averaging methods and some commonly used model selection and
model averaging methods. In detail, we compare three simple aggregated model selection
estimators: (i) AIC model selection (AIC), (ii) BIC model selection (BIC), (iii) Mallows’
model selection (Mallows Cp); three simple aggregated model averaging estimators: (iv)
simple aggregated smoothed AIC estimator (SAIC), (v) simple aggregated smoothed BIC
estimator (SBIC), (vi) simple aggregated Mallows’ model averaging estimator (MMA); and
three doubly simple aggregated model averaging estimators: (vii) doubly simple aggregated
smoothed AIC estimator (dSAIC), (viii) doubly simple aggregated smoothed BIC estima-
tor (dSBIC), (ix) doubly simple aggregated Mallows’ model averaging estimator (dMMA).
Thus, we compare totally nine estimators.

4.1 Simulation setup

We report the simulation studies of the infinite order regression first. The data generating
process is exactly the same as that in Hansen (2007):

yi =
∞∑
j=1

θjxj,i + ei,

where x1,i = 1, and xj,i(j = 1, 2, . . .) and error ei are independent and identically distributed
as N(0, 1). We set θj = c

√
2αj−α−1/2, and consider the parameter α varied at 0.5, 1.0 and

1.5. As in Hansen (2007), the parameter c is selected such that R2 = c2/(1 + c2) changes
from 0.1 to 0.9.

4.2 Results on in-sample risk

In this subsection, we compare the in-sample risks of the above nine distributed estimators.
For the distributed data, we set the sample size for each subject to be varied at n =
50, 150, 400, 1000, 5000 and 10000. The number of subjects is set asK = 1, 2, 3, 5 and 10. Let
pS equal to

[
4n1/2

]
+

( [·]+ means round to get an integer, and so pS = 28, 49, 80, 126, 283 and

400 for the above six sample sizes), and the number of candidate models S be dn1/3e+1(d·e
means round up to get an integer, and so S = 5, 7, 9, 11, 19 and 22 for the six sample
sizes). All the candidate models are nested and the dimension for the sth candidate model
is 1 +d× (s− 1) , where d = d(pS − 1)/(S− 1)e and s = 1, 2, . . . , S− 1, while the dimension
for the Sth candidate model is pS .
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To evaluate different estimators, similar to Hansen (2007), we normalize the risk based
on average across 5000 simulation draws by dividing by the risk of the best-fitting simple
aggregated estimator β̃s (i.e., (2.2)). For the simulated in-sample risk, we define it as

1

D

D∑
r=1

K∑
k=1

∥∥∥µ̂(r)
k,(j) − µ

(r)
k

∥∥∥2
,

where r means the rth simulation replication, D = 5000, and j means the jth method
considered in our simulation.

For j =i, ii, and iii, µ̂
(r)
k,(j) is determined by AIC, BIC, and Mallows’ model selection

methods, respectively, i.e.,

µ̂
(r)
k,(j) = Xk

{
1

K

K∑
k=1

β̂k(Wk)

}
,

where Wk = (wk,1, wk,2, . . . , wk,S) ∈ {0, 1}S with
∑S

s=1wk,s = 1. The AIC for the sth
model at the kth subject is given by

AIC
(s)
k = nk log

(
σ̂2
k,(s)

)
+ 2ps

with

σ̂2
k,(s) =

∥∥∥Yk −Xk,sβ̂k,s

∥∥∥2
/nk,

and the model selected by AIC is

ŴAIC
k = arg min

Wk∈{0,1}S∑S
s=1 wk,s=1

S∑
s=1

wk,sAIC
(s)
k .

Similarly, the BIC for the sth model at the kth subject is

BIC
(s)
k = nk log

(
σ̂2
k,(s)

)
+ log(nk)ps,

and the model selected by BIC is

ŴBIC
k = arg min

Wk∈{0,1}S∑S
s=1 wk,s=1

S∑
s=1

wk,sBIC
(s)
k .

Furthermore, the Mallows’ Cp of the sth model at the kth subject is

Mallows
(s)
k =

∥∥∥Yk −Xk,sβ̂k,s

∥∥∥2
+ 2σ̃2ps,

where

σ̃2 = (n− pS)−1
∥∥∥Yk −Xk,S β̂k,S

∥∥∥2
.
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The model selected by Mallows’ Cp is

ŴMallows
k = arg min

Wk∈{0,1}S∑S
s=1 wk,s=1

S∑
s=1

wk,sMallows
(s)
k .

For j =iv, v, and vi, µ̂
(r)
k,(j) is determined by three simple aggregated model averaging

estimators SAIC, SBIC, and MMA, respectively, i.e.,

µ̂
(r)
k,(j) = Xk

{
1

K

K∑
k=1

β̂k(Wk)

}
,

where Wk ∈ Q is calculated by(
exp(−AIC

(1)
k /2)∑S

s=1 exp(−AIC
(s)
k /2)

, . . . ,
exp(−AIC

(S)
k /2)∑S

s=1 exp(−AIC
(s)
k /2)

)
,

(
exp(−BIC

(1)
k /2)∑S

s=1 exp(−BIC
(s)
k /2)

, . . . ,
exp(−BIC

(S)
k /2)∑S

s=1 exp(−BIC
(s)
k /2)

)
,

and (2) with σ2 being replaced by σ̃2 , respectively.

As for j =vii, viii, and ix, µ̂
(r)
k,(j) is generated by three doubly simple aggregated model

averaging estimators dSAIC, dSBIC, and dMMA, respectively, i.e.,

µ̂
(r)
k,(j) = Xk

{
S∑
s=1

wsΠ
T
s β̃s

}
,

where ws is calculated by

1

K

K∑
k=1

exp(−AIC
(s)
k /2)∑S

s=1 exp(−AIC
(s)
k /2)

,

1

K

K∑
k=1

exp(−BIC
(s)
k /2)∑S

s=1 exp(−BIC
(s)
k /2)

,

and (4), respectively.

The simulation results for K = 1, 2 and 3 are similar. When K = 1, the three dou-
bly simple aggregated model averaging estimators are equal to the three simple aggregated
model averaging estimators respectively, and all the model selection and averaging estima-
tors perform closely to those in Hansen (2007) where all data are at the same subject. The
performance of K = 10 is similar to that of K = 5. So to save space, we present only the
results on K = 2 and 5, which are summarized in Figures 1-6. The risks of estimators under
other settings are available from the authors upon request.

We reveal some interesting commonalities from Figures 1-6 as follows:
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1) Model averaging methods are frequently better than their model selection counter-
parts, e.g., dMMA and MMA get smaller risks than Mallows, and dSAIC (dSBIC)
and SAIC (SBIC) behave better than AIC (BIC), especially when n = 50 and 150. In
model selection methods, Mallows performs the best in most of cases. The difference
between AIC and Mallows gets small when n increases for all of figures. It is also
observed that the difference of all methods becomes small as α varies from 0.5 to 1.5.

2) For model averaging methods, doubly simple aggregated model averaging estimators
achieve lower risks than their corresponding simple aggregated model averaging esti-
mators in most of cases. MMA often performs the best among the simple aggregated
model averaging estimators. The difference between SAIC and MMA decreases with
n tending to 10000.

3) It can be seen that our dMMA gets the smallest risks in most of cases, especially in the
case of n = 50, followed by MMA and dSAIC. An exception is when α = 0.5, K = 5
and n = 50. In this situation, dSAIC is better than MMA and dMMA. MMA and
dMMA always perform the best when the sample sizes are 5000 and 10000. With n
tending to 10000, the difference between dMMA and MMA gets smaller and smaller,
which is consistent with Theorem 5 that shows dMMA and MMA may not have big
difference in the sense of in-sample risk. In addition, the behavior of dMMA and
dSAIC becomes similar as n increases to 10000.

4) Observing the effect of n, we can see that when n is small (n = 50 and 150), MMA
and dMMA perform the best in most of cases. When n becomes large (n = 400, 1000
and 5000), Mallows type methods and AIC type methods behave similarly. When
n = 10000, the risks of all approaches are close.

5) BIC type methods (e.g., BIC, SBIC, and dSBIC) always fluctuate a lot as R2 goes
from 0.1 to 0.9, and often behave well when n = 50 and R2 = 0.1. The risks of
AIC type methods (e.g., AIC, SAIC, and dSAIC) and Mallows type methods (e.g.,
Mallows, MMA, and dMMA) regularly decrease slowly as R2 increases, and Mallows
type methods frequently have the smallest risks. These indicate that the Mallows
type methods are the most favored methods in most of cases.

6) As for the number of subjects K, comparing figures with K = 2 and K = 5, for small
n, like n = 50, the improvements of dMMA over MMA when K = 2 are larger than
those when K = 5; for big n, like n > 50, the improvements of dMMA over MMA
become smaller and smaller as K increases from 2 to 5. This means that in the cases
of smaller n and smaller K, dMMA has greater advantages. For bigger n and bigger
K, MMA is more applicable since MMA requires less computation and has similar
performance to dMMA. This phenomenon is consistent with the results by Theorem
5 in the case of mS = 0 and η =∞.

