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Abstract

Neural network pruning is a fruitful area of research with surging interest in high spar-
sity regimes. Benchmarking in this domain heavily relies on faithful representation of the
sparsity of subnetworks, which has been traditionally computed as the fraction of removed
connections (direct sparsity). This definition, however, fails to recognize unpruned param-
eters that detached from input or output layers of the underlying subnetworks, potentially
underestimating actual effective sparsity: the fraction of inactivated connections. While
this effect might be negligible for moderately pruned networks (up to 10×–100× com-
pression rates), we find that it plays an increasing role for sparser subnetworks, greatly
distorting comparison between different pruning algorithms. For example, we show that
effective compression of a randomly pruned LeNet-300-100 can be orders of magnitude
larger than its direct counterpart, while no discrepancy is ever observed when using Syn-
Flow for pruning (Tanaka et al., 2020). In this work, we adopt the lens of effective sparsity
to reevaluate several recent pruning algorithms on common benchmark architectures (e.g.,
LeNet-300-100, VGG-19, ResNet-18) and discover that their absolute and relative perfor-
mance changes dramatically in this new, and as we argue, more appropriate framework.
To aim for effective, rather than direct, sparsity, we develop a low-cost extension to most
pruning algorithms. Further, equipped with effective sparsity as a reference frame, we
partially reconfirm that random pruning with appropriate sparsity allocation across layers
performs as well or better than more sophisticated algorithms for pruning at initialization
(Su et al., 2020). In response to this observation, using an analogy of pressure distribution
in coupled cylinders from thermodynamics, we design novel layerwise sparsity quotas that
outperform all existing baselines in the context of random pruning.
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1. Introduction

Recent successful advances of Deep Neural Networks are commonly attributed to their high
architectural complexity and excessive size (over-parameterization) (Denton et al., 2014;
Neyshabur et al., 2019; Arora et al., 2018). Modern state-of-the-art architectures exhibit
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enormous parameter overhead, requiring prohibitive amounts of resources during both train-
ing and inference and leaving a significant environmental footprint (Shoeybi et al., 2019). In
response to these challenges, much attention has turned to compression of neural networks
and, in particular, parameter pruning. While initial approaches mostly focused on pruning
models after training (LeCun et al., 1990; Hassibi et al., 1993), contemporary algorithms
optimize the sparsity structure of a network while training its parameters (Mocanu et al.,
2018; Evci et al., 2020) or even remove connections before any training whatsoever (Lee
et al., 2019; Wang et al., 2020).

Compression rates considered in the pruning literature usually fall between 10× and
100× of the size of the original model. However, as contemporary model sizes grow into
the billions of parameters, studying higher compression regimes becomes increasingly im-
portant. Recently, a new bold sparsity benchmark was set by Tanaka et al. (2020) with
Iterative Synaptic Flow (SynFlow), a data-agnostic algorithm for pruning at initializa-
tion. Reportedly, it is capable of removing all but only a few hundreds of parameters (a
100, 000× compression for VGG-16) and still produce trainable subnetworks, while other
pruning methods disconnect networks at much lower sparsity levels (Tanaka et al., 2020).
Related work by de Jorge et al. (2021) proposes an iterative version of one-shot pruning
algorithm, Single-shot Network Pruning (SNIP) (Lee et al., 2019), and evaluates it in a
similar high sparsity regime, reaching more than 10, 000× compression ratio.

Figure 1: Pruning 11 edges from a fully-connected 21-edge network. Left: direct sparsity
(11/21) does not account for disconnected edges (compression 21/10 = 2.1). Right: effective
sparsity (16/21) accounts for the 5 dashed connections incident to inactivated neurons
(yielding twice as large effective compression 21/5 = 4.2).

Effective sparsity. This increased focus on extreme sparsity leads us to consider what
sparsity is meant to represent in neural networks and computational graphs at large. In the
context of neural network pruning, sparsity to date is computed straightforwardly as the
fraction of removed connections (direct sparsity)—and compression as the inverse fraction
of unpruned connections (direct compression). We observe that this definition does not dis-
tinguish between connections that have actually been pruned, and those that have become
effectively pruned because they have disconnected from the computational flow. Formally,
an edge θi is considered inactive if, for any input x, the output of the neural network f(θ, x)
does not depend on the value of θi. In this work, we propose to abandon direct sparsity
in favor of effective sparsity—the fraction of inactivated connections, be it through direct
pruning or through otherwise disconnecting from either input or output of a network (see
Figure 1 for an illustration).
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We advocate that effective sparsity (effective compression) be used universally in place
of its direct counterpart since it more accurately depicts what one would reasonably con-
sider the network’s sparsity state. Using the lens of effective compression for benchmarking
allows for a fairer comparison between different unstructured pruning algorithms. Note
that effective compression is lower bounded by direct compression, which means that some
pruning algorithms will give improved sparsity-accuracy trade-offs in this new framework.
In Section 3, we critically reexamine a plethora of recent pruning algorithms for a vari-
ety of architectures to find that, in this refined framework, conclusions drawn in previous
works appear overstated or incorrect. Figure 2 gives a sneak-preview of this effect for three
ab-initio pruning algorithms: SynFlow (Tanaka et al., 2020), SNIP (Lee et al., 2019) and
plain random pruning for LeNet-300-100 on MNIST. While SynFlow appears superior to
other methods when evaluated against direct compression, it loses its advantage in the ef-
fective framework. Such radical performance changes are partly explained by differing gaps
between effective and direct compression inherent to different pruning algorithms (Figure
2). We can see that significant departure of direct from effective compression kicks in at
relatively low rates below 100×, making our work relevant even in these moderate regimes.
For example, using random pruning to compress LeNet-300-100 by 100× (sparsity 99%)
results in ∼ 1, 000× effective compression; yet, removing the same number of parameters
with SynFlow yields an unchanged 100× effective compression. What makes certain iter-
ative algorithms like SynFlow less likely to amass disconnected edges? In Section 3, we
show that they are fortuitously designed to achieve a close convergence of direct and ef-
fective sparsity, hinting that preserving connectivity is an important aspect in the strong
performance of high-compression pruning algorithms (Tanaka et al., 2020; de Jorge et al.,
2021). Moreover, the lens of effective compression gives access to more extreme compression
regimes for some pruning algorithms, which appear to disconnect much earlier when not
accounting for inactive connections. For these high effective compression ratios all three
pruning methods from Figure 2 perform surprisingly similar, even though they use varying
degrees of information on data and parameter values.

