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various machine learning applications such as probabilistic modeling, generative modeling,
and representation learning. However, their attractive properties often come at the cost of
restricting the layer design, which poses a question on their representation power: can we
use these models to approximate sufficiently diverse functions? To answer this question, we
have developed a general theoretical framework to investigate the representation power of
INNs, building on a structure theorem of differential geometry. The framework simplifies
the approximation problem of diffeomorphisms, which enables us to show the universal
approximation properties of INNs. We apply the framework to two representative classes
of INNs, namely Coupling-Flow-based INNs (CF-INNs) and Neural Ordinary Differential
Equations (NODEs), and elucidate their high representation power despite the restrictions
on their architectures.
Keywords: invertible neural network, normalizing flow, universal approximation property,
coupling flow, neural ordinary differential equation

1. Introduction

Invertible neural networks (INNs) are neural network architectures with invertibility by
design. They are often endowed with tractable algorithms to compute the inverse map and
the Jacobian determinant, such as their explicit formulas. These characteristics of INNs have
enabled a series of new techniques in various machine learning tasks, for example, generative
modeling (Dinh et al., 2017; Kingma and Dhariwal, 2018; Oord et al., 2018; Jacobsen et al.,
2018; Behrmann et al., 2019; Kim et al., 2019; Zhou et al., 2019), probabilistic inference (Bauer
and Mnih, 2019; Ward et al., 2019; Louizos and Welling, 2017), solving inverse problems
(Ardizzone et al., 2019), feature extraction and manipulation (Kingma and Dhariwal, 2018;
Nalisnick et al., 2019; Izmailov et al., 2020; Teshima et al., 2020b), quantum field theory
(Albergo et al., 2019), modeling non-linear dynamics (Bevanda et al., 2022a,b), and 3D point
cloud generation (Yang et al., 2019; Kim et al., 2020; Kimura et al., 2021).

INNs have been realized by the careful design of the special invertible layers called the
flow layers. Examples of flow layer designs include coupling flows (CFs; Papamakarios
et al., 2021; Kobyzev et al., 2021) and neural ordinary differential equations (NODEs; Chen
et al., 2018). CFs employ a highly restricted network architecture in which only some of the
input variables undergo some transformations, and the rest of the input variables become
the output as-is without being transformed (Section 2.1.1). Also, NODEs offer flow layers
by indirectly modeling an invertible function by transforming an input vector through an
ordinary differential equation (ODE). To construct more flexible INNs, multiple such flow
layers are composed as well as invertible affine transformation layers. Moreover, a variety
of CF layer designs have been proposed to construct CF-INNs with high representation
power, such as the affine coupling flow (Dinh et al., 2015, 2017; Kingma and Dhariwal, 2018;
Papamakarios et al., 2017; Kingma et al., 2016), the neural autoregressive flow (Huang et al.,
2018; Cao et al., 2019; Ho et al., 2019), and the polynomial flow (Jaini et al., 2019), each
demonstrating enhanced empirical performance.

However, despite the diversity of flow-layer designs (Papamakarios et al., 2021; Kobyzev
et al., 2021), and their popularity in practice, the theoretical understanding of the repre-
sentation power of INNs has been limited. Indeed, the most basic property as a function
approximator, namely the universal approximation property (or universality for short) (Cy-
benko, 1989; Hornik et al., 1989; Funahashi, 1989), has not been elucidated until recently
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(Teshima et al., 2020a,c). The universality can be crucial when INNs are used to learn an
invertible transformation such as feature extraction (Nalisnick et al., 2019) or independent
component analysis (Teshima et al., 2020b) because, informally speaking, lack of universal-
ity implies that there exists an invertible transformation, even among well-behaved ones,
that the INN can never approximate. The lack of universality could hinder the model’s
ability to generalize well across various tasks, potentially making it less reliable for function
approximation in certain scenarios.

In this work, we show the high representation power of some representative architectures of
CF-based INNs and NODE-based INNs by showing their universal approximation properties
for a fairly large class of diffeomorphisms, namely smooth invertible maps with smooth
inverse. The present article is an extended version of Teshima et al. (2020a) and Teshima
et al. (2020c), but with substantial extensions. First, we extend the theoretical framework of
Teshima et al. (2020a) by taking into account the approximation of the derivatives in addition
to the function values. Investigating the representation power to approximate the derivatives
can be important in providing machine learning methods with theoretical guarantees. For
example, in Teshima et al. (2020b, Appendix C.7.), the Sobolev norm has been used to
characterize the approximation error of an invertible model.

By such an extension, we also strengthen the theoretical guarantees for the distributional
approximation using INNs. Whereas the preliminary version of the framework in Teshima
et al. (2020a) could only guarantee the approximation capability in terms of the weak
convergence topology, the present framework can elucidate the universality in terms of the
total variation distance of distributions. Approximation in the total variation distance is a
stronger notion that can be useful in providing machine learning algorithms with theoretical
guarantees. See Remark 52 in Section 5.

The difficulty in proving the universality of INNs comes from two complications. (i) Only
function composition can be leveraged to make accurate approximators (for example, a
linear combination of sub-networks is not allowed, as opposed to standard fully-connected
neural networks). (ii) INNs have architecture-specific inflexibility: CF layers have restricted
function forms, and NODE layers can only model functions that can be realized by differential
equations. We overcome these complications by problem reduction: we decompose a general
diffeomorphism into much simpler ones by using a structural theorem of differential geometry
that untangles the structure of a certain diffeomorphism group. By showing that CF layers
and NODE layers can approximate the simple components of the target diffeomorphism, we
prove the universality results.

We first provide a general theorem that shows the equivalence of the universality for
certain diffeomorphism classes, which can be used to reduce the approximation of a general
diffeomorphism to that of a much simpler one. Then, by leveraging this problem reduction,
we show that certain examples of the CF layer designs and the NODEs result in universal
approximators for a general class of diffeomorphisms.

Our contributions. Our contributions are summarized as follows.

1. We present a theorem to show the equivalence of universal approximation properties
for certain classes of functions (Theorem 24 and Theorem 25). The result enables the
reduction of the task of proving the universality for general diffeomorphisms to that for
much simpler coordinate-wise ones. It generalizes and unifies the equivalence theorems
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previously shown by Teshima et al. (2020a) and Teshima et al. (2020c), while removing
some restrictions that these two previous studies imposed.

2. We relate functional universality (that is, universality for approximating functions)
to distributional universality (that is, universality for approximating distributions by
pushforward). We introduce a new type of functional approximation property, namely
Sobolev universality, which is a stronger notion of what has been previously considered by
Teshima et al. (2020a) and Teshima et al. (2020c). Then, we show Sobolev universality
implies the distributional universality in terms of the weak topology (Corollary 39) and
the topology induced by the total variation norm (Corollary 41) under appropriate
assumptions.

3. We show that the INNs based on certain CF architectures have the Sobolev universality,
implying they may be more suitable choices for obtaining theoretical guarantees in the
machine learning tasks that require the approximation of derivatives.

Notation We list the mathematical notations we use in this paper in the notation tables in
Appendix. We also summarize several mathematical notions and their properties in Appendix
A.

2. Preliminaries and Related Work

In this section, we describe the models analyzed in this study, the notion of universality, and
related work.

2.1 Invertible Layers

We introduce several invertible layers we consider in this paper, which constitute invertible
neural networks.

2.1.1 Coupling-flow Based Invertible Neural Networks (CF-INNs)

We fix d ∈ N and assume d ≥ 2. For a vector x ∈ Rd and k ∈ [d− 1], we define x≤k as the
vector (x1, . . . , xk)

> ∈ Rk and x>k the vector (xk+1, . . . , xd)
> ∈ Rd−k.

Definition 1 (Coupling flows) We define a coupling flow (CF) (Papamakarios et al.,
2021) hk,τ,θ by hk,τ,θ(x≤k,x>k) = (x≤k, τ(x>k, θ(x≤k))), where k ∈ [d− 1], θ : Rk → Rl and
τ : Rd−k × Rl → Rd−k are maps, and τ(·, θ(y)) is an invertible map for any y ∈ Rk.

One of the most standard types of CFs is affine coupling flows (Dinh et al., 2017; Kingma
and Dhariwal, 2018; Kingma et al., 2016; Papamakarios et al., 2017).

Definition 2 (Affine coupling flows) We define an affine coupling (ACF) flow by the
map Ψk,s,t from Rd to Rd such that

Ψk,s,t(x≤k,x>k) = (x≤k,x>k � exp(s(x≤k)) + t(x≤k)),

where k ∈ [d − 1], � is the Hadamard product, exp is applied in an element-wise manner,
and s, t : Rk → Rd−k are maps.
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The maps s and t are typically parametrized by neural networks.

Definition 3 (Single-coordinate affine coupling flows) Let H be a set of functions
from Rd−1 to R. We define the set of H-single-coordinate affine coupling flows as a subclass
of ACFs by H-ACF := {Ψd−1,s,t : s, t ∈ H}.

H-ACF is the least expressive flow design appearing in this paper. However, we show in
Section 4.1 that it can form a CF-INN with universality. Later, we require various regularity
conditions on H depending on the type of universality we want to show.

2.1.2 Neural ordinary differential equations (NODEs)

Here, we define the family of NODEs considered in the present paper. NODE is based on
the following fact that any autonomous ODE (that is, an ODE is defined by a time-invariant
vector field) with a Lipschitz continuous vector field has a solution and that the solution is
unique:

Fact 4 (Existence and uniqueness of a global solution to an ODE) Let f ∈ Lip. Then,
a solution z : R→ Rd to the following ODE exists, and it is unique:

z(0) = x, ż(t) = f(z(t)), t ∈ R, (1)

where x ∈ Rd, and ż denotes the derivative of z (see Derrick and Janos (1976) for example).

In view of Fact 4, we use the following notation.

Definition 5 (Autonomous-ODE flow endpoints) For f ∈ Lip, x ∈ Rd, and t ∈ R,
we define

IVP[f ](x, t) := z(t),

where z : R→ Rd is the unique solution to Equation (1). Then, for F ⊂ Lip, we define

Ψ(F) := {IVP[f ](·, 1) | f ∈ F}.

See, for example, (Li et al., 2022). Note that the elements of Ψ(F) are invertible.

2.2 Invertible Neural Networks (INNs)

We consider the INN architectures constructed by composing flow layers, defined as follows.

Definition 6 (INNs) Let G be a set consisting of bijective maps on Rd. We define the set
of INNs based on G as

INNG := {W1 ◦ g1 ◦ · · · ◦Wn ◦ gn : n ∈ N, gi ∈ G,Wi ∈ Aff} .

Remark 7 Previous studies such as Kingma and Dhariwal (2018) used GL (see Table 3 for
its definition) in place of Aff in the definition of INNG. This difference is not a problem in
most cases. For example, if there exist finite elements of G such that their composition equals
the map x 7→ x + b for an arbitrary vector b ∈ Rd, then, replacing Aff with GL does not
change the function set INNG. In fact, when G contains H-ACF with minimal requirements
on H, we can further reduce the set of linear transformations for INNs from Aff to the
symmetric group Sd, that is, the permutations of variables. See Appendix E.1 for details.
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2.3 Universal Approximation Properties

Here, we clarify the notions of universality in this paper. The definitions use general
topological terms, generalizing the Lp-universality and sup-universality in Teshima et al.
(2020a,c).

2.3.1 Functional universality

We define the notion of universality for sets of functions, which is a key notion in this paper.
Roughly speaking, a model class is universal for a set of target functions if one can always
find a model in the proximity of any target function. The notion of proximity is stated in
general terms of topology.

Definition 8 (General functional universality) Let U be a subset of Rm and let F0 be
an Rn-valued function space on U with some topology and let F ⊂ F0 be a subset. LetM be a
model, which is a set of measurable maps from Rm to Rn. We say thatM is an F0-universal
approximator for F (or has an F0-universal approximation property for F), if {g|U : g ∈M}
is a subset of F0 and its closure contains F .

It is well-known that 2-layer neural networks with suitable activation functions are
universal, namely, they can approximate any continuous functions on any compact set in
Rd (see, for example, Cybenko 1989). In the manner of Definition 8, we can translate this
fact into the C0(Rd)-universal approximation property of 2-layer neural networks for C0(Rd),
where we equip C0(Rd) with the topology with seminorms composed of the sup norms on
compact sets.

As an example of F0, we typically use the Rn-valued local Sobolev space W r,p
loc (U,Rn),

which is roughly speaking the space of r-times (weakly-) differentiable measurable functions
f such that for any compact set K ⊂ U , ‖f‖K,r,p <∞, where

‖f‖K,r,p :=


∑
|α|≤r

(∫
K
‖∂αf(x)‖pdx

)1/p

if p <∞,∑
|α|≤r

ess.supx∈K‖∂αf(x)‖ if p =∞.

Formally, we define the local Sobolev space as follows.

Definition 9 (McDuff and Salamon, 2004, Appendix B) Let U be a subset of Rm, r
a non-negative integer, and p ∈ [1,∞]. We define the local Sobolev space W r,p

loc (U,Rn) by

W r,p
loc (U,Rn) := lim

←−
V

W r,p(V,Rn),

where the right hand side is explicitly defined as the following set:(fV )V ∈
∏

V⊂U : bounded open
V⊂U

W r,p(V,Rn) : fV1 |V2 = fV2 if V2 ⊂ V1

 .
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Here, W r,p(V,Rn) is the Rn-valued Sobolev space on V . The local Sobolev space is equipped
with the relative topology of the product of the Sobolev spaces. We denote W 0,p

loc (U,Rn) by
Lploc(U,R

n).

Remark 10 The approximation in terms of the topology of W r,p
loc (U,Rn) is equivalent to the

usual notion of approximation in terms of the norms. Namely, a function f on U is in the
closure of a modelM in the sense of the topology of the local Sobolev space W r,p

loc (U,Rn) if and
only if for any compact set K and ε > 0, there exists g ∈M such that ‖f − g|U‖K,r,p < ε.

The ordinary function classes can be considered to be subsets of W r,p
loc (U,Rn) as in the

following proposition.

Proposition 11 Let U ⊂ Rm be an open subset, p ∈ [1,∞], and f : U → Rn be a measurable
mapping.

1. If r = 0 and f is L∞, then (f |V )V ∈W 0,p
loc (U,Rn).

2. If r ≥ 1 and f is locally Cr−1,1 (see Table 3 for the definition), then (f |V )V ∈
W r,p

loc (U,Rn).

Proof The first statement is easily shown by noting that L∞ is locally Lp. The second
statement follows from Remark 2.12 of Ern and Guermond (2021) and induction on r.

In words, according to Proposition 11, we can embed a set of suitable functions on U into
W r,p
loc (U,Rn) via the correspondence f 7→ (f |V )V . Therefore, usual models, for example,

Multilayer perceptron (MLP) with rectifier linear unit (ReLU) activation functions, are
contained in W 1,p

loc as they are usually locally Lipschitz (note that locally C0,1 means locally
Lipschitz).

We call W r,p
loc (U,Rn)-universality the Sobolev universality and introduce a special notion

for simplicity:

Definition 12 (W r,p-universality and Lp-universality) Notations are as in Definition 8.
Let r be a non-negative integer and let p ∈ [1,∞]. We say a modelM is a W r,p-universal
approximator for F (or has a W r,p-universal approximation property for F) if the modelM
is a W r,p

loc (U,Rn)-universal approximator for F . In the case of r = 0, we use Lp- instead
of W 0,p-, for example, we say an Lp-universal approximator instead of a W 0,p-universal
approximator.

We note that the W r,p-universal approximation property implies the W r′,p′-universal approx-
imation property if r ≥ r′ and p ≥ p′.

Remark 13 If F0 in Definition 8 is the space of locally bounded measurable maps with
seminorms of sup (not ess.sup) norms on compact sets, a model with F0-universal approxi-
mation property is called a sup-universal approximator. The notion of sup-universality was
introduced in Teshima et al. (2020a) and Teshima et al. (2020c) and is a slightly different
concept from L∞-universality. We mainly deal with L∞-universality in this paper.
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2.3.2 Distributional universality

We define the notion of distributional universality. Distributional universality has been
used as a notion of theoretical guarantees in the literature on normalizing flows, that is,
probability distribution models constructed using INNs (Kobyzev et al., 2021). We here
provide a generalized version of the classical distributional universality as follows:

Definition 14 (General distributional universality) LetM be a model which is a set
of measurable maps from Rm to Rn. Let P0 be a set of probability measures on Rn with some
topology. Let Q ⊂ P0 be a subset. Fix probability measure µ0 on Rm. We say that a modelM
is a (P0, µ0)-distributional universal approximator for Q (or has the (P0, µ0)-distributional
universal approximation property for Q) if {g∗µ0 : g ∈M} ⊂ P0 and the closure of the set
{g∗µ0 : g ∈M} in P0 contains Q. Here, g∗µ0 denotes the pushforward of µ0 by g.

Remark 15 When P0 = Q = Pw (see Table 3 for the definition of Pw), (P0, µ0)-
distributional universality for Q is equivalent to the sequential convergence, that is, the
existence of a sequence {gi}∞i=1 ⊂ M for each ν ∈ P such that gi∗µ0 converges to ν in
distribution as i→∞.

Remark 16 The distributional universality described in Definition 14 is a generalized notion
considered in existing work. For example, the distributional universality in Jaini et al. (2019)
is rephrased as a (Pw, ν)-distributional universal approximation property for Pab for any
ν ∈ Pab in our terminology. Teshima et al. (2020a) extended the definition by Jaini et al.
(2019). Their distributional universality is a (Pw, ν)-distributional universal approximation
property for P for any ν ∈ Pab. It is worth noting that these two concepts of distributional
universal approximation are equivalent. This is essential because absolutely continuous
probability measures are dense in the set of all the probability measures. We prove this fact
as Lemma C.1 in Appendix C.1.

The different notions of universality are interrelated. Most importantly, the Lp-universality
for a certain function class implies the distributional universality (see Proposition 38).
Moreover, if a model M is a sup-universal approximator for F , it is also an Lp-universal
approximator for F for any p ∈ [1,∞].

2.4 Related Work

Several studies showed the functional or distributional universality of INNs other than
CF-INNs and NODEs. They are not competitive with but complementary to ours as their
problem settings are different from ours in target models and evaluation norms. Gopal (2021)
proposed a type of INNs named Exact-Lipschitz Flows (ELF) and proved their functional
universality (more specifically, sup-universality in our terminology). Kong and Chaudhuri
(2021) showed the universality of residual flows in terms of the maximum mean discrepancy
(MMD). They quantitatively evaluated the number of layers needed to approximate a target
function with prescribed precision.

Another line of work is to study the expressive power of specific forms of CF-INNs and
NODEs. Huang et al. (2021) introduced Convex Potential Flows, which is a parameterization
of invertible models inspired by the optimal transport theory. They proved its distributional
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universality. Ruiz-Balet and Zuazua (2021) analyzed a NODE coming from the following
form:

ẋ(t) = W (t)σ(A(t)x(t) + b(t)),

where A, W , and b are time-dependent matrices and a vector. They showed that, despite the
restricted form, the flow generated by the ODE above has the L2-universal approximation
property. It is an interesting research direction to develop a general theory to broaden the
applicability of our results to models like theirs.

Since the publication of our previous work (Teshima et al., 2020a,c), several researchers
have studied the universality of INNs based on our theory. Puthawala et al. (2022) showed
that injective flows between Rn and Rm (n ≤ m) universally approximate measures sup-
ported on the images of extendable embeddings, which is a composition of a full-rank linear
transformation followed by a diffeomorphism, in terms of the Wasserstein distance. Their
results were built on our previous result of the sup-universality of neural autoregressive
flows. Abe et al. (2021) proposed a novel network architecture called Abelian group networks
that employs INNs as building blocks. They proved that Abelian group networks have a
functional universal approximation property for Abelian Lie group operations on a Euclidean
space. They essentially used the universality of INNs in the proof of the theorem. Also,
concurrently with the present work, Lyu et al. (2022) showed the universality of CF-INNs
in the Ck-norm, that is, a notion of universality taking into account the approximation of
derivatives. Their result on the Ck-universality, namely Theorem 3.5 in Lyu et al. (2022),
can be reproduced as a special case in our Theorem 24 by selecting p =∞ and G to be a
set of diffeomorphisms. While their proof has the advantage of being more concise thanks
to focusing on this special case, they require the models to be smooth everywhere. On the
other hand, our result can accommodate those flow layers which are not smooth everywhere,
for example, CF layers with ReLU activation functions that are prevalent in applications.
On a more technical side, our result provides a finer understanding of the diffeomorphism
group Diffrc, which allows us to provide a theoretical guarantee of NODE-based INNs. More
concretely, their proof directly uses the fact that the elements of Diffrc can be decomposed
into near-Id diffeomorphisms, while our Theorem 24 indicates that Diffrc can be decomposed
into the elements of Ξr, which can be further decomposed into near-Id diffeomorphisms.

