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Abstract

We study community detection in the contextual stochastic block model (Yan and Sarkar
(2020); Deshpande et al. (2018)). Deshpande et al. (2018) studied this problem in the
setting of sparse graphs with high-dimensional node-covariates. Using the non-rigorous
cavity method from statistical physics (Mezard and Montanari (2009)), they calculated the
sharp limit for community detection in this setting, and verified that the limit matches the
information theoretic threshold when the average degree of the observed graph is large.
They conjectured that the limit should hold as soon as the average degree exceeds one.
We establish this conjecture, and characterize the sharp threshold for detection and weak
recovery.

Keywords: community detection, weak-recovery, self-avoiding walks, contiguity.

1. Introduction

The community detection problem arises routinely in diverse applications, and has received
significant attention recently in statistics and machine learning. In the simplest version of
this problem, given access to a graph, one seeks to cluster the vertices into interpretable
communities or groups of vertices, which are believed to reflect latent similarities among
the nodes. From a theoretical standpoint, this problem has been extensively analyzed
under specific generative assumptions on the observed graph; the most popular generative
model in this context is the stochastic block model (SBM) (Holland et al. (1983)). Inspired
by intriguing conjectures arising from the statistical physics community (Krzakala et al.
(2013)), community detection under the stochastic block model has been studied extensively.
As a consequence, the precise information theoretic limits for recovering the underlying
communities have been derived, and optimal algorithms have been identified in this setting
(for a survey of these recent breakthroughs, see Abbe (2017)).

In reality, the practitioner often has access to additional information in the form of node
covariates, which complements the graph information. Statistically, it is natural to believe
that clustering performance can be significantly improved by combining this covariate in-
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formation with the graph structure. However, establishing this improvement in a formal
context, and deriving procedures which combine the two are not straightforward. In Yan
and Sarkar (2020), the authors formalize this question, and introduce a simple model for
community detection with node covariates. We use the same framework in this paper.

We observe a graph G = (V,E) on n vertices drawn from the sparse Stochastic Block
Model G(n, an ,

b
n). Formally, we sample a community assignment vector σ ∈ {±1}n uni-

formly; given σ, we draw edges with probability

P[{i, j} ∈ E] =

{
a
n if σi = σj ,
b
n o.w.

Let A = (Aij) ∈ Rn×n denote the adjacency matrix of the graph G. We define the average
degree parameter d = a+b

2 and parametrize a = d+ λ
√
d and b = d− λ

√
d.

Further, at each node of the graph G, we observe a p-dimensional vector of covariates
{Bi : 1 ≤ i ≤ n}. The covariates are also correlated with the underlying community
assignment. Specifically, we observe

Bi =

√
µ

n
σiu+ Zi,

where u ∼ N (0, Ip) is a latent gaussian vector, and Zi ∼ N (0, Ip). We construct the matrix
B = [B1, · · · , Bn]> ∈ Rn×p. In Yan and Sarkar (2020), the authors introduce a semidefinite
programming (SDP) based algorithm for community detection in the above setting, which
combines the graph with the node covariates. However, their results do not identify the
information theoretic limits of community detection in this context, and do not identify the
optimal community detection algorithm in this setting.

Note that when one has access to either the graph information or the covariate infor-
mation, the information theoretic threshold is well known. Under the parametrization of
the SBM, where only A is given, detection of the underlying community structure, as well
as non-trivial recovery, are possible if and only if λ > 1. On the other hand, the case when
only the covariate information B is available corresponds to a Gaussian mixture clustering
problem. Under a high-dimensional asymptotic regime n

p → γ ∈ (0,∞), random matrix
considerations based on the BBP phase transition (Baik et al. (2005)), and contiguity ar-
guments based on the second moment method (Perry et al. (2018)) imply that non-trivial
detection and recovery are possible if and only if µ2 > γ.

In Deshpande et al. (2018), the second author and coauthors studied detection and re-
covery under this model in a high-dimensional asymptotic regime n

p → γ ∈ (0,∞), and
conjectured the sharp information theoretic limits in this problem: the underlying commu-

nity structure can be detected if and only if λ2 + µ2

γ > 1. In particular, this suggests that
upon combining the graph information appropriately with the covariates, it is statistically
possible to improve upon the optimal performance based on any single information source.
The conjecture was derived using the non-rigorous cavity method from statistical physics
(Mezard and Montanari (2009)), and rigorously established under an additional high-degree
asymptotic d → ∞ (after n → ∞). However, numerical experiments in Deshpande et al.
(2018) suggest that this high-degree asymptotic is unnecessary, and that the results are true
as soon as d > 1. In this paper, we formally establish this conjecture. Throughout this
article, we will work under the same high-dimensional asymptotic n

p → γ ∈ (0,∞).
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Our main contributions in this article are as follows.

(i) We first examine the detection problem (1), and establish the sharp threshold for mu-
tual contiguity (see Theorem 1). The testing lower bound is derived using a traditional
second moment argument. The upper bound is significantly more challenging—we de-
vise a test statistic by counting certain appropriate self-avoiding walks in the graph.

(ii) Next, we turn to weak recovery, and establish that the threshold for weak recovery
coincides with that for detection in this context. To establish the positive half of this
result, we crucially utilize the self-avoiding walk based estimation idea introduced in
Massoulié (2014); Hopkins and Steurer (2017); however, the presence of the graph data
with the covariates makes this application significantly more challenging. We devise
estimates for the pairwise correlations of the memberships by counting appropriate
walk based statistics, and perform weak recovery by a subsequent projection and
rounding step (we refer to Section 5 for further details). This is one of the main
technical contributions of this article.

(iii) We then turn to the contiguity regime, and derive a precise expansion of the likeli-
hood ratio in terms of appropriate cycle statistics. In turn, this identifies the precise
statistics which distinguish the null from the alternative.

1.1 Main Results

Consider the hypothesis testing problem

H0 : (λ, µ) = (0, 0) vs. H1 : (λ, µ) 6= (0, 0). (1)

We will denote the joint distributions of the data (A,B) by Pλ,µ, and keep the dependence
on n, p implicit throughout. Further, we will assume that we are above the threshold for
emergence of the giant component, i.e. d > 1 (Bollobás et al. (2007); Janson et al. (2011)).

Theorem 1 (Detection) If λ2 + µ2

γ < 1, Pλ,µ is contiguous to P0,0. On the other hand,

if λ2 + µ2

γ > 1, the sequences P0,0 and Pλ,µ are mutually asymptotically singular.

Our next result addresses the threshold for weak recovery. We recall the relevant notion of
weak recovery in this context.

Definition 2 (Weak Recovery) An estimator σ̂ := σ̂(A,B) ∈ [−1, 1]n achieves weak
recovery if there exists ε > 0, independent of n, such that

1

n
Eλ,µ[|〈σ, σ̂〉|] ≥ ε

as n → ∞. We say that weak recovery is possible if there exists an estimator σ̂ which
achieves weak recovery.

Theorem 3 (Weak Recovery) If λ2 + µ2

γ < 1, then weak recovery is impossible. On the

other hand, weak recovery is possible when λ2 + µ2

γ > 1.
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Finally, we turn to the contiguity phase λ2 + µ2

γ < 1, and derive an expansion for the
likelihood ratio. We denote the likelihood ratio by

Ln =
dPλ,µ
dP0,0

.

In this regime, Pλ,µ and P0,0 cannot be distinguished with asymptotically negligible Type I
and Type II errors. Statistically, the natural problem of interest concerns optimal detection,
which is achieved by the likelihood ratio test (LRT). We will derive asymptotic expansions
of the likelihood ratio under the null and the alternative. As a consequence, we will obtain
the optimal power of the LRT. Along the way, we will obtain a family of statistics which
“determine” the likelihood ratio. This will suggest computationally feasible statistics which
attain optimal detection performance in this contiguous regime. Similar expansions for
the likelihood ratio have been derived for pure spiked gaussian problems (the model B
and its symmetric analogue) in the recent literature (Banerjee and Ma (2018); Alaoui and
Jordan (2018); El Alaoui et al. (2020); Johnstone and Onatski (2020); Onatski et al. (2013,
2014)). Our approach in this regard will be motivated by the techniques introduced in
Banerjee and Ma (2018). However, we note that in contrast to this literature, we have
both a sparse random graph component, and a gaussian model. This necessitates crucial
technical modifications—we emphasize the main differences in Section 3.

To this end, let us first introduce a class of cycle statistics. We will denote ω as a cycle
on the factor graph corresponding to the posterior distribution (Mezard and Montanari
(2009)), shown in Figure 1. Specifically, the factor graph is denoted as GF = (VF, EF). The
vertices are split into two groups VF = V1∪V2, where V1 denotes vertices from the adjacency
matrix A, with |V1| = n, and V2 denotes vertices from the covariate matrix B, so |V2| = p.
In Figure 1, vertices in V1 are shown by dots, and those in V2 are shown by squares. The
edges also split into two groups EF = E1 ∪ E2, where E1 = {{i1, i2} : i1, i2 ∈ V1}, and
E2 = {{i, j} : i ∈ V1, j ∈ V2}. We will refer to edges in E1 as A edges, and edges in E2

as B edges. Because B edges must appear in consecutive pairs in a cycle, we refer to such
pairs of B edges as B wedges. The graph of a cycle ω is denoted as Gω = (Vω, Eω). We
use k to denote the length of the cycle, and l to denote the number of B wedges in the
cycle. For a cycle ω, we denote Gω,A = (Vω,A, Eω,A) the subgraph of the A edges, and
Gω,B = (Vω,B, Eω,B) is the subgraph of B edges.