Layerwise Sparsity Quotas (LSQ) and Ideal Gas Quotas (IGQ). A recent thread
of research by Frankle et al. (2021) and Su et al. (2020) shows that performance of trained
subnetworks produced by algorithms for pruning at initialization is robust to randomly
reshuffling unpruned edges within layers before training. This observation led to the con-
jecture that these algorithms essentially generate successful distributions of sparsity across
layers, while the exact connectivity patterns are unimportant. In Section 4, we reexamine
this conjecture through the lens of effective sparsity, confirm it for moderate compression
regimes (10×–100×) studied by Frankle et al. (2021) and Su et al. (2020), but find the
truth to be more nuanced at higher compression rates. Nonetheless, this result highlights
the importance of algorithms that carefully engineer layerwise sparsity quotas (LSQ) to
obtain very simple and adequately performing random pruning algorithms. Furthermore,
concurrently with our work, Liu et al. (2022b), find that random pruning with carefully
allocated sparsity among layers can match the performance of their dense counterparts.
Another important motivation to search for good LSQ is that global pruning algorithms
frequently remove entire layers prematurely (Lee et al., 2020) (cf. layer-collapse in Tanaka
et al. (2020)), even before any significant differences between direct and effective sparsity
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emerge. Well-engineered LSQ could avoid this and enforce proper redistribution of com-
pression across layers (see Gale et al. (2019); Mocanu et al. (2018); Evci et al. (2020) for
existing baselines). In Section 4, we propose a novel LSQ coined Ideal Gas Quotas (IGQ) by
drawing intuitive analogies from physics. Effortlessly computable for any network-sparsity
combination, IGQ performs similarly or better than any other baseline in the context of
random pruning at initialization and of magnitude pruning after training.

Figure 2: LeNet-300-100 trained on MNIST after pruning. Left: gaps between direct and
effective compression. Right: SynFlow has a better sparsity-accuracy trade-off than SNIP
when plotted against direct (dashed), but not against effective compression (solid curves).
Dots represent individual experiments. Dashed and solid curves coincide for SynFlow.

Effective pruning. Pruning to any desired direct sparsity is straightforward: one simply
needs to mask out the corresponding number of parameters from a network. Effective
sparsity, unfortunately, is more unpredictable and difficult to control. In particular, several
known pruning algorithms suffer from layer-collapse once reaching a certain sparsity level,
leading to unstable effective sparsity just before the disconnection. As a result, most pruning
methods are unable to deliver certain values of effective sparsity regardless of how many
connections are pruned. When possible, however, one needs to carefully tune the number
of pruned parameters so that effective sparsity lands near a desired value. In Section 5, we
suggest a simple extension to algorithms for pruning at initialization or after training that
helps bring effective sparsity close to any predefined achievable value while incurring costs
that are at most logarithmic in model size.

Our contributions: summary. In this study, we (i) formulate and illustrate the im-
portance of effective sparsity by reevaluating several recent pruning strategies; (ii) provide
algorithms to prune according to and compute effective sparsity; (iii) reconfirm that net-
works pruned at initialization are robust to layerwise reshuffling of survived edges (Frankle
et al., 2021) in the new sparsity framework, and (iv) design efficient layerwise sparsity
quotas IGQ for random pruning that perform consistently well across all sparsity regimes.

2. Related work

Neural network compression encompasses a number of orthogonal approaches such as pa-
rameter regularization (Lebedev and Lempitsky, 2016; Louizos et al., 2018), variational
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dropout (Molchanov et al., 2017), vector quantization and parameter sharing (Gong et al.,
2014; Chen et al., 2015; Han et al., 2016), low-rank matrix decomposition (Denton et al.,
2014; Jaderberg et al., 2014), and knowledge distillation (Buciluǎ et al., 2006; Hinton et al.,
2015). Network pruning, however, is by far the most common technique for model com-
pression, and can be partitioned into structured (at the level of entire neurons/units) and
unstructured (at the level of individual connections). While the former offers resource ef-
ficiency unconditioned on use of specialized hardware (Liu et al., 2019) and constitutes a
fruitful research area (Li et al., 2017; Liu et al., 2017), we focus on the more actively stud-
ied unstructured pruning, which is where differences between effective and direct sparsity
emerge. In what follows we give a quick overview, naturally grouping pruning methods by
the time they are applied relative to training (see Frankle and Carbin (2019) and Wang
et al. (2020) for a similar taxonomy).