As for theoretical limitations of INNs, Okuno and Imaizumi (2021) showed the lower
bound (in a minimax sense) of estimation risks in non-parametric regression problems for
estimating invertible functions on a plane. Although they constructed an estimator that
achieved the lower bound, it is not known whether INNs of any kind can achieve this
optimality.

3. General Framework

In this section, we present the main results (Theorems 24 and 25) of this paper on the
universality of INNs. The main theorem breaks down the functional universality for a general
class of diffeomorphisms into that for a much simpler class of diffeomorphisms. We also
explain the implication of the main theorem to the distributional universality. The results
in this section are derived and stated in a general setup so that it is not limited to the
representation power analyses of specific INN architectures.
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3.1 Equivalence of Universal Approximation Properties

Our first main theorem allows us to lift a universality result for a restricted set of diffeo-
morphisms to the universality for a fairly general class of diffeomorphisms by showing a
certain equivalence of universalities. Thanks to this problem reduction, we can essentially
circumvent the major complication in proving the universality of CF-INNs, namely that only
function composition can be leveraged to make complex approximators (for example, a linear
combination is not allowed).

We define the following classes of invertible functions: Cr-diffeomorphisms Dr, flow
endpoints Ξr, triangular transformations T ∞, and single-coordinate transformations Src . Our
main theorem later reveals an equivalence of W r,p-universality for these classes.

First, we define the set of Cr-diffeomorphisms.

Definition 17 (Cr-diffeomorphisms: Dr) Let 0 ≤ r ≤ ∞. For each open subset U ⊂ Rd,
we define DrU to be the set of maps from U to Rd which are Cr-diffeomorphisms from U
to their images. We denote Dr := tUDrU (the formal disjoint union of the sets), where
U ⊂ Rd runs over the set of all open subsets which are Cr-diffeomorphic to Rd. Let s ≤ r.
We say that a modelM is a W s,p-universal approximator for Dr ifM is a W s,p-universal
approximator for DrU for any open subset U ⊂ Rd that is Cr-diffeomorphic to Rd.

We require the domain U to be Cr-diffeomorphic to Rd for technical reasons. However, this
constraint would not be too strong: the entire Rd, any open convex set, and, more generally,
any star-shaped open set, all satisfy this condition. In addition, it is known that if d ≥ 5,
any connected and simply connected open subset in Rd is always C∞-diffeomorphic to Rd.

Remark 18 Although we required the domain U to be Cr-diffeomorphic to Rd in Defini-
tion 17, we may replace “Cr-diffeomorphic” with “C∞-diffeomorphic” if r > 0. In fact, in the
case of r > 0, it is known that an open subset of Rd is Cr-diffeomorphic to Rd if and only
if C∞-diffeomorphic (Hirsch, 1976, p.50, Theorem 2.7). On the other hand, in the case of
r = 0, there exists an open subset that is homeomorphic to Rd but not diffeomorphic to Rd.

Before going to the second class, we define the set of compactly-supported diffeomorphisms
on Rd as its container.

Definition 19 (Compactly supported diffeomorphism: Diffrc) We say a diffeomor-
phism f on Rd is compactly supported if there exists a compact subset K ⊂ Rd such
that for any x /∈ K, f(x) = x. We use Diffrc to denote the set of all compactly supported
Cr-diffeomorphisms (1 ≤ r ≤ ∞) from Rd to Rd. We regard Diffrc as a group whose group
operation is function composition. For f ∈ Diffrc, we define suppf ⊂ Rd by the closure of the
set {x ∈ Rd : f(x) 6= x}, which is compact by definition.

Our second class is a subset Ξr of Diffrc consisting of flow endpoints.

Definition 20 (Flow endpoints: Ξr) Let 1 ≤ r ≤ ∞. Let Ξr ⊂ Diffrc be the set of
diffeomorphisms g of the form g(x) = Φ(x, 1) for some map Φ : Rd × U → Rd such that

• U ⊂ R is an open interval containing [0, 1],

• Φ(x, 0) = x,
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• Φ(·, t) ∈ Diffrc for any t ∈ U ,

• Φ(x, s+ t) = Φ(Φ(x, s), t) for any s, t ∈ U with s+ t ∈ U ,

• Φ is Cr on Rd × U , and

• there exists a compact subset KΦ ⊂ Rd such that ∪t∈U suppΦ(·, t) ⊂ KΦ.

Remark 21 Definition 20 is the same as Definition 7 of Teshima et al. (2020c). A similar
definition of flow endpoints can be found in Definition 9 of Teshima et al. (2020a). The
difference between Definition 20 and the one of Teshima et al. (2020a) mainly lies in the last
two conditions. Technically, these two conditions are used in Theorem 44 for showing that
the partial derivative of Φ in t at t = 0 is Lipschitz continuous. We can prove the universality
of CF-INNs without these two conditions, as done in Teshima et al. (2020a).

Finally, we define two subclasses of DrRd as follows:

Definition 22 (Triangular transformations: T ∞) We define T ∞ as the set of all in-
creasing triangular C∞-maps from Rd to Rd. Here, we say a map τ = (τ1, . . . , τd) : Rd → Rd
is increasing triangular if each τk(x) depends only on x≤k and is strictly increasing with
respect to xk.

Definition 23 (Single-coordinate transformations: Src ) We define Src as the set of all
compactly-supported Cr-diffeomorphisms τ satisfying τ(x) = (x1, . . . , xd−1, τd(x)), that is,
those which alter only the last coordinate.

Note that for any r ≥ 1, we have

D0
Rd ⊃ Diff0

c

⊂ ⊂

DrRd ⊃ Diffrc ⊃ Ξr

⊂ ⊂

T ∞ ⊃ S∞c

Remark that τd for τ ∈ Src (r ≥ 0) is strictly increasing with respect to xd since the Cr-
diffeomorphism τ is compactly supported. Among the above classes of invertible functions,
Dr is our main approximation target, and it is a fairly large class. The class T ∞ relates
to the distributional universality as we will see in Proposition 38. The class S∞c is a much
simpler class of diffeomorphisms that we use as a stepladder for showing the universality for
Dr.

Now we are ready to state the first main theorem. It reveals an equivalence among the
universalities for Dr, Ξ∞, T ∞, and S∞c , under mild regularity conditions. We can use the
theorem to lift up the universality for S∞c to that for Dr.

Theorem 24 (Equivalence for Sobolev universality) Let p ∈ [1,∞] and let r ≥ 0 be
a nonnegative integer. Let G be a set of invertible functions from Rd to Rd. Suppose one of
the following two conditions hold:
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(A) When p <∞, all elements of G are Cr and piecewise Cr+1-diffeomorphisms if r ≥ 1
or piecewise C1-diffeomorphisms if r = 0.

(B) When p =∞, the following two conditions hold: (i) all elements of G are locally Cr−1,1

if r ≥ 1 or locally L∞ if r = 0 and (ii) their inverse image of a nullset is again a
nullset.

Then, the following statements are equivalent:

1) INNG is a W r,p-universal approximator for Dmax(r,1),

2) INNG is a W r,p-universal approximator for Ξ∞,

3) INNG is a W r,p-universal approximator for T ∞, and

4) INNG is a W r,p-universal approximator for S∞c .

As for the sup-universality (Remark 13), we have a similar result:

Theorem 25 Suppose the assumptions of Theorem 24 hold. In addition, suppose that
r = 0 and that G consists of locally bounded measurable mappings. Then, the equivalence in
Theorem 24 is valid if we replace “W r,p-” with “sup-”.

For the definitions of the piecewise Cr-diffeomorphisms, locally Cr−1,1, and locally L∞, see
Appendix A. The regularity conditions in (A) and (B) assure that the functional composition
within G is compatible with approximations (see Appendix B for details). These conditions
are usually satisfied. The key step of the proof of this theorem is a decomposition of f into
flow endpoints, which is realized by relying on a structure theorem of Diff∞c (Fact 30 in
Appendix D) attributed to Herman (1973), Thurston (1974), Epstein (1970), and Mather
(1974, 1975).

If we impose some restriction on the dimension d, we have stronger results:

Theorem 26 (Higher dimensional case) The notation is as in Theorem 24.

1. Under (A), if r = 0 and d ≥ 2, the statements 1)–4) are equivalent to the statement:

• INNG is an Lp-universal approximator for C0(U,Rd) for any open subset of
U ⊂ Rd (U is not necessarily homeomorphic to Rd).

2. Under (B), if r = 0 and d ≥ 7, the statements 1)–4) are equivalent to the statement:

• INNG is an L∞-universal approximator for D0.

In parallel to Theorem 25, we have a similar result for the sup-universality.

Theorem 27 Suppose the assumptions of Theorem 26 hold. In addition, suppose that r = 0
and that G consists of locally bounded measurable mappings. Then, the equivalence in the
statement 2 in Theorem 26 is valid if we replace “W r,p-” with “sup-”.

We provide the proof of Theorem 26 and Theorem 27 in Appendix D.4.
Theorem 25 and Theorem 27 strengthen Theorem 1 in Teshima et al. (2020a) which

provides the equivalence of the universality between S∞c and D2 instead of D1 (or D0 if
d ≥ 7).
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3.2 Proof of Theorem 24 and Theorem 25

Theorem 24 and Theorem 25 are the consequence of Lemma 28, Lemma 29, Lemma 31,
Lemma 33, and Lemma 36 we below show. More precisely, the proof is carried out by
decomposing an approximation in D∞U of f : U → Rd into simpler functions step by step:

f

f̃ D∞U

W ◦ h (W ∈ Aff, h ∈ Diff∞c )

g1 ◦ · · · ◦ g` (g1, . . . g` ∈ Ξ∞)

h1 ◦ · · · ◦ hm (h1, . . . , hm: near-Id’s)

τ1 ◦ σ1 ◦ · · · ◦ τn ◦ σn (τ1, . . . , τn ∈ Sd, σ1, . . . , σn ∈ S∞c )

≈ Lemma 28 (§3.2.1)

Lemma 29; the equality holds on K(§3.2.2)

∈

Lemma 31 (§3.2.3)

Lemma 33 (§3.2.4)

Lemma 36 (§3.2.5)

To have the diagram above work, we need one more proposition to ensure that the approxima-
tion of composite functions is the composition of the approximated functions (Proposition 37).
See Section 3.2.7 for the complete proof. The proofs of some of the auxiliary lemmas are in
Appendix D and Proposition 37 in Appendix B.

3.2.1 Approximation of Dmax(r,1) by D∞

This reduction is a direct consequence of the following lemma:

Lemma 28 For any r ≥ 1, any 1 ≤ p ≤ ∞, and any open subset U ⊂ Rd, D∞U is a
W r,p-universal approximator for DrU .

Proof Since the universal approximation property only considers approximation on compact
sets by definition, W r,∞-universal approximation implies W r,p-universal approximation for
any p ≥ 1. Therefore, it follows Hirsch (1976, Theorem 2.7, p.50).

3.2.2 From D∞ to Diff∞c

Let f ∈ D∞. If we fix a compact set K of the domain U of f , we can find a compactly
supported diffeomorphism identical with f on K: there exists h ∈ Diff∞c and W ∈ Aff such
that

f |K = W ◦ h|K . (2)

It follows from the following lemma in the case of r =∞:
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Lemma 29 Assume r ≥ 2. Let U ⊂ Rd be an open set Cr-diffeomorphic to Rd, K ⊂ U a
compact set, and f ∈ DrU . Then, there exist h ∈ Diffrc and an affine transform W ∈ Aff such
that W ◦ h|K = f |K .

Proof See Appendix D.1.

3.2.3 From Diff∞c to Ξ∞

The set Diffrc constitutes a group whose group operation is the function composition. Moreover,
Diffrc is a topological group with respect to the Whitney topology (Haller, 1995, Proposi-
tion 1.7.(9)). Then there is a crucial structure theorem of Diffrc attributed to Herman,
Thurston (Thurston, 1974), Epstein (Epstein, 1970), and Mather (Mather, 1974, 1975):

Fact 30 Assume 1 ≤ r ≤ ∞ and r 6= d+ 1. Then, the group Diffrc is simple, that is, any
normal subgroup H ⊂ Diffrc is either {Id} or Diffrc.

The assertion is proven in Mather (1975) for the connected component containing Id, instead
of the entire set of compactly-supported Cr-diffeomorphisms when the domain space is a
general manifold instead of Rd. In the special case of Rd, the connected component containing
Id is known to be Diffrc itself (Haller, 1995, Example 1.15), hence Fact 30 follows. For details,
see (Haller, 1995, Corollary 3.5 and Example 1.15). Also, Banyaga (1997) is an introductory
monograph that explains the simplicity of Diff∞c .

We use Fact 30 to prove that a compactly supported diffeomorphism can be represented
as a composition of flow endpoints in Diffrc. Thanks to Lemma 28, we only consider Diff∞c ,
and thus we do not need to consider the condition r 6= d+ 1 in Fact 30.

Lemma 31 If s 6= d + 1, the set of compactly supported diffeomorphisms Diffsc coincides
with the set of finite compositions of the elements of Ξr. More specifically, we have

Diffrc = {g1 ◦ · · · ◦ gn : n ≥ 1, g1, . . . , gn ∈ Ξr}.

Proof See Appendix D.2.

3.2.4 From Ξ∞ to near-Id’s

First, we provide the definition of near-Id’s.

Definition 32 (near-Id elements) Let f : Rd → Rd be a differentiable map. We say f is
near-Id if, for any x ∈ Rd, the Jacobian Df of f at x satisfies

‖Df(x)− I‖op < 1,

where I is the unit matrix.

Then, the decomposition from flow endpoints to near-Id’s follows from the following lemma:

Lemma 33 Let r ≥ 1. For any f ∈ Ξr, there exist finite elements g1, . . . , gk ∈ Diffrc such
that f = gk ◦ · · · ◦ g1 and gi is Cr-near-Id for any i ∈ [k].
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Proof Let Φ be a flow associated with f . Since Φ(·, 0) is the identity function and Φ is
continuous on Rd × U , we can take a sufficiently large n such that h̃ := Φ(·, 1/n) is near-Id.
By the additive property of Φ, we have

f = h̃ ◦ · · · ◦ h̃︸ ︷︷ ︸
n times

,

which completes the proof.

3.2.5 From Near-Id’s to S∞c
First, we introduce two elementary lemmas.

Lemma 34 Let A = (ai,j)i,j=1,...,d be a matrix. If ‖A− Id‖op < 1, then for k = 1, . . . , d, the
k-th trailing principal submatrix Ak := (ai+k−1,j+k−1)i,j=1,...,d−(k−1) of A is invertible. Here
Id is a unit matrix of degree d.

Proof Let v ∈ Rd−k+1 with ‖v‖ = 1, and put w := (0, . . . , 0, v) ∈ Rd. Then we have
1 > ‖(A− Id)w‖2 ≥ ‖(Ak − Ik)v‖2. Thus ‖Ak − Ik‖ < 1. Since

∑∞
r=0(Ik −Ak)r absolutely

converges, and it is identical to the inverse of Ak, we have that Ak is invertible.

For a ∈ N, we denote the set of a-by-a real-valued matrices by M(a,R).

Lemma 35 Let 1 ≤ r ≤ ∞ and f : Rd → Rd a compactly supported Cr-diffeomorphism. We
write f = (f1, . . . , fd) with fi : Rd → R. For k ∈ [d], let ∆f

k(x) ∈ M(d− (k − 1),R) be the
k-th trailing principal submatrix of the Jacobian matrix of f , whose (i, j) component is given
by
(
∂fi+k−1

∂xj+k−1
(x)
)

(i, j = 1, · · · , d− (k − 1)). We assume

det ∆f
k(x) 6= 0 for any k ∈ [d] and x ∈ Rd.

Then there exist compactly supported Cr-diffeomorphisms F1, . . . , Fd : Rd → Rd in the forms
of

Fi(x) := (x1, . . . , xi−1, hi(x), xi+1, . . . , xd)

for some hi : Rd → R such that the identity holds:

f = F1 ◦ · · · ◦ Fd.

Proof See Appendix D.3 (see also Figure 1).

Now, we apply the Lemma 35 together with Lemma 34 to decompose near-Id elements
into Src and permutations as follows:

Lemma 36 Let 1 ≤ r ≤ ∞. Let f : Rd → Rd be a compactly supported Cr-near-Id map.
Then there exist τ1, . . . , τn ∈ Src , and permutations of variables σ1, . . . , σn ∈ Sd, such that

f = τ1 ◦ σ1 ◦ · · · ◦ τn ◦ σn.

Proof Combining Lemma 34, and Lemma 35 below, we have the assertion.
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= ◦

f =

(
a b
c d

)
= f2 ◦ f1 f2

(
x1
y2

)
=

(
ax1 + b(y2−cx1

d )
y2

)
f1

(
x1
x2

)
=

(
x1

cx1 + dx2

)
Figure 1: An illustrative example for Lemma 35. This example shows the decomposition

of a near-Id transformation that is linear on the unit square (denoted by f) into
coordinate-wise ones (f1 and f2). The arrows indicate the transportation of the
positions. The figure is taken from Teshima et al. (2020a, Figure 1) with the
authors’ permission.

3.2.6 Compatibility of compositions and approximations

Now, we provide a general result of the compatibility of composition and approximation. It
enables the component-wise approximation, that is, approximating a composition of some
transformations by approximating each constituent and composing them. The justification
of this procedure is not trivial and requires a fine mathematical argument.

Proposition 37 Let r ≥ 1 and p ∈ [1,∞]. Let G be the set of Rd-valued mappings and G0

be a subset of G. Assume either of the following conditions:

1. 1 ≤ p ≤ ∞, G is composed of Cr and piecewise Cr+1 diffeomorphisms on Rd, and G0

is the subset composed of linearly increasing mappings.

2. p =∞, G is composed of locally Cr−1,1-mappings whose inverse image of nullsets are
again nullsets, and G0 is Cr-mappings.

Then, for any k ≥ 1, the map

Gk −→ G; (f1, . . . , fk) 7→ f1 ◦ · · · ◦ fk (3)

is continuous at any point of Gk0 with respect to the relative topology of W r,p
loc (Rd,Rd)k. If

G ⊂ Bloc(Rd,Rd) and the subset G0 ⊂ G is composed of continuous mapping, we have the
same continuity result of the composition with respect to the topology of Bloc(Rd,Rd)k.

Proof See Appendix B.

3.2.7 Overall Proof

Proof [Proof of Theorem 24 and 25] First, we prove the equivalence of statements 1) and 2).
Let f ∈ Dmax{1,r}

U and fix compact subset K ⊂ Uf . By Lemma 28, we may assume f ∈ D∞U .
Thus, in light of Lemma 29 and Lemma 31, there exist W ∈ Aff and g1, . . . , gm ∈ Ξ∞ such
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that f(x) = W ◦g1 ◦ · · · ◦gm(x) for all x ∈ K. Since W and gi’s satisfy the condition to apply
Proposition 37, and are linearly increasing (see Remark A.6), we obtain the equivalence of
statements 1) and 2).

Next, we prove the equivalence of statements 1), 3), and 4). Since we have S∞c ⊂ T ∞ ⊂
Dmax{1,r}

Rd , it is sufficient to prove that the universal approximation property for S∞c implies
that for Dmax{1,r}

U for any open subset U ⊂ Rd which is C∞-diffeomorphic to Rd. The strategy
is similar to the flow endpoint case in the previous paragraph. By Lemma 28, we may assume
f ∈ D∞U . Using Lemma 36 and Lemma 31, for any f ∈ D∞U and a compact subset K ⊂ Uf ,
there exist W1, . . . ,Wk ∈ Aff and τ1, . . . , τk ∈ S∞c such that f(x) = W1 ◦ τ1 ◦ · · · ◦Wk ◦ τk(x)
for all x ∈ K. Again, we use Proposition 37 to prove the claim.

3.3 Implications of the Main Theorem for Distributional Universality

Next, we give two consequences of Theorem 24 (namely, Corollary 39 and Corollary 41). We
first note the relationship between functional universality (Definition 8) and distributional
universality (Definition 14).

Proposition 38 Let p ∈ [1,∞]. An Lp-universal approximator for T ∞ is a (Pw, ν)-
distributional universal approximator for P for any ν ∈ Pab

The proof is based on the existence of a triangular map connecting two absolutely continuous
distributions (Bogachev et al., 2005). See Appendix C.1 for details. Note that the previous
studies (Jaini et al., 2019; Huang et al., 2018) have discussed the distributional universality of
some flow architectures essentially via showing the sup-universality for T ∞. Proposition 38
clarifies that the weaker notion of Lp-universality is sufficient for the distributional universality
since sup-universality implies Lp-universality.