Figure 1: The factor graph corresponding to the posterior distribution. The dots represent
the nodes in the adjacency graph A, while the squares represent the variables corresponding
to the Gaussian covariates B. An A edge is highlighted in red, while a B-wedge is indicated
in blue.
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Definition 4 (Cycles) For k ≥ l, we define

Yn,k,l =
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Be2

where the sum is over length k paths with l B-wedges, and the product is over the components
of each path.

Our first result establishes the limiting distribution of these cycle statistics under the null
and alternative. To this end, it will be convenient to introduce some notation for the
relevant index set in this problem. Let us define J ⊂ Z× Z such that

J = {(k, 0) : k ≥ 3} ∪ {(k, l) : k ≥ l ≥ 1}.

Proposition 5 The collection

{Yn,k,l : (k, l) ∈ J }

converges in distribution under both H0 and H1. Further, the limiting random variables are
independent under both H0 and H1. Finally,

(i) Under H0, 1 ≤ l ≤ k,

Yn,k,0
d→ Poi

(1

k
dk
)
,
Yn,k,l − p1k=l=1√

1
2k

(
k
l

)
dk−l

γl

d→ N (0, 1).

(ii) Under H1, for any 1 ≤ l ≤ k,

Yn,k,0
d→ Poi

(1

k
(dk + (λ

√
d)k)

)
,

Yn,k,l − p1k=l=1 − 1
2k

(
k
l

) (λ√d)k−lµl

γl√
1
2k

(
k
l

)
dk−l

γl

d→ N (0, 1).

Finally, if l ≥ 1, the distributional limits continue to hold for kn, ln growing in n, as long
as ln ≤ kn = o(

√
log n).

Let {υk,l,j : j ∈ {0, 1}, (k, l) ∈ J } be collection of random variables with the desired limiting

distributions. Specifically, υk,0,0 ∼ Poi
(
1
kd

k
)

and for l ≥ 1, υk,l,0 ∼ N (µk,l,0, σ
2
k,l). Similarly,

υk,0,1 ∼ Poi
(
1
k (dk + (λ

√
d)k)

)
, and for l ≥ 1, υk,l,1 ∼ N (µk,l,1, σ

2
k,l). Here, the means and

variances µk,l,0 and σ2k,l are as specified in Proposition 5 under the null, while µk,l,1 denotes
the mean under the alternative.

Theorem 6 Consider (λ, µ) satisfying λ2 + µ2

γ < 1. Then the following hold:

1. Pλ,µ and P0,0 are asymptotically mutually contiguous.

2. Under H0, we have that

Ln
d→ exp

( ∞∑
k=1

[
log(1− λkdk/2)υk,0,0 −

1

k
(λ
√
d)k +

∑
1≤l≤k

µk,l,0υk,l,1 − 1
2µ

2
k,l,1

σ2k,l

])
.
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1.2 Related Literature

Covariate assisted clustering has been extensively studied across statistics, machine learning
and computer science using diverse perspectives. The literature on this topic is quite diffuse,
and its impossible to provide an exhaustive survey of this area. However, for the convenience
of the reader, we survey the main methodological approaches, and discuss in-depth the main
results relevant for our work.

From a methodological standpoint, generative model based approaches are very natural
for this problem, and they have been extensively explored in this setting (Newman and
Clauset (2016); Hoff (2003); Zanghi et al. (2010); Yang et al. (2009); Kim and Leskovec
(2012); Leskovec and Mcauley (2012); Xu et al. (2012); Hoang and Lim (2014); Yang et al.
(2013)). On the other hand, model free approaches, which cluster the nodes by optimizing a
suitable loss function have also been popular (Binkiewicz et al. (2017); Zhang et al. (2016);
Gibert et al. (2012); Zhou et al. (2009); Neville et al. (2003); Gunnemann et al. (2013);
Dang and Viennet (2012); Cheng et al. (2011); Silva et al. (2012); Smith et al. (2016)).
Bayesian methods (Chang and Blei (2010); Balasubramanyan and Cohen (2011)) provide
another natural methodological approach for this problem. We refer the interested reader
to Bothorel et al. (2015) for a survey of other approaches.

In a separate direction Aicher et al. (2014); Lelarge et al. (2015) study a version of
community detection with informative edges. Lelarge et al. (2015) establishes only one side
of the conjectured information theoretic threshold in this setting.

More recently, Binkiewicz et al. (2017); Zhang et al. (2016) analyze specific heuristic
clustering algorithms under the block model formalism. However, consistency guarantees
in this setting are derived for dense graphs, and under strong separability assumptions on
the connection probabilities. Further, they do not identify the precise information theoretic
thresholds for recovery. As a consequence, the precise information theoretic gains obtained
from the additional covariates remains unclear.

Our work is closest in spirit to Yan and Sarkar (2020). They study an SDP based
framework for community recovery. However, in contrast to our setting, they study low-
dimensional covariates. They formally establish that clustering accuracy is improved upon
combining the node information with the graph. In contrast, we study high-dimensional
covariates, and establish that the information theoretic threshold is shifted in this setting.

Somewhat related to our inquiry, Kanade et al. (2016); Mossel and Xu (2016) study
local algorithms for semisupervised clustering, i.e. when the true labels are given for a
small fraction of nodes. While these algorithms are local, our analysis is global, and we
capture the information theoretic limits in this problem.

1.3 Technical Contributions

The main contributions of this paper are the algorithm for weak recovery above the thresh-

old λ2 + µ2

γ > 1, and the asymptotic distribution of the cycle statistics in Proposition 5.
Contiguity below the threshold follows from standard second moment arguments, and ex-
pansions of the likelihood ratio in the contiguity phase are based on a version of Janson’s
small-subgraph conditioning method. The small-subgraph conditioning argument follows
the same template as Banerjee and Ma (2018), once the distribution of the cycle statistics
Proposition 5 is given. In this section, we elaborate on our main technical contributions.
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In prior work on community detection (see e.g. Mossel et al. (2015); Banerjee and
Ma (2018); Hopkins and Steurer (2017); Massoulié (2014)), weak recovery has often been
performed using statistics based on appropriate self-avoiding walks. In particular, the wide-
applicability of this idea was emphasized in Hopkins and Steurer (2017). The general meta-
algorithm introduced in Hopkins and Steurer (2017) has the following steps: (i) estimate the
second moment σσT using self-avoiding walk statistics, and (ii) use a generic projection and
rounding procedure to derive the membership estimator. We follow the same strategy— the
main technical challenge is to construct the appropriate estimator for the second moment.
One might naturally suspect that an appropriate self-avoiding walk based statistic might be
relevant in our setting. However, we have two data sources, encoded by the graph adjacency
matrix and the matrix of gaussian covariates. As a consequence, the relevant statistics are
not obvious in this setting. A first idea is to consider the factor graph for this problem
(see Figure 1), and use self-avoiding walks of a fixed length. However, some thought reveals

that this is sub-optimal; to see this, consider a setting where λ2 + µ2

γ > 1, but λ2 < 1. In
this case, the block model alone does not contain any information regarding the underlying
community assignment, so the walks based purely on the sparse graph will only contain
noise.

Instead, we construct paths with edges from both the adjacency and covariate matrices,

whose ratio of edges is given by λ2 : µ2

γ . Conceptually, each path is constructed so that
the contributions from the adjacency and covariate matrices reflect the amount of infor-
mation from each source respectively. This approach can be potentially useful for other
reconstruction problems which have multiple information sources.

On the other hand, the distribution of the likelihood ratio in the contiguity regime

λ2 + µ2

γ < 1 is determined by all cycles of finite length. For cycles with edges coming
solely from the adjacency or covariance matrix, the distribution limits are Poisson (Mossel
et al. (2015)) and Gaussian (Banerjee and Ma (2018)) respectively. In our setting, we also
encounter mixed-cycles, comprising edges coming from both sources. Using a method of
moments approach, we establish that the limiting distribution of these mixed cycles are all
independent Gaussian random variables in the limit. Finally, we characterize the means and
variances of these cycles under the null and alternative. We expect the general techniques
to be useful in other settings as well.

1.4 Discussion:

(i) Network modeling with covariates: The contextual block model studied in this manuscript
provides a formal framework to study community detection with auxiliary node co-
variates. The model is quite natural and succinct, and permits sharp theoretical
analysis. In practice, one might add additional parameters to the model to improve
empirical performance. For example, the marginal distribution of the node covari-
ates in our model corresponds to a spiked covariance model with covariance matrix
I + µ

nσσ
>. Within this framework, a natural generalization would be to assume that

the marginal distribution of the covariates is a spike covariance model with covari-
ance matrix Σ + µ

nσσ
>, for a positive semi-definite matrix Σ. In Section 6, we study

the stability of our predictions under special classes of Σ. In particular, we study
the empirical performance of a simple Belief Propagation (BP) Algorithm under this

7



Lu and Sen

general model. One might also wonder whether the assumption of gaussianity on the
node covariates is required in practice; Belief Propagation algorithms are typically
universal in their behavior, as long as the covariates are not too dependent, and have
sufficiently light tails. We also explore this phenomenon via numerical simulations in
Section 6.

The contextual block model studied here samples the covariates given the true mem-
bership assignment. On the other hand, from a modeling perspective, it might be
natural to model the distribution of the covariates first, and then specify a conditional
model for the community memberships given the covariates. The model studied in
Newman and Clauset (2016) is a prominent example in this regard. We note that
these models are typically more involved, and are not amenable to sharp theoretical
analysis.

