Journal of Machine Learning Research 24 (2023) 1-52 Submitted 1/23; Revised 11/23; Published 11/23

Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev and Besov Spaces

Jonathan W. Siegel JWSIEGEL @ TAMU.EDU
Department of Mathematics

Texas A&M University

College Station, TX 77843 USA

Editor: Bharath Sriperumbudur

Abstract

Let Q =0, l]d be the unit cube in R¢. We study the problem of how efficiently, in terms of the
number of parameters, deep neural networks with the ReLU activation function can approximate
functions in the Sobolev spaces W*(L,(£2)) and Besov spaces By (L, (L)), with error measured in
the L,(Q) norm. This problem is important when studying the application of neural networks in
a variety of fields, including scientific computing and signal processing, and has previously been
solved only when p = g = e. Our contribution is to provide a complete solution forall 1 < p,g < e
and s > 0 for which the corresponding Sobolev or Besov space compactly embeds into L,. The
key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse
vectors. This enables us to obtain sharp upper bounds in the non-linear regime where p > g. We also
provide a novel method for deriving L,-approximation lower bounds based upon VC-dimension
when p < oo, Our results show that very deep ReLLU networks significantly outperform classical
methods of approximation in terms of the number of parameters, but that this comes at the cost of
parameters which are not encodable.

1. Introduction

Deep neural networks have achieved remarkable success in both machine learning (LeCun et al.,
2015) and scientific computing (Raissi et al., 2019; Han et al., 2018). However, a precise theoretical
understanding of why deep neural networks are so powerful has not been attained and is an active
area of research. An important part of this theory is the study of the approximation properties of deep
neural networks, i.e. to understand how efficiently a given class of functions can be approximated
using deep neural networks. In this work, we solve this problem for the class of deep ReLU neural
networks (Nair and Hinton, 2010) when approximating functions lying in a Sobolev or Besov space
with error measured in the L,-norm. We remark that the ReLU activation functions is very widely
used and is a major driver of many recent breakthroughs in deep learning (Goodfellow et al., 2016;
LeCun et al., 2015; Nair and Hinton, 2010).

Let us begin by giving a description of the Sobolev function classes, which are widely used in
the theory of solutions to partial differential equations (PDEs) (Evans, 2010), and the Besov function
classes, which are widely used in approximation theory (DeVore and Lorentz, 1993), statistics
(Donoho and Johnstone, 1995, 1998), and signal processing (DeVore et al., 1992).

Let Q C R be a bounded domain, which we take to be the unit cube Q = [0, 1] in the following.
Due to a variety of extension theorems for Sobolev and Besov spaces (see for instance Evans

(©2023 Jonathan W. Siegel.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/23-0025.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0025.html

SIEGEL

(2010); Di Nezza et al. (2012); DeVore and Lorentz (1993); Whitney (1934)), this is not a significant
restriction and our results will apply to many other sufficiently well-behaved domains. We denote by
L,(Q) the set of functions f for which the L,-norm on is finite, i.e.

1/p
11|z, @ = </Q\f(x)|1’dx> < oo,

When p = oo, this becomes || f||;_(q) = esssup,cq | f(x)|. Suppose that s > 0 is a positive integer.
Then f € W¥(L,(Q)) is in the Sobolev space (see Demengel et al. (2012), Chapter 2 for instance)
with s derivatives in L, if f has weak derivatives of order s and

Hqu (Ly(Q)) T Hf”zq(g) + Z HDaszq(Q) < o

|ot|=k

Here o = (04)?_, with @; € Z>(is a multi-index and || = Y, @ is the total degree. The W*(L,(Q))
semi-norm is defined by

1/q
[lwsey@) = ()3 HD“sz‘fq(g)) : (1.1)
|ee|=k

and the standard modifications are made when g = co.

When s > 0 is not an integer, we write s = k+ 6 with k > 0 an integer and 6 € (0,1). The
Sobolev semi-norm is defined by (see Demengel et al. (2012) Chapter 4 or Di Nezza et al. (2012)
Chapter 1 for instance)

o= [DD
(L) Javo x — y|d+64

dxdy (1.2)

when 1 < g < o and

D% f(x) — D%
| flws(z.()) := sup sup DS (x) 4 Ol
|ot|=kx,yeQ |x — y|

We define the Sobolev norm by

1 sz, @) = I,)+ 1T 1,0

with the usual modification when g = co. We remark that in the case of non-integral s these spaces
are also called Sobolev-Slobodeckij spaces. Sobolev spaces are widely used in PDE theory and
a priori estimates for PDE solutions are often given in terms of Sobolev norms (Evans, 2010).
For applications of neural networks to scientific computing it is thus important to understand how
efficiently neural networks can approximate functions from W*(L,(Q)).

Next, we consider the Besov spaces, which we define in terms of moduli of smoothness. Given a
function f € L,(Q) and an integer k, the k-th order modulus of smoothness of f is given by

o (f,1)g = sup AL F|z, (0u)> (1.3)

[h|<t

where i € RY, the k-th order finite difference AI;; is defined by

k j k .
NF@ =Y (1) (j)ﬂxﬂh),

J=0

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

and the L, norm is taken over the set Qy;, := {x € Q, x+kh € Q} to guarantee that all terms of the
finite difference are contained in the domain Q. Fix an integer k > s. The Besov space B)(L,(Q)) is
defined via the norm

1£llBs () = 1 fllz,) + [flBsz, ()

with Besov semi-norm given by

e wk(fat)r tr
Bz, () = < /0 tsquf>

when r < o and by

| flB(L, () := supt " @k(f.t)g,
t>0
when r = co. It can be shown that different choices of k > s result in equivalent norms (DeVore and
Lorentz, 1993). One can think of the Besov space By (L,(Q)) roughly as being a space of functions
with s derivatives lying in L,, similar to the Sobolev space W*(L,(£2)), with the additional index r
providing a finer gradation. Indeed, a variety of embedding and interpolation results relating Besov
spaces and Sobolev spaces are known (see for instance DeVore and Popov (1988); DeVore and
Sharpley (1984); Yuan et al. (2010); Kufner et al. (1977)).