Proposition 38 can be combined with both cases of (A) and (B) in Theorem 24, namely,
we have the following corollary:

Corollary 39 (Sobolev universality implies weak topology universality)
Notations and assumptions are as in Theorem 24. Then, if INNG is a W r,p-universal
approximator for S∞c , then it is a (Pw, ν)-distributional universal approximator for P for
any ν ∈ Pab.

If the model can also universally approximate the derivatives, then it is guaranteed to
have a stronger distributional universality in terms of the total variation distance, as we see
in the following proposition:

Proposition 40 Let r ≥ 1. Let F0 := W 0,∞
loc (Rd,Rd) ∩W 1,1

loc (Rd,Rd), where we define the
topology F0 to be the weakest topology such that the inclusion maps ı0 : F0 ↪−→W 0,∞

loc (Rd,Rd)
and ı1 : F0 ↪−→W 1,1

loc (Rd,Rd) are both continuous. Suppose any element in modelM is locally
C0,1 and a piecewise C1-diffeomorphism. If M is an F0-universal approximator for T ∞,
thenM is a (PTV, ν)-distributional universal approximator for Pab for any ν ∈ Pab.
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Since W 1,∞
loc (Rd,Rd) is continuously included in the space F0 defined in Proposition 40, we

immediately have

Corollary 41 (Sobolev universality implies total variation universality) Notation
is the same as Theorem 24. Assume that any element of G is locally C0,1 and a piecewise
C1-diffeomorphism. Then, if INNG is a W 1,∞-universal approximator for S∞c , then so is a
(PTV, ν)-distributional universal approximator for Pab for any ν ∈ Pab.

We defer their proofs to Appendix C.2.

4. Application of the General Framework

In this section, we show several crucial results for the universalities of INNs with certain flow
layers. The results are proved by using the general framework developed in Section 3.

4.1 Affine Coupling Flows (ACFs)

Here, we reveal the Lp-universality of INNH-ACF. This result reframes that of Teshima et al.
(2020a), which answered a previously unsolved question for the distributional universality
of ACF-based invertible neural networks. In this subsection, we always assume d ≥ 2 since
CF-INNs are only defined for d ≥ 2 (see Section 2.1.1).

Theorem 42 (Lp-universality of INNH-ACF) Let p ∈ [1,∞). Assume that H is an L∞-
universal approximator for C0(Rd−1) and that it consists of piecewise C1-functions. Then,
INNH-ACF is an Lp-universal approximator for C0(U,Rd) for any open subset U ⊂ Rd .

We remark that the universality is still valid if we restrict the affine layers of INNH-ACF

to elements in Sd, i.e., the permutations of variables. For the definition of piecewise C1-
functions, see Appendix A. We provide the proof of Theorem 42 by combining Theorem 24
with a slightly general result, which is an Lp-universal approximation property of INNH-ACF

for S0
c , in Appendix E.2. Examples of H satisfying the condition of Theorem 42 include

MLP models with ReLU activation (LeCun et al., 2015) and a linear-in-parameter model
with smooth universal kernels (Micchelli et al., 2006).

By combining Theorem 24, Theorem 42, and Proposition 38, we can affirmatively answer a
previously unsolved problem (Papamakarios et al., 2021, p.13), the distributional universality
of CF-INN based on ACFs, and we can confirm the theoretical plausibility of using them for
normalizing flows.

Theorem 43 (Distributional universality of INNH-ACF) Under the conditions of The-
orem 42, INNH-ACF is a (Pw, ν)-distributional universal approximator for P for any ν ∈ Pab.

4.2 Neural Ordinary Differential Equations (NODEs)

The following shows that the INNs based on NODEs can approximate diffeomorphisms with
respect to the W r,∞-norm. We denote by Lip ∩Cr the space of Lipschitz and Cr maps from
Rd to Rd and we equip it with the relative topology of W r,∞

loc (Rd,Rd).
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Theorem 44 (Universality of NODEs) Let r ≥ 0. Assume H ⊂ Lip ∩ Cr is a W r,∞-
universal approximator for Lip ∩ Cr. Then, INNΨ(H) is a W r,∞-universal approximator for
Dmax(r,1).

Theorem 44 is shown by applying Theorem 24 in combination with Lemma 29 (Appendix D.1)
to approximate the elements of Ξ∞ by NODEs. A proof is in Appendix F. We remark that
the universality in this theorem still holds if we restrict the affine layers of INNΨ(H) to
identity except the last one, which is denoted by W1 in Definition 6 (see Proposition F.2.
Examples of H include the MLP with finite weights and Lipschitz-continuous activation
functions such as ReLU activation (LeCun et al., 2015; Chen et al., 2018), as well as the
Lipschitz Networks (Anil et al., 2019, Theorem 3).

4.3 Sum-of-Squares Polynomial Flows (SoS Flows)

The sum-of-squares polynomial flow (SoS flow) (Jaini et al., 2019) is an important example
of the flow layer for INNs (see also Section E.4). Here, we consider a special class of SoS flow
layers H-SoS where only the last dimension is converted (for the general description of SoS
flow layers, see Section E.4).

Definition 45 Let H be a set of measurable functions on Rd−1. For c ∈ R and h1, . . . , hk ∈
H, let

g(x; c, h1, . . . , hk) := c+

∫ xd

0

k∑
l=0

hl(x≤d−1)uldu.

Then, we define H-SoS to be the set of all maps of the form x 7→ (x≤d−1, g(x; c, h1, . . . , hk))
where k ≥ 1, c ∈ R, and h1, . . . , hk ∈ H.

Although the universality for SoS based INN was proved in Jaini et al. (2019), we prove a
much stronger universality for the architecture (Proposition E.10):

Theorem 46 Let r ≥ 0 and let H be a set of measurable functions on Rd−1. Assume
that all elements of H are locally Cr−1,1 if r ≥ 1 or locally L∞ if r = 0 and that H is a
W r,∞-universal approximator for the set of (d− 1)-variable polynomials. Then, INNH-SoS is
a W r,∞-universal approximator for Dmax(r,1).

This theorem immediately follows from Proposition E.10 and Theorem 24. As a direct
corollary of Theorem 46, Corollary 39, and Proposition 40, we have the following.

Corollary 47 Let us use the same notation as in Theorem 46. Then, INNH-SoS is a (Pw, ν)-
distributional universal approximator for P for any ν ∈ Pab. Moreover, if r ≥ 1, INNH-SoS

is a (PTV, ν)-distributional universal approximator for Pab for any ν ∈ Pab.

4.4 Other Examples of Flow Layers

Theorem 42 can be interpreted as providing a convenient criterion to check the universality
of a CF-INN: if the flow architecture G contains ACFs (or even just H-ACF with sufficiently
expressive H) as special cases, then INNG is an Lp-universal approximator for C0(U,Rd) for
any open subset U ⊂ Rd. Such examples of G include the nonlinear squared flow (Ziegler
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and Rush, 2019), Flow++ (Ho et al., 2019), and the neural autoregressive flow (Huang et al.,
2018).

The result may not immediately apply to the typical Glow (Kingma and Dhariwal, 2018)
architecture for image data that uses the 1x1 invertible convolution layers and convolutional
neural networks for the coupling layers. However, the Glow architecture for non-image
data (Ardizzone et al., 2019; Teshima et al., 2020b) can also be interpreted as INNG with
ACF layers, and hence it is an Lp-universal approximator for C0(U,Rd) for any open subset
U ⊂ Rd.

5. Integral Probability Metrics

Proposition 40 implies the universality of INNs with respect to the total variation (TV)
topology. Here, we consider how the theoretical guarantees in the TV topology can be
transported to other notions of closeness, namely those of integral probability metrics
(IPMs).

We say a measurable set A ⊂ Rn is a continuity set of a measure µ if the boundary ∂A
of A is a null set, that is, µ(∂A) = 0. We say a measurable set A ⊂ Rn is a non-null set of a
measure µ if µ(A) 6= 0. For any measurable subset K ⊂ Rn and any probability measure η
on Rn, let us define the truncated measure η|K := η(· ∩K)/η(K) if η(K) > 0 and η|K := 0
if η(K) = 0, where 0 is a constant zero measure. To state the results, we define the following
notion of universality.

Definition 48 (Compact distributional universality) LetM be a model which is a set
of measurable maps from Rm to Rn. Let P0 be a set of probability measures on Rn with
some topology. Let Q be a subset of P0. Fix a probability measure µ0 on Rm. We say that
a modelM is a (P0, µ0)-compact-distributional universal approximator for Q (or has the
(P0, µ0)-compact-distributional universal approximation property for Q) if for any ν ∈ Q
and any non-null compact continuity set K ⊂ Rn of ν, {(g∗µ0)|K : g ∈M} \ {0} is a subset
of P0 and if its closure (in P0) contains ν|K .

Note that if ν is compactly supported and K is such that supp ν ⊂ K◦, where K◦ denotes
the interior of K, then K is a continuity set of ν. Also, in this case, ν|K = ν. Therefore,
practically, given a compact distributional universality of a model M and a compactly
supported approximation target ν ∈ Q, one can regard it as an approximation guarantee for
ν by taking a sufficiently large K so that it covers any practically relevant range of values as
well as supp ν.

Remark 49 Let P0 be a set of probability measures on Rn with some topology. For µ ∈ P0,
a compact continuity set K of µ, and a neighborhood V of µ|K with µ|K 6= 0, we define

Wµ(K,V ) := {ν ∈ P0 : ν|K ∈ V }.

We define a new topology of P0 via the neighborhoods of µ’s by those generated by Wµ(K,V )’s.
We denote by Pτ0 the set P0 equipped with the topology above. By definition, the truncation
·|K : Pτ0 → P0 ∪ {0} for any compact continuity set of µ is continuous at any µ satisfying
µ|K 6= 0, where the topology of P0 ∪ {0} is the direct sum topology. Conversely, Pτ0 is
characterized as the set P0 equipped with the weakest topology such that the above truncations
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are continuous. If we impose that the topology of P0 is stronger than Pτ0 , namely the
truncation ·|K is continuous at µ for any continuity set K of µ with respect to the topology
of P0. Under this assumption, the compact distributional universality in Definition 48 is
rephrased as the (Pτ0 , µ0)-distributional universality for Q. Moreover, we may immediately
prove that (P0, µ0)-distributional universality implies compact distributional universality. In
the case of P0 = Pw, thanks to the portmanteau lemma, we may prove that the topology of
P0 is stronger than Pτ0 , namely the truncation ·|K is continuous at µ for any continuity set
K of µ.

IPMs are defined as follows.

Definition 50 (Integral probability metric; Müller 1997) Let X be a measurable
space, µ and ν be probability measures on X , and F be R-valued bounded measurable functions
on X . Then, the integral probability metric (IPM) based on F is defined as

IPMF (µ, ν) := sup
f∈F

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣
For a comprehensive review on IPMs, see, for example, Sriperumbudur et al. (2009).

By selecting appropriate F , various distance measures in probability theory and statistics
can be obtained as special cases of the IPM. In the following, assume that X is equipped
with a distance metric ρ and that the σ-algebra is the Borel σ-algebra induced by the metric
topology of ρ. Let ‖f‖Lip := supx,y∈X ,x 6=y

|f(x)−f(y)|
ρ(x,y) and ‖f‖BL := ‖f‖sup + ‖f‖Lip. Let H

be a reproducing kernel Hilbert space (RKHS) induced by a positive semidefinite kernel
k : X × X → R, and let ‖·‖H be its RKHS norm.

Definition 51 (Sriperumbudur et al. 2009) We define the following metrics.

• Dudley metric: FDud = {f : ‖f‖BL ≤ 1} yields the Dudley metric IPMFDud
(µ, ν).

• Wasserstein distance: if X is separable, then FW1 = {f : ‖f‖Lip ≤ 1} yields the
1-Wasserstein distance IPMFW1

(µ, ν) for µ, ν ∈ PW1 = {ν ′ :
∫
ρ(x, y)dν ′(x) <∞,∀y ∈

X}.

• Total variation distance: FTV = {f : ‖f‖sup ≤ 1} yields the total variation distance
IPMFTV

(µ, ν).

• Maximum mean discrepancy (MMD): selecting FMMD = {f ∈ H : ‖f‖H ≤ 1} yields
the MMD IPMFMMD

(µ, ν).

We use PDud, PW1, and PMMD, to denote P equipped with the induced topology of
IPMFDud

(·, ·), IPMFW1
(·, ·), and IPMFMMD

(·, ·), respectively.

Note that, if (X , ρ) is separable (such as X = Rd), then the convergence in the Dudley metric
is equivalent to the convergence in the weak topology (Dudley, 2002, Theorem 11.3.3.).

Remark 52 If we interpret F in Definition 51 as a family of statistics, that is, functions
that take random variables as the arguments, we can interpret an approximation guarantee in
terms of an IPM as an approximation guarantee for the expectation of the statistics computed
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from these distributions. More concretely, once we obtain an approximation guarantee such
as IPMF (µ, ν) < ε where ν is an approximation target, µ is a model, and ε > 0, then we
can deduce that |EX∼µ[f(X)] − EY∼ν [f(Y )]| < ε, where E denotes the expectation, holds
uniformly over the class of statistics f ∈ F . If, moreover, we have a theoretical guarantee
that |

∫
fdµ −

∑N
i=1 f(Xi)| < ε′ for {Xi}Ni=1

i.i.d.∼ µ, where i.i.d. stands for independently
and identically distributed, with high probability for some f ∈ F , then we can combine these
inequalities to provide an upper bound on |

∑N
i=1 f(Xi)− EY∼ν [f(Y )]|, that is, the error of

Monte Carlo approximation based on the samples generated by the model µ that approximated
the target distribution ν.

Depending on the IPM, we have different families of statistics, F , over which we can
obtain such theoretical guarantees. In the case of the Dudley metric corresponding to the
weak convergence topology, we can obtain such an approximation guarantee over the class
of (uniformly) bounded and Lipschitz-continuous (and hence measurable) functions f with
a uniformly bounded Lipschitz constant. In the case of the total variation, the guarantee is
stronger, and we can obtain the guarantee over the class of (uniformly) bounded measurable
functions f .

We have the following elementary relations that can be easily shown from the definitions.

Proposition 53 We have the following inequalities:

IPMFDud
(µ, ν) ≤ IPMFTV

(µ, ν),

IPMFMMD
(µ, ν) ≤

(
sup
x∈X

k(x, x)

) 1
2

IPMFTV
(µ, ν).

Proof The first inequality follows from FDud ⊂ FTV, which holds by definition. The second
inequality follows from the Cauchy-Schwarz inequality:

‖f‖sup = sup
x∈X
|f(x)| = sup

x∈X
|〈f, k(x, ·)〉H| ≤ ‖f‖H

(
sup
x∈X

k(x, x)

) 1
2

,

where 〈·, ·〉H denotes the inner product of H.

We also have the following relation between the total variation distance and the 1-
Wasserstein distance for X = Rd.

Lemma 54 Let µ, ν ∈ P, and let K be a compact non-null set of ν. If IPMFTV
(µ, ν) < ν(K),

then

IPMFW1
(µ|K , ν|K) ≤ 4 · diam(K)

ν(K)
· IPMFTV

(µ, ν)

ν(K)− IPMFTV
(µ, ν)

, (4)

where diam(K) denotes the diameter of K.

We defer the proof of Lemma 54 to the bottom part of this subsection, and we first display
the following proposition to collect Corollary 53 and Lemma 54.
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Proposition 55 Let Q ⊂ P and µ ∈ P. Assume that M is a (PTV, µ)-distributional
universal approximator for Q. Then, we have the following.

(a) M is a (PDud, µ)-distributional universal approximator for Q,

(b) If supx∈Rd k(x, x) <∞, thenM is a (PMMD, µ)-distributional universal approximator
for Q,

(c) M is a (PW1 , µ)-compact-distributional universal approximator for Q.

The condition part of Proposition 55 is covered by the conclusion part of Theorem C.4, where
Q and µ are arbitrary Q ⊂ Pab and µ ∈ Pab. Therefore, we can immediately obtain the
theoretical guarantee of distribution approximation using INNs with respect to these IPMs
given a Sobolev universality ofM.
Proof [Proof of Proposition 55] The first two immediately follow from Corollary 53. The
final assertion follows from Lemma 54. To show the final assertion, one needs to show
that, for any ν ∈ Q, any non-null compact continuity set K ⊂ Rd of ν, and any ε > 0,
there exists g ∈ M such that IPMFW1

((g∗µ)|K , ν|K). By the assumption that M is a
(PTV, µ)-distributional universal approximator for Q, there exists g ∈ M such that both
IPMFTV

(g∗µ, ν) < ν(K) and the right-hand side of Equation (4) in Lemma 54 is smaller
than ε, so that IPMFW1

((g∗µ)|K , ν|K) < ε.

To prove Lemma 54, we use the following well-known inequality between the Wasserstein
distance and the total variation distance.

Fact 56 (Villani, 2009, Theorem 6.15) Let (X , ρ) be a separable complete metric space
that is bounded with diameter R, and µ and ν be probability measures on X . Then, we have
IPMFW1

(µ, ν) ≤ R · IPMFTV
(µ, ν).

Lemma 54 is an immediate corollary of this fact. Note that

IPMFTV
(µ, ν) = 2 sup

A
|µ(A)− ν(A)|

holds, where supA denotes the supremum over all measurable subsets of the underlying space.
Proof [Proof of Lemma 54] Since (K, ‖ · ‖) is a separable complete metric space, we have,
by applying Fact 56 with µ|K and ν|K ,

IPMFW1
(µ|K , ν|K) = sup

f∈FW1

∣∣∣∣∫
Rd
fd(µ|K)−

∫
Rd
fd(ν|K)

∣∣∣∣
= sup

f∈FW1
|K

∣∣∣∣∫
K
fd(µ|K)−

∫
K
fd(ν|K)

∣∣∣∣
≤ diam(K) · 2 · sup

A′
|(µ|K)(A′)− (ν|K)(A′)| =: (RHS),

where supA′ denotes the supremum over all measurable subsets of K, and FW1 |K := {f |K :
f ∈ FW1}. Now, since we have ν(K)− µ(K) ≤ |µ(K)− ν(K)| ≤ IPMFTV

(µ, ν), we obtain
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µ(K) ≥ ν(K)− IPMFTV
(µ, ν) > 0. Thus, µ|K(·) = µ(·∩K)/µ(K), and hence the right-hand

side (RHS) is further bounded as

(RHS) = 2 · diam(K) sup
A
|µ(A ∩K)/µ(K)− ν(A ∩K)/ν(K)|

≤ 2 · diam(K) sup
A
|µ(A)/µ(K)− ν(A)/ν(K)|,

where supA denotes the supremum over all measurable subsets of Rd, and the inequality
holds since supA runs through all the measurable subsets of the form A ∩K as well. Now,∣∣∣∣ µ(A)

µ(K)
− ν(A)

ν(K)

∣∣∣∣ ≤ ∣∣∣∣ µ(A)

µ(K)
− ν(A)

µ(K)

∣∣∣∣+

∣∣∣∣ ν(A)

µ(K)
− ν(A)

ν(K)

∣∣∣∣
=
|µ(A)− ν(A)|

µ(K)
+ |ν(K)− µ(K)| ν(A)

µ(K)ν(K)

≤ ν(K) + ν(A)

µ(K)ν(K)
IPMFTV

(µ, ν).

Therefore, we have

IPMFW1
(g∗µ|K , ν) ≤ 4 · diam(K)

ν(K)

IPMFTV
(g∗µ, ν)

ν(K)− IPMFTV
(g∗µ, ν)

,

where we used µ(K) ≥ ν(K)− IPMFTV
(µ, ν) > 0 and ν(K) + ν(A) ≤ 2.

6. Conclusion

In this paper, we provided a general framework to analyze the theoretical representation
power of a family of invertible function models. The key idea is to simplify the problem of
approximating a general Cr-diffeomorphism by decomposing it into a finite set of simpler
invertible maps by using the structure theorem of the diffeomorphism group.

The general framework was applied to two representative architectures of INNs: the
CF-INNs and the NODEs, and we showed the high representation power of these architectures
contrary to their apparent limitations on expressiveness.

For future work, it is important to quantitatively evaluate how many flow layers are
required to approximate a given target map to assess the efficiency of the approximation. It
includes exploring efficient approximation of well-behaved target functions (for example, the
subset of D1 consisting of bi-Lipschitz diffeomorphisms). Also, comparing the approximation
efficiency of different flow layer designs is an important issue. We expect that answering
these questions provides principled design choices of invertible models tailored for a given
task.
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The following is supplementary material for “Universal approximation property of invert-
ible neural networks.” We provide proof for the statements in the paper. Table 1 is the list
of abbreviations we use in the paper. Tables 2 and 3 summarize the symbols we employed in
the paper.