(ii) Knowledge of λ, µ parameters: The community recovery algorithm introduced in this
paper requires a priori knowledge of the parameters λ and µ. It is natural to wonder
whether similar recovery algorithms exist if λ and µ are unknown. This question has
been analyzed in the two corner cases λ = 0 and µ = 0: if λ = 0, the entire statistical
information comes from the node covariates. In this setting, if µ2/γ > 1, the sample
covariance matrix BB> has an outlying eigenvalue, which can be used to estimate µ.
On the other hand, for µ = 0, if λ > 1, the average degree d and λ can be estimated
from the data using a walk based statistic (Mossel et al. (2015)). We conjecture that

even in the general case, if λ2 + µ2

γ > 1, the average degree d > 1, λ and µ should be
estimable from the data, using appropriate walk based estimators. We leave this as a
question for future inquiry.

Organization: The rest of the paper is structured as follows. We establish Theorem 1 in
Section 2. In Section 3 we establish the asymptotic expansion of the likelihood ratio in the
contiguity regime, and establish Theorem 6. We establish Theorem 3 in Sections 4 and 5.
Finally, we supplement our theoretical results by some numerical experiments in Section 6.

2. Detection

We prove Theorem 1 in this section.

Proof We start with a proof of the information theoretic lower bound. Fix λ, µ such that

λ2 + µ2

γ < 1. We will use the traditional second moment approach. First, consider a
complete data problem, where one observes the latent vectors σ ∈ {±1}n and u ∈ Rp. We
denote the corresponding distribution as P̃λ,µ. Thus we have,

L :=
dPλ,µ
dP0,0

(A,B) =
Eσ,u

[
P̃λ,µ(A,B|σ, u)

]
P0,0(A,B)

,

where Eσ,u[·] calculates the expectation with respect to the priors on σ and u. Consider the
event S = {u : ‖u‖2 ≤ (1 + δ)

√
p}, where δ > 0 will be chosen appropriately. Define the
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truncated likelihood

L̃ =
Eσ,u

[
P̃λ,µ(A,B|σ, u)1(u ∈ S)

]
P0,0(A,B)

.

Finally, we claim that if λ2 + µ2

γ < 1, then there exists a universal constant C > 0 such that

E0,0[L̃
2] ≤ C <∞. The desired contiguity follows from (Perry et al., 2018, Lemma 2.4).

It remains to establish that E0,0[L̃
2] ≤ C < ∞ for some universal C > 0. To this end,

by Fubini’s theorem, we note that

E0,0[L̃
2] = E(σ,u),(τ,v)

[
E0,0

[ P̃λ,µ(A,B|σ, u)

P0,0(A,B)

P̃λ,µ(A,B|τ, v)

P0,0(A,B)
1(u, v ∈ S)

]]
. (2)

Now, we have,

P̃λ,µ(A,B|σ, u)

P0,0(A,B)
=

P̃λ,µ(A|σ)

P0,0(A)
·
P̃λ,µ(B|σ, u)

P0,0(B)
.

We evaluate each term in turn. First, we have,

P̃λ,µ(A|σ)

P0,0(A)
=
∏
i<j

Wij ,Wij = Wij(A, σ) =


2a
a+b if σi = σj , Aij = 1
2b
a+b if σi 6= σj , Aij = 1

n−a
n−(a+b)/2 if σi = σj , Aij = 0

n−b
n−(a+b)/2 if σi 6= σj , Aij = 0

Second, direct computation yields

P̃λ,µ(B|σ, u)

P0,0(B)
= exp

(√µ

n

n∑
i=1

σiZ
>
i u−

µ

2
‖u‖2

)
.

Therefore,

E(σ,u),(τ,v)

[
E0,0

[ P̃λ,µ(A,B|σ, u)

P0,0(A,B)

P̃λ,µ(A,B|τ, v)

P0,0(A,B)
1(u, v ∈ S)

]]
= E(σ,u),(τ,v)

[
1(u, v ∈ S)E0,0

[∏
i<j

WijVij exp
(√µ

n

n∑
i=1

Z>i (σiu+ τiv)− µ

2
(‖u‖2 + ‖v‖2)

)]]
,

where Vij = Vij(A, τ) is defined similarly to Wij . Under P0,0, for any (σ, u) and (τ, v), A
and B are independent. Setting ρ = ρ(σ, τ) = 1

n〈σ, τ〉, we have,

E0,0

[
exp

(√µ

n

n∑
i=1

Z>i (σiu+ τiv)− µ

2
(‖u‖2 + ‖v‖2)

)]
= exp

(µ
n
〈u, v〉〈σ, τ〉

)
.

Using (Mossel et al., 2015, Lemma 5.4), we have,

E0,0

[∏
i<j

WijVij

]
= (1 + o(1))e−λ

2/2−λ4/4 exp
(ρ2λ2

2
(d+ n)

)
.

9



Lu and Sen

Plugging these back into (2), we obtain,

E0,0[L̃
2] ≤ (1 + o(1))e−λ

2/2−λ4/4+λ2d/2E(σ,u),(τ,v)

[
exp

(
n
(ρ2λ2

2
+
µ

γ
ρ
〈u, v〉
p

))
1(u, v ∈ S)

)]
.,

We note that 〈u, v〉 = ‖u‖‖v‖〈 u
‖u‖ ,

v
‖v‖〉, ‖u‖, ‖v‖ ≤ (1+δ)

√
p on the event S, and 〈 u

‖u‖ ,
v
‖v‖〉

d
=

Y , where Y is the first coordinate of a uniform vector on the unit sphere. Thus we have,

E0,0[L̃
2] ≤ (1 + o(1))e−λ

2/2−λ4/4+λ2d/2E
[

exp
(
n
(λ2

2
X2 + (1 + δ)2

µ

γ
XY

))]
,

where X
d
= ρ(σ, τ) and Y is as described above. It is easy to see that Y ∈ [−1, 1] has density

fY (y) =
Γ(p/2)

Γ((p− 1)/2)Γ(1/2)
(1− y2)(p−3)/2 ≤ C

√
n(1− y2)p/2,

for some universal constant C > 0. Further, for s ∈ ( 2
nZ) ∩ [−1, 1],

P(X = s) =
1

2n

(
n

n(1 + s)/2

)
≤ C√

n
exp(nh(s)),

where h(s) = −(1 + s)/2 log(1 + s) − (1 − s)/2 log(1 − s). Using h(s) ≤ −s2/2, direct
computation now yields that

E
[

exp
(
n
(λ2

2
X2 + (1 + δ)2

µ

γ
XY

))]
≤ Cn

∫
R2

exp
[
n
(λ2

2
s2 +

µ

γ
(1 + δ)2sy − s2

2
− y2

2γ

)]
dsdy

< C ′

for some universal constant C ′, provided λ2 + µ2

γ (1 + δ)2 < 1. This completes the proof.

Next, we turn to the regime λ2 + µ2

γ > 1. We will devise a test based on the cycle
statistic Yn,k,l with

l

k
=

µ2/γ

λ2 + µ2/γ
,

and some k, to be chosen appropriately. For k growing sufficiently slowly in n, Proposition 5
implies that Yn,k,l/σk,l is approximately N (0, 1) under H0, while it is distributed as N (µ̃, 1)
under H1. The non-centrality parameter in this case is

µ̃ =
1√
2k

((k
l

)
(λ2)α

(
µ2/γ

)β)1/2
= exp

(1

2
k log(λ2 + µ2/γ) + o(1)

)
.

Thus for k growing sufficiently slowly in n, we will get a sequence of consistent tests. This
establishes the positive side of the detection threshold.

10
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3. Likelihood ratio expansion

Armed with the distributional characterization of Proposition 5, we can characterlize the
likelihood ratio expansion with a version of the small subgraph conditioning argument
relevant to our setting. This argument was originally formalized by Robinson and Wormald
(1992, 1994) in the context of random d-regular graphs, and was utilized by Mossel et al.
(2015) in their study of community detection for the stochastic block model. On the other
hand, inspired by a version of this argument developed by Janson (1995), Banerjee and Ma
(2018) develop a Gaussian variant of this argument, and apply it to the study of contiguous
regimes for Gaussian matrices with low-rank perturbations. Our setting naturally has a
sparse graph, and a Gaussian component, and thus requires an extension. We expect this
result to be useful in many other settings.

Proposition 7 (Small subgraph conditioning method) Let Pn and Qn be two sequences
of probability measures, and let {Yn,k,l : (k, l) ∈ J } be such that the following conditions
hold:

1. Qn is absolutely continuous w.r.t. Pn.

2. All finite dimensional distributions of {Yn,k,l : (k, l) ∈ J } converge to the null distri-
bution under Pn, and to the alternative distribution under Qn, as specified in Propo-
sition 5.

3. The likelihood ratio Ln = dQn

dPn
satisfies:

lim sup
n→∞

EPn [L2
n] ≤ exp

{
− 1

2
log(1− (λ2 +

µ2

γ
))− λ2

2
− λ4

4

}
<∞.

Then, we have the following consequences:

1. Pn and Qn are asymptotically mutually contiguous.

2. Under Pn, we have that

Ln
d→ exp

( ∞∑
k=1

[
log(1− λkdk/2)υk,0,0 −

1

k
(λ
√
d)k +

∑
1≤l≤k

µk,l,0υk,l,0 − 1
2µ

2
k,l,0

σ2k,l

])
.

Given Proposition 5, the proof of this proposition is identical to the proof of Proposition
1 of Banerjee and Ma (2018), but with some Gaussian terms swapped out with Poisson
terms. Thus we omit the proof.

