
Journal of Machine Learning Research 23 (2022) 1-48 Submitted 5/22; Revised 11/22; Published 12/22

Benchmarking Graph Neural Networks

Vijay Prakash Dwivedi1 vijaypra001@e.ntu.edu.sg

Chaitanya K. Joshi2 chaitanya.joshi@cl.cam.ac.uk

Anh Tuan Luu1 anhtuan.luu@ntu.edu.sg

Thomas Laurent3 tlaurent@lmu.edu

Yoshua Bengio4 yoshua.bengio@mila.quebec

Xavier Bresson5 xaviercs@nus.edu.sg
1Nanyang Technological University, Singapore, 2University of Cambridge, UK, 3Loyola Marymount
University, USA, 4Mila, University of Montréal, Canada, 5National University of Singapore

Editor: Joaquin Vanschoren

Abstract
In the last few years, graph neural networks (GNNs) have become the standard toolkit

for analyzing and learning from data on graphs. This emerging field has witnessed an
extensive growth of promising techniques that have been applied with success to computer
science, mathematics, biology, physics and chemistry. But for any successful field to become
mainstream and reliable, benchmarks must be developed to quantify progress. This led us
in March 2020 to release a benchmark framework that i) comprises of a diverse collection
of mathematical and real-world graphs, ii) enables fair model comparison with the same
parameter budget to identify key architectures, iii) has an open-source, easy-to-use and
reproducible code infrastructure, and iv) is flexible for researchers to experiment with new
theoretical ideas. As of December 2022, the GitHub repository1 has reached 2,000 stars and
380 forks, which demonstrates the utility of the proposed open-source framework through
the wide usage by the GNN community. In this paper, we present an updated version of our
benchmark with a concise presentation of the aforementioned framework characteristics, an
additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with
a real-world measured chemical target, and discuss how this framework can be leveraged to
explore new GNN designs and insights. As a proof of value of our benchmark, we study the
case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark
and has since spurred interest of exploring more powerful PE for Transformers and GNNs
in a robust experimental setting.
Keywords: Graph Neural Networks, Benchmarking, Graph Datasets, Exploration Tool

1. Introduction

Graph neural networks have benefitted from a great interest recently with numerous methods
being developed for diverse domains including chemistry (Duvenaud et al., 2015; Gilmer et al.,
2017), physics (Cranmer et al., 2019; Sanchez-Gonzalez et al., 2020), social sciences (Monti
et al., 2019), transportation (Derrow-Pinion et al., 2021), knowledge graphs (Schlichtkrull
et al., 2018; Chami et al., 2020), recommendation (Monti et al., 2017b; Ying et al., 2018), and

1. The framework is hosted at https://github.com/graphdeeplearning/benchmarking-gnns.

c©2022 Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier
Bresson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/22-0567.html.

https://github.com/graphdeeplearning/benchmarking-gnns
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/22-0567.html

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

neuroscience (Griffa et al., 2017). Developing powerful and expressive GNN architectures is a
key concern towards practical applications and real-world adoption of graph machine learning.
However, tracking progress is often challenging in the absence of a community-standard
benchmark as models that are evaluated on traditionally-used datasets with inconsistent
experimental comparisons make it difficult to differentiate complex, simple and graph-agnostic
architectures (Hoang and Maehara, 2019; Chen et al., 2019a; Errica et al., 2019).

Benchmarking Graph Neural Networks Framework

data configs

layers

nets train Main file
- Imports methods from other
 modules: data, configs,nets,
 train
- Executes 1 run of a single
 experiment
- Selected config file decides
 which GNN network to run on
 which dataset.
- Customizable, eg. execution
 of a different set of modules.
- 1 file per task-dataset,
 ensuring the same fair
 comparison of all GNNs for
 the task-dataset chosen.

- Data loading files
- Customizable, eg. add
 positional encodings
- Add custom dataset

- Config files for gnn,
 dataset, parameters
 and hyperparams.
- Customizable, eg.
 tweak hyperparams.
- Add custom configs

- GNN network files of
 multiple layers
- Customizable, eg.
 try combination of
 different layers

- GNN layer definition
- Customizable, eg.
 adjust aggregation fn,
 or activations.
- Add custom layer

- Train and Eval scripts
- Different scripts for
 sparse MP-GNNs and
 dense WL-GNNs
- Customizable, eg.
 tweak eval metrics

DGL graph learning library based on PyTorch

Each module can be customized, and
extended to add new datasets (in data
module), or new GNNs (in layers module),
as few examples.

Figure 1: Overview sketch of the proposed GNN benchmark-
ing framework with different modular components. This
benchmark is built upon DGL and PyTorch libraries.

We introduce an open-
source GNN benchmarking
framework (see Fig 1) that
brings forward a set of diverse
medium-scale datasets which
are discriminative to bench-
mark different GNN models
when compared fairly on fixed
parameter budgets. The exist-
ing collection of datasets, the
protocol to use the same pa-
rameter budgets for compari-
son, and the modular coding
infrastructure has been widely
used to prototype powerful
GNN ideas and develop new
insights, as shown by 2000+ stars and 380+ forks of the GitHub repository from its first
release in March 2020, and 470+ citations gathered by the ArXiv technical report according
to Google Scholar. Aspects of the benchmark have led to facilitating several interesting
studies for GNNs such as on (i) the aggregation functions and filters (Corso et al., 2020; Tailor
et al., 2021; Elhag et al., 2022), (ii) improving expressive power of GNNs (Valsesia et al.,
2021; Bouritsas et al., 2022; Bevilacqua et al., 2021), (iii) pooling mechanisms (Mesquita
et al., 2020), (iv) graph-specific normalization and regularization (Chen et al., 2022; Zhou
et al., 2020; Zhang et al., 2021), and (v) GNNs’ robustness and efficiency (Wei and Hu,
2022; Tailor et al., 2020) among other ideas contributed in the literature. In this paper,
we provide an updated overview of the proposed framework that extends on the previous
collection of datasets to (a) include a number of essential mathematical datasets which can
be used to test specific theoretical graph properties, and (b) incorporate another molecular
dataset, AQSOL (Sorkun et al., 2019) that has real-world experimental solubility targets
unlike ZINC’s computed targets, resulting in a collection of 12 datasets (see Table 1). The
remainder of the paper discusses a proof of concept of the benchmark that can be used to
explore and develop new insights for GNNs.

2. Overview of GNN Benchmarking Framework

Datasets. Collecting representative, realistic and medium-to-large scale graph datasets
presents several challenges. It is unclear what theoretical tools can define the quality of a
dataset or validate its statistical representativeness for a given task. Similarly, there are
several arbitrary choices when preparing graphs, such as node and edge features. Finally,

2

Benchmarking Graph Neural Networks

very large graph datasets also present a computational challenge and require extensive GPU
resources to be studied (Chiang et al., 2019; Rossi et al., 2020; Hu et al., 2021).

Domain Dataset Task

A. Real World Graphs

Chemistry ZINC Graph RegressionAQSOL

Social/Academic Networks OGBL-COLLAB Edge Classification
WikiCS Node Classification

Computer Vision MNIST Graph ClassificationCIFAR10

B. Mathematical Graphs

Mathematical Modelling PATTERN Node ClassificationCLUSTER

Combinatorial Optimization TSP Edge Classification

Isomorphism CSL Graph Classification

Cycles in Graphs CYCLES Graph Classification

Multi Graph Properties GraphTheoryProp Multi Node/Graph Task

Table 1: Summary statistics of datasets in-
cluded in the benchmark. Additional details
in Appendix Table 2 and Sec. C.

On account of such challenges, we present
in our benchmark a collection of 12 graph
datasets, listed in Table 1, which are (i) col-
lected from real-world sources and generated
from mathematical models, (ii) of medium-
scale size suitable for academic research, (iii)
representative of the three fundamental learn-
ing tasks at graph-level, node-level and edge-
level, and (iv) from diverse end-application
domains. These datasets are appropriate to
statistically separate the performance of GNNs
on specific graph properties, hence fulfilling the
academic mission to identify first principles.
Coding Infrastructure. Our benchmarking
infrastructure builds upon PyTorch (Paszke
et al., 2019) and DGL (Wang et al., 2019),
and has been developed with the following fundamental objectives: (a) Ease-of-use and
modularity, enabling new users to experiment and study the building blocks of GNNs; (b)
Experimental rigour and fairness for all models being benchmarked; and (c) Being future-
proof and comprehensive for tracking the progress of graph ML tasks and new GNNs. At a
high level as sketched in Fig 1, our benchmark unifies independent components for: (i) Data
pipelines; (ii) GNN layers and models; (iii) Training and evaluation functions; (iv) Network
and hyperparameter configurations; and (v) Scripts for reproducibility. This standardized
framework has been of immense help to the community as aforementioned about its wide
community usage. It has enabled researchers to explore new ideas at any stage of the pipeline
without setting up everything else. We direct readers to the README user manual included in
our GitHub repository for detailed instructions on using the coding infrastructure.
Parameter Budgets for Fair Comparison. One goal of this benchmark is not to find
the optimal hyperparameters for a specific model (which is computationally expensive), but
to compare the model and their building blocks within a budget of parameters. Therefore,
we decide on using two model parameter budgets: i) 100k for each GNN for all the datasets,
and ii) 500k for GNNs where the scalability of a model to larger parameters and deeper layers
are investigated. The layers and dimensions are selected accordingly to match these budgets.
Discussion on Design Choices. First, our motivation behind the medium-scale datasets
in the benchmark is to enable swift yet reliable prototyping of GNN research ideas as we can
achieve statistical difference in GNN performance within 12 hours of single experiment runs
(see Appendix I). Medium-scale datasets are arguably more informative than small datasets
and more feasible than large-scale datasets in the academic-scale research. Second, our
coding infrastucture with standard protocols has enabled fair comparison of GNNs something
that was lacking in prior literature (Errica et al., 2019). Third, a fixed budget of model
parameters for each GNN model allows for fair comparison of different architectures. In
the absence of such design choice, it is comparatively difficult to conclude whether a better
performing model’s gain arises from its architectural design or extra learning capacity brought

3

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

by additional model parameters. Finally, the aforementioned decisions can be refined and
extended to allow further flexibility as elaborated in Appendix H.

3. How can the benchmark be used to explore new insights?

The proposed benchmarking framework can be used to test new research ideas at the level
of data preprocessing, improving the GNN layers and normalization schemes, or even to
substantiate the performance of a novel GNN model. Such studies are conveniently facilitated
given the set of diverse datasets and the rigorous comparison of different experiments on same
parameter budgets. At any stage, a modular component of the framework, such as data,
layers, etc., can be modified and multiple experiments on the datasets can be conducted
fairly and with ease. Indeed, we employ the framework to perform multiple studies, out
of which we present here the insight of positional encodings for GNNs using Laplacian
eigenvectors, for an example, while the remainder is included in the appendix.
Graph Positional Encoding. Nodes in a graph do not have any canonical positional
information. In the absence of available features, nodes are anonymous, such as the nodes in
CSL, CYCLES or GraphTheoryProp datasets in our benchmark. As such, message passing
based GCNs perform either poorly or fail completely to detect the class of the graph, such
as isomorphic class, or cycles (Murphy et al., 2019; Loukas, 2020). We proposed the use of
Laplacian eigenvectors (Belkin and Niyogi, 2003) as node positional encoding by building on
top of corresponding dataset files in the data module as shown in the pseudo-code snippet
alongside. In other words, the positional encoding pi for a node i can be added to its features
xi as xi = xi + pi. Similarly, other ideas can be explored by leveraging respective modules of
the framework (in Fig 1) for which we direct to README of our GitHub repository.

class NameOfDataset(torch.utils.data.Dataset):
def __init__(self, name=‘name_of_dataset’):

existing code to load dataset

def _add_positional_encodings(self, args):
new code that precomputes and adds
positional encoding using eigenvectors

Figure 2: Primary code block in data
module to implement Graph PE.

We used the benchmark to validate and also
quantified the improvement provided by this
idea. The Laplacian PE effectively improved
the MP-GCNs (message-passing based Graph
Convolutional Networks) on the the 3 synthet-
ics datasets mentioned previously and other
real-world datasets, including the newly added
AQSOL dataset. A detailed presentation of the PE with experiments are in Appendix E.1.
After the introduction of Laplacian PE through this benchmark, new ideas followed up in the
literature for improving PE (Beaini et al., 2021; Wang et al., 2022; Lim et al., 2022; Kreuzer
et al., 2021; Ying et al., 2021; Mialon et al., 2021), thus demonstrating how the identification
of first principles using the proposed benchmark can steer GNN research.

4. Conclusion

This paper introduces an open-source benchmarking framework for Graph Neural Networks
that is modular, easy-to-use, and can be leveraged to quickly yet robustly test new GNN
ideas and explore insights that direct further research. The benchmark led us to propose
graph PE that has remained an interesting avenue of exploration since the first release of our
benchmark. We also perform additional studies on investigation of different GNN categories,
and edge representations for link prediction, the details of which are included in the appendix
for interested readers.

4

Benchmarking Graph Neural Networks

Acknowledgments

XB is supported by NRF Fellowship NRFF2017-10, NUS-R-252-000-B97-133 and A*STAR
Grant ID A20H4g2141. This research is supported by Nanyang Technological University,
under SUG Grant (020724-00001). The authors thank the reviewers and the editor for their
comments and suggestions, which greatly improved the manuscript.

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments.
The Journal of Machine Learning Research, 18(1):6446–6531, 2017.

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans.
Pattern Anal. Mach. Intell., 34(11):2274–2282, November 2012. ISSN 0162-8828.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver,
2006.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. NeurIPS
workshop on Deep Learning, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interac-
tion networks for learning about objects, relations and physics. In Advances in neural
information processing systems, pages 4502–4510, 2016.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pages 748–758. PMLR, 2021.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128, 2018.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

5

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Xavier Bresson and Thomas Laurent. A two-step graph convolutional decoder for molecule
generation. In NeurIPS Workshop on Machine Learning and the Physical Sciences, 2019.

Marc Brockschmidt. Gnn-film: Graph neural networks with feature-wise linear modulation.
arXiv preprint arXiv:1906.12192, 2019.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545,
2020.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a
dissection on graph classification, 2019a.

Yihao Chen, Xin Tang, Xianbiao Qi, Chun-Guang Li, and Rong Xiao. Learning graph
normalization for graph neural networks. Neurocomputing, 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between
graph isomorphism testing and function approximation with gnns. In Advances in Neural
Information Processing Systems, pages 15868–15876, 2019b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 257–266, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing
Systems, 33:13260–13271, 2020.

Miles D Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with
graph networks. arXiv preprint arXiv:1909.05862, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems 29, pages 3844–3852. 2016.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with
graph neural networks in google maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 3767–3776, 2021.

6

Benchmarking Graph Neural Networks

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neural information processing systems,
pages 2224–2232, 2015.

Ahmed AA Elhag, Gabriele Corso, Hannes Stärk, and Michael M Bronstein. Graph anisotropic
diffusion for molecules. In ICLR2022 Machine Learning for Drug Discovery, 2022.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping using
the nystrom method. IEEE transactions on pattern analysis and machine intelligence, 26
(2):214–225, 2004.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

Alessandra Griffa, Benjamin Ricaud, Kirell Benzi, Xavier Bresson, Alessandro Daducci,
Pierre Vandergheynst, Jean-Philippe Thiran, and Patric Hagmann. Transient networks of
spatio-temporal connectivity map communication pathways in brain functional systems.
NeuroImage, 155:490–502, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

NT Hoang and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. ArXiv, abs/1905.09550, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. Advances in neural information processing systems, 33:22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,
2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
Zinc: a free tool to discover chemistry for biology. Journal of chemical information and
modeling, 52(7):1757–1768, 2012.

7

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-
free computation graphs for graph neural networks. arXiv preprint arXiv:1906.03707,
2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation. arXiv preprint arXiv:1802.04364, 2018.

Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, pages
1–29, 2022.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing
Systems, pages 6348–6358, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

Boris Knyazev, Graham W Taylor, and Mohamed R Amer. Understanding attention and
generalization in graph neural networks. arXiv preprint arXiv:1905.02850, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012., pages 1106–1114,
2012.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. 1995.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design
provably more powerful gnns for structural representation learning. arXiv preprint
arXiv:2009.00142, 2020.

8

Benchmarking Graph Neural Networks

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron,
and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation
learning. In ICLR 2022 Workshop on Geometrical and Topological Representation Learning,
2022.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=B1l2bp4YwS.