Besov spaces are central objects in approximation theory due to their close connection with
approximation by trigonometric polynomials (on the circle) and splines (DeVore and Lorentz, 1993;
Petrushev, 1988). In fact, there are equivalent definitions of the Besov semi-norms in terms of
approximation error by trigonometric polynomials and splines. They are also closely connected to
the theory of wavelets (Daubechies, 1992), and one can give equivalent definitions of the Besov
norms in terms of the wavelet coefficients of f as well (DeVore et al., 1992). For this reason, Besov
spaces play an important role in signal processing (Chambolle et al., 1998; Donoho et al., 1998)
and statistical recovery of functions from point samples (Donoho and Johnstone, 1995, 1998), for
instance.

Our goal is to study the approximation of Sobolev and Besov functions by neural networks. One
of the most important classes of neural networks are deep ReL.U neural networks, which we define
as follows. We use the notation Ay 4, to denote the affine map with weight matrix W and offset, or
bias, b, i.e.

AW,b (x) = Wx+b.

When the weight matrix W is an k x n and the bias b € RX, the function Awp: R" — Rk maps R" to
RX. Let o denote the ReLU activation function (Nair and Hinton, 2010), specifically

0 x<0
o(x) =
x x>0.

The ReLLU activation function ¢ has become ubiquitous in deep learning in the last decade and is
used in most state-of-the-art architectures. Since ¢ is continuous and piecewise linear, it also has the
nice theoretical property that neural networks with ReLLU activation function represent continuous
piecewise linear functions. This property has been extensively studied in the computer science
literature (Arora et al., 2018; Wang and Sun, 2005; Serra et al., 2018; Hanin and Rolnick, 2019) and
has been connected with traditional linear finite element methods (He et al., 2020).

SIEGEL

When x € R”, we write o(x) to denote the application of the activation function o to each
component of x separately, i.e. 6(x); = o(x;). The set of deep ReLU neural networks with width W
and depth L mapping R¢ to R is given by

W.L /mod kY .__
r (R R) = {AWLJ?L OGOAWL—IabL—l ©Go0o--: OGOAthl OGOAW07b0}7

where the weight matrices satisfy W; € REW, Wy € RY*4 and Wy,...,W;_; € R"*W and the
biases satisfy by, ...,bp—1 € RY and b, € R*. Notice that our definition of width does not include the
input and output dimensions and only includes the intermediate layers. When the depth L =0, i.e.
when the network is an affine function, there are no intermediate layers and the width is undefined,
in this case we write YO(R“, R¥). We also use the notation

YW’L (Rd) = TW7L (Rd, R)

to denote the set of deep ReLU neural networks with width W and depth L which represent scalar
functions. We note that our notation only allows neural networks with fixed width. We do this to
avoid excessively cumbersome notation. We remark that the dimension of any hidden layer can
naturally be expanded and thus any fully connected network can be made to have a fixed width, so
that this restriction is without any significant loss of generality.

The problem we study in this work is to determine optimal L,-approximation rates

sup (inf)”f_fL”LP(Q)) and sup (inf)||f_fL||Lp(Q)> (1.4)

I s gy <1 \JEETHE GRS 1130 o <1 ST GRS

for the class of Sobolev and Besov functions using very deep ReLU networks, i.e. using networks
with a fixed (large enough) width W and depth L — co. We will prove that this gives the best
possible approximation rate in terms of the number of parameters. One can more generally consider
approximation error in terms of both the width W and depth L simultaneously (Shen et al., 2022), but
we leave this more general analysis as future work.

This problem has been previously solved (up to logarithmic factors) in the case where p = g = oo,
where the optimal rate is given by

fLerinVl-{(Rd) 1f = fellei@) < CllF llwsroon L2/ (1.5)
for a sufficiently large but fixed width W. Specifically, this result was obtained for 0 < s < 1 in
Yarotsky (2018) and for all s > O (up to logarithmic factors) in Lu et al. (2021). An analogous result
also holds for Bf(L.(Q)) for 1 < r < oo. Further, the best rate when both the width and depth vary
(which generalizes (1.5)) has been obtained in Shen et al. (2022).

The method of proof in these cases uses the bit-extraction technique introduced in Bartlett
et al. (1998) and developed further in Bartlett et al. (2019) to approximate piecewise polynomial
functions on a fixed regular grid with N cells using only O(y/N) parameters. This enables an
approximation rate of CN 2%/ in terms of the number of parameters N, which is significantly faster
than traditional methods of approximation. This phenomenon has been called the super-convergence
of deep ReLLU networks (Yarotsky, 2018; Shen et al., 2022; DeVore et al., 2021; Daubechies et al.,
2022b). The super-convergence has a limit, however, and the rate (1.5) is shown to be optimal using
the VC-dimension of deep ReLU neural networks (Yarotsky, 2018; Shen et al., 2022; Bartlett et al.,
2019).

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

In this work, we generalize this analysis to determine the optimal approximation rates (1.4) for
all 1 < p,g <eoands >0, i.e. to the approximation of any Sobolev or Besov class in L,,(Q), with
the possible exception of the Sobolev embedding endpoint (described below). This was posed as a
significant open problem in DeVore et al. (2021). We remark that the existing upper bounds in L.
clearly imply corresponding upper bounds in L, for p < . The key problem lies in extending the
upper bounds to that case where g < oo, in which case we must approximate a larger function class.
A further problem is the extension of the lower bounds to the case p < oo, in which we are measuring
error in a weaker norm.

A necessary condition that we have any approximation rate in (1.4) at all is for the Sobolev space
W*(L,4(€2)) or Besov space Bj(L,(€2) to be contained in L,, i.e. W*(L,(Q)),B;(L,(22) C L,(Q).
Indeed, any deep ReLU neural network represents a continuous function and so if f ¢ L,(Q) it
cannot be approximated at all by deep ReLLU networks. We will in fact consider the case where
we have a compact embedding W*(L,(L2)), B} (L,() CC L,(Q). Here the symbol A CC B for two
Banach spaces A and B means that A is contained in B and the unit ball of A is a compact subset of
B. This compact embedding is guaranteed for both Besov and Sobolev spaces by the strict Sobolev
embedding condition

————— <0. (1.6)

We determine the optimal rates in (1.4) under this condition. Specifically, we prove the following
Theorems. The first two give an upper bound on the approximation rate by deep ReLU networks on
Sobolev and Besov spaces, respectively.