3.1 Proof of Proposition 5

We prove Proposition 5 in this section. Formally, fix (k1, l1), · · · , (kr, lr) ∈ J , andm1, · · · ,mr ≥
1. Without loss of generality, we assume that there exists r1 ≤ r such that l1 = · · · = lr1 = 0
and lj > 0 for j > r1. Further, assume that k1 < k2 < · · · < kr1 and kr1+1 < kr1+2 < · · · <
kr. For convenience, we will denote

Zn,kj ,0 = Yn,kj ,0, 1 ≤ j ≤ r1,
Zn,kr1+1,lr1+1 = Yn,kr1+1,lr1+1 − p1kr1+1=lr1+1=1, Zkj ,lj = Yn,kj ,lj , j > r1.

11
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We will show that for j ≤ r1, Zn,kj ,lj have Poisson limits, and for j > r1, Zn,kj ,lj have
Gaussian limits. This is done with the method of moments: we will establish that as
n→∞,

E0,0

[ r∏
j=1

Z
mj

n,kj ,lj

]
→

r1∏
j=1

E[υ
mj

kj ,lj ,0
] ·

r∏
j=r1+1

σkj ,ljE[ξ
mj

j ],

Eλ,µ
[ r∏
j=1

Z
mj

n,kj ,lj

]
→

r1∏
j=1

E[υ
mj

kj ,lj ,1
] ·

r∏
j=r1+1

σkj ,ljE[ξ
mj

j ],

(3)

where {ξ1, ξ2, · · · } is a sequence of iid N (0, 1) random variables. It is easy to verify that the
random variables Zn,kj ,lj satisfy Carleman’s condition, so (3) implies the desired convergence
in distribution in Proposition 5.

We first establish a decoupling lemma, which will allow us to separate the analysis of
terms with l = 0, which have Poisson limits, from terms with l > 0, which have Gaussian
limits.

Lemma 8 Fix r ≥ 1 and r1 ≤ r. Fix (k1, l1), · · · , (kr, lr) ∈ J , and m1, · · · ,mr ≥ 1.
Further assume that lj = 0 for j ≤ r1, and lj > 0 for r1 < j ≤ r. Then we have, as n→∞,

∣∣∣E0,0

[ r∏
j=1

Z
mj

n,kj ,lj

]
− E0,0

[ r1∏
j=1

Z
mj

n,kj ,lj

]
E0,0

[ r∏
j=r1+1

Z
mj

n,kj ,lj

]∣∣∣→ 0,

∣∣∣Eλ,µ[ r∏
j=1

Z
mj

n,kj ,lj

]
− Eλ,µ

[ r1∏
j=1

Z
mj

n,kj ,lj

]
Eλ,µ

[ r∏
j=r1+1

Z
mj

n,kj ,lj

]∣∣∣→ 0.

Proof We first establish the assertion under H0. We have

E0,0

[ r∏
j=1

Z
mj

n,kj ,lj

]
= E0,0[T1 · T2 · T3],

T1 =

r1∏
j=1

(∑
ωj

∏
e∈Eωj,A

Ae

)mj

,

T2 =
( 1

nlr1+1

∑
ωr1+1

∏
e∈Eωr1+1,A

Ae
∏

e∈Eωr1+1,B

Be − p · 1(kr1+1 = lr1+1 = 1)
)mr1+1

,

T3 =
r∏

j=r1+2

( 1

nlj

∑
ωj

∏
e∈Eωj,A

Ae
∏

e∈Eωj,B

Be

)mj

.

12
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Expanding, these terms may be expressed as

T1 =

r1∏
j=1

( ∑
ωj,1,··· ,ωj,mj

mj∏
q=1

∏
e∈Eωj,q,A

Ae

)
,

T2 =
1

nlr1+1mr1+1

∑
ωr1+1,1,··· ,ωr1+1,mr1+1

mr1+1∏
q=1

( ∏
e∈Eωr1+1,q,A

Ae
∏

e∈Eωr1+1,q,B

Be − p · 1(kr1+1 = lr1+1 = 1)
)
,

T3 =

r∏
j=r1+2

( 1

nljmj

∑
ωj,1,··· ,ωj,mj

mj∏
q=1

∏
e∈Eωj,q,A

Ae
∏

e∈Eωj,q,B

Be

)
.

Thus we have,

E0,0[T1T2T3|A]

=
1

n
∑r

j=r1+1 ljmj

∑
j∈[r],1≤qj≤mj ,ωj,qj

E0,0


(∏r1

j=1

∏
qj≤mj

∏
e∈Eωj,qj

,A
Ae

)
×∏mr1+1

q=1

(∏
e∈Eωr1+1,q,A

Ae
∏
e∈Eωr1+1,q,B

Be − p · 1(kr1+1 = lr1+1 = 1)
)
×∏r

j=r1+2

∏mj

qj=1

∏
e∈Eωj,qj

,A
Ae
∏
e∈Eωj,qj

,B
Be

∣∣∣A
 .

Consider first the case (kr1+1, lr1+1) 6= (1, 1). In this case,

E0,0[T1T2T3] =
1

n
∑r

j=r1+1 ljmj
×

∑
j∈[r],1≤qj≤mj ,ωj,qj

E0,0

[( r1∏
j=1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)( r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)]
×

E0,0

[ r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,B

Be

]
.

On the other hand, a similar calculation yields

E0,0

[ r1∏
j=1

Z
mj

n,kj ,lj

]
E0,0

[ r∏
j=r1+1

Z
mj

n,kj ,lj

]
=

1

n
∑r

j=r1+1 ljmj
×

∑
j∈[r],1≤qj≤mj ,ωj,qj

E0,0

[( r1∏
j=1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)]
E0,0

[( r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)]
× (4)

E0,0

[ r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,B

Be

]
.

To establish that the difference between the two quantities is o(1), note that if two cycles
overlap on m-edges, we gain a factor O(nm). However, this naturally implies they overlap
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on at least (m + 1) vertices. As a result, we lose a factor nm+1 in choosing these cycles.
As a result, the dominant contributions arise from non-overlapping cycles, thus establishing
the desired claim in this case. The proof for (kr1+1, lr1+1) = (1, 1) is exactly analogous.

Under Pλ,µ, if (kr1+1, lr1+1) 6= (1, 1), we have,

Eλ,µ
[ r∏
j=1

Z
mj

n,kj ,lj

]
=

1

n
∑r

j=r1+1 ljmj
×

Eσ
[ ∑
j∈[r],1≤qj≤mj ,ωj,qj

Eλ,µ
[( r1∏

j=1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)( r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)
| σ
]
×

Eλ,µ
[ r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,B

Be | σ
]]
.

On the other hand,

Eλ,µ
[ r1∏
j=1

Z
mj

n,kj ,lj

]
Eλ,µ

[ r∏
j=r1+1

(Zn,kj ,lj )
mj

]
=

1

n
∑r

j=r1+1 ljmj
×

Eσ
[ ∑
j∈[r],1≤qj≤mj ,ωj,qj

Eλ,µ
[( r1∏

j=1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)
| σ
]
×

Eλ,µ
[( r∏

j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,A

Ae

)
| σ
]
× Eλ,µ

[ r∏
j=r1+1

∏
qj≤mj

∏
e∈Eωj,qj

,B

Be | σ
]]
.

To see that the difference between the quantities is again o(1), first condition on the choice
of σ, and consider the difference in the inner sums. Again, if two cycles overlap on m edges,
we will gain a factor of O(nm), but we lose a factor of nm+1 for the number of such choices.
Thus the dominant contribution again comes from the non-overlapping cycles. The proof
from (kr1+1, lr1+1) = (1, 1) follows analogously.

Armed with Lemma 8, we turn to a proof of Proposition 5. Note that under Pλ,µ, Bij =

Xij + Zij , where Xij =
√

µ
n · σiuj . Thus we have,

Yn,k,l =
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Be2

=
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

(Xe2 + Ze2)

= T1,k,l + T2,k,l + T3,k,l,

14



CSBM: Sharp Thresholds and Contiguity

where

T1,k,l =
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Ze2 , (5)

T2,k,l =
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Xe2 ,

T3,k,l = Yn,k,l − T1,k,l − T2,k,l.

We will establish the following lemmas.

Lemma 9 In the setting of Proposition 5, for k ≥ l ≥ 1,

T1,k,l − p1k=l=1
d→ N

(
0,

1

2k

(
k

l

)
dk−l

γl

)
.

under Pλ,µ. Further, the limiting random variables are asymptotically independent.

Lemma 10 In the setting of Proposition 5, for k ≥ l ≥ 1,

T2,k,l
P→ 1

2k

(
k

l

)(µ
γ

)l
(λ
√
d)k−l.

Lemma 11 In the setting of Proposition 5, for k ≥ l ≥ 1, T3,k,l
P→ 0.

The proof of Proposition 5 is straightforward from these intermediate lemmas.
Proof First we note that Lemma 8 immediately implies that the terms Zn,ki,li with i ≤ r1
are asymptotically independent to the terms Zn,kj ,lj , with j > r1. Moreover, the limiting
distributions of {Yn,k,0 : k ≥ 3} under both H0 and H1 follows directly from (Mossel et al.,
2015, Theorem 3.1). Thus, we have, as n→∞,

E0,0

[ r1∏
j=1

Z
mj

n,kj ,0

]
→

r1∏
j=1

E[υ
mj

kj ,0,0
], Eλ,µ

[ r1∏
j=1

Z
mj

n,kj ,0

]
→

r1∏
j=1

E[υ
mj

kj ,0,1
].

Consequently, it suffices to analyze the terms with l > 0, and we show that in this case
Zn,k,l will have asymptotically Gaussian limits under H0 and H1. We complete the proof
under Pλ,µ. The null distribution follows by setting λ = µ = 0.

Considering the cycles with k ≥ l ≥ 1, we use Lemma 9, 10 and 11 to conclude that the
cycle statistics Yn,k,l have the desired gaussian limits under Pλ,µ. Further, Lemma 9 implies
that these variables are asymptotically independent. This completes the proof.

