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Learning multimodal representations involves integrating information from multiple heterogeneous
sources of data. In order to accelerate progress towards understudied modalities and tasks while
ensuring real-world robustness, we release MULTIZOO, a public toolkit consisting of standardized
implementations of > 20 core multimodal algorithms and MULTIBENCH, a large-scale benchmark
spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. Together, these provide
an automated end-to-end machine learning pipeline that simplifies and standardizes data loading,
experimental setup, and model evaluation. To enable holistic evaluation, we offer a comprehensive
methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness.
MULTIBENCH paves the way towards a better understanding of the capabilities and limitations of
multimodal models, while ensuring ease of use, accessibility, and reproducibility. Our toolkits are
publicly available, will be regularly updated, and welcome inputs from the community1.

Code: https://github.com/pliang279/MultiBench
Documentation: https://multibench.readthedocs.io/en/latest/
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1. Introduction
The research field of multimodal machine learning (ML) brings unique challenges for both compu-
tational and theoretical research given the heterogeneity of various data sources (Baltrušaitis et al.,
2018; Liang et al., 2022). At its core lies the learning of multimodal representations that capture cor-
respondences between modalities for prediction, and has emerged as a vibrant interdisciplinary field
of immense importance and with extraordinary potential in multimedia (Naphade et al., 2006; Liang
et al., 2023), affective computing (Liang et al., 2019; Poria et al., 2017), robotics (Kirchner et al.,
2019; Lee et al., 2019), finance (Hollerer et al., 2018), dialogue (Pittermann et al., 2010), human-
computer interaction (Dumas et al., 2009; Obrenovic and Starcevic, 2004), and healthcare (Frantzidis
et al., 2010; Xu et al., 2019). In order to accelerate research in building general-purpose multimodal
models across diverse research areas, modalities, and tasks, we contribute MULTIBENCH (Figure 1),
a systematic and unified large-scale benchmark that brings us closer to the requirements of real-world
multimodal applications. MULTIBENCH contains a diverse set of 15 datasets spanning 10 modalities
and testing for 20 prediction tasks across 6 distinct research areas, and is designed to comprehensively
evaluate generalization across domains and modalities, complexity during training and inference, and
robustness to noisy and missing modalities. Additionally, we release MULTIZOO, a public toolkit
consisting of standardized implementations of > 20 core multimodal algorithms in a modular fashion

1. MULTIBENCH was previously published at NeurIPS 2021 (Liang et al., 2021), although the datasets and algorithms
were the central contributions of that publication, not the software. This paper focuses on the open-source software
along with a larger collection of datasets, algorithms, and evaluation metrics.
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Figure 1: MULTIBENCH contains a diverse set of 15 datasets spanning 10 modalities and testing for more
than 20 prediction tasks across 6 distinct research areas, and enables standardized, reliable, and reproducible
large-scale benchmarking of multimodal models for performance, complexity, and robustness.
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Figure 2: Our MULTIBENCH toolkit provides a machine learning pipeline across data processing, data loading,
multimodal models, evaluation metrics, and a public leaderboard to encourage accessible, standardized, and
reproducible research in multimodal representation learning.

to enable accessibility for new researchers, compositionality of approaches, and reproducibility of
results. Together, these public resources ensure ease of use, accessibility, and reproducibility, and
they will be continually expanded in courses, workshops, and competitions around the world.

2. MULTIBENCH and MULTIZOO
MULTIBENCH provides a standardized machine learning pipeline that starts from data loading to
running multimodal models, providing evaluation metrics, and a public leaderboard to encourage
future research in multimodal representation learning (see Figure 2).

MULTIBENCH datasets: Table 1 shows an overview of the datasets provided in MULTIBENCH,
which span research areas in multimedia, affective computing, robotics, finance, human-computer
interaction, and healthcare, more than 15 datasets, 10 modalities, and 20 prediction tasks.

MULTIZOO: A zoo of multimodal algorithms: To complement MULTIBENCH, we release a
comprehensive toolkit, MULTIZOO, as starter code for multimodal algorithms which implements
20 methods spanning different methodological innovations in (1) data preprocessing, (2) fusion
paradigms, (3) optimization objectives, and (4) training procedures (see Figure 3). Each of these
algorithms are chosen because they provide unique perspectives to the technical challenges in
multimodal learning (Baltrušaitis et al., 2018) (see Table 2 for details).

Evaluation protocol: MULTIBENCH contains evaluation scripts for the following holistic
desiderata in multimodal learning: (1) Performance: We standardize evaluation using MSE and
MAE for regression, as well as accuracy, micro & macro F1-score, and AUPRC for classification.
(2) Complexity: We record the amount of information taken in bits (i.e., data size), the number of
model parameters, as well as time and memory resources required during the entire training process.
Real-world models may also need to be small and compact to run on mobile devices (Radu et al.,
2016) so we also report inference time and memory on CPU and GPU. The datasets and models
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Table 1: MULTIBENCH provides a comprehensive suite of 15 datasets covering a diverse range of 6 research
areas, dataset sizes, 10 input modalities (in the form of `: language, i: image, v: video, a: audio, t: time-series,
ta: tabular, f : force sensor, p: proprioception sensor, s: set, o: optical flow), and 20 prediction tasks.