In summary, for in-sample estimation, our simulation results show that doubly simple
aggregated model averaging methods are better than their simple aggregated counterparts
and model selection methods. Further, dMMA performs the best in most of cases, followed
by MMA or dSAIC.
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4.3 Results on out-of-sample risk

For the simulated out-of-sample risk, we define it as

1

D

D∑
r=1

n∑
i=1

(
µ̂

(r)
i,o,(j) − µ

(r)
i,o

)2
,

where the definitions of D, r, and j are the same as before. We compare the normalized
out-of-sample risks of the above nine distributed estimators. The sample size for every
subject is set as n = 50, 150, 400 and 1000. The number of subjects is set as K = 1, 2, 3, 5
and 10. We let pS equal to

[
9n1/3

]
+

, and S be d(p−1)/5e+1. All the candidate models are
nested and the dimension for the sth candidate model is 5× (s−1) + 1, s = 1, 2, . . . ,M −1,
while the dimension for the Sth candidate model is pS .

To save space, we still present only the results on K = 2 and 5, which are summarized
in Figures 7-12. Other results are available from the authors. Some common phenomena,
which are a frequent occurrence in Figures 7-12, are listed below:

1) It is clear that model averaging methods are better than their model selection coun-
terparts in the sense of minimizing the out-of-sample risks. For example, SAIC is
better than AIC, SBIC is better than BIC, and MMA is better than Mallows’ Cp,
especially for the cases where n = 50 and 150.

2) Comparing all model averaging methods, doubly simple aggregated model averaging
estimators outdo their corresponding simple aggregated model averaging estimators
in the most of scenarios, particularly when n = 50 and 150. For example, dSAIC is
superior to SAIC, and dMMA is superior to MMA. BIC type methods are still not
robust for different R2. With K = 5, AIC and Mallows Cp type methods behave
closely to each other when n increases from 150 to 400 and then 1000.

3) It is observed that dMMA often behaves the best in getting the smallest risks, followed
by MMA and dSAIC. In particular, dMMA surpasses MMA more clearly when K = 5
than when K = 2 for n = 50. This phenomenon accords closely with Theorem 4. In
addition, the difference between dMMA and MMA becomes small when n varies from
50 to 150, 400, and 1000. This is expected because from Theorem 4, the difference
between dMMA and MMA becomes smaller and smaller with n increasing.

4) Varying R from 0.1 to 0.9 causes significant variations for BIC type methods in a
large number of simulation settings, except for the case of n = 50 and K = 2, where
BIC type methods often behave well. BIC type methods are quite poor relative to
the other methods when n increases from 150 to 400 and 1000, as shown in Figures
7-12. These indicate that the BIC type methods are not robust. AIC type methods
and Mallows type methods gradually reduce the out-of sample risks as R tends to
0.9. Mallows type methods are the most stable methods in our simulations. Thus,
dMMA and MMA are also efficient and stable in achieving minimum out-of-sample
risks. On the other hand, dSAIC is frequently superior to dMMA in getting minimum
risks when K = 5 and n = 150.
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5) Comparing risks with the same n when K = 2 and K = 5, the difference between
dMMA and dSAIC when K = 2 is smaller than that when K = 5, particularly for the
case where n = 50. As for the effect of the number of subjects K, small K is perferred
for dMMA and MMA with n = 150, 400 and 1000, but when n = 50, dMMA and
MMA with big K have significant advantages over other methods.

In summary, for out-of-sample estimation, our methods dMMA and MMA perform the
best in most of cases. Furthermore, Mallows and AIC type methods often perform equally
well.

5. Real Data Analysis

In this section, we use our proposed distributed model averaging methods to analyze the
airline on-time performance data from the 2009 ASA Data Expo (http://stat-computing.
org/dataexpo/2009/the-data.html). The data set is publicly available and has been used
for demonstration with big data in many papers. For instance, it was used as a case study
to demonstrate a logistic model fitting with a massive dataset that exceeds the RAM of
a single computer by Wang et al. (2016). This data set is collected from October 1987 to
April 2008 for all commercial flights within the USA. It consists of 12 million flights with 29
variables. The big memory project (http://www.jstatsoft.org/index.php/jss/article /down-
loadSuppFile/v055i14/Airline.tar.bz2) presents a compressed version of the pre-processed
data set, which is approximately 1.7 GB, and will take 12 GB when uncompressed.

The response variable of the regression is late time (in hours). We consider linear mod-
els, and the covariates include three continuous variables: departure delay time (DepDelay,
in hours), scheduled elapsed time (CRSElapsedTime, in hours), and distance from origin
to destination (Distance, in 1000 miles); and five dummy variables: Weekend, departure
hour (Dephour), origin (Origin), and destination (Dest). Since we consider a series of linear
candidate models, we first rank the continuous variables by absolute marginal correlation
coefficients to the response variable. The top three variables are DepDelay, CRSElapsed-
Time, and Distance. We then consider two sets of models: (i) three models that range from
the model with intercept and DepDelay to the model that includes all top three continuous
variables, and (ii) three nested models that incorporate dummy variables such as Weekend,
Dephour, and Oringe and Dest. Weekend and Dephour capture the impact of official and
business activities, and Dephour also captures the effects of weather on flight delays, while
Oringe and Dest capture the impact of different routes. Additionally, the regressor sets for
the six nested candidate models are presented in Table 1.

Due to computer memory limitation, we sort the data by the date of boarding time on
schedule and divide the whole data with the sample size of 123,534,969 into 124 subjects,
where the first 123 subjects each contain N = 1, 000, 000 records covering a week’s flight
data, and the last one contains 534,969 records. We use the ith subject data as training
data to predict the late time at the (i + 1)th subject data, i = 1, 2, . . . , 123. For the ith
subject, we apply simple random sampling scheme without replacement to the data and
get K random samples, then we use our proposed distributed model averaging methods
for data analysis. K is set to be 1, 2, 5, 10, 100, 200, 500 and 1000. We compare the mean
squared prediction errors (MSPEs) of the nine methods given in Section 4 for the (i + 1)
subject data. We conduct 123 rounds. Since when K = 1, SAIC, SBIC, and MMA are the

24



Least Squares Model Averaging for Distributed Data

Table 1: Regressor sets for the six models used in Airline Data.

Model Regressor Set

1 Intercept + DepDelay
2 Intercept + DepDelay + CRSElapsedTime
3 Intercept + DepDelay + CRSElapsedTime + Distance
4 Intercept + DepDelay + CRSElapsedTime + Distance+ Weekend
5 Intercept + DepDelay + CRSElapsedTime + Distance+ Weekend + DepHour
6 Intercept + DepDelay + CRSElapsedTime + Distance+ Weekend + DepHour

+ Oringe + Dest

same as dSAIC, dSBIC and dMMA, respectively, we omit the results for the doubly simple
aggregated model averaging methods in the case. To save space, we present only the results
on the mean, median and optimal rate of 123 rounds MSPEs for each method in Table 2,
and Diebold and Mariano test (Diebold and Mariano, 2002) results for the differences of
MSPEs in Tables 3 and 4. The results on the other estimators such as those of weights and
coefficients of candidate models are available from the authors upon request.

From Table 2, we observe that MMA and dMMA always achieve the lowest MSPEs,
followed by AIC or SAIC. dMMA has a significant advantage when K = 200, 500 and 1000.
Basically, the MSPEs of all methods decrease as K increases from 1 to 100 and increase as
K increases from 100 to 1000. When K = 100, MMA obtains the smallest MSPEs, followed
by dMMA. In optimal rate, dMMA is superior to the rest methods in obtaining the highest
optimal rates

From Diebold and Mariano test results in Tables 3 and 4, MMA and dMMA are statisti-
cally significantly superior to other methods, and the difference between MMA and dMMA
is not significant.

In conclusion, MMA and dMMA are effective methods to reduce risks in prediction for
big data analysis.

6. Concluding Remarks

In this paper, we proposed two aggregated model averaging estimators for distributed data
and proved that the weights based on Mallows model averaging criterion are L2 convergent
to the theoretically optimal weights. The bounds of mean squared errors and the asymptotic
optimality for the proposed model averaging estimators are also established. These are the
first theoretical results of applying model averaging method to big data analysis with divide
and conquer trick. Simulations and real data analysis show that simple aggregation and
doubly simple aggregation methods for model averaging estimators are better than their
model selection counterparts in situations where there are massive distributed or parallel
data, and especially when K is large, dMMA has more advantages in getting the smallest
mean squared errors. In practice, how to balance K and n is an unavoidable problem for
big data computing. In our opinion, dMMA is more preferred in the cases of smaller n and
bigger K where dMMA has more reduction in variances of both the coefficient estimators in
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Table 2: MSPEs of different methods for Airline Data.