Abbreviation Meaning

INN Invertible neural network
CF-INN Invertible neural network based on coupling flow
IAF Inverse autoregressive flow
DSF Deep sigmoidal flow
SoS Sum-of-squares polynomial flow
MLP Multi-layer perceptron
NODE Neural ordinary differential equation

Table 1: Abbreviations in the paper

Notation Meaning

R Set of all real numbers
N Set of all positive integers
[n] Set {1, 2, . . . , n}
‖·‖ Euclidean norm
‖·‖op Operator norm
‖·‖K,0,p Lp-norm (p ∈ [1,∞)) on a subset K ⊂ Rd
1A Indicator (characteristic) function of A
Id Identity map
supp Support of a map or measure
Df(x) Jacobian matrix of f at x

Table 2: Notation table (part 1 of 2)

Appendix A. Locally bounded maps and piecewise diffeomorphisms

In this section, we provide the notions of locally-ness and piecewise-ness. These notions are
used to state the regularity conditions on the invertible layers G in Theorem 24 and to prove
the results in Section B.

A.1 Definition of locally-ness

Here, we provide the definition of “locally” for functions.

Definition A.1 (locally bounded maps) Let P be a property of functions such as bound-
edness. Let f be a map from Rm to Rn. We say f is locally P if for each point x ∈ Rm,
there exists an open neighborhood U of x such that f has property P on U .
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Notation Meaning

CF, hk,τ,θ Coupling flow
ACF, Ψk,s,t Affine coupling flow
H Generic notation for a set of functions from Rd−1 to R
H-ACF,Ψd−1,s,t H-single-coordinate affine coupling flows (s, t ∈ H)
IVP[f ](x, t) The (unique) solution to an initial value problem evaluated at t
Ψ(F) Set of NODEs obtained from the Lipschitz continuous vector fields F
G Generic notation for a set of invertible functions
INNG Set of all invertible neural networks based on G

d ∈ N Dimensionality of the input/output Euclidean space
` ∈ {0} ∪ N Differentiability of the model
Dr Set of all Cr-diffeomorphisms with Cr-diffeomorphic domains
Diffrc (1 ≤ r ≤ ∞) Group of compactly-supported Cr-diffeomorphisms (on Rd)
Ξr Set of all flow endpoints in Diffrc
T ∞ Set of all C∞-increasing triangular mappings
Src Set of all Cr-single-coordinate transformations

Sd Set of all permutations of variables of Rd
GL Set of all regular real matrices of size d
Aff Set of all affine transformations, that is, {x 7→ Ax + b : A ∈ GL, b ∈ Rd}

Cr r-times continuously differentiable
Cr,α Cr and any k-th derivative with |k| = r is α-Hölder continuous
Cr(Rm) Set of all Cr functions on Rm equipped with local Sobolev topology
C∞c (Rd) Set of all compactly-supported C∞ functions on Rd
Bloc(Rd,Rm) Set of all locally bounded measurable maps from Rd to Rm
Cr(U,Rn) Set of all Rn-valued Cr maps on U
W r,p

loc (U,Rn) Rn-valued local Sobolev space on U
Lploc(U,R

n) Rn-valued local Lebesgue space on U (equal to W 0,p
loc (U,Rn))

Lip Set of all Lipschitz continuous maps from Rd to Rd
Lip ∩ Cr Set of all Lipschitz and Cr maps from Rd to Rd with W r,∞

loc -topology

P Set of all probability measures on Rd
Pab Set of all absolutely continuous probability measures on Rd
Pw P equipped with the weak convergence topology
PTV P equipped with the total variation topology

Table 3: Notation table (part 2 of 2)
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The boundedness is a typical example of P. We easily see that a continuous function is
locally bounded.

A.2 Definition and properties of piecewise Cr-mappings

In this section, we define the notion of piecewise properties of functions, for example, piecewise
Cr-functions. Examples of piecewise Cr-diffeomorphisms appearing in this paper include
the H-ACF with H being MLPs with ReLU activation. We first introduce the notion of
piecewise properties.

Definition A.2 Let P be a property of functions such as continuous, Cr, Cr,α, and Lipschitz.
Let f : Rm → Rn be a map. We say f is a piecewise P-map if there exists a mutually disjoint
family of (at most countable) open subsets {Vi}i∈I such that

• vol(Rm \ Uf ) = 0,

• for any i ∈ I, there exists an open subset Wi containing the closure Vi of Vi, and a
map f̃i : Wi → Rn with the property P such that f̃i|Vi = f |Vi , and

• for any compact subset K, #{i ∈ I : Vi ∩K 6= ∅} <∞.

where #(·) denotes the cardinality of a set, and we define

Uf :=
⊔
i∈I

Vi.

Although there exist several definitions of piecewise functions, we introduce a generalized
definition for our purpose. We remark that we here do not assume that piecewise Cr-maps
are continuous everywhere, and thus they might have discontinuous points. We also remark
that piecewise continuous mappings are essentially locally bounded in the sense that for any
compact subset K ⊂ Rd, ess.supK‖f‖ = ‖f‖K∩Uf ,0,∞ <∞.

We define the notion of piecewise Cr-diffeomorphisms as follows.

Definition A.3 (Piecewise Cr-diffeomorphisms) Let f : Rd → Rd be a piecewise Cr-
map. We say f is a piecewise Cr-diffeomorphism if we can choose {Vi}i∈I and {f̃i : Wi →
Rd}i∈I in Definition A.2 so that they additionally satisfy the following conditions:

1. the image of a nullset (that is, a Lebesgue-measurable subset of Rd whose measure is 0)
via f is also a nullset,

2. f |Uf is injective,

3. for i ∈ I, f̃i is a Cr-diffeomorphism from Wi onto f̃i(Wi),

4. vol
(
Rd \ f(Uf )

)
= 0, and

5. for any compact subset K, #{i ∈ I : f(Vi) ∩K 6= ∅} <∞.

We summarize the basic properties of piecewise Cr-diffeomorphisms in the proposition below.
Note that for a piecewise Cr-diffeomorphism f , Df is defined almost everywhere since its
value is determined on Uf (hence so is its determinant |Df |).
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Proposition A.4 (Basic Properties of Piecewise Cr-diffeomorphisms) Let r ≥ 1 be
a positive integer. Let f be a piecewise Cr-diffeomorphism. Then, we have the following:

1. There exists a piecewise Cr-diffeomorphism f † such that f(f †(x)) = x for x ∈ Uf† and
f †(f(y)) = y for y ∈ Uf .

2. For any h ∈ L1, we have
∫
h(x)dx =

∫
h(f(x))|Df(x)|dx.

3. For any compact subset K, f−1(K) ∩ Uf is a bounded subset.

4. For any nullset F , then f−1(F ) is also a nullset.

5. For any measurable set E and any compact set K, f−1(E ∩K) has a finite volume.

6. For any piecewise Cr-map (resp. piecewise Lipschitz map, piecewise Cr-diffeomorphism)
g , the composition g ◦ f is also a piecewise Cr-map (resp. piecewise Lipschitz map,
piecewise Cr-diffeomorphism).

Proof Let {Vi}i∈I and {f̃i : Wi → Rd}i∈I be as in Definition A.3.
Proof of 1 : First we note that since f |Vi is a restriction of the diffeomorphism f̃i, f(Vi) is

an open set and f |−1
Vi

is a well-defined Cr-function on f(Vi). We also note that since f |Uf is
injective, we have f(Uf ) =

⊔
i∈I f(Vi). Fix a ∈ Rd. We define f †(x) = a for x ∈ Rd \ f(Uf )

and define f †(x) := f |−1
Vi

(x) for x ∈ f(Vi). Then, f † is a piecewise Cr-mapping with respect
to the family of pairwise disjoint open subsets {f(Vi)}i∈I , and satisfies the conditions for a
piecewise Cr-diffeomorphism.

Proof of 2 : It follows by the following computation:∫
h(x)dx =

∫
f(Uf )

h(x)dx

=
∑
i∈I

∫
f(Vi)

h(x)dx

=
∑
i∈I

∫
Vi

h(f(x))|Df(x)|dx =

∫
h(f(x))|Df(x)|dx.

Proof of 3 It suffices to show that f−1(K) ∩ Uf is covered by finitely many compact
subsets. We remark that only finitely many Vi’s intersect with f−1(K). If not, infinitely
many f(Vi)’s intersect with f(f−1(K)) = K, which contradicts the definition of piecewise
Cr-diffeomorphisms. Let I0 ⊂ I be a finite subset composed of i ∈ I such that Vi intersects
with f−1(K). For i ∈ I0, we define a compact subset Fi := f̃−1

i (f̃i(Vi) ∩K). Then we see
that f−1(K) ∩ Uf is contained in ∪i∈I0Fi.

Proof of 4 : It suffices to show that for any compact subset K, the volume of f−1(F )∩K
is zero. By applying 2 to the case h = 1F , we see that∫

f−1(F )
|Df(x)|dx = 0.

For n > 0, let En := f−1(F ) ∩K ∩ {x ∈ Rd : |Df(x)| ≥ 1/n}. Then we have

vol(En)

n
≤
∫
En

|Df(x)|dx ≤
∫
f−1(F )

|Df(x)|dx = 0,
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thus vol(K ∩ f−1(F )) = limn→∞ vol(En) = 0
Proof of 5 : By applying 2 to the case h = 1E∩K , we see that∫

f−1(E∩K)
|Df(x)|dx = vol(E ∩K).

Let F be a closure of f−1(K) ∩ Uf . By 3, F is a compact subset. Let I0 := {i ∈ I :
F ∩ Vi 6= ∅} be a finite subset. Then we have

C := inf
f−1(K)∩Uf

|Df |

≥ inf
i∈I0

inf
F∩Vi

|Df̃i| > 0.

Thus, ∫
f−1(E∩K)∩Uf

|Df(x)|dx ≥ Cvol(f−1(E ∩K)),

where the last equality follows from vol(f−1(E∩K)\Uf ) = 0. Thus we have vol(f−1(E∩K)) <
∞

Proof of 6 : We first assume that g is a piecewise Cr-mapping and prove that g ◦ f is a
piecewise Cr-mapping. We denote by {Vi}i∈I , {V ′j }j∈J the disjoint open-set families associ-
ated with f and g, respectively. Let Vij := f−1(f(Vi)∩V ′j )∩Uf . We prove {Vij}(i,j)∈I×J is the
open-set family associated with g ◦ f (that is, {Vij} satisfies the conditions of Definition A.2).
Let Ug◦f := ∪i,jVij = f−1(Ug ∩ f(Uf )) ∩ Uf . Then, we have

Rd \ Ug◦f = f−1((Rd \ Ug) ∪ (Rd \ f(Uf ))) ∪ (Rd \ Uf ).

Since vol(Rd \ Ug) = 0 and vol(Rd \ f(Uf )) = 0, we have

vol(f−1((Rd \ Ug) ∪ (Rd \ f(Uf )))) = 0

by 4 of Proposition A.4. In addition, since vol(Rd \ Uf ) = 0, we have vol(Rd \ Ug◦f ) = 0.
That is, the first condition is satisfied. For the second condition, we denote by f̃i (resp.
g̃j) the extension of f |Vi (resp. g|V ′j ). Then, g̃j ◦ f̃i is an extension of g ◦ f |Vij on each Vij .
Finally, to prove the third condition, we take an arbitrary compact subset K and prove that
#{(i, j) ∈ I × J : K ∩ Vij 6= ∅} < ∞. Indeed, since f is a piecewise Cr-diffeomorphism,
f(Uf ∩K) is a bounded subset by 3 of Proposition A.4. Hence, M := f(Uf ∩K) is compact.
Since f is a piecewise Cr-diffeomorphism, we have

#{i ∈ I |M ∩ f(Vi) 6= ∅} <∞.

Similarly, since g is a piecewise Cr-mapping, we have

#{j ∈ J |M ∩ V ′j 6= ∅} <∞.

Therefore, the number of pairs (i, j) satisfying M ∩ f(Vi) ∩ V ′j 6= ∅ is also finite. Note
that Uf ∩K ∩ Vi ∩ f−1(Vj) = K ∩ Vij . Therefore, by applying the inverse of f (see 1 of
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Proposition A.4), we obtain #{(i, j) | K ∩ Vij 6= ∅} < ∞. It means the third condition
is satisfied. Combining the above discussions so far, we conclude that g ◦ f is a piecewise
Cr-mapping. In the case where g is a piecewise Lipschitz, the proof is the same as above.

Next, we prove that f ◦ g is a piecewise Cr-diffeomorphism when g is a piecewise Cr-
diffeomorphism. We check the conditions in Definition A.3. The first, second, and third
conditions follow by definition. For the third condition, since

Rd \ (g ◦ f(Ug◦f )) =
(
Rd \ g(Ug)

)
∪
(
Rd \ g

(
f(Uf )

)
⊂ Rd \ g(f(Uf ) ∩ Ug),

it suffices to show that the volume of Rd \ g(f(Uf )∩Ug) is zero. In fact, by the injectivity of
g on Ug, we have

g(f(Uf ) ∩ Ug) = g(Ug) \ g(Ug \ f(Uf )).

Thus, we have
Rd \ g(f(Uf ) ∩ Ug) = (Rd \ g(Ug)) ∪ g(Ug \ f(Uf )).

By definition of Cr-diffeomorphism, we conclude Rd \ g(f(Uf ) ∩ Ug) is a null set. For the
fourth condition, let K be a compact subset. Let K be a compact set. Suppose (i, j) ∈ I × J
satisfies K ∩ (g ◦ f)(Vij) 6= ∅. Since f(Vij) ⊂ V ′j , we have

K ∩ g(V ′j ) 6= ∅. (5)

Since g is a piecewise Cr-diffeomorphism, there exist finitely many j’s satisfying (5). On the
other hand, by applying the inverse of g, we have g−1(K) ∩ Ug ∩ f(Vij) 6= ∅, which implies

g−1(K) ∩ Ug ∩ f(Vi) 6= ∅. (6)

Note that g−1(K) ∩ Ug is compact. Therefore, using the fact that f is a piecewise Cr-
diffeomorphism, we see that there exist finitely many i ∈ I satisfying (6). Therefore, we have
#{(i, j) ∈ I × J | K ∩ (g ◦ f)(Vij) 6= ∅} <∞.

For a measurable mapping f : Rm → Rn and R > 0, we define a measurable set

L(R; f) := {x ∈ Rm : ‖f(x)− f(y)‖ > R‖x− y‖ for some y ∈ Uf}.

Then, we have the following proposition:

Proposition A.5 Let f : Rm → Rn be a piecewise Lipschitz function. Assume f is linearly
increasing, namely, there exists a, b > 0 such that ‖f(x)‖ < a‖x‖+ b for any x ∈ Rm. Then
for any compact subset K ⊂ Rm, vol(L(R; f) ∩K)→ 0 as R→∞.

Proof Let {Vi}i∈I be the disjoint family of open sets associated with f satisfying the
properties of Definition A.2. Let B be an m-dimensional open ball of radius r containing K.
Fix an arbitrary ε > 0. Let C := supx∈B ‖f(x)‖. Because the linearly increasing condition
of f implies its locally boundedness, we have C <∞. For δ > 0, we define

Wδ := {x ∈ B : dist (x, ∂Uf ∪ ∂B)) < δ},

where dist(x, S) := infy∈S{‖x− y‖}. By the continuity of the Lebesgue measure, we have
limδ→0 vol(Wδ) = 0. Therefore, we can choose δ > 0 so that vol(Wδ) < ε holds.
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We claim that

L := sup
(x,y)∈K×(Rm\B)

‖f(x)− f(y)‖
‖x− y‖

is finite. In fact, let r′ := inf(x,y)∈K×(Rm\B) ‖x− y‖. Then for x ∈ K and y /∈ B, we have

‖f(x)− f(y)‖
‖x− y‖

≤ ‖f(x)‖+ ‖f(y)‖
‖x− y‖

≤ a‖x‖+ a‖y‖+ 2b

‖x− y‖

≤ a‖x‖+ a(‖x− y‖+ ‖x‖) + 2b

‖x− y‖

≤ a+
2a‖x‖+ 2b

‖x− y‖

< a+
2ar + 2b

r′
.

Thus, L is finite.
Due to the piecewise Lipschitz-ness of f , B intersects with finitely many Vi’s. It implies

that f |B\Wδ/2
is a Lipschitz function. Put Lδ > 0 as the Lipschitz constant of f |B\Wδ/2

.
For any R > max(L,Lδ, 4C/δ), we claim that L(R; f)∩K is contained inWδ. To prove it,

we show that x 6∈ L(R; f) when x ∈ K \Wδ. Take arbitrary y ∈ Rm. (Case 1) When y 6∈ B,
since x ∈ K, we have ‖f(x)−f(y)‖

‖x−y‖ ≤ L by the definition of L. (Case 2) When y ∈ B \Wδ/2,

since x ∈ K \Wδ ⊂ B \Wδ/2, we have ‖f(x)−f(y)‖
‖x−y‖ ≤ Lδ by the definition of Lδ. (Case 3)

When y ∈ B ∩Wδ/2, we have ‖x− y‖ ≥ δ
2 because x 6∈Wδ. Thus,

‖f(x)− f(y)‖
‖x− y‖

≤ ‖f(x)‖+ ‖f(y)‖
δ/2

≤ C + C

δ/2
≤ 4C

δ
.

Combining these three cases, we conclude that x 6∈ L(R; f). Thus we have vol(L(R; f)∩K) <
ε, namely, we conclude vol(L(R; f) ∩K)→ 0 as R→∞.

Remark A.6 The linearly increasing condition is important to prove our main theorem. Our
approximation targets are compactly supported diffeomorphisms, affine transformations, and
the discontinuous ACFs appeared in Section E.2.1, all of which satisfy the linearly increasing
condition.

Appendix B. Compatibility of approximation and composition

In this section, we prove Proposition 37. It enables the component-wise approximation, that
is, approximating a composition of some transformations by approximating each constituent
and composing them. The justification of this procedure is not trivial and requires a fine
mathematical argument. The results here build on the terminologies and the propositions
for piecewise C1-diffeomorphisms presented in Section A.
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Lemma B.1 Let p = [1,∞). Let m ≥ 1 and let F be the set of Rm-valued piecewise Lipschitz
mappings. Let G be the set of piecewise C1-diffeomorphisms on Rd. Let F0 ⊂ F and G0 ⊂ G
be the subsets composed of linearly increasing mappings. Here, a function f on Rd is linearly
increasing if there exists a, b > 0 such that ‖f(x)‖ < a‖x‖+ b for all x ∈ Rd. Then, the map

C : F × Gk −→ F ; (h, f1, . . . , fk) 7→ h ◦ f1 ◦ · · · ◦ fk (7)

is continuous at any point of F0 × Gk0 with respect to the relative topology of W 0,p
loc (Rd,Rm)×

W 0,p
loc (Rd,Rd)k.

Proof Since C(F0 × G0) ⊂ F0 (see the statement 6 of Proposition A.4), the lemma follows
from the case k = 1 via the mathematical induction. Thus, we only treat the case k = 1. Let
(F2, G2) ∈ F0 × G0. Then, it suffices to show that for any ε > 0 and compact set K ⊂ Rd,
there exist δ > 0 and compact set K0 ⊂ Rd such that for any (F1, G1) ∈ F × G satisfying
‖G2 −G1‖0,p,K0

, ‖F2 − F1‖0,p,K0
< δ, we have

‖F2 ◦G2 − F1 ◦G1‖0,p,K < ε.

Fix arbitrary ε > 0 and compact set K ⊂ Rd. Put K ′ := G2(K ∩ UG2). Then, since
G2(K ∩ UG2) is bounded (see the remark under Definition A.2), K ′ is compact. We claim
that there exists R > 0 such that

vol(G−1
2

(
L(R;F2) ∩K ′

)
)1/p <

ε

3ess.sup
K′
‖F2‖

,

which can be confirmed as follows. Take an increasing sequence Rn > 0 (n ≥ 1) satisfying
limn→∞Rn =∞. LetBn := L(Rn;F2)∩K ′ andAn := G−1

2 (Bn). Then, from Proposition A.5,
we have vol(Bn) → 0, which implies vol(

⋂∞
n=1Bn) = 0. By Proposition A.4 (4), we have

vol(
⋂∞
n=1An) = vol(G−1

2 (
⋂∞
n=1Bn)) = 0. By Proposition A.4 (5), we have vol(A1) =

vol(G−1
2 (B1)) <∞. Recall that if a decreasing sequence {Sn}∞n=1 of measurable sets satisfies

vol(S1) < ∞ and vol(
⋂∞
n=1 Sn) = 0, then limn→∞ vol(Sn) = 0. Therefore, we obtain

limn→∞ vol(An) = 0, and we have the assertion of the claim.
Take G1 ∈ G such that

‖G2 −G1‖0,p,K0
<

ε

3R
.