Enxhell Luzhnica, Ben Day, and Pietro Liò. On graph classification networks, datasets and
baselines. arXiv preprint arXiv:1905.04682, 2019.

Jitendra Malik. Technical perspective: What led computer vision to deep learning? Commun.
ACM, 60(6):82–83, May 2017. ISSN 0001-0782.

Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks
for semantic role labeling. arXiv preprint arXiv:1703.04826, 2017.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Advances in Neural Information Processing Systems, pages 2153–2164,
2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. International Conference on Learning Representations, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of
invariant networks. International Conference on Machine Learning, 2019c.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural
networks. Advances in Neural Information Processing Systems, 33:2220–2231, 2020.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding
graph structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul 2017a. doi: 10.1109/cvpr.2017.576.

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. In Advances in Neural Information Processing
Systems, pages 3697–3707, 2017b.

Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein.
Fake news detection on social media using geometric deep learning. arXiv preprint
arXiv:1902.06673, 2019.

9

https://openreview.net/forum?id=B1l2bp4YwS
https://openreview.net/forum?id=B1l2bp4YwS

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neu-
ral networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4602–4609, 2019.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin
Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics
engines for inference and control. In International Conference on Machine Learning, pages
4470–4479, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W Battaglia. Learning to simulate complex physics with graph networks. arXiv
preprint arXiv:2002.09405, 2020.

F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural
Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
Semantic Web Conference, pages 593–607. Springer, 2018.

Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. Aqsoldb, a curated reference set
of aqueous solubility and 2d descriptors for a diverse set of compounds. Scientific data, 6
(1):1–8, 2019.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between node em-
beddings and structural graph representations. International Conference on Learning
Representations, 2020.

10

Benchmarking Graph Neural Networks

Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 2244–2252. 2016.

Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant:
Quantization-aware training for graph neural networks. arXiv preprint arXiv:2008.05000,
2020.

Shyam A Tailor, Felix Opolka, Pietro Lio, and Nicholas Donald Lane. Do we need anisotropic
graph neural networks? In International Conference on Learning Representations, 2021.

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Ran-gnns: breaking the capacity limits
of graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International Conference on Learning Repre-
sentations, 2018.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant
graph neural networks with structural message-passing, 2020.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pages 2692–2700, 2015.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):
395–416, 2007.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional
encoding for more powerful graph neural networks. In International Conference on Learning
Representations, 2022.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396–413, 2020.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao,
Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient
and scalable deep learning on graphs. ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander
Hapfelmeier, Paul P Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D Robinson.
Essential guidelines for computational method benchmarking. Genome biology, 20(1):125,
2019.

11

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Qiang Wei and Guangmin Hu. Evaluating graph neural networks under graph sampling
scenarios. PeerJ Computer Science, 8:e901, 2022.

Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16,
1968.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
arXiv preprint arXiv:1806.03536, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation?
Advances in Neural Information Processing Systems, 34, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 974–983, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. Interna-
tional Conference on Machine Learning, 2019.

Haimin Zhang, Min Xu, Guoqiang Zhang, and Kenta Niwa. Ssfg: Stochastically scaling
features and gradients for regularizing graph convolutional networks. arXiv preprint
arXiv:2102.10338, 2021.

Wentao Zhao, Dalin Zhou, Xinguo Qiu, and Wei Jiang. A pipeline for fair comparison of
graph neural networks in node classification tasks, 2020.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards
deeper graph neural networks with differentiable group normalization. Advances in Neural
Information Processing Systems, 33:4917–4928, 2020.

12

Benchmarking Graph Neural Networks

Appendix A. Related Work

In the last few years, graph neural networks (GNNs) have seen a great surge of interest with
promising methods being developed for myriad of domains including chemistry (Duvenaud
et al., 2015; Gilmer et al., 2017), physics (Cranmer et al., 2019; Sanchez-Gonzalez et al., 2020),
social sciences (Kipf and Welling, 2017; Monti et al., 2019), knowledge graphs (Schlichtkrull
et al., 2018; Chami et al., 2020), recommendation (Monti et al., 2017b; Ying et al., 2018), and
neuroscience (Griffa et al., 2017). Historically, three classes of GNNs have been developed.
The first models (Scarselli et al., 2009; Bruna et al., 2013; Defferrard et al., 2016; Sukhbaatar
et al., 2016; Kipf and Welling, 2017; Hamilton et al., 2017) aimed at extending the original
convolutional neural networks (LeCun et al., 1995, 1998) to graphs. The second class enhanced
the original models with anisotropic operations on graphs (Perona and Malik, 1990), such
as attention and gating mechanisms (Battaglia et al., 2016; Marcheggiani and Titov, 2017;
Monti et al., 2017a; Veličković et al., 2018; Bresson and Laurent, 2017). The recent third
class has introduced GNNs that improve upon theoretical limitations of previous models (Xu
et al., 2019; Morris et al., 2019; Maron et al., 2019a; Chen et al., 2019b; Murphy et al., 2019;
Srinivasan and Ribeiro, 2020). Specifically, the first two classes can only differentiate simple
non-isomorphic graphs and cannot separate automorphic nodes. Developing powerful and
theoretically expressive GNN architectures is a key concern towards practical applications
and real-world adoption of graph machine learning. However, tracking recent progress has
been challenging as most models are evaluated on small datasets such as Cora, Citeseer and
TU, which are inappropriate to differentiate complex, simple and graph-agnostic architectures
(Hoang and Maehara, 2019; Chen et al., 2019a), and do not have consensus on a unifying
experimental setting (Errica et al., 2019; Hu et al., 2020).

Consequently, our motivation is to benchmark GNNs to identify and quantify what types
of architectures, first principles or mechanisms are universal, generalizable, and scalable
when we move to larger and more challenging datasets. Benchmarking provides a strong
paradigm to answer these fundamental questions. It has proved to be beneficial for driving
progress, identifying essential ideas, and solving domain-specific problems in several areas of
science (Weber et al., 2019). Recently, the famous 2012 ImageNet challenge (Deng et al.,
2009) has provided a benchmark dataset that has triggered the deep learning revolution
(Krizhevsky et al., 2012; Malik, 2017). Nevertheless, designing successful benchmarks is
highly challenging as it requires both a coding framework with a rigorous experimental setting
for fair comparisons, all while being reproducible, as well as using appropriate datasets that
can statistically separate model performance. The lack of benchmarks has been a major issue
in GNN literature as the aforementioned requirements have not been rigorously enforced.

Appendix B. Graph Neural Network Pipeline

In this section, we describe the experimental pipeline for the two broad classes of GNN
architectures that are benchmarked in this framework as representative GNN classes – Message
Passing Graph Convolutional Networks (MP-GCNs), which are based on the message passing
framework formalized in Gilmer et al. (2017), and Weisfeiler Lehman GNNs (WL-GNNs),
which improves the theoretical limitations of MP-GCNs and align expressivity power to the

13

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

WL-tests to distinguish non-isomorphic graphs. The two pipelines are illustrated in Figure 3
for GCNs and Figure 4 for WL-GNNs.

In Section B.1, we describe the components of the setup of the GCN class with vanilla
GCN (Kipf and Welling, 2017), GraphSage (Hamilton et al., 2017), MoNet (Monti et al.,
2017a), GAT (Veličković et al., 2018), and GatedGCN (Bresson and Laurent, 2017), including
the input layers, the GNN layers and the task based MLP classifier layers. We also include
the description of GIN (Xu et al., 2019) in this section as this model can be interpreted as a
GCN, although it was designed to differentiate non-isomorphic graphs. In Section B.2, we
present the GNN layers and the task based MLP classifier layers for the class of WL-GNN
models with Ring-GNNs (Chen et al., 2019b) and 3WL-GNNs (Maron et al., 2019a).

Node	feat.

Edge	feat.

Graph

{ }ℎ0�

{ }�0
��

Embedding

Embedding �12

�03

�24
�13

�34

�01

Layer ℓ : { }, { }ℎℓ

�
�ℓ

��
Layer ℓ + 1 : { }, { }ℎℓ+1

�
�ℓ+1

��

�12

�03

�24
�13

�34

�01

ℎ0

ℎ2
ℎ1

ℎ4

ℎ3

ℎ0

ℎ2
ℎ1

ℎ4

ℎ3

GNNℓ

ℎ�
�

MLP
Node	Predictions

1

 ∑
�=0

ℎ
�
� Graph	Prediction

MLP

Concat(,)ℎ�
� ℎ�

� Edge	Predictions
MLP

Input Layer GNN Layer�× Prediction Layer

Figure 3: A standard experimental pipeline for GCNs, which embeds the graph node and
edge features, performs several GNN layers to compute convolutional features, and finally
makes a prediction through a task-specific MLP layer.

B.1 Message-Passing GCNs

For this class, we consider the widely used message passing-based graph convolutional
networks (MP-GCNs), which update node representations from one layer to the other
according to the formula: h`+1

i = f(h`i , {h`j}j∈Ni). Note that the update equation is local,
only depending on the neighborhood Ni of node i, and independent of graph size, making
the space/time complexity O(E) reducing to O(n) for sparse graphs. Thus, MP-GCNs are
highly parallelizable on GPUs and are implemented via sparse matrix multiplications in
modern graph machine learning frameworks (Wang et al., 2019; Fey and Lenssen, 2019).
MP-GCNs draw parallels to ConvNets for computer vision (LeCun et al., 1998) by considering
a convolution operation with shared weights across the graph domain.

B.1.1 Input Layer

Given a graph, we are given node features αi ∈ Ra×1 for each node i and (optionally) edge
features βij ∈ Rb×1 for each edge connecting node i and node j. The input features αi

and βij are embedded to d-dimensional hidden features h`=0
i and e`=0

ij via a simple linear
projection before passing them to a graph neural network:

h0i = U0αi + u0 ; e0ij = V 0βij + v0, (1)

14

Benchmarking Graph Neural Networks

Node	feat.

Edge	feat.

Input Tensor WL-GNN Layer Prediction Layer

Input	3D	tensor MLP*

MLP*

Node	Predictions

Graph	Prediction

Edge	Predictions
MLP*

*Details	in	Section	B.2.3

Figure 4: A standard experimental pipeline for WL-GNNs, which inputs to a GNN a graph
with all node and edge information (if available) represented by a dense tensor, performs
several GNN layer computations over the dense tensor, and finally makes a prediction through
a task-specific MLP layer.

where U0 ∈ Rd×a, V 0 ∈ Rd×b and u0, v0 ∈ Rd. If the input node/edge features are one-hot
vectors of discrete variables, then biases u0, v0 are not used.

B.1.2 GCN layers

Each GCN layer computes d-dimensional representations for the nodes/edges of the graph
through recursive neighborhood diffusion (or message passing), where each graph node
gathers features from its neighbors to represent local graph structure. Stacking L GCN layers
allows the network to build node representations from the L-hop neighborhood of each node.

Figure 5: A generic graph neural network layer. Figure adapted from Bresson and Laurent
(2017).

Let h`i denote the feature vector at layer ` associated with node i. The updated features
h`+1
i at the next layer ` + 1 are obtained by applying non-linear transformations to the

central feature vector h`i and the feature vectors h`j for all nodes j in the neighborhood of
node i (defined by the graph structure). This guarantees the transformation to build local

15

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

reception fields, such as in standard ConvNets for computer vision, and be invariant to both
graph size and vertex re-indexing.

Thus, the most generic version of a feature vector h`+1
i at vertex i at the next layer in

the GNN is:
h`+1
i = f

(
h`i , {h`j : j → i}

)
, (2)

where {j → i} denotes the set of neighboring nodes j pointed to node i, which can be
replaced by {j ∈ Ni}, the set of neighbors of node i, if the graph is undirected. In other
words, a GNN is defined by a mapping f taking as input a vector h`i (the feature vector
of the center vertex) as well as an un-ordered set of vectors {h`j} (the feature vectors of
all neighboring vertices), see Figure 5. The arbitrary choice of the mapping f defines an
instantiation of a class of GNNs.

Graph ConvNets (GCN) (Kipf and Welling, 2017) In the simplest formulation of
GNNs, vanilla Graph ConvNets iteratively update node features via an isotropic averaging
operation over the neighborhood node features, i.e.,

h`+1
i = ReLU

(
U ` Meanj∈Ni h

`
j

)
, (3)

= ReLU
(
U ` 1

degi

∑
j∈Ni

h`j

)
, (4)

where U ` ∈ Rd×d (a bias is also used, but omitted for clarity purpose), degi is the in-degree
of node i, see Figure 6. Eq. (3) is called a convolution as it is a linear approximation of a
localized spectral convolution. Note that it is possible to add the central node features h`i in
the update (3) by using self-loops or residual connections.

The GCN model in Kipf and Welling (2017) use symmetric normalization instead of the
isotropic averaging, to result in the following node update equation:

h`+1
i = ReLU

(
U ` 1√

degi
√

degj

∑
j∈Ni

h`j

)
, (5)

GraphSage (Hamilton et al., 2017) GraphSage improves upon the simple GCN model
by explicitly incorporating each node’s own features from the previous layer in its update
equation:

ĥ`+1
i = ReLU

(
U ` Concat

(
h`i , Meanj∈Ni h

`
j

))
, (6)

where U ` ∈ Rd×2d, see Figure 7. Observe that the transformation applied to the central node
features h`i is different to the transformation carried out to the neighborhood features h`j .
The node features are then projected onto the `2-unit ball before being passed to the next
layer:

h`+1
i =

ĥ`+1
i

‖ĥ`+1
i ‖2

. (7)

16

Benchmarking Graph Neural Networks

ReLU

Figure 6: GCN Layer

ReLU

Concat

Figure 7: GraphSage Layer

The authors also define more sophisticated neighborhood aggregation functions, such as
Max-pooling or LSTM aggregators:

ĥ`+1
i = ReLU

(
U ` Concat

(
h`i , Maxj∈NiReLU

(
V `h`j

)))
, (8)

ĥ`+1
i = ReLU

(
U ` Concat

(
h`i , LSTM

`
j∈Ni

(
h`j

)))
, (9)

where V ` ∈ Rd×d and the LSTM` cell also uses learnable weights. In our experiments, we
use the Max-pooling version of GraphSage, Eq.(8).

Graph Attention Network (GAT) (Veličković et al., 2018) GAT uses an attention
mechanism (Bahdanau et al., 2014) to introduce anisotropy in the neighborhood aggregation
function. The network employs a multi-headed architecture to increase the learning capacity,
similar to the Transformer (Vaswani et al., 2017; Joshi, 2020). The node update equation is
given by:

h`+1
i = ConcatKk=1

(
ELU

(∑
j∈Ni

ek,`ij Uk,` h`j

))
, (10)

where Uk,` ∈ R
d
K
×d are the K linear projection heads, and ek,`ij are the attention coefficients

for each head defined as:

ek,`ij =
exp(êk,`ij)∑

j′∈Ni
exp(êk,`ij′)

, (11)

êk,`ij = LeakyReLU
(
V k,` Concat

(
Uk,`h`i , U

k,`h`j
))
, (12)

where V k,` ∈ R
2d
K , see Figure 8. GAT learns a mean over each node’s neighborhood

features sparsely weighted by the importance of each neighbor.

MoNet (Monti et al., 2017a) The MoNet model introduces a general architecture to
learn on graphs and manifolds using the Bayesian Gaussian Mixture Model (GMM) (Dempster

17

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

L.ReLU

Concat

ELU

Heads

Figure 8: GAT Layer

ReLU

Kernels
Tanh

Gaussian
Kernel

Figure 9: MoNet Layer

et al., 1977). In the case of graphs, the node update equation is defined as:

h`+1
i = ReLU

(K∑
k=1

∑
j∈Ni

ek,`ij Uk,` h`j

)
, (13)

ek,`ij = exp
(
− 1

2
(u`ij − µ`k)T(Σ`

k)−1(u`ij − µ`k)
)
, (14)

u`ij = Tanh
(
A`(deg−1/2i , deg−1/2j)T + a`

)
, (15)

where Uk,` ∈ Rd×d, µ`k, (Σ
`
k)
−1
, a` ∈ R2 and A` ∈ R2×2 are the (learnable) parameters of the

GMM, see Figure 9.