Pruning after training. These earliest pruning techniques were designed to remove the
least “salient” learned connections without sacrificing predictive performance. Optimal
Brain Damage (LeCun et al., 1990) and its sequel Optimal Brain Surgeon (Hassibi et al.,
1993) use the Hessian of the loss to estimate sensitivity to removal of individual parame-
ters. Han et al. (2015) popularized magnitude as a simple and effective pruning criterion.
It proved to be especially successful when applied alternately with several finetuning cy-
cles, which is commonly referred to as Iterative Magnitude Pruning (IMP), a modification
of which was used by Frankle and Carbin (2019) to discover lottery tickets—sparse sub-
networks that achieve the performance of their dense counterparts within a commensurate
number of iterations. Later, Dong et al. (2017) showed that magnitude-based pruning mini-
mizes `2 distortion of each layer’s output incurred by parameter removal. Recently, Lee et al.
(2021) extend this idea and propose Layer-Adaptive Magnitude-Based Pruning (LAMP),
which approximately minimizes the upper bound of the `2 distortion of the entire network.
While equivalent to magnitude pruning within individual layers, LAMP automatically dis-
covers excellent layerwise sparsity quotas (see Section 4) that yield better performance (as
a function of direct compression) than existing alternatives in the context of IMP.

Pruning during training. Algorithms in this category learn sparsity structures together
with parameter values, hoping that continued training will correct for damage incurred by
pruning. To avoid inefficient prune-retrain cycles inherent to IMP, Narang et al. (2017)
introduce gradual magnitude pruning over a single training round. Subsequently, Zhu and
Gupta (2018) modify this algorithm by introducing a simpler pruning schedule and keep-
ing layerwise sparsities uniform throughout training. Sparse Evolutionary Training (SET)
(Mocanu et al., 2018) starts with an already sparse subnetwork and restructures it during
training by pruning and randomly reviving connections. Unlike SET, Mostafa and Wang
(2019) allow redistribution of sparsity across layers, while Dettmers and Zettlemoyer (2019)
use gradient momentum as the criterion for parameter regrowth. Evci et al. (2020) rely
on the instantaneous gradient to revive weights but follow SET to maintain the initial
layerwise sparsity distribution during training. The In-time Over-parameterization (ITOP)
framework provides insights into the underlying mechanisms of the above methods and leads
to improved training protocols that boost their performance (Liu et al., 2021). A different
body of works tackle the general optimization problem with an intractable `0 parameter
sparsity constraint by designing and solving related continuous problems (Zhou et al., 2021;
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Savarese et al., 2020; Kusupati et al., 2020). For example, Continuous Sparsification (CS)
by Savarese et al. (2020) uses a sigmoid of learnable continuous variables as mask values
and applies `1 regularization, effectively forcing them to either 0 or 1 during training.

Pruning before training. Pruning at initialization is especially alluring to deep learn-
ing practitioners as it promises lower costs of both optimization and inference. While this
may seem too ambitious, the Lottery Ticket Hypothesis (LTH) postulates that randomly
initialized dense networks do indeed contain highly trainable and equally well-performing
sparse subnetworks (Frankle and Carbin, 2019). Inspired by the LTH, Lee et al. (2019)
design SNIP, which uses connection sensitivity as a parameter saliency score. Wang et al.
(2020) notice that SNIP creates bottlenecks or even removes entire layers and propose Gra-
dient Signal Preservation (GraSP) as an alternative that aims to maximize gradient flow in
a pruned network. de Jorge et al. (2021) improve SNIP by applying it iteratively, allowing
for reassessment of saliency scores during pruning and helping networks stay connected at
higher compression rates. A truly new compression benchmark was set by Tanaka et al.
(2020); their algorithm, SynFlow, iteratively prunes subsets of parameters according to
their `1 path norm and helps networks reach maximum compression without disconnecting.
For example, SynFlow achieves non-random test accuracy on CIFAR-10 with a 100, 000×
compressed VGG-16, while SNIP and GraSP fail already at 100× and 1, 000×, respectively.
An extensive ablation study by Frankle et al. (2021) examines SNIP, GraSP and SynFlow
within moderate compression rates (up to 100×) and reveals that performance of subnet-
works produced by these methods is stable under random layerwise rearrangement of edges
prior to training. Later, this result was independently confirmed by Su et al. (2020) for SNIP
and GraSP only. This observation suggests that these algorithms perform as well as random
pruning with corresponding layerwise quotas, putting the spotlight on designing competi-
tive LSQ (Mocanu et al., 2018; Gale et al., 2019; Lee et al., 2021). Price and Tanner (2021)
augment the functionality of sparse layers by precomputing a deterministic transformation
of the input, thus maintaining information propagation and avoiding layer-collapse.