Research Area Size Dataset Modalities # Samples Prediction task

Affective Computing

S MUSTARD (Castro et al., 2019) {`, v, a} 690 sarcasm
M CMU-MOSI (Zadeh et al., 2016) {`, v, a} 2,199 sentiment
L UR-FUNNY (Hasan et al., 2019) {`, v, a} 16,514 humor
L CMU-MOSEI (Zadeh et al., 2018) {`, v, a} 22,777 sentiment, emotions

Healthcare L MIMIC (Johnson et al., 2016) {t, ta} 36,212 mortality, ICD-9 codes

Robotics
M MUJOCO PUSH (Lee et al., 2020) {i, f, p} 37,990 object pose
L VISION&TOUCH (Lee et al., 2019) {i, f, p} 147,000 contact, robot pose

Finance
M STOCKS-F&B {t × 18} 5,218 stock price, volatility
M STOCKS-HEALTH {t × 63} 5,218 stock price, volatility
M STOCKS-TECH {t × 100} 5,218 stock price, volatility

HCI S ENRICO (Leiva et al., 2020) {i, s} 1,460 design interface

Multimedia
M MM-IMDB (Arevalo et al., 2017) {`, i} 25,959 movie genre
M AV-MNIST (Vielzeuf et al., 2018) {i, a} 70,000 digit
L KINETICS400 (Kay et al., 2017) {v, a, o} 306,245 human action

Unimodal models Fusion paradigms Optimization objectives Training proceduresData preprocessing

It insightgives me much

Figure 3: MULTIZOO provides a standardized implementation of multimodal methods in a modular fashion to
enable accessibility for new researchers, compositionality of approaches, and reproducibility of results.

included are designed to span a range of compute times from 1 minute to 6 hours, memory from 2GB
to 12GB, models from 0.01 million to 280 million parameters, and datasets from 690 to 147,000
samples. (3) Robustness: The toolkit includes both modality-specific imperfections taking into
account each modality’s unique noise topologies (i.e., flips and crops of images, natural misspellings
in text, abbreviations in spoken audio), and multimodal imperfections across modalities (e.g., missing
modalities, or a chunk of time missing in time-series data) (Liang et al., 2019; Pham et al., 2019).

Installation, testing, and integration: Our documentation provides installation instructions in
Linux, MacOS, and Windows. We also include a suite of unit tests (testing self-contained functions)
and integration tests (testing multiple components from across the unimodal, fusion, and training
loop modules together) with 100% coverage for self-contained functions and 88% coverage overall
including integration tests. We also include instructions for continuous integration: our software is
hosted on GitHub which enables version control and integration via pull requests and merges. We
enabled GitHub Actions workflows, which automatically runs the test builds and is triggered every
time new changes are incorporated. After making the desired changes and making sure all tests pass,
users can create a pull request and the authors will merge these changes into the main branch.

Together: In Algorithm 1, we show a sample code snippet in Python that loads a dataset, defines
the unimodal and multimodal architectures, optimization objective, and training procedures, before
running the evaluation protocol. Our toolkit is easy to use and trains models in less than 10 lines of
code. By standardizing the implementation of each module and disentangling individual modules,
optimizations, and training, MULTIZOO ensures accessibility and reproducibility of its algorithms.
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Table 2: MULTIZOO provides a standardized implementation of the following multimodal methods spanning
data processing, fusion paradigms, optimization objectives, and training procedures, which offer complemen-
tary perspectives towards tackling multimodal challenges in alignment, complementarity, and robustness.

Category Method Alignment Complementarity Robustness
Data WORDALIGN (Chen et al., 2017) 3 7 7

Model

EF, LF (Baltrušaitis et al., 2018) 7 3 7

TF (Zadeh et al., 2017), LRTF (Liu et al., 2018) 7 3 7

MI-MATRIX, MI-VECTOR, MI-SCALAR (Jayakumar et al., 2020) 7 3 7

NL GATE (Wang et al., 2020) 7 3 7

MULT (Tsai et al., 2019a) 3 3 7

MFAS (Pérez-Rúa et al., 2019) 7 3 7

Objective

CCA (Andrew et al., 2013) 3 7 7

REFNET (Sankaran et al., 2021) 3 7 7

MFM (Tsai et al., 2019b) 7 3 7

MVAE (Wu and Goodman, 2018) 7 3 7

MCTN (Pham et al., 2019) 7 7 3

Training
GRADBLEND (Wang et al., 2020) 7 3 3

RMFE (Gat et al., 2020) 7 3 3

Algorithm 1 PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.

from datasets.get_data import get_dataloader
from unimodals.common_models import ResNet, Transformer
from fusions.common_fusions import MultInteractions
from training_structures.gradient_blend import train, test

# load Multimodal IMDB dataset
traindata, validdata, testdata = get_dataloader(’multimodal_imdb’)
out_channels = 3
# define ResNet and Transformer unimodal encoders
encoders = [ResNet(in_channels=1, out_channels=3, layers=5),

Transformer(in_channels=1, out_channels=3, layers=3)]
# define a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ’matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# train using Gradient Blend algorithm
model = train(encoders, fusion, classifier, traindata, validdata,

epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)
# test
performance, complexity, robustness = test(model, testdata)

3. Results

MULTIZOO and MULTIBENCH enable quick experimentation of multimodal algorithms for perfor-
mance while balancing complexity and robustness. They uncover several shortcomings of current
models, including poor generalization to out-of-domain tasks, tradeoffs between performance and
efficiency, and lack of robustness to real-world imperfections. Our resources also pave the way
toward answering novel research questions in multimodal transfer learning, multi-task learning,
co-learning, pre-training, and interpretability. We include these results and discussions in our full
paper (Liang et al., 2021) as well as scripts to reproduce these results in MULTIBENCH software.

4. Conclusion

In conclusion, we present MULTIZOO and MULTIBENCH, a large-scale open-source toolkit uni-
fying previously disjoint efforts in multimodal research with a focus on ease of use, accessibility,
and reproducibility, thereby enabling a deeper understanding of multimodal models. Through its
unprecedented range of research areas, datasets, modalities, tasks, and evaluation metrics, our toolkit
paves the way toward building more generalizable, lightweight, and robust multimodal models.
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