Theorem 1 Let Q = [0,1]¢ be the unit cube in R and let 0 < s < oo and 1 < p,q < . Assume that

% — % < 5, which guarantees that we have the compact embedding

W (L,(Q)) CC LP(Q).

Then we have that
inf)Hf*fLHL,,(Q) < Cllfllws(z,) L2/

fLEY25dH3LL(RA

for a constant C := C(s,q,p,d) < o.

Theorem 2 Let Q = [0, 1]¢ be the unit cube in R and let 0 < s < o and 1 < r,p,q < oo. Assume
that é — i < 35, which guarantees that we have the compact embedding

BI(L,(Q)) CC L7 (Q).

Then we have that
inf)Hf_fLHL,,(Q) < Cl|fllg(r, @pL >

fL€Y25d+31.L (]Rd

for a constant C := C(s,r,q,p,d) < oo.

Note that the width W = 25d 4 31 of our networks are fixed as L — oo, but scale linearly with the
input dimension d. We remark that a linear scaling with the input dimension is necessary since if
d > W, then the set of deep ReLU networks is known to not be dense in C(Q) (Hanin, 2019). The
next Theorem gives a lower bound which shows that the rates in Theorems 1 and 2 are sharp in terms
of the number of parameters.

SIEGEL

Theorem 3 Let r,p,q > 1 and s > 0, Q = [0, 1]¢ be the unit cube, and W,L > 1 be integers. Then
there exists an f with || fllws @) < 1 and || f|| sy, @) < 1 such that

inf — > C(p,d,s) min{W2L*log(WL),W3L*} /4.
fWLeYW-L(]R'/)Hf fwillr,@ = C(p,d,s)min{ g(WL) }

We remark that if the embedding condition (1.6) strictly fails, then a simply scaling argument shows
that W¥(L,(Q)),B5(Ly(Q)) € L,(Q) and we cannot get any approximation rate. On the boundary
where the embedding condition (1.6) holds with equality it is not a priori clear whether one has an
embedding or not (this depends on the precise values of s, p,q and r). Consequently this boundary
case is much more subtle and we leave this for future work.

The key technical difficulty in proving Theorem 1 is to deal with the case when p > ¢, i.e. when
the target function’s (weak) derivatives are in a weaker norm than the error. Classical methods of
approximation using piecewise polynomials or wavelets can attain an approximation rate of CN /¢
with N wavelet coefficients or piecewise polynomials with N pieces. When p < g this rate can be
achieved by linear methods, while for p > ¢ nonlinear, i.e. adaptive, methods are required. For the
precise details of this theory, see for instance DeVore and Lorentz (1993); Lorentz et al. (1996);
DeVore (1998).

Thus, in the linear regime where p < g we can use piecewise polynomials on a fixed uniform
grid to approximate f, while in the non-linear regime we need to use piecewise polynomials on
an adaptive (i.e. depending upon f) non-uniform grid. This greatly complicates the bit-extraction
technique used to obtain super-convergence, since the methods in Yarotsky (2018); Shen et al. (2022);
Shijun (2021) are only applicable to regular grids. The tool that we develop to overcome this difficulty
is a novel bit-extraction technique, presented in Theorem 14, which optimally encodes sparse vectors
using deep ReLLU networks. Specifically, suppose that x € Z" is an N-dimensional integer vector
with ¢'-norm bounded by

x| < M.

In Theorem 14 we give (depending upon N and M) a deep ReLU neural network construction which
optimally encodes x.

We remark, however, that super-convergence comes at the cost of parameters which are non-
encodable, i.e. cannot be encoded using a fixed number of bits, and this makes the numerical
realization of this approximation rate inherently unstable. In order to better understand this, we recall
the notion of metric entropy first introduced by Kolmogorov. The metric entropy numbers €y (A) of a
set A C X in a Banach space X are given by (see for instance Lorentz et al. (1996), Chapter 15)

en(A)y = inf{e > 0: A is covered by 2" balls of radius €}.

An encodable approximation method consists of two maps, an encoding map E : A — {0,1}"
mapping the class A to a bit-string of length N, and a decoding map D : {0,1}¥ — X which maps
each bit-string to an element of X. This reflects the fact that any method which is implemented on a
classical computer must ultimately encode all parameters using some number of bits. The metric
entropy numbers give the minimal reconstruction error of the best possible encoding scheme.

Let U*(Ly(Q)) := {f : |Ifllws(z,(@)) < 1} denote the unit ball of the Sobolev space W*(L,(L)).
The metric entropy of this function class is given by

en (U (Lg(Q)))1r(e) = N~/

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

whenever the Sobolev embedding condition (1.6) is strictly satisfied. This is known as the Birman-
Solomyak Theorem (Birman and Solomyak, 1967). The same asymptotics for the metric entropy
also hold for the unit balls in the Besov spaces B} (L,(€)) if the compact embedding condition (4.10)
is satisfied. So the approximation rates in Theorems 1 and 2 are significantly smaller than the metric
entropy of the Sobolev and Besov classes. This manifests itself in the fact that in the construction
of the upper bounds in Theorems 1 and 2 the parameters of the neural network cannot be specified
using a fixed number of bits, but rather need to be specified to higher and higher accuracy as the
network grows (Yarotsky and Zhevnerchuk, 2020), which is a direct consequence of the bit-extraction
technique.

Concerning the lower bounds, the key difficulty in proving Theorem 3 is to extend the VC-
dimension arguments used to obtain lower bounds when the error is measured in L. to the case when
the error is measured in the weaker norm L, for p < oo. We do this by proving Theorem 22, which
gives a general lower bound for L,-approximation of Sobolev spaces by classes with bounded VC
dimension. We have recently learned of a different approach to obtaining L, lower bounds using
VC-dimension (Achour et al., 2022), which is more generally applicable but introduces additional
logarithmic factors in the lower bound.