K AIC BIC Mallows SAIC SBIC MMA dSAIC dSBIC dMMA

1

Mean (×10−2) 6.181 6.181 6.181 6.181 6.181 6.174

Median (×10−2) 5.833 5.833 5.833 5.833 5.833 5.811

Optimal rate 0.051 0.047 0.051 0.088 0.088 0.674

2

Mean (×10−2) 6.179 6.179 6.179 6.179 6.179 6.173 6.179 6.179 6.173

Median (×10−2) 5.833 5.833 5.833 5.833 5.833 5.811 5.833 5.833 5.811

Optimal rate 0.054 0.050 0.054 0.053 0.045 0.285 0.046 0.046 0.366

5

Mean (×10−2) 6.177 6.177 6.177 6.177 6.177 6.172 6.177 6.177 6.172

Median (×10−2) 5.835 5.835 5.835 5.835 5.835 5.803 5.835 5.835 5.803

Optimal rate 0.052 0.056 0.052 0.062 0.067 0.252 0.040 0.038 0.382

10

Mean (×10−2) 6.174 6.174 6.174 6.174 6.174 6.170 6.175 6.175 6.170

Median (×10−2) 5.839 5.839 5.839 5.839 5.839 5.807 5.839 5.839 5.806

Optimal rate 0.061 0.061 0.061 0.047 0.069 0.260 0.026 0.050 0.366

100

Mean (×10−2) 6.162 6.164 6.162 6.162 6.164 6.159 6.162 6.163 6.160

Median (×10−2) 5.843 5.843 5.843 5.843 5.843 5.840 5.843 5.843 5.839

Optimal rate 0.088 0.027 0.080 0.033 0.057 0.244 0.073 0.073 0.325

200

Mean (×10−2) 6.172 6.176 6.172 6.172 6.175 6.169 6.169 6.174 6.166

Median (×10−2) 5.843 5.843 5.843 5.843 5.842 5.838 5.843 5.841 5.838

Optimal rate 0.130 0.033 0.057 0.024 0.024 0.203 0.089 0.081 0.358

500

Mean (×10−2) 6.214 6.221 6.214 6.215 6.221 6.209 6.211 6.223 6.206

Median (×10−2) 5.760 5.774 5.760 5.761 5.774 5.762 5.763 5.779 5.764

Optimal rate 0.228 0.008 0.024 0.016 0.008 0.138 0.073 0.081 0.423

1000

Mean (×10−2) 6.263 6.273 6.263 6.263 6.272 6.255 6.262 6.275 6.253

Median (×10−2) 5.785 5.799 5.779 5.783 5.798 5.777 5.780 5.800 5.778

Optimal rate 0.260 0.008 0.024 0.024 0.016 0.195 0.016 0.073 0.382
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Table 3: Diebold–Mariano test results for the differences between MMA and other methods.

K AIC
MMA

BIC
MMA

Mallows
MMA

SAIC
MMA

SBIC
MMA

dSAIC
MMA

dSBIC
MMA

dMMA
MMA

1
DM 5.073 5.078 5.073 5.073 5.078 5.073 5.078

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2
DM 4.306 4.321 4.306 4.306 4.318 4.461 4.473 1.263

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103

5
DM 3.939 3.882 3.939 3.938 3.888 4.179 4.122 1.974

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024

10
DM 3.783 3.835 3.783 3.773 3.798 4.165 4.192 2.343

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010

100
DM 3.948 6.028 3.959 4.101 5.932 1.864 3.348 0.543

P-value 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.294

200
DM 6.438 11.997 6.667 7.054 11.695 8.530 11.685 -2.187

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.986

500
DM 5.024 8.579 5.058 5.252 8.543 0.095 5.735 -1.762

P-value 0.000 0.000 0.000 0.000 0.000 0.462 0.000 0.961

1000
DM 6.023 10.681 6.132 6.401 10.552 2.828 10.630 -3.277

P-value 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.999
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Table 4: Diebold–Mariano test results for the differences between dMMA and other meth-
ods.

K AIC
dMMA

BIC
dMMA

Mallows
dMMA

SAIC
dMMA

SBIC
dMMA

dSAIC
dMMA

dSBIC
dMMA

MMA
dMMA

2
DM 4.134 4.149 4.134 4.134 4.146 4.294 4.306 -1.263

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.897

5
DM 3.562 3.508 3.562 3.561 3.512 3.813 3.759 -1.974

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.976

10
DM 2.992 3.085 2.992 3.001 3.052 3.466 3.517 -2.343

P-value 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.990

100
DM 1.069 2.243 1.073 1.119 2.215 2.387 3.157 -0.543

P-value 0.143 0.012 0.142 0.132 0.013 0.008 0.001 0.706

200
DM 4.835 10.356 4.958 5.152 9.975 5.979 10.969 2.187

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014

500
DM 3.216 4.933 3.229 3.278 4.926 3.829 5.699 1.762

P-value 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.039

1000
DM 5.011 8.798 5.066 5.171 8.634 5.622 9.441 3.277

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
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candidate models and weight estimators in model averaging, and MMA is more applicable
to the cases of bigger n and smaller K where MMA requires less computation and has
similar performance to dMMA.

Our results hold in both the fixed and divergent dimensional models. For high-dimensional
linear models, we can group the regressors in order and then build the nested group can-
didate models or single group candidate models to reduce the effect of dimension. For
example, Ando and Li (2014) proposed cross-validation model averaging framework which
groups variables by correlation first to reduce the dimension, and then combines the candi-
date models by model averaging.

Our theoretical results need a homoscedastic assumption on the error term. If the data
at the subject are heteroscedastic or dependent, how to choose weights to aggregate each
subject estimator is an important problem. In this regard, the Jackknife model averaging
method in Hansen and Racine (2012), heteroscedasticity-robust Cp model averaging method
in Liu and Okui (2013), and leave-subject-out cross-validation model averaging method in
Gao et al. (2016) are useful and warrant our further research. Some other interesting
researches can also be done in the next step. One is to extend the proposed aggregated
model averaging methods to the case of big data streams (Xi et al., 2009; Wang et al., 2018).
Investigating model averaging based on generalized linear model and other complex models
for distributed data is another important topic.
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Appendices

To prove Theorems 1-5 and 7 in current paper, we first give some lemmas and their proofs
in Appendix A, then provide the proofs of the theorems in Appendix B.

Appendix A. Lemmas and Proofs

For w0 = (w1, . . . , wS−1)T ∈ RS−1, denote

Ck(w0) = Ck,n

(
col

{
w0, 1−

S−1∑
s=1

ws

})
.

Choosing any small radius δρ ≤ ρ, ρ ∈ (0, 1), we define the events

E1 ,
{∥∥O2Ck(w

∗
0)− O2R0(w∗0)

∥∥
2
≤ ρλn

}
,

and

E2 ,

{
‖OCk (w∗0)‖ ≤ (1− ρ)λnδρ

2

}
.

Lemma 1 Under the events E1 and E2, for k ∈ {1, 2, . . . ,K}, we have∥∥∥Ŵk − w∗0
∥∥∥ ≤ 2 ‖OCk (w∗0)‖

(1− ρ)λn
, (19)

and

λmin

[
O2Ck(w0)

]
> (1− ρ)λn, (20)

where
w0 ∈ Uδρ ,

{
w0 ∈ RS−1

∣∣ ‖w0 − w∗0‖ ≤ δρ
}
⊆ Q0.

Proof We first prove (20), which means that the function Ck (w0) is (1− ρ)λn-strongly
convex over the feasible set Uδρ under the conditions given in the lemma. In fact, for fixed
τ ∈ Uδρ , we have∥∥O2Ck (τ)− O2R0 (w∗0)

∥∥
2

=
∥∥O2Ck(w

∗
0)− O2R0(w∗0)

∥∥
2
≤ ρλn.

According to the properties of the spectral radius, it follows that∣∣λmin

[
O2Ck(τ)− O2R0(w∗0)

]∣∣ ≤ ρr
[
O2Ck(τ)− O2R0(w∗0)

]
≤
∥∥O2Ck(τ)− O2R0(w∗0)

∥∥
2

≤ ρλn.

Hence

λmin

[
O2Ck (w0)

]
≥ λmin

[
O2Ck(τ)− O2R0 (w∗0)

]
+ λmin

[
∇2R0 (w∗0)

]
≥ −ρλn + λn = (1− ρ)λn,
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which implies that Ck(w0) is (1− ρ)λn-strongly convex on Uδρ .

We now prove (19). Here we follow Zhang et al. (2013b) to provide a general proof
strategy that can be easily generalized to other non-linear model averaging methods, such
as cross-validation model averaging for quantile regression (Lu and Su, 2015) and generalized
functional linear model (Zhang and Zou, 2020), although Ck (w0) is a quadratic function
of w0. Using the fact that Ck (w0) is strongly convex on the set Uδρ , for any w

′
0 ∈ Q, we

obtain

Ck
(
w′0
)

> Ck(w
∗
0) +

〈
OCk (w∗0) , w′0 − w∗0

〉
+

(1− ρ)λn
2

min
{∥∥w′0 − w∗0∥∥2

, δ2
ρ

}
.