Gated Graph ConvNet (GatedGCN) (Bresson and Laurent, 2017) GatedGCN
considers residual connections, batch normalization and edge gates (Marcheggiani and Titov,
2017) to design another anisotropic variant of GCN. The authors propose to explicitly update
edge features along with node features:

h`+1
i = h`i + ReLU

(
BN
(
U `h`i +

∑
j∈Ni

e`ij � V `h`j

))
, (16)

where U `, V ` ∈ Rd×d, � is the Hadamard product, and the edge gates e`ij are defined as:

e`ij =
σ(ê`ij)∑

j′∈Ni
σ(ê`ij′) + ε

, (17)

ê`ij = ê`−1ij + ReLU
(
BN
(
A`h`−1i +B`h`−1j + C`ê`−1ij

))
, (18)

where σ is the sigmoid function, ε is a small fixed constant for numerical stability, A`, B`, C` ∈
Rd×d, see Figure 10. Note that the edge gates (17) can be regarded as a soft attention process,

18

Benchmarking Graph Neural Networks

Sum

ReLU

Sum

ReLU

Figure 10: GatedGCN Layer

MLP

ReLU

Sum

Figure 11: GIN Layer

related to the standard sparse attention mechanism (Bahdanau et al., 2014). Different from
other anisotropic GNNs, the GatedGCN architecture explicitly maintains edge features êij
at each layer, following Bresson and Laurent (2019); Joshi et al. (2019).

Graph Isomorphism Networks (GIN) (Xu et al., 2019) The GIN architecture is
based the Weisfeiler-Lehman Isomorphism Test (Weisfeiler and Lehman, 1968) to study the
expressive power of GNNs. The node update equation is defined as:

h`+1
i = ReLU

(
U `
(
ReLU

(
BN
(
V `ĥ`+1

i

))))
, (19)

ĥ`+1
i = (1 + ε)h`i +

∑
j∈Ni

h`j , (20)

where ε is a learnable constant, U `, V ` ∈ Rd×d, BN denotes Batch Normalization. See Figure
11 for illustration of the update equation.

Normalization and Residual Connections As a final note, we augment each message-
passing GCN layer with batch normalization (BN) (Ioffe and Szegedy, 2015) and residual
connections (He et al., 2016). As such, we consider a more specific class of GCNs than (2):

h`+1
i = h`i + σ

(
BN

(
ĥ`+1
i

))
, (21)

ĥ`+1
i = gGCN

(
h`i , {h`j : j → i}

)
, (22)

where σ is a non-linear activation function and gGCN is a specific message-passing GCN layer.

19

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

B.1.3 Task-based Layer

The final component of each network is a prediction layer to compute task-dependent outputs,
which are given to a loss function to train the network parameters in an end-to-end manner.
The input of the prediction layer is the result of the final message-passing GCN layer for
each node of the graph (except GIN, which uses features from all intermediate layers).

Graph classifier layer To perform graph classification, we first build a d-dimensional
graph-level vector representation yG by averaging over all node features in the final GCN
layer:

yG =
1

V

V∑
i=0

hLi , (23)

The graph features are then passed to a MLP, which outputs un-normalized logits/scores
ypred ∈ RC for each class:

ypred = P ReLU (Q yG) , (24)

where P ∈ Rd×C , Q ∈ Rd×d, C is the number of classes. Finally, we minimize the cross-entropy
loss between the logits and groundtruth labels.

Graph regression layer For graph regression, we compute yG using Eq.(23) and pass it
to a MLP which gives the prediction score ypred ∈ R:

ypred = P ReLU (Q yG) , (25)

where P ∈ Rd×1, Q ∈ Rd×d. The L1-loss between the predicted score and the groundtruth
score is minimized during the training.

Node classifier layer For node classification, we independently pass each node’s feature
vector to a MLP for computing the un-normalized logits yi,pred ∈ RC for each class:

yi,pred = P ReLU
(
Q hLi

)
, (26)

where P ∈ Rd×C , Q ∈ Rd×d. The cross-entropy loss weighted inversely by the class size is
used during training.

Edge classifier layer To make a prediction for each graph edge eij , we first concatenate
node features hi and hj from the final GNN layer. The concatenated edge features are then
passed to a MLP for computing the un-normalized logits yij,pred ∈ RC for each class:

yij,pred = P ReLU
(
Q Concat

(
hLi , h

L
j

))
, (27)

where P ∈ Rd×C , Q ∈ Rd×2d. The standard cross-entropy loss between the logits and
groundtruth labels is used.

B.2 Weisfeiler-Lehman GNNs

Weisfeiler-Lehman GNNs are the second GNN class we include in our benchmarking framework
which are based on the WL test (Weisfeiler and Lehman, 1968). Xu et al. (2019) introduced
GIN–Graph Isomorphism Network, a provable 1-WL GNN, which can distinguish two non-
isomorphic graphs w.r.t. the 1-WL test. Higher k-WL isomorphic tests lead to more

20

Benchmarking Graph Neural Networks

Concat

Figure 12: 3WL-GNN Layer

ReLU

+

Figure 13: RingGNN Layer

discriminative k-WL GNNs in (Morris et al., 2019; Maron et al., 2019a). However, k-WL
GNNs require the use of tensors of rank k, which is intractable in practice for k > 2. As
a result, Maron et al. (2019a) proposed a model, namely 3-WL GNNs, that uses rank-2
tensors while being 3-WL provable. This 3-WL model improves the space/time complexities
of Morris et al. (2019) from O(n3)/O(n4) to O(n2)/O(n3) respectively. We use 3WLGNNs
(Maron et al., 2019a) and RingGNNs (Chen et al., 2019b) as the GNN instances in this class,
the experimental pipeline of which are described as follows.

B.2.1 Input Tensor

For a given graph with adjacency matrix A ∈ Rn×n, node features hnode ∈ Rn×d and edge
features hedge ∈ Rn×n×de , the input tensor to the RingGNN and 3WL-GNN networks is
defined as

h`=0 ∈ Rn×n×(1+d+de), (28)

where

h`=0
i,j,1 = Aij ∈ R, ∀i, j (29)

h`=0
i,j,2:d+1 =

{
hnode
i ∈ Rd, ∀i = j

0 , ∀i 6= j
(30)

h`=0
i,j,d+2:d+de+1 = hedge

ij ∈ Rde (31)

B.2.2 WL-GNN layers

3WL-GNNs (Maron et al., 2019a) These networks introduced an architecture that
can distinguish two non-isomorphic graphs with the 3-WL test. The layer update equation
of 3WL-GNNs is defined as:

h`+1 = Concat
(
MW `

1
(h`) . MW `

2
(h`), MW `

3
(h`)

)
, (32)

21

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

where h`, h`+1 ∈ Rn×n×d, and MW are 2-layer MLPs applied along the feature dimension:

MW={Wa,Wb}(h) = σ
(
h Wa

)
Wb, (33)

where Wa,Wb ∈ Rd×d. As h ∈ Rn×n×d, the MLP (33) is implemented with a standard
2D-convolutional layer with 1× 1 kernel size. Eventually, the matrix multiplication in (32) is
carried out along the first and second dimensions such that:(

MW1(h) . MW2(h)
)
i,j,k

=

n∑
p=1

(
MW1(h)

)
i,p,k

.
(
MW2(h)

)
p,j,k

, (34)

with complexity O(n3).

Ring-GNNs (Chen et al., 2019b) These models proposed to improve the order-2
equivariant GNNs of Maron et al. (2019b) with the multiplication of two equivariant linear
layers. The layer update equation of Ring-GNNs is designed as:

h`+1 = σ
(
w`
1 LW `

1
(h`) + w`

2 LW `
2
(h`).LW `

3
(h`)

)
, (35)

where h`, h`+1 ∈ Rn×n×d, w`
1,2 ∈ R, and LW are the equivariant linear layers defined as

(
LW (h)

)
i,j,k

=
17∑
p=1

d∑
q=1

Wp,q,k

(
Li(h)

)
i,j,q

, (36)

where W ∈ Rd×d×17 and {Li}15i=1 is the set of all basis functions for all linear equivariant
functions from Rn×n → Rn×n (see Appendix A in Maron et al. (2019b) for the complete list
of these 15 operations) and {Li}17i=16 are the basis for the bias terms. Matrix multiplication
in (35) also implies a time complexity O(n3).

B.2.3 Task-based network layers

We describe the final network layers depending on the task at hand. The loss functions
corresponding to the task are the same as the GCNs, and presented in Section B.1.3.

Graph classifier layer We have followed the original author implementations in Maron
et al. (2019a,b); Chen et al. (2019b) to design the classifier layer for 3WL-GNNs and Ring-
GNNs. Similar to Xu et al. (2018, 2019), the classifier layer for Ring-GNNs uses features
from all intermediate layers and then passes the features to a MLP:

yG = ConcatL`=1

(n∑
i,j=1

h`ij

)
∈ RLd, (37)

ypred = P ReLU (Q yG) ∈ RC , (38)

where P ∈ Rd×C , Q ∈ RLd×d, C is the number of classes.
For 3WL-GNNs, Eqn. (37) is replaced by a diagonal and off-diagonal max pooling readout

Maron et al. (2019a,b) at every layer:

y`G = Concat
(

max
i

h`ii , max
i 6=j

h`ij

)
∈ R2d, (39)

22

Benchmarking Graph Neural Networks

and the final prediction score is defined as:

ypred =
L∑

`=1

P `y`G ∈ RC , (40)

where P ` ∈ R2d×C , C is the number of classes.

Graph regression layer Similar to the graph classifier layer with P ∈ Rd×1 for Ring-
GNNs, and P ` ∈ R2d×1 for 3WL-GNNs.

Node classifier layer For node classification, the prediction in Ring-GNNs is done as
follows:

ynode
i = ConcatL`=1

(n∑
j=1

h`ij

)
∈ RLd, (41)

yi,pred = P ReLU
(
Q ynode

i

)
∈ RC , (42)

where P ∈ Rd×C , Q ∈ RLd×d, C is the number of classes.
In 3WL-GNNs, the final prediction score is defined as:

ynode,`
i =

n∑
j=1

h`ij ∈ Rd, (43)

yi,pred =
L∑

`=1

P ` ynode,`
i ∈ RC , (44)

where P ` ∈ Rd×C , C is the number of classes.

Edge classifier layer For link prediction, for both Ring-GNNs and 3WL-GNNs, the edge
features are obtained by concatenating the node features such as:

ynode
i = ConcatL`=1

(n∑
j=1

h`ij

)
∈ RLd, (45)

yij,pred = P ReLU
(
Q Concat

(
ynode
i , ynode

j

))
∈ RC , (46)

where P ∈ Rd×C , Q ∈ R2Ld×d, C is the number of classes.

Appendix C. Datasets and Benchmarking Experiments

In this section, we provide details on the datasets included in the benchmarking framework
(Table 1) and the numerical results of the experiments using the GNN described in Section
B, which also consists experiments from a simple graph-agnostic baseline for every dataset
that parallelly applies an MLP on each node’s feature vector, independent of other nodes.
For complete statistics of the data, see Table 2. The experimental overview in terms of the
training strategy, reporting of results and the parameter budget used for fair comparison are
described first, as follows.

23

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Dataset #Graphs #Classes Avg. Nodes Avg. Edges Node feat. (dim) Edge feat. (dim)

ZINC 12000 – 23.16 49.83 Atom Type (28) Bond Type (4)
AQSOL 9823 – 17.57 35.76 Atom Type (65) Bond Type (5)
OGBL-COLLAB 1 – 235868.00 2358104.00 Word Embs (128) Year & Weight (2)
WikiCS 1 10 11701.00 216123.00 Word Embs (300) N.A.
MNIST 70000 10 70.57 564.53 Pixel+Coord (3) Node Dist (1)
CIFAR10 60000 10 117.63 941.07 Pixel[RGB]+Coord (5) Node Dist (1)

PATTERN 14000 2 117.47 4749.15 Node Attr (3) N.A.
CLUSTER 12000 6 117.20 4301.72 Node Attr (7) N.A.
TSP 12000 2 275.76 6894.04 Coord (2) Node Dist (1)
CSL 150 10 41.00 164.00 N.A. N.A.
CYCLES 20000 2 48.96 87.84 N.A. N.A.
GraphTheoryProp 7040 – 18.82 95.17 Source S.P.+Random(2) N.A.

Table 2: Summary statistics of all datasets. Numbers in parentheses of Node features and Edge
features are the dimensions. S.P. denotes shortest path.

Training. We use the Adam optimizer (Kingma and Ba, 2014) with the same learning
rate decay strategy for all models. An initial learning rate is selected in {10−2, 10−3, 10−4}
which is reduced by half if the validation loss does not improve after a fixed number of epochs,
in the range 5-25. We do not set a maximum number of epochs – the training is stopped
either when the learning rate has reached the small value of 10−6, or the computational time
reaches 12 hours. We run each experiment with 4 different seeds and report the statistics of
the 4 results. More details are provided in each experimental sub-sections.

Task-based network layer. The node representations generated by the final layer
of GCNs, or the dense tensor obtained at the final layer of the higher order WL-GNNs,
are passed to a network suffix which is usually a downstream MLP of 3 layers. For GIN,
RingGNN, and 3WL-GNN, we follow the original instructions of network suffixes to consider
feature outputs from each layer of the network, similar to that of Jumping Knowledge
Networks (Xu et al., 2018). Refer to the equations in the Sections B.1.3 and B.2.3 for more
details.

Parameter budgets. Our goal is not to find the optimal set of hyperparameters for a
specific GNN model (which is computationally expensive), but to compare and benchmark
the model and/or their building blocks within a budget of parameters. Therefore, we
decide on using two parameter budgets: (1) 100k parameters for each GNNs for all the
tasks, and (2) 500k parameters for GNNs for which we investigate scaling a model to
larger parameters and deeper layers. The number of hidden layers and hidden dimensions
are selected accordingly to match these budgets. The configuration details of each single
experiment can be found in our modular coding infrastructure on GitHub.

C.1 Graph Regression with ZINC dataset

For the ZINC dataset in our benchmark, we use a subset (12K) of ZINC molecular graphs
(250K) dataset (Irwin et al., 2012) to regress a molecular property known as the constrained
solubility which is the term logP − SA − cycle (octanol-water partition coefficients, logP ,
penalized by the synthetic accessibility score, SA, and number of long cycles, cycle). For
each molecular graph, the node features are the types of heavy atoms and the edge features

24

Benchmarking Graph Neural Networks

ZINC
Model L #Param Test MAE±s.d. Train MAE±s.d. #Epoch Epoch/Total
MLP 4 108975 0.706±0.006 0.644±0.005 116.75 1.01s/0.03hr

vanilla GCN 4 103077 0.459±0.006 0.343±0.011 196.25 2.89s/0.16hr
16 505079 0.367±0.011 0.128±0.019 197.00 12.78s/0.71hr

GraphSage 4 94977 0.468±0.003 0.251±0.004 147.25 3.74s/0.15hr
16 505341 0.398±0.002 0.081±0.009 145.50 16.61s/0.68hr

GCN 4 103077 0.416±0.006 0.313±0.011 159.50 1.53s/0.07hr
16 505079 0.278±0.003 0.101±0.011 159.25 3.66s/0.16hr

MoNet 4 106002 0.397±0.010 0.318±0.016 188.25 1.97s/0.10hr
16 504013 0.292±0.006 0.093±0.014 171.75 10.82s/0.52hr

GAT 4 102385 0.475±0.007 0.317±0.006 137.50 2.93s/0.11hr
16 531345 0.384±0.007 0.067±0.004 144.00 12.98s/0.53hr

GatedGCN 4 105735 0.435±0.011 0.287±0.014 173.50 5.76s/0.28hr
GatedGCN-E 4 105875 0.375±0.003 0.236±0.007 194.75 5.37s/0.29hr

16 504309 0.282±0.015 0.074±0.016 166.75 20.50s/0.96hr
GatedGCN-E-PE 16 505011 0.214±0.013 0.067±0.019 185.00 10.70s/0.56hr

GIN 4 103079 0.387±0.015 0.319±0.015 153.25 2.29s/0.10hr
16 509549 0.526±0.051 0.444±0.039 147.00 10.22s/0.42hr

RingGNN 2 97978 0.512±0.023 0.383±0.020 90.25 327.65s/8.32hr
RingGNN-E 2 104403 0.363±0.026 0.243±0.025 95.00 366.29s/9.76hr

2 527283 0.353±0.019 0.236±0.019 79.75 293.94s/6.63hr
8 510305 Diverged Diverged Diverged Diverged

3WLGNN 3 102150 0.407±0.028 0.272±0.037 111.25 286.23s/8.88hr
3WLGNN-E 3 103098 0.256±0.054 0.140±0.044 117.25 334.69s/10.90hr

3 507603 0.303±0.068 0.173±0.041 120.25 329.49s/11.08hr
8 582824 0.303±0.057 0.246±0.043 52.50 811.27s/12.15hr

Table 3: Benchmarking results for ZINC for graph regression. Results (lower is better) are averaged
over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The suffix -E denotes
the use of available edge features, and the suffix -PE denote the use of Laplacian Eigenvectors as
node positional encodings with dimension 8.

are the types of bonds between them. ZINC has been used popularly for research related to
molecular graph generation (Jin et al., 2018; Bresson and Laurent, 2019).
Splitting. ZINC has 10, 000 train, 1, 000 validation and 1, 000 test graphs.
Training. For the learning rate strategy across all GNNs, an initial learning rate is set to
1× 10−3, the reduce factor is 0.5, and the stopping learning rate is 1× 10−5. The patience
value is 5 for 3WLGNN and RingGNN, and 10 for all other GNNs.
Performance Measure. The performance measure is the mean absolute error (MAE)
between the predicted and the groundtruth constrained solubility for each molecular graph.
Results. The numerical results are presented in Table 3 and analysed in Section D collectively
with other benchmarking results.