3. Effective sparsity

In this section, we present our comparisons of a variety of pruning algorithms under the lens
of effective compression. To illustrate the striking difference between direct and effective
sparsity and expose the often radical change in relative performance of pruning algorithms
when switching from the former to the latter, we evaluate several recent methods (SNIP,
GraSP, SynFlow, Magnitude & LAMP1, CS2, SNIP-iterative) and random pruning with uni-
form sparsity distribution across layers in both frameworks. Our experiments encompass
modern architectures on commonly used computer vision benchmark datasets: LeNet-300-
100 (Lecun et al., 1998) on MNIST, LeNet-5 (Lecun et al., 1998) on CIFAR-10, VGG-19
(Simonyan and Zisserman, 2015) on CIFAR-100, ResNet-18 (He et al., 2016) on TinyIm-
ageNet, and ResNet-50 and MobileNetV2 (Howard et al., 2017) on ImageNet. We place
results of VGG-16 (Simonyan and Zisserman, 2015) on CIFAR-10 in Appendix B, as they
closely resemble those of VGG-19. Further experimental details are listed in Appendix A.

1. as two versions of magnitude pruning after training and close siblings of lottery tickets (Frankle and
Carbin, 2019).

2. as a representative of methods that use learnable sparsity

6



Pruning Through the Lens of Effective Sparsity

Figure 3: Effective versus direct compression across different pruning methods and archi-
tectures (curves and bands represent min/average/max across 3 seeds where subnetworks
disconnect last among a total of 5 seeds).

Notation. Consider an L-layer neural network f(Θ;x) with weight tensors Θ = {Θ`}L`=1

for ` ∈ [L]. A subnetwork is specified by a set of binary masks that indicate unpruned
parameters M` ∈ {0, 1}|Θ`|. With M = {M`}L`=1, it is given by f(Θ �M;x) where � is
Hadamard product. Note that biases and batchnorm parameters (Ioffe and Szegedy, 2015)
are normally considered unprunable. Direct sparsity, the fraction of pruned weights, is given
by s(M) = 1−

∑
`‖M`‖0

/∑
` |M`| and direct compression rate is defined as (1− s(M))−1.

Results. Figure 3 reveals that different algorithms tend to develop varying amounts of
inactive connections. For example, effective compression of subnetworks pruned by LAMP
consistently reaches 10× of their direct compression across all architectures, at which point
at least nine in ten unpruned connections are effectively inactivated. Other methods (e.g.,
SNIP on VGG-19) remove entire layers early on, before any substantial differences between
effective and direct compression emerge. Similarly, magnitude pruning applied after training
disconnects most models very quickly and hence is not shown (e.g., LeNet-5 and VGG-19).
In contrast, the picture is different with ResNet-50 whose residual connections might have
allowed higher compression rates for this method. For example, we observe that the network
is, in fact, two orders of magnitude less dense when direct sparsity reads just above 0.99.
SNIP-iterative and especially SynFlow demonstrate a truly unique property: subnetworks
pruned by these two algorithms exhibit practically equal effective and direct compressions,
and, in the case of SynFlow, disconnect only at very high compression rates. What makes
them special? Both SynFlow and SNIP-iterative are multi-shot pruning algorithms that
remove parameters over 100 and 300 iterations, respectively. SynFlow ranks connections
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by their `1 path norm (sum of weighted paths passing through the edge, where the weight
of a path is the product of magnitudes of weights of its edges). SNIP uses connection
sensitivity scores from Lee et al. (2019) | ∂L∂θi θi| as a saliency measure where L is the loss
function. Both these pruning criteria assign the lowest possible score of zero to inactive
connections, scheduling them for immediate removal in the subsequent pruning iteration.
Thus, by virtue of their iterative design, these two methods produce subnetworks with little
to no difference between effective and direct compression. They are fortuitously designed
to prune inactivated edges, which might explain their performance in high compressions.

Figure 4: Test accuracy (min/average/max) of subnetworks trained from scratch after being
pruned by different algorithms plotted against direct (dashed) and effective (solid) compres-
sion. Dashed and solid curves overlap for SynFlow and SNIP-iterative. Solid curves are
fitted to scatter data (not shown for clarity of the presentation) as in Figure 2.

Tanaka et al. (2020) compare SynFlow to SNIP and GraSP using direct sparsity, claim-
ing it vastly superior in high compression regimes. However, pruning methods that generate
large amounts of inactivated connections are clearly at a significant disadvantage in the orig-
inal direct framework. Figure 4 shows that the performance gap between SynFlow and other
methods shrinks on all tested architectures under effective compression. The most dramatic
changes are perhaps evident with LeNet-300-100 where SynFlow significantly dominates
both SNIP and GraSP in direct comparison, but becomes strictly inferior when taken to
the more telling effective compression. On the other hand, differences are not as pronounced
on purely convolutional architectures such as VGG-19, and ResNet-18. Feature maps in
convolutional layers are connected via groups of several parameters (kernels), making them
more robust to inactivation compared to neurons in fully-connected layers.

Computing effective sparsity. In advocating the use of effective sparsity, we must
make sure that it can be calculated efficiently. We propose an simple approach leveraging
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SynFlow; note that a connection is inactive if and only if it is not part of any path from
input to output. Assuming that unpruned weights are non-zero, this is equivalent to having
zero `1 path norm. Tanaka et al. (2020) observe that path norms can be efficiently computed
with one pass on the all-ones input as |∂R∂θi θi|, where R = 1>f∗(|Θ| �M,1) and f∗ is the
linearized version of the original network f . For deep models, rescaling of weights may be
required to avoid numerical instability (Tanaka et al., 2020).