We remark that there are other results in the literature which obtain approximation rates for deep
ReLU networks on Sobolev spaces, but which do not achieve superconvergence, i.e. for which the
approximation rate is only CN —s/d (up to logarithmic factors), where N is the number of parameters
(Yarotsky, 2017; Giihring et al., 2020). In addition, the approximation of other novel function classes
(other than Sobolev spaces, which suffer the curse of dimensionality) by neural networks has been
extensively studied recently, see for instance Daubechies et al. (2022b); Petersen and Voigtlaender
(2018); Daubechies et al. (2022a); Siegel and Xu (2020, 2022a,b); Bach (2017); Klusowski and
Barron (2018).

Finally, we remark that although we focus on the ReLLU activation function due to its popularity
and to simplify the presentation, our results also apply to more general activation functions as well.
Specifically, the lower bounds in Theorem 3 based upon VC-dimension hold for any piecewise
polynomial activation function. The upper bounds in Theorems 1 and 2 hold as long as we can
approximate the ReLU to arbitrary accuracy on compact subsets (i.e. finite intervals) using a network
with a fixed size. Using finite differences this can be done for the ReLU* activation functions, defined

by
0 x<0
Ok(x) = xXx x>0

when k > 1 for instance. In fact, a similar construction using finite differences can approximate the
ReLU as long as the activation function is a continuous piecewise polynomial which is not identically
a polynomial.

The rest of the paper is organized as follows. First, in Section 2 we describe a variety of
deep ReLU neural network constructions which will be used to prove Theorem 1. Many of these
constructions are trivial or well-known, but we collect them for use in the following Sections. Then,
in Section 3 we prove Theorem 14 which gives an optimal representation of sparse vectors using
deep ReLU networks and will be key to proving superconvergence in the non-linear regime p > ¢. In
Section 4 we give the proof of the upper bounds in Theorems 1 and 2. Finally, in Section 5 we prove
the lower bound Theorem 3 and also prove the optimality of Theorem 14. We remark that throughout
the paper, unless otherwise specified, C will represent a constant which may change from line to line,

SIEGEL

as is standard in analysis. The constant C may depend upon some parameters and this dependence
will be made clear in the presentation.

2. Basic Neural Network Constructions

In this section, we collect some important deep ReLLU neural network constructions which will be
fundamental in our construction of approximations to Sobolev and Besov functions. Many of these
constructions are well-known and will be used repeatedly to construct more complex networks later
on, so we collect them here for the reader’s convenience.

We being by making some fundamental observations and constructing some basic networks.
Much of these are trivial consequences of the definitions, but we collect them here for future reference.
We begin by noting that by definition we can compose two networks by summing their depths.

Lemma 4 (Composing Networks) Suppose Li,L, > 1 and that f € YWl (R4 R¥) and g € YW12 (RF RY).
Then the composition satisfies
g(f(x) e YWh*E (R R).

Further, if f is affine, i.e. f € YO(RY,R¥), then

g(f(x)) € Y"2(RYR').
Finally, if instead g is affine, i.e. g € YO(R¥,R?) then

g(f(x)) e YVH(RR)
We remark that combining this with the simple fact that we can always increase the width of a
network, we can apply Lemma 4 to networks with different widths and the width of the resulting
network will be the maximum of the two widths. We will use this extension without comment in the

following.
Next, we give a simple construction allowing us to apply two networks networks in parallel.

Lemma 5 (Concatenating Networks) Let d = d| +d, and k = k) + ky with d;, k; > 1. Suppose that
fi e YWLL(RA R and f, € YW2L(RE R, We view RY = RY @ R% and R = RM @ R*2, Then
the function f = fi @ f> : RY — R* defined by

(1 ®12) (1 ©x2) = fi(x1) D fa(x2)
satisfies fi ® fr € YW+l (R4 RK),
Proof This follows by setting the weight matrices W; = W} & W? and b; = b} © b?, where W}, b}

1771

and Wiz, bi2 represent the parameters defining f; and f, respectively. Recally that the direct sum of
A0
pon-(39)

matrices is simply given by

Note that this result can be applied recursively to concatenate multiple networks. Combining this
with the trivial fact that the identity map is in Y>' (R, R) we see that a network can be applied to only
a few components of its input.

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Lemma 6 Let m > 0 and suppose that f € YWL(RY, R¥). Then the function f ®1I on R4 defined
by

(fehx®x) = f(x1)Dx
satisfies f @1 € YWHImL(Rd+m Rh+m),

Using these basic lemmas we obtain the well-known construction of a deep network which
represents the sum of a collection of smaller networks.

Proposition 7 (Summing Networks) Let f; € YW'.Li(RY R¥) for i = i,...,n. Then we have

ifl c TW+2d+2k’L(Rd,Rk)7

i=1
where L=Y7_|L;.

For completeness we give a detailed proof in Appendix A. An important application of this is the
following well-known result showing how piecewise linear continuous functions can be represented
using deep networks.

Proposition 8 Suppose that f: R — R is a continuous piecewise linear function with k pieces. Then
feTI(R).

For the readers convenience, we give the proof in Appendix A.

Next we describe how to approximate products using deep ReLU networks. This will be necessary
in the following to approximate piecewise polynomial functions. The method for doing this is based
upon the construction in Telgarsky (2016) and was first applied to approximating smooth functions
using neural networks in Yarotsky (2017). This construction has since become an important tool in
the analysis of deep ReLU networks and has been used by many different authors (DeVore et al.,
2021; Lu et al., 2021; Petersen and Voigtlaender, 2018). For the readers convenience, we reproduce a
complete description of the construction in Appendix B.

Proposition 9 (Product Network, Proposition 3 in Yarotsky (2017)) Let k > 1. Then there exists
a network fi € Y'3+3(R2) such that for all x,y € [—1,1] we have

|fi(x,y) —xy] < 6-47F.

The key to obtaining superconvergence for deep ReL.U networks is the bit extraction technique,
which was first introduced in Bartlett et al. (1998) with the goal of lower bounding the VC dimension
of the class of neural networks with polynomial activation function. This technique as also been used
to obtain sharp approximation results for deep ReLU networks (Yarotsky, 2018; Shen et al., 2022).
In the following Proposition, which is a minor modification of Lemma 11 in Bartlett et al. (2019), we
construct the bit extraction networks that we will need in our approximation of Sobolev and Besov
functions. For the readers convenience, we give the complete proof in Appendix C.