C.2 Graph Regression with AQSOL dataset

AQSOL dataset is based on AqSolDB (Sorkun et al., 2019) which is a standardized database
of 9, 982 molecular graphs with their aqueous solubility values, collected from 9 different
data sources. The aqueous solubility targets are collected from experimental measurements
and standardized to LogS units in AqSolDB. We use these final values as the property to
regress in the AQSOL dataset which is the resultant collection after we filter out few graphs

25

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

with no edges (bonds) and a small number of graphs with missing node feature values. Thus,
the total molecular graphs are 9, 823. For each molecular graph, the node features are the
types of heavy atoms and the edge features are the types of bonds between them.

Splitting. We provide a scaffold splitting (Hu et al., 2020) of the dataset in the ratio 8 : 1 : 1
to have 7, 831 train, 996 validation and 996 test graphs.
Training. For the learning rate strategy across all GNNs, an initial learning rate is set to
1× 10−3, the reduce factor is 0.5, and the stopping learning rate is 1× 10−5. The patience
value is 5 for 3WLGNN and RingGNN, and 10 for all other GNNs.
Performance Measure. Similar to ZINC, the performance measure is the mean absolute
error (MAE) between the predicted and the actual aqueous solubility values.
Results. The numerical results are presented in Table 4 and analysed in Section D.

AQSOL
Model L #Param TestMAE±s.d. TrainMAE±s.d. Epochs Epoch/Total

MLP 4 114525 1.744±0.016 1.413±0.042 85.75 0.61s/0.02hr

vanilla GCN 4 108442 1.483±0.014 0.791±0.034 110.25 1.14s/0.04hr
16 511443 1.458±0.011 0.567±0.027 121.50 2.83s/0.10hr

GraphSage 4 109620 1.431±0.010 0.666±0.027 106.00 1.51s/0.05hr
16 509078 1.402±0.013 0.402±0.013 110.50 3.20s/0.10hr

GCN 4 108442 1.372±0.020 0.593±0.030 135.00 1.28s/0.05hr
16 511443 1.333±0.013 0.382±0.018 137.25 3.31s/0.13hr

MoNet 4 109332 1.395±0.027 0.557±0.022 125.50 1.68s/0.06hr
16 507750 1.501±0.056 0.444±0.024 110.00 3.62s/0.11hr

GAT 4 108289 1.441±0.023 0.678±0.021 104.50 1.92s/0.06hr
16 540673 1.403±0.008 0.386±0.014 111.75 4.44s/0.14hr

GatedGCN 4 108325 1.352±0.034 0.576±0.056 142.75 2.28s/0.09hr
16 507039 1.355±0.016 0.465±0.038 99.25 5.52s/0.16hr

GatedGCN-E 4 108535 1.295±0.016 0.544±0.033 116.25 2.29s/0.08hr
16 507273 1.308±0.013 0.367±0.012 110.25 5.61s/0.18hr

GatedGCN-E-PE 16 507663 0.996±0.008 0.372±0.016 105.25 5.70s/0.30hr

GIN 4 107149 1.894±0.024 0.660±0.027 115.75 1.55s/0.05hr
16 514137 1.962±0.058 0.850±0.054 128.50 3.97s/0.14hr

RingGNN 2 116643 20.264±7.549 0.625±0.018 54.25 113.99s/1.76hr
RingGNN-E 2 123157 3.769±1.012 0.470±0.022 63.75 125.17s/2.26hr

2 523935 Diverged Diverged Diverged Diverged
8 - Diverged Diverged Diverged Diverged

3WLGNN 3 110919 1.154±0.050 0.434±0.026 66.75 130.92s/2.48hr
3 525423 1.108±0.036 0.405±0.031 70.75 131.12s/2.62hr

3WLGNN-E 3 112104 1.042±0.064 0.307±0.024 68.50 139.04s/2.70hr
3 528123 1.052±0.034 0.287±0.023 67.00 140.43s/2.67hr
8 - Diverged Diverged Diverged Diverged

Table 4: Benchmarking results for AQSOL for graph regression. Results (lower is better) are averaged
over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The suffix -E denotes
the use of available edge features, and the suffix -PE denote the use of Laplacian Eigenvectors as
node positional encodings with dimension 4.

26

Benchmarking Graph Neural Networks

OGBL-COLLAB
Model L #Param Test Hits±s.d. Train Hits±s.d. #Epoch Epoch/Total

MLP 3 39441 20.350±2.168 29.807±3.360 147.50 2.09s/0.09hr

vanilla GCN 3 40479 50.422±1.131 92.112±0.991 122.50 351.05s/12.04hr
GraphSage 3 39856 51.618±0.690 99.949±0.052 152.75 277.93s/11.87hr

GCN 3 40479 48.956±1.143 87.385±2.056 142.25 7.66s/0.31hr
MoNet 3 39751 36.144±2.191 61.156±3.973 167.50 26.69s/1.26hr
GAT 3 42637 51.501±0.962 97.851±1.114 157.00 18.12s/0.80hr

GatedGCN 3 40965 52.635±1.168 96.103±1.876 95.00 453.47s/12.09hr
GatedGCN-PE 3 41889 52.849±1.345 96.165±0.453 94.75 452.75s/12.08hr
GatedGCN-E 3 40965 49.212±1.560 88.747±1.058 95.00 451.21s/12.03hr

GIN 3 39544 41.730±2.284 70.555±4.444 140.25 8.66s/0.34hr

RingGNN - - OOM RingGNN and 3WLGNN rely
on dense tensors which leads
to OOM on both GPU and
CPU memory.3WLGNN - - OOM

Matrix Fact. - 60546561 44.206±0.452 100.000±0.000 254.33 2.66s/0.21hr

Table 5: Benchmarking results for OGBL-COLLAB for link prediction. Results (higher is better)
are averaged over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The
suffix -E denotes the use of available edge features, and the suffix -PE denote the use of Laplacian
Eigenvectors as node positional encodings with dimension 20.

C.3 Link Prediction with OGBL-COLLAB dataset

OGBL-COLLAB is a link prediction dataset proposed by OGB (Hu et al., 2020) corre-
sponding to a collaboration network between approximately 235K scientists, indexed by
Microsoft Academic Graph (Wang et al., 2020). Nodes represent scientists and edges denote
collaborations between them. For node features, OGB provides 128-dimensional vectors,
obtained by averaging the word embeddings of a scientist’s papers. The year and number of
co-authored papers in a given year are concatenated to form edge features. The graph can
also be viewed as a dynamic multi-graph, since two nodes may have multiple temporal edges
between if they collaborate over multiple years.
Splitting. We use the realistic training, validation and test edge splits provided by OGB.
Specifically, they use collaborations until 2017 as training edges, those in 2018 as validation
edges, and those in 2019 as test edges.
Training. All GNNs use a consistent learning rate strategy: an initial learning rate is set to
1× 10−3, the reduce factor is 0.5, the patience value is 10, and the stopping learning rate is
1× 10−5.
Performance Measure. We use the evaluator provided by OGB, which aims to measure
a model’s ability to predict future collaboration relationships given past collaborations.
Specifically, they rank each true collaboration among a set of 100,000 randomly-sampled
negative collaborations, and count the ratio of positive edges that are ranked at K-place or
above (Hits@K, with K = 50).
Matrix Factorization Baseline. In addition to GNNs, we report performance for a simple
matrix factorization baseline (Hu et al., 2020), which trains 256-dimensional embeddings for

27

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

WikiCS
Model L #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total

MLP 4 110710 59.452±2.327 85.347±5.440 322.46 0.01s/0.03hr

vanilla GCN 4 104560 77.103±0.830 98.918±0.619 293.84 0.05s/0.10hr
GraphSage 4 101775 74.767±0.950 99.976±0.095 303.68 0.06s/0.12hr

GCN 4 104560 77.469±0.854 98.925±0.590 299.85 0.06s/0.11hr
MoNet 4 106182 77.431±0.669 98.737±0.710 355.81 0.17s/0.36hr

MoNet-PE 4 107862 77.481±0.712 98.767±0.726 357.74 0.19s/0.81hr
GAT 4 105520 76.908±0.821 99.914±0.262 275.48 1.12s/2.22hr

GatedGCN 4 109280 OOM

GIN 4 109782 75.857±0.577 99.575±0.388 321.25 0.06s/0.13hr

Table 6: Benchmarking results for WikiCS for node classification. Results (higher is better) are
averaged over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The suffix
-PE denote the use of Laplacian Eigenvectors as node positional encodings with dimension 20.

each of the 235K nodes. Comparing GNNs to matrix factorization tells us whether models
leverage node features in addition to graph structure, as matrix factorization can be thought
of as feature-agnostic.
Results. The numerical results are presented in Table 5 and discussed in Section D.

C.4 Node Classification with WikiCS dataset

WikiCS is a node classification dataset based on an extracted subset of Wikipedia’s Computer
Science articles (Mernyei and Cangea, 2020). It is a single graph dataset with 11, 701 nodes
and 216, 123 edges where each node corresponds to an article, and each edge corresponds to
a hyperlink. Each node belongs to a label out of total 10 classes representing the article’s
category. The average of the article text’s pre-trained GloVe word embeddings (Pennington
et al., 2014) is assigned as 300-dimensional node features. Compared to previous single-graph
node classification benchmarks such as Cora and Citeseer, WikiCS dataset has denser node
neighborhoods and each node’s connectivity is spread across nodes from varying class labels.
Additionally, as shown in Mernyei and Cangea (2020), the average shortest path length
in WikiCS is smaller compared to Cora and Citeseer. Thus, on average, a larger node
neighborhood and smaller shortest path length makes WikiCS an appropriate benchmark to
test out neighborhood computation functions in GNNs’ design.
Splitting. We follow the splitting defined in Mernyei and Cangea (2020) that has 20 different
training, validation and early stopping splits consisting of 5% nodes, 22.5% nodes and 22.5%
nodes of each class respectively. 50% nodes from each class, which are not in the training or
validation split, are assigned as test splits. We combine the two original validation (22.5%
nodes) and early stopping (22.5% nodes) splits to make the new validation (45% nodes)
splits since we do not use separate early stopping splits in our benchmark.
Training. As consistent learning rate strategy across GNNs, an initial learning rate is set to
1× 10−2, the reduce factor is 0.5, the patience value is 25, and the stopping learning rate is
1× 10−5. Since there are 20 different training and validation splits, the training is done 20
times using these splits, and evaluated on the single test split. This is done for 4 times with
4 different seeds. Finally, the average of the 20 × 4 = 80 runs is reported.

28

Benchmarking Graph Neural Networks

Performance Measure. The performance measure is the classification accuracy between
the predicted and groundtruth label for each node.
Results. The numerical results are presented in Table 6 and discussed in Section D.

C.5 Graph Classification with Super-pixel (MNIST/CIFAR10) datasets

The super-pixels datasets test graph classification using the popular MNIST and CIFAR10
image classification datasets. Our main motivation to use these datasets is as sanity-checks:
we expect most GNNs to perform close to 100% for MNIST and well enough for CIFAR10.
Besides, the use of super-pixel image datasets is suggestive of the way image datasets can be
used for graph learning research.

The original MNIST and CIFAR10 images are converted to graphs using super-pixels.
Super-pixels represent small regions of homogeneous intensity in images, and can be extracted
with the SLIC technique (Achanta et al., 2012). We use SLIC super-pixels from (Knyazev
et al., 2019)2. For each sample, we build a k-nearest neighbor adjacency matrix with

W k−NN
ij = exp

(
−‖xi − xj‖

2

σ2x

)
, (47)

where xi, xj are the 2-D coordinates of super-pixels i, j, and σx is the scale parameter defined
as the averaged distance xk of the k nearest neighbors for each node. We use k = 8 for both
MNIST and CIFAR10, whereas the maximum number of super-pixels (nodes) are 75 and 150
for MNIST and CIFAR10, respectively. The resultant graphs are of sizes 40-75 nodes for
MNIST and 85-150 nodes for CIFAR10. Figure 14 presents visualizations of the super-pixel
graphs.
Splitting. We use the standard splits of MNIST and CIFAR10. MNIST has 55, 000 train,
5, 000 validation, 10, 000 test graphs and CIFAR10 has 45, 000 train, 5, 000 validation, 10, 000
test graphs. The 5, 000 graphs for validation set are randomly sampled from the training set
and the same splits are used for every GNN.
Training. The learning decay rate strategy is adopted with an initial learning rate of
1× 10−3, reduce factor 0.5, patience value 10, and the stopping learning rate 1× 10−5 for all
GNNs, except for 3WLGNN and RingGNN where we experienced a difficulty in training,
leading us to slightly adjust their learning rate schedule hyperparameters. For both 3WLGNN
and RingGNN, the patience value is changed to 5. For RingGNN, the initial learning rate is
changed to 1× 10−4 and the stopping learning rate is changed to 1× 10−6.
Performance Measure. The classification accuracy between the predicted and groundtruth
label for each graph is the performance measure.
Results. The numerical results are presented in Table 7 and discussed in Section D.

C.6 Node Classification with SBM (PATTERN/CLUSTER) datasets

The SBM datasets consider node-level tasks of graph pattern recognition (Scarselli et al.,
2009) – PATTERN and semi-supervised graph clustering – CLUSTER. The graphs are
generated with the Stochastic Block Model (SBM) (Abbe, 2017), which is widely used to
model communities in social networks by modulating the intra- and extra-communities

2. https://github.com/bknyaz/graph_attention_pool

29

https://github.com/bknyaz/graph_attention_pool

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

(a) MNIST (b) CIFAR10

Figure 14: Sample images and their superpixel graphs. The graphs of SLIC superpixels (at
most 75 nodes for MNIST and 150 nodes for CIFAR10) are 8-nearest neighbor graphs in the
Euclidean space and node colors denote the mean pixel intensities.