Put S := G−1
2 (L(R;F2) ∩K ′), and define a compact subset K ′′ := (G†1)−1(K) ∩ U

G†1
.

Here, the compactness of K ′′ follows from Proposition A.4 (3). Next, we take F1 ∈ F such
that

‖F2 − F1‖p,K′′ <
ε

3 ess.sup
(G†1)−1(K)

| det(DG†1)|

where G†1 is a piecewise C1-diffeomorphism defined by Proposition A.4 (1). Therefore, if we
take

δ := min

 ε

3ess.sup
K′
‖F2‖

,
ε

3R
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and K0 := K ∪K ′′, then we have

‖F2 ◦G2 − F1 ◦G1‖0,p,K
≤ ‖F2 ◦G2 − F2 ◦G1‖0,p,K0

+ ‖F2 ◦G1 − F1 ◦G1‖0,p,K0

≤ ‖(F2 ◦G2 − F2 ◦G1)1S‖0,p,K +
∥∥(F2 ◦G2 − F2 ◦G1)1K\S

∥∥
0,p,K

+ ess.sup
(G†1)−1(K)

|det(DG†1) ‖F2 − F1‖0,p,K

< ε.

Lemma B.2 Let m ≥ 1 and let F := W 0,∞(Rd,Rm). Let G be a subset W 0,∞(Rd,Rd)
whose inverse images of any null sets are again null sets. Let F0 ⊂ F and G0 ⊂ G be the
subsets composed of continuous mappings. Then, the map

C : F × Gk −→ F ; (h, f1, . . . , fk) 7→ h ◦ f1 ◦ · · · ◦ fk (8)

is continuous at any point of F0×Gk0 with respect to the relative topology of W 0,∞
loc (Rd,Rm)×

W 0,∞
loc (Rd,Rd)k.

Proof Since C(F0 × G0) ⊂ F0 (see the statement 6 of Proposition A.4), the proposition
follows from the case k = 1 via the mathematical induction. Thus, we only treat the case
k = 1. Let (F2, G2) ∈ F0 × G0. Then, it suffices to show that for any ε > 0 and compact
set K ⊂ Rd, there exist δ > 0 and compact set K0 ⊂ Rd such that for any (F1, G1) ∈ F × G
satisfying ‖G2 −G1‖0,∞,K0

, ‖F2 − F1‖0,∞,K0
< δ, we have

‖F2 ◦G2 − F1 ◦G1‖0,∞,K < ε.

Take any positive number ε > 0 and compact set K ⊂ Rd. Put r := maxK |G2| (note that
G2 is continuous) and K ′ := {x ∈ Rd : |x| ≤ r + 1}. Let F1 ∈ F satisfying

vol{x ∈ K ′ : |F2(x)− F1(x)| > ε/2} = 0.

Since any continuous map is uniformly continuous on a compact set, we can take a positive
number δ > 0 such that for any x, y ∈ K ′ with |x− y| < δ,

|F2(x)− F2(y)| < ε

2
.

From the assumption, we can take G1 ∈ G satisfying

vol{x ∈ K : |G2(x)−G1(x)| > min{1, δ}} = 0.

Since

|F2 ◦G2(x)− F1 ◦G1(x)| ≤ |F2(G2(x))− F2(G1(x))|+ |F2(G1(x))− F1(G1(x))|,

34



Universality of Invertible Neural Networks

we see that the set of x ∈ K such that ε < |F2 ◦G2(x)− F1 ◦G1(x)| is a null set. Thus, we
have

‖F2 ◦G2 − F1 ◦G1‖0,∞,K < ε.

Let Bloc(Rd,Rm) be the linear space composed of locally bounded measurable maps from
Rd to Rm. We equip Bloc with the topology generated by the seminorms {‖ · ‖sup,K}K , where
K runs on the set of compact subsets of Rd, and define for any h ∈ Bloc,

‖h‖sup,K := sup
x∈K
‖h(x)‖.

Then, we provide a similar result for the sup-norm case as follows:

Lemma B.3 Let m ≥ 1 and let F := Bloc(Rd,Rm) and G be a subset Bloc(Rd,Rd). Let
F0 ⊂ F and G0 ⊂ G be the subsets composed of continuous mappings. Then, the map

C : F × Gk −→ F ; (h, f1, . . . , fk) 7→ h ◦ f1 ◦ · · · ◦ fk (9)

is continuous at any point of F0×Gk0 with respect to the relative topology of W 0,∞
loc (Rd,Rm)×

W 0,∞
loc (Rd,Rd)k.

Proof We may assume k = 1 and let (F2, G2) ∈ F0 × G0 as in the proof of Lemma B.2.
Take any positive number ε > 0 and compact set K ⊂ Rd. Put r := maxk∈K |G2(k)| and
K ′ := {x ∈ Rd : |x| ≤ r + 1}. Let F1 ∈ F satisfying

sup
x∈K′

|F2(x)− F1(x)| ≤ ε

2
.

Since any continuous map is uniformly continuous on a compact set, we can take a positive
number δ > 0 such that for any x, y ∈ K ′ with |x− y| < δ,

|F2(x)− F2(y)| < ε

2
.

Let G1 ∈ G satisfying

sup
x∈K
|G2(x)−G1(x)| ≤ min{1, δ}.

Then, it is clear that G2(K) ⊂ K ′ by the definition of K ′. Moreover, we have G1(K) ⊂ K ′.
In fact, we have

|G1(k)| ≤ sup
x∈K
|G2(x)−G1(x)|+ |G2(k)| ≤ 1 + r (k ∈ K).

Then for any x ∈ K, we have

|F2 ◦G2(x)− F1 ◦G1(x)| ≤ |F2(G2(x))− F2(G1(x))|+ |F2(G1(x))− F1(G1(x))|
< ε.
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Now, we provide the proof of Proposition 37:
Proof [Proof of Proposition 37] The Leibniz rule and the chain rule hold for weak derivatives
under the present condition (see McDuff and Salamon 2004, Exercise B.1.2 and Ziemer 1989,
Theorem 2.1.11). Thus, it follows from Lemmas B.1 and B.2. The last statement follows
from Lemma B.3 in the same way.

Appendix C. Proof of Distributional Universalities

C.1 Proof of Proposition 38: From Lp-universality to distributional universality

Here, we prove Proposition C.2, which corresponds to Proposition 38 in the main text. We
first include proof that any probability measure on Rm is arbitrarily approximated by an
absolutely continuous probability measure in the weak convergence topology.

Lemma C.1 Let µ ∈ P be an arbitrary probability measure. Then there exists a sequence
{µn}∞n=1 ⊂ Pab of absolutely continuous probability measures such that µn weakly converges
to µ.

Proof Let φ be a compactly-supported positive bounded C∞ function such that
∫
Rm φ(x)dx =

1 and supp(φ) ⊂ {x ∈ Rm : ‖x‖ ≤ B} where B > 0. For t > 0, put φt(x) := t−mφ(x/t). We
define

wt(x) =

∫
Rm

φt(x− y)dµ(y).

We prove that the absolutely continuous measure wtdx weakly converges to µ as t→ 0. In
fact, given an L-Lipschitz continuous function f such that, we have∣∣∣∣∫

Rm
fwtdx−

∫
fdµ

∣∣∣∣ =

∣∣∣∣∫ ∫
Rm

(f(y + tx)− f(y))φ(x)dxdµ(y)

∣∣∣∣
≤
∫ ∫

Rm
|f(y + tx)− f(y)|φ(x)dxdµ(y)

≤
∫ ∫

Rm
Lt‖x‖φ(x)dxdµ(y)

≤ LBt.

Therefore, as t→ 0, we have ∫
Rm

fwtdx→
∫
fdµ,

therefore,
{
w 1
n
dx
}
n
weakly converges to µ.

First, note that the larger p, the stronger the notion of Lp-universality: if a modelM is
an Lp-universal approximator for F , it is also an Lq-universal approximator for F for all
1 ≤ q ≤ p. In particular, we use this fact with q = 1 in the following proof.
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Proposition C.2 (Proposition 38 in the main text) Let p ∈ [1,∞). SupposeM is an
Lp-universal approximator for T ∞. ThenM is a (Pw, µ)-distributional universal approxi-
mator for P for any µ ∈ Pab.

Proof By Lemma C.1, it suffices to prove that M is a (Pw, µ)-distributional universal
approximator for Pab for any µ ∈ Pab. We denote by BL1 the set of bounded Lipschitz
functions f : Rd → R satisfying ‖f‖sup,Rd + Lf ≤ 1, where Lf denotes the Lipschitz constant
of f . Let µ, ν ∈ Pab be absolutely continuous probability measures, and take any ε > 0. By
Theorem 11.3.3 in Dudley (2002), it suffices to show that there exists g ∈M such that

β(g∗µ, ν) := sup
f∈BL1

∣∣∣∣∫
Rd
f dg∗µ− f dν

∣∣∣∣ < ε.

Let p, q ∈ L1(Rd) be the density functions of µ and ν respectively. Let φ ∈ L1(Rd) be
a positive C∞-function such that

∫
Rd φ(x)dx = 1 (for example, the density function of

the standard Gaussian distribution), and for t > 0, put φt(x) := t−dφ(x/t). We define
µt := φt ∗ pdx and νt := φt ∗ qdx. Since both ‖φt ∗ p− p‖1,Rd and ‖φt ∗ q − q‖1,Rd converge
to 0 as t→ 0, there exists t0 > 0 such that for any continuous mapping G : Rd → Rd,∣∣∣∣∫

Rd
f dG∗µt0 − f dG∗µ

∣∣∣∣ < ‖f‖Rd,0,∞ ε5
,

∣∣∣∣∫
Rd
f dνt0 − f dν

∣∣∣∣ < ‖f‖Rd,0,∞ ε5
.

By using Lemma C.3 below, there exists T ∈ T ∞ such that T∗µt0 = νt0 . Let K ⊂ Rd be a
compact subset such that

1− µt0(K) <
ε

5
.

By the assumption, there exists g ∈M such that∫
K
|T (x)− g(x)|dx < ε

5 supx∈K |φt0 ∗ p(x)|
.

Thus for any f ∈ BL1, we have∣∣∣∣∫
Rd
f dg∗µ− f dν

∣∣∣∣
≤
∣∣∣∣∫

Rd
f dg∗µt0 − f dg∗µ

∣∣∣∣+

∣∣∣∣∫
Rd
f dνt0 − f dν

∣∣∣∣
+

∣∣∣∣∣
∫
Rd\K

f ◦ T dµt0

∣∣∣∣∣+

∣∣∣∣∣
∫
Rd\K

f ◦ g dµt0

∣∣∣∣∣+

∫
K
|f(T (x))− f(g(x))| dµt0(x)

<
‖f‖Rd,0,∞ ε

5
+
‖f‖Rd,0,∞ ε

5
+
‖f‖Rd,0,∞ ε

5
+
‖f‖Rd,0,∞ ε

5
+
Lfε

5
≤ ε,

where Lf is the Lipschitz constant of f . Here we used ‖f‖Rd,0,∞ + Lf ≤ 1. Therefore, we
have β(g∗µ, ν) < ε.

The following lemma is essentially due to (Hyvärinen and Pajunen, 1999).
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Lemma C.3 Let µ be a probability measure on Rd with a C∞ density function p. Let
U := {x ∈ Rd : p(x) > 0}. Then there exists a diffeomorphism T : U → (0, 1)d such that its
Jacobian is an upper triangular matrix with positive diagonals, and T∗µ = U(0, 1)d. Here,
U(0, 1)d is the uniform distribution on [0, 1]d.

Proof Let qi(x1, . . . , xi) :=
∫
Rd−i p(x1, . . . , xi+1, . . . , xd) dxi+1 . . . dxd. Then we define T :

U → (0, 1)d by

T (x1, . . . , xd) :=

(∫ xi

−∞

qi(x1, . . . , xi−1, y)

qi−1(x1, . . . , xi−1)
dy

)
i

.

Then we see that T is a diffeomorphism, and its Jacobian is upper triangular with positive
diagonal elements. Moreover, by direct computation, we have T∗dµ = U(0, 1).

C.2 Proof of Proposition 40: From Sobolev Universality to Distributional
Universality in the Total Variation Metric

In this section, we prove Proposition 40. Recall the definition of the total variation distance:

‖ν − µ‖TV := sup
A
|ν(A)− µ(A)|,

where the supremum is taken over all measurable sets of the underlying space.
Here, we restate the proposition.

Theorem C.4 (Proposition 40 in the main text) Let r ≥ 1. Let

F0 := W 0,∞
loc (U,Rd) ∩W 1,1

loc (U,Rd).

We define the topology of F0 as the weakest topology such that the inclusion maps ı0 : F0 ↪−→
W 0,∞

loc (U,Rd) and ı1 : F0 ↪−→ W 1,1
loc (U,Rd) are both continuous. Suppose any element in

the model M is locally C0,1 and a piecewise C1-diffeomorphism. If M is an F0-universal
approximator for T ∞, thenM is a (PTV, µ)-distributional universal approximator for Pab

for any µ ∈ Pab.

Proof Let µ, ν ∈ Pab. Take any ε > 0. It is enough to show that there exists f ∈M such
that

2‖ν − f∗µ‖TV < ε,

where ‖ · ‖TV is the total variation norm. By Lemmas C.3 and C.5, we can assume that
there exist a positive smooth function w satisfying dµ(x) = w(x)dx and g ∈ T ∞ such that
ν = g∗µ and g(Rd) = Rd. We fix a large compact set K ′ ⊂ Rd such that∫

Rd\K′
dg∗µ <

ε

4
.

We fix an “inverse” f † of the piecewise C1-diffeomorphism f as in 1 in Proposition A.4. We
may assume f †(K ′) ⊂ f−1(K ′) if we take a suitable f †. Note that f−1(K ′)\f †(K ′) is a nullset.
Then, we can write d(f∗µ)(x) = w(f †(x))Jf†(x)dx and d(g∗µ)(x) = w(g−1(x))Jg−1(x)dx.
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By Lemma C.6 below, there exists a compact subset K ⊂ Rd such that f−1(K ′) ⊂ K for
any f ∈M satisfying ‖f − g‖K,0,∞ < ε.

Since g is a diffeomorphism, there exists M0 > 0 such that |Jg(g−1(k′))|−1 < M0 for any
k′ ∈ K ′. Moreover, since the function Jg(g−1(·)) is Lipschitz on g(K) ∪K ′ , we can take
M1 > 0 satisfying |Jg(g−1(x))− Jg(g−1(y))| < M1|x− y| for any x, y ∈ g(K)∪K ′. Since the
function w is Lipschitz on g−1(K ′)∪K, we can take L0 > 0 satisfying |w(x)−w(y)| < L0|x−y|
for any x, y ∈ g−1(K ′)∪K. Since g−1 is Lipschitz on g(K)∪K ′, we can take L1 > 0 satisfying
|g−1(x)− g−1(y)| < L1|x− y| for any x, y ∈ g(K) ∪K ′.

From the assumption, we can take f ∈M satisfying

‖f − g‖K,0,∞ <
ε

16M0L0 max{M1, L1}max{vol(K ′), vol(K), 1}
,

‖f − g‖K,1,1 <
ε

16M0 maxx∈K |w(x)|
.

Then, since the total variation distance of probability measures is given by half the L1-norm
of the Radon-Nikodym derivative, we have

2‖g∗µ− f∗µ‖TV

≤
∫
K′
|w(f †(x))Jf†(x)− w(g−1(x))Jg−1(x)|dx+

∫
Rd\K′

df∗µ+

∫
Rd\K′

dg∗µ

≤ 2

∫
K′
|w(f †(x))Jf†(x)− w(g−1(x))Jg−1(x)|dx+ 2

∫
Rd\K′

dg∗µ

≤ 2

∫
K′
|w(f †(x))− w(g−1(x))||Jg−1(x)|dx+ 2

∫
K′
|Jf†(x)− Jg−1(x)||w(f †(x))|dx+

ε

2
.

As for the second equality, we use

∫
Rd\K′

df∗µ = 1−
∫
K′
df∗µ

≤
∫
K′
|w(f †(x))Jf†(x)− w(g−1(x))Jg−1(x)|dx+ 1−

∫
K′
dg∗µ

=

∫
K′
|w(f †(x))Jf†(x)− w(g−1(x))Jg−1(x)|dx+

∫
Rd\K′

dg∗µ
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The first term is estimated as follows:∫
K′
|w(f †(x))− w(g−1(x))||Jg−1(x)|dx

≤ L0M0

∫
K′
|f †(x)− g−1(x)|dx

= L0M0

∫
K′
|g−1(g ◦ f †(x))− g−1(f ◦ f †(x))|dx

≤ L0M0L1

∫
K′
|g(f †(x))− f(f †(x))|dx

≤ L0M0L1 vol(K ′) sup
k′∈f−1(K′)

|g(k′)− f(k′)|

≤ L0M0L1 vol(K ′) sup
k∈K
|g(k)− f(k)|

<
ε

8
.

Here, we used the fact f †(K ′) ⊂ K in the second-to-last inequality and the bound for
‖f − g‖K,0,∞ in the last inequality.

Similarly, the second term is bounded as follows:∫
K′
|Jf†(x)− Jg−1(x)||w(f †(x))|dx

=

∫
f†(K′)

|Jf (x)−1 − Jg(g−1 ◦ f(x))−1||w(x)|Jf (x)dx

≤
∫
f†(K′)

|1− Jf (x)Jg(g
−1 ◦ f(x))−1||w(x)|dx

=

∫
f†(K′)

|Jg(g−1 ◦ f(x))−1||Jg(g−1 ◦ f(x))− Jf (x)||w(x)|dx

≤M0 max
x∈K
|w(x)|

∫
f†(K′)

|Jg(g−1 ◦ f(x))− Jf (x)|dx

= M0 max
x∈K
|w(x)|

[∫
f†(K′)

|Jg(g−1 ◦ f(x))− Jg(g−1 ◦ g(x))|+ |Jg(x)− Jf (x)|dx

]

≤M0 max
x∈K
|w(x)|

[
M1

∫
f†(K′)

|f(x)− g(x)|dx+

∫
f†(K′)

|Jg(x)− Jf (x)|dx

]

≤M0 max
x∈K
|w(x)|

[
M1

∫
x∈K
|f(x)− g(x)|dx+

∫
x∈K
|Jg(x)− Jf (x)|dx

]
<

ε

16
+

ε

16
=
ε

8
.

Again, we used f †(K) ⊂ K in the second-to-last inequality. In the last inequality, we used
the bound for ‖f − g‖K,0,∞ for the first term and the bound for ‖f − g‖K,1,1 for the second
term, respectively.
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Lemma C.5 Let µ be an absolutely continuous probability measure on Rd. For any ε > 0,
there exists an absolutely continuous probability measure ν such that dν(x) = w(x)dx for
some w ∈ C∞(Rd) with w > 0 and ‖µ− ν‖TV < ε.

Proof Let p ∈ L1(Rd) be the density function of µ. Let φ ∈ L1(Rd) be a positive C∞

function satisfying
∫
Rd φ(x)dx = 1. For t > 0, put φt(x) := t−dφ(x/t). Then we have

2‖µ− ν‖TV = ‖p− φt ∗ p‖L1(Rd) → 0 (t→ +0).

Lemma C.6 Let the modelM be as in Theorem C.4 and let g be a homeomorphism from
Rd to Rd. Let K ′ ⊂ Rd be a compact set and ε > 0. Then, there exists a compact subset
K ⊂ Rd such that f−1(K ′) ⊂ K for any f ∈M satisfying ‖f − g‖K,0,∞ < ε.

Proof We may assume K ′ = B(0, L) for sufficiently large L > 0 such that L ≥ ε. Since g is a
homeomorphism, there exists sufficiently large R > 0 such that B(0, R) ⊃ g−1(B(0, L+ 2ε)),
that is, g(B(0, R)) ⊃ B(0, L + 2ε)(⊃ K ′). We denote K := B(0, R). Suppose f ∈ M
satisfies ‖f − g‖K,0,∞ < ε. Then, we have f(∂K) ∩K ′ = ∅ for any f . Thus, we see that
K ′ ⊂ f(B(0, R)) ∪ (Rd \ f(K)). Since K ′ is connected, we see that either K ′ ⊂ f(K) or
K ′ ⊂ Rd \ f(K). Suppose K ′ ⊂ Rd \ f(K). On the other hand, since 0 ∈ K ′ ⊂ g(K), there
exists x ∈ K such that g(x) = 0. Since f(K) ∩K ′ = ∅, we have

L < |f(x)− 0| = |f(x)− g(x)| < ε,

which is a contradiction. Therefore, we conclude K ′ ⊂ f(K). Since f is a diffeomorphism,
we have f−1(K ′) ⊂ K.

