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Abstract

This article presents a novel approach to construct Intrinsic Gaussian Processes for regres-
sion on unknown manifolds with probabilistic metrics (GPUM ) in point clouds. In many
real world applications, one often encounters high dimensional data (e.g.‘point cloud data’)
centered around some lower dimensional unknown manifolds. The geometry of manifold
is in general different from the usual Euclidean geometry. Naively applying traditional
smoothing methods such as Euclidean Gaussian Processes (GPs) to manifold-valued data
and so ignoring the geometry of the space can potentially lead to highly misleading pre-
dictions and inferences. A manifold embedded in a high dimensional Euclidean space can
be well described by a probabilistic mapping function and the corresponding latent space.
We investigate the geometrical structure of the unknown manifolds using the Bayesian
Gaussian Processes latent variable models(B-GPLVM) and Riemannian geometry. The
distribution of the metric tensor is learned using B-GPLVM. The boundary of the resulting
manifold is defined based on the uncertainty quantification of the mapping. We use the
probabilistic metric tensor to simulate Brownian Motion paths on the unknown manifold.
The heat kernel is estimated as the transition density of Brownian Motion and used as the
covariance functions of GPUM . The applications of GPUM are illustrated in the simulation
studies on the Swiss roll, high dimensional real datasets of WiFi signals and image data
examples. Its performance is compared with the Graph Laplacian GP, Graph Matérn GP
and Euclidean GP.

Keywords: Implicit manifold, Gaussian Process, Heat kernel, Brownian motion, Proba-
bilistic generative model

1. Introduction

Gaussian Processes (GPs) have been widely used as data efficient modelling approaches that
produce good uncertainty estimates. They also power many decision making approaches
such as Bayesian optimisation, multi-armed bandits and experiment design. Characteris-
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tics of the function prior such as differentiability, periodicity and symmetry can be easily
controlled by constructing a specific covariance function. Most widely used GP covariance
functions are defined over Euclidean space. However, in real world applications, data often
lies on a manifold within the original space. Predictions are only valid on the manifold
and should only be extrapolated from observations along the manifold. For example, traffic
flows can only be measured over networks of roads, surface tension is only measured on the
surface of a specific object and the joints of a robot arm can only be moved safely within
a manifold of the joint space of all the joints. The traffic connectivity can also easily differ
from road network due to road maintenance or traffic congestion. The inference of the
manifold based on data brings the accuracy and flexibility. Directly applying a GP with a
covariance function defined over Euclidean space would not be ideal as the extrapolation
would not respect the geometry of the manifold.

Previously, several GP on manifold methods (Niu et al., 2019; Lin et al., 2019; Borovit-
skiy et al., 2020) have been proposed under the assumption that the geometry of the man-
ifold is known. Niu et al. (2019) defined a heat kernel on a manifold and constructed an
intrinsic Gaussian Process on the manifold. The intrinsic GP refers to a GP that employs
the intrinsic Riemannian geometry of the manifold, including the boundary features and
interior conditions. Lin et al. (2019) proposed extrinsic framework for GP modeling on
manifolds, which relies on embedding of the manifold into a Euclidean space and then con-
structing extrinsic kernels for GPs on their images. Dunson et al. (2020) , Borovitskiy et al.
(2021) and Bolin et al. (2022) focused on developing GPs on graphs and metric graphs
formed by data observed on the manifold. Azangulov et al. (2022) developed stationary
kernels and Gaussian processes on Lie Groups and their homogenous spaces.

In this work, we study GP modelling on manifolds of which the geometry is unknown.
This is a more realistic setting for real world applications because measuring the exact ge-
ometry of data manifolds is often impossible or overly expensive. In particular, we focus
on the scenario where only a sparse set of data points can be collected. As shown in our
experiments, Graph Laplacian based methods perform poorly in this scenario due to the
poor graph approximation. In contrast, we estimate the probabilistic parameterisation of
the unknown manifolds using probabilistic latent variable models and propose a practical
and general intrinsic GP on unknown manifolds (GPUM) methodology. This is the major
novel contribution of the paper. Specifically, we investigate the geometrical structure of the
unknown manifolds using Riemannian geometry. The distributions of the metric tensor and
the boundaries of resulting manifolds are estimated using the Bayesian Gaussian process
latent variable models (B-GPLVM). Brownian Motion(BM) sample paths on the unknown
manifold are simulated using the probabilistic metric and respecting the boundaries. The
covariance kernel on the unknown manifold is estimated by employing the equivalence rela-
tionship between the heat kernel and the transition density of BM on the unknown manifold.
We prove this estimator is coordinate independent. Our method can incorporate the in-
trinsic geometry and the uncertainty of the unknown manifold for inference and respect the
interior constraints. With numerical experiments on synthetic and real world datasets, we
compared our method against Graph Laplacian based methods and GP regressions without
manifold estimations. We demonstrated that our method outperforms all other methods
on all of the datasets.
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In the following sections, concepts of Riemannian geometry are introduced in Section
2. The metric learning algorithms are explained in Section 5. We prove the BM paths on
manifolds simulated using different metrics have the same transition density in Section 6.
The heat kernel estimates derived from the analytical metric and different metric learning
methods such as Gaussian Processes Latent Variable Model (GPLVM) and B-GPLVM are
compared in Section 6.2. Applications of GPUM on a synthetic dataset on Swiss roll, high
dimensional real datasets of WiFi signals (Ferris et al., 2007) and COIL images (Nayar and
Murase, 1996) are illustrated and compared to Graph Laplacian GPs (Dunson et al., 2020),
Graph Matérn GPs (Borovitskiy et al., 2021) and Euclidean GPs in Section 7, 8 and 9.

2. Concepts of Riemannian Geometry and Theoretical Background

One way of representing a high dimensional dataset is to relate it to a lower dimensional
set of latent variables through a set of mapping functions (potentially nonlinear). Tosi
et al. (2014); Arvanitidis et al. (2019) investigated the geometrical structure of probabilistic
generative dimensionality reduction models (or latent variable models) using Riemannian
metrics and computed the geodesic distances on the manifolds learned from data. A mani-
fold embedded in a high dimensional Euclidean space can be well described by a probabilistic
mapping function and the corresponding latent space. If the dimension of the latent space
is the same as the intrinsic dimension of the manifold, the latent space can be interpreted
as the chart of the learned manifold. Intuitively, the chart provides a distorted view of the
manifold. An illustration is shown in Fig.1(a). The x1 and x2 coordinates in the chart
represent the radius and width of the Swiss roll in R3. The blue triangles in the chart
can be mapped to the black points in the embedded space (Swiss roll in R3) through the
mapping ϕ : Rq → M ⊂ Rp. In other words, the Swiss roll can be parameterised by the
chart. Measurements on the manifold can be computed in the chart locally, and integrated
to provide global measures. This gives rise to the definition of a local inner product, known
as a Riemannian metric tensor.

Let M be a q-dimensional complete and compact Riemannian manifold with the Rie-
mannian metric g, and ∂M its boundary. The Riemannian metric g can be represented
as a symmetric, positive definite matrix-valued function, which defines a smoothly varying
inner product in the tangent space of M. Let J denote the Jacobian of ϕ. We have

g = J TJ , Ji,j =
∂ϕi

∂xj
. (1)

The superscript indicates the jth dimension of the chart and the ith dimension of the ob-
servation space.

Moreover, based on its metric tensor, M has an associated Laplace-Beltrami operator,
which is an intrinsically defined differential operator denoted ∆s. In local coordinates, the
Laplacian-Beltrami operator is

∆sf =
1√
G

∂

∂xj

(√
Ggij

∂f

∂xi

)
, (2)

where G is the determinant of the metric g, gij is the (i, j) element of its inverse and f is a
smooth function on M. Take the special case where M is a Euclidean space Rq, g becomes
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Swiss Roll in  R3Chart

(a) Chart of M(Swiss roll) (b) Regression on M

Figure 1: An illustration of a parameterisation of the manifold M(Swiss roll) estimated from a data cloud
in (a). ϕ maps the chart into M ⊂ R3. The blue triangles in the chart are mapped to the black
dots on M ⊂ R3. The Riemannian geometry can help to learn the regression function in (b) (the
color indicates function values) .

an identity matrix. The Laplace-Beltrami operator ∆s becomes the Laplace operator ∆
(the sum of second partial derivatives).

Consider the heat equation on M, given by

∂

∂t
Kheat(s0, s, t) =

1

2
∆sKheat(s0, s, t), s0, s ∈ M,

where s ∈ M, ∆s is the Laplacian-Beltrami operator on M, and t ∈ R+ is the diffusion time.
A heat kernel of M is a smooth function K(s0, s, t) on M×M× R+ that satisfies the heat
equation. It can be interpreted as the amount of heat that is transferred from s0 to s in
time t via diffusion.

The heat kernel satisfies the initial condition limt→0Kheat(s0, s, t) = δ(s0, s) with δ the
Dirac delta function. The heat kernel becomes unique when we impose a suitable condition
along the boundary ∂M, such as the Neumann boundary condition: ∂K/∂n = 0 along
∂M where n denotes a normal vector of ∂M. The Neumann boundary condition can be
understood as allowing no heat transfer across the boundary. If M is a Euclidean space Rq,
the heat kernel has a closed form corresponding to a time-varying Gaussian function:

Kheat(s0, s, t) =
1

(2πt)q/2
exp

{
−||s0 − s||2

2t

}
, s ∈ Rq.

The diffussion time t controls the rate of decay of the covariance. In the following, we will
also write Kheat(s0, s, t) as K

t
heat(s0, s).

For arbitrary Riemannian manifold, the construction of the heat kernel associated with
the Laplace-Beltrami operator is not a trivial task and belongs to the fields of partial
differential equations and differential geometry (Chavel, 1984). To circumvent solving the
heat equation on manifolds, Niu et al. (2019) estimated the heat kernel as the BM transition
density by simulating BM paths on a known manifold. In the case of point clouds, both the
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metric tensor g and the boundary ∂M are unknown. In this work, we will use probabilistic
latent variable models to learn the distribution of the metric g and define the boundary ∂M
based on the uncertainty quantification of the mapping. The Laplace-Beltrami operator in
(2) is the infinitesimal generator of BM on manifolds (Hsu, 1988). The BM on a Riemannian
manifold in a local coordinate system is given as a system of stochastic differential equations
in the Itô form (Hsu, 1988, 2008):

dxi(t) =
1

2
G−1/2

q∑
j=1

∂

∂xj

(
gijG1/2

)
dt+

(
g−1/2dB(t)

)
i
, (3)

where g is the metric tensor of M, G is the determinant of g and B(t) represents an
independent BM in the Euclidean space.

