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Abstract
Latent variable models (LVMs) represent observed variables by parameterized functions of latent
variables. Prominent examples of LVMs for unsupervised learning are probabilistic PCA or proba-
bilistic sparse coding which both assume a weighted linear summation of the latents to determine the
mean of a Gaussian distribution for the observables. In many cases, however, observables do not fol-
low a Gaussian distribution. For unsupervised learning, LVMs which assume specific non-Gaussian
observables (e.g., Bernoulli or Poisson) have therefore been considered. Already for specific choices
of distributions, parameter optimization is challenging and only a few previous contributions con-
sidered LVMs with more generally defined observable distributions. In this contribution, we do
consider LVMs that are defined for a range of different distributions, i.e., observables can follow any
(regular) distribution of the exponential family. Furthermore, the novel class of LVMs presented
here is defined for binary latents, and it uses maximization in place of summation to link the latents
to observables. In order to derive an optimization procedure, we follow an expectation maximization
approach for maximum likelihood parameter estimation. We then show, as our main result, that a
set of very concise parameter update equations can be derived which feature the same functional
form for all exponential family distributions. The derived generic optimization can consequently be
applied (without further derivations) to different types of metric data (Gaussian and non-Gaussian)
as well as to different types of discrete data. Moreover, the derived optimization equations can be
combined with a recently suggested variational acceleration which is likewise generically applicable
to the LVMs considered here. Thus, the combination maintains generic and direct applicability
of the derived optimization procedure, but, crucially, enables efficient scalability. We numerically
verify our analytical results using different observable distributions, and, furthermore, discuss some
potential applications such as learning of variance structure, noise type estimation and denoising.
Keywords: Latent variable models, unsupervised learning, exponential family distributions,
expectation maximization, variational optimization.

1. Introduction

Latent Variable Models (LVMs) represent a probabilistic approach in which observed variables are
assumed to depend on latent variables through specific parameterized functions. A large variety of
unsupervised Machine Learning approaches is based on LVMs, and prominent examples are proba-
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bilistic Principal Component Analysis (p-PCA; Tipping and Bishop, 1999; Roweis, 1998), Factor
Analysis (FA; Everitt, 1984; Bartholomew, 1987) or probabilistic Sparse Coding (SC; Olshausen and
Field, 1996). The data models of these three and many of the related approaches consist of latent
variables whose weighted linear sum determines the mean of a Gaussian distribution. In probabilistic
SC, for instance, the set of D observed variables yd is modelled to depend on a set of H latent
variables sh (we assume ~y = (y1, . . . , yD)T and ~s = (s1, . . . , sH)T , where superscript T denotes
the transpose operator), according to the following generative model:

p(~s |Θ) =

H∏
h=1

psparse(sh; Λ), (1)

p(~y |~s,Θ) =
D∏
d=1

N (yd;
H∑
h=1

Wdhsh, σ
2), (2)

where ~Wh = (W1h, . . . ,WDh)T is commonly referred to as the generative field of unit h, and
the matrix containing all generative fields, W = ( ~W1, . . . , ~WH), is often known as the model’s
dictionary. Here, Θ = (Λ,W, σ2) denotes all parameters of the model (including prior parameter Λ,
dictionary W and a variance σ2), and the term ‘psparse’ refers to a sparse distribution that is used as
prior distribution p(~s |Θ). The canonical choice for such a distribution is the Laplace distribution (see,
e.g., Olshausen and Field, 1996; Tibshirani, 1996). Other choices include the Cauchy distribution
(which was used by Olshausen and Field, 1996, alongside Laplace), Student-t (Berkes et al., 2009),
Bernoulli (Haft et al., 2004; Henniges et al., 2010), Categorical (Exarchakis and Lücke, 2017), or
spike-and-slab (Titsias and Lázaro-Gredilla, 2011; Goodfellow et al., 2012; Sheikh et al., 2014).

All LVMs just referred to (and presumably the great majority of LVMs) assume a Gaussian
distribution for the observables. Most LVMs for Gaussian data then linearly link the set of latent
variables to the set of observables using a weighted sum. But a Gaussian distribution cannot be
assumed for all data. Consequently, other observable distributions have been investigated. For
instance, the Poisson distribution has been of interest for count data, and likewise, the Bernoulli
distribution for binary data. The aforementioned LVMs (p-PCA, SC etc.) represent well-known
examples for Gaussian observables. For the case of non-Gaussian observables, examples include FA
with Poisson observables (Zhou et al., 2012), FA with binary (Boolean) observables (BFA; Frolov
et al., 2014) or PCA with Poisson observables (Salmon et al., 2014; Chiquet et al., 2018). Also
well-known models such as noisy-OR Bayes nets (Šingliar and Hauskrecht, 2006; Jernite et al., 2013)
or shallow Sigmoid Belief Networks (SBNs; Saul et al., 1996; Gan et al., 2015) can be considered as
LVMs with Bernoulli distributed observables (also compare van der Linden and Hambleton, 2013).
Moreover, types of non-negative matrix factorization (where non-Gaussian distributions are also
used) can be regarded as a form of LVM (see, e.g., Hoffman, 2012; Basbug and Engelhardt, 2016,
and references therein).