Proposition 10 (Bit Extraction Network) Letn > m > 0 be an integer. Then there exists a network
Fum € YP4M(R,R?) such that for any input x € [0, 1] with at most n non-zero bits, i.e.

x=0.x1x2- X, 2.1
with bits x; € {0,1}, we have
. 041X
fn,m(x) - <X1X2 .. xm0> .

SIEGEL

Finally, in order to deal with the case when the error is measured in L., we will need the following
technical construction. We construct a ReLU network which takes an input in R¢ and returns the k-th
largest entry. The first step is the following simple Lemma, whose proof can be found in Appendix
A.

Lemma 11 (Max-Min Networks) There exists a network p € Y+ (R? R?) such that

P((3) = ().

Using these networks as building blocks, we can implement a sorting network using deep ReLU
neural networks.

Proposition 12 Let k > 1 and d = 2* be a power of 2. Then there exists a network s € Y*L(RY R?)
where L = (kgl) which sorts the input components.

Note that the power of 2 assumption is for simplicity and is not really necessary. It is also known
that the depth (k;rl) can be replaced by a multiple Ck where C is a very large constant (Ajtai et al.,
1983; Paterson, 1990), but this will not be important in our argument.

Proof Suppose that (i1, j1), ..., (is-1, jox-1) is a pairing of the indices of R?. By Lemma 11 and
Lemma 5, there exists a network g € Y441 (R4 RY) which satisfies forall [= 1,....k— 1

g(x); = max(xinxj/)v g(X).,', = min(xizvxj/)v

i.e. which sorts the entries in each pair. By a well-known construction of sorting networks (for

instance bitonic sort (Batcher, 1968)), composing (kgl) such functions can be used to sort the input.

Finally, we note that by selecting a single output (which is an affine map), we can obtain a network
which outputs any order statistic.

Corollary 13 Let 1 < 1 <d and d = 2" is a power of 2. Then there exists a network g € Y*L(R?)
with L = (k;“]) such that

gT(x) = X(1)>

where x(q) is the T-th largest entry of x.

3. Optimal Representation of Sparse Vectors using Deep ReLLU Networks

In this section, we prove the main technical result which enables the efficient approximation of
Sobolev and Besov functions in the non-linear regime when ¢ < p. Specifically, we have the
following Theorem showing how to optimally represent sparse integer vectors using deep ReLU
neural networks.

Theorem 14 Let M > 1 and N > 1 and x € Z" be an N-dimensional vector satisfying
X[<M. 3.1

If N > M, then there exists a neural network g € Y'7L(R,R) with depth

L<Cy/M(1+1og(N/M))

10

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

which satisfies g(n) = x, forn=1,...,N.
Further, if N < M, then there exists a neural network g € Y'7L(R,R) with depth

L<C+/N(1+log(M/N))
which satisfies g(n) = x, forn=1,...,N.
Before proving this theorem, we explain the meaning of the result and give some intuition. We let
Snm = {x€Z", |x|[n <M} (3.2)

denote the set of integer vectors which we wish to encode. We can estimate the cardinality of this set
as follows. Using a stars and bars argument we see that

N+M N+M
zX <M}| = = .
xe 2y, o <o = (5" = (Y5)

Further, the signs of each non-zero entry of the above set can be chosen arbitrarily. The number of
such choices of sign is equal to the number of non-zero entries and is at most min{M,N}. This gives

the bound
M (N+M >
\SN,M|S{2 (') N=M

VMY N <M.

Taking logarithms and utilizing the bound from Lemma 24 (proved later), we estimate

M(1+log(N/M)) N>M

(3.3)
N(1+log(M/N)) N<M,

10g ’SN,M‘ S C{

and this controls the number of bits required to encode the set Sy . Theorem 14 implies that
using deep ReL.U neural networks, the number of parameters required is the square root of the
number of bits required for such an encoding. This is analogous to the original application of bit
extraction (Bartlett et al., 1998) and underlies the superconvergence phenomenon. Finally, we note
that in Theorem 25 from Section 5 we prove that Theorem 14 itself is optimal as long as M is not
exponentially small or exponentially large relative to N.

Proof of Theorem 14 Let M > 1 and N > 1 be fixed. There are two cases to consider, when N > M
and when N < M. The key to the construction in both cases will be an explicit length k binary
encoding of the set Sy s defined in equation (3.2).

By a length k binary encoding we mean a pair of maps:

o E:Syvu— {0, 115k (an encoding map which maps Sn M to a bit-string of length at most k)

e D:{0,1}5k — Sn.m (a decoding map which recovers x € Sy y from a bit-string of length at
most k)

which satisfy
D(E(x)) =x.

Note that the bound in equation (3.3) implies that there exists such an encoding as long as

k>C

M(1+1log(N/M)) N>M
N(1+log(M/N)) N<M.

11

SIEGEL

However, in order to construct deep ReLU networks which prove Theorem 14, we will need to
construct encoding and decoding maps E and D which are given by an explicit, simple algorithm.
These will then be used to construct the neural network g.

Let us begin with the first case, when N > M. In this case, we set k = 2M (3 + [log(N/M)])
(note that all logarithms are taken with base 2). The encoding map E is defined as

E(x) = fiti fotz -+ frig,

the concatenation of R < 2M blocks consisting of f; € {0, 1}'*+1°¢™/M)1 and 1, € {0,1}>. The f;-bits
encode an offset in {0, 1,..., [N/M} (via binary expansion), and the #;-bits encode a value in {0, +1}
(via0 =00, 1 =10, and —1 = 01). The f; and ¢; are determined from the input x € Sy »s by Algorithm
1.

It is clear that the number of blocks R produced by Algorithm 1 is at most 2M since in each
round of the while loop either f; = [N/M] (which can happen at most M times before the index j
reaches the end of the vector) or the entry r; is decremented (which can happen at most M times
since ||x]|1 < M).