MNIST CIFAR10
Model L #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total

MLP 4 104044 95.340±0.138 97.432±0.470 232.25 22.74s/1.48hr 104380 56.340±0.181 65.113±1.685 185.25 29.48s/1.53hr

vanilla GCN 4 101365 90.705±0.218 97.196±0.223 127.50 83.41s/2.99hr 101657 55.710±0.381 69.523±1.948 142.50 109.70s/4.39hr
GraphSage 4 104337 97.312±0.097 100.000±0.000 98.25 113.12s/3.13hr 104517 65.767±0.308 99.719±0.062 93.50 124.61s/3.29hr

GCN 4 101365 90.120±0.145 96.459±1.020 116.75 37.06s/1.22hr 101657 54.142±0.394 70.163±3.429 140.50 47.16s/1.86hr
MoNet 4 104049 90.805±0.032 96.609±0.440 146.25 93.19s/3.82hr 104229 54.655±0.518 65.911±2.515 141.50 97.13s/3.85hr
GAT 4 110400 95.535±0.205 99.994±0.008 104.75 42.26s/1.25hr 110704 64.223±0.455 89.114±0.499 103.75 55.27s/1.62hr

GatedGCN 4 104217 97.340±0.143 100.000±0.000 96.25 128.79s/3.50hr 104357 67.312±0.311 94.553±1.018 97.00 154.15s/4.22hr

GIN 4 105434 96.485±0.252 100.000±0.000 128.00 39.22s/1.41hr 105654 55.255±1.527 79.412±9.700 141.50 52.12s/2.07hr
RingGNN 2 105398 11.350±0.000 11.235±0.000 14.00 2945.69s/12.77hr 105165 19.300±16.108 19.556±16.397 13.50 3112.96s/13.00hr

2 505182 91.860±0.449 92.169±0.505 16.25 2575.99s/12.63hr 504949 39.165±17.114 40.209±17.790 13.75 2998.24s/12.60hr
8 506357 Diverged Diverged Diverged Diverged 510439 Diverged Diverged Diverged Diverged

3WLGNN 3 108024 95.075±0.961 95.830±1.338 27.75 1523.20s/12.40hr 108516 59.175±1.593 63.751±2.697 28.50 1506.29s/12.60hr
3 501690 95.002±0.419 95.692±0.677 26.25 1608.73s/12.42hr 502770 58.043±2.512 61.574±3.575 20.00 2091.22s/12.55hr
8 500816 Diverged Diverged Diverged Diverged 501584 Diverged Diverged Diverged Diverged

Table 7: Benchmarking results for Super-pixels datasets for graph classification. Results (higher is
better) are averaged over 4 runs with 4 different seeds. Red: the best model, Violet: good models.

connections, thereby controlling the difficulty of the task. A SBM is a random graph
which assigns communities to each node as follows: any two vertices are connected with
the probability p if they belong to the same community, or they are connected with the
probability q if they belong to different communities (the value of q acts as the noise level).

PATTERN: The graph pattern recognition task, presented in Scarselli et al. (2009),
aims at finding a fixed graph pattern P embedded in larger graphs G of variable sizes. For
all data, we generate graphs G with 5 communities with sizes randomly selected between
[5, 35]. The SBM of each community is p = 0.5, q = 0.35, and the node features on G are
generated with a uniform random distribution with a vocabulary of size 3, i.e. {0, 1, 2}. We
randomly generate 100 patterns P composed of 20 nodes with intra-probability pP = 0.5 and
extra-probability qP = 0.5 (i.e., 50% of nodes in P are connected to G). The node features
for P are also generated as a random signal with values {0, 1, 2}. The graphs are of sizes
44-188 nodes. The output node labels have value 1 if the node belongs to P and value 0 if it
is in G.

CLUSTER: For the semi-supervised clustering task, we generate 6 SBM clusters with
sizes randomly selected between [5, 35] and probabilities p = 0.55, q = 0.25. The graphs are
of sizes 40-190 nodes. Each node can take an input feature value in {0, 1, 2, .., 6}. If the value

30

Benchmarking Graph Neural Networks

PATTERN CLUSTER
Model L #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total

MLP 4 105263 50.519±0.000 50.487±0.014 42.25 8.95s/0.11hr 106015 20.973±0.004 20.938±0.002 42.25 5.83s/0.07hr

vanilla GCN 4 100923 63.880±0.074 65.126±0.135 105.00 118.85s/3.51hr 101655 53.445±2.029 54.041±2.197 70.00 65.72s/1.30hr
16 500823 71.892±0.334 78.409±1.592 81.50 492.19s/11.31hr 501687 68.498±0.976 71.729±2.212 79.75 270.28s/6.08hr

GraphSage 4 101739 50.516±0.001 50.473±0.014 43.75 93.41s/1.17hr 102187 50.454±0.145 54.374±0.203 64.00 53.56s/0.97hr
16 502842 50.492±0.001 50.487±0.005 46.50 391.19s/5.19hr 503350 63.844±0.110 86.710±0.167 57.75 225.61s/3.70hr

GCN 4 100923 85.498±0.045 85.598±0.043 65.00 19.21s/0.36hr 101655 47.828±1.510 48.258±1.607 63.50 12.84s/0.23hr
16 500823 85.614±0.032 86.034±0.087 66.00 37.08s/0.70hr 501687 69.026±1.372 73.749±2.570 77.75 30.20s/0.66hr

MoNet 4 103775 85.482±0.037 85.569±0.044 89.75 35.71s/0.90hr 104227 58.064±0.131 58.454±0.183 76.25 24.29s/0.52hr
16 511487 85.582±0.038 85.720±0.068 81.75 68.49s/1.58hr 511999 66.407±0.540 67.727±0.649 77.75 47.82s/1.05hr

GAT 4 109936 75.824±1.823 77.883±1.632 96.00 20.92s/0.57hr 110700 57.732±0.323 58.331±0.342 67.25 14.17s/0.27hr
16 526990 78.271±0.186 90.212±0.476 53.50 50.33s/0.77hr 527874 70.587±0.447 76.074±1.362 73.50 35.94s/0.75hr

GatedGCN 4 104003 84.480±0.122 84.474±0.155 78.75 139.01s/3.09hr 104355 60.404±0.419 61.618±0.536 94.50 79.97s/2.13hr
16 502223 85.568±0.088 86.007±0.123 65.25 644.71s/11.91hr 502615 73.840±0.326 87.880±0.908 60.00 400.07s/6.81hr

GatedGCN-PE 16 502457 86.508±0.085 86.801±0.133 65.75 647.94s/12.08hr 504253 76.082±0.196 88.919±0.720 57.75 399.66s/6.58hr

GIN 4 100884 85.590±0.011 85.852±0.030 93.00 15.24s/0.40hr 103544 58.384±0.236 59.480±0.337 74.75 10.71s/0.23hr
16 508574 85.387±0.136 85.664±0.116 86.75 25.14s/0.62hr 517570 64.716±1.553 65.973±1.816 80.75 20.67s/0.47hr

RingGNN 2 105206 86.245±0.013 86.118±0.034 75.00 573.37s/12.17hr 104746 42.418±20.063 42.520±20.212 74.50 428.24s/8.79hr
2 504766 86.244±0.025 86.105±0.021 72.00 595.97s/12.15hr 524202 22.340±0.000 22.304±0.000 43.25 501.84s/6.22hr
8 505749 Diverged Diverged Diverged Diverged 514380 Diverged Diverged Diverged Diverged

3WLGNN 3 103572 85.661±0.353 85.608±0.337 95.00 304.79s/7.88hr 105552 57.130±6.539 57.404±6.597 116.00 219.51s/6.52hr
3 502872 85.341±0.207 85.270±0.198 81.75 424.23s/9.56hr 507252 55.489±7.863 55.736±8.024 66.00 319.98s/5.79hr
8 581716 Diverged Diverged Diverged Diverged 586788 Diverged Diverged Diverged Diverged

Table 8: Benchmarking results for SBMs datasets for node classification. Results (higher is better)
are averaged over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The
suffix -PE denote the use of Laplacian Eigenvectors as node positional encodings with dimension 2
for PATTERN and 20 for CLUSTER.

is 1, the node belongs to class 0, value 2 corresponds to class 1, . . . , value 6 corresponds to
class 5. Otherwise, if the value is 0, the class of the node is unknown and will be inferred by
the GNN. There is only one labelled node that is randomly assigned to each community and
most node features are set to 0. The output node labels are defined as the community/cluster
class labels.
Splitting. The PATTERN dataset has 10, 000 train, 2, 000 validation, 2, 000 test graphs
and CLUSTER dataset has 10, 000 train, 1, 000 validation, 1, 000 test graphs. We save the
generated splits and use the same sets in all models for fair comparison.
Training. As presented in the standard experimental protocol in Section C, we use Adam
optimizer with a learning rate decay strategy. For all GNNs, an initial learning rate is set to
1× 10−3, the reduce factor is 0.5, the patience value is 5, and the stopping learning rate is
1× 10−5.
Performance Measure. The performance measure is the average node-level accuracy
weighted with respect to the class sizes.
Results. Our numerical results are presented in Table 8 and discussed in Section D together
with other benchmark results.

C.7 Edge Classification/Link Prediction with TSP dataset

Leveraging machine learning for solving NP-hard combinatorial optimization problems (COPs)
has been the focus of intense research in recent years (Vinyals et al., 2015; Bengio et al.,
2018). Recently proposed learning-driven solvers for COPs (Khalil et al., 2017; Kool et al.,
2019; Joshi et al., 2019) combine GNNs with classical search to predict approximate solutions
directly from problem instances (represented as graphs). Consider the intensively studied
Travelling Salesman Problem (TSP), which asks the following question: “Given a list of cities
and the distances between each pair of cities, what is the shortest possible route that visits

31

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

(a) TSP50 (b) TSP200 (c) TSP500

Figure 15: Sample graphs from the TSP dataset. Nodes are colored blue and edges on the
groundtruth TSP tours are colored red.

each city and returns to the origin city?" Formally, given a 2D Euclidean graph, one needs
to find an optimal sequence of nodes, called a tour, with minimal total edge weights (tour
length). TSP’s multi-scale nature makes it a challenging graph task which requires reasoning
about both local node neighborhoods as well as global graph structure.

For our experiments with TSP, we follow the learning-based approach to COPs described
in Joshi et al. (2022), where a GNN is the backbone architecture for assigning probabilities
to each edge as belonging/not belonging to the predicted solution set. The probabilities are
then converted into discrete decisions through graph search techniques. Each instance is a
graph of n node locations sampled uniformly in the unit square S = {xi}ni=1 and xi ∈ [0, 1]2.
We generate problems of varying size and complexity by uniformly sampling the number of
nodes n ∈ [50, 500] for each instance.

In order to isolate the impact of the backbone GNN architectures from the search
component, we pose TSP as a binary edge classification task, with the groundtruth value
for each edge belonging to the TSP tour given by Concorde (Applegate et al., 2006). For
scaling to large instances, we use sparse k = 25 nearest neighbor graphs instead of full graphs,
following (Khalil et al., 2017). See Figure 15 for sample TSP instances of various sizes.

Splitting. TSP has 10, 000 train, 1, 000 validation and 1, 000 test graphs.
Training. All GNNs use a consistent learning rate strategy: an initial learning rate is set to
1× 10−3, the reduce factor is 0.5, the patience value is 10, and the stopping learning rate is
1× 10−5.
Performance Measure. Given the high class imbalance, i.e., only the edges in the TSP
tour have positive label, we use the F1 score for the positive class as our performance measure.
Non-learnt Baseline. In addition to reporting performance of GNNs, we compare with a
simple k-nearest neighbor heuristic baseline, defined as follows: Predict true for the edges
corresponding to the k nearest neighbors of each node, and false for all other edges. We set
k = 2 for optimal performance. Comparing GNNs to the non-learnt baseline tells us whether
models learn something more sophisticated than identifying a node’s nearest neighbors.
Results. The numerical results are presented in Table 9 and analysed in Section D.

32

Benchmarking Graph Neural Networks

TSP
Model L #Param Test F1±s.d. Train F1±s.d. #Epoch Epoch/Total

MLP 4 96956 0.544±0.001 0.544±0.001 164.25 50.15s/2.31hr

vanilla GCN 4 95702 0.630±0.001 0.631±0.001 261.00 152.89s/11.15hr
GraphSage 4 99263 0.665±0.003 0.669±0.003 266.00 157.26s/11.68hr

GCN 4 95702 0.643±0.001 0.645±0.002 261.67 57.84s/4.23hr
MoNet 4 99007 0.641±0.002 0.643±0.002 282.00 84.46s/6.65hr
GAT 4 96182 0.671±0.002 0.673±0.002 328.25 68.23s/6.25hr

GatedGCN 4 97858 0.791±0.003 0.793±0.003 159.00 218.20s/9.72hr
GatedGCN-E 4 97858 0.808±0.003 0.811±0.003 197.00 218.51s/12.04hr
GatedGCN-E 16 500770 0.838±0.002 0.850±0.001 53.00 807.23s/12.17hr

GIN 4 99002 0.656±0.003 0.660±0.003 273.50 72.73s/5.56hr
RingGNN 2 106862 0.643±0.024 0.644±0.024 2.00 17850.52s/17.19hr

2 507938 0.704±0.003 0.705±0.003 3.00 12835.53s/16.08hr
8 506564 Diverged Diverged Diverged Diverged

3WLGNN 3 106366 0.694±0.073 0.695±0.073 2.00 17468.81s/16.59hr
3 506681 0.288±0.311 0.290±0.312 2.00 17190.17s/16.51hr
8 508832 OOM OOM OOM OOM

k-NN Heuristic k =2 Test F1: 0.693

Table 9: Benchmarking results for TSP for edge classification. Results (higher is better) are averaged
over 4 runs with 4 different seeds. Red: the best model, Violet: good models. The suffix -E denotes
the use of available edge features.

C.8 Graph Classification and Isomorphism Testing with CSL dataset

The Circular Skip Link dataset is a symmetric graph dataset introduced in Murphy et al.
(2019) to test the expressivity of GNNs. Each CSL graph is a 4-regular graph with edges
connected to form a cycle and containing skip-links between nodes. Formally, it is denoted by
GN,C where N is the number of nodes and C is the isomorphism class which is the skip-link
length of the graph. We use the same dataset G41,C with C ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}.
The dataset is class-balanced with 15 graphs for every C resulting in a total of 150 graphs.
Splitting. We perform a 5-fold cross validation split, following Murphy et al. (2019), which
gives 5 sets of train, validation and test data indices in the ratio 3 : 1 : 1. We use stratified
sampling to ensure that the class distribution remains the same across splits. The indices
are saved and used across all experiments for fair comparisons.
Training. For the learning rate strategy across all GNNs, an initial learning rate is set to
5× 10−4, the reduce factor is 0.5, the patience value is 5, and the stopping learning rate is
1 × 10−6. We train on the 5-fold cross validation with 20 different seeds of initialization,
following Chen et al. (2019b).
Performance Measure. We use graph classification accuracy between the predicted labels
and groundtruth labels as our performance measure. The model performance is evaluated
on the test split of the 5 folds at every run, and following Murphy et al. (2019); Chen et al.
(2019b), we report the maximum, minimum, average and the standard deviation of the 100
scores, i.e., 20 runs of 5-folds.
Results. The numerical results are reported in Table 10 and analyzed in Section E.1. In this
paper, we use CSL primarily to validate the impact of having Graph Positional Encodings

33

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Model L #Param Test Accuracy Train Accuracy #Epoch Epoch/
Mean±s.d. Max Min Mean±s.d. Max Min Total

Node Positional Encoding with Laplacian Eigenvectors

MLP 4 101235 22.567±6.089 46.667 10.000 30.389±5.712 43.333 10.000 109.39 0.16s/0.03hr

GCN 4 103847 100.000±0.000 100.000 100.000 100.000±0.000 100.000 100.000 125.64 0.40s/0.07hr
GraphSage 4 105867 99.933±0.467 100.000 96.667 100.000±0.000 100.000 100.000 155.00 0.50s/0.11hr

MoNet 4 105579 99.967±0.332 100.000 96.667 100.000±0.000 100.000 100.000 130.39 0.49s/0.09hr
GAT 4 101710 99.933±0.467 100.000 96.667 100.000±0.000 100.000 100.000 133.18 0.61s/0.12hr

GatedGCN 4 105407 99.600±1.083 100.000 96.667 100.000±0.000 100.000 100.000 147.06 0.66s/0.14hr

GIN 4 107304 99.333±1.333 100.000 96.667 100.000±0.000 100.000 100.000 62.98 0.44s/0.04hr
RingGNN 2 102726 17.233±6.326 40.000 10.000 26.122±14.382 58.889 10.000 122.75 2.93s/0.50hr

2 505086 25.167±7.399 46.667 10.000 54.533±18.415 82.222 10.000 120.58 3.11s/0.51hr
3WLGNN 3 102054 30.533±9.863 56.667 10.000 99.644±1.684 100.000 88.889 74.66 2.33s/0.25hr

3 505347 30.500±8.197 56.667 13.333 100.000±0.000 100.000 100.000 66.64 2.38s/0.23hr

No Node Positional Encoding

All MP-GCNs 4 100K 10.000±0.000 10.000 10.000 10.000±0.000 10.000 10.000 - -
RingGNN 2 101138 10.000±0.000 10.000 10.000 10.000±0.000 10.000 10.000 103.23 3.09s/0.45hr

2 505325 10.000±0.000 10.000 10.000 10.000±0.000 10.000 10.000 90.04 3.28s/0.42hr
3WLGNN 3 102510 95.700±14.850 100.000 30.000 95.700±14.850 100.000 30.000 475.81 2.29s/1.51hr

3 506106 97.800±10.916 100.000 30.000 97.800±10.916 100.000 30.000 283.80 2.28s/0.90hr

Table 10: Results for the CSL dataset, with and without Laplacian Positional Encodings. Results are
from 5-fold cross validation, run 20 times with different seeds. Red: the best model, Violet: good
models. The dimension of node positional encoding with Laplacian eigenvectors is 20.