It remains to prove Lemmas 9, 10 and 11. We start with the proof of Lemma 9.
Proof We complete the proof via the following steps.

(i) Calculation of the mean and variance of T1,k,l under Pλ,µ.

(ii) Verification of Wick’s formula.
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(iii) Verification of asymptotic independence.

We address (i), and calculate the means and variances of the T1,k,l statistics. Note that the
case l = k corresponds to the cycle statistics in Banerjee and Ma (2018), and we can read
off the expectations and variances directly. Consider the case 0 < l < k. We have, using
(5),

Eλ,µ[T1,k,l] = 0.

Moving onto the variance, we have,

Eλ,µ[T 2
1,k,l] =

1

n2l

∑
ω1,ω2

Eλ,µ
[( ∏

e1∈Eω1,A

Ae1
∏

e2∈Eω1,B

Ze2

)( ∏
e1∈Eω2,A

Ae1
∏

e2∈Eω2,B

Ze2

)]
(6)

=
1

n2l

∑
ω

Eλ,µ
[( ∏

e1∈Eω,A

Ae1
∏

e2∈Eω,B

Ze2

)2]
+ T̃1,

where T̃1 tracks the contribution from the pairs (ω1, ω2) with ω1 6= ω2. First, observe that

1

n2l

∑
ω

Eλ,µ
[( ∏

e1∈Eω,A

Ae1
∏

e2∈Eω,B

Ze2

)2]
=

1

n2l

∑
ω

Eλ,µ
[ ∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Z2
e2

]

=
1

n2l

∑
ω

Eσ
[ ∏
e1∈Eω,A

(d+ λ
√
d σe−1

σe+1
n

)]
=

1

nl+k

∑
ω

Eσ
[ ∑
ze∈{d,λ

√
dσe−σe+}:e∈Eω,A

∏
e∈Eω,A

ze

]
=

1

n2l

∑
ω

(d
n

)k−l
.

where the last step follows from the obervation that ω has k − l A-edges, and that only
terms which contribute d for each edge survive in the limit. Recall that the number of k
cycles with l B-wedges is 1

2k

(
k
l

)
nkpl. This implies

1

n2l

∑
ω

Eλ,µ
[( ∏

e1∈Eω,A

Ae1
∏

e2∈Eω,B

Ze2

)2]
=

1

n2l

∑
ω

(d
n

)k−l
=

1

n2l
·
(d
n

)k−l
· 1

2k
nk
(
k

l

)
pl

=
1

2k

(
k

l

)
dk−l

γl
(1 + o(1)).

We will next establish that this is the dominant term in the asymptotic variance, and that
T̃1 → 0 as n → ∞. Note that a product term corresponding to (ω1, ω2) with ω1 6= ω2 has
a non-zero contribution provided they share exactly the same B-wedges. For any two such
cycles (ω1, ω2), suppose they share α1 A edges. Note that ω1 6= ω2, and thus 0 ≤ α1 < k− l.
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As ω1 and ω2 cannot differ on exactly one edge, in fact, this implies α1 ≤ k− l− 2. Setting
α2 = k − l − α1, we have,

T̃1 =
1

n2l

∑
ω1 6=ω2

Eλ,µ
[( ∏

e1∈Eω1,A

Ae1
∏

e2∈Eω1,B

Ze2

)( ∏
e1∈Eω2,A

Ae1
∏

e2∈Eω2,B

Ze2

)]

=
1

n2l

k−l∑
α2=2

∑
|Eω1,A

∩Eω2,A
|=k−l−α2

(d
n

)k−l+α2

.

It remains to count the number of pairs (ω1, ω2) with |Eω1,A ∩ Eω2,A| = k − l − α2 for all
2 ≤ α2 ≤ k − l. We derive a rough upper bound to the number of such pairs as follows:
there are O(nkpl) choices for the first cycle, and O(nα2−1) choices for the second cycle ω2,
given ω1. Thus we bound the number of such pairs as C(k, γ)nk+l+α2−1, where C(k, γ) > 0
is independent of n. Plugging in this bound, we obtain

T̃1 ≤ C(k, γ)
1

n2l

k−l∑
α2=2

nk+l+α2−1 ·
(d
n

)k−l+α2

= O
( 1

n

)
.

This controls T̃1, and establishes the variance under Pλ,µ.
We next turn to (ii). We want to show that T1,k,l are asymptotically Gaussian by

analyzing their moments (3). This is done by checking that the limits of the moments satisfy
Wick’s formula. We will perform the calculations assuming that (kr1+1, lr1+1) 6= (1, 1); the
same calculations hold in the case of equality and hence are omitted. Formally, we show
that for Wni ∈ {T1,kr1+1,lr1+1 , · · · , T1,kr,lr}, i ∈ [m], we have that

lim
n→∞

E[Wn1 · · ·Wnm] =

{∑
η

∏m/2
i=1 E[Wnη(i,1)Wnη(i,2)] + o(1) if m even

o(1) o.w.
(7)

where η is a partition of [m] into m
2 blocks of size two, and η(i, j) denotes the j-th element

of the i-th block, where j ∈ {1, 2}. Wick’s formula (Wick (1950)) then implies that the
limiting distribution must be Gaussian, as long as the limits of E[Wnη(i,1)Wnη(i,2)] exist.

For a choice of Wn1, · · · ,Wnm, let ω1:m be a collection of cycles ω1, ..., ωm, such that
ωi is of length ki, with li B wedges and xi contiguous blocks of A type edges and B type
wedges. Note then that

Eλ,µ[Wn1 · · ·Wnm]

= Eλ,µ
[
n−

∑
i li
∑
ω1:m

∏
i≤m

∏
e1∈Eωi,A

Ae1
∏

e2∈Eωi,B

Ze2

]
= n−

∑
i li
∑
ω1:m

Eλ,µ
[∏
i≤m

∏
e1∈Eωi,A

Ae1

]
Eλ,µ

[∏
i≤m

∏
e2∈Ẽωi

Ze2

] (8)

where Ẽωi are the edges of G̃ωi = Gωi/Gωi,A, the quotient graph where for each j ≤ xi,
Gωi,αj , the graph of the jth A block in ωi, is identified as a vertex of G̃ωi . We denote the

vertices of G̃ωi as Ṽωi = Ṽ 1
ωi
∪ Ṽ 2

ωi
, where Ṽ 1 are the vertices inherited from Gωi , and Ṽ 2
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are the vertices produced by the quotient operator. Among Ṽ 2, we define the following
equivalence relationship: if the first and last vertices of Gωi,αi

j
and Gωh,αh

p
are the same,

then we consider the vertices in G̃ωi and G̃ωh
, which correspond to the quotient image of

Gωi,αi
j

and Gωh,αh
p

respectively, to be the same. In order for the contribution of ω1:m to be

non-zero, the B edges have to be included at least twice, and we will call such a collection
G̃ω1:m a weak CLT sentence. Given a weak CLT sentence, we define a partition η(G̃ω1:m) of
[m] as follows: i and j are in the same partition if G̃ωi and G̃ωj share at least one edge. As
a result, we can express (8) as follows:

n−
∑

i li
∑

Gω1:m,A

Eλ,µ
[ ∏
e1∈Eω1:m,A

Ae1

]∑
η

∑
G̃ω1:m

η(G̃ω1:m )=η

Eλ,µ
[ ∏
e2∈Ẽω1:m

Ze2

]
.

Let t be the total number of vertices of G̃ω1:m . Let us consider the case where η(G̃ω1:m)
contains strictly less than m

2 blocks, which includes all cases when m is odd. In this case
(Anderson and Zeitouni, 2006, Lemma 4.10) implies that t <

∑
i li. Following the proof

of (Banerjee and Ma, 2018, Lemma 3), we note that the number of weak CLT sentences
summed over is bounded by

O
(∑

i

li

)O(
∑

i li)
nt−

∑
i xi .

This comes from the fact that
∑

i xi of the vertices are automatically fixed from the quotient
operator. As a result, for a particular partition η, where |η| < m

2 , we note that:

n−
∑

i li
∑

Gω1:m,A

Eλ,µ
[ ∏
e1∈Eω1:m,A

Ae1

] ∑
G̃ω1:m

η(G̃ω1:m=η)

Eµ,ν
[ ∏
e2∈Ẽω1:m

Ze2

]

= n−
∑

i li
∑

Gω1:m,A

Eλ,µ
[ ∏
e1∈Eω1:m,A

Ae1

] ∑
G̃ω1:m

η(G̃ω1:m=η)

O(1)O(
∑

i li)

= n−
∑

i liO
(∑

i

li

)O(
∑

i li)
nt−

∑
i xi

∑
Gω1:m,A

Eλ,µ
[ ∏
e1∈Eω1:m,A

Ae1

]
= n−

∑
i liO

(∑
i

li

)O(
∑

i li)
nt−

∑
i xiO

( 1

n

)∑
i

∑
j≤xi

2αi
j
O(n)

∑
i

∑
j≤xi

(2αi
j+1)

= O
(∑

i

li

)O(
∑

i li)
O(n)t−

∑
i li .

The penultimate line holds because for an A block of length 2αij , there are 2αij + 1 vertices,
for which there are O(n) options each. Thus the total number of choices for Eω1:m,A is

O(n)
∑

i

∑
j≤xi

(2αi
j+1)

. Since t <
∑

i li, we see that the contribution of such a term is o(1).
We have thus shown that the leading order term of (8) consists of weak CLT sentences

whose partition η(G̃ω1:m) has exactly m
2 blocks. Note that this automatically implies that
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(8) is o(1) if m is odd, and that for m even, the leading order weak CLT sentences have
partitions η with only blocks of size two, which is exactly what we need for (7). From our
calculations in step (i), we see that the variances of Zn,k,l under the null are as we claimed.