3. Intrinsic Gaussian Processes on unknown manifolds

In this work, we focus on the following model,

yi = f(si) + ϵi, ϵi ∼ N (0, σ2ϵ ) (4)

where f : M → R is an unknown regression function. yi ∈ R is a response variable.
si = (s1i , . . . , s

p
i ) ∈ M ⊂ Rp is an observed predictor on a complete and compact Riemannian

manifold M embedded in Rp. M can be parameterised by a q dimensional local coordinate
system (chart), and q < p. For example, let M be a unit sphere and we have a point i on
M. si ∈ R3 is a three dimensional vector representing the Cartesian coordinates of i. The
two dimensional chart of M is the longitude and latitude coordinate system. The point i
can also be represented as a two dimensional vector xi in the chart. There exists a mapping
function ϕ from the Cartesian coordinates to the spherical coordinates. However in the case
of point clouds where si is observed in Rp, the parameterisation ϕ of M is unknown and xi
becomes a latent variable. We propose to infer how the output y varies with the input s,
including predicting y values at new locations not represented in the training set.

A GP prior can be assigned to f with a covariance function. The choice of covariance
kernel has a fundamental impact on the results. Most common choices of covariance ker-
nels such as the squared exponential kernel and Matérn kernel depend critically on the
Euclidean distance between si and sj and ignore the intrinsic geometry of M. By con-
trast, the heat kernel depends only on the Riemmanian metric and the intrinsic geometry
of M. It provides a natural generalisation of the RBF kernel on manifolds. The heat kernel
represents the diffusion of the heat on a Riemannian manifold. However it is analytically
intractable to directly evaluate (Hsu, 1988). Niu et al. (2019) proposed a computational
framework to estimate the heat kernel on the manifold in which the analytical parameteri-
sation is known. However, data represented as point clouds is often high dimensional and
concentrated around some unknown lower dimensional structures, Niu et al. (2019) is not
applicable due to the lack of analytical manifold parameterisation. In this paper, we address
this problem by using the probabilistic generative dimension reduction models to learn the
geometry of the implicit manifold and define the boundary. We propose to construct GPUM
by using the heat kernel of the implicit manifold as the covariance kernel. With the help of
Riemannian geometry, the Brownian motion sample paths can be simulated on M and the
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heat kernel can be estimated as the transition density of the BM. With this construction
we can learn the regression function on M as in Fig.1(b).

Let D = {(si, yi), i = 1, ..., n} be the data, with n ≥ 1 the number of labeled observa-
tions, si ∈ M ⊂ Rp is the predictor and yi ∈ R is the corresponding response. Suppose we
are also given an unlabeled dataset V = {si, i = n+ 1..., n+ v} where v ≥ 1. Consider the
regression model in (4), we would like to make inferences about f with the labeled dataset
D and predict y values for the unlabeled dataset V. Under an GPUM prior for the unknown
regression function as f ∼ GP (0,Kt

heat(., .)), we have

p(f |s1, s2, ..., sn) ∼ N (0,Σff ),

where f is the discretization of f over s1, s2, · · ·, sn so that fi = f(si). Σff ∈ Rn×n is
the covariance matrix induced from the heat kernel. The (i, j) entry of Σff corresponds
to Σffi,j

= σ2hK
t
heat(si, sj). We introduce the rescaling hyperparameter σ2h to add extra

flexibility to the heat kernel.

4. Related work

One of the paramount challenges in developing GP models on manifolds is the difficulty in
specifying the covariance structure via constructing valid covariance kernels on manifolds.
One might hope to achieve this by replacing Euclidean norms in the squared exponential
kernel with geodesic distances. However Feragen et al. (2015) proved this is not generally
a well-defined kernel. Lin et al. (2019) proposed extrinsic Gaussian Processes on manifolds
by embedding the manifolds onto a higher dimensional Euclidean space. The squared
exponential kernel is applied on the images of the manifold after embedding. However,
such embeddings are not easy to obtain and only available for certain manifolds when
the geometry is known. Yang and Dunson (2016) proposed a model bypassing the need
to estimate the manifold, and can be implemented using standard algorithms for posterior
computation in GPs. They show that by imposing a GP prior on the regression function with
a covariance kernel defined directly on the ambient space (the embedding of the manifold in
a high dimensional Euclidean space), the posterior distribution yields a posterior contraction
rate depending on the intrinsic dimension of the manifold. They assume that the unknown
lower dimensional space where the predictors center around are a class of submanifolds of
Euclidean space. They focus on compact manifolds without boundary.

Niu et al. (2019) proposed to use heat kernels to construct the intrinsic Gaussian Pro-
cesses on complex constrained domains. Heat kernel can be interpreted as the transition
density of Brownian Motion on the manifold (Hsu, 1988). It is estimated by simulating
BM paths on manifolds in which the analytical parameterisation is known in Niu et al.
(2019). Alternatively if the eigen-paires of the Laplacian-Beltrami operator of the manifold
are available, Borovitskiy et al. (2020) approximated the heat kernel with the sum of finite-
many eigen-paires of the Laplacian-Beltrami. Both Borovitskiy et al. (2020) and Niu et al.
(2019) are only applicable when the geometry of the manifold is known and the dimensions
of the observation(or embedding) space are low such as M ⊂ R2 or M ⊂ R3 (p = 2 or 3).

Most recent research in Dunson et al. (2020) tackled this problem by approximating the
heat kernel kernel of a compact Riemannian manifold with finitely-many eigenpairs of the
Graph Laplacian using the labeled and unlabeled predictor values. We refer the Gaussian
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processes constructed by this approximation as the Graph Laplacian Gaussian processes
(GL-GPs). Let ∆ be the Laplace-Beltrami operator of a manifold and {λi}∞i=0 be the
spectrum or eigenvalues of −∆. Denote φi the corresponding eigenfunction, for each i ∈ N ,
we have ∆φi = −λiφi. If the eigen-decomposition of ∆ is known, the corresponding heat
kernel of the manifold has the following expression: Kheat(s, s

′, t) =
∑∞

i=0 e
−λitφi(s)φi(s

′).
If the geometry of the manifold and the corresponding ∆ are unknown, ∆ is approximated
by the Graph Laplacian matrix L in Dunson et al. (2020). L is constructed from a point
cloud whose adjacency matrix is computed by using a Gaussian function with pair-wised
Euclidean distance. The heat kernel is approximated as the summation of finite eigenpairs
of L,

∑nG
i=0 e

−µitviv
T
i , where µi and vi are the ith normalised eigenvalue and eigenvector

of L. nG is the number of eigen pairs. The implementation of the GL-GP is provided in
Appendix I.

Borovitskiy et al. (2021) leveraged the stochastic partial differential equation charac-
terization of Matérn kernel to study their analog for undirected graphs and developed the
Graph Matérn Gaussian processes (GM-GPs). The Graph Matérn kernel is constructed
with the sum of finitely-many eigenpairs of the normalised Graph Laplacian L. L is com-
puted from the adjacency matrix of a predefined graph. We implemented the GM-GP by
following the instructions in the Github repository in Borovitskiy et al. (2021). The key
component of GL-GPs and GM-GPs is the Graph Laplacian. If the true graph connections
are not known, the graph constructed based on local distances such as Delaunay triangula-
tion can be error-prone when observations are sparse (Hjelle and Dæhlen, 2006). The graph
based methods often result in poor approximation of the manifold when the number of the
observations are low. GL-GPs and GM-GPs are applied to the simulation studies and real
datasets and compared to GPUM in the later sections.

There are still some critical gaps in current practices. In particular, the lack of ro-
bust methods for carrying out intrinsic statistical inference and effective models for re-
gressions with manifold-valued data embedded in a point cloud. In this work we focus
on learning the manifold structure using probabilistic dimension reduction methods such
as Bayesian GPLVM and constructing the GPUM by using the heat kernel of the learned
manifold. Other related methods such as Auto-encoders (Kramer, 1991) and Variational
Auto-encoders (VAE)(Kingma et al., 2019), can also be considered in this two stage ap-
proach. Auto-encoders provide a neural network based framework for learning deep latent
variable models. However, the resulting mapping function is deterministic and the model
does not have a built-in quantification of its uncertainty. There is lack of uncertainty quan-
tification in the learned manifold. Alternatively, VAE address this concern directly through
an explicit likelihood model and a variational approximation of the representation poste-
rior. It learns a generative model by specifying a likelihood of observations conditioned on
latent variables and a prior over the latent variables. Both the likelihood and the varia-
tional distributions have parameters predicted by neural networks that act similarly to the
encoder–decoder pair of the classic autoencoder.

5. Learning metrics and boundaries

Let S = {si|i = 1, · · ·, n + v}, si ∈ Rp, include all predictors in the labeled dataset D and
unlabeled dataset V. We have S ∈ R(n+v)×p. Suppose we perform probabilistic nonlinear
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dimensionality reduction by defining a latent variable model that introduces a set of latent
(unobserved) variables X = {xi|i = 1, · · ·, n + v}, xi ∈ Rq, X ∈ R(n+v)×q and q < p. X
is related to S which is observed in a higher dimensional space. A prior distribution is
placed on the latent space which induces a distribution over S under the assumption of the
probabilistic mapping

sji = ϕj(xi) + eji , (5)

where xi ∈ Rq is the latent point associated with the ith observation si ∈ Rp in the original
observation space and i ≤ n. j is the index of the features (dimensions) of s in the observa-
tion space and j ≤ p. eji is a Gaussian distributed noise term, eji ∼ N (0, β2). An illustration
is given in Fig. 1(a) where q = 2 and p = 3. If the mapping ϕ is linear and the prior p(X ) is
Gaussian, this model is known as probabilistic principal component analysis (Tipping and
Bishop, 1998). In this work, we do not restrict to this linear assumption and consider some
nonlinear dimensionality reduction methods such as GPLVM and B-GPLVM.

When the ϕ function in Fig.1(a) is differentiable, it can be interpreted as the mapping
between the latent space and the manifold M. If the dimensions of M are known, by letting
q equal the dimensions of M, the latent space can be interpreted as the chart of M. If the
dimensions of M are unknown, q is estimated by using the so called Automatic Relevance
Determination (ARD) in GPLVM and B-GPLVM (Zwiessele, 2017). ARD allows assigning
scaling parameters for each dimension. These scaling parameters can be incorporated to
kernels such as the RBF kernel as the inverse of the squared lengthscales.

In general a manifold may need more than one chart to be parameterised. In this work,
we focus on examples of single chart. A rigorous study of a general multi-chart mani-
fold problem is very challenging and beyond the scope of the current paper. In principle
our method can be extended to multiple charts manifolds. However, there are some chal-
lenges such as systematically defining the number of the charts required to parameterise
the manifold, learning the individual charts and estimating the corresponding kernel. The
Riemannian metric of the given model can be computed as in (1). In the case of probabilis-
tic LVMs, we place a Gaussian prior over the mapping function ϕ(x)|x. The conditional
probability over the Jacobian also follows a Gaussian distribution, this naturally induces a
distribution over the metric tensor g. We denote the distribution of the Jacobian as J given
the set S and the mapping ϕ in (5). Assuming independent rows of J (Lawrence, 2005;
Titsias and Lawrence, 2010),

p(J|S,Φ) =
p∏
j=1

N (µjJ,ΣJ). (6)

This independent row assumption is for the dimensions in the original observational space.
The dimensions in the learned latent space are not independent. This assumption can be
relaxed by using a multi-output GP which is more compuationaly expensive (Alvarez and
Lawrence, 2011). The expressions of the mean µJ and variance ΣJ of the Jacobian are
model specific and given in section 5.1 and 5.2. The resulting metric g follows a non-central
Wishart distribution (Anderson, 1946)

g ∼ Wq

(
p,ΣJ,E(JT )E(J)

)
. (7)

8



GPUM on Unknown Manifolds

From this distribution, the expected metric tensor can be computed as

G = E(g) = E(JT )E(J) + pΣJ. (8)

We denote the expectation by G. Note that the variance term ΣJ is included in G. It implies
that the metric tensor expands as the uncertainty over the mapping increases. Hence the
BM simulation steps in the SDE in (21) will travel ‘slower’ in the region of the latent space
where the uncertainty is high.