Rewriting this inequality, it can be seen that

min
{∥∥w′0 − w∗0∥∥2

, δ2
ρ

}
≤ 2

(1− ρ)λn

[
Ck
(
w′0
)
− Ck (w∗0)−

〈
OCk (w∗0) , w′0 − w∗0

〉]
≤ 2

(1− ρ)λn

[
Ck(w

′
0)− Ck (w∗0) + ‖OCk(w∗0)‖

∥∥w′0 − w∗0∥∥] . (21)

Without loss of generality, let w′0 = κŴk,0 + (1 − κ)w∗0 for κ ∈ (0, 1], then ‖w′0 − w∗0‖ > 0

and ‖w′0 − w∗0‖
2 = κ2

∥∥∥Ŵk,0 − w∗0
∥∥∥2

. Dividing both sides of (21) by ‖w′0 − w∗0‖ leads to

min

κ∥∥∥Ŵk,0 − w∗0
∥∥∥ , δ2

ρ

κ
∥∥∥Ŵk,0 − w∗0

∥∥∥


≤
2
[
Ck

(
κŴk,0 + (1− κ)w∗0

)
− Ck(w∗0)

]
κ
∥∥∥Ŵk,0 − w∗0

∥∥∥ (1− ρ)λn
+

2 ‖OCk (w∗0)‖
(1− ρ)λn

.

By Jensen’s inequality, we see that

Ck

(
κŴk,0 + (1− κ)w∗0

)
< Ck (w∗0) ,

which gives the following inequality

min

κ∥∥∥Ŵk,0 − w∗0
∥∥∥ , δ2

ρ

κ
∥∥∥Ŵk,0 − w∗0

∥∥∥
 <

2 ‖OCk (w∗0)‖
(1− ρ)λn

≤ δρ, (22)

where the last inequality follows from the definition of E2 and the conditions in Lemma 1.

Since (22) holds for any κ ∈ (0, 1], if
∥∥∥Ŵk,0 − w∗0

∥∥∥ > δρ, we can set κ =
δρ

‖Ŵk,0−w∗0‖
,

which yields a contradiction that min {δρ, δρ} < δρ. Thus, we have∥∥∥Ŵk,0 − w∗0
∥∥∥ ≤ δρ.
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Therefore, from (21) and w′0 = κŴk,0 + (1− κ)w∗0 with κ = 1, we obtain∥∥∥Ŵk,0 − w∗0
∥∥∥2
≤ 2

(1− ρ)λn

[
Ck

(
Ŵk,0

)
− Ck (w∗0) + ‖OCk (w∗0)‖

∥∥∥Ŵk,0 − w∗0
∥∥∥]

≤ 2 ‖OCk (w∗0)‖
(1− ρ)λn

∥∥∥Ŵk,0 − w∗0
∥∥∥ ,

which implies the inequality (19) immediately.

Lemma 2 Assume Conditions 1-3 hold, then

E ‖OCk (w∗0)‖2 = O

(
σ2
nSpS
n

)
, (23)

and

E
∥∥O2Ck (w∗0)− O2R0 (w∗0)

∥∥2

2
= O

(
S2pS
n

)
. (24)

Proof By the definition of w∗0 and Condition 1, we see that OR0(w∗0) = 0, which together
with (6) gives

0 =
∂R0(w0)

∂w0

∣∣∣∣
w0=w∗0

=
2

n
E

 Y T
k (Pk,1 − Pk,S) {P (w∗)Yk − µk}

...
Y T
k (Pk,S−1 − Pk,S) {P (w∗)Yk − µk}


=

2

n
E

 µTk (Pk,1 − Pk,S) {P (w∗)− I}µk
...

µTk (Pk,S−1 − Pk,S) {P (w∗)− I}µk



+
2

n
E

 eT(k) (Pk,1 − Pk,S)P (w∗)e(k)

...
eT(k) (Pk,S−1 − Pk,S)P (w∗)e(k)

 . (25)

Moreover,

OCk(w
∗
0)

=
2

n

 Y T
k (Pk,1 − Pk,S) {P (w∗)Yk − µk}

...
Y T
k (Pk,S−1 − Pk,S) {P (w∗)Yk − µk}

− 2

n

 Y T
k (Pk,1 − Pk,S) e(k)

...
Y T
k (Pk,S−1 − Pk,S) e(k)


+

2σ2

n

 tr(Pk,1 − Pk,S)
...

tr(Pk,S−1 − Pk,S)
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=
2

n

 µTk (Pk,1 − Pk,S) {P (w∗)− I}µk
...

µTk (Pk,S−1 − Pk,S) {P (w∗)− I}µk

+
2

n

 eT(k) (Pk,1 − Pk,S)P (w∗)e(k)

...
eT(k) (Pk,S−1 − Pk,S)P (w∗)e(k)



+
4

n

 eT(k) (Pk,1 − Pk,S) {P (w∗)− I}µk
...

eT(k) (Pk,S−1 − Pk,S) {P (w∗)− I}µk

− 2

n

 eT(k) (Pk,1 − Pk,S) e(k)

...
eT(k) (Pk,S−1 − Pk,S) e(k)



+
2σ2

n

 tr(Pk,1 − Pk,S)
...

tr(Pk,S−1 − Pk,S)


,

2

n
(A+ C1 + 2B1 −D2) , (26)

where

A =

 µTk (Pk,1 − Pk,S) {P (w∗)− I}µk
...

µTk (Pk,S−1 − Pk,S) {P (w∗)− I}µk

 ,

B1 =

 eT(k) (Pk,1 − Pk,S) {P (w∗)− I}µk
...

eT(k) (Pk,S−1 − Pk,S) {P (w∗)− I}µk

 ,

C1 =

 eT(k) (Pk,1 − Pk,S)P (w∗)e(k)

...
eT(k) (Pk,S−1 − Pk,S)P (w∗)e(k)

 ,
and

D2 =

 eT(k) (Pk,1 − Pk,S) e(k)

...
eT(k) (Pk,S−1 − Pk,S) e(k)

− σ2

 tr(Pk,1 − Pk,S)
...

tr(Pk,S−1 − Pk,S)

 .
Plugging (25) into (26) and by Cr-inequality, we have

E ‖OCk (w∗0)‖2 = E

∥∥∥∥ 2

n
(A−EA+ 2B1 + C1 −EC1 −D2)

∥∥∥∥2

≤ 16

n2

{
E ‖A− EA‖2 + 4E ‖B1‖2 + E ‖C1 − EC1‖2 + E ‖D2‖2

}
.

We first estimate E ‖A− EA‖2. For s ∈ {1, 2, . . . , S}, since the transpose of each row

in X(k) is independent of each other, and E
∣∣∣xT(i)ΠT

s β(s)

∣∣∣4 ≤ E
∣∣∣xT(i)ΠT

s β(s)

∣∣∣η+2
+ 1 < Cb + 1,

we obtain

Var[βT(s)Πsx(i)x
T
(i)Π

T
s β(s)] ≤ E

∣∣∣xT(i)ΠT
s β(s)

∣∣∣4 < Cb + 1,

and

Var
[
βT(s)X

T
k,sXk,sβ(s)

]
= n ·Var

(
βT(s)Πsx(i)x

T
(i)Π

T
s β(s)

)
= O(n). (27)
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Notice that for any random vectors x and y with E
(
xT y

)
= 0,

E
[
‖x+ y‖2 −E‖x+ y‖2

]2
= E

[
‖x‖4 +

(
‖y‖2 + 2xT y

)2
+ 4‖x‖2xT y + 2‖x‖2‖y‖2

]
−
(
E‖x‖2 + E‖y‖2

)2
≤ 3E‖x‖4 + Var

[
‖y‖2 + 2xT y

]
+ 4E‖x‖2‖y‖2. (28)

Hence, by E[δTk,sPk,sXk,sΣ
−1
s γs] = 0, and letting x = Pk,sδk,s and y = Pk,sXk,sΣ

−1
s γs in

(28), it is seen that

Var
[
bTk,sPk,sbk,s

]
≤ 3E

[
δTk,sPk,sδk,s

]2
+ Var

[(
2bk,s −Xk,sΣ

−1
s γs

)T
Xk,sΣ

−1
s γs

]
+4E

[
δTk,sPk,sδk,s

(
Xk,sΣ

−1
s γs

)T
Pk,sXk,sΣ

−1
s γs

]
. (29)

Since (2bk,s −Xk,sΣ
−1
s γs)