Appendix D. Proofs for the equivalence of the universality

D.1 Proof of Lemma 29

Proof [Proof of Lemma 29] We denote the injections of U and f(U) into Rd by ι1 : U ↪→
Rd and ι2 : f(U) ↪→ Rd, respectively. Since U is Cr-diffeomorphic to Rd and f is Cr-
diffeomorphic, f(U) is also Cr-diffeomorphic to Rd. Thus, f(U) is C∞-diffeomorphic to Rd by
Hirsch (1976, p.50, Theorem 2.7). By applying Corollary D.2 below to ι1 ◦f−1|f(U) : f(U)→
Rd and the injection ι2, we can obtain Cr-diffeomorphisms F1 : f(U)→ Rd and F2 : f(U)→
Rd such that F1|f(K) = f−1|f(K) and F2|f(K) = Idf(K), where Idf(K) denotes the identity
map on f(K). Let F := F2 ◦ F−1

1 : Rd → Rd. By definition, we have F |K = f |K .
Take a sufficiently large open ball B centered at 0 such that K ⊂ 1

2B. Let W ∈ Aff such
that W−1(x) = DF (0)−1(x − F (0)). Then by Lemma D.1 below, we conclude that there
exists a compactly supported diffeomorphism h : Rd → Rd such thatW ◦h|K = F |K = f |K .
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Here, we remark that Lemma D.1 below is a modified version of Lemma D.1 in Bernard
et al. (2018), with a correction to make it explicit that the extended diffeomorphism is
compactly supported. Their Lemma D.1 does not explicitly state that it is compactly
supported, but by Theorem 1.4 in Section 8 of Hirsch (1976), it can be shown that the
diffeomorphism is compactly supported. We provide the proof as follows:

Lemma D.1 Let r ≥ 2 be an integer, R a positive scalar, and BR ⊂ Rd an open ball of
radius R with origin 0, and let f : BR → f(BR) ⊂ Rd be a Cr-diffeomorphism onto its image
such that f(0) = 0 and Df(0) = I. Let ε ∈ (0, R/2). Then there exists h ∈ Diffrc such that
f(x) = h(x) for any x ∈ BR−ε.
Proof Put δ := ε/(2R− ε), and define Iδ := (−δ, 1 + δ). We define F : BR− ε

2
× Iδ → Rd by

F (x, t) :=

{
f(tx)
t if t 6= 0,

x if t = 0.

Here F is Cr, C1 with respect to x, t, respectively. Let

U :=
{

(F (x, t), t) : (x, t) ∈ BR− ε
2
× Iδ

}
⊂ Rd × R

and let F † : U → BR− ε
2
such that F (F †(x, t), t) = x for any (x, t) ∈ U . Here, F † is the

first component of the inverse of the map (x, t) 7→ (F (x, t), t) from BR− ε
2
× Iδ onto U . We

note that U is a bounded open subset in Rd × R. Fix a compactly supported C∞-function
φ on Rd × Iδ such that for (x, t) ∈ F

(
BR−ε × [0, 1]

)
× [0, 1], φ(x, t) = 1, and for (x, t) /∈ U ,

φ(x, t) = 0. Then we define H : Rd × Iδ → Rd by

H(x, t) :=

{
φ(x, t)∂F∂t (F †(x, t), t) (x, t) ∈ U,
0 otherwise.

Since F † is C1 and for fixed t ∈ Iδ, ∂F∂t (·, t) is Cr, there exists L > 0 such that for any t ∈ Iδ,
‖H(x, t)−H(y, t)‖ < L‖x− y‖ with x, y ∈ Rd. Thus the differential equation

dz

dt
= H(z, t), z(0) = x

has a unique solution φx(t). Then h(x) := φx(1) is the desired extension.

As a corollary, we can prove a Cr-version of Theorem 3.3 in Bernard et al. (2015):

Corollary D.2 Let r ≥ 2 be a positive integer and f ∈ DrU . Assume U is C∞-diffeomorphic
to Rd. Then, for any compact K ⊂ U , there exists a Cr-diffeomorphism F from U to Rd
with F (U) = Rd such that

F |K = f |K .
Proof Fix a Cr-diffeomorphism g : U → Rd. Let ε > 0 and take a sufficiently large R such
that g−1(BR−ε) contains K, where BR is the open ball of radius R with origin 0. By using
Lemma D.1, there exists h ∈ Diffrc and W ∈ Aff such that h(x) = W ◦ f ◦ g−1(x) for all
x ∈ BR−ε. As h is surjective mapping, F := W−1 ◦ h ◦ g is the desired Cr-diffeomorphism
from U onto Rd.
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D.2 Proof of Lemma 31

Proof [Proof of Lemma 31] Put Hr := {g1 ◦ · · · ◦ gn : n ≥ 1, g1, . . . , gn ∈ Ξr}. First, we
prove that Hr forms a subgroup of Diffrc. By definition, for any g, h ∈ Hr, it holds that
g ◦ h ∈ Hr. Also, Hr is closed under inversion; to see this, it suffices to show that Ξr is
closed under inversion. Let g = Φ(·, 1) ∈ Ξr. Consider the map φ : Rd × U → Rd defined by
φ(x, t) := Φ(·, t)−1(x). It is easy to confirm that φ satisfies the conditions of Definition 20,
hence g−1 = φ(·, 1) is an element of Ξr. Note that φ is confirmed to be Cr on Rd × U by
applying the inverse function theorem (for example, Lang, 1985, Theorem 1 of Chapter I,
Section 5) to (t,x) 7→ (t,Φ(x, t)).

Next, we prove that Hr is normal. To show that the subgroup generated by Ξr is normal,
it suffices to show that Ξr is closed under conjugation. Take any g ∈ Ξr and h ∈ Diffrc,
and let Φ be a flow associated with g. Then, the function Φ′ : Rd × U → Rd defined by
Φ′(·, s) := h−1 ◦ Φ(·, s) ◦ h is a flow associated with h−1 ◦ g ◦ h satisfying the conditions in
Definition 20, which implies h−1 ◦ g ◦ h ∈ Ξr, that is, Ξr is closed under conjugation.

Next, we prove that Hr is non-trivial by constructing an element of Ξr that is not the
identity element. First, consider the case d = 1. Let ṽ : R → R≥0 be a non-constant
C∞-function such that supp ṽ ⊂ [0, 1] and ṽ(k)(0) = 0 for any k ∈ N. Then define v : R→ R
by

v(x) =

{
ṽ(|x|) x

|x| if x 6= 0,

0 if x = 0,

which is a C∞-function on R with a compact support. Since v is Lipschitz continuous and
C∞, there exists IVP[v] that is a C∞-function over R× R; see Fact 4 and Hartman (2002,
Chapter V, Corollary 4.1). Let Kv ⊂ R be a compact subset that contains supp v. Then,
by considering the ordinary differential equation by which IVP[v] is defined, we see that⋃
t∈R supp IVP[v](·, t) ⊂ Kv and also that IVP[v](x, 0) = x. We also have IVP[v](x, s+ t) =

IVP[v](IVP[v](x, s), t) for any s, t ∈ R. In particular, we have IVP[v](·, s)−1 = IVP[v](·,−s)
for any s ∈ R. Therefore, we have IVP[v](·, 1) ∈ Ξr. Since v 6≡ 0, IVP[v](·, 1) is not an
identity map and thus Ξr is not trivial. Next, we consider the case d ≥ 2. Take a C∞-function
φ : R→ R with supp φ = [1, 2] and a nonzero skew-symmetric matrix A (that is, A> = −A)
of size d, and let X(x) := φ(‖x‖)A. We define a C∞-map Φ: Rd × R→ Rd by

Φ(x, t) := exp(tX(x))x.

Since exp(tX(x)) is an orthogonal matrix for any t ∈ R and x ∈ Rd, Φ is a C∞-flow
on Rd. Now, it is enough to show that there exists a compact set KΦ ⊂ Rd satisfying
∪t∈Rsupp Φ(·, t) ⊂ KΦ. LetKΦ := {x ∈ Rd | ‖x‖ ≤ 2}. Then the inclusion supp Φ(·, t) ⊂ KΦ

holds for any t ∈ R since X(x) = 0 for x ∈ Rd \KΦ.

D.3 Proof of Lemma 35

Proof [Proof of Lemma 35] The proof is based on induction. Suppose that f is in the form
of

f(x) = (f1(x), . . . , fm(x), xm+1, . . . , xd).
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By means of induction with respect to m, we prove that there exist compactly
supported Cr-diffeomorphisms F1, . . . , Fm : Rd → Rd in the forms of Fi(x) :=
(x1, . . . , xi−1, hi(x), xi+1, . . . , xd) for some hi : Rd → R such that f = F1 ◦ · · · ◦ Fm.

In the case of m = 1, the above is clear. Assume that the statement is true in the case of
any k < m. Define

F (x1, . . . , xd) := (x1, . . . , xm−1, fm(x), xm+1, . . . , xd),

f̃ := f ◦ F−1.

Note that F is a compactly supported Cr-diffeomorphism from Rd to Rd. In fact, compactly
supportedness and surjectivity of F comes from the compactly supportedness of f . Moreover,
since we have detDFx = ∂fm

∂xm
(x) 6= 0 for any x ∈ Rd by the assumption on f , F is

injective and is a Cr-diffeomorphism from Rd to Rd by inverse function theorem. Therefore,
f̃ is also a Cr-diffeomorphism from Rd to Rd. We show that f̃ is of the form f̃(x) =
(g1(x), · · · , gm−1(x), xm, · · · , xd) for some Cr-functions gi : Rd → R (i = 1, · · · ,m − 1)

satisfying det ∆f̃
k(x) 6= 0 for any x ∈ Rd and k ∈ [d]. From Lemma D.3, there exist

gi, h ∈ Cr(Rd) (i = 1, · · · ,m) such that

f−1(x) = (g1(x), · · · , gm(x), xm+1, · · · , xd)
F−1(x) = (x1, · · · , xm−1, h(x), xm+1, · · · , xd).

Then we have

f̃−1(x) = F ◦ f−1(x) = (g1(x), · · · , gm−1(x), fm(f−1(x)), xm+1, · · · , xd)
= (g1(x), · · · , gm−1(x), xm, · · · , xd).

Therefore, from Lemma D.3, f̃ is of the following form

f̃(x) = f ◦ F−1(x) = (f1 ◦ F−1(x), · · · , fm−1 ◦ F−1(x), xm, · · · , xd).

Moreover, by the form of F−1 and f , we have Df̃(x) = Df(F−1(x)) ◦DF−1(x) and

Df =

(
A

I

)
, D(F−1) =

Im−1
∂h
∂x1

· · · ∂h
∂xd
Id−m


for some A ∈ M(m,R) with all the trailing principal minors nonzero. Therefore, we
obtain det ∆f

k(x) 6= 0 for any x ∈ Rd and k ∈ [d]. Here, by the assumption of the
induction, there exist compactly supported Cr-diffeomorphisms Fi : Rd → Rd and hi ∈ Cr(Rd)
(i = 1, · · · ,m− 1) such that

f̃ = F1 ◦ · · · ◦ Fm−1, Fi(x) = (x1, · · ·xi−1, hi(x), xi+1, · · · , xd).

Thus f = f̃ ◦ F has the desired form.
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Lemma D.3 Let 1 ≤ r ≤ ∞ and f : Rd → Rd Cr-diffeomorphism of the form

f(x) := (f1(x), · · · , fm(x), xm+1, · · · , xd),

where fi : Rd → R belongs to Cr(Rd) (i = 1, · · · ,m). Then the inverse map f−1 becomes of
the form

f−1(x) = (g1(x), · · · , gm(x), xm+1, · · ·xd),

where gi : Rd → R belongs to Cr(Rd) for i = 1, · · · ,m.

Proof We write f−1(x) = (h1(x), · · · , hd(x)), where hi ∈ Cr(Rd) (i = 1, · · · , d). Then by
the definition of the inverse map, the identity

(x1, · · · , xd) = f ◦ f−1(x) = (f1(h1(x)), · · · , fm(hm(x)), hm+1(x), · · · , hd(x))

holds for any x ∈ Rd, which implies that we obtain hi(x) = xi (i = m + 1, · · · , d). This
completes the proof of the lemma.

D.4 Proof of Theorem 26

Here, we provide the proof of Theorem 26.

D.4.1 Proof of the statement 1

Here, we prove a key ingredient (Corollary D.5) for the generalized equivalence of the
statement 1 of Theorem 26. The statement is the direct consequence of Corollary D.5. In
this section, we always assume p ∈ [1,∞). For any finite subset S ⊂ Rd, we denote by
Map(S,Rd) the set of maps from S to Rd and equip it with the supremum topology. Then,
for any finite subset S ⊂ Rd, a set of bijectionsM, and a subset F ⊂ Map(S,Rd),M is an
L∞-universal approximator for F ifM is a Map(S,Rd)-universal approximator for F .

First, we prove the following lemma, which is essentially proved by Li et al. (2022).

Lemma D.4 LetM be a set of bijections from Rd to Rd. We assume thatM satisfies the
following three conditions:

(1) all functions ofM are locally Lipschitz.

(2) for any finite subset S ⊂ Rd, M is an L∞-universal approximator for the set of all
injections from S to Rd.

(3) M is an Lp-universal approximator for the subset{
f : [0, 1]d → Rd : f(x1, . . . , xd) = (fi(xi))

d
i=1 and fi is nondecreasing

}
.

Then, M◦M := {g ◦ f : g, f ∈ M} is an L∞-universal approximator for C0([0, 1]d,Rd),
where C0(U, V ) is the set of continuous maps from U to V .
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Proof Let ε > 0 be a positive number. Let f ∈ C0([0, 1]d,Rd), m be a positive integer, and
K ⊂ [0, 1]d. For any α ∈ Zd≥0 with |α| ≥ m, let

∆α :=

d∏
i=1

[
αi − 1

m
,
αi
m

)
⊂ Rd,

pα :=

(
α1 − 1

m
, . . . ,

αm − 1

m

)
.

Put yα := f(pα). We define

Hm(x1, . . . , xm) :=

(
m∑
k=0

k

m
1[k/m,k+1/m)(xi)

)m
i=1

.

By (2), there exists ψm ∈M such that

‖ψm(pα)− yα‖ < 1/m

for any α with |α| ≤ m. Since f is continuous, we see that

sup
|α|≤m

sup
x∈∆α

‖ψm(pα)− f(x)‖ < ε/2

if we take m sufficiently large. Let Lm be the Lipschitz constant for ψm|K . by (3), there
exists gm ∈M such that

‖gm −Hm‖K,0,p <
ε

2Lm
.

Therefore, we have

‖ψm ◦ gm − f‖K,0,p ≤ ‖ψm ◦ gm − ψm ◦Hm‖K,0,p + ‖ψm ◦Hm − f‖K,0,p
≤ Lm ‖gm −Hm‖K,0,p + sup

|α|≤m
sup
x∈∆α

‖ψm(pα)− f(x)‖

< ε.

Then, we have the following corollary:

Corollary D.5 Assume d ≥ 2. Let U ⊂ Rd be an open subset. Then, D∞Rd is an L
p-universal

approximator for C0(U,Rd) for any open subset U ⊂ Rd.

Proof it suffices to show that for any f ∈ C0(U,Rd), ε > 0, and compact subset K ⊂ U ,
there exists g ∈ D∞Rd such that

‖g − f‖K,0,∞ < ε.

We may assume U = Rd and K = [0, 1]d by extending f as a continuous function on
Rd. Then, we can easily see that D∞Rd satisfies the three conditions in Lemma D.4. The
assumption d ≥ 2 is used here for the second condition of Lemma D.4. Thus, the assertion
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follows from Lemma D.4.

Proof [Proof of the statement 1 of Theorem 26] It is a direct consequence of Corollary D.5.

Remark D.6 Brenier and Gangbo (2003) proves a similar result on the approximation of
L∞-function on bounded domain with a diffeomorphism in Lp-space.

D.4.2 Proof of the statement 2

Here, we prove the statement 2 of Theorem 26. The key ingredients are the annulus theorem
by Kirby (1969) and the approximation result by Connell (1963). We describe the precise
statement of the Annulus theorem:

Fact 7 (Annulus Theorem) Let f, g : Sd−1 → Rd be locally flat embeddings with f(Sd−1)
inside the bounded component of Rd \ g(Sd−1). Then, the closed region that is bounded by
f(Sd−1) and g(Sd−1) is homeomorphic to Sd−1 × [0, 1].

Here, a map h : Sd−1 → Rd is locally flat if for any x ∈ h(Sd−1), there exists a open set
U ⊂ Rd with isomorphism ι : U ∼= Rd such that x ∈ U and ι(U ∩ h(Sd−1)) = Rd−1 × {0}.
This fact proved by Radó (1925) for d = 2, Moise (1952) for d = 3, Quinn (1982) for d = 4,
and Kirby (1969) for d ≥ 5.

By means of Fact 7, we obtain the following lemma:

Lemma D.8 Let U ⊂ Rd be an open set homeomorphic to Rd, K ⊂ U a compact set,
and f ∈ D0

U . Then, there exist h ∈ Diff0
c and an affine transform W ∈ Aff such that

W ◦ h|K = f |K .
Proof It suffices to prove that there exists h ∈ Diff0

c such that f |K = h|K . We may
assume that f is orientation preserving by multiplying suitable , U = Rd and K = Dr

(r > 0), where Dr := {x ∈ Rd : |x| ≤ r} be the closed ball centered at 0 of radius r. Fix
sufficiently large R > 0 such that f(Dr) ⊂ DR. Then, by Fact 7, there exists homomorphism
Φ := (φ1, φ2) : DR \ f(Br) ∼= ∂DR × [r,R], where Br is the open ball centered at 0 of radius
r and φ2 satisfies that for any x ∈ DR \ f(Br), φ2(x) = r (resp. R) if and only if x ∈ f(∂Dr)
(resp. ∂DR). Define

F : ∂DR × [r,R]→ Rd; (x, t)→ Φ−1
(
φ1

(
f(rR−1x)

)
, t
)
.

Since f is orientation preserving and F provides isotopy between f(rR−1·) : ∂DR → f(∂Dr)
and F (·, R) : ∂DR → ∂DR, F (·, R) is also orientation preserving. It is known that the
orientation preserving map on the sphere is isotopic to the identity (see, for example,
Livingston 2021, Theorem 1). Let F̃ : ∂DR × [0, 1]→ ∂DR be the isotopy between F (·, R)
and the identity on ∂DR. Then, the desired compactly support homeomorphism h ∈ Diff0

c is
defined as follows:

h(x) :=


f(x) if x ∈ Dr,

F (Rx/|x|, |x|) if x ∈ DR \Dr,

R−1|x|F̃ (Rx/|x|, |x| −R) if x ∈ DR+1 \DR,

x if x /∈ DR+1.
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Then, we have the following result:

Lemma D.9 Assume d ≥ 7. For any open subset U ⊂ Rd homeomorphic to Rd, D∞Rd is a
L∞-universal approximator for D0

U .

Proof By Lemma D.8, it suffices to show that D∞Rd is a L∞-universal approximator for Diff0
c .

It follows from Connell (1963, Theorem 4) as a compactly supported homeomorphism is
stable (we say a homeomorphism is stable if the homeomorphism is a finite composition of
homeomorphisms each of which is the identity on a nonempty open subset).

Proof [Proof of the statement 2] It is a direct consequence of Lemma D.9.

Appendix E. Universality of coupling-flow based INNs

In this section, we give the proof for the universal approximation properties of certain
CF-INNs.

E.1 Using permutation matrices instead of Aff in the definition of INNG

In terms of representation power, there is no essential difference if we substitute the general
linear group in Definition 6 with the permutation group. It comes from the fact that one
can express the elementary operation matrices using affine coupling flows and permutations.
More formally, we have the following proposition.

Proposition E.1 Assume that H includes all the functions Rd−1 → R of the following forms:
x 7→ −x · ei, x 7→ x · ei, and x 7→ b (constant map), where b ∈ Rd−1 and i = 1, · · · , d − 1.
Then, we have

INNH-ACF = {W1 ◦ g1 ◦ · · · ◦Wn ◦ gn : gi ∈ H-ACF,Wi ∈ Sd}, (10)

where Sd is the permutation group of degree d.