4. Layerwise sparsity quotas (LSQ) and a novel allocation method (IGQ)

Inspired by Frankle et al. (2021) and Su et al. (2020), we wish to confirm that SNIP, GraSP,
and SynFlow work no better than random pruning with corresponding layerwise sparsity
allocation. While Frankle et al. (2021) and Su et al. (2020) only considered moderate com-
pression rates up to 100× and used direct sparsity as a reference frame, we reconfirm their
conjecture in the effective framework and test it across the entire compression spectrum.
We generate and train two sets of subnetworks: (i) pruned by either SNIP, GraSP, and
SynFlow (original), and (ii) randomly pruned while preserving layerwise sparsity quotas
provided by each of these three methods (random).

Figure 5: Original methods for pruning at initialization (solid) and random pruning with
corresponding layerwise sparsity quotas (dashdot). Test accuracy of the unpruned network
is shown in grey.

Our results in Figure 5 agree with observations made by Frankle et al. (2021) and Su et al.
(2020): in the 10×–100× compression range, all three random pruning algorithms perform
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similarly (LeNet-300-100, VGG-19) or better (ResNet-18, ResNet-50) than their original
counterparts. Effective sparsity allows us to faithfully examine higher compression, where
the evidence is more equivocal. Similar patterns are still seen on ResNet-18; however, the
original SNIP and GraSP beat random pruning with corresponding layerwise sparsities by a
wide margin starting at 100× compression on LeNet-300-100. Random pruning associated
with SynFlow matches original SynFlow on the same network for longer, up to 1, 000×
compression. On VGG-19, SynFlow bests the corresponding random pruning from about
500× compression onward, while the original SNIP suffers from disconnection early on
together with its random variant. Despite these nuances in the high compression regime,
random pruning with specific layerwise sparsity quotas fares extremely well in the moderate
sparsity regime (up to 99%) and is even competitive to full-fledged SynFlow (see Figure 8).
Therefore, random pruning can be a cheap and competitive alternative to more sophisticated
and resource-consuming algorithms. This phenomenon is also reconfirmed in a recent study,
which states that randomly pruned networks with carefully crafted LSQ can match the
performance of their dense counterparts while comparing favorably in terms of adversarial
robustness, out-of-distribution detection, and uncertainty estimation (Liu et al., 2022b). In
particular, they consider LSQ derived from SNIP and find it among the best performing
sparsity distributions for random pruning. Alas, SNIP and other methods from Figure 5
require expensive computations just to retrieve the corresponding pruning ratios, which
may still suffer from issues like layer-collapse. This motivates us to ask: can we engineer
readily computable and consistently well-performing sparsity quotas?

To our knowledge, there are only a few ab-initio approaches in the literature to allo-
cate sparsity in a principled fashion. Uniform is the simplest solution that keeps sparsity
constant across all layers. Gale et al. (2019) give a modification (denoted Uniform+ follow-
ing Lee et al. (2021)) that retains all parameters in the first convolutional layer and caps
sparsity of the last fully-connected layer at 80%. A more sophisticated approach, Erdös-
Renyi-Kernel (ERK), sets the density of a convolutional layer with kernel size w×h, fan-in
nin and fan-out nout proportional to (w + h + nin + nout)/(w · h · nin · nout). Although
originally used as a sparsity distribution schema for methods with dynamic sparse struc-
tres (SET by Mocanu et al. (2018) and RigL by Evci et al. (2020)), we follow Lee et al.
(2021) and use ERK as a baseline sparsity distribution for sparse-to-sparse training with
a fixed subnetwork topology. The last two approaches are unable to support the entire
range of sparsities: Uniform+ can only achieve moderate direct compression because of the
prunability constraints on its first and last layer, while both direct and effective sparsity
levels achievable with ERK are often lower bounded. For example, the density of certain
layers of VGG-16 set by ERK exceeds 1 when cutting less than 99% of parameters, unless
excessive density is redistributed. Su et al. (2020) propose Smart-Ratios, which is an ad-hoc
distribution method that requires the density of the i-th layer within an L-layer network
to be proportional to (L− l+ 1)2 + (L− l+ 1). This method was developed exclusively for
VGG-like networks and, like ERK and Uniform+, can be infeasible for certain sparsities.

To avoid problems that riddle Uniform+, ERK, and smart-ratios, we require that any
layerwise sparsity quotas must be attainable for any level of network sparsity s ∈ [0, 1]. At
the same time, neither layer should be removed in its entirety unless s = 1 to avoid layer-
collapse inherent to SNIP and some other global pruning methods. These requirements lead
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us to formulate a formal definition for layerwise sparsity quotas to guide principled future
research into sparsity allocation.

Definition 1 (Layerwise Sparsity Quotas). A function Q : [0, 1]→ [0, 1]L mapping a
target sparsity s to layerwise sparsities {s`}L`=1 is called Layerwise Sparsity Quotas (LSQ)
if it satisfies the following properties: (i) total sparsity: for any s ∈ [0, 1], s

∑
` |Θ`| =∑

` s`|Θ`|, and (ii) layer integrity: for all layers ` ∈ [L], [Q(s)]` < 1 if s < 1.