(Section E.1) that is proposed as a demonstration of our benchmarking framework to steer
new GNN research.

C.9 Cycle Detection with CYCLES dataset

The CYCLES is a dataset synthetically generated by Loukas (2020) which contains equal
number of graphs with and without cycles of fixed lengths. The task is a binary classification
task to detect whether a graph has cycle or not. Though there are several forms of the dataset
used in Loukas (2020) in terms of the number of nodes and cycle lengths, we select the
dataset variant marked with having node size 56 and cycle length 6, based on the difficulty
results shown by the author. The graphs have nodes in the range 37-65.
Splitting. We use the same dataset splits as in Loukas (2020). Originally there 10,000
graphs each in the training and test sets. We sample 1,000 class balanced graphs from the
training set to be used as validation samples. Therefore, the resulting CYCLES dataset
has 9,000 train/ 1,000 validation/10,000 test graphs with all the sets having class-balanced
samples. We show results on different sizes of training samples following the original author
of CYCLES dataset.
Training. For the learning rate strategy, an initial learning rate is set to 1 × 10−4, the
reduce factor is 0.5, the patience value is 10, and the stopping learning rate is 1 × 10−6.
Following Loukas (2020), we train using a varying sample size from 200 to 5, 000 out of the
training graphs and report the results accordingly. The reported results are based on 4 runs
with 4 different seeds.
Performance Measure. The classification accuracy between the predicted and groundtruth
label for whether a graph has cycle or not is the performance measure.
Results. Similar to the CSL dataset (Section C.8), we use the CYCLES dataset mainly

34

Benchmarking Graph Neural Networks

for the validation of the Graph Positional Encodings (Section E.1) proposed as an outcome
of this benchmarking framework. As such, we train only a subset of MP-GCNs (GINs and
GatedGCNs) and report the respective results. The numerical results are reported in Table
11 and analyzed in Section E.1.

Train samples → 200 500 1000 5000

Model L #Param Test Acc±s.d.

GIN 4 100774 70.585±0.636 74.995±1.226 78.083±1.083 86.130±1.140
GIN-PE 4 102864 86.720±3.376 95.960±0.393 97.998±0.300 99.570±0.089

GatedGCN 4 103933 50.000±0.000 50.000±0.000 50.000±0.000 50.000±0.000
GatedGCN-PE 4 105263 95.082±0.346 96.700±0.381 98.230±0.473 99.725±0.027

Table 11: Test accuracy on the CYCLES dataset. Results (higher is better) are averaged over 4 runs
with 4 different seeds. The performance on test sets with models trained on varying train data size is
show, following Vignac et al. (2020). Bold shows the best result out of a GNN’s two model instances
that use and not use PE. The dimension for PE is 20.

C.10 Multi-task graph properties with GraphTheoryProp dataset

Corso et al. (2020) proposed a synthetic dataset of undirected and unweighted graphs of diverse
types randomly generated for a multi-task benchmarking of 6 graph-theoretic properties,
3 at the node-level and 3 at the graph-level. We call this dataset as GraphTheoryProp.
The node-level tasks are to determine single source shortest paths (Dist.), node eccentricity
(Ecc.), and Laplacian features LX given a node feature vector X (Lap.) The graph-level
tasks are graph connectivity (Conn.), diameter (Diam.) and spectral radius (Rad.). The
dataset has graph sizes in the range of 15-24 nodes which have random identifiers as input
features. This dataset is crucial to benchmark the robustness of a GNN to predict specific
or overall of all the 6 properties, as these may share subroutines such as graph traversals,
despite the tasks being different graph properties (Corso et al., 2020).

Model L
Test

Average Dist. Ecc. Lap. Conn. Diam. Rad.

GIN 8 -3.19±0.11 -2.81±0.11 -2.42±0.09 -4.39±0.18 -2.07±0.13 -3.06±0.11 -4.39±0.13
GIN-PE 8 -3.21±0.13 -2.87±0.03 -2.83±0.07 -3.99±0.04 -2.00±0.15 -3.27±0.07 -4.31±0.15

GatedGCN 8 -3.22±0.13 -2.76±0.17 -2.36±0.12 -3.92±0.15 -2.65±0.11 -3.35±0.16 -4.31±0.08
GatedGCN-PE 8 -3.51±0.11 -3.23±0.08 -3.35±0.08 -4.03±0.21 -2.60±0.12 -3.57±0.05 -4.32±0.13

Table 12: Mean Log10MSE for each task over 4 runs with 4 different seeds. Average denotes the
combined average of all the tasks. Log10MSE is on the test set (lower is better). Bold shows the
best result out of a GNN’s two model instances that use and not use PE. The dimension for PE is 12.

Splitting. We use the same splitting sets as in Corso et al. (2020) which has 5,120 train,
640 validation, 1,280 test graphs.
Training. For the learning rate strategy, an initial learning rate is set to 1 × 10−3, the
reduce factor is 0.5, the patience value is 15, and the stopping learning rate is 1× 10−6. The
reported results are based on 4 runs with 4 different seeds.
Performance Measure. For performance measure, Log10MSE is reported between the

35

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

predicted and groundtruth values for each single task. Besides, an average performance
measure is reported which is the combined average of all the 6 tasks.
Results. As with the CSL and CYCLES datasets (Sections C.8, C.9), we use GraphThe-
oryProp in this paper for the validation of Graph Positional Encodings, Section E.1. The
numerical results are reported in Table 12 and analyzed in Section E.1.

Appendix D. Analysis and Discussion of Benchmarking Results

This section highlights the main take-home messages from the experiments in Section C on
the datasets in the proposed framework, which evaluate the GNNs from Section B with the
experimental setup described in Section C and respective sub-sections of each datasets.

Graph-agnostic NNs perform poorly. As a sanity check, we compare all GNNs
to a simple graph-agnostic MLP baseline which updates each node independent of one-
other, h`+1

i = σ
(
W ` h`i

)
, and passes these features to the task-based layer. MLP presents

consistently low scores across all datasets (Tables 3-10), which shows the necessity to use
graph structure for these tasks. All proposed datasets used in our study are appropriate to
statistically separate GNN performance, which has remained an issue with the widely used
but small graph datasets (Errica et al., 2019; Luzhnica et al., 2019).

GCNs outperform WL-GNNs on the proposed datasets. Although provably
powerful in terms of graph isomorphism tests and invariant function approximation (Maron
et al., 2019c; Chen et al., 2019b; Morris et al., 2019), the recent 3WLGNNs and RingGNNs
were not able to outperform GCNs for our medium-scale datasets, as shown in Tables 3-5 and
7-9. These new models are limited in terms of space/time complexities, with O(n2)/O(n3)
respectively, not allowing them to scale to larger datasets. On the contrary, GCNs with
linear complexity w.r.t. the number of nodes for sparse graphs, can scale conveniently to 16
layers and show the best performance on all datasets. 3WL-GNNs and RingGNNs face loss
divergence and/or out-of-memory errors when trying to build deeper networks.

Anisotropic mechanisms improve GCNs. Among the models in the GCN class, the
best results point towards the anisotropic models, particularly GAT and GatedGCN, which
are based on sparse and dense attention mechanisms, respectively. For instance, results for
ZINC, AQSOL, WikiCS, MNIST, CIFAR10, PATTERN and CLUSTER in respective Tables
3, 4, 6, 7, 8 show that the performance of the 100K-parameter anisotropic GNNs (GCN with
symmetric normalization, GAT, MoNet, GatedGCN) are consistently better than the isotropic
models (vanilla GCN, GraphSage), except for vanilla GCN-WikiCS, GraphSage-MNIST and
MoNet-CIFAR10. Table 14, discussed later, dissects and demonstrates the importance of
anisotropy for the link prediction tasks, TSP and COLLAB. Overall, our results suggest that
understanding the expressive power of attention-based neighborhood aggregation functions
is a meaningful avenue of research.

Underlying challenges for training WL-GNNs. We consistently observe a relatively
high standard deviation in the performance of WL-GNNs (recall that we average across
4 runs using 4 different seeds). We attribute this fluctuation to the absence of universal
training procedures like batching and batch normalization, as these GNNs operate on dense
rank-2 tensors of variable sizes. On the other hand, GCNs running on sparse tensors better
leverage batched training and normalization for stable and fast training. Leading graph

36

Benchmarking Graph Neural Networks

machine learning libraries represent batches of graphs as sparse block diagonal matrices,
enabling batched training of GCNs through parallelized computation (Jia et al., 2019).

Dense tensors are incompatible with the prevalent approach, disabling the use of batch
normalization for WL-GNNs. We experimented with layer normalization (Ba et al., 2016)
but without success. We were also unable to train WL-GNNs on CPU memory for the single
COLLAB graph, see Table 5. Practical applications of the new WL-GNNs may require
redesigning the best practices and common building blocks of deep learning, i.e. batching of
variable-sized data, normalization schemes, and residual connections.

3WL-GNNs perform the best among their class. Among the models in the WL-
GNN class, 3WL-GNN provide better results than its similar counter-part RingGNN and
achieves close to the best performance for AQSOL, see Table 4. The GIN model, while being
less expressive, is able to scale better and provides overall good performance.

Appendix E. Studies using the Benchmarking Framework

One of the primary goals of this benchmarking framework is to facilitate researchers to perform
new explorations conveniently and develop insights that improve our overall understanding
of graph neural networks. This section provides a demonstration of two such studies that
we carry out by leveraging the datasets and the coding infrastructure which are part of this
framework. First, we explore the absence of positional information in graphs for MP-GCNs
which induces their low representation power. As a result, we develop a new insight that
Laplacian eigenvectors can very simply be used as graph positional encodings and improve
MP-GCNs. This insight has been received keenly in the recent literature and there are
a number of works that propose positional encoding schemes with some addressing the
challenges of using Laplacian eigenvectors (Kreuzer et al., 2021; Wang et al., 2022; Lim
et al., 2022). Second, we study and show how the modification of existing MP-GCNs with
joint edge representations help the models perform comparatively better than their vanilla
counterparts.

E.1 Laplacian Positional Encodings

As discussed in Section D, MP-GCNs outperforms WL-GNNs on the diverse collection of
datasets included in our proposed benchmark despite having theoretical limitations derived
from the alignment of MP-GCNs to the WL-tests. Also, WL-GNNs were found to be
computationally infeasible on medium and large scale datasets. Motivated by these results,
we propose ‘Graph Positional Encodings’ using Laplacian eigenvectors, thus referred as
Laplacian Positional Encodings, to improve the theoretical shortcomings of MP-GCNs, which
allows us to retain the computationally efficiency offered by the message-passing framework
and improve the MP-GCNs performance.

E.1.1 Related Work

In Murphy et al. (2019); Srinivasan and Ribeiro (2020), it was pointed out that standard
MP-GCNs might perform poorly when dealing with graphs that exhibit some symmetries
in their structures, such as node or edge isomorphism. This is related to the limitation of
MP-GCNs due to their equivalence to the 1-WL test (Xu et al., 2019; Morris et al., 2019).

37

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

The equivalence is based on the condition when MP-GCNs handle anonymous nodes (Loukas,
2020), i.e. nodes do not have unique node features. To address this issue of anonymous MP-
GCNs, Murphy et al. (2019) introduced a framework, called Graph Relational Pooling (GRP),
that assigns to each node an identifier that depends on the index ordering. This approach
can be computationally expensive as it requires to account for all n! node permutations, thus
requiring some sampling in practice. You et al. (2019) proposed learnable position-aware
embeddings based on random anchor sets of nodes for pairwise node (or, link) tasks. However,
the random selection of anchor sets has limitations and their approach is not applicable
on inductive node tasks. Similarly, one could think of using full or partial random node
identifiers for breaking node-anonymity. Yet, it suffers from generalization to unseen graphs
(You et al., 2019; Loukas, 2020). Li et al. (2020) proposed the use of distance encoding
as node attributes which captures distances between nodes using power(s) of random walk
matrix. However, their failure on distance regular graphs (Li et al., 2020) and the cost of
computing the power matrices may be limiting to scale to diverse and medium to large-scale
graphs. We improve upon these works and propose the use of Laplacian eigenvectors as
positional encodings.

E.1.2 Laplacian eigenvectors as Positional Encodings

We keep the overall MP-GCN architecture and simply add positional features to each node
before processing the graph through the MP-GCN. Intuitively, the positional features should
be chosen such that nodes which are far apart in the graph have different positional features
whereas nodes which are nearby have similar positional features. As node positional features,
we propose to use graph Laplacian eigenvectors (Belkin and Niyogi, 2003), which have less
ambiguities and which better describe the distance between nodes on the graph. Formally,
Laplacian eigenvectors are spectral techniques that embed the graphs into the Euclidean
space. These vectors form a meaningful local coordinate system, while preserving the global
graph structure. Mathematically, they are defined via the factorization of the graph Laplacian
matrix;

∆ = I−D−1/2AD−1/2 = UTΛU, (48)

where A is the n × n adjacency matrix, D is the degree matrix, and Λ, U correspond
respectively to the eigenvalues and eigenvectors. Laplacian eigenvectors also represent a
natural generalization of the Transformer (Vaswani et al., 2017) positional encodings (PE)
for graphs as the eigenvectors of a discrete line (NLP graph) are the cosine and sinusoidal
functions. The computational complexity O(E3/2), with E being the number of edges, can be
improved with, e.g. the Nystrom method (Fowlkes et al., 2004). The eigenvectors are defined
up to the factor ±1 (after being normalized to unit length), so the sign of eigenvectors will
be randomly flipped during training. For the experiments, we use the k smallest non-trivial
eigenvectors, where the k value is given in the respective experiment tables in Section C as
the dimensions of the PE. The smallest eigenvectors provide smooth encoding coordinates of
neighboring nodes. See Section E.1.4 for additional discussion about positional encodings
and the reasoning behind our decision to use random sign flipping.

38

Benchmarking Graph Neural Networks

E.1.3 Experiments and Analysis

We first use the mathematical graphs such as CSL, CYCLES and GraphTheoryProp included
in our benchmark (Sections C.8-C.10) to validate the proposed Laplacian PE as simple
augmentations in MP-GCNs to improve their performance on the datasets. On CSL dataset,
Table 10 compares the MP-GCNs using the Laplacian eigenvectors as PE and the WL-GNNs.
The MP-GCN models were the most accurate with 99% of mean accuracy, while 3WL-GNN
obtained 97% and RingGNN 25% with our experimental setting. Similarly, in Table 11 for
CYCLES dataset and Table 12 for GraphTheoryProp dataset, where we simply select 2
representative MP-GCNs (GINs and GatedGCNs), we observe a consistent improvement
in the performance when GINs and GatedGCNs are augmented with Laplacian PE. This
demonstrates the importance of positional features to successfully detect cycles in a graph,
and also predict critical theoretical and geometric properties in a graph.

Next, we study ZINC, AQSOL, WikiCS, PATTERN, CLUSTER and COLLAB with
PE (note that MNIST, CIFAR10 and TSP do not need PE as the nodes in these graphs
already have features describing their positions in R2). We observe a boost of performance
for ZINC, AQSOL and CLUSTER (it was expected as eigenvectors are good indicators of
clusters (Von Luxburg, 2007)), an improvement for PATTERN, and statistically the same
result for COLLAB, see the respective tables in Section C. This way, MP-GCNs can be
augmented with Laplacian PE to overcome their limitations of not being able to detect simple
graph symmetries. Additionally, PEs also boost the models’ performance on real-world graph
learning tasks.

E.1.4 Challenges with using Laplacian eigenvectors

Ideally, positional encodings (PEs) should be unique for each node, and nodes which are
far apart in the graph should have different positional features whereas nodes which are
nearby have similar positional features. Note that in a graph that has some symmetries,
positional features cannot be assigned in a canonical way. For example, if node i and node j
are structurally symmetric, and we have positional features pi = a, pj = b that differentiate
them, then it is also possible to arbitrary choose pi = b, pj = a since i and j are completely
symmetric by definition. In other words, the PE is always arbitrary up to the number of
symmetries in the graph. As a consequence, the network will have to learn to deal with
these ambiguities during training. The simplest possible positional encodings is to give an
(arbitrary) ordering to the nodes, among n! possible orderings. During training, the orderings
are uniformly sampled from the n! possible choices in order for the network to learn to be
independent to these arbitrary choices (Murphy et al., 2019).