TXk,sΣ
−1
s γs is a sum of n i.i.d. random variables, and Condition

2 implies

E
∣∣∣xT(i)ΠT

s Σ−1
s γs

∣∣∣2 ≤ 1

2
+

1

2
E
∣∣∣xT(i)ΠT

s

(
β(s) − β?,s

)∣∣∣4
≤ 1

2
+ 4E

(∣∣∣xT(i)ΠT
s β(s)

∣∣∣4 +
∣∣∣xT(i)ΠT

s β?,s

∣∣∣4) <
17

2
+ 4Cb,

it follows that

Var
[(

2bk,s −Xk,sΣ
−1
s γs

)T
Xk,sΣ

−1
s γs

]
≤

n∑
i=1

E
∣∣∣(2bk,i,s − xT(i)ΠT

s Σ−1
s γs)

TxT(i)Π
T
s Σ−1

s γs

∣∣∣2
≤ 4σ2

nnE
[
γTs Σ−1

s Πsx(i)x
T
(i)Π

T
s Σ−1

s γs

]
+ 2nE

∣∣∣xT(i)ΠT
s Σ−1

s γs

∣∣∣4
≤ O

(
σ2
nn
)

+O(n), (30)

which holds uniformly for 1 ≤ s ≤ S. Moreover, Conditions 2 and 3 lead to

E
[
δTk,sPk,sδk,s(Xk,sΣ

−1
s γs)

TPk,sXk,sΣ
−1
s γs

]
= E

[
δTk,sPk,sδk,sγ

T
s Σ−1

s XT
k,sXk,sΣ

−1
s γs

]
≤ σ2

npsE
[
γTs Σ−1

s XT
k,sXk,sΣ

−1
s γs

]
= O(σ2

npsn), (31)

which is uniformly true for all 1 ≤ s ≤ S, and

E
[
δTk,sPk,sδk,s

]2
≤ psE

[
λmax

(
E
(
δk,sδ

T
k,sδk,sδ

T
k,s

∣∣Xk,s

))]
≤ σ2

nnps. (32)

Combining (29)–(32), we obtain

E
[
bTk,sPk,sbk,s −E

{
bTk,sPk,sbk,s

}]2
= O

(
npsσ

2
n

)
+O (n) . (33)
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Further, from Condition 2, we have

Var
[
bTk,sXk,sβ(s)

]
=

n∑
i=1

Var
[
bk,i,sx

T
(k,i,s)Π

T
s β(s)

]
≤ 2nE

[(
bk,i,s − xT(k,i,s)Σ

−1
s γs

)
xT(k,i,s)Π

T
s β(s)

]2

+2nE
[(
xT(k,i,s)Σ

−1
s γs

)
xT(k,i,s)β(s)

]2

≤ O(nσ2
n) +O (n) . (34)

Combining (27), (33) and (34), one has

Var
[
µTk Pk,sµk

]
= E

[
βT(s)X

T
k,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sXk,sβ(s) −E

{
βT(s)X

T
k,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sXk,sβ(s)

}
+bTk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sbk,s −E

{
bTk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sbk,s

}
+2bTk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sXk,sβ(s) − 2E[bTk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sXk,sβ(s)]

]2

≤ 3

(
E
[
βT(s)X

T
k,sXk,sβ(s) −E

(
βT(s)X

T
k,sXk,sβ(s)

)]2

+Var
[
bTk,sXk,s

(
XT
k,sXk,s

)−1
XT
k,sbk,s

]
+ 4Var

[
bTk,sXk,sβ(s)

])
= O

(
npsσ

2
n

)
+O (n) , (35)

which also holds uniformly for 1 ≤ s ≤ S and 1 ≤ k ≤ K. On the other hand, it is clear
that Pk,s is an idempotent matrix. According to the assumption that all candidate models
are nested, we see that Pk,iPk,j = Pk,jPk,i = Pk,mini,j holds. Thus,

(Pk,s − Pk,S) {Pk (w∗)− In}

= (Pk,s − Pk,S)


S∑
j=1

w∗jPk,j −

 S∑
j=1

w∗j

 In


=

S∑
j=1

w∗j (Pk,s − Pk,S) (Pk,j − In)

=

S−1∑
j=1

w∗j

Pk,S −

 s∑
j=1

w∗j

Pk,s −
S−1∑
j=s+1

w∗jPk,j , (36)
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which together with (35) implies

E ‖A− EA‖2

= E


S−1∑
s=1


S−1∑
j=1

w∗j

µTk Pk,Sµk −
S−1∑
j=1

w∗j

E
(
µTk Pk,Sµk

)
−

 s∑
j=1

w∗j

{µTk Pk,sµk −E
(
µTk Pk,sµk

)}

−
S−1∑
j=s+1

w∗j
{
µTk Pk,jµk −E

(
µTk Pk,jµk

)}2
≤ E

3

S−1∑
s=1

S−1∑
j=1

w∗j

2 {
µTk Pk,Sµk −E

(
µTk Pk,Sµk

)}2

+

 s∑
j=1

w∗j

2 {
µTk Pk,sµk −E

(
µTk Pk,sµk

)}2

+

 S−1∑
j=s+1

w∗j
{
µTk Pk,jµk −E

(
µTk Pk,jµk

)}2
≤ 3

S−1∑
s=1

(
Var

[
µTk Pk,Sµk

]
+ Var

[
µTk Pk,sµk

]
+ max
s+1≤j≤S−1

Var
[
µTk Pk,jµk

])
= O

(
nSpSσ

2
n

)
+O (nS) . (37)

Next, we will bound E ‖B1‖2. With (35) and (36), it is clear that

E ‖B1‖2 = E

[
S−1∑
s=1

{
eT(k) (Pk,s − Pk,S)Pk (w∗)µk

}2
]

≤ S max
1≤s≤S

E
[
eT(k)Pk,sµk

]2

= S max
1≤s≤S

E
[
µTk Pk,sµk

]2
σ2

= O (nSpS) . (38)

For E ‖C1 − EC1‖2, with Theorem 2 of Whittle (1960), we have

Var
[
eT(k) (Pk,s − Pk,S)P (w∗) e(k)

∣∣∣X(k)

]
= O

(
‖(Pk,s − Pk,S)P (w∗)‖2F Ee4

k,i

)
= O (pS) ,
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and then

E ‖C1 − EC1‖2 =

S−1∑
s=1

Var
[
eT(k) (Pk,s − Pk,S)P (w∗) e(k)

]
= O (SpS) . (39)

Similar to (39), we see that

E ‖D2‖2 = O
(
Sp2

S

)
. (40)

Combining (37)-(40), we get (23).

To prove (24), we calculate

O2Ck (w∗0) =
2

n

{(
Xk,s1 β̂k,s1 −Xk,S β̂k,S

)T (
Xk,s2 β̂k,s2 −Xk,S β̂k,S

)}
1≤s1,s2≤S−1

=
2

n

{
Y T
k (Pk,s1 − Pk,S)T (Pk,s2 − Pk,S)Yk

}
1≤s1,s2≤S−1

=
2

n

{(
µk + e(k)

)T (
Pk,S − Pk,max{s1,s2}

) (
µk + e(k)

)}
1≤s1,s2≤S−1

.

With the help of Theorem 2 of Whittle (1960), it can be claimed that

Var
[
eT(k) (Pk,s1 − Pk,S)T (Pk,s2 − Pk,S) e(k)

]
= E

(
Var

[
eT(k) (Pk,s1 − Pk,S)T (Pk,s2 − Pk,S) e(k)

∣∣∣X(k)

])
+Var

(
E
[
eT(k) (Pk,s1 − Pk,S)T (Pk,s2 − Pk,S) e(k)

∣∣∣X(k)

])
= O

(
tr
[
(Pk,s1 − Pk,S)2 (Pk,s2 − Pk,S)2

])
+ Var

{
σ2tr

(
Pk,S − Pk,max{s1,s2}

)}
= O

(
tr
[
(Pk,s1 − Pk,S)2 (Pk,s2 − Pk,S)2

])
+ Var

{
σ2
(
pS − pmax{s1,s2}

)}
= O (pS)

and

E
[
eT(k) (Pk,s1 − Pk,S)T (Pk,s2 − Pk,S)µk

]2

= E

[
E

{∣∣∣eT(k)

(
Pk,max{s1,s2} − Pk,S

)
µk

∣∣∣2∣∣∣∣X(k)

}]
= O (npS) .
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Thus,

Var
[(
µk + e(k)

)T (
Pk,S − Pk,max{s1,s2}

) (
µk + e(k)

)]
= E

[
µTk
(
Pk,S − Pk,max{s1,s2}

)
µk −E

{
µTk
(
Pk,S − Pk,max{s1,s2}

)
µk
}

+eT(k)

(
Pk,S − Pk,max{s1,s2}

)
e(k) −E

{
eT(k)

(
Pk,S − Pk,max{s1,s2}

)
e(k)

}
+2µTk

(
Pk,S − Pk,max{s1,s2}

)
e(k)

]2
≤ 3

(
Var

[
µTk
(
Pk,S − Pk,max{s1,s2}

)
µk
]

+ Var
[
eT(k)

(
Pk,S − Pk,max{s1,s2}

)
e(k)

]
+4E

{
µTk
(
Pk,S − Pk,max{s1,s2}

)
e(k)

}2
)

= O (npS) .