Finally, we verify step (iii), that for l ≥ 1, Zn,k,l are asymptotically independent. From

the discussion above (7), this amounts to checking that for Wni 6= Wnj , Eλ,µ[WniWnj ]
P→ 0.

Note that this expectation equals 0 if li 6= lj . Thus it suffices to consider the case li = lj ,
ki < kj and we have:

Eλ,µ[WniWnj ] = n−2li
∑
ωi,ωj

Eλ,µ

 ∏
e1∈Eωi

Ae1
∏

e1∈Eωj

Ae1


where the sum is taken over ωi, ωj that intersect on all li B-wedges, which gives

Eλ,µ[WniWnj ] ≤ C(ki, d, γ)n−2li
(

1

n

)ki+kj−2li
nki+kj−li−1 = o(1).

This concludes the demonstration of Wick’s formula under Pλ,µ, and hence proves the
desired convergence in distribution.

We turn next to the proof of Lemma 10.
Proof For any 1 ≤ i1 < · · · < ik ≤ n, we let i1:k = (i1, · · · , ik). Similarly, for 1 ≤ j1 <
· · · < jl ≤ p, set j1:l = (j1, · · · , jp). Finally, given i1:k and j1:l, let C(i1:k, j1:l) denote the
set of cycles with k − l A-edges and l B-wedges on the chosen vertices. Armed with this
notation, we observe that

T2,k,l =
1

nl

∑
ω

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Xe2

=
1

nl

∑
i1:k,j1:l

∑
ω∈C(i1:k,j1:l)

∏
e1∈Eω,A

Ae1
∏

e2∈Eω,B

Xe2 .

Given i1:k, let C(i1:k) denote all length k cycles on the vertices i1, i2, · · · , ik, with (k − l)
edges colored to be of type A, and the remaining edges colored to be of type B. For any
edge in the cycle, let t(e) ∈ {A,B} denote its type. This implies

T2,k,l =
1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
)((µ

n

)l∑
j1:l

l∏
h=1

u2jh

)
.

Note that for fixed j1:l, u
2
jh are independent with mean 1, so law of large numbers gives

1

nl

∑
j1:l

l∏
h=1

u2jh
P→ 1.
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Thus it suffices to control the other term. Observe that

Eλ,µ
[ 1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
)]

=Eσ
[ 1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

(d+ λ
√
d σe−σe+

n

) ∏
t(e)=B

σe−σe+
)]

=Eσ
[ 1

nk

(∑
i1:k

∑
ω∈C(i1:k)

∑
ze∈{d,λ

√
d σe−σe+}:t(e)=A

∏
t(e)=A

ze
∏

t(e)=B

σe−σe+
)]
.

Observe that we have a non-zero contribution in the sum above if and only if ze =
λ
√
dσe−σe+ for all e such that t(e) = A; in this case, each term contributes (λ

√
d)k−l.

It remains to count the number of length k cycles with l B-wedges. Any such cycle has
k-vertices of type A, and this choice can be done in nk ways. The positions of the B-wedges
can be chosen in

(
k
l

)
ways. The B-vertices on the B-wedges can be chosen in pl ways.

Finally, we divide this count by 2k to account for overcounting due to cyclic shifts. Thus,
upon simplification,

Eλ,µ
[ 1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
)]

= (1 + o(1))
1

2k

(
k

l

)(µ
γ

)l
(λ
√
d)k−l.

Next, we show that

Varλ,µ

( 1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
))

= o(1)

as n→∞. This amounts to checking that

Eλ,µ

 1

n2l

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
)2

= Eλ,µ

 1

nl

(∑
i1:k

∑
ω∈C(i1:k)

∏
t(e)=A

Ae
∏

t(e)=B

σe−σe+
)2

+ o(1).

This turns out to be true because of the same argument for Lemma 8 (specifically the
discussion after (4)). In conclusion, this establishes that

T2,k,l
P→ 1

2k

(
k

l

)(µ
γ

)l
(λ
√
d)k−l.

This completes the proof.

Finally, we complete the proof of Lemma 11.
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Proof Note that Eλ,µ[T3,k,l] = 0, and thus it suffices to establish that Eλ,µ[T 2
3,k,l] = o(1) as

n→∞. Now, we can express T3,k,l =
∑

ω Vn,k,l,ω, where

Vn,k,l,ω =
1

nl

∏
e∈Eω,A

Ae
∑

Eω,f(Eω,B

∏
e∈Eω,f

Xe

∏
e∈Eω,B\Eω,f

Ze.

Therefore,

Eλ,µ[T 2
3,k,l] =

∑
ω1,ω2

Eλ,µ[Vn,k,l,ω1Vn,k,l,ω2 ]

:=
∑
ω1,ω2

∑
Eω1,f

(Eω1,B
,Eω2,f

(Eω2,B

Eλ,µ[Vn,k,l,ω1,Ef,ω1
Vn,k,l,ω2,Ef,ω2

],

where we define

Vn,k,l,ω,Ef,ω
:=

1

nl

∏
e∈Eω,A

Ae
∏

e∈Eω,f

Xe

∏
e∈Eω,B\Eω,f

Ze.

This implies Eλ,µ[Vn,k,l,ω1,Ef,ω1
Vn,k,l,ω2,Ef,ω2

] is zero unless Eω1,B\Eω1,f = Eω2,B\Eω2,f .
Given ω1, ω2, the terms which affect the contribution by powers of n are the edges in
Eω1,A∩Eω2,A. The dominant contribution arises from ω1, ω2 such that |Eω1,A∩Eω2,A| = 0—
this follows using the same reasoning used to identify the dominant order of the variance
in the proof of Lemma 9. Further, note that overlaps in the edges in Eω1,f and Eω2,f affect
the expectation, but only to constant order. For a pair (ω1, ω2) satisfying these conditions

Eλ,µ[Vn,k,l,ω1,Ef,ω1
Vn,k,l,ω2,Ef,ω2

] =
1

n2l
Eλ,µ

[ ∏
e∈Eω1,A

Ae
∏

e∈Eω2,A

Ae
∏

e∈Eω1,f

Xe

∏
e∈Eω2,f

Xe

]
.

As ω1, ω2 are both length k cycles with k − l A edges and l B-edges, and Eω1,B\Eω1,f =
Eω2,B\Eω2,f , we have |Eω1,f | = |Eω2,f | := x. In turn, this implies that there exists C :=
C(k, l) > 0 such that

Eλ,µ[Vn,k,l,ω1,Ef,ω1
Vn,k,l,ω2,Ef,ω2

] ≤ C 1

n2l+x
Eλ,µ

[ ∏
e∈Eω1,A

Ae
∏

e∈Eω2,A

Ae

]
≤ C ′ 1

n2k+x
,

where C ′ := C ′(k, l, λ, d) > 0 is a constant independent of n. There are only finitely many
choices of Eω1,f and Eω2,f , and therefore, for each ω1, ω2,∑

Eω1,f
(Eω1,B

,Eω2,f
(Eω2,B

Eλ,µ[Vn,k,l,ω1,Ef,ω1
Vn,k,l,ω2,Ef,ω2

] ≤ C ′′ 1

n2k+x
,

for a larger constant C ′′. Finally, we sum over ω1, ω2. If the two cycles intersect on x edges,
they have x+ 1 vertices in common. Thus the number of pairs ω1, ω2 with x common edges
is O(n2k+2l−x−1). Summing, we have the conclusion that Eλ,µ[T 2

3,k,l] = o(1).
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4. Weak Recovery under the Threshold

In the remaining two sections, we will prove Theorem 3. In this section, we show the first

part, that weak recovery is impossible when λ2+ µ2

γ < 1. We follow the general proof scheme
in Banerjee (2018). The proof is information theoretic, and the main idea is contained in
the following proposition.

Proposition 12 When λ2 + µ2

γ < 1, then for any fixed r, and any two configurations
(σ1, ..., σr), (τ1, ..., τr) ∈ {±1}r, we have that as n→∞,

‖Pλ,µ(· | σ1:r)− Pλ,µ(· | τ1:r)‖TV → 0.

Proof The idea is to bound the total variation with a function of the second moment of
the likelihood ratios,

Lσ,n =
dPλ,µ
dP0,0

(· | σ1:r) , Lτ,n =
dPλ,µ
dP0,0

(· | τ1:r),

and then noting that because r is fixed, the second moments of these likelihood ratios will
converge to a limit independent of σ1:r and τ1:r, making the upper bound converge to 0.
However, as we have seen in the other arguments, we need some truncation. Let us define
the truncated likelihood ratios

L̃σ,n =
Eσ−r,u [Pλ,µ (A,B | σ1:r, σ−r, u) 1(u ∈ S)]

P0,0 (A,B)

L̃τ,n =
Eτ−r,u [Pλ,µ (A,B | τ1:r, τ−r, u) 1(u ∈ S)]

P0,0 (A,B)
,

where σ−r, τ−r ∈ {±1}n−r are the other coordinates, and S = {‖u‖ ≤ 2
√
p}. Define

distributions given by these truncated likelihood ratios:

Qσ,n(Ω | σ1:r) =
1

Pn (S)
E0,0

[
L̃σ,n 1(Ω) | σ1:r

]
Qτ,n(Ω | τ1:r) =

1

Pn (S)
E0,0

[
L̃τ,n 1(Ω) | τ1:r

]
.