We also need the gradient of the expected metric to simulate BM as in section 6.1.

∂G
∂xl

=
∂E[g]
∂xl

=
∂E[JT ]
∂xl

E[J] + E[JT ]
∂E[J]
∂xl

+ p
∂ΣJ

∂xl
(9)

The estimates of the mapping ϕ(x) become highly unreliable when x is far from the data
points. The corresponding metric tensor estimates and BM simulations can also be ill
defined and violate the manifold geometry. To avoid these poorly estimated region due
to lack of data, the boundary of the learned manifold can be defined by Var(ϕ(x)|x), the
variance of the mapping at x. Var(ϕ(x)|x) is also a smooth function in B-GPLVM. In most
cases, the ∂M defined here is also a q− 1 smooth manifold. Any x outside of the boundary
has Var(ϕ(x)|x) > α.

∂M = {x ∈ Rq | Var(ϕ(x)|x) = α}. (10)

To define the value of α, we first compute the maximum distance δX between two neigh-
bouring data points in the latent space. We then sample the ‘shifted latent points’ h from
a set H = {h|∥h − xi∥ = δX , xi ∈ X}, which contains all points in the latent space whose
distances to the data points are δX . The maximum variance of ϕ(h) is used for the value of
α. In practice, we create h by moving all data points with δX in random directions and let
α equal to the maximum variance of the mapping at these relocated points. The samples
are chosen to make sure that α > max (Var (ϕ(xi)|xi)), for all xi ∈ X . An ablation study
of the choice of α based on the Swiss roll experiment is given in Appendix D.

5.1 GPLVM metric

Gaussian Process Latent Variables Model (GPLVM; Lawrence, 2005) is a nonlinear prob-
abilistic generative model. In this section, we will derive the distribution of the metric
from GPLVM. A sample from GPLVM defines a generative mapping from x ∈ Rq in
the latent space to s ∈ M ⊂ Rp in the observation space. GPs define a prior over the
mapping ϕ in (5). A zero mean prior is used as a default choice. If the domain knowl-
edge of where the prior should be centred is available, such as the embedding of Rq into
Rp, it can also be encoded into the mean function. The individual dimensions of the
p dimensional observation space are modeled independently in the GP prior sharing the
same hyperparameters. Given the construction outlined above, the probability of the ob-
served data S = {sji |i ∈ {1, · · · , n + v}, j ∈ {1, · · · , p}} conditioned on all latent variables

X = {xji |i ∈ {1, · · · , n+ v}, j ∈ {1, · · · , q}} is written as follows:

p(S,Φ|X , β) = p(S|Φ, β)p(Φ|X ) =

p∏
j=1

p(sj: |ϕj: , β)p(ϕj: |X ), (11)
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where Φ = {ϕji |i ∈ {1, · · ·, n + v}, j ∈ {1, · · ·, p}}, Φ ∈ R(n+v)×p and ϕji = ϕ(xi)
j . sj:

represents the jth dimension of all points in S and S ∈ R(n+v)×p. The likelihood p(S|X ) is
computed by marginalising out Φ and optimising the latent variables X

p(S|X ) =

p∏
j=1

N (sj: ,KXX + β2I). (12)

KXX is the (n+ v)× (n+ v) covariance matrix defined by the squared exponential kernel.
Lawrence (2005) estimated all the latent variables X and the kernel hyper-parameters of
GPLVM with the maximum likelihood estimate. If the covariance kernel is differentiable,
the derivative of a GP is again a GP (Rasmussen and Williams, 2006; Adler, 2010). This
property allows us to compute the derivative of GP. The Jacobian J of the GPLVM mapping
can be computed as the partial derivative ∂ϕ∗

∂xl
with respect to the lth dimension for any point

x∗ in the latent space,

JT =
∂ϕ∗
∂x

=

∂ϕ(x∗)
1

∂x1
· · · ∂ϕ(x∗)j

∂x1
· · · ∂ϕ(x∗)p

∂x1

· · · · · · · · · · · · · · ·
∂ϕ(x∗)1

∂xq · · · ∂ϕ(x∗)j

∂xq · · · ∂ϕ(x∗)p

∂xq

 , (13)

where ∂ϕ∗
∂x is a q × p matrix. Considering the independence across the dimensions of the

observation space, the joint distribution of the jth dimension of the mapping ϕ and the jth
column of the Jacobian can be written as[

ϕ(X )j

∂ϕ(x∗)j

∂x

]
, ∼ N

(
0,

[
KX ,X ∂KX ,∗
∂KT

X ,∗ ∂2K∗,∗

])
. (14)

The expressions of KX ,X , ∂KX ,∗ , and ∂2K∗,∗ are given in Appendix B. GPLVM provides
an explicit mapping from the latent space to the observation space. This mapping defines
the support of the observed data S as a q-dimensional manifold embedded in Rp. The dis-
tribution of the Jacobian of GPLVM is the product of p independent Gaussian distributions
(one for each dimension of the observation space). For a point x∗ in the latent space, the
distribution of the Jacobian takes the form

p(J|X ,S) =
p∏
j=1

N (µjJ,ΣJ) (15)

=

p∏
j=1

N (∂KT
X ,∗K

−1
X ,X s

j
: , ∂

2K∗,∗ − ∂KT
X ,∗K

−1
X ,X∂KX ,∗).

From this distribution, the expected metric tensor can be computed as in (8). The boundary
∂M is defined by Var(ϕ(x∗)|x∗), the variance of mapping in (10). For any x∗ in the latent
space

Var(ϕ(x∗)|x∗) = K∗,∗ −K∗,XK
−1
X ,XKX ,∗. (16)
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5.2 Bayesian GPLVM metric

The maximum likelihood estimation of the latent inputs X in GPLVM often leads to overfit-
ting due to its high dimensionality (Damianou et al., 2016). This overfitting can be avoided
by applying a Bayesian treatment to the latent inputs. By introducing a prior distribution
to the latent inputs, the marginal likelihood takes the form

p(S) =
∫
p(S | X )p(X )dX .

The integral is intractable as the inputs X to the latent variable model go through a non-
linear calculation in the inverse of the covariance matrix. Bayesian Gaussian Process Latent
Variable Model (B-GPLVM; Titsias and Lawrence, 2010) introduces a variational inference
framework for training the latent variable model. It variationally integrates out the input
variables and computes a lower bound on the exact marginal likelihood of the nonlinear
latent variable model. The maximization of the variational lower bound provides a Bayesian
training procedure that is robust to overfitting.

The key to the tractable variational Bayes approach is the application of variational
inference to an augmented GP formulation, known as sparse GP, where the GP prior on ϕ
is augmented to include auxiliary variables. More specifically, we expand the conditional
probabilistic model in (11) by including m extra samples (inducing points) to the GP latent
mapping e.g. ui = ϕ(xui) ∈ Rp is such a sample (Lawrence, 2007). These inducing points
are denoted by U = {uji |i ∈ {1, · · ·,m}, j ∈ {1, · · ·, p}}, U ∈ Rm×p and constitute latent

function evaluations at a set of pseudo-inputs Xu = {xjui|i ∈ {1, . . . ,m}, j ∈ {1, . . . , q}},
Xu ∈ Rm×q. The inducing inputs Xu are variational parameters. Φ is defined as in (11).
The augmented joint probability and the marginal likelihood can be written as (17)

p(S,Φ,U ,X|β) = p(S|Φ)p(Φ|U ,X )p(U)p(X ) =

p∏
j=1

p(sj: |ϕj: )p(ϕj: |uj: ,X )p(uj: )p(X ), (17)

p(S) =
∫ ∫ ∫

p(S,Φ,U ,X ) dU dΦ dX . (18)

With variational inference, log (p(S)) can be lower bounded by applying Jensen’s inequality
(Damianou et al., 2016). The resulting lower bound can be computed analytically. The full
technical details of the lower bound are given in (43) in Appendix C. The Jacobian has the
same shape as in (13). For a point x∗ in the latent space, the distribution of the Jacobian
for B-GPLVM takes the form:

p(J|X ,U ,S) =
p∏
j=1

N ( µjJ,ΣJ) (19)

=

p∏
j=1

N ( ∂KT
Xu,∗K

−1
Xu,Xu

µjqu, ∂
2K∗,∗ − ∂KT

Xu,∗Λ∂KXu,∗)

Λ = K−1
XuXu

−K−1
XuXu

ΣquK
−1
XuXu

Var(ϕ(x∗)|x∗) = K∗,∗ −K∗,XuΛKXu,∗ (20)
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�
Swiss Roll in  R3Chart (Latent space)

Figure 2: A BM sample path (blue line, right panel) on M (Swiss roll in R3) and its equivalent stochastic
process (purple line, left panel) in the chart (or latent space) in R2. ϕ : R2 → M ⊂ R3 is a
parametrization of M. The purple line in the chart is simulated using (21). Its mapping in R3

is the blue line on the Swiss roll. The red dot is the starting location of the BM trajectory.
The horizontal axis of the latent space represents the radius of Swiss roll. The vertical axis is
for the width. The gray color in the latent space indicates the magnification factor. When the
latent space is mapped to M ⊂ R3, the darker region will be stretched more. The latent space
is learned using a dataset of 450 points in section 7.

where µjqu and Σqu are the mean and variance of the variational distribution of the inducing
points U . The expressions of µqu and Σqu are given in (44) in Appendix C. The expectation
of the metric tensor can be computed as in (8). The boundary ∂M of the implicit manifold
can be defined by computing the variance of the mapping as in (20).

6. Estimate heat kernel as BM transition density

In this section, we will estimate the BM transition density by simulating BM sample paths
on the implicit manifold M.

6.1 Simulating Brownian motion on implicit manifolds

From section 5, we learned the probabilistic parameterisation ϕ of M, the distribution of the
associated metric tensor g and the boundary ∂M. In order to estimate the BM transition
density on M, we first need to simulate BM trajectories. Simulating the sample paths of
BM on M ⊂ Rp is equivalent to simulating the stochastic processes in the latent space (or
chart) in Rq, q < p. An illustrated example is shown in Fig. 2.