We propose an alternative to reduce the sampling space, and therefore the amount of
ambiguities to be resolved by the network. Laplacian eigenvectors are hybrid positional and
structural encodings, as they are invariant by node re-parametrization. However, they are
also limited by natural symmetries such as the arbitrary sign of eigenvectors (after being
normalized to have unit length). The number of possible sign flips is 2k, where k is the
number of eigenvectors. In practice we choose k � n, and therefore 2k is much smaller n!
(the number of possible ordering of the nodes). During the training, the eigenvectors will be
uniformly sampled at random between the 2k possibilities. If we do not seek to learn the
invariance w.r.t. all possible sign flips of eigenvectors, then we can remove the sign ambiguity

39

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

PE type L #Param Test Acc.±s.d. Train Acc.±s.d. #Epochs Epoch/Total
C
SL

No PE 4 104007 10.000±0.000 10.000±0.000 54.00 0.58s/0.05hr
EigVecs-20 4 105407 68.633±7.143 99.811±0.232 107.16 0.59s/0.09hr

Rand sign(EigVecs) 4 105407 99.767±0.394 99.689±0.550 188.76 0.59s/0.16hr
Abs(EigVecs) 4 105407 99.433±1.133 100.000±0.000 143.64 0.60s/0.12hr

Fixed node ordering 4 106807 10.533±4.469 76.056±14.136 60.56 0.59s/0.05hr
Rand node ordering 4 106807 11.133±2.571 10.944±2.106 91.60 0.60s/0.08hr

PA
T
T
E
R
N

No PE 16 502223 85.605±0.105 85.999±0.145 62.00 646.03s/11.36hr
EigVecs-2 16 505421 86.029±0.085 86.955±0.227 65.00 645.36s/11.94hr

Rand sign(EigVecs) 16 502457 86.508±0.085 86.801±0.133 65.75 647.94s/12.08hr
Abs(EigVecs) 16 505421 86.393±0.037 87.011±0.172 62.00 645.90s/11.41hr

Fixed node ordering 16 516887 80.133±0.202 98.416±0.141 45.00 643.23s/8.27hr
Rand node ordering 16 516887 85.767±0.044 85.998±0.063 64.50 645.09s/11.79hr

C
LU

ST
E
R

No PE 16 502615 73.684±0.348 88.356±1.577 61.50 399.44s/6.97hr
EigVecs-20 16 504253 75.520±0.395 89.332±1.297 49.75 400.50s/5.70hr

Rand sign(EigVecs) 16 504253 76.082±0.196 88.919±0.720 57.75 399.66s/6.58hr
Abs(EigVecs) 16 504253 73.796±0.234 91.125±1.248 58.75 398.97s/6.68hr

Fixed node ordering 16 517435 69.232±0.265 92.298±0.712 51.00 400.40s/5.82hr
Rand node ordering 16 517435 74.656±0.314 82.940±1.718 61.00 397.75s/6.88hr

C
O
LL

A
B No PE 3 40965 52.635±1.168 96.103±1.876 95.00 453.47s/12.09hr

EigVecs-20 3 41889 52.326±0.678 96.700±1.296 95.00 452.40s/12.10hr
Rand sign(EigVecs) 3 41889 52.849±1.345 96.165±0.453 94.75 452.75s/12.08hr

Abs(EigVecs) 3 41889 51.419±1.109 95.984±1.157 95.00 451.36s/12.07hr

PE type L #Param Test MAE±s.d. Train MAE±s.d. #Epochs Epoch/Total

ZI
N
C

No PE 16 504153 0.354±0.012 0.095±0.012 165.25 10.52s/0.49hr
EigVecs-8 16 505011 0.319±0.010 0.038±0.007 143.25 10.62s/0.43hr

Rand sign(EigVecs) 16 505011 0.214±0.013 0.067±0.019 185.00 10.70s/0.56hr
Abs(EigVecs) 16 505011 0.214±0.009 0.035±0.011 167.50 10.61s/0.50hr

Fixed node ordering 16 507195 0.431±0.007 0.044±0.009 118.25 10.62s/0.35hr
Rand node ordering 16 507195 0.321±0.015 0.177±0.015 184.75 10.55s/0.55hr

Table 13: Study of positional encodings (PEs) with the GatedGCN model (Bresson and Laurent,
2017). Performance reported on the test sets of CSL, ZINC, PATTERN, CLUSTER and COLLAB
(higher is better, except for ZINC). Red: the best model.

of eigenvectors by taking the absolute value. This choice seriously degrades the expressivity
power of the positional features.

Numerical results for different positional encodings are reported in Table 13. For all
results, we use the GatedGCN model (Bresson and Laurent, 2017). We study 5 types of
positional encodings; EigVecs-k corresponds to the smallest non-trivial k eigenvectors, Rand
sign(EigVecs) randomly flips the sign of the k smallest non-trivial eigenvectors in each batch,
Abs(EigVecs) takes the absolute value of the k eigenvectors, Fixed node ordering uses the
original node ordering of graphs, and Rand node ordering randomly permutes ordering of
nodes in each batch. We observed that the best results are consistently produced with the
Laplacian PEs with random sign flipping at training. For index PEs, randomly permuting
the ordering of nodes also improves significantly the performances over keeping fixed the
original node ordering. However, Laplacian PEs clearly outperform index PEs.

40

Benchmarking Graph Neural Networks

E.2 Edge representations for link prediction.

E.2.1 With GatedGCN and GAT

The TSP and COLLAB edge classification tasks present an interesting empirical result for
GCNs: Isotropic models (vanilla GCN, GraphSage) are consistently outperformed by their
Anisotropic counterparts which use joint representations of adjacent nodes as edge features
during aggregation (GAT, GatedGCN). In this section, we systematically study the impact
of anisotropy by instantiating three variants of GAT and GatedGCN:
(1) Isotropic aggregation (such as vanilla GCNs (Kipf and Welling, 2017)) with node updates
of the form:

h`+1
i = σ

(∑
j∈Ni

W `h`j
)
, identified by (E.Feat,E.Repr=x,x) in Table 14; (49)

(2) Anisotropy using edge features (such as GAT by default (Veličković et al., 2018)) with
node updates as:

h`+1
i = σ

(∑
j∈Ni

fV `(h`i , h
`
j) ·W `h`j

)
, with (E.Feat,E.Repr=X,x); (50)

and (3) Anisotropy with edge features and explicit edge representations updated at each
layer with node/edge updates as (such as in GatedGCN by default (Bresson and Laurent,
2017)):

h`+1
i = σ

(∑
j∈Ni

e`ij ·W `h`j
)
, e`+1

ij = fV `

(
h`i , h

`
j , e

`
ij), with (E.Feat,E.Repr=X,X). (51)

The formal update equations of the three variants of GatedGCN are:
Isotropic, similar to vanilla GCNs with sum aggregation:

h`+1
i = h`i + ReLU

(
BN
(
U `h`i +

∑
j∈Ni

V `h`j

))
, where U `, V ` ∈ Rd×d. (52)

Anisotropic with intermediate edge features computed as joint representations of adjacent
node features at each layer:

h`+1
i = h`i + ReLU

(
BN
(
U `h`i +

∑
j∈Ni

e`ij � V `h`j

))
, (53)

e`ij =
σ(ê`ij)∑

j′∈Ni
σ(ê`ij′) + ε

, ê`ij = A`h`−1i +B`h`−1j , (54)

where U `, V ` ∈ Rd×d, � is the Hadamard product, and e`ij are the edge gates.
Anisotropic with edge features as well as explicit edge representations updated across layers
in addition to node features, as in GatedGCN by default, Eq.(16):

h`+1
i = h`i + ReLU

(
BN
(
U `h`i +

∑
j∈Ni

e`ij � V `h`j

))
, (55)

e`ij =
σ(ê`ij)∑

j′∈Ni
σ(ê`ij′) + ε

, (56)

ê`ij = ê`−1ij + ReLU
(
BN
(
A`h`−1i +B`h`−1j + C`ê`−1ij

))
, (57)

41

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

where U `, V ` ∈ Rd×d, � is the Hadamard product, and e`ij are the edge gates. The input
edge features from the datasets (e.g. distances for TSP, collaboration year and frequency for
COLLAB) can optionally be used to initialize the edge representations ê`=0

ij . Note that there
may be a multitude of approaches to instantiating anisotropic GNNs and using edge features
(Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018; Brockschmidt, 2019) besides the ones
we consider.

The formal update equations of the three variants of GAT are:
Isotropic, similar to multi-headed vanilla GCNs with sum aggregation:

h`+1
i = ConcatKk=1

(
ELU

(
BN
(∑

j∈Ni

Uk,` h`j

)))
, where Uk,` ∈ R

d
K
×d. (58)

Anisotropic with intermediate edge features computed as joint representations of adjacent
node features at each layer, as in GAT by default, Eq.(10):

h`+1
i = h`i + ELU

(
BN
(
ConcatKk=1

(∑
j∈Ni

ek,`ij Uk,` h`j

)))
, (59)

ek,`ij =
exp(êk,`ij)∑

j′∈Ni
exp(êk,`ij′)

, êk,`ij = LeakyReLU
(
V k,` Concat

(
Uk,`h`i , U

k,`h`j
))
, (60)

where Uk,` ∈ R
d
K
×d, V k,` ∈ R

2d
K are the K linear projection heads and ek,`ij are the attention

coefficients for each head.
Anisotropic with edge features as well as explicit edge representations updated across layers
in addition to node features:

h`+1
i = h`i + ELU

(
BN
(
ConcatKk=1

(∑
j∈Ni

ak,`ij Uk,` h`j

)))
, (61)

e`+1
ij = e`ij + ELU

(
BN
(
ConcatKk=1

(
Bk,` Concat

(
Ak,`e`ij , U

k,`h`i , U
k,`h`j

))))
, (62)

ak,`ij =
exp(âk,`ij)∑

j′∈Ni
exp(âk,`ij′)

, (63)

âk,`ij = LeakyReLU
(
V k,` Concat

(
Ak,`e`ij , U

k,`h`i , U
k,`h`j

))
, (64)

where Uk,` ∈ R
d
K
×d, V k,` ∈ R

3d
K , Ak,` ∈ R

d
K
×d, Bk,` ∈ R

d
K
× 3d

K are the K linear projection
heads and ak,`ij are the attention coefficients for each head. The input edge features from the
datasets can optionally be used to initialize the edge representations e`=0

ij .

Numerical Experiments and Analysis
In Table 14, we show the experiments of the three variants of GatedGCN and GAT

on TSP and COLLAB. GatedGCN-E and GAT-E in Table are models using input edge
features from the datasets to initialize the edge representations eij . As maintaining edge
representations comes with a time and memory cost for the large COLLAB graph, all models
use a reduced budget of 27K parameters to fit the GPU memory, and are allowed to train
for a maximum of 24 hours for convergence.

42

Benchmarking Graph Neural Networks

Model E.Feat. E.Repr. L #Param Test Acc.±s.d. Train Acc.±s.d. #Epochs Epoch/Total
T
SP

GatedGCN
x x 4 99026 0.646±0.002 0.648±0.002 197.50 150.83s/8.34hr
X x 4 98174 0.757±0.009 0.760±0.009 218.25 197.80s/12.06hr
X X 4 97858 0.791±0.003 0.793±0.003 159.00 218.20s/9.72hr

GatedGCN-E X X 4 97858 0.808±0.003 0.811±0.003 197.00 218.51s/12.04hr

GAT
x x 4 95462 0.643±0.001 0.644±0.001 132.75 325.22s/12.10hr
X x 4 96182 0.671±0.002 0.673±0.002 328.25 68.23s/6.25hr
X X 4 96762 0.748±0.022 0.749±0.022 93.00 462.22s/12.10hr

GAT-E X X 4 96762 0.782±0.006 0.783±0.006 98.00 438.37s/12.11hr

C
O
LL

A
B

GatedGCN
x x 3 26593 35.989±1.549 60.586±4.251 148.00 263.62s/10.90h
X x 3 26715 50.668±0.291 96.128±0.576 172.00 384.39s/18.44hr
X X 3 27055 51.537±1.038 96.524±1.704 188.67 376.67s/19.85hr

GatedGCN-E X X 3 27055 47.212±2.016 85.801±0.984 156.67 377.04s/16.49hr

GAT
x x 3 28201 41.141±0.701 70.344±1.837 153.50 371.50s/15.97hr
X x 3 28561 50.662±0.687 96.085±0.499 174.50 403.52s/19.69hr
X X 3 26676 49.674±0.105 92.665±0.719 201.00 349.19s/19.59hr

GAT-E X X 3 26676 44.989±1.395 82.230±4.941 120.67 328.29s/11.10hr

Table 14: Study of anisotropy and edge representations for link prediction on TSP and COLLAB.
Red: the best model, Violet: good models.

On both TSP and COLLAB, upgrading isotropic models with edge features significantly
boosts performance given the same model parameters (e.g. 0.75 vs. 0.64 F1 score on TSP,
50.6% vs. 35.9% Hits@50 on COLLAB for GatedGCN with edge features vs. the isotropic
variant). Maintaining explicit edge representations across layers further improves F1 score for
TSP, especially when initializing the edge representations with euclidean distances between
nodes (e.g. 0.78 vs. 0.67 F1 score for GAT-E vs. standard GAT). On COLLAB, adding
explicit edge representations and inputs degrades performance, suggesting that the features
(collaboration frequency and year) are not useful for the link prediction task (e.g. 47.2
vs. 51.5 Hits@50 for GatedGCN-E vs. GatedGCN). As suggested by Hu et al. (2020), it
would be interesting to treat COLLAB as a multi-graph with temporal edges, motivating
the development of task-specific anisotropic edge representations beyond generic attention
and gating mechanisms.

E.2.2 With GraphSage

Interestingly, in Table 5 for COLLAB, we found that the isotropic GraphSage with max
aggregation performs close to GAT and GatedGCN models, both of which perform anisotropic
mean aggregation. On the other hand, models which use sum aggregation (GIN, MoNet) are
unable to beat the simple matrix factorization baseline. This result indicates that aggregation
functions which are invariant to node degree (max and mean) provide a powerful inductive
bias for COLLAB.

We instantiate two anisotropic variants of GraphSage, as described in the following
paragraphs, and compare them to GAT and GatedGCN on COLLAB in Table 15. We find
that upgrading max aggregators with edge features does not significantly boost performance.
On the other hand, maintaining explicit edge representations across layers hurts the models,
presumably due to using very small hidden dimensions. (As previously mentioned, maintaining
representations for both 235K nodes and 2.3M edges leads to significant GPU memory usage
and requires using smaller hidden dimensions.)

43

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

Model Edge Edge Aggregation
L #Param Test Acc. Train Acc. #Epoch Epoch/

Feat. Repr. Function ±s.d. ±s.d. Total

GatedGCN
x x Sum 3 26593 35.989±1.549 60.586±4.251 148.00 263.62s/10.90h
X x Weighted Mean 3 26715 50.668±0.291 96.128±0.576 172.00 384.39s/18.44hr
X X Weighted Mean 3 27055 51.537±1.038 96.524±1.704 188.67 376.67s/19.85hr

GatedGCN-E X X Weighted Mean 3 27055 47.212±2.016 85.801±0.984 156.67 377.04s/16.49hr

GAT
x x Sum 3 28201 41.141±0.701 70.344±1.837 153.50 371.50s/15.97hr
X x Weighted Mean 3 28561 50.662±0.687 96.085±0.499 174.50 403.52s/19.69hr
X X Weighted Mean 3 26676 49.674±0.105 92.665±0.719 201.00 349.19s/19.59hr

GAT-E X X Weighted Mean 3 26676 44.989±1.395 82.230±4.941 120.67 328.29s/11.10hr

GraphSage
x x Max 3 26293 50.908±1.122 98.617±1.763 157.75 241.49s/10.62hr
X x Weighted Max 3 26487 50.997±0.875 99.158±0.694 112.00 366.24s/11.46hr
X X Weighted Max 3 26950 48.530±1.919 90.990±9.273 118.25 359.18s/11.88hr

GraphSage-E X X Weighted Max 3 26950 47.315±1.939 93.475±5.884 120.00 359.10s/12.07hr

Table 15: Study of anisotropic edge features and representations for link prediction on COLLAB,
including GraphSage models. Red: the best model, Violet: good models.