Hence,

E
∥∥O2Ck (w∗0)− O2E {Ck (w∗0)}

∥∥2

2
≤ E

∥∥O2Ck (w∗0)− O2E {Ck (w∗0)}
∥∥2

F

=
4

n2

S−1∑
s1=1

S−1∑
s2=1

Var
[(
µk + e(k)

)T (
Pk,S − Pk,max{s1,s2}

) (
µk + e(k)

)]
= O

(
n−1S2pS

)
,

which completes the proof of (24).

Lemma 3 Under Conditions 1-4, we have

E
∥∥∥Ŵk,0 − w∗0

∥∥∥2
= O

(
SpS(S + σ2

n)

λ2
nn

)
,

and then

E
∥∥∥Ŵk − w∗

∥∥∥2
= O

(
S2pS(S + σ2

n)

λ2
nn

)
.

Proof Recalling the events E1 and E2, we define the event E , E1 ∩ E2. In view of Lemma
1, we get

E
∥∥∥Ŵk,0 − w∗0

∥∥∥2
= E

[
1(E)

∥∥∥Ŵk,0 − w∗0
∥∥∥2
]

+ E

[
1(Ec)

∥∥∥Ŵk,0 − w∗0
∥∥∥2
]

≤
4E
[
1(E) ‖OCk (w∗0)‖2

]
(1− ρ)2 λ2

n

+ 2P (Ec) ≤ 4E ‖OCk (w∗0)‖2

(1− ρ)2 λ2
n

+ 2P (Ec) . (41)

From Lemma 2 and some direct calculations, we obtain

P(Ec) = P(Ec1 ∪ Ec2) ≤ P(Ec1) + P(Ec2)

≤
E
∥∥O2Ck(w

∗
0)− O2R0 (w∗0)

∥∥2

2

ρ2λ2
n

+
4E ‖OCk (w∗0)‖2

(1− ρ)2 λ2
nδ

2
ρ

= O
(
SpSλ

−2
n n−1(S + σ2

n)
)
,

38



Least Squares Model Averaging for Distributed Data

which together with (41) leads to

E
∥∥∥Ŵk,0 − w∗0

∥∥∥2
= O

(
SpSλ

−2
n n−1(S + σ2

n)
)
.

This completes the proof of Lemma 3.

Lemma 4 Under Condition 2, for any random variable a with ‖a‖2 ≤ 2, we have

E

[
max

1≤s≤S

(
xT(i)Π

T
s β?,s

)2
‖a‖2

]
= O

(
S2/(η+2)

(
E ‖a‖2

)η/(η+2)
)
.

Proof Define the event

E3 =

{
max

1≤s≤S

(
xT(i)Π

T
s β?,s

)2
≤
(
E ‖a‖2 /S

)−2/(η+2)
}
,

then

E

[
max

1≤s≤S

(
xT(i)Π

T
s β?,s

)2
‖a‖2

]
≤ E

[
1(E3) max

1≤s≤S

(
xT(i)Π

T
s β?,s

)2
‖a‖2

]
+ 2SE

[
1(Ec3)

(
xT(i)Π

T
s β?,s

)2
]

≤
(
E ‖a‖2 /S

)−2/(η+2)
E ‖a‖2 + 2S

(
E ‖a‖2 /S

)η/(η+2)

= O

(
S2/(η+2)

(
E ‖a‖2

)η/(η+2)
)
,

which leads to Lemma 4.

Lemma 5 Under Condition 3, for s = 1, 2, . . . , S, we have

E

[{
β̂k,s − β?,s

}T
ΠsX

T
k XkΠ

T
s

{
β̂k,s − β?,s

}]
= O

(
psσ

2
n

)
,

and

max
1≤s≤S

E

[{
β̂k,s − β?,s

}T
ΠsX

T
k XkΠ

T
s

{
β̂k,s − β?,s

}]
= O

(
pSσ

2
n

)
.

Proof Since

β̂k,s − β?,s =
(
XT
k,sXk,s

)−1
XT
k,s

(
bk,s −Xk,sΣ

−1
s γs + e(k)

)
,
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we obtain

E

[{
β̂k,s − β?,s

}T
ΠsX

T
k XkΠ

T
s

{
β̂k,s − β?,s

}]
= E

[(
bk,s −Xk,sΣ

−1
s γs + e(k)

)T
Xk,s

(
XT
k,sXk,s

)−1
XT
k,s

(
bk,s −Xk,sΣ

−1
s γs + e(k)

)]
= E

[(
bk,s −Xk,sΣ

−1
s γs

)T
Pk,s

(
bk,s −Xk,sΣ

−1
s γs

)]
+ E

[
eT(k)Pk,se(k)

]
≤ psE

[
λmax

(
E
((
bk,s −Xk,sΣ

−1
s γs

) (
bk,s −Xk,sΣ

−1
s γs

)T |Xk,s

))]
+ σ2ps

= O
(
psσ

2
n

)
= O

(
pSσ

2
n

)
,

which is uniformly true for all 1 ≤ s ≤ S. Then Lemma 5 follows.

Lemma 6 Under Conditions 3 and 6, for s = 1, 2, . . . , S, we have

E

[{
β̂k,s − β?,s

}T
ΠsΣSΠT

s

{
β̂k,s − β?,s

}]
= O

(
psσ

2
n

n

)
,

and

max
1≤s≤S

[{
β̂k,s − β?,s

}T
ΠsΣSΠT

s

{
β̂k,s − β?,s

}]
= O

(
pSσ

2
n

n

)
.

Proof Denote P k,s = Xk,s(X
T
k,sXk,s)

−1ΣS(XT
k,sXk,s)

−1XT
k,s, then it follows that tr[P k,s] =

tr[(XT
k,sXk,s)

−1Σs], and hence

E

[{
β̂k,s − β?,s

}T
ΠsΣSΠT

s

{
β̂k,s − β?,s

}]
= E

[(
bk,s −Xk,sΣ

−1
s γs + e(k)

)T
P k,s

(
bk,s −Xk,sΣ

−1
s γs + e(k)

)]
= E

[(
bk,s −Xk,sΣ

−1
s γs

)T
P k,s

(
bk,s −Xk,sΣ

−1
s γs

)]
+ E

[
eT(k)P k,se(k)

]
≤ E

{
tr
[(
XT
k,sXk,s

)−1
Σs

]
λmax

(
Σ∞|s

)}
+ σ2E

{
tr
[(
XT
k,sXk,s

)−1
Σs

]}
= O

(
psσ

2
n

n

)
= O

(
pSσ

2
n

n

)
,

which uniformly holds for 1 ≤ s ≤ S.

Appendix B. Proofs of Theorems

Proof of Theorem 1

To obtain the bound of E ‖w0 − w∗0‖
2, we first show that the function Ck(w0) behaves

similarly to the risk function R0 (w0) in the neighborhood of the point w∗0 under the two
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events E1 and E2. Intuitively, R0 (w0) is locally strongly convex, so the minimizer Ŵk,0 of
Ck (w0) will be close to w∗0. Hence our idea is to show that the events E1 and E2 hold with
high probability, which will guarantee the closeness of Ŵk,0 and w∗0.

From the definition of w̄0, it is seen that

E ‖w0 − w∗0‖
2 = E

∥∥∥∥∥ 1

K

K∑
k=1

Ŵk,0 − w∗0

∥∥∥∥∥
2

=
1

K2
E


K∑
k=1

∥∥∥Ŵk,0 − w∗0
∥∥∥2

+
∑
k 6=j

〈
Ŵk,0 − w∗0, Ŵj,0 − w∗0

〉
=

1

K2

K∑
k=1

E
∥∥∥Ŵk,0 − w∗0

∥∥∥2
+

1

K2

∑
k 6=j

〈
E
(
Ŵk,0 − w∗0

)
,E
(
Ŵj,0 − w∗0

)〉
=

1

K
E
∥∥∥Ŵ1,0 − w∗0

∥∥∥2
+
K(K − 1)

K2

∥∥∥E(Ŵ1,0 − w∗0
)∥∥∥2

≤ 1

K
E
∥∥∥Ŵ1,0 − w∗0

∥∥∥2
+
∥∥∥E(Ŵ1,0 − w∗0

)∥∥∥2
, (42)

where the third equality is from the fact that the weights Ŵk,0 and Ŵj,0 are independent.
The upper bound in (42) illuminates the path for the remainder of our proof: We only need

to bound E
∥∥∥Ŵ1,0 − w∗0

∥∥∥2
and

∥∥∥E(Ŵ1,0 − w∗0
)∥∥∥2

.