BM on a Riemannian manifold in a local coordinate system is given as a system of
stochastic differential equations (SDE) in Itô form (Hsu, 1988). We use the expected metric
G = E[g] to construct the SDEs

dxi(t) =
1

2
G−1/2

q∑
j=1

∂

∂xj

(
GijG1/2

)
dt+

(
G−1/2dB(t)

)
i

(21)

where xi represents the ith dimension of the latent space (chart). G is defined in eqn (8), G
is the determinant of G and B(t) represents an independent BM in Euclidean space. The

12
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discrete form of (21) is derived in (22).

xi(t) = xi(t− 1) +
1

2

q∑
j=1

(
−G−1 ∂G

∂xj
G−1

)
ij

∆t+
1

4

q∑
j=1

(G−1)ijtr

(
G−1 ∂G

∂xj

)
∆t+

(
G−1/2dB(t)

)
i

= µ(xi(t− 1),∆t)i +
(√

∆tG−1/2zq
)
i

(22)

where ∆t is the diffusion time of the BM simulation step and zq is a q-dimensional standard
normal random variable. The discrete form of the SDE also defines the proposal mechanism
of the BM

q (x(t)|x(t− 1)) = N
(
x(t)|µ (x (t− 1) ,∆t) ,∆tG−1

)
. (23)

Theorem 1 The stochastic process defined in (21) is coordinate independent. With a given
δt, simulations in any choice of local coordinates (or metric) as above are equivalent to the
same step in M.

The proof of Theorem 1 is given in Appendix A. This implies that the BM sample paths
simulated from different choices of metric G should have the same properties. The BM steps
are sampled from the proposal distribution in (23), which is defined by the metric tensor.
The boundary ∂M of the manifold is also quantified by the uncertainty of the mapping. We
apply the Neumann boundary condition as in Section 3. As a result the simulated sample
paths stay within the boundary. An example of BM trajectory on Swiss roll is given in Fig.
2. The latent space and the associated metrics are learned from B-GPLVM. The gray color
in the latent space indicates the square root of the determinant of the metric. It is also
known as the magnification factor (Bishop et al., 1997; Zwiessele, 2017; Tosi, 2014).

MF =
√
det(G)

The geometric interpretation of the magnification factor is how much a small piece of the
latent space in Rq will be stretched or compressed when it is mapped to M ⊂ Rp. For
example in Fig.2 left panel, the horizontal axis of the latent space can be interpreted as the
scaled radius of the Swiss roll, the vertical axis as the width of the Swiss roll. When the
radius is bigger, the corresponding area in the latent space is darker and the magnification
factor is larger. When the latent space is mapped back to the manifold, the darker region
will be stretched more. The purple trajectory of the stochastic process in the latent space
(Fig. 2 left panel) is denser in the darker area and more spread out in the bright area.
The stochastic process travels with smaller steps when the magnification factor is large and
vice versa. Note that, due to the BM being coordinate independent as in Theorem 1, the
BM trajectory is evenly spread out in the manifold of the Swiss roll in R3 (see Fig. 2 right
panel).

6.2 Estimate the transition density of BM

Considering the BM {S(t)|t > 0} on M ⊂ Rp. The BM starts from S(0) = s0 at time 0. We
simulate NBM sample paths. Given a point s ∈ M, we define a small neighbourhood of s as
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Figure 3: Three BM paths (red,blue,green) are simulated on the Swiss Roll, with the starting point at s0

(black ball). s (red ball) is the target point. A is the neighbourhood of S. Only the red path

reach A at time t. The transition probability p{S(t) ∈ A|S(0) = s0} is 1/3.

As ∈ M. For any t > 0, the probability of S(t) reaching As at time t, p(S(t) ∈ As|S(0) =
s0), can be approximated by

p(S(t) ∈ As | S(0) = s0) ≈
NAs

NBM
(24)

where NAs is the number of sample paths reaching As at time t. An illustrative diagram
is shown in Fig. 3. This BM transition probability is defined as the integral of the BM
transition density over As which is also the heat kernel Kt

heat. Since we do not have the
analytical expression of the transition probability, the transition density cannot be derived
by taking the derivative of p(S(t) ∈ As|S(0) = s0). Instead, Kt

heat can be numerically

approximated as K̂t
heat

Kt
heat(s0, s) ≈

p(S(t) ∈ As | S(0) = s0)

V (As)
≈ 1

V (As)
· NAs

NBM
= K̂t

heat (25)

where V (As) is the Riemannian volume of As. V (As) is parameterised by its radius ω. Niu
et al. (2019) has provided a indication of the optimal order of magnitude of ω by minimizing
the error of the kernel estimator. When V (As) is large, the error of estimating the transition
probability becomes smaller. But the error of approximating the transition density becomes
bigger. The former is called Monte Carlo error and the later is called numerical error in Niu
et. al (2019). Detailed discussions about the error of the estimator and an ablation study
of the choice of ω based on the Swiss roll experiment are given in Appendix E. The results
show that the performance of GPUM is not very sensitive to the choice of ω.

The Neumann boundary condition corresponds to BM reflecting at the boundary. This
can be approximated by pausing time and resampling the next step until it falls into the
interior of M. This estimator is asymptotically unbiased and consistent (Niu et al., 2019).
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Note that t is the BM diffusion time. If t is large, the BM paths have a higher probability
to reach the neighbourhood of the target point leading to higher covariance and vice versa.
The transition density can be estimated using Algorithm 1.

Corollary 2 The transition density estimate in (25) is coordinate independent.

By Theorem 1, it is straightforward to have Corollary 2. The transition density estimate
in (25) of the stochastic process defined in (21) is also coordinate independent. Based
on Corollary 2, we can evaluate the heat kernel of the implicit manifold estimated by
different LVMs, independent of the specific parameterisations of their latent spaces. If the
estimated manifold is close to the true manifold, we expect the resulting BM transition
density estimates to be similar to the ones estimated using the analytical parameterisation.

Here we take the Swiss roll as an example. Assuming the geometry of the Swiss roll is
known, we can follow Niu et al. (2019)’s approach and evaluate the heat kernel Kt

heat(s0, s)
by simulating BM paths with the analytical metric tensor. The derivations of the analytical
metric and parameterisation of the Swiss roll are shown in Appendix D. Let s0 with radius =
6 and width = 3 be the starting point of the BM. NBM = 20000 BM paths are simulated.
The BM transition density is evaluated using (25) at twenty nine target points {sj ∈ M ⊂
R3|j ∈ {1, · · · , 29}} in the observation space. These target points are centred on s0 and
equally spaced. The diffusion time is fixed at 50. The results are plotted as the red solid
line in Fig. 4. The horizontal axis is the radius of the Swiss roll and the vertical axis is
the transition density. The red density plot is asymmetric. When the radius is large, the
transition density estimate decreases more quickly.

If the geometry of the Swiss roll is unknown, Bayesian GPLVM and GPLVM can be
applied to learn the metrics from 250 grid points on the Swiss roll. The derivations of B-
GPLVM metrics and GPLVM metrics are given in section 5.2 and 5.1. The BM trajectories
are simulated using the estimated metric tensors. The heat kernel estimates using B-
GPLVM metrics are plotted as the green dashed line in Fig.4. It is clear that the B-
GPLVM results are very close to the red solid line. The estimates using GPLVM metrics
are plotted in brown dashed line. It is also close to the solid red line, but not as good as
the B-GPLVM estimates. GPLVM performs point estimate of x in the latent space while
B-GPLVM estimates a Bayesian posterior of x. As a result, B-GPLVM is more robust in
terms of estimating the latent variables (Damianou et al., 2016).

The heat kernel estimates from the Graph Laplacian (GL) approach (Dunson et al.
(2020)) in different data regime are also provided in Fig. 4. When the number of points
on the Swiss roll is 250, the GL kernel estimates are plotted as the blue dashed line. It
is far from the solid red line and do not match the overall pattern of the analytical kernel
estimates. When the number of grid points is increased to 1000 and 10000, the GL kernel
estimates are plotted as the purple dashed line and black dash dotted line. The estimates
are closer to the solid red line as the number of grid points increases. Comparing to the
GL approach, the kernel estimates using B-GPLVM metrics achieve the best performance
with much fewer points on the Swiss roll. B-GPLVM is used in the simulation study and
real data applications in later sections.

From (25) we can see the construction of GPUM and the heat kernel requires simulating
BM sample paths at each data point. Although the BM simulations are trivially paralleliz-
able, the computational cost can be high when the number of data points is large. Niu et al.
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Figure 4: Comparison of heat kernel estimates using the analytical metric, B-GPLVM metric, GPLVM

metric and Graph Laplacian. The red solid line represents heat kernel estimates using the

analytical metric. The green dashed line represents estimates using B-GPLVM metric. The

brown dash dotted line represents estimates using GPLVM metric. The heat kernel estimates

from the Graph Laplacian approach are plotted as the blue dashed line. We increase the number

of the grid points on the Swiss roll from 250 to 1000 and 10000. The GL estimates are plotted

as the purple dotted line and black dashed line.

(2019) proposed the sparse intrinsic GP on known manifold by introducing some inducing
points. The number of inducing points is much smaller than the number of data points.
BM paths only need to be simulated starting at the inducing points instead of every data
point. The inducing point approximation summarizes the training data into a small set of
inducing points, so that inference could be done more efficiently (Quiñonero-Candela and
Rasmussen, 2005). Similar approach can be applied in the GPUM when the manifold is
unknown. Small number of inducing points can be introduced in the learned latent space.
The focus of this paper has been on developing the GPUM. The development of the sparse
GPUM is for the future research. Another example of estimating the heat kernel of the
cylinder is given in Appendix H.