Isotropic, as in GraphSage by default, Eq.(8):

h`+1
i = h`i + ReLU

(
BN
(
U ` Concat

(
h`i , Maxj∈Ni ReLU

(
V `h`j

))))
, (65)

where U ` ∈ Rd×2d, V ` ∈ Rd×d.
Anisotropic with intermediate edge features computed as joint representations of adja-

cent node features at each layer:

h`+1
i = h`i + ReLU

(
BN
(
U ` Concat

(
h`i , Maxj∈Ni ReLU

(
σ
(
e`ij

)
� V `h`j

))))
, (66)

e`ij = A`
(
h`−1i + h`−1j

)
, (67)

where U ` ∈ Rd×2d, V `, A` ∈ Rd×d, � is the Hadamard product, and e`ij are the edge gates.
Anisotropic with edge features as well as explicit edge representations updated across

layers in addition to node features:

h`+1
i = h`i + ReLU

(
BN
(
U ` Concat

(
h`i , Maxj∈Ni ReLU

(
σ
(
ê`ij

)
� V `h`j

))))
, (68)

ê`ij = A`
(
h`−1i + h`−1j

)
+B`e`−1ij , e`+1

ij = e`ij + ReLU
(
BN
(
ê`ij

))
, (69)

where U ` ∈ Rd×2d, V `, A`, B` ∈ Rd×d, � is the Hadamard product, and ê`ij are the edge
gates. The input edge features from the datasets can optionally be used to initialize the edge
representations e`=0

ij .

Appendix F. Experiments on TU datasets

Apart from the proposed datasets in our benchmark (Section C), we perform experiments
on 3 TU datasets for graph classification – ENZYMES, DD and PROTEINS. Our goal
is to empirically highlight some of the challenges of using these conventional datasets for
benchmarking GNNs.

44

Benchmarking Graph Neural Networks

Model L #Param seed 1 seed 2
Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total Test Acc.±s.d. Train Acc.±s.d. #Epoch Epoch/Total

E
N
ZY

M
E
S

MLP 4 101481 55.833±3.516 93.062±7.551 332.30 0.18s/0.17hr 53.833±4.717 87.854±10.765 327.80 0.19s/0.18hr
vanilla GCN 4 103407 65.833±4.610 97.688±3.064 343.00 0.69s/0.67hr 64.833±7.089 93.042±4.982 334.30 0.74s/0.70hr
GraphSage 4 105595 65.000±4.944 100.000±0.000 294.20 1.62s/1.34hr 68.167±5.449 100.000±0.000 287.30 1.76s/1.42hr

MoNet 4 105307 63.000±8.090 95.229±5.864 333.70 0.53s/0.49hr 62.167±4.833 93.562±5.897 324.40 0.68s/0.62hr
GAT 4 101274 68.500±5.241 100.000±0.000 299.30 0.70s/0.59hr 68.500±4.622 100.000±0.000 309.10 0.76s/0.66hr

GatedGCN 4 103409 65.667±4.899 99.979±0.062 316.80 2.31s/2.05hr 70.000±4.944 99.979±0.062 313.20 2.63s/2.30hr
GIN 4 104864 65.333±6.823 100.000±0.000 402.10 0.53s/0.61hr 67.667±5.831 100.000±0.000 404.90 0.60s/0.68hr

RingGNN 2 103538 18.667±1.795 20.104±2.166 337.30 7.12s/6.71hr 45.333±4.522 56.792±6.081 497.50 8.05s/11.16hr
3WLGNN 3 104658 61.000±6.799 98.875±1.571 381.80 9.22s/9.83hr 57.667±9.522 96.729±5.525 336.50 11.80s/11.09hr

D
D

MLP 4 100447 72.239±3.854 73.816±1.015 371.80 6.36s/6.61hr 72.408±3.449 73.880±0.623 349.60 1.13s/1.11hr
vanilla GCN 4 102293 72.758±4.083 100.000±0.000 266.70 3.56s/2.66hr 73.168±5.000 100.000±0.000 270.20 3.81s/2.88hr
GraphSage 4 102577 73.433±3.429 100.000±0.000 267.20 11.50s/8.59hr 71.900±3.647 100.000±0.000 265.50 6.60s/4.90hr

MoNet 4 102305 71.736±3.365 81.003±2.593 252.60 3.30s/2.34hr 71.479±2.167 81.268±2.295 253.50 2.83s/2.01hr
GAT 4 100132 75.900±3.824 95.851±2.575 201.30 6.31s/3.56hr 74.198±3.076 96.964±1.544 220.10 2.84s/1.75hr

GatedGCN 4 104165 72.918±2.090 82.796±2.242 300.70 12.05s/10.13hr 71.983±3.644 83.243±3.716 323.60 8.78s/7.93hr
GIN 4 103046 71.910±3.873 99.851±0.136 275.70 5.28s/4.08hr 70.883±2.702 99.883±0.088 276.90 2.31s/1.79hr

RingGNN 2 109857 OOM OOM OOM OOM OOM OOM OOM OOM
3WLGNN 3 104124 OOM OOM OOM OOM OOM OOM OOM OOM

P
R
O
T
E
IN

S

MLP 4 100643 75.644±2.681 79.847±1.551 244.20 0.42s/0.29hr 75.823±2.915 79.442±1.443 241.20 0.35s/0.24hr
vanilla GCN 4 104865 76.098±2.406 81.387±2.451 350.90 1.55s/1.53hr 75.912±3.064 82.140±2.706 349.60 1.46s/1.42hr
GraphSage 4 101928 75.289±2.419 85.827±0.839 245.40 3.36s/2.30hr 75.559±1.907 85.118±1.171 244.40 3.44s/2.35hr

MoNet 4 103858 76.452±2.898 78.206±0.548 306.80 1.23s/1.06hr 76.453±2.892 78.273±0.695 289.50 1.26s/1.03hr
GAT 4 102710 76.277±2.410 83.186±2.000 344.60 1.47s/1.42hr 75.557±3.443 84.253±2.348 335.10 1.51s/1.41hr

GatedGCN 4 104855 76.363±2.904 79.431±0.695 293.80 5.03s/4.13hr 76.721±3.106 78.689±0.692 272.80 4.78s/3.64hr
GIN 4 103854 74.117±3.357 75.351±1.267 420.90 1.02s/1.20hr 71.241±4.921 71.373±2.835 362.00 1.04s/1.06hr

RingGNN 2 109036 67.564±7.551 67.607±4.401 150.40 28.61s/12.08hr 56.063±6.301 59.289±5.560 222.70 19.08s/11.88hr
3WLGNN 3 105366 61.712±4.859 62.427±4.548 211.40 12.82s/7.58hr 64.682±5.877 65.034±5.253 200.40 13.05s/7.32hr

Table 16: Performance on the TU datasets with 10-fold cross validation (higher is better). Two
runs of all the experiments using the same hyperparameters but different random seeds are shown
separately to note the differences in ranking and variation for reproducibility. The top 3 performance
scores are highlighted as First, Second, Third.

Splitting. Since the 3 TU datasets that we use do not have standard splits, we perform
a 10-fold cross validation split which gives 10 sets of train, validation and test data indices in
the ratio 8 : 1 : 1. We use stratified sampling to ensure that the class distribution remains the
same across splits. The indices are saved and used across all experiments for fair comparisons.
There are 480 train/60 validation/60 test graphs for ENZYMES, 941 train/118 validation/119
test graphs for DD, and 889 train/112 validation/112 test graphs for PROTEINS datasets in
each of the folds.
Training. We use Adam optimizer with a similar learning rate strategy as used in our
benchmark’s experimental protocol. An initial learning rate is tuned from a range of 1×10−3

to 7× 10−5 using grid search for every GNN models. The learning rate reduce factor is 0.5,
the patience value is 25 and the stopping learning rate is 1× 10−6.
Performance Measure. We use classification accuracy between the predicted labels and
groundtruth labels as our performance measure. The model performance is evaluated on the
test split of the 10 folds for all TU datasets, and reported as the average and the standard
deviation of the 10 scores.

Our numerical results on the TU datasets – ENZYMES, DD and PROTEINS are presented
in Table 16. We observe all NNs have similar statistical test performance as the standard
deviation is quite large. We also report a second run of these experiments with the same
experimental protocol, i.e. the same 10-fold splitting and hyperparameters but different
initialization (seed). We observe a change of model ranking, which we attribute to the
small size of the datasets and the non-determinism of gradient descent optimizers. We also
observe that, for DD and PROTEINS, the graph-agnostic MLP baselines perform as good as

45

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

GNNs. Our observations reiterate how experiments on the small TU datasets are difficult to
determine which GNNs are powerful and robust.

Appendix G. A Note on Graph Size Normalization

Intuitively, batching graphs of variable sizes may lead to node representation at different
scales, making it difficult to learn the optimal statistics µ and σ for BatchNorm across
irregular batch sizes and variable graphs. A preliminary version of this work introduced a
graph size normalization technique called GraphNorm, which normalizes the node features
h`i w.r.t. the graph size, i.e.,

h̄`i = h`i ×
1√
V
, (70)

where V is the number of graph nodes. The GraphNorm layer is placed before the BatchNorm
layer.

We would like to note that GraphNorm does not have any concrete theoretical basis as
of now, and was proposed based on initially promising empirical results on datasets such
as ZINC and CLUSTER. Future work shall investigate more principled approaches towards
designing normalization layers for graph structured data.

Appendix H. Elaboration on Benchmarking Design Choices

In Section 2, we provided a brief overview on the design choices that we had to make to
build the proposed benchmarking framework. In particular, the decisions on the selection
of the specific graph datasets that we have included in this framework, the necessity to
constraint model parameters for comparison of GNNs’ performance, and whether a standard
codebase with data, training, evaluation pipelines is required can be derived from several
reasonings. In this section, we provide an elaborate discussion on these factors and how
possible extensions can be developed in future with ease and as per required by a research
agenda.
Datasets. Our collection of datasets is based on medium-scale size and criteria of diversity in
terms of the end-application domains, learning tasks at graph-, edge-, or node-levels, and their
source of construction being real or mathematical. The medium-scale size of datasets enables
quick prototyping of novel ideas and robust analysis could be generated in single experiments
in as less as 12 hours of maximum time per experiment. Similarly, the diversity ensures a
model can be tested on not just one end-application domain but a number of such domains.
However, despite the best efforts, after any collection of datasets in such a research area where
a general GNN architecture is expected to be robust to a variety of tasks and domains, there
could always be need of additional datasets. Due to this necessity, the proposed framework
can be extended with new datasets conveniently by any researchers adopting it. We have also
observed the open-sourced GitHub repo of our framework being used accordingly with an
example repo being https://github.com/karl-zhao/benchmarking-gnns-pyg (Zhao et al.,
2020) which extends the framework with additional node classification datasets as well as
adopts it in Pytorch Geometric (Fey and Lenssen, 2019) instead of DGL. Such adoption of our
framework demonstrates its flexibility and the supported convenient extensions. We provide

46

https://github.com/karl-zhao/benchmarking-gnns-pyg

Benchmarking Graph Neural Networks

detailed instructions on adding new datasets to the framework in our GitHub repository’s
README .
Parameter Budgets. As we have already mentioned, we designed the framework with the
objective that it is used to conveniently ‘identify first principles’ in GNNs’ research and
not drive a model towards achieving SOTA performance. To enforce this, a straightforward
and sound choice is to constraint model parameters and fix it to a specific number (as
eg. 100k and 500k) when comparing two or more GNNs. With this choice, we can likely
rely on the inference that performance gains are coming from architectural designs and not
merely large trainable parameters. The parameter budgeting also tells that the proposed
framework may not be ideal to optimize a model to achieve SOTA by tuning hyperparameters,
increasing model size to as much parameters as a server can fit, etc. However, we believe we
condition the framework to be suitable for identifying performance trends and infer which
first principles work robustly across different model experiments. Once such principles are
identified, models can further be scaled without any constraints to achieve SOTA performance
targeted benchmarks, beyond the datasets we included here.
Codebase. A major contribution of this work is the release of the open-source coding
infrastructure on GitHub. As observed since the first release in March 2020, the framework
has been used extensively to develop new ideas in the field. In the existing literature prior
to this work (Errica et al., 2019), it was a major issue that different research papers in this
field adopted inconsistent model comparison methods. Our framework addresses this need of
having a standard codebase that helps in training and evaluating GNNs on a collection of
appropriate datasets with consistent settings. While a limiting perspective to such codebase
can be that it restricts on the diverse choices which researchers often adopt in deep learning
to fully realise the capabilities of a model, we understand that we have set out specific
objectives of the need of the proposed coding infrastructure and any extensions with other
training settings to the codebase can be done by augmenting methods or modules that applies
to each model in a fair and consistent way.

Appendix I. Hardware

Timing research code can be tricky due to differences of implementations and hardware
acceleration. Nonetheless, we take a practical view and report the average wall clock time
per epoch and the total training time for each model. All experiments were implemented in
DGL/PyTorch. We run experiments for MNIST, CIFAR10, ZINC, AQSOL, TSP, COLLAB,
WikiCS, CSL, CYCLES, GraphTheoryProp and TUs on an Intel Xeon CPU E5-2690 v4
server with 4 Nvidia 1080Ti GPUs (11 GB), and for PATTERN and CLUSTER on an Intel
Xeon Gold 6132 CPU with 4 Nvidia 2080Ti (11 GB) GPUs. Each experiment was run on a
single GPU and 4 experiments were run on the server at any given time (on different GPUs).
We run each experiment for a maximum of 12 hours.

Appendix J. Memory Usage

For datasets that contain graphs with variable sizes, the memory consumed during training
by the GPU device changes at each batch of graphs. We report in Figure 16 the GPU memory
consumption during the training of GCN, GAT and GatedGCN on two datasets–ZINC and

47

Dwivedi, Joshi, Luu, Laurent, Bengio and Bresson

0 20 40 60 80
Batch Iteration

150

175

200

225

250

275

GP
U

M
em

or
y

(in
 M

B)
ZINC

GCN
GAT
GatedGCN

0 25 50 75 100 125 150
Batch Iteration

1000

2000

3000

4000

5000

6000

GP
U

M
em

or
y

(in
 M

B)

SBM-CLUSTER

GCN
GAT
GatedGCN

Figure 16: Memory consumed by the GPU device in a forward pass of a batch during training.
All GNNs shown here have 500k learnable parameters. Batch size is 128 for ZINC and 64 for
SBM-CLUSTER.

SBM-CLUSTER. The plots show the memory allocated during the model’s forward pass
using a batch of graphs (128 graphs for ZINC and 64 for SBM-CLUSTER) and is computed
by using PyTorch’s torch.cuda.memory_allocated(device) functionality. Overall, it can
be observed that GatedGCN is a relatively higher memory-intensive model as compared with
GCN and GAT, see Section B.1 for the respective models’ equations.

48

	Introduction
	Overview of GNN Benchmarking Framework
	How can the benchmark be used to explore new insights?
	Conclusion
	Related Work
	Graph Neural Network Pipeline
	Message-Passing GCNs
	Input Layer
	GCN layers
	Task-based Layer

	Weisfeiler-Lehman GNNs
	Input Tensor
	WL-GNN layers
	Task-based network layers

	Datasets and Benchmarking Experiments
	Graph Regression with ZINC dataset
	Graph Regression with AQSOL dataset
	Link Prediction with OGBL-COLLAB dataset
	Node Classification with WikiCS dataset
	Graph Classification with Super-pixel (MNIST/CIFAR10) datasets
	Node Classification with SBM (PATTERN/CLUSTER) datasets
	Edge Classification/Link Prediction with TSP dataset
	Graph Classification and Isomorphism Testing with CSL dataset
	Cycle Detection with CYCLES dataset
	Multi-task graph properties with GraphTheoryProp dataset

	Analysis and Discussion of Benchmarking Results
	Studies using the Benchmarking Framework
	Laplacian Positional Encodings
	Related Work
	Laplacian eigenvectors as Positional Encodings
	Experiments and Analysis
	Challenges with using Laplacian eigenvectors

	Edge representations for link prediction.
	With GatedGCN and GAT
	With GraphSage

	Experiments on TU datasets
	A Note on Graph Size Normalization
	Elaboration on Benchmarking Design Choices
	Hardware
	Memory Usage