Noting that Lemma 3 gives the bound on E
∥∥∥Ŵ1,0 − w∗0

∥∥∥2
, we derive the bound on∥∥∥E(Ŵ1,0 − w∗0

)∥∥∥2
below. With the fact that OC1(Ŵ1,0) = 0, and the Taylor series expan-

sion of OC1(Ŵ1,0) at w∗0, we have

0 = OC1

(
Ŵ1,0

)
= OC1 (w∗0) + O2C1

(
w′0
) (
Ŵ1,0 − w∗0

)
,

where w′0 = κw∗0 + (1− κ) Ŵ1,0 for some κ ∈ [0, 1]. Clearly, this is equivalent to

0 = OC1 (w∗0) +
[
O2C1 (w∗0)− O2R0 (w∗0)

] (
Ŵ1,0 − w∗0

)
+ O2R0 (w∗0)

(
Ŵ1,0 − w∗0

)
. (43)

By Condition 1, we can set Σ = O2R0 (w∗0) and Σ−1 =
[
O2R0 (w∗0)

]−1
. Multiplying both

sides of (43) by Σ−1, we obtain

Ŵ1,0 − w∗0 = −Σ−1OC1 (w∗0) + Σ−1
[
O2R0 (w∗0)− O2C1 (w∗0)

]
(Ŵ1,0 − w∗0).

Therefore, by Lemmas 2 and 3, it is seen that∥∥∥E(Ŵ1,0 − w∗0
)∥∥∥ =

∥∥∥E{Σ−1
(
O2R0 (w∗0)− O2C1 (w∗0)

) (
Ŵ1,0 − w∗0

)}∥∥∥
≤ E

∥∥∥Σ−1
(
O2R0 (w∗0)− O2C1 (w∗0)

) (
Ŵ1,0 − w∗0

)∥∥∥
≤

(
E
∥∥Σ−1

(
O2R0 (w∗0)− O2C1 (w∗0)

)∥∥2

2

)1/2
(

E
∥∥∥(Ŵ1,0 − w∗0

)∥∥∥2
)1/2

= O
(
S3/2(S + σ2

n)1/2pSλ
−2
n n−1

)
. (44)
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By combining Lemma 5, Condition 4 and

|λn − λS | ≤ O
(
Sn−1/2 max

1≤s≤S
E1/2

[{
β̂k,s − β?,s

}T
ΠsX

T
k XkΠ

T
s

{
β̂k,s − β?,s

}])
,

it follows that λn = λS + o(λS), which together with (44) leads to

E ‖w0 − w∗0‖
2 ≤ 1

K
E
∥∥∥Ŵ1,0 − w∗0

∥∥∥2
+
∥∥∥E(Ŵ1,0 − w∗0

)∥∥∥2

= O

(
SpS(S + σ2

n)

Knλ
2
S

)
+O

(
S3p2

S(S + σ2
n)

n2λ
4
S

)
.

Theorem 1 is proved.

Proof of Theorem 2

Noting that

NLN (w)

=
K∑
k=1

‖µ̂k −Xkβ? (w) +Xkβ? (w)− µk‖2

=
K∑
k=1

{
‖µ̂k −Xkβ? (w)‖2 + ‖Xkβ? (w)− µk‖2 + 2 〈µ̂k −Xkβ? (w) , Xkβ? (w)− µk〉

}
=

K∑
k=1

‖µ̂k −Xkβ? (w)‖2 + LN,? (w) + 2

K∑
k=1

〈µ̂k −Xkβ? (w) , Xkβ? (w)− µk〉 ,

we have

NRN (w)

= NR∗N (w) +

K∑
k=1

E ‖µ̂k −Xkβ? (w)‖2 + 2

K∑
k=1

E 〈µ̂k −Xkβ? (w) , Xkβ? (w)− µk〉

≤ NR∗N (w) +
K∑
k=1

E ‖µ̂k −Xkβ? (w)‖2 + 2

√√√√NR∗N (w)

K∑
k=1

E ‖µ̂k −Xkβ? (w)‖2,

and∣∣∣∣RN (w)−R∗N (w)

R∗N (w)

∣∣∣∣ ≤ ∑K
k=1 E ‖µ̂k −Xkβ? (w)‖2

NR∗N (w)
+ 2

√∑K
k=1 E ‖µ̂k −Xkβ? (w)‖2

NR∗N (w)
.

So we need only to prove

sup
w∈Q

∑K
k=1 E ‖µ̂k −Xkβ? (w)‖2

NR∗N (w)
= o(1).
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Since

E ‖µ̂k −Xkβ? (w)‖2 = E

∥∥∥∥∥
S∑
s=1

wsXkΠ
T
s

(
β̂k,s − β?,s

)∥∥∥∥∥
2

≤ max
1≤s≤S

E
∥∥∥XkΠ

T
s

(
β̂k,s − β?,s

)∥∥∥2
,

it is sufficient to prove that

1

n
max

1≤s≤S
E
∥∥∥XkΠ

T
s

(
β̂k,s − β?,s

)∥∥∥2
= o

(
inf
w∈Q

R∗N (w)

)
. (45)

By the definitions of β̂k,s and β?,s and Lemma 5, it can be seen that

max
1≤s≤S

E
∥∥∥XkΠ

T
s

(
β̂k,s − β?,s

)∥∥∥2
≤ pS(σ2

n + σ2).

So with the help of Condition 5, (45) holds.
Now from (7), we have

RN (w∗) = R∗N (w∗) + o (R∗N (w∗)) = ξ?,N + o(ξ?,N ).

This completes the proof of Theorem 2.

Proof of Theorem 3

By applying Lemmas 3 and 6, (44) and Theorem 1, we obtain

E
∥∥∥Σ

1/2
S

{
β − β? (w∗)

}∥∥∥2

= E

∥∥∥∥∥Σ
1/2
S

{
1

K

K∑
k=1

β̂k

(
Ŵk

)
− β? (w∗)

}∥∥∥∥∥
2

≤ 1

K
E
∥∥∥Σ

1/2
S

{
β̂1

(
Ŵ1

)
− β? (w∗)

}∥∥∥2
+
K(K − 1)

K2

∥∥∥E [Σ1/2
S

{
β̂1

(
Ŵ1

)
− β? (w∗)

}]∥∥∥2

≤ 2E
∥∥∥Σ

1/2
S

{
β̂1

(
Ŵ1

)
− β?

(
Ŵ1

)}∥∥∥2
+

2

K
E
∥∥∥Σ

1/2
S

{
β?

(
Ŵ1

)
− β? (w∗)

}∥∥∥2

+
2(K − 1)

K

∥∥∥E [Σ1/2
S

{
β?

(
Ŵ1

)
− β? (w∗)

}]∥∥∥2

≤ 2 max
1≤s≤S

E
∥∥∥Σ

1/2
S

{
β̂1,s − β?,s

}∥∥∥2
+

2

K

(
S∑
s=1

βT?,sΠsΣSΠT
s β?,s

)
E
∥∥∥Ŵ1 − w∗

∥∥∥2

+
2(K − 1)

K

(
S∑
s=1

βT?,sΠsΣSΠT
s β?,s

)∥∥∥E [Ŵ1 − w∗
]∥∥∥2

= O

(
pS
(
σ2
n + σ2

)
n

+
S3pS(S + σ2

n)

Kλ
2
Sn

+
S5p2

S

(
S + σ2

n

)
n2λ

4
S

)
,
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and

E
∥∥∥Σ

1/2
S

{
β̃ − β∗ (w∗)

}∥∥∥2

= E

∥∥∥∥∥Σ
1/2
S

{
S∑
s=1

wsΠ
T
s β̃s −

S∑
s=1

w∗sΠ
T
s β?,s

}∥∥∥∥∥
2

= E

∥∥∥∥∥Σ
1/2
S

{
S∑
s=1

wsΠ
T
s

(
β̃s − β?,s

)
+

S∑
s=1

(ws − w∗s) ΠT
s β?,s

}∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥Σ
1/2
S

{
S∑
s=1

wsΠ
T
s

(
β̃s − β?,s

)}∥∥∥∥∥
2

+ 2E

∥∥∥∥∥Σ
1/2
S

{
S∑
s=1

(ws − w∗s) ΠT
s β?,s

}∥∥∥∥∥
2

≤ 2 max
1≤s≤S

(
1

K
E
∥∥∥Σ

1/2
S

{
β̂k,s − β?,s

}∥∥∥2
+
∥∥∥E [Σ1/2

S

{
β̂k,s − β?,s

}]∥∥∥2
)

+2E

∥∥∥∥∥Σ
1/2
S

{
S∑
s=1

(ws − w∗s) ΠT
s β?,s

}∥∥∥∥∥
2

= O
(
m2
S

)
+O

(
S3pS(S + σ2

n)

Knλ
2
S

+
pS
(
σ2
n + σ2

)
Kn

)
+O

(
S5p2

S(S + σ2
n)

n2λ
4
S

)
.