6.3 Optimising the kernel hyperparameters

Given a diffusion time t, we can generate the covariance matrix Σtff for training data D
using Algorithm 1. Σtff can be obtained as follows: with the ith data point as the starting
point, NBM trajectories are simulated to generate the ith row of Σtff. For each element

of Σtff, K̂
t(si, sj) is then estimated using (25). The hyperparameters can be obtained by

maximizing the log of the marginal likelihood (over f) in (26). The maximum BM diffusion
time is set as Nt × ∆t. ∆t is the BM simulation time step as defined in (23). Nt is
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Algorithm 1: Simulating BM sample paths on M for estimating Kt
heat

Learn the metric G from the point cloud S = {si|i = 1, . . . , n+ v }. {use eqn (8) }
1.1 Generate BM trajectories on implicit manifold.
for i = 1, . . . , n { n is the size of data points } do

for j = 1, . . . , NBM {NBM is No. of trajectories } do
for l = 1, . . . , Nt {Nt steps Brownian motion, Nt ×∆t → max diffusion time} do

do {keep proposing x until it falls inside of the boundary }
q (xi,j(l)|xi,j(l − 1)) = N

(
xi,j(l)|µ (xi,j (l − 1) ,∆t) ,∆tG−1

)
{ use eqn (23) }

While Var(ϕ(xi,j)) > α, xi,j is outside of the boundary ∂M. { use eqn (20) }
end for

end for
end for
return x
1.2 Given a discrete choice of the diffusion time t ∈ {∆t, 2∆t, · · ·, Nt∆t}, the covariance matrix Σt is
estimated based on the BM simulation from Algorithm 1.1.
for i = 1, . . . , n do

for j = 1, . . . , n do
NAj = which( x(t) ∈ Aj ) { counting how many BM paths reach Aj }
Kt

heat(si, sj) =
NAj

NBM∗V (Aj)
{ use eqn (25) }

Σt
ij = σ2

hK
t
heat(si, sj)

end for
end for
return Σt

the number of simulation steps. Nt covariance matrices Σ1...Nt
ff can be generated based on

the BM simulations. Optimisation of the diffusion time t can be done by selecting the
corresponding Σtff which maximizes the log marginal likelihood. Estimation of σh follows
standard optimisation routines, such as quasi-Newton.

log p(y|s) = log

∫
p(y|f)p(f|s)df

= −1

2
yT (Σtff + σ2noiseI)

−1y − 1

2
log |Σtff + σ2noiseI| −

n

2
log 2π. (26)

Let f∗ be a vector of values of f(·) at the unlabeled points in V. Under the regression
model in (4) and the GPUM prior, we have the joint distribution of y and f∗:

p(y, f∗) = N

(
0,

[
Σff + σ2noiseIn Σff∗

Σf∗f Σf∗f∗

])
, (27)

where Σf∗f is the covariance matrix for training(labeled) and unlabeled data points. The
predictive distribution is derived by marginalising out f:

p(f∗|y) =
∫
p(f∗f|y)df = N

(
Σf∗f

(
Σff + σ2noiseI

)−1
y, Σf∗f∗ −

(
Σff + σ2noiseI

)−1
Σff∗

)
.

(28)

7. Simulation study on Swiss roll

In this section, we carry out a simulation study for a regression model with synthetic data
on the Swiss roll which is a two dimensional manifold depicted by a point cloud in R3. The
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point cloud is plotted in Fig. 5(a). It is comprised of the set of labeled points n = 24 and
the set of unlabeled points v = 450. Both labeled and unlabeled observed points are used
in B-GPLVM to learn the latent space. The point cloud is unfolded into a flat surface as
in Fig. 5(b). The unlabeled points are plotted as blue triangles and the labeled points are
in red in the latent space. The variance of the mapping is plotted as the gray background
of the latent space. It is clear from Fig. 5(b) that the background color gets darker in the
region further away from the blue triangles. This indicates the variance of the mapping gets
bigger in the region which is far from the observations.

Based on the definition in (10), the boundary ∂M is plotted in Fig. 5(d). The black
regions on the left and right sides of Fig. 5(d) are outside of ∂M. The white area in the
middle is within ∂M. The magnification factor is plotted as the background color in Fig.
5(c). Similar to Fig. 2, the horizontal axis can be interpreted as the scaled radius of the
Swiss roll. When the radius is bigger, the corresponding magnification factor is larger (the
color is darker). However, as there are fewer data points available at the tail of the Swiss
roll, the estimation of the implicit manifold from B-GPLVM becomes less accurate. This
can be observed on the right end of Fig. 5(c) where the last column of the observed latent
points is further away from the rest. Once the metric G and the boundary ∂M are learned
from B-GPLVM, we can estimate the heat kernel by simulating BM paths on the implicit
manifold. An example of a BM sample path on Swiss roll is shown in Fig. 2.

For the labeled points, the response variables are

yi = f(s1i , s
2
i , s

3
i ) + ϵi, i = 1 . . . n, si ∈ R3

where f is the unknown regression function, si is the coordinate of the observed point in
M ⊂ R3. For better visualisation, the true function is plotted in the unfolded Swiss roll in
Fig.6(a) using a two dimensional analytical parameterisation. The coordinates are radius
and width. 24 labeled observations are marked as black crosses. The true function values
are indicated by the color codes and contours. The regression function varies slowly when
the radius is small and rapidly when the radius is big.
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(a) Swiss roll point cloud in R3
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(b) Latent space and variance of mapping
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(c) Latent space and magnification factor
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Figure 5: (a) The Swiss roll represented as a point cloud in R3. (b) The latent space constructed from
Bayesian GPLVM. The blue triangles are unlabeled points and red crosses are labeled points.
The background color represents the variance of the mapping, a dark background represents high
uncertainty. (c) The same latent space visualization with the background color representing the
magnification factor, a dark background represents high magnification factor. (d) The same
latent space visualization highlighting the boundary. The dark region is outside of the boundary
and the white region is inside of the boundary.

We first apply the Euclidean R3 GP (the standard GP as in Rasmussen and Williams
(2006) Chapter 4) constructed by the squared exponential kernel with R3 Euclidean dis-
tance. With this kernel setting, the R3 GP completely ignores the interior structure of the
manifold and lets the inner layer and outer layer of the Swiss roll interact. The predictive
means on the unlabeled points are shown in Fig. 6(b). Compared to the true function in
Fig.6(a), the overall shape of R3 GP prediction contours is more wiggly. The color coding
of Fig.6(b) is also very different in the regions where the radius (horizontal axis) is 6, 8
and 10. In the second model, the R2 Euclidean distance in the latent space is used in the
squared exponential kernel to construct the R2 GP. The geometric properties such as the
metric and magnification factors are ignored. The color coding of the predictive means for
R2 GP is shown in Fig. 11(a) in Appendix D. Since the regression function is nonstationary
in the latent space, the R2 GP is underfitting.
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(a) True function and data points
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(b) R3 GP prediction
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(c) GPUM prediction
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Figure 6: (a) The true function in the unfolded Swiss roll. The labeled points are marked with black

crosses. (b) The prediction of R3 GP. R3 GP is constructed using the Euclidean distance in R3.

(c) The prediction of GPUM . (d) Comparing the predictions of all methods on a spiral in the

swiss roll by fixing the z coordinate at 4 and changing the radius from 2 to 12.5. The vertical

axis represent the value of the prediction. The horizontal axis represents the radius.

The GPUM predictive mean is shown in Fig. 6(c). The overall pattern of the GPUM
prediction is similar to the true function. The shape of the contours and the color coding
of Fig.6(c) are consistent with Fig.6(a). The prediction of the GL-GP is shown Fig.11(b)
in Appendix D. Since the GL kernel estimates in Fig. 4 are far from the analytical kernel,
the GL-GP prediction is also poor. A one dimensional comparison is generated by plotting
the predictions of all methods at z = 4 and varying the radius from 2 to 12.5 in Fig.6(d).
It is clear the R2 prediction(brown dotted line) is under fitting. The R3 prediction(green
dashed line) is oscillating in the opposite direction of the ground truth (blue solid line).
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Table 1: Comparison of the root mean squared errors of five methods on Swiss roll. Values
in parentheses show the standard deviation.

R3GP R2GP GPUM GL-GP GM-GP
RMSE v = 250 0.284(0.006) 0.293(0.005) 0.163(0.020) 0.243(0.003) 0.231(0.001)
RMSE v = 450 0.298(0.007) 0.290(0.005) 0.162(0.003) 0.220(0.002) 0.207(0.002)
RMSE v = 800 0.287(0.006) 0.282(0.005) 0.164(0.002) 0.216(0.001) 0.206(0.001)

The GL-GP prediction (black dashed line) is also oscillating around the blue solid line. The
GPUM prediction (red dashed line) achieves the best performance and follows the overall
pattern of the ground truth.

In order to evaluate the performance of different methods in different data regimes,
we consider three scenarios with different numbers of unlabeled grid points on the Swiss
roll from v = 250 to v = 450 and v = 800. These unlabeled grid points are used to
estimate the manifold for GPUM , GM-GP, GL-GP and are also used as the test set of the
regression accuracy. We constructed twenty sets of training points by randomly selecting
n = 23 labeled points from the labeled set. For each training set, GPUM , GM-GP, GL-
GP, R2GP and R3GP have been applied to make predictions at the points in the test set.
The root mean square errors (RMSE) are calculated between the true function values and
the predictive means of all five models. The mean and standard deviation of the root
mean square errors are reported in Table 1. GPUM’s results are consistent across all three
scenarios and significantly better than all other methods. The GL-GP and GM-GP have
similar performance. Both models perform better when the number of the grid points is
large. They are significantly better than the Euclidean GPs. Comparing to the graph based
approaches, GPUM achieves the minimum mean RMSE with fewer points on the manifold.

8. Location estimation from WiFi signal

Indoor location estimation has tremendous value but standard location estimation tech-
niques such as Global Positioning System (GPS) do not work indoors. Instead, indoor
wireless signals from devices such as WiFi access points can be exploited for location es-
timation. In this section, we consider the problem of indoor 2D location estimation from
WiFi access point signal strengths. We use the WiFi data collected by Ferris et al. (2007), in
which a series of WiFi signal strength traces are collected by a mobile device which travels
in a one floor university building. The 2D location coordinates of the mobile device are also
recorded by a click-to-map based annotation program. The total number of WiFi access
points in this dataset is 30. As it is often expensive to collect labeled data, we mimic a low
data indoor location estimation scenario by assuming that the true locations of only three
points are known and we aim at predicting the indoor locations of the remaining points
based on the WiFi signals.
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(a) Latent space and uncertainty of mapping
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(b) Latent space and boundary

2 1 0 1 2
latent dimension 0

3

2

1

0

1

2

3

la
te

nt
 d

im
en

sio
n 

1

x

x

x

(c) Latent space and magnification factor
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(d) A BM trajectory

Figure 7: (a) The latent space constructed from Bayesian GPLVM. The blue triangles are unlabeled points
and the red crosses are labeled points. The background color represents the variance of the
mapping, a dark background represents high uncertainty. (b) The same latent space visualization
highlighting the boundary. The dark region is outside of the boundary and the white region
is inside of the boundary. (c) The same latent space visualization with the background color
representing the magnification factor, a dark background represents a high magnification factor.
(d) A BM trajectory is shown in purple. The red star is the starting location.

This location estimation problem can be treated as a regression problem, in which
the location coordinate y of the mobile device can be modelled as a function of the high
dimensional WiFi signal

yi = f(si) + ϵi, i = 1 . . . n, si ∈ R30

where f is the unknown regression function and WiFi signal si is represented by a 30
dimensional vector. Here we consider the WiFi signal measurements at n+v = 36 locations.
Only n = 3 of the locations are labeled with one dimensional location coordinates of the
mobile device. To avoid selecting the three points clustered together, we randomly pick
the points from three different regions respectively, where the union of the regions cover
the whole dataset. Different methods are applied to estimate the coordinates of the mobile
device in the testing sets (the unlabeled v = 33 locations). Twenty training and testing sets
are generated from this random selection.
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Table 2: Comparison of the root mean squared errors of five methods on WiFi signal data.
Values in parentheses show the standard deviation.