Algorithm 1 Small ¢'-norm Encoding Algorithm

Input: x € ZV, ||x||p <M
1: Set j =0, r = x {Set pointer right before the beginning of the input x and the residual to x}
2: Seti=1
3: whiler # 0 do

4 I=min{i: r; # 0} {Find the first non-zero index in the residual }

5. if I — j < [N/M] then {If we can make it to the next non-zero index, do so}
6: fi=1l—j

7: =1

8: else {Otherwise go as far as we can}

o fi=[N/M]
10: Jj=Jj+[N/M]
11: endif
12: if j = then {If we are at the next non-zero index, #; captures its sign}
13: t; = sgn(r;)
14: r; =r; —t; {This decrements ||r| ;1 which can happen at most M times}

15: else {This can only happen if f; = [N/M], which can occur at most M times}
16: ;=0

17: end if
18: i=i+1
19: end while

Next, we consider the case N < M. In this case we set k = 2N (3 + [log(M/N)]), and define the
encoding map E via
E(x) =t fitafa - trfR,

i.e. E(x) is the concatenation of R < 2N blocks consisting of ; € {0, 1}2+°eM/N)1 and f; € {0,1}.
The f;-bits encode an offset in {0, 1}, and the #;-bits encode a value in {—[M/N],...,[M/N]|}. Here
the first bit of each #; determines its sign, while the remaining 1 + [log(M/N)] bits consist of the

12

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

binary expansion of its magnitude (which lies in {0, ...,[M/N|}). The t; and f; are determined from
the input x € Sy » by Algorithm 2.

It is clear that the number of blocks R produced by Algorithm 2 is at most 2N since in each round
of the while loop either the entry r; is decremented by at least [M /N (which can happen at most
N times since ||x||,;1 < M), or the entry r; is zeroed out (which can happen at most N times before
r = 0 since there are only N entries).

Algorithm 2 Large ¢'-norm Encoding Algorithm

Input: x € ZV, ||x||p <M
1: Set j =0, r =x {Set pointer right before the beginning of the input x and the residual to x}
2: Seti=1
3: while r # 0 do

4 if j = 0 or r; = 0 then {If the value at the current index is 0, then shift the index }
5: fi=1

6: j=Jj+1

7. else

8 fi=0

9: endif
10: if [rj| < [M/N] then {If we can fully capture the current value, do so}
11: li=Trj
12: r; = 0 {This zeros out an entry, which can happen at most N times }
13: else {Otherwise capture as much as we can}
14: ti =sgn(r;)[M/N]
15: r; =r; —t; {This reduces ||r||,: by at least [M/N] which can happen at most N times}
16: end if

17: i=i+1

18: end while

In both cases, the decoding map D is given by Algorithm 3. It is easy to verify that Algorithm 3
reconstructs the input x from the output of either Algorithm 1 or 2.

Algorithm 3 Decoding Algorithm
Input: A bit string fi1 - -- frtr
1: Setx =0 and j =0 {Start with the 0 vector}
2: fori=1,...,.Rdo
3: j=j+ f; {Shift index by f;}
4. x; =X;+1; {Increment value by 7;}
5: end for

We now show how to use these algorithms to construct an appropriate deep ReLU neural network
g. Let S be a threshold parameter, to be chosen later.

Given a vector x € Z", we decompose it into two pieces x = xZ +x* (here x? represents the ‘big
part and x° the ‘small’ part). We define

XB: |Xi‘ X; ZS
' 0 X, <S

13

2

SIEGEL

and

< — 0 X,'ES
' |Xl" x; < S

The large part x5 has small support and so can be efficiently encoded as a piecewise linear function.
Specifically, the ¢'-norm bound (3.1) on x implies that the support of x? is at most of size
B
B Xl X[l M
X, A < ——— < — < —
s = £ 0y < Pt < B0 < 2

This means that there is a piecewise linear function with at most 3M /S pieces which matches the
values of x5, so by Proposition 8 there exists a network

gB € YS’L(R)

with depth bounded by L < 3M/S such that gg(n) = x5 forn=1,...,N.

The heart of the proof is an efficient encoding of the small part x°. This requires the encoding
and decoding Algorithms 1, 2 and 3. We consider first the case M < N, which is captured in the
following Proposition.

Proposition 15 Let M < N and suppose that x € ZV and satisfies ||x||; < M and ||x||¢ < S. Then
there exists a g € Y'5L(R) such that g(n) = x, forn=1,...,N with

L < 8M/S+8S(5+ [log(N/M)])+4.

The proof is quite technical, so let us give a high-level description of the ideas first. The idea is to
take the execution of the decoding Algorithm 3 which reconstructs x and to divide it into blocks of
length on the order of S. Each block will start at a point i in the algorithm at which x; = 0 before
step 4 of the loop in 3. During the execution of this block, the index j increases and reaches a larger
value at the end of the block. All of the entries x,, for n between these values is reconstructed during
the given block of the reconstruction algorithm.

We now construct three networks. Given an input index 7, find the block during which the value
X, is reconstructed. On the input index n, one network outputs the value of j at the beginning of
the block, and another network outputs a real number whose binary expansion contains the bits
consumed during this block. Both of these can be implemented using piecewise linear functions
whose number of pieces is proportional to the number of blocks. The final network extracts the bits
from the output of the second network and implements the execution of algorithm 3 in this block to
reconstruct the value of x.

Before giving the detailed proof of Proposition 15, let us complete the proof of Theorem 14 in
the case M < N. We apply Proposition 15 to the small part x* to get a network g°. Then we use
Proposition 7 to add this network to the network g representing the large part x? to get a network
g € T'E(R) with

L<11M/S+8S(5+ [log(N/M)])+4

such that g(n) = x, for n = 1,...,N. Finally, we choose S optimally, namely

o M
|/ 5+ log(N/M)T”

14

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

to get L < Cy/M(1+1og(N/M)) as desired.

Proof of Proposition 15 Let fi1; - - - frtg be the output of the encoding Algorithm 1 run on input x°.
Let

F:={ie{l,...R}: f,=0}.

We decompose the set F into intervals, i.e.

T
F=J[Bun Unl,
m=1

where [I,J]:={I,I+1,....,J} for I <J and By > Uy + 1.