Proof Since the multiplication of any permutation matrix is an affine transformation, the
right-hand side of (10) is included in the left-hand side.

We prove the converse inclusion. Since any translation operator (that is, the addition of
a constant vector) can be easily represented by the elements of H-ACF and permutations, it
is enough to show that any element of GL(d,R) can be realized by a finite composition of
elements of H-ACF and Sd. To show that, it is sufficient to consider only the elementary
matrices. Row switching comes from Sd. Moreover, element-wise sign flipping can be
described by a composition of finite elements of H-ACF. To see this, first, observe that(

−1 0
0 1

)
=

(
1 0
1 1

)(
0 1
1 0

)(
1 0
−1 1

)(
0 1
1 0

)(
1 0
1 1

)(
0 1
1 0

)
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holds. Here, the linear transforms(
1 0
−1 1

)
,

(
1 0
1 1

)
are realized by the H-ACF layers

(x, y) 7→ (x, y − x), (x, y) 7→ (x, y + x),

respectively. Now, any lower triangular matrix with positive diagonals can be described by a
composition of finite elements of H-ACF. Therefore, any diagonal matrix whose components
are ±1 can be described by a composition of elements in H-ACF and Sd. Therefore, any
affine transform is an element of the right-hand side of (10).

This result implies that employing Aff in Definition 6 instead of the permutation matrices
is not an essential requirement for the universal approximation properties to hold. For
this reason, we believe that the empirically reported difference in the performances of
Glow (Kingma and Dhariwal, 2018) and RealNVP (Dinh et al., 2017) is mainly in the
efficiency of approximation rather than the capability of approximation.

E.2 Affine coupling flows (ACFs)

In this section, we provide the proof details of Theorem 42 in the main text. We note that
we are assuming d ≥ 2.

E.2.1 Proof of Theorem 42: Lp-universality of INNH-ACF

In this subsection, we prove the following lemma to construct an approximator for an
arbitrary element of S0

c (hence for S∞c ) within INNH-ACF. It is based on Lemma E.3 proved
in Section E.2.2, which corresponds to a special case. Figure 2 illustrates the proof technique
for Lemma E.2.

Lemma E.2 (Lp-universality of INNH-ACF for compactly supported S∞c ) Let p ∈
[1,∞). Assume H is an L∞-universal approximator for C∞c (Rd−1) and that it consists
of piecewise C1-functions. Let f ∈ S0

c , ε > 0, and K ⊂ Rd be a compact subset. Then, there
exists g ∈ INNH-ACF such that ‖f − g‖K,0,p < ε.

Proof Since we can take a > 0, b ∈ R satisfying aK + b ⊂ [0, 1]d, it is enough to prove the
assertion for the case K = [0, 1]d.

Next, we show that we can assume that for any (x, y) ∈ Rd, u(x, 0) = 0 and u(x, 1) = 1
for any x ∈ Rd−1. Since u(x, ·) is a homeomorphism, we have u(x, 0) 6= u(x, 1) for any x ∈ R.
By the continuity of f , either of u(x, 0) > u(x, 1) for all x ∈ [0, 1]d−1 or u(x, 0) < u(x, 1) for
all x ∈ [0, 1]d−1 holds. Without loss of generality, we assume the latter case holds (if the former
one holds, we just switch u(x, 0) and u(x, 1)). We define s(x) = − log(u(x, 1)− u(x, 0)) and
t(x) = −u(x, 0)(u(x, 1)− u(x, 0))−1. By direct computation, we have

Ψd−1,s,t ◦ f(x, y) =

(
x,
u(x, y)− u(x, 0)

u(x, 1)− u(x, 0)

)
=: (x, u0(x, y)).
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f ACF

ψ∗n ψ∗n
hn : (x, y) 7→ (x, vn(y))

∃g1, g2, g3 ∈ INNACF :

g1 ' ψ∗n, g2 ' (x, vn(y)), g3 ' (ψ∗n)−1

=⇒ f ' g3 ◦ g2 ◦ g1

Figure 2: Illustration of the proof technique for Lemma E.2. The symbol ' indicates
approximation to arbitrary precision. The figure is taken from Teshima et al.
(2020a, Figure 2) with the authors’ permission.

In particular, Ψs,t◦f(x, 0) = (x, 0) and Ψs,t◦s(x, 1) = (x, 1) hold. , and the map y 7→ u0(x, y)
is a diffeomorphism for each x. Thus if we prove the existence of an approximator for Ψs,t ◦f ,
by Proposition B.1, we can arbitrarily approximate f itself.

For k := (k1, . . . , kd−1) ∈ Zd−1 and n ∈ N, we define (k)n :=
∑d

i=1 kin
i−1 ∈ {0, . . . , nd −

1}, that is, k is the n-adic expansion of (k)n. For any n ∈ N, define the following discontinuous
ACF: ψn : [0, 1]d → [0, 1]d−1 × [0, nd] by

ψn(x, y) :=

x, y +

n−1∑
k1,··· ,kd−1=0

(k)n1∆n
k+1

(x)

 ,

where k := (k1, . . . , kd) and k + 1 := (k1 + 1, . . . , kd + 1). We take an increasing function
vn : R→ R that is smooth outside finite points such that

vn(z) :=

{
u
(
k1
n , · · · ,

kd−1

n , z − (k)n

)
+ (k)n if z ∈ [(k)n, (k)n + 1)

z if z /∈ [0, nd).

We consider maps hn on [0, 1]d−1 × [0, nd] and fn : [0, 1]d → [0, 1]d defined by

hn(x, z) := (x, vn(z)),

fn := ψ−1
n ◦ hn ◦ ψn.
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Then we have the following claim.
Claim. For all k1, · · · , kd−1 = 0, · · · , n− 1, we have

fn(x, y) =

(
x, u

(
k1

n
, . . . ,

kd−1

n
, y

))
on
∏d−1
i=1 [kin ,

ki+1
n )× [0, 1).

In fact, we have

fn(x, y) = ψ−1
n ◦ hn ◦ ψn(x, y)

= ψ−1
n ◦ hn(x, y + (k)n)

= ψ−1
n (x, vn(y + (k)n))

= ψ−1
n

(
x, u

(
k1

n
, . . . ,

kd−1

n
, y

)
+ (k)n

)
=

(
x, u

(
k1

n
, . . . ,

kd−1

n
, y

))
.

Therefore, the claim above has been proved. Hence we see that ‖f − fn‖K,0,∞ → 0 as n→∞.
By Lemma E.3 below and the universal approximation property of H, for any compact
subset K and ε > 0, there exist g1, g2, g3 ∈ INNH-ACF such that

∥∥g1 − ψ−1
n

∥∥
K,0,p

< ε,
‖g2 − hn‖K,0,p < ε, and ‖g3 − ψn‖K,0,p < ε. Thus by Proposition B.1, for any compact K
and ε > 0, there exists g ∈ INNH-ACF such that ‖g − f‖K,0,p < ε.

Proof [Proof of Theorem 42] The assertion follows from Lemma E.2 and Theorem 26.

E.2.2 Special case: Approximation of coordinate-wise independent
transformation

In this section, we show the lemma claiming that special cases of single-coordinate transfor-
mations, namely coordinate-wise independent transformations, can be approximated by the
elements of INNH-ACF given sufficient representational power of H.

Lemma E.3 Let p ∈ [1,∞). Assume H is an L∞-universal approximator for C∞c (Rd−1)
and that it consists of piecewise C1-functions. Let u : R→ R be a continuous and increasing
function. Let f : Rd → Rd; (x, y) 7→ (x, u(y)) where x ∈ Rd−1 and y ∈ R. For any compact
subset K ⊂ Rd and ε > 0, there exists g ∈ INNH-ACF such that ‖f − g‖K,0,p < ε.

Proof We may assume without loss of generality, in light of Lemma E.5, that u is a C∞-
diffeomorphism on R and that the inequality u′(y) > 0 holds for any y ∈ R. Furthermore,
we may assume that u is compactly supported, that is, u(y) = y outside a compact subset of
R, without loss of generality because we can take a compactly supported diffeomorphism ũ
and a, b ∈ R (a 6= 0) such that aũ+ b = u on any compact set containing K by Lemma 29,
and the scaling a and the offset b can be realized by the elements of INNH-ACF.
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Fix δ ∈ (0, 1). We define the following functions:

ψ0(x, y) : = (x≤d−2, u
′(y)xd−1, y)

= (x≤d−2, exp(log u′(y))xd−1, y),

ψ1(x, y) : =
(
x≤d−2, xd−1 + δ−1(u(y)− y), y

)
,

ψ2(x, y) : = (x≤d−2, xd−1, y + δxd−1),

ψ3(x, y) : =
(
x≤d−2, xd−1 − δ−1(y − u−1(y)), y

)
,

where we denote x = (x1, . . . , xd−1) ∈ Rd−1. First, we show that
‖f − ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0‖K,0,∞ → 0 as δ → 0. By direct computation, we have

ψ3 ◦ ψ2 ◦ ψ1(x, y) = ψ3 ◦ ψ2(x≤d−2, xd−1 + δ−1(u(y)− y), y)

= ψ3(x≤d−2, xd−1 + δ−1(u(y)− y), y + δ(xd−1 + δ−1(u(y)− y)))

= ψ3(x≤d−2, xd−1 + δ−1(u(y)− y), δxd−1 + u(y))

= (x≤d−2, xd−1 − δ−1(δxd−1 + u(y)− u−1(δxd−1 + u(y))), δxd−1 + u(y))

= (x≤d−2, δ
−1u−1(δxd−2 + u(y))− δ−1y, u(y) + δxd−1),

where x = (x1, . . . , xd−1) ∈ Rd−1. Since u ∈ C∞([−r, r]) where r = max(x,y)∈K |y|, by
applying Taylor’s theorem, there exists a function R(x, y; δ) and C = C([−r, r], u) > 0 such
that

u−1(u(y) + δx) = y + u′(y)−1δx+R(x, y; δ)(δx)2 and sup
δ∈(0,1)

|R(x, y; δ)| ≤ C

for all (x, y) ∈ K. Therefore, we have

ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0(x, y) = (x, u(y)) + δ(R(x, u′(y)xd−1; δ)x≤d−1, u
′(y)xd−1).

For any compact subset K, the last term uniformly converges to 0 as δ → 0 on K.
Assume δ is taken to be small enough. Now, we approximate ψ3 ◦ · · · ◦ψ0 by the elements

of INNH-ACF. Since u is a compactly-supported C∞-diffeomorphism on R, the functions
(x≤d−2, y) 7→ log u′(y), (x≤d−2, y) 7→ u(y)− y, and (x≤d−2, y) 7→ y− u−1(y), each appearing
in ψ0, ψ1, ψ3, respectively, belong to C∞c (Rd−1). On the other hand, ψ2 can be realized
by GL ⊂ Aff. Therefore, combining the above with the fact that H is a L∞-universal
approximator for C∞c (Rd−1), we have that for any compact subset K ′ ⊂ Rd and any ε > 0,
there exist φ0, . . . , φ3 ∈ INNH-ACF such that ‖ψi − φi‖K′,0,∞ < ε. In particular, we can find
φ0, . . . , φ3 ∈ INNH-ACF such that ‖ψi − φi‖K′,0,p < ε.

Now, recall thatH consists of piecewise C1-functions as well as ψi (i = 0, . . . , 3). Moreover,
ψ0, ψ1, ψ3 are compactly supported while ψ2 ∈ GL, hence they are Lipschitz continuous
outside a bounded open subset. Therefore, by Proposition B.1, we have the assertion of the
lemma.

The following Lemma E.5 is used above when reducing the approximation problem from
S2

c to S∞c .
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Definition E.4 We say that a map f : Rd → R is last-increasing (resp. last-non-decreasing)
if, for any (a1, . . . , ad−1) ∈ Rd−1, the function f(a1, . . . , ad−1, x) is strictly increasing (resp.
non-decreasing) with respect to x.

Lemma E.5 Let r ≥ 0 be an integer and let p ∈ [1,∞]. Let τ : Rd → R be a last-non-
decreasing measurable function. We assume that τ is locally Cr−1,1-function if r ≥ 1 or
locally L∞ if r = 0. Then for any compact subset K ⊂ Rd and any ε > 0, there exists a
last-increasing C∞-function τ̃ : Rd → R satisfying

‖τ − τ̃‖K,r,p < ε.

Proof Let φ : Rd → R be a compactly supported non-negative C∞-function with
∫
|φ(x)|dx =

1 such that for any (a1, . . . , ad−1) ∈ Rd−1, the function φ(a1, . . . , ad−1, x) of x is even and
decreasing on {x > 0 : φ(a1, . . . , ad−1, x) > 0}. For t > 0, we define φt(x) := t−dφ(x/t).
Then we see that τt := φt ∗ τ is a C∞-function. We take any a ∈ Rd−1. We verify that
τt(a, xd) is strictly increasing with respect to xd. Take any xd, x′d ∈ R satisfying xd > x′d.
Since τ is strictly increasing, we have

τt(a, xd)− τt(a, x′d) =

∫
Rd
φt(x)(τ((a, xd)− x)− τ((a, x′d)− x))dx > 0.

Thus for any (a1, . . . , ad−1) ∈ Rd−1, the C∞-function τt(a1, . . . , ad−1, x) is strictly increasing
with respect to x.

Assume p <∞. Take any compact subset K ⊂ Rd. We show ‖τt − τ‖K,r,p → 0 as t→ 0.
We prove τt converges τ as t→ 0. Take R > 0 satisfying K ⊂ B(R) := {x ∈ Rd : |x| ≤ R}.
We assume 0 < t < 1. Then we have φt ∗ τ = φt ∗ (1B(R+1)τ). Since we have 1B(R+1)τ ∈
Lp(Rd), we obtain

‖φt ∗ τ − τ‖K,r,p =
∑
|α|≤r

‖φt ∗ (1B(R+1)∂ατ)− 1B(R+1)∂ατ‖K,0,p

=
∑
|α|≤r

‖φt ∗ (1B(R+1)∂ατ)− 1B(R+1)∂ατ‖Rd,0,p → 0 (t→ 0).

Here, we use a property of the mollifier φt (see Theorem 8.14 in Folland 1999 for example).
In the case of p =∞, by direct computation, we have

|τt − τ |K,r,∞ ≤ C
∑
|α|≤r

sup
(x,y)∈supp(φ)×K

|∂ατ(y − tx)− ∂ατ(y)| → 0 (t→ 0).

Here C := supx∈Rd |φ(x)|. Thus in both cases above, By taking sufficiently small t, we
obtain the desired C∞-function τ̃ = τt.

E.3 Neural autoregressive flows (NAFs)

In this section, we prove that neural autoregressive flows (Huang et al., 2018) yield sup-
universal approximators for S1

c (hence for S∞c ). The proof is not merely an application of
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a known result in Huang et al. (2018), but it requires additional non-trivial consideration
to enable the adoption of Lemma 3 in Huang et al. (2018) as it is applicable only for those
smooth mappings that match certain boundary conditions.

Definition E.6 A deep sigmoidal flow (DSF; a special case of neural autoregressive flows)
is a flow layer g = (g1, . . . , gd) : Rd → Rd of the following form (Huang et al., 2018, Equa-
tion (8)):

gk(x) := σ−1

 n∑
j=1

wk,j(x≤k−1) · σ
(
xk − bk,j(x≤k−1)

τj(x≤k−1)

) ,

where σ is the sigmoid function, n ∈ N, wj , bj , τj : Rk−1 → R (j ∈ [n]) are neural networks
such that bj(·) ∈ (r0, r1), τj(·) ∈ (0, r2), wj(·) > 0, and

∑n
j=1wj(·) = 1 (r0, r1 ∈ R, r2 > 0).

We define DSF to be the set of all possible DSFs.

Proposition E.7 (Universality of INNs based on DSF) The elements of DSF are lo-
cally bounded, and INNDSF is a sup-universal approximator for S1

c .

Proof The elements of DSF are continuous, hence locally bounded. Let s = (s1, · · · , sd) ∈ S1
c .

Take any compact set K ⊂ Rd and ε > 0. Since K is compact, there exist r0, r1 ∈ R such
that K ⊂ [r0, r1]d. Put r′0 = r0 − 1, r′1 = r1 + 1. We take a C1-function b : (r′0, r

′
1) → R

satisfying

1. b|[r0,r1] = 0,

2. b|(r′0,r0) and b|(r1,r′1) are strictly increasing,

3. limx→r′0+0 b(x) = −∞ and limx→r′1−0 b(x) =∞,

4. limx→r′0+0
d(σ◦b)
dx (x) and limx→r′1−0

d(σ◦b)
dx (x) exist in R,

where σ is the sigmoid function. For each k ∈ [d], we define a C1-map s̃k : [r′0, r
′
1]k−1 ×

(r′0, r
′
1)× [r′0, r

′
1]d−k → R, which is strictly increasing with respect to xk, by

s̃k(x) := sk(x) + b(xk) (x = (x1, · · · , xd)).

Moreover, we define a map S : [r′0, r
′
1]d → [0, 1]d by

Sk|[r′0,r′1]k−1×(r′0,r
′
1)×[r′0,r

′
1]d−k = σ ◦ s̃k,

Sk(x1, · · · , xk−1, r
′
0, xk+1, · · · , xd) = 0,

Sk(x1, · · · , xk−1, r
′
1, xk+1, · · · , xd) = 1,

where we write S = (S1, · · · , Sd). Then, by Lemma E.8, S satisfies the assumptions of
Lemma 3 in Huang et al. (2018). Since S([r0, r1]d) ⊂ (0, 1)d is compact, there exists a
positive number δ > 0 such that

S([r0, r1]d) +B(δ) := {S(x) + v : x ∈ [r0, r1]d, v ∈ B(δ)} ⊂ [δ, 1− δ]d,
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where B(δ) := {x ∈ Rd : |x| ≤ δ}. Let L > 0 be a Lipschitz constant of σ−1 : (0, 1)d → Rd
on [δ, 1− δ]d. By Lemma 3 in Huang et al. (2018), there exists g ∈ INNDSF such that

‖S − σ ◦ g‖[r′0,r′1]d,0,∞ < min
{
δ,
ε

L

}
.

As a result, σ ◦ g([r0, r1]d) ⊂ S([r0, r1]d) +B(δ) ⊂ [δ, 1− δ]d. Then we obtain

‖s− g‖K,0,∞ ≤ ‖s− g‖[r0,r1]d,0,∞ = ‖σ−1 ◦ σ ◦ s− σ−1 ◦ σ ◦ g‖[r0,r1]d,0,∞

≤ L‖S − σ ◦ g‖[r0,r1]d,0,∞

< ε.

Lemma E.8 We denote by T 1 the set of all C1-increasing triangular mappings from Rd
to Rd. For s = (s1, · · · , sd) ∈ T 1, we define a map S : [r′0, r

′
1]d → [0, 1]d as in the proof of

Proposition E.7. Then S is a C1-map.

Proof It is enough to show that Sd : [r′0, r
′
1]d → [0, 1] is a C1-function. We prove that for

any i ∈ [d], the i-th partial derivative of Sd exists and that it is continuous on [r′0, r
′
1]d. First,

for i ∈ [d− 1], we consider the i-th partial derivative.
Claim 1.

∂Sd
∂xi

(x) =

{
dσ
dx (si(x) + b(xd))

∂sd
∂xi

(x) (x ∈ [r′0, r
′
1]d−1 × (r′0, r

′
1))

0 (xd = r′0, r
′
1)

In fact, for x ∈ [r′0, r
′
1]d−1 × (r′0, r

′
1), we have

∂Sd
∂xi

(x) =
∂(σ ◦ s̃d)
∂xi

(x) =
dσ

dx
(sd(x) + b(xd))

(
∂sd
∂xi

(x) + 0

)
.

For x = (x≤d−1, r
′
0), we have

∂Sd
∂xi

(x) = lim
h→0

Sd(x≤i−1, xi + h, xi+1, · · · , xd−1, r
′
0)− Sd(x≤d−1, r

′
0)

h

= lim
h→0

0− 0

h
= 0

Here, note that by the definition of Sd, the notation Sd(x≤i−1, xi + h, xi+1, · · · , xd−1, r
′
0)

makes sense even if xi = r′0 or xi = r′1. We can verify the case x = (x≤d−1, r
′
1) similarly.

Next, we show that ∂Sd
∂xi

is continuous. We take any x≤d−1 ∈ [r′0, r
′
1]d−1. Since we have

limx→r′0 b(x) = −∞, limx→r′1 b(x), limx→±∞
dσ
dx (x) = 0, and | ∂sd∂xI

(x)| <∞ (x ∈ [r′0, r
′
1]d), we

obtain

lim
x→(xd−1,r

′
0)

dσ

dx
(si(x) + b(xd))

∂sd
∂xi

(x) = 0,

lim
x→(xd−1,r

′
1)

dσ

dx
(si(x) + b(xd))

∂sd
∂xi

(x) = 0.
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Therefore, the partial derivative ∂Sd
∂xi

(x) is continuous on [r′0, r
′
1]d for i ∈ [d− 1].