R30GP R2GP GPUM GL-GP GM-GP
mean RMSE 5.57(1.43) 4.83(1.83) 4.11(0.88) 5.6(1.15) 6.04 (0.57)

Unlike the simulation study of the Swiss roll, we cannot plot the high dimensional point
cloud of the WiFi signals. The implicit manifold is also unknown. We first estimate a q = 2
dimensional latent space (the chart of the underlying manifold) using B-GPLVM. The value
of q is determined by the ARD contributions which measure how much each dimension is
contributing to the latent space. The input dimensions are sorted based on the relevance
assigned by the scaling in B-GPLVM. The plot of ARD contributions is shown in Appendix
F. The latent space is plotted with the variance of the mapping as the gray background in
Fig. 7(a). The 36 WiFi signal strength measurements are represented by the blue triangles.
The training set (the labeled points) is marked by the red crosses. The dark color value is for
high uncertainty. Since the mobile device moves in a loop closure, the latent points forms a
closed loop in the latent space. The boundary of the implicit manifold ∂M is shown in Fig.
7(b) which is defined by (10). The magnification factor is plotted as the gray background
in Fig.7(c). The dark color value is for high magnification factor. A sample path of BM in
the implicit manifold is plotted in Fig. 7(d). With the Neumann boundary condition the
BM path can only exist within the boundary.

The coordinates of the mobile device are estimated by five different methods. The
ground truth values are marked by different colors in the latent space in Fig. 8(a). If we
ignore the interior structure of the manifold, a R30 GP using the squared exponential kernel
with R30 Euclidean distance of the WiFi signals is applied. The predictive means of the
R30 GP are plotted in Fig.8(b). It is clear the R30 GP prediction is very poor. The color
coding of the prediction is different from the ground truth. The GPUM predictive mean is
shown in Fig. 8(c). The overall pattern of the GPUM prediction is similar to the ground
truth. In the third case, the R2 Euclidean distance in the latent space is used with the
squared exponential kernel to construct the R2 GP. The prediction results are shown in
Fig.13 in Appendix F. The Graph Laplacian based approaches such as GL-GP and GM-GP
have also been applied. Since the number of observations is relatively low (n+ v = 36), the
graph based methods result in poor approximation of the implicit manifold. The GL-GP’s
performance is similar to the R30GP. The mean and standard deviation of the root mean
square errors of the twenty testing sets are also calculated in Table 2 for all five models.
GPUM significantly outperforms the other four models and achieves the minimum mean
RMSE.
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(a) Ground truth (b) R30 GP prediction (c) GPUM prediction

Figure 8: Comparison of GPUM and Euclidean GPs in WiFi signal example. (a) The ground truth is

plotted with color at the observed points in the latent space. (b) R30 GP prediction. R30 GP is

constructed using the Euclidean distance of WiFi signals in R30. (c) GPUM prediction.

9. Camera angle estimation from images

In this section, we consider the problem of estimating the camera angle from images. We
consider the setting in which an object is placed on a turntable and a set of images are
taken at different angles with respect to the camera. We aim at recovering the camera
angles associated with individual images by knowing the true camera angles for some of the
images. We use the images from the COIL data set (Nayar and Murase, 1996). Here we
consider 66 images of object-14 (a toy cat). The camera angles range from 15 degrees to
340 degrees. The raw images are converted to grayscale and downscaled to 32 × 32. The
raw pixels of each image are flattened into a 1024 dimensional vector. The dimension of the
original image space is p = 1024. Six image examples are given in Fig. 9(a). We estimate a
q = 2 dimensional latent space using Bayesian GPLVM. The two dimensional latent space
is plotted with the variance of the mapping as the gray background in Fig. 9(b). A dark
background represents a high uncertainty in the corresponding region. The unlabeled data
points are marked as blue triangles and the labeled data points as red stars. The overall
shape of the latent points in Fig.9(b) looks like a ring with a gap in the lower right. The
magnification factor is plotted as the gray background in Fig. 9(c). A dark background
represents a high magnification factor. The boundary of the implicit manifold ∂M is shown
in Fig.14 in Appendix G.

The scaled camera angle y is modelled as a function of the image.

yi = f(si) + ϵi, i = 1 . . . n, si ∈ R1024.

where f is the unknown regression function, and si is represented by a 1024 dimensional
vector. n=13 images are randomly selected and used as the training set (labeled data).
They are plotted as the red stars in the latent space in Fig.9(b). The remaining 53 images
are used as the testing set (unlabeled data) which are plotted as the blue triangles in the
latent space in Fig. 9(b). The true angle values are marked by different colors on the
observed points in the latent space in Fig. 10(a). Different methods have been applied

24



GPUM on Unknown Manifolds

(a) COIL images
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(c) Latent space and magnification
factor

Figure 9: (a) Examples of six COIL object images. (b) The latent space constructed from Bayesian
GPLVM. The blue triangles are unlabeled points and red stars are labeled points. The back-
ground color represents the variance of the mapping. The dark color represents high uncertainty.
(c) The same latent space visualization with the background color representing the magnification
factor. The dark color represents a high magnification factor.

Table 3: Comparison of the root mean squared errors of five methods on COIL images.
Values in parentheses show the standard deviation.

R1024GP R2GP GPUM GL-GP GM-GP
mean RMSE 0.097(0.040) 0.094(0.042) 0.060(0.038) 0.116(0.027) 0.143(0.026)

to estimate the scaled camera angles. The R1024GP using the squared exponential kernel
with R1024 Euclidean distance is applied to the image data first. The predictive means
of the R1024GP are plotted in Fig.10(b). The color coding of the prediction at the lower
right of the plot is bright green which is different from the truth. Ignoring the boundary
and the magnification factor in the latent space, the R2GP using the squared exponential
kernel with R2 Euclidean distance in the latent space is applied to the image data. The
predictive means are shown in Fig.15 in Appendix G. The predictive means of GPUM are
plotted in Fig.10(c). The overall pattern of the GPUM prediction is very similar to the
true function. Since the boundary of the implicit manifold is defined in the lower right
region of the latent space, the GPUM does not smooth across the boundary and gives a
better prediction. Ten training and testing sets are generated from the random selection.
The mean and standard deviation of the root mean square errors are calculated for the ten
testing sets for all methods in Table 3. The GPUM achieves the smallest mean RMSE. It is
significantly better than the GL-GP and GM-GP. The difference between the GPUM and
the R1024GP is not significant. The boxplot of the root mean squared errors are shown in
Fig.16 in Appendix G.
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(a) True function
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(b) R1024 GP prediction
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(c) GPUM on manifold prediction

Figure 10: Comparison of GPUM and Euclidean GPs in COIL images example. (a) The true function is

plotted with color at the observed points in the latent space. (b) R1024 GP prediction. R1024

GP is constructed using the Euclidean distance of data points in R1024. (c) GPUM prediction.

10. Discussion

Our work provides a novel framework for regression on implicit manifolds embedded in high
dimensional point clouds. The geometry of the implicit manifold is learned by probabilistic
latent variable models. This gives a distribution over a smoothly changing local metric at
each point in the latent space. The boundary of the implicit manifold is defined according
to the uncertainty of the mapping. The expression for the expected local metric is derived
and used to simulate BM sample paths on manifolds. We have proved the BM transition
density estimation is coordinate independent in section 6.2. This allows us to compare the
transition density estimates from different parameterisations of the same manifold. The BM
simulation using the B-GPLVM metric gives similar transition density estimation results
as the BM simulation using the analytical metric. GPUM is constructed by employing the
equivalence relationship between heat kernels and the transition density of BM on manifolds.
This allows the GPUM to incorporate the intrinsic geometry of the implicit manifold for
inference while respecting the interior constraints and boundary. The experiment results in
section 7, 8 and 9 indicate that GPUM achieves significant improvements over Euclidean
GPs and Graph Laplacian based GPs. Although the simulation of BM paths can be easily
parallelised, Algorithm 1 can still be computational expensive if the sample size is large.
The number of the sample paths can be reduced by leveraging the idea of pseudo data,
which has been widely studied in the literature of sparse GPs (Quiñonero-Candela and
Rasmussen, 2005; Niu et al., 2019).
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Appendix A. Proof of Theorem 1 and Corollary 2

The SDE in (22) can be derived by expressing the heat equation in local coordinates as
a Fokker-Planck equation, which in particular implies its coordinate independence. In
this appendix, however, we will provide a direct verification that (22) is invariant under
coordinate changes.

Some notations we need in the proof are summarised here. M is a manifold of dimension
q with a Riemannian metric gM. θ : U → M and θ̄ : Ū → M are two local coordinate charts
of M where U and Ū are open subsets of Rq.

• ψ = θ̄−1 ◦ θ : U → Ū is the change of coordinate. ψ−1 = θ−1 ◦ θ̄ : Ū → U is the inverse
change of coordinate. (assume θ (U) = θ̄

(
Ū
)
without loss of generality.)

•
(
x1, . . . , xq

)
denotes the standard coordinates in U ∈ Rq.

(
x̄1, . . . , x̄q

)
denotes the

standard coordinates in Ū ∈ Rq.

• g denotes matrix representation of gM in U (via θ) i.e. gij = gM
(
θ∗

∂
∂xi
, θ∗

∂
∂xj

)
. gij

denotes the element of g−1. G = det(g). Similarly for ḡ , ḡij , ḡ
ij , Ḡ.

• Dψ is the matrix derivative of ψ =
(
ψ1
(
x1, . . . xq

)
, . . . , ψq

(
x1, . . . , xq

))
, i.e. (Dψ)ji =

∂ψj

∂xi
. Using the chain rule ⇒ Dψ−1 ·Dψ = Iq.

• ∂
∂xi

=
∑q

j=1
∂ψj

∂xi
∂
∂x̄j

=
∑q

j=1(Dψ)
j
i
∂
∂x̄j

⇒ gij = (Dψ)ki ḡkℓ(Dψ)
ℓ
j ⇒ g−1 =(

Dψ−1
)⊤
ḡ−1Dψ−1, G = (detDψ)2Ḡ.

Proof Consider a stochastic process in U ∈ Rq defined by:

dxi =
1

2

1√
G

q∑
j=1

∂

∂xj

(√
Ggij

)
dt+

(
g−

1
2dB

)i
, i = 1, . . . , q. (29)

Note that

dxidxj =
(
g−

1
2dB

)i (
g−

1
2dB

)j
=

(
q∑

k=1

(
g−

1
2

)ik
dBk

)
·

(
q∑
l=1

(
g−

1
2

)jl
dBl

)
= gijdt i, j = 1, . . . , q.

ψ maps the above process in U to a process in Ū defined by:

dx̄i = dψi
(
x1, . . . , xq

)
=

q∑
j=1

∂ψi

∂xj
dxj +

1

2

q∑
j=1

q∑
k=1

∂2ψi

∂xj∂xk
dxjdxk

=
1

2

q∑
j=1

q∑
k=1

[
(Dψ)ij ·

1√
G

∂

∂xk

(√
Ggjk

)
+

∂2ψi

∂xj∂xk
gjk
]
dt+

q∑
j=1

(Dψ)ij

(
g−

1
2dB

)j
.