Figure 6: Schematic diagram of the cylin-
der system underlying IGQ compression of
LeNet-5. Each of the five layers of the net-
work is represented by a cylinder of unit vol-
ume and height H` proportional to the num-
ber of parameters |Θ`| in that layer. As force
F is applied to the outermost cylinder (5),
the system transforms according to the Ideal
Gas Law, yielding IGQ compression rates of
H`/h`, while the overall network compression
is H/h =

∑5
`=1H`/

∑5
`=1 h`. Darker colors

indicate higher compression. Note that cylin-
ders are not drawn to scale.

Ideal Gas Quotas (IGQ). Aiming to
unfold the secret of well-performing lay-
erwise compression quotas associated with
such global pruning algorithms as SNIP,
LAMP, and SynFlow, we note that they
prune larger, parameter-heavy layers more
aggressively than smaller layers (Figure 7),
which has been already conjectured to be
a desirable property (Su et al., 2020). To
design a valid LSQ with this feature, we
consult an intuitive (although lacking for-
mal connection with neural network prun-
ing) analogy from physics. In particular,
we interpret compression of a multi-layer
network as compression of stacked gas-filled
weightless cylinders of unit volume and
height equal to the size of the correspond-
ing layer (Figure 6). As force is applied to
the system, the Ideal Gas Law governs the
compression rate of each cylinder, giving the
final compression distribution which we in-
terpret as the layerwise compression (spar-
sity) distribution within the given network.
Using simple algebra, we arrive at compres-
sion quotas {F |Θ`|+1}L`=1 (or sparsity quo-
tas {1−(F |Θ`|+1)−1}L`=1) parameterized by
the force F that controls the overall sparsity
of the network. Thus, we selected cylinder
dimensions to encode our prior belief that
larger layers can withstand higher prun-
ing rates since “flatter” cylinders undergo
lighter compression under the same exter-
nal force (compression constraint). Given
a target sparsity s, the needed value of F
can be instantly found using binary search
to any given precision. IGQ clearly satisfies
all requirements of Definition 1 and applies
higher compression to larger layers, as de-
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sired. In principle, IGQ is applicable in a variety of contexts with use-cases in pruning
before training (in conjunction with random pruning), during training (e.g., as default LSQ
for RigL (Evci et al., 2020)), and after training (e.g., together with magnitude pruning).
In this study, we adopt the first and the last scenarios to evaluate IGQ against baselines
(Figures 8, 9).






Figure 7: Layerwise direct compression quotas of LeNet-5 (top) and VGG-16 (bottom)
associated with SynFlow (left), our IGQ (middle), and LAMP (right). Percentages indicate
layer sizes relative to the total number of parameters; colors are assigned accordingly from
blue (smaller layers) to red (larger layers). Curves of LAMP and SynFlow end when the
underlying network disconnects.

Random pruning with IGQ. While Liu et al. (2022b) experiment with lower sparsities
(up to 90%) and a slightly different set of LSQ, our results largely match their evidence. In
particular, we also find that ERK consistently outperforms more naive baselines like Uni-
form and Uniform+. Although ERK sometimes exhibits similar (ResNet-18) or even better
(VGG-19 compressed to 1, 000× or higher) performance than IGQ, it yields invalid layer-
wise sparsity quotas when removing less than 98% and 99% of parameters from ResNet-18
and VGG-19, respectively, thus failing to satisfy Definition 1. Uniform+ produces invalid
layerwise compressions from 40× onward for ResNet-50. In the moderate sparsity regime
(up to 99%), subnetworks pruned by IGQ reach unparalleled performance after training,
especially on ResNet-50. Across all architectures, random pruning with IGQ and SynFlow
sparsity quotas are almost indistinguishable from each other, suggesting that IGQ success-
fully mimics the quotas produced by SynFlow, which require substantial effort to compute.
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Therefore, judging by a tripartite criterion of test performance, compliance with Definition
1, and computational efficiency, IGQ beats all baselines.






Figure 8: Test performance of trained subnetworks after random pruning with different
layerwise sparsity distributions. Original SynFlow (black) is shown for reference.

Magnitude pruning with IGQ. In the second set of experiments, we pretrain fully-
dense models and prune them by magnitude using global methods (Global Magnitude Prun-
ing, LAMP) or layer-by-layer respecting sparsity allocation quotas (Uniform, Uniform+,
ERK, and IGQ). Then, we revert the unpruned weights back to their original random val-
ues and fully retrain the resulting subnetworks to convergence. Results are displayed in
Figure 9 in the framework of effective compression. Overall, our method for distributing
sparsity in the context of magnitude pruning performs consistently well across all architec-
tures and favorably compares to other baselines, especially in moderate compression regimes
of 100× or less. Even though Global magnitude pruning can marginally outperform IGQ,
it is completely unreliable on VGG-19. ERK appears slightly better than IGQ on VGG-
19, ResNet-18 and ResNet-50 at extreme sparsities, however, it performs much worse on
LeNet-5 and has other general deficiencies as discussed earlier. Another close rival of IGQ
is LAMP, which performs very similarly but is still unable to reach its performance on
VGG-19, ResNet-18 and ResNet-50 in moderate compression regimes. Note, however, that
all presented methods require practically equal compute and time; thus, the evidence in
Figure 9 is not meant to advertise IGQ as a cheaper alternative to LAMP but rather to
illustrate the effectiveness of IGQ.
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Figure 9: Test performance of retrained subnetworks after magnitude-based pruning. Uni-
form+ is not shown for LeNet-300-100 since it is designed for convolutional networks.