Next, we consider the d-th derivative of Sd.
Claim 2.

∂Sd
∂xd

(x) =


dσ
dx (sd(x) + b(xd))

(
∂sd
∂xd

(x) + db
dx(xd)

)
(x ∈ [r′0, r

′
1]d−1 × (r′0, r

′
1))

esd(x≤d−1,r
′
0) limx→r′0+0

d(σ◦b)
dx (x) (xd = r′0)

e−sd(x≤d−1,r
′
1) limx→r′1−0

d(σ◦b)
dx (x) (xd = r′1)

We verify Claim 2. Since it is clear for the case x ∈ [r′0, r
′
1]d−1 × (r′0, r

′
1) by the definition of

Sk, we consider the case xd = r′0, r
′
1.

Subclaim. For x′≤d−1 ∈ [r′0, r
′
1]d−1,

lim
x→(x′≤d−1,r

′
0)

σ(sd(x) + b(xd))

σ(b(xd))
= esd(x′≤d−1,r

′
0)

lim
x→(x′≤d−1,r

′
1)

σ(sd(x) + b(xd))− 1

σ(b(xd))− 1
= e−sd(x′≤d−1,r

′
1)

We verify this subclaim. From limx→r′0 b(x) = −∞, we have

σ(sd(x) + b(xd))

σ(b(xd))
=

1 + e−b(xd)

1 + e−sd(x)−b(xd)
=

eb(xd) + 1

eb(xd) + e−sd(x)

→ 1

e−sd(x′≤d−1,r
′
0)

= esd(x′≤d−1,r
′
0) (x→ (x′≤d−1, r

′
0))

Similarly, from limx→r′1 b(x) =∞, we have

σ(sd(x) + b(xd))− 1

σ(b(xd))− 1
= e−sd(x) 1 + e−b(xd)

1 + e−sd(x)−b(xd)

→ e−sd(x≤d−1,r
′
1) (x→ (x′≤d−1, r

′
1)).

Therefore, our subclaim has been proved. By using L’Hôpital’s rule, we have

lim
h→+0

σ(b(r′0 + h))

h
= lim

x→r′0

d(σ ◦ b)
dx

(x), lim
x→r′1

σ(b(r′1 + h))− 1

h
= lim

x→r′1

d(σ ◦ b)
dx

(x).

Then, from Subclaim, we obtain
∂Sd
∂xd

(x≤d−1, r
′
0) = lim

h→+0

σ(sd(x≤d−1, r
′
0 + h) + b(r′0 + h))− 0

h

= lim
h→+0

σ(sd(x≤d−1, r
′
0 + h) + b(r′0 + h))

σ(b(r0 + h))
· σ(b(r′0 + h))

h

= esd(x≤d−1,r
′
0) lim
x→r′0+0

d(σ ◦ b)
dx

(x),

∂Sd
∂xd

(x≤d−1, r
′
1) = lim

h→−0

σ(sd(x≤d−1, r
′
1 + h) + b(r′1 + h))− 1

h

= lim
h→−0

σ(sd(x≤d−1, r
′
1 + h) + b(r′1 + h))− 1

σ(b(r′1 + h))− 1
· σ(b(r′1 + h))− 1

h

= esd(x≤d−1,r
′
1) lim
x→r′1

d(σ ◦ b)
dx

(x).
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Therefore, Claim 2 was proved.
Finally, we verify ∂Sd

∂xd
(x) is continuous on [r′0, r

′
1]d. Fix x′≤d−1 ∈ [r′0, r

′
1]d−1. Since we

have limx→(x′≤d−1,r
′
0)
dσ
dx (σd(x) + b(xd))

∂sd
∂xd

(x) = 0, from Claim 2, it is enough to show the
following:
Claim 3.

lim
x→(x′≤d−1,r

′
0)

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) = esd(x≤d−1,r

′
0) lim
x→r′0+0

d(σ ◦ b)
dx

(x),

lim
x→(x′≤d−1,r

′
1)

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) = e−sd(x≤d−1,r

′
1) lim
x→r′1−0

d(σ ◦ b)
dx

(x).

We verify Claim 3. We have

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) =

dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

dσ

dx
(b(xd))

db

dx
(xd)

=
dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

d(σ ◦ b)
dx

(xd).

Since we have dσ
dx (x) = σ(x)(1− σ(x)), from Subclaim above, Claim 3 follows from

dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

=
σ(sd(x) + b(xd))

σ(b(xd))
· 1− σ(sd(x) + b(xd))

1− σ(b(xd))

→

{
esd(x′≤d−1,r

′
0) (x→ (x′≤d−1, r

′
0))

e−sd(x′≤d−1,r
′
1) (x→ (x′≤d−1, r

′
1))

.

Therefore, we proved the continuity of ∂Sd∂xd
(x).

E.4 Sum-of-squares polynomial flows (SoS flows)

In this section, we prove that sum-of-squares polynomial flows (Jaini et al., 2019) yield
CF-INNs with the sup-universal approximation property for S1

c (hence for S∞c ). Even though
Jaini et al. (2019) claimed the distributional universality of the SoS flows by providing a proof
sketch based on the univariate Stone-Weierstrass approximation theorem, we regard the sketch
to be invalid or at least incomplete as it does not discuss the smoothness of the coefficients,
in other words, whether the polynomial coefficients can be realized by continuous functions.
Here, we provide complete proof that takes an alternative route to prove the sup-universality
of the SoS flows via the multivariate Stone-Weierstrass approximation theorem.

A sum-of-squares polynomial flow (SoS flow) is a flow layer g = (g1, . . . , gd) : Rd → Rd of
the following form(Jaini et al., 2019, Equation (9)):

gk(x) := B2r+1(xk;Ck(x≤k−1)),

B2r+1(z; (c,a)) := c+

∫ z

0

B∑
b=1

(
r∑
l=0

al,bu
l

)2

du,
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where r ∈ N∪ {0}, B ∈ N, c ∈ R, a ∈ RB(r+1), and Ck : Rk−1 → RB(r+1)+1 is a certain map,
for example, a neural network.

Here, we consider a small class of SoS flows as follows:

Definition E.9 Let H be a function on Rd−1. For c ∈ R and h1, . . . , hr ∈ H, Let

B̃(x; c, h1, . . . , hr) := c+

∫ xd

0

(
r∑
l=0

hl(x≤d−1)ul

)2

du.

Then, we define the set H-SoS as a subset consisting of B̃(·;h1, . . . , hr) where r ≥ 1 and hi’s
are elements of H.
Then, we have the following proposition:

Proposition E.10 Let r ≥ 0. Let H ⊂ Cr(Rd−1) and assume that H is a W r,∞-universal
approximator for the set of (d−1)-variable polynomials. Then, INNH-SoS is a W r,∞-universal
approximator for Sr+1

c .

Proof We only illustrate the proof in the cases of r = 0 and r = 1. The general cases follow
from a similar argument with the Leibniz rule and chain rule.

The L∞-universality follows from the Stone-Weierstrass approximation theorem as in
the below. Let s = (s1, . . . , sd) ∈ S1

c , a compact subset K ⊂ Rd, and ε > 0 be given. Then,
there exists R > 0 such that K ⊂ [−R,R]d. Since sd(x) is strictly increasing with respect to
xd and s is C1, we have η(x) := ∂sd

∂xd
(x) > 0 and η is continuous. Therefore, we can apply

the Stone-Weierstrass approximation theorem (Folland, 1999, Corollary 4.50) to
√
η(x):

for any δ > 0, there exists a polynomial π(x1, . . . , xd) such that
∥∥√η − π∥∥

[−R,R]d,0,∞ < δ.
Then, by rearranging the terms, there exist r ∈ N and polynomials ξl(x1, . . . , xd−1) such that
π(x1, . . . , xd) =

∑r
l=0 ξl(x1, . . . , xd−1)xld. Now, define

g̃d(x) := sd(x≤d−1, 0) +

∫ xd

0
(π(x≤d−1, u))2du

= sd(x≤d−1, 0) +

∫ xd

0

(
r∑
l=0

ξl(x1, . . . , xd−1)ul

)2

du

and g̃(x) := (x1, . . . , xd−1, g̃d(x)). Then,

‖s− g̃‖K,0,∞ = sup
x∈K

|sd(x)− g̃d(x)|

= sup
x∈K

∣∣∣∣sd(x≤d−1, 0) +

∫ xd

0
η(x≤d−1, u)du− g̃d(x)

∣∣∣∣
= sup

x∈K

∣∣∣∣∫ xd

0
(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)2)du

∣∣∣∣
≤ R · sup

x∈[−R,R]d

∣∣∣√η(x)
2
− π(x)2

∣∣∣
= R · sup

x∈[−R,R]d
|
√
η(x) + π(x)| · |

√
η(x)− π(x)|

≤ R

(
sup

x∈[−R,R]d
2
√
η(x) + δ

)
δ,
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where we used

sup
x∈[−R,R]d

|
√
η(x) + π(x)| ≤ sup

x∈[−R,R]d
|2
√
η(x)|+ |

√
η(x)− π(x)|

≤ sup
x∈[−R,R]d

2
√
η(x) + δ.

It is straightforward to show that there exists g ∈ SoS such that ‖g̃ − g‖K,0,∞ < ε
2 by

approximating each of sd(x≤d−1) and ξl on K using neural networks. Finally, take δ to be
small enough so that ‖s− g̃‖K,0,∞ < ε

2 holds.
Next, we consider the W 1,∞-universality. We use the same notations as above. We note

that since s ∈ S2
c , we have η ∈ C1, and η is positive and continuous. This enables us to

apply the Stone-Weierstrass approximation theorem (Peet, 2009, Theorem 5) to
√
η(x) : for

any δ > 0, there exists a polynomial π(x1, . . . , xd) such that ‖√η − π‖[−R,R]d,1,∞ < δ. We
define g̃d and g̃ as above. Then we have

‖s− g̃‖K,1,∞ =

∥∥∥∥∫ xd

0
(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)2)du

∥∥∥∥
K,1,∞

≤ sup
x∈K

∣∣∣∣∫ xd

0
(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)2)du

∣∣∣∣
+ sup
x∈K

d−1∑
i=1

∣∣∣∣∂xi ∫ xd

0
(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)2)du

∣∣∣∣
+ sup

x∈K

∣∣∣∣∂xd ∫ xd

0
(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)2)du

∣∣∣∣
=: I + II + III.

In a similar manner as above, we have I ≤ R
(

supx∈[−R,R]d 2
√
η(x) + δ

)
δ. We note that

since η ∈ C1 and η is positive and continuous, we have ‖√η‖[−R,R]d,1,∞ < ∞. A direct
computation gives

II = 2 sup
x∈K

d−1∑
i=1

∣∣∣∣∫ xd

0

{√
η(x≤d−1, u)∂xi

√
η(x≤d−1, u)− π(x≤d−1, u)∂xiπ(x≤d−1, u)

}
du

∣∣∣∣
≤ 2 sup

x∈K

d−1∑
i=1

∣∣∣∣∫ xd

0

{√
η(x≤d−1, u)− π(x≤d−1, u)

}
∂xi

√
η(x≤d−1, u)du

∣∣∣∣
+ 2 sup

x∈K

d−1∑
i=1

∣∣∣∣∫ xd

0
π(x≤d−1, u)∂xi

{√
η(x≤d−1, u)− π(x≤d−1, u)

}
du

∣∣∣∣
≤ 2(d− 1)R(2‖√η‖[−R,R]d,1,∞ + δ)‖√η − π‖[−R,R]d,1,∞

≤ 2(d− 1)R(2‖√η‖[−R,R]d,1,∞ + δ)δ.

A simple computation gives

III = sup
x∈K

∣∣∣√η(x) + π(x)
∣∣∣ ∣∣∣√η(x)− π(x)

∣∣∣ ≤ ( sup
x∈[−R,R]d

2
√
η(x) + δ

)
δ.
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In a similar manner as above, we can see that there exists g ∈ SoS such that ‖g̃−g‖K,1,∞ < ε
2 .

Finally, taking δ to be small enough so that ‖s− g̃‖K,1,∞ < ε
2 holds, the assertion is proved.

Appendix F. Universality of NODE-based INNs

Here, we provide a proof of Theorem 44:
Proof [Proof of Theorem 44] By Theorem 24, we only consider an approximation of the
elements of Ξ∞. Let g ∈ Ξ∞. Then, by Definition 20, there exists f ∈ Lip ∩∞ such that

f(·) :=
∂Φ(·, t)
∂t

∣∣∣∣
t=0

.

for some flow Φ Therefore, g is arbitrarily approximated by an element of INNΨ(H) by
Lemma F.1.

The following lemma, used in the above proof, allows us to approximate an autonomous
ODE flow endpoint by approximating the differential equation. See Definition 5 for the
definition of Ψ(·).

Lemma F.1 (Approximation of Autonomous-ODE flow endpoints) Let r ≥ 0. As-
sume H ⊂ Lip ∩ Cr is a W r,∞-universal approximator for Lip ∩ Cr. Then, Ψ(H) is a
W r,∞-universal approximator for Ψ(Lip ∩ Cr).

Proof We first treat the case of r > 0. By combining the fact that the map

(x, f) 7→ IVP[f ](x, 1)

is Cr map (Theorem B.3 (ii) in Duistermaat and Kolk 2000) with the Berge maximum
theorem (Aliprantis and Border, 2006), we see that for any compact set K ⊂ Rd and
F ∈ Lip ∩ Cr we see that the map

f 7→ ‖IVP[f ](·, 1)− IVP[F ](·, 1)‖K,r,∞ =
∑
|α|≤r

sup
x∈K

‖IVP[f ](x, 1)− IVP[F ](x, 1)‖

is continuous. Therefore, the W r,∞-universality of Ψ(H) for Ψ(Lip ∩ Cr) follows from that
of H for Lip ∩ Cr.

We next treat the case of r = 0. Let φ ∈ Ψ(Lip). Then, by definition, there exists
F ∈ Lip such that φ = IVP[F ](·, 1). Let LF denote the Lipschitz constant of F . In the
following, we approximate IVP[F ](·, 1) by approximating F using an element of H.

Let ε > 0, and let K ⊂ Rd be a compact subset of Rd. We show that there exists
f ∈ H such that ‖IVP[F ](·, 1)− IVP[f ](·, 1)‖K,0,∞ < ε. Note that IVP[f ](·, ·) is well-defined
because H ⊂ Lip. Define

K ′ :=

{
x ∈ Rd

∣∣∣∣ inf
y∈IVP[F ](K,[0,1])

‖x− y‖ ≤ 2eLF
}
.
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Then, K ′ is compact. This follows from the compactness of IVP[F ](K, [0, 1]): (i) K ′ is
bounded since IVP[F ](K, [0, 1]) is bounded, and (ii) it is closed since the function x 7→
miny∈IVP[F ](K,[0,1]) ‖x − y‖ is continuous and hence K ′ is the inverse image of a closed
interval [0, 2eLF ] by a continuous map.

Since H is assumed to be an L∞-universal approximator for Lip, for any δ > 0, we can
take f ∈ H such that ‖f − F‖K′,0,∞ < δ. Let δ be such that 0 < δ < min{ε/(2eLF ), 1}, and
take such an f .

Fix x0 ∈ K and define ∆x0(t) := ‖IVP[F ](x0, t)− IVP[f ](x0, t)‖. Let B := δeLF and
we show that

∆x0(t) < 2B

holds for all t ∈ [0, 1]. We prove this by contradiction. Suppose that there exists t′ for which
the inequality does not hold. Then, the set T := {t ∈ [0, 1]|∆x0(t) ≥ 2B} is not empty and
thus τ := inf T ∈ [0, 1]. For this τ , we show both ∆x0(τ) ≤ B and ∆x0(τ) ≥ 2B. First, we
have

∆x0(τ) = ‖IVP[F ](x0, τ)− IVP[f ](x0, τ)‖

=

∥∥∥∥x0 +

∫ τ

0
F (IVP[F ](x0, t))dt− x0 −

∫ τ

0
f(IVP[f ](x0, t))dt

∥∥∥∥
≤
∥∥∥∥∫ τ

0
(F (IVP[F ](x0, t))− F (IVP[f ](x0, t)))dt

∥∥∥∥
+

∥∥∥∥∫ τ

0
(F (IVP[f ](x0, t))− f(IVP[f ](x0, t)))dt

∥∥∥∥ .
The last term can be bounded as∥∥∥∥∫ τ

0
(F (IVP[f ](x0, t))− f(IVP[f ](x0, t)))dt

∥∥∥∥ ≤ ∫ τ

0
δdt

because of the following argument. If τ = 0, then both sides are equal to zero, hence it holds
with equality. If τ > 0, then for any t < τ , we have IVP[f ](x0, t) ∈ K ′ because t < τ implies
∆x0(t) ≤ 2B. In this case, ‖F − f‖K′,0,∞ < δ implies the inequality. Therefore, we have

∆x0(τ) ≤ LF
∫ τ

0
∆x0(t)dt+

∫ τ

0
δdt.

Now, by applying Grönwall’s inequality (Gronwall, 1919), we obtain

∆x0(τ) ≤ δτeLF τ ≤ B.

On the other hand, by the definition of T and the continuity of ∆x0(·), we have ∆x0(τ) ≥ 2B.
These two inequalities contradict.

Therefore, ‖IVP[F ](·, 1)− IVP[f ](·, 1)‖K,0,∞ = supx0∈K ∆x0(1) ≤ 2B = 2δeLF holds.
Since δ < ε/(2eLF ), the right-hand side is smaller than ε.

When we construct a NODE to approximate a diffeomorphism, we may insert any
invertible affine map between flow layers by definition (see Definition 6). However, we
actually need an affine layer only in the last layer to obtain a universality of NODE, namely
we have the following proposition:
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Proposition F.2 The notation is as in Theorem 44. Then, the subset

{W ◦ g1 ◦ · · · ◦ gk : k ≥ 0,W ∈ Aff, g1, . . . , gk ∈ Ψ(H)}

of INNΨ(H) has a W r,∞-universal approximation property for Dmax{r,1}, where H is a subset
of Lip ∩ Cr as in Theorem 44.

Proof Let F ∈ Dmax{r,1}. Take any compact set K ⊂ U and ε > 0. First, thanks to
Lemma 28 and 29, there exists a G ∈ Diff∞c and an affine transform W ∈ Aff such that

W ◦G|K = F |K .

Then, we use Lemma 31 to show that there exists a finite set of flow endpoints (Definition 20)
g1, . . . , gk ∈ Ξ∞ such that

G = gk ◦ · · · ◦ g1.

We now construct fj ∈ Lip such that gj = IVP[fj ](·, 1). By Definition 20, for each gj
(1 ≤ j ≤ k), there exists an associated flow Φj . Now, define

fj(·) :=
∂Φj(·, t)

∂t

∣∣∣∣
t=0

.

Then, fj ∈ Lip because it is a compactly-supported C∞-map: it is compactly supported
since there exists a compact subset Kj ⊂ Rd containing the support of Φ(·, t) for all t, and
hence Φ(·, t)− Φ(·, 0) is zero in the complement of Kj .

Now, Φj(x, t) = IVP[fj ](x, t) since, by additivity of the flows,

∂Φj

∂t
(x, t) = lim

s→0

Φj(x, t+ s)− Φj(x, t)

s
= lim

s→0

Φj(Φj(x, t), s)− Φj(Φj(x, t), 0)

s

=
∂Φj(Φj(x, t), s)

∂s

∣∣∣∣
s=0

= fj(Φj(x, t)),

and hence it is a solution to the initial value problem that is unique. As a result, we have
gj = Φj(·, 1) = IVP[fj ](·, 1).

By combining Lemma B.1 and Lemma F.1, there exist φ1, . . . , φk ∈ Ψ(H) such that

‖gk ◦ · · · ◦ g1 − φk ◦ · · · ◦ φ1‖K,r,∞ <
ε

‖W‖op

,

where ‖·‖op denotes the operator norm. Therefore, we have that W ◦ φk ◦ · · · ◦ φ1 ∈ INNΨ(H)

satisfies

‖F −W ◦ φk ◦ · · · ◦ φ1‖K,r,∞ = ‖W ◦G−W ◦ φk ◦ · · · ◦ φ1‖K,r,∞
≤ ‖W‖op ‖gk ◦ · · · ◦ g1 − φk ◦ · · · ◦ φ1‖K,r,∞
< ε
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