(30)
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The dt term in (30) can be written as follows

1

2

q∑
j=1

q∑
k=1

[
(Dψ)ij ·

1

detDψ
· 1√

Ḡ
·

q∑
ℓ=1

(Dψ)lk ·
∂

∂x̄ℓ

(
detDψ ·

√
Ḡ

q∑
r=1

q∑
s=1

(
Dψ−1

)j
r
ḡrs(Dψ−1)ks

)

+

(
q∑
l=1

(Dψ)lj
∂

∂x̄ℓ
(Dψ)k

) (
·
q∑
r=1

q∑
s=1

(
Dψ−1

)j
r
ḡrs
(
Dψ−1

)k
s

)]
dt

=
1

2

q∑
l=1

1√
Ḡ

∂

∂x̄ℓ

(√
Ḡḡil

)
dt+

1

2

n∑
s=1

Tr

[
Dψ · ∂

∂x̄s
(
Dψ−1

)]
· ḡisdt

+
1

2

q∑
j=1

q∑
l=1

q∑
r=1

∂

∂x̄ℓ

[
(Dψ)ij

(
Dψ−1

)j
r

]
· ḡrldt+ 1

2

n∑
l=1

Tr

[
∂

∂x̄ℓ
(Dψ) ·

(
Dψ−1

)]
ḡiℓdt

=
1

2

q∑
l=1

1√
Ḡ

∂

∂x̄ℓ

(√
Ḡḡil

)
dt+

1

2

q∑
s=1

Tr

[
∂

∂x̄s
(
Dψ ·Dψ−1

)]
· ḡisdt+ 0

=
1

2

q∑
ℓ=1

1√
Ḡ

∂

∂x̄ℓ

(√
Ḡḡiℓ

)
dt+ 0. (31)

The dB term in (30) can be written in vector form as

(Dψ)⊤ · g−
1
2 · dB. (32)

Since

(Dψ)⊤ · g−
1
2 · dB

(
(Dψ)⊤g−

1
2dB

)⊤
= ḡ−1dt,

we have

(Dψ)⊤ · g−
1
2 · dB ∼ N

(
0, ḡ−1dt

)
, (33)

i.e. the same distribution as ḡ−1/2dB.
Conclusion: ψ maps the process in U ⊂ Rn defined by

dxi =
1

2

1√
G

q∑
j=1

∂

∂xj

(√
Ggij

)
dt+

(
g−

1
2dB

)i
, i = 1, . . . , q, (34)

to the process in Ū ⊂ Rn defined by

dx̄i =
1

2

1√
Ḡ

q∑
j=1

∂

∂x̄j

(√
Ḡḡij

)
dt+

(
ḡ−

1
2dB

)i
, i = 1, . . . , q. (35)

This verifies that the process defined by the above formula is coordinate independent.
As a result, with a given dt, simulating one step using any choice of local coordinates

as above is equivalent as a step in M.
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Appendix B. GPLVM metric

Following the description in section 3.1, the joint distribution of the jth dimension of the
mapping ϕ and the jth column of the Jacobian can be written as[

ϕ(X )j

∂ϕ(x∗)j

∂x

]
, ∼ N

(
0,

[
KX ,X ∂KX ,∗
∂KT

X ,∗ ∂2K∗,∗

])
. (36)

We choose the covariance kernel k as RBF kernel, the (i, j) element of KX ,X is

k(xi, xj) = γ exp(−ρ||xi − xj ||2).

The derivatives of K are:

(∂KX ,∗)
l
i =

∂kxi,x∗
∂xl∗

= ρ(xli − xl∗)k(xi, x∗), (37)

(∂2KX ,∗)
r,l
i =

∂2kxi,x∗
∂xri∂x

l
∗
=

{
−4ρ2(xri − xr∗)(x

l
i − xl∗)k(xi, x∗), if r ̸= l,

2ρ(1− 2ρ(xri − xr∗)
2)k(xi, x∗), if r = l,

(∂2K∗,∗)
r,l =

∂2kx∗,x∗
∂xr∗∂x

l
∗
=

{
0, if r ̸= l,

2ρkx∗,x∗ = 2ργ, if r = l.

We also need the gradient of the expected metric to simulate BM trajectories. It requires
computing ∂E[JT ]j/∂xl∗ and ∂ΣJ/∂x

l
∗.

∂E[JT ]j

∂xl∗
=
∂µjJ
∂xl∗

=
∂(∂KT

X ,∗)

∂xl∗
K−1

X ,X s:,j , (38)

∂ΣJ

∂xl∗
= −(

∂(∂KX ,∗)

∂xl∗
)TK−1∂KX ,∗ − ∂KT

X ,∗K
−1∂(∂KX ,∗)

∂xl∗
, (39)

∂2k(xi, x∗)

∂xl∗∂x
l
∗

= 2ρk(xi, x∗)(2ρ(x
l
i − xl∗)

2 − 1),

∂2k(xi, x∗)

∂xl∗∂x
r
∗

= 4ρ2(xli − xl∗)(x
r
i − xr∗)k(xi, x∗).
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Appendix C. Bayesian GPLVM metric

Following the description in section 3.2, the marginal likelihood can be derived from the
the augmented joint probability as

p(S) =
∫ ∫ ∫ p∏

j=1

p(sj: |ϕj: )p(ϕj: |uj: ,X )p(uj: )p(X ) dU dΦ dX , (40)

where S = {si|i = 1, · · ·, n + v}, si ∈ Rp, is the set of the observed data points in the
original space. X = {xi|i = 1, · · ·, n+v}, xi ∈ Rq is the set of latent (unobserved) variables.
The mapping is denoted as Φ = {ϕi|i = 1, · · ·, n+ v}, Φ ∈ R(n+v)×p and ϕji = ϕ(xi)

j . The
inducing points are denoted by U = {ui|i = 1, · · ·,m}, U ∈ Rm×p and ui = ϕ(xui) ∈ Rp. The
inducing points are evaluated at the pseudo-inputs Xu = {xui|i = 1, . . . ,m}, Xu ∈ Rm×q,
in the latent space.

p
(
ϕj | uj ,X ,Xu

)
and p(uj) are defined as

p
(
ϕj | uj ,X ,Xu

)
= N

(
ϕj | KX ,XuK

−1
Xu,Xu

uj ,KX ,X −KX ,XuK
−1
Xu,Xu

KXu,X

)
,

p(uj) = N (uj |0,KXu,Xu).

We can now apply variational inference to approximate the true posterior, p(Φ,U ,X|S) =
p(Φ|U ,S,X )p(U|S,X )p(X|S) with a variational distribution of the form

q(Φ,U ,X ) = p(Φ|U ,X )q(U)q(X ) =

 p∏
j=1

p(ϕj: |uj: ,X )q(uj: )

 q(X ).

The distribution q(X ) is chosen to be Gaussian with variational parameters for mean and
variance. Using this variational distribution and the Jensen’s inequality, we can derive the
variational lower bound F of log p(S) the log marginal likelihood. p(X ) is chosen as Gaussian
prior with identity covariance. The particular choice for the variational distribution allows
us to analytically compute a lower bound.

F(q(X )q(U)) =
∫
q(Φ,U ,X ) log

p(S,Φ,U ,X )

q(Φ,U ,X )
dXdΦ∂U

= F̂(q(X ), q(U))−KL(q(X )||p(X )). (41)

Clearly, the second KL term in (41) can be easily calculated since both p(X ) and q(X ) are
Gaussian. The first term in (41) can be written as

F̂(q(X ), q(U)) =
p∑
j=1

F̂ j(q(X ), q(U)),

F̂ j(q(X ), q(U)) =
∫
q(uj: ) log

e⟨logN (sj: |KX ,XuK
−1
Xu,Xu

uj
: ,β

−1In+v)⟩q(X )p(uj: )

q(uj: )
duj: + T , (42)

where T = β
2 Tr

(
⟨KXX ⟩q(X)

)
− β

2 Tr
(
K−1

XuXu
⟨KXuXKXXu⟩q(X )

))
. ⟨·⟩q(X ) denotes expec-

tation under the distribution q(X ). The expression in above equation is KL-like quantity.
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And q(uj: ) is optimally set to be proportional to the numerator inside the logarithm of the
above equation which is also a Gaussian distribution. The final expression for F̂ becomes

F̂(q(X )) =
∑p

j=1

(
log

(∫
e
⟨logN(sj: |KX ,XuK

−1
Xu,Xu

uj
: ,β

−1In+v)⟩
q(X)p(uj: )du

j
:

)
−β

2 Tr
(
⟨KXX ⟩q(X)

)
+ β

2 Tr
(
K−1

XuXu
⟨KXuXKXXu⟩q(X )

))
.

(43)

This quantity can be computed in closed from since the computation of

ψ0 = Tr
(
⟨KXX ⟩q(X )

)
,

ψ1 = ⟨KXXu⟩q(X ) ,

ψ2 = ⟨KXuXKXXu⟩q(X ) ,

are analytically computable for the squared exponential kernel. These quantities are referred
to as Ψ statistics in Titsias and Lawrence (2010). The distribution of the inducing vairables
are

q(uj: ) = N (µjqu,Σqu), (44)

µjqu = KXuXu(βKXuXu + ψ2)
−1ψ−1

1 sj: ,

Σqu = βKXuXu(βKXuXu + ψ2)
−1KXuXu .

The bound can be jointly maximized over the variational parameters and the model hy-
perparameters by standard optimisation method such as quasi newton. The conditional
probability over the Jacobian follows a Gaussian distribution.

p(J|X ,S) =
p∏
j=1

N
(
∂KT

Xu,∗K
−1
Xu,Xu

µjqu, ∂
2K∗,∗ − ∂KT

Xu,∗Λ∂KXu,∗

)
,

Λ = K−1
XuXu

−K−1
XuXu

ΣquK
−1
XuXu

,

∂E[JT ]j

∂xl∗
=
∂µjJ
∂xl∗

=
∂(∂KT

Xu,∗)

∂xl∗
K−1

Xu,Xu
µjqu, (45)

∂ΣJ

∂xl∗
= −(

∂(∂KXu,∗)

∂xl∗
)TΛ∂KXu,∗ − ∂KT

Xu,∗Λ
∂(∂KXu,∗)

∂xl∗
. (46)
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Appendix D. Swiss roll parameterisation

The three-dimensional coordinates of the Swiss Roll can be parametrised by the radius r
and the width z. Consider the Swiss roll parametrised by

x(r, z) = (r cos r, r sin r, z).

To find its metric tensor, we first compute the partial derivatives

xr = (cos r − r sin r, sin r + r cos r, 0), xz = (0, 0, 1).

The metric tensor is given by

(xr · xr)dr2 + 2(xr · xz)dr dz + (xz · xz)dz2 = (1 + r2)dr2 + dz2.

or in matrix form

g =

[
1 + r2 0

0 1

]
, g−1 =

[
1

1+r2
0

0 1

]
,

∂g

∂r
=

[
2r 0

0 0

]
.