Note that since ||x||~ < S, the length of these intervals is strictly less than S, i.e. Uy, — B, +1 < S
for m = 1,...,7. This holds since the encoding Algorithm 1 stays at the same index for all steps
i € [Bm,Uy). Hence this index is decremented U,, — B,, + 1 times and so this quantity must be smaller
than S.

Let p = [R/S] and consider steps io, ..., i, defined by i, = R+ 1 (the end of the algorithm) and

o [1+kS 1+kSEF
1l =
T Bu—1 14KkS € [Bm,Upl,

fork=0,...,p — 1. (Note that f; # 0 since the index j starts at 0 in algorithm 1. Thus 1 ¢ F and so
io=1.)

The bound U,, — B;, + 1 < S on the length of the interval [B,,, U,,] implies that iy > 1+ (k—1)S.
This implies that i, < i; and also that the gaps satisfy iy — i1 <2Sforallk=1,...,p.

Next, let indices ji for k =0,..., p — 1 be the values of the index j at the beginning of step i in the
decoding Algorithm 3. We also set j, = N. Since by construction the intervals are not consecutive,
i.e. By+1 > Uy + 1, the steps i ¢ F, i.e. fi, > 0. This means that ji_; < ji forallk=1,....p.

Observe that the steps i, and indices j; have been constructed such that for an integer » in the
interval ji <n < ji11, the value x,, is only affected during the steps iy, ..., ix+1 — 1 in the reconstruction
Algorithm 3. Further, the length of each block satisfies iy — iy < 2.

Next, we construct two piecewise linear functions J and R as follows. For integersn =1,..., N,
we set

J(n) = ji for jx <n < jii1,

and
R(n) =ry for ji <n< jiyr,

where
re=0.fili, - fig —1ti, -1
is the real number whose binary expansion contains the encoding of x from step i to iy — 1
(followed by zeros). Both J and R take at most p + 1 different values and hence can be implemented by
piecewise linear functions with at most 2p + 1 pieces. Thus, by Proposition 8 we have J,R € Y>?P (R).
We being our network construction as follows. We begin with the affine map

X
x— | x] €Y' (R,R?),
X

15

SIEGEL

and use Lemmas 4 and 6 to apply J to the first component and then apply R to the second component
to get

J(x) J(x
x—| x | = |Rx) | e?*R,RY.
X
Composing with the affine map
X =X
v = vy | eXY®LRY,
Z 0

x— | Rx) | €Y (R,R). (3.4)

Applied to an integer ji < n < jiy1, this network maps

n— Ji
n— O‘ﬁktik v 'fik+1*1tl'k+1*1
0

Thus the first entry is the gap between n and the index j at the beginning of step iy and the last entry
is the value of x,, at the beginning of step i, while the middle entry contains the bits used by the
algorithm between steps iy, ..., ix+1 — 1. The proof will now be completed by constructing a network
which applies a single step of the decoding Algorithm 3 to each of these entries, this is collected in
the following technical Lemma.

Lemma 16 Given positive integers o and B there exists a network g € Y'34*F16(R3 R3) such that

x x—fi
g:10.fitr---fit | = | O.fata--- fitk
Y L+n0(x—fi)

whenever x € Z, k < B and len(f;) = a. Here the f; denote integers encoded via binary expansion
and len(f;) is the length of this expansion, t; € {£1,0} are encoded using two bits (specifically via
0=00, 1 =10 and —1 = 01), X denotes a running sum, and 0 is the integer Dirac delta defined by

so-{y ot

for integer inputs z.

Before proving this Lemma, let us complete the proof of Proposition 15. We set @ = 1 + [log(N /M) |
and B = 28, and compose the map in (3.4) with 2S copies of the network given by Lemma 16. Then

16

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

we finally compose with an affine map which selects the last coordinate. This gives a g € Y'>L(RR)
with

L=14p+2S(40+16) = 4[R/S] +8S(5 + [log(N/M)])
< 8M/S+8S(5+ [log(N/M)]) +4,

since R < 2M.

When applied to an integer n € {1,...,N} with jr < n < ji1, the map in (3.4) sets the offset
between n and the index jj at the start of step i, outputs a number whose binary expansion contains
the bits used from step iy to step ix.; — 1, and sets a running sum to 0.

Then the 2S copies of the network from Lemma 16 implement Algorithm 3 from step i to step
ix+1 — 1. Note that if the number of steps is less than 2, the network pads with zero blocks (f;,#;) =0,
and these additional steps have no effect. Since by construction the entry X, is only modified during
these steps, the running sum will now be equal to x,,. Finally, we select the last coordinate, which
guarantees that g(n) = x,,. [|

Proof of Lemma 16 We construct the desired network as follows. We use Lemma 6 to apply the bit
extractor network f;, o from Proposition 10 to the second component. Here we choose n > B(a +2),
which is guaranteed to be larger than the length of the bit-string in the second component. This
results in the map

X X
h 13403 od
O i | = 0.11fat2 -+ fictk STTHRLRY.
x X

Subtracting the second component from the first, this gives

X x—fi
0.fitr- fitx | = [0.t1fota--- fit | € YPA¥(RY R?), (3.5)
) h

and completes the first part of the construction.

Next, we implement a network which extracts the two bits corresponding to ¢ and then adds ¢
to the third component iff the first component is 0. Let (z) denote the continuous piecewise linear
function

0 z< -1
z+1 —-1<z<0
h(z) = - (3.6)
1-z 0<z<1
0 z>1.