With Condition 2 and the fact that the eigenvalues of a matrix are not greater than its

maximum column sum, we have λ
2
S ≤ 4S2Cb, which leads to that

O

(
S3pS(S + σ2

n)

Knλ
2
S

+
pS
(
σ2
n + σ2

)
Kn

)
= O

(
S3pS(S + σ2

n)

Knλ
2
S

)
.

Thus, Theorem 3 is proved.

Proof of Theorem 4

By Theorem 3 and Condition 5, we have

E (µv − µv)
2

= ξ?,N + 2E
[{
β − β? (w∗)

}T
xv,S

(
xTv,Sβ? (w∗)− µv

)]
+E

[{
β − β? (w∗)

}T
xv,Sx

T
v,S

{
β − β? (w∗)

}]
≤ ξ?,N

(
1 + 2

√
ξ−1
?,NE

∥∥∥Σ
1/2
S

{
β − β? (w∗)

}∥∥∥2
+ ξ−1

?,NE
∥∥∥Σ

1/2
S

{
β − β? (w∗)

}∥∥∥2
)

= ξ?,N

{
1 +O

(√
pS (σ2

n + σ2)

nξ?,N
+
S3pS(S + σ2

n)

Knλ
2
Sξ?,N

+
S5p2

S(S + σ2
n)

n2λ
4
Sξ?,N

)}2

,
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and

E
(
µ̃v − µv

)2
≤ ξ?,N

(
1 + 2

√
ξ−1
?,NE

∥∥∥Σ
1/2
S

{
β̃ − β? (w∗)

}∥∥∥2
+ ξ−1

?,NE
∥∥∥Σ

1/2
S

{
β̃ − β? (w∗)

}∥∥∥2
)

= ξ?,N

{
1 +O

(√
m2
S

ξ?,N
+
S3pS(S + σ2

n)

Knλ
2
Sξ?,N

+
S5p2

S(S + σ2
n)

n2λ
4
Sξ?,N

)}2

.

Hence, Theorem 4 holds.

Proof of Theorem 5

We first show (9). By Lemmas 4 and 5, Theorem 1, and noting that λn = λS + o(λS), it is
seen that

E
∥∥Xk

{
β − β? (w∗)

}∥∥2

=
1

K2
E

∥∥∥∥∥∥Xk

K∑
j=1

{
β̂j

(
Ŵj

)
− β? (w∗)

}∥∥∥∥∥∥
2

≤ 1

K

K∑
j=1

E
∥∥∥Xk

{
β̂j

(
Ŵj

)
− β? (w∗)

}∥∥∥2

=
1

K
E
∥∥∥Xk

{
β̂k

(
Ŵk

)
− β? (w∗)

}∥∥∥2
+

1

K

∑
j 6=k

E
∥∥∥Xk

{
β̂j

(
Ŵj

)
− β? (w∗)

}∥∥∥2

=
1

K
E
∥∥∥Xk

{
β̂k

(
Ŵk

)
− β? (w∗)

}∥∥∥2

+
K − 1

K
E
∥∥∥n1/2Σ

1/2
S

{
β̂j

(
Ŵj

)
− β? (w∗)

}∥∥∥2

≤ 2

K
E
∥∥∥Xk

{
β̂k

(
Ŵk

)
− β?

(
Ŵk

)}∥∥∥2
+

2

K
E
∥∥∥Xk

{
β?

(
Ŵk

)
− β? (w∗)

}∥∥∥2

+
2 (K − 1)

K
E
∥∥∥n1/2Σ

1/2
S

{
β̂j

(
Ŵj

)
− β?

(
Ŵj

)}∥∥∥2

+
2 (K − 1)

K
E
∥∥∥n1/2Σ

1/2
S

{
β?

(
Ŵj

)
− β? (w∗)

}∥∥∥2

≤ 2

K
max

1≤s≤S
E
∥∥∥Xk,s

{
β̂k,s − β?,s

}∥∥∥2
+

2S

K
E

{
S∑
s=1

‖Xk,sβ?,s‖2 (ŵk,s − w∗s)
2

}

+
2n (K − 1)

K
max

1≤s≤S
E
∥∥∥Σ

1/2
S ΠT

s

{
β̂k,s − β?,s

}∥∥∥2

+
2n (K − 1)

K
E

({
S∑
s=1

βT?,sΠsΣSΠT
s β?,s

}∥∥∥Ŵk − w∗
∥∥∥2
)
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= O

(
pS
(
σ2
n + σ2

)
K

)
+

2Sn

K
E

[
max

1≤s≤S

(
xT(k,1)Π

T
s β?,s

)2 ∥∥∥Ŵk − w∗
∥∥∥2
]

+O
(
pS
(
σ2
n + σ2

))
+O

(
S3pSλ

−2
n

(
S + σ2

n

))
,

= O

(
Sη+4/(η+2)nK−1

(
S2pSn

−1λ
−2
S

(
S + σ2

n

))η/(η+2)
+ S3pSλ

−2
S

(
S + σ2

n

))
,

where x(k,1) = XT
k ε with ε = (1, 0, . . . , 0)T being an n dimensional column vector. Therefore,

we obtain

1

N

K∑
k=1

E
∥∥Xkβ − µk

∥∥2

= ξ?,N +
2

N

K∑
k=1

E
[{
β − β? (w∗)

}T
XT
k (Xkβ? (w∗)− µk)

]
+

1

N

K∑
k=1

E
∥∥Xk

{
β − β? (w∗)

}∥∥2

≤ ξ?,N

1 + 2

√∑K
k=1 E

∥∥Xk

{
β − β? (w∗)

}∥∥2

Nξ?,N
+

∑K
k=1 E

∥∥Xk

{
β − β? (w∗)

}∥∥2

Nξ?,N



≤ ξ?,N

1 +O


√√√√√ξ−1

?,N ·

S3pS (S + σ2
n)

nλ
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This completes the proof of (9). Similarly, to prove (10), we can derive
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≤ 2 max
1≤s≤S
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Then, we have
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 ,

that is, (10) holds. Thus, we conclude the proof of Theorem 5.

Proof of Theorem 7

We first consider (15). Without loss of generality, we assume that Θ is compact, then there
is a θ∗ ∈ Θ such that

θ∗ , argmax
θ∈Θ

MSE,

and the corresponding MSE, λ̄S , and λn are denoted by MSEθ∗ , λ̄S(θ∗), and λn(θ∗),
respectively. For the model with parameter θ∗, by σ2

n = o(n) and the definition of Θ, it is
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easy to check that Conditions 1 and 4 hold, and by Cr inequality, supj≥1 E|xk,i,j |q <∞ and
‖θ∗‖ ≤ ε3 can deduce that Condition 2 holds. Thus, Conditions 1 - 4 and 6 are all true for
the model with parameter θ∗, and so by Theorem 5,

MSEθ∗

infw∈QR?N (w)
= 1 +O

(
σ2
n

nλ̄2
S(θ∗)

+
1

K

(
σ2
n

nλ̄2
S(θ∗)

) q−2
q

)
. (46)

Noting that λn(θ∗) = λ̄S(θ∗) + o(λ̄S(θ∗)), this together with (46) leads to (15). In a similar
manner, we can show (16).

Next, we focus on (17) and (18). By Lemma 6, it can be verified that
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Note that
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Then
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where the last inequality is obtained from the definition of S2, which confirms (17). Simi-
larly, we can imitate the above process to prove (18). This completes the proof of Theorem
7.
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Figure 1: In-sample risk results with α = 0.5 and K = 2 in Section 4.2.
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Figure 2: In-sample risk results with α = 0.5 and K = 5 in Section 4.2.

54



Least Squares Model Averaging for Distributed Data

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4
 n=50

AIC

BIC

Mallows

SAIC

SBIC

MMA

dSAIC

dSBIC

dMMA

R2

(a) n = 50

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

 n=150

R2

(b) n = 150

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=400

R2

(c) n = 400

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

 n=1000

R2

(d) n = 1000

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

 n=5000

R2

(e) n = 5000

R
is

k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 n=10000

R2

(f) n = 10000

Figure 3: In-sample risk results with α = 1 and K = 2 in Section 4.2.
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Figure 4: In-sample risk results with α = 1 and K = 5 in Section 4.2.
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Figure 5: In-sample risk results with α = 1.5 and K = 2 in Section 4.2.
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Figure 6: In-sample risk results with α = 1.5 and K = 5 in Section 4.2.
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Figure 7: Out-of-sample risk results with α = 0.5 and K = 2 in Section 4.3.
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Figure 8: Out-of-sample risk results with α = 0.5 and K = 5 in Section 4.3.
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Figure 9: Out-of-sample risk results with α = 1 and K = 2 in Section 4.3.
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Figure 10: Out-of-sample risk results with α = 1 and K = 5 in Section 4.3.
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Figure 11: Out-of-sample risk results with α = 1.5 and K = 2 in Section 4.3.
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Figure 12: Out-of-sample risk results with α = 1.5 and K = 5 in Section 4.3.
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