The determinant of the metric tensor in this case would be 1 + r2, as r grows the
determinant is getting bigger. This indicates the exaggeration from the low dimensional
latent space to the high dimensional original space is getting bigger.

The BM on the Swiss Roll can be written as

dr(t) = −1

2

r

(1 + r2)2
dt+ (1 + r2)−1/2dBr(t), (47)

dz(t) = dBz(t).
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Figure 11: Prediction of R2GP and GL-GP
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Table 4: Comparison of the root mean squared errors of three different boundary conditions
on Swiss roll. Values in parentheses show the standard deviation.

α = 0.1 α = 0.2 α = 0.4
mean RMSE 0.160(0.005) 0.163(0.003) 0.160(0.004)

To empirically evaluate the impact of boundary conditions on the performance of GPUM,
we have experimented with different threshold settings in Swiss roll example. We tested
three different threshold values: the original value of 0.2, and values of 0.1 and 0.4 obtained
by halving and doubling the original threshold, respectively. We generated kernel estimates
using BM simulations based on these three different boundary conditions and computed the
regression RMSE for randomly generated datasets. The results are shown in Table 4. There
are no significant differences between the results obtained using these different threshold
values.

Appendix E. Estimator error

The error of the BM based estimator K̂t has been discussed in Niu et al. (2019). The error
consists of two parts: the numerical error and the Monte Carlo error. The Monte Carlo
error arises due to the approximation of the transition probability by counting the paths
that reach the neighborhood. On the other hand, the numerical error is caused by the
approximation of the transition density, which involves dividing the transition probability
by the volume of the neighborhood. A loss function of ω is defined by minimising the sum
of two errors as described above. Specifically, for an arbitrary manifold M , one has

L(w) = O(w2) +O(w−d/2).

where d is the dimension of M . These results show that there exists an optimal value of ω
which can minimise the error of the estimator. But it does not provide guidance on how
to choose a precise value of ω. In our numerical experiments, we notice that the fitting of
GPUM is not sensitive to the choice of ω. An ablation study of the choice of ω based on
the Swiss roll experiment can be found in Table 5. We conducted experiments with four
different values of ω (1, 1.5, 2, and 2.5). The corresponding kernel estimates are generated
from BM simulations based on these four settings. The regression RMSEs are computed
for randomly generated datasets. These results show that the performance of GPUM is not
very sensitive to the choice of ω.
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Table 5: Comparison of the root mean squared errors of four different As on Swiss roll.
Values in parentheses show the standard deviation.

ω = 1 ω = 1.5 ω = 2 ω = 2.5
mean RMSE 0.176(0.009) 0.165(0.013) 0.161(0.006) 0.167(0.004)

Appendix F. WiFi signal regression

Figure 12: Automatic Relevance Determination (ARD) contributions of the WiFi signal datasets. The

horizontal axis is the index of dimension. The vertical axis is the ARD contribution(or rel-

evance) which are computed as the inverse of the squared lengthscales in B-GPLVM. If the

ARD contribution is low, the corresponding dimension is less important.
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Figure 13: R2 GP prediction. The R2 GP is constructed using the euclidean distance of data points in

the latent space of WiFi signals. It ignores the boundary and the magnification factor.

Appendix G. Coil image latent space
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(a) COIL boundary in latent space (b) BM trajectory

Figure 14: A BM sample path is simulated in the implicit manifold of COIL images. (a) The visualisation

of the boundary in the latent space. The white region is within ∂M. The blue triangles are the

observed latent points. (b) A BM trajectory is plotted as the purple line. The red ball is the

starting location. The gray background represents the magnification factor.
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Figure 15: R2 GP prediction. R2 GP is constructed using the euclidean distance of data points in the

latent space and ignoring the impact of the boundary and the magnification factor.
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Figure 16: Boxplot of the RMSE for all methods applied in COIL images example.
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Appendix H. Estimate the heat kernel of the Cylinder

The cylinder in Fig.17(a) is described by 200 points in R3. These points represent the
union of two pre-defined datasets, V1 and V2, which overlap. Both sets constain 150 points.
B-GPLVM has been applied to learn the latent spaces (ϕ1,X1) and (ϕ2,X2).The Brownian
Motion on the cylinder is equivalent to the stochastic process in the local coordinates. The
BM trajectories can be simulated using the estimated metric tensors. An example is given
in Fig.17(b). Since the intersection of the two datasets is not empty, the overlapping region
in the two latent spaces can also be identified. Following the method proposed in section 6.1,
we can estimate the transition density of BM on the cylinder using the learned charts. Let
s0 with s10 = 0.56, s20 = −0.83 and s30 = 1.5 be the starting point of the BM. NBM = 50000
BM paths are simulated. The BM transition density is evaluated using (24) at forty target
points {sj ∈ M ⊂ R3|j ∈ 1, · · · , 40} in the observational space. These target points are
equally spaced on the cylinder with fixed s3 coordinates at 1.5. The diffusion time is fixed
at 2. The analytical form of the heat kernel on the cylinder is known and can be computed
as the product of the heat kernel of R1 and the kernel of circle S1. It is defined as

Kcylinder(s0, s, t) =
1√
4πt

e
−(s30−s3)2

4t
1√
4πt

∞∑
i=−∞

e−
[arccos(s10s

1+s20s
2)+2πi]2

4t , s ∈ R3. (48)

(a) The cylinder dataset in R3. (b) A BM path on the cylinder.

Figure 17: The example of the cylinder.

The true kernel values are plotted as the red solid line in Fig.18. The horizontal axis is
the angular distance on the cylinder and the vertical axis is the kernel density. The heat
kernel estimates using B-GPLVM metrics are plotted as the green dashed line. It is clear
that the B-GPLVM results are very close to the true kernel values and match the red solid
line very well. The heat kernel estimates from the Graph Laplacian (GL) approach (Dunson
et al. (2020)) in different data regimes are also provided in Fig.18. When the number of
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grid points on the cylinder is 200, the GL kernel estimates are plotted as the blue dashed
line. It is far from the solid red line. When the number of grid points is increased to 1000
and 10000, the GL kernel estimates are plotted as the purple dashed line and black dashed
line. They are getting closer to the solid red line. Comparing to the GL approach, the
kernel estimates using B-GPLVM metrics achieves the better performance with much fewer
points on the cylinder.
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Figure 18: Comparison of heat kernel estimates using the B-GPLVM metric and Graph Laplacian. The

red solid line represents the true heat kernel. The green dashed line represents estimates using

B-GPLVM metric. The metric is learned from 200 grid points on the cylinder. The heat kernel

estimates from the Graph Laplacian approach using the same 200 grid points are plotted as the

blue dashed line. We increase the number of the points to 1000 and 10000. The GL estimates

are plotted as the purple dashed line and black dashed line.

Appendix I. Graph Laplacian and Graph based Gaussian Process

SupposeM is a d-dimensional smooth closed and connected Riemannian manifold embedded
in Rp through f : M → Rp. Let −∆ be the Laplace-Beltrami operator of M. Let {λi}∞i=0 be
the spectrum of −∆. We have eigenvalue: 0 = λ0 < λ1 < . . . . Denote ϕi the corresponding
eigenfunction. The heat kernel has the expression:

H(x, x′, t) =
∞∑
i=0

e−λitϕi(x)ϕi(x
′).

Supposing we are able to recover the eigenfunctions and eigenvalues of the Laplace-
Beltrami operator through the Graph Laplacian, we can recover the heat kernel via

H(x, x′, t) =
∞∑
i=0

e−µi,ϵ ṽi,ϵṽ
T
i,ϵ,
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where µ and ṽ are the eigenvalue and eigenvector the Graph Laplacian. Given a data set
X := {x1, x2, · · · , xn, · · · , xn+v}, xi ⊂ Rp, where n is the number of the labeled observation
and v is the number of unlabeled grid points, we construct a kernel normalized Graph
Laplacian(GL) over x1, x2, ..., xn+v following Dunson et al. (2020)’s approach.

We define a Gaussian-like kernel function:

kε(x, x
′) = exp(−

||x− x′||2Rp

4ε2
),

where ε > 0, ε is the bandwidth.
The (n + v) × (n + v) affinity matrix W is constructed using the normalised kernel

(α− normalization), where qε(x) :=
∑n

i=1 kε(x, xi):

Wij :=
kε(xi, xj)

qε(xi)qε(xj)
=

kε(xi, xj)∑n+v
i=1 kε(x, xi)

∑n+v
j=1 kε(x, xj)

.

An (n+ v)× (n+ v) diagonal matrix D is constructed by setting the diagonal elements
as:

Dii =

n+v∑
j=1

Wij .

The row stochastic transition matrix A is defined as:

A = D−1W.

The Graph Laplacian (GL) matrix is:

L :=
A− I

ε2
.

Ã can be computed as:
Ã = D−1/2WD−1/2.

Ã is diagonalizable, and the eigenvalue of Ã is the same as A.
Given the GL matrix constructed as above, denote µi,ϵ the i-th eigenvalue of −L with

the associated eigenvector ṽi,ϵ normalized in l2 norm.
We do the following normalization of the eigenvector ṽi,n,ϵ in the l2 norm. Let N(i) =

|BRp

ϵ ∩ (f(xi)){f(x1) . . . f(xn)}| be the number of points on ϵ ball in the ambient space. We
have the l2 norm of ṽ:

||ṽ||l2 =

√√√√ |Sd−1|ϵd
d

n∑
i=1

ṽ2(i)

N(i)
.

We get the eigenvector after normalizing as :

vi,n,ϵ =
ṽi,n,ϵ
||ṽ||l2

.

The heat kernel can be approximated as GLkernel:

GLkernel =
K−1∑
i=0

e−µi,ϵvi,ϵv
T
i,ϵ.

where K is the order of eigen-paires. The construction of the kernel can be summarised in
Algorithm 2.
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Algorithm 2: GL Algorithm.

Algorithm inputs include t, ϵ,K
Step (1): Construct the (n+ v)× (n+ v) matrix W and D as shown in Appendix I
with bandwidth ϵ and points cloud {x1, . . . . , xn+v}. We can get:

Ã = D−1/2WD−1/2.

Step (2): Find the first K − 1 eigenpairs of Ã:

{αi,ϵ, Ui,ϵ}K−1
i=1 .

Step (3): Suppose ṽi,ϵ is the normalized vector of D−1/2Ui,ϵ in the l2 norm, and we
have:

µi,ϵ :=
1− αi,ϵ
ϵ2

.

Let N(i) = |BRp

ϵ (f(xi)){f(x1) . . . f(xn)}| be the number of points on ϵ ball in the
ambient space,We have the l2 norm of ṽ:

ṽl2 =

√√√√ |Sd−1|ϵd
d

n∑
i=1

ṽ2(i)

N(i)
.

For i = 1, 2, . . . ,K − 1, we have: vi,ϵ =
ṽi,ϵ
ṽl2

Construct HK
ϵ,t as

HK
ϵ,t =

K−1∑
i=0

e−µi,ϵvi,ϵv
T
i,ϵ.
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