From the proof of (Banerjee and Ma, 2018, Proposition 1), we know that ‖Pλ,µ (· | σ1:r) −
Qσ,n(· | σ1:r)‖TV and ‖Pλ,µ (· | τ1:r) − Qτ,n(· | τ1:r)‖TV both vanish as n → ∞. Thus, to
prove the proposition, it suffices to check that ‖Qσ,n(· | σ1:r)−Qτ,n(· | τ1:r)‖TV → 0. Note
that

‖Qσ,n(· | σ1:r)−Qτ,n(· | τ1:r)‖TV =
1

Pn (S)
E0,0

[
|L̃σ,n − L̃τ,n|

]
≤ 1

Pn (S)
E0,0

[
(L̃σ,n − L̃τ,n)2

] 1
2
,

where we have used the Cauchy Schwarz inequality. Now, we have,

E0,0

[
(L̃σ,n − L̃τ,n)2

]
= E0,0

[
1

P0,0 (A,B)2
Eσ−r,τ−r,u,v

{(
Pλ,µ (A,B | σ1:r, σ−r, u)Pλ,µ (A,B | σ1:r, τ−r, v)

+ Pλ,µ (A,B | τ1:r, σ−r, u)Pλ,µ (A,B | τ1:r, τ−r, v)

− 2Pλ,µ (A,B | σ1:r, σ−r, u)Pλ,µ (A,B | τ1:r, τ−r, v)
)
1(u, v ∈ S)

}]
.
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Thus we just have to prove that the quantity

E0,0

[
Pλ,µ (A,B | σ1:r, σ−r, u)Pλ,µ (A,B | τ1:r, τ−r, v)

P0,0 (A,B)2
1(u, v ∈ S)

]
has a limit which is independent of σ1:r and τ1:r. But we know that this is true because of
the second moment calculations in Section 2, so we are done.

Then the impossibility of reconstruction follows from some technical calculations. The
proof of the next two results follow directly from Proposition 6.2 and Theorem 2.2 of
Banerjee (2018) respectively.

Proposition 13 Let λ2 + µ2

γ < 1. Let S ⊂ [n] be such that |S| = r, with r finite and fixed,
and let u ∈ [n] be a single index such that u 6∈ S. Then, as n→∞, we have that

Eλ,µ[‖Pλ,µ(σu | A,B, σS)− P0,0(σu)‖TV | σS ]→ 0.

Theorem 14 If λ2 + µ2

γ < 1, then reconstruction is impossible, i.e. let the overlap be
defined as

ov(σ, τ) =
1

n

n∑
i=1

σiτi −

(
1

n

n∑
i=1

σi

)(
1

n

n∑
i=1

τi

)
,

then for any estimator σ̂(A,B) ∈ {±1}n, we have that

ov(σ, σ̂)
p→ 0.

Because 1
n

∑n
i=1 σi

p→ 0, and 1
n

∑n
i=1 σ̂i is bounded, we see that 1

n〈σ, σ̂〉
P→ 0, so weak recovery

is impossible.

5. Weak Recovery with Self Avoiding Walks

In this section we finish the proof of Theorem 3, by showing that weak recovery is possible

whenever λ2 + µ2

γ > 1. Because weak recovery is possible as soon as either λ2 > 1 (Mossel

et al. (2013); Massoulié (2014)) or µ2

γ > 1 (Baik et al. (2005)), we only need to consider

the case that λ2, µ2

γ < 1. We will construct an estimator σ̂ that is computable in quasi-
polynomial time. We use a strategy introduced in Hopkins and Steurer (2017) in the context
of community detection in the block model. Under this approach, one seeks to design an
appropriate set of “low-degree” polynomials in the data (A,B), and recover the signals
based on these polynomials. We note that in the specific context of community detection,
this approach was already latent in the approach of Massoulié (2014) and Bordenave et al.
(2015), based on self-avoiding/non-backtracking walks.

We seek to calculate a polynomial P (A,B), which estimates σσT. Formally, suppose
we had an estimator satisfying

Eλ,µ
[
〈P (A,B), σσT〉

]
≥ nδEλ,µ

[
‖P (A,B)‖2F

] 1
2

(9)
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for some universal constant δ > 0. Then (Hopkins and Steurer, 2017, Theorem 1) implies
that there exists δ′ = δ′(δ), and an estimator σ̂ such that

1

n2
Eλ,µ[〈σ, σ̂〉2] ≥ δ′.

This ensures weak recovery in our setting. To construct the estimator σ̂, from the matrix
P (A,B) constructed above, we compute a matrix Σ with minimum Frobenius norm that
satisfies the following constraints:

diag(Σ) = 1

〈P (A,B),Σ〉
‖P (A,B)‖F · n

≥ δ′

Σ � 0

and then output the vector σ̂ ∈ {±1}n obtained by taking coordinate-wise signs of a centered
Gaussian vector with covariance Σ.

Lemma 15 The estimator σ̂ achieves weak recovery whenever λ2 + µ2

γ > 1.

Proof The proof of weak recovery follows immediately from the proof of (Hopkins and
Steurer, 2017, Lemma 3.5).

Remark 16 This estimator takes nO(logn)/poly(δ) time to compute, as we use certain Self
Avoiding Walks (SAWs) of length Θ(log n). The running time can be improved to npoly(1/δ)

by the idea of color coding, and more discussions on this improvement can be found in
(Hopkins and Steurer, 2017, Section 2.5).

In the remainder of the section, we will construct an estimator and establish (9).

5.1 Self Avoiding Walks

It remains to construct the polynomial P (A,B). To this end, we will use self avoiding walks
on the underlying factor-graph. First, for i1, i2 ∈ [n] and j ∈ [p], we define

Âi1,i2 =
2n

a− b

(
Aij −

a+ b

2n

)
,

B̂j
i1,i2

=
n

µ
Bi1,jBi2,j =

n

µ

(√µ

n
σi1uj + Zi1,j

)(√µ

n
σi2uj + Zi2,j

)
. (10)

Direct computation yields that

Eλ,µ[Âi1,i2 |σ] = σi1σi2 , Varλ,µ(Ai1,i2) =
n

λ2
,

Eλ,µ[B̂j
i1,i2
|σ] = σi1σi2 , Varλ,µ(B̂j

i1,i2
) =

np

µ2/γ
.
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Recall the factor graph, as shown in Figure 1. For i1, i2 ∈ [n], we will associate the weight

Âi1,i2 to the A edge {i1, i2}. Similarly, for j ∈ [p], we associate the weight B̂j
i1

=
√

µ
nBi1,j

to the B edge {i1, j}, and the weight B̂j
i1,i2

to the B wedge {i1, j, i2}.
Fix i1, i2 ∈ [n], and let k ≥ l ≥ 1 be integers that we will specify later. Consider a path

α on the factor graph that starts at i1 and ends at i2, which contains k − l A type edges,
and l B type wedges. We will require that the A-type edges on the path are “self-avoiding”,
i.e., no edge of type A occurs more than once. Further, if j1, · · · , jl denote the vertices in
V2 which lie on the path α, we will require that these vertices are distinct. Let L(i1, i2, k, l)
denote the set of all such paths α, for any given i1, i2 ∈ [n], and k ≥ l. Given any path α,
construct a polynomial on entries of (A,B) by

pα =
∏
e∈α

weight(e),

where weight(i1, i2) is Âi1,i2 and B̂j
i1.i2

when the edge (i2, i2) is of type A and B respectively.
Direct computation yields that

Eλ,µ[pα|σ] = σi1σi2 , Varλ,µ(pα) =
( n
λ2

)k−l( np

µ2/γ

)l
(1 + o(1)). (11)

Thus we see that pα is an unbiased estimator for σi1σi2 , but its large variance renders it
useless on its own. Fortunately, there are many paths α ∈ L(i1, i2, k, l), and we might
hope that we can reduce the variance by averaging over polynomials from different paths
as follows

Pi1,i2(A,B) =
1

|L(i1, i2, k, l)|
∑

L(i1,i2,k,l)

pα.

Note that Pi1,i2 is still an unbiased estimator for σi1σi2 . Finally, we set P (A,B) =
{Pi1,i2(A,B) : 1 ≤ i1 < i2 ≤ n} to be the estimator for the matrix σσ>.

It remains to check (9) whenever λ2 + µ2

γ > 1. We establish this in the next lemma.

Lemma 17 Assume d > 1 and λ2+ µ2

γ > 1+ε, for some ε > 0. Then there exists universal
constants C > 0 and c > 0 such that setting k = C log n/εc and l := l(k, λ, µ, γ) ≤ k such
that

Eλ,µ
[
〈P (A,B), σσT〉

]
≥ nδEλ,µ

[
‖P (A,B)‖2F

] 1
2

(12)

for some δ := δ(ε, C, c, λ, µ, γ) > 0.

To prove this lemma, we will show that an entry-wise version holds:

Eλ,µ
[
Pi1,i2(A,B) · σi1σi2

]
≥ δEλ,µ

[
Pi1,i2(A,B)2

] 1
2
. (13)
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By construction, we have that Eλ,µ[Pi1,i2(A,B) | σi1σi2 ] = σi1σi2 . As a result, it is easy
to check that (13) is implied by the following:

Eλ,µ[(σi1σi2)2] ·
∑

α,β∈L(i1,i2,k,l)

Eλ,µ[pα · pβ] ≤ 1

δ2
·

∑
α,β∈L(i1,i2,k,l)

Eλ,µ[pα · (σi1σi2)]Eλ,µ[pβ · (σi1σi2)].