For integer inputs, % is simply the delta function, i.e. h(z) = §(z) for z € Z, and by Proposition 8 we
have h € Y>3(R). We first apply an affine map which duplicates the first coordinate

<1
<1 z
1
n|— c YO(R3 RY).
22
<3
<3

17

SIEGEL

Then, we use Lemma 6 to apply 4 to the second coordinate and apply the bit extractor network f;, |
from Proposition 10 to the third component. As before, we choose n > (o +2) which is guaranteed
to be larger than the length of the bit-string in the second component. This gives (note that we write
b1 b, for the two bits corresponding to #1)

<1
Z1 h(z1)
0.b1byfota...fity | — b c YI37(R3,RY).
23 0.b2 oty ... fitk
3

Now we compose this using Lemma 4 with the map

21
22 “ < 2
n+z3—1 o(za+zz—1
% 2 23 N (2 . 3) — u EY7’1(R5,R3).
%4 4 ¢ s5+0(n+z—1)
Zs Z5 Zs

Here the first and last maps in the composition are affine and the middle map is in Y7'! (R* R*) by
Lemma 6. This gives

21 21
O.b]bzle‘z...fkl‘k — O.bzlez...fklk S YIS’S (R3,R3). (3.7)
23 zz+0o(h(zi)+b1—1)

Notice that o(h(z;) +b; — 1) equals 1 precisely when z; = 0 and b; = 1 and equals zero otherwise
(for integral z1).
In an analogous manner, we get

21 21
0.byfotr...ftk | — 0.fot... felk e YB3 (R3 RY). (3.8)
23 53 —0(h(z1)+ba—1)

Composing the networks in (3.7) and (3.8) will extract #; € {0,£1} (recall the encoding 0 = 00,
1 =10 and —1 = 01) and add #; to the last coordinate iff the first coordinate is 0. Composing this
with the network in (3.5) gives a network g € Y'3#*16(R3 R3) as stated in the Lemma. [|

Next, we consider the case M > N, which is somewhat complicated by the fact that the threshold
parameter S and the spacing of the blocks are no longer equal in this case. The key construction is
contained in the following Proposition.

Proposition 17 Let M > N and suppose that x € ZV and satisfies ||x||p <M and ||x|| s~ < S. Then
there exists a g € Y'5L(R) such that g(n) = x,, forn = 1,...,N with

L <8M/S+8(SN/M+1)(4+ [log(M/N)]) +4.

18

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Utilizing this Proposition, we complete the proof of Theorem 14 in the case M > N. We apply
Proposition 17 to x* and use Proposition 7 to add the network to the network representing xZ to get a
network g € Y'7/(R) representing x with

L < 11M/S+8(SN/M+1)(4+ [log(M/N)]) +4.

Finally, we optimize in S, resulting in a value

_ M\/4+[log(M/N)]

> VN

to get L < C+/N(1+1og(M/N) as desired.

Proof of Proposition 17 The proof proceeds in a very similar manner to the proof of Proposition 15
and we only indicate the differences here.

We begin with the same set F and its decomposition into intervals [B,,,U,], except that
fit1 -+ frtg is now the output of the encoding Algorithm 2.

Our bound on the block length becomes U, — B, +1 < SN/M. This holds since the encoding
algorithm stays at the same index for all steps i € [B,,,U,,|, and thus this index in decremented
by an amount [M/N] a total of U, — B, + 1 times. The bound on the {.-norm implies that
(M/N)(U, — B+ 1) < S, which gives the desired bound.

Thus, in this case we set T = [SN/M| and p = [R/T| and consider steps iy, ..., ip defined by
ip = R+1 (the end of the algorithm) and

, 1 +kT 1+kT ¢F
l =
T\ Bu—1 14kT € By, Uyl

fork=0,...,p—1.

We now proceed with the same argument as in Proposition 15, except that the bound on U,,, —
B, +1 < T implies that all block lengths are bounded by 27T'. The proof is finally completed with
the following variant of Lemma 16, which implements a step of the decoding Algorithm 3 with the
values f; and t; encoded as they are for M > N.

Lemma 18 Given positive integers o and B there exists a network g € Y3448 (R3 R3) such that

x x—fi
g:|0.fitr-- fatk | = | O.fat2--- fatk
> L+16(x—f1)

whenever x € Z, k < B and len(t;) = a. Here f; € {0, 1} are single bits, t; € Z is encoded via binary
expansion with a single bit giving its sign and len(t;) is the length of this expansion, ¥ denotes a
running sum, and 0 is the integer Dirac delta defined by

so-f)

for integer inputs z.

19

SIEGEL

Given this lemma, we complete the proof as before, setting o =2+ [log(M/N)] and B = 2T and
composing the network implementing the maps J and R with 2T copies of the network from Lemma
18. This gives a network g € Y'>L(R) with

L<4p +2T (4 +8) =4[R/T] +8T(4+ [log(M/N)])
<8N/T +8T(4+ [log(M/N)])+4
< 8M/S+8(SN/M+1)(4+ [log(M/N)1) +4,

sinceR<2Nand T = [SN/M]. [|

Proof of Lemma 18 We use Lemma 6 to apply the bit extractor network f, 1 from Proposition 10
to the second component. Here we choose n > B(a + 1), which is guaranteed to be larger than the
length of the bit-string in the second component. Then we subtract the second component from the
first. This results in the map

x x—fi
0.fit - fitx | = | 0.t1fota- - fit | € YTBHRIR?),
Y Y

and completes the first part of the construction.
Now we wish to extract the integer #; and add it to X iff the first coordinate (which is an integer)

is 0. We do this by using Lemma 6 to apply the bit extractor network f; 1 to the second coordinate
and then apply f,, ¢—1 to the third coordinate of the result to get

21
21 by
0.b1by..bofota...fitr | = | br..bo | € TB4¥R3RY), (3.9)
23 O.lez...fktk
13

where we have written b b,...by for the bits of #;.

20

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Next, consider the following sequence of compositions, where /4 is the function defined in (3.6),

. 21 2 2
21 h(z1) 2
2
sl 2= 2 |- ol —
iy 23 23 23 —2%(1—h(z1)+22)
o 2 2! 2
Z5 5 25
21
&)
23 (3.10)
- 0(z3—2%(1—h(z1) +2z2)) ~
2
Z5
21
2
RN 3 EYISA(RS,RS).
2

5+ 0(z3 —=2%1 = h(z1) +22))

Using a sequence of applications of Lemmas 6 and 4, we obtain that this map can be implemented by
a network in Y134(R> R3).

Note that when z; € Z and z, € {0, 1}, we have that (recall that h(z) = 6(z) for integer z)

z1=0andz, =0
71#0andz; =0
z1=0andz =1
21 #Oarld22:1.

(1—=h(z1)+22) =