5. Effective pruning

Unlike pruning to a target direct sparsity, pruning to achieve a particular effective sparsity
can be tricky. Here, we present an extension to algorithms for pruning at initialization or
after training that achieves this goal efficiently, when possible (see Figure 10).

Effective ranking-based pruning. Algorithms like GraSP, SynFlow, and LAMP rank
parameters by some notion of importance to guide pruning. When such a ranking R : Θ→ R
is available, we employ binary search for the appropriate cut-off threshold t in O(log |Θ|)
time. This approach leverages the following monotonicity property: given two pruning
thresholds t1, t2 ∈ R and corresponding subnetworks S1, S2, we have t1 ≤ t2 if and only if
S2 ⊆ S1, which implies EffectiveSparsity(S1) ≤ EffectiveSparsity(S2) (note that in general
Sparsity(S1) ≤ Sparsity(S2) does not imply the last inequality above). Thus, binary search
will branch in the correct direction.

Effective random pruning. In Section 4, we saw that random pruning with carefully
crafted layerwise sparsity quotas Q : [0, 1] → [0, 1]L fares well (especially in the framework
of effective sparsity) with more sophisticated pruning methods, proving to be a cheaper and
simpler alternative. Effective pruning without parameter scores is more challenging because
there is no obvious way to produce a neat chain of embedded subnetworks as above. For
example, given two subnetworks S1 and S2, Sparsity(S1) ≤ Sparsity(S2) does not imply
EffectiveSparsity(S1) ≤ EffectiveSparsity(S2). Assigning random scores requires O(|Θ|)
time to ensure that any cut-off threshold yields LSQ according to Q, which is not scalable.
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Figure 10: Effective compression produced
by regular (dashdot) and our effective (solid)
pruning on ResNet-18 according to ranking-
based (left) and random (right) algorithms.
Our procedures help pruning reach target ef-
fective sparsity, falling short only when the
subnetwork is on the brink of disconnection.

To circumvent this issue, we design
an improved algorithm that produces em-
bedded subnetworks on each iteration, al-
lowing binary search to work (see Algo-
rithm 1). Starting from the extreme sub-
networks S1 (fully-dense, corresponding to
masks M(1)) and S2 (fully-sparse, corre-
sponding to masks M(2)), we narrow the
sparsity gap between them while preserv-
ing S2 ⊆ S1 so that EffectiveSparsity(S1) ≤
EffectiveSparsity(S2). For each layer, we
keep track of unpruned connections U` of S1

and pruned connections P` of S2, randomly
sample parameters T` from U` ∩ P` accord-
ing to Q and form another network S by
pruning out

⋃
` T` from S1 (or, equivalently,

reviving in S2). Depending on where effec-
tive sparsity of S lands relative to target s,
we assign S to either S1 or S2 and branch.
Since connections to be pruned from S1 (or
revived in S2) are chosen randomly at each
step, weights within the same layer have
equal probability of being pruned. Once S1 and S2 are only 1 parameter away from
each other, the algorithm returns S1, yielding a connected model. Note that this algo-
rithm implicitly requires the LSQ function Q to be layerwise monotone: if s1 ≤ s2, then
[Q(s1)]` ≤ [Q(s2)]` for each layer ` ∈ [L]. This is a reasonable assumption and is satisfied
in practice (see Figure 7).

6. Discussion

In our work, we argue that effective sparsity (effective compression) is the correct bench-
marking measure for pruning algorithms since it discards effectively inactive connections
and represents the true remaining connectivity pattern. Moreover, effective sparsity allows
us to study extreme compression regimes for subnetworks that otherwise appear discon-
nected at much lower direct sparsities. We initiate the study of current pruning algorithms
in this refined frame of reference and rectify previous benchmarks. To facilitate the use
of effective sparsity in future research, we describe low-cost procedures to both compute
and achieve desired effective sparsity when pruning. Lastly, with effective sparsity allow-
ing us to zoom more fairly into higher compression regimes than previously possible, we
examine random pruning with prescribed layerwise sparsities and propose our own readily
computable quotas (IGQ) after establishing conditions reasonable LSQ should fulfill. We
show that IGQ, while allowing for any level of sparsity, is more advantageous than all exist-
ing similar baselines (Uniform, ERK) and gives comparable performance to sparsity quotas
derived from more sophisticated and computationally expensive algorithms like SynFlow.