(14)

Intuitively, this inequality is saying that the correlation between different self avoiding
walks is not too large. The right hand side of the inequality is easy to control: note that
Eλ,µ[pα · (σi1σi2)] = Eλ,µ[(σi1σi2)2] = 1, so the right hand side is equal to δ|L(i1, i2, k, l)|2.
We see that this is given by

|L(i1, i2, k, l)|2 = (1 + o(1))

(
k

l

)2

n2(k−1)p2l. (15)

Thus we are left to control correlation between pα and pβ, given on the left hand side of
(14).

5.2 Correlation of SAWs: Proof of (14)

We want an upper bound on the left hand side of (14), so we need to control the correlation
E [pαpβ], for paths α, β ∈ L(i1, i2, k, l). For this, we have to keep track of the number of

intersections. Let ã be the number of Â-edge intersections, and b̃ be the number of B̂-edge
intersections. In particular, we must have ã ≤ k − l, and b̃ ≤ 2l.

Note that the contribution to correlation depends only on how many intersections there
are, and does not depend on the other edges of α and β. Computations show that each Â-
edge intersection contributes a factor of O(n/λ2), and each B̂-edge intersection contributes
a factor of O(n/µ), so the total contribution of such an intersection would simply be

O(1)
( n
λ2

)ã(n
µ

)b̃
.

Now we calculate the number of pairs α, β ∈ L(i1, i2, k, l) that intersect on ã A edges
and b̃ B edges. First we will calculate the number of pairs α and β that intersect on the
smallest number of vertices, given the number of edge intersections. The smallest numbers
of vertex intersections are ã + bb̃/2c V1 vertices, and db̃/2e V2 vertices. This is achieved
when both paths, α and β, begin with k− l consecutive A edges, and end with l B wedges,
and intersect on the first ã Â-edges, as well as the last b̃ B̂-edges. In this case, there are
2(k − 1)− (ã+ bb̃/2c) free V1 vertices for the two paths to choose, and b1 + b2 − db̃/2e free
V2 vertices for the paths to choose, which means that the total number of such pairs is

n2(k−1)−ã−bb̃/2cp2l−db̃/2e.

A similar calculation shows that number of pairs of paths that intersects on the least number
of vertices contributes the leading order term. This is because if two paths intersected on r
more vertices, then the total number of paths will decrease by a factor of lO(r)n−O(r). Thus
the total contribution in the correlation (in (14)) is:
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O(1)n2(k−l−1)−ã−bb̃/2cp2l−db̃/2e
( n
λ2

)ã(n
µ

)b̃
= O(1)n2(k−1)p2l

(
(λ2)−ã

(
µ2

γ

)−b̃/2
γdb̃/2e−b̃/2

)
.

Thus, summing over possible number of intersections, we have that:∑
α,β∈L(i1,i2,k,l)

Eλ,µ[pα · pβ]

≤ O(1)n2(k−1)p2l
∑

ã≤l−m

∑
b̃≤2m

(
(λ2)−ã

(
µ2

γ

)−b̃/2
γdb̃/2e−b̃/2

)

≤ O(1)n2(k−1)p2l(λ2)−(k−l)
(
µ2

γ

)−l
.

(16)

Thus, to achieve the bound in (14), we just need to show that (15) really is an upper bound
of (16). That amounts to showing(

k

l

)2

& (λ2)−(k−l)
(
µ2

γ

)−l
.

Let us now choose l
k = µ2/γ

λ2+µ2/γ
, and hence k−l

k = λ2

λ2+µ2/γ
. Note that we are assuming

λ2 + µ2/γ > 1, so λ2 > k−l
k , and µ2/γ > l

k . As a result, we see that(
k

l

)2

= exp

(
−2l log

l

k
− 2(k − l) log

k − l
k

+ o(1)

)
& exp

(
−l log

µ2

γ
− (k − l) log λ2

)
= (λ2)−(k−l)

(
µ2

γ

)−l
.

(17)

which is exactly what we wanted to show.

Note that we do not need to know λ2 and µ2

γ exactly to construct the estimator, because

(17) can still be satisfied as long as we chooce k and l such that 1− λ < l
k <

µ√
γ .Thus our

estimator allows for some room of misspecification.

6. Numerical experiments

In this section, we supplement our analytic results with some numerical experiments. In
particular, we explore the validity of our results in regimes beyond ones studied so far in
this paper.

Finite sample recovery performance using Belief Propagation Note that our re-
covery algorithm is based on counting SAWs of a given length on the graph. While this can
be accomplished in quasi-polynomial time, it is still not practical for networks with a few
thousand nodes. An attractive alternative is provided by iterative algorithms such as Belief
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propagation (Mezard and Montanari (2009)) or spectral algorithms (e.g. PCA). Indeed, in
the setting of community detection (i.e. µ = 0), the original conjectures for the weak recov-
ery threshold were based on the analysis of a linearized Belief propagation algorithm, which
directly yields a spectral algorithm based on the non-backtracking walk (Krzakala et al.
(2013)). The validity of this approach has been established rigorously in follow up work
(Bordenave et al. (2015)). On the other extreme, for λ = 0, natural spectral algorithms
for community recovery are derived based on the sample covariance matrix (Baik et al.
(2005)). Here, we numerically study the finite sample performance of a linearized Belief
Propagation algorithm proposed originally in (Deshpande et al., 2018, Section 6). Original
experiments in Deshpande et al. (2018) suggest that this algorithm attains the threshold for
weak recovery—establishing this rigorously is an important direction for future work. Here
we study the finite sample performance of this algorithm in depth (see Fig 2 for details).

The linearized Belief Propagation algorithm studied here is indeed different from the
SAW based algorithm discussed in the previous sections—yet they are conceptually inti-
mately related. For the sparse Stochastic Block Model (µ = 0), it is well known that the
naive spectral algorithm fails due to the presence of high-degree vertices. Computing the
largest eigenvalue is roughly equivalent to counting closed walks of a long length (of order
log n) and these walks are dominated by those passing through the high-degree vertices;
consequently, the largest eigenvalue depends solely on the highest degree vertices, and does
not capture the latent community structure. The SAW based algorithm (originally intro-
duced in Massoulié (2014)) and the non-backtracking walk address the same challenge in
slightly different ways. Both these algorithms restrict the class of closed walks to ameliorate
the harmful effects of high-degree vertices. We believe the linearized Belief Propagation al-
gorithm (analyzed in this section) and the SAW based algorithm discussed in the previous
sections are similarly related; the linearized Belief Propagation based algorithm has the
added benefit that it is computationally cheap and easily implementable. As mentioned
above, a formal proof of its statistical efficacy remains a direction for future enquiry.

Distributional assumptions on the covariates Recall our assumption Bi =
√

µ
nσiu+

Zi, where Zi ∼ N (0, Ip). It is natural to wonder about the necessity of this distributional
assumption. We explore this in two ways—

(i) We assume that the Zi are iid gaussian, but correlated. Specifically, we assume
that cov(Z1(k), Z1(l)) = ρ ∈ (0, 1), for ρ ∈ (0, 1), 1 ≤ k 6= l ≤ p. In this case,
Bi ∼ N (0,Σ + µ

nσσ
>), where Σkk = 1, Σkl = ρ for 1 ≤ k 6= l ≤ p. We run the

linearized Belief propagation algorithm described above, and test the null hypothesis.
The empirical performance of this test is shown in Fig 3. This suggests that for ρ > 0,
the problem is statistically easier than the ρ = 0 case.

(ii) We test the robustness of the gaussianity assumption of the covariates. For this exper-
iment, we sample the coordinates of Zi as independent random signs from Unif{±1},
instead of Gaussians. Thus the first two moments of the covariates matches the one
for the Gaussian distribution. Fig 4 plots the performance of the linearized Belief
Propagation algorithm. The empirical results suggest that the performance of this
algorithm does not depend strongly on the gaussianity of the covariates. We expect
similar results for our SAW based algorithms. We emphasize that our experiments do
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Figure 2: We fix γ = 4/5, and vary p from 50 to 1000. Each line corresponds to the choice

of µ =
√
3γ
2 , λ = 1

2 +h, where h = −0.06,−0.04,−0.02, 0, 0.02, 0.04, 0.06, going from bottom
to top. Note that h = 0 lies on the boundary of the detection curve. We plot the empirical
power of the linearized BP test introduced in Deshpande et al. (2018). We observe that
as n, p → ∞, the curves exhibit a thresholding behavior—for h > 0, the empirical power
converges to 1, while for h < 0 it is bounded away from 1. This shows that the finite sample
performance is in line with the theoretical predictions for moderate problem sizes.
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Figure 3: We set n = 800, p = 1000. The node covariates are drawn iid from an equi-
correlated gaussian model with correlation parameter ρ. We plot the empirical power of the
linearized BP test. The darker and lighter regions correspond to the power being closer to
zero and one respectively. The left figure corresponds to ρ = 0.001, while the right figure
corresponds to ρ = 0.01. Note that the ρ = 0.001 case is qualitatively similar to the ρ = 0
case studied in this paper. On the other hand ρ = 0.01 exhibits markedly different behavior,
and suggests that detection is substantially easier in this setting.
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Figure 4: Set n = 800, p = 1000. The node coordinates are iid Rademacher. We again plot
the empirical power of the linearized BP test. We see that the performance of the test is
exactly the same as that in the gaussian covariates setting.

not suggest that the statistical threshold for detection remains unchanged—in fact,
there might exist better tests which explicitly exploits the distributional knowledge
of the Zi vectors. However, our results point to the robustness of specific procedures,
which we believe is of practical significance, as real data might often not be truly
gaussian. Results on the universality of Approximate Message Passing algorithms
(Bayati et al. (2015); Chen and Lam (2021)) also suggest that the performance of
these algorithms should remain the same as long as the noise has suitably light tails.
We believe this could also be an interesting direction for future research.
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