15



Vysogorets & Kempe

Algorithm 1: Approximate Effective Random Pruning

Input: Desired effective sparsity s; LSQ function Q : [0, 1]→ [0, 1]L.
i← 0; j ← |Θ|; M(1) ← 1; M(2) ← 0; P`, U` ← Θ` for all ` ∈ [L];
while j − i > 1 do

m← b(i+ j)/2c; {s`}L`=1 ← Q(m/|Θ|);
for ` ∈ [L] do

CurrSparsity` ← (1− |U`|/|Θ`|);
T` ← RandomSelect(from = U` ∩ P`, size = |Θ`|(s` − CurrSparsity`));
M` ← CreateMask(pruned = Θ` \ [U` \ T`],unpruned = U` \ T`);

end
M← {M`}L`=1;
if EffectiveSparsity(M) < s then

U` ← U` \ T` for all ` ∈ [L]; M(1) ←M; i← m;
else

P` ← P` \ T` for all ` ∈ [L]; M(2) ←M; j ← m;
end

end

Return: Masks M(1) s.t. EffectiveSparsity(M(1)) ∼ s, ‖M (1)
` ‖0 = |Θ`|(1− [Q(s)]`).

Limitations and Broader Impacts. We hope that the lens of effective compression
will spur more research in high compression regimes. One possible limitation is that it is
harder to control effective compression exactly. In particular using different seeds might lead
to slightly different effective compression rates. However, these perturbations are minor.
Additionally, one might argue that for some architectures accuracy drops precipitously
with higher compression thus making very sparse subnetworks less practical. We hope that
opening the study of high compressions will allow to explore how to use sparse networks
as building blocks, for instance using the power of ensembling (Liu et al., 2022a). Our
framework allows a principled study of this regime. Finally, since effective compression
strips away unnecessary computational units, it offers a potentially higher resource efficiency
during both inference and training without compromising the flexibility of unstructured
pruning or requiring specialized hardware (Liu et al., 2019).

Acknowledgments

Both authors were supported by the National Science Foundation under NSF Award 1922658.
Neither of the authors has any competing interests to report.

Appendix A. Experimental details

Our experimental work encompasses seven different architecture-dataset combinations: LeNet-
300-100 (Lecun et al., 1998) on MNIST (Creative Commons Attribution-Share Alike 3.0
license), LeNet-5 (Lecun et al., 1998) and VGG-16 (Simonyan and Zisserman, 2015) on
CIFAR-10 (MIT license), VGG-19 (Simonyan and Zisserman, 2015) on CIFAR-100 (MIT
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license), and ResNet-18 (He et al., 2016) on TinyImageNet (MIT license), ResNet-50 and
MobileNetV2 (Howard et al., 2017) on ImageNet-2012 (Deng et al., 2009). Following Frankle
et al. (2021), we do not reinitialize subnetworks after pruning (we revert back to the original
initialization when pruning a pretrained model by LAMP). We use our own implementation
of all pruning algorithms in TensorFlow except for GraSP, for which we use the original
code in PyTorch published by Wang et al. (2020). All non-ImageNet runs were repeated
3 times for stability of results. Training was performed on an internal cluster equipped
with NVIDIA RTX-8000, NVIDIA V-100, and AMD MI50 GPUs. Hyperparameters and
training schedules used in our experiments are adopted from related works and are listed
in Table 1. We apply standard augmentations to images during training. In particular, we
normalize examples per-channel for all datasets and randomly apply: (i) shifts by at most
4 pixels in any direction and horizontal flips (CIFAR-10, CIFAR-100, and TinyImageNet),
(ii) rotations by up to 4 degrees (MNIST), and (iii) random 224×224 crops and horizontal
flips (ImageNet).

Model Epochs Drop epochs Batch LR Decay Source

LeNet-300-100 160 41/83/125 100 0.1 5e-4 Lee et al. (2019)
LeNet-5 307 76/153/230 128 0.1 5e-4 Lee et al. (2019)
VGG-16 160 80/120 128 0.1 1e-4 Frankle et al. (2021)
VGG-19 160 80/120 128 0.1 5e-4 Wang et al. (2020)
ResNet-18 200 100/150 256 0.2 1e-4 Frankle et al. (2021)
ResNet-50 90 30/60/80 512 0.4 1e-4 Frankle et al. (2021)
MobileNetV2 90 30/60/80 512 0.4 1e-4 Frankle et al. (2021)

Table 1: Summary of experimental work. All architectures include batch normalization
layers followed by ReLU activations. Models are initialized using Kaiming normal scheme
(fan-avg) and optimized by SGD (momentum 0.9) with a stepwise LR schedule (10× drop
factor applied on specified drop epochs). The categorical cross-entropy loss function is used
for all models.

Appendix B. Experiments with VGG-16

In Figure 11, we display the results of our experiments with VGG-16 on CIFAR-10. As
we argued in Section 3, higher sparsities are required for purely convolutional architectures
(such as VGG-16) to develop inactive connections since feature maps are harder to dis-
connect. At the same time, several algorithms (SNIP, SNIP-iterative, GraSP) suffer from
layer-collapse at modest sparsities (99.9% or less) and, hence, fail to develop significant
amounts of inactive parameters. For this reason, as evident from Figures 3, 4, and 11,
VGG-16 arguably showcases the least differences between effective and direct compression
among all tested architectures.
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Figure 11: Left: effective versus direct compression of VGG-16 when pruned by different
algorithms. Right: test accuracy (min/average/max) of VGG-16 trained from scratch after
being pruned by different algorithms plotted against direct (dashed) and effective (solid)
compression. Dashed and solid curves overlap for SynFlow and SNIP-iterative.
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