Unlike such models with specific observable distributions, some previous contributions have
also considered more generally defined LVMs for unsupervised learning. For instance, Collins et al.
(2002), Mohamed et al. (2009) or Li and Tao (2010) considered a PCA generalization to include
observables of the exponential family (referred to as EF-PCA), and Lee et al. (2009) considered
SC with exponential family observables (EF-SC). Parameter optimization for specific non-Gaussian
distributions is already considered more challenging than for Gaussian distribution. If LVMs are
defined more generally, optimization becomes still more challenging as any method has to be defined
without exploiting properties that only apply for a specific distribution.
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Besides the approaches mentioned above, another class of models which is very general by
considering exponential family distributions for observables is represented by Generalized Linear
Models (GLMs; Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). GLMs can be related
to the aforementioned approaches (and also to our work here) since they likewise exploit other
noise distributions besides the Gaussian and do provide generic parameter update equations also
for the case of non-Gaussian distributions (e.g. McCullagh and Nelder, 1989). Nonetheless, GLMs
essentially rely on supervised learning, i.e. regression, which is not the subject of this study (see
Collins et al., 2002, for a discussion).

In this study, we consider a class of LVMs for unsupervised learning which is like EF-PCA or
EF-SC more generally defined to include observable distributions of the exponential family. Unlike
EF-PCA or EF-SC, however, we will seek an optimization procedure that is generally applicable
to any regular exponential family distribution. In order to achieve our goal of a generic parameter
optimization for any observable distribution of the exponential family, we replace the common
linear summation of latents by a maximization. More precisely, for the LVMs considered here,
the latents determine the mean of the observable distribution through maximization in contrast to
the conventional Gaussian-based LVMs such as p-PCA or SC (and also GLM-related approaches)
that determine the mean using summation. In addition, our approach maintains the same influence
of latents on the observable mean (using a maximum non-linearity) independently of the specific
choice for the observable distribution. For approaches such as EF-SC, a weighted sum of latents is
used to set the natural parameter(s) of the (usually single parameter) exponential family distribution.
Doing so implies a general non-linear function for the distribution mean, and this function changes
depending on the used exponential family distribution. Also in the context of regression, GLMs
similarly use a weighted summation followed by a non-linear function to set the distribution mean.

Models with a non-linear superposition of the latents have been of interest for a variety of tasks,
and were actively researched in previous works. For instance, the combination of noisy-OR Bayes
nets can be considered as such a non-linear link as well as point-wise sigmoidal functions after
summation as used in SBNs (Saul et al., 1996; Gan et al., 2015). Still further forms of models with
a specific latent variable structure have been investigated in the context of non-linear Independent
Component Analysis (ICA; Hyvärinen and Pajunen, 1999) and deep generative models such as
Variational Autoencoders (VAEs; Kingma and Welling, 2013), generative adversarial nets, flow
nets etc. (e.g. Bond-Taylor et al., 2022). Standard (linear) ICA approaches (Hyvärinen and Oja,
2000; Comon, 1994) investigate continuous non-noisy observables while (similar to standard SC)
non-Gaussian latents are considered. Later developments have significantly generalized earlier
restrictions with recent work allowing, e.g., for binary observations (Hyttinen et al., 2022) and
non-linear influences of the latents on the observables (Hyvärinen and Pajunen, 1999). For non-linear
ICA approaches, non-linearities can take either the form of a post-linear non-linearity (i.e., a linear
superposition of generative fields followed by an invertible non-linear function; Taleb and Jutten
(1999)), or, more generally, the form of a general smooth and invertible function that can be used in
place of the sum (Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017; Hyvärinen et al., 2019).
Non-linear ICA and variational autoencoders as presumably most relevant types of deep models will
be discussed further in Sec. 4, i.e. after the definition of the proposed LVMs.

Like the above types of non-linearities, the here considered fixed non-linearity in the form of
a (weighted) maximization, has also been investigated previously. For instance, Roweis (2003),
Shelton et al. (2012), Shelton et al. (2017) or Sheikh et al. (2019) used maximization for LVMs
with observables distributed according to standard Gaussian distributions, and Lücke and Sahani
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(2008) used the maximum for an LVM with Poisson observables. Moreover, similar fixed non-linear
superpositions have been used to model mutual occlusions of objects in images (Lücke et al., 2009;
Henniges et al., 2014). The approach named Occlusive Component Analysis (OCA) likewise uses
Gaussian observables (also see Dai and Lücke (2014) for another relevant study in this direction).
Like the work by Lücke and Sahani (2008) or Sheikh et al. (2019), we will use the fixed maximum
non-linearity in this study. But unlike such previous works, we will not use the non-linearity together
with only one specific observable distribution. Instead, we will consider LVMs which encompass any
(regular) member of the exponential family as observable distribution.

After defining the general class of LVMs, we will address the challenge of parameter optimization
by following a maximum likelihood approach using Expectation Maximization (EM; Dempster et al.,
1977). Our central analytical result will then be a set of concise parameter update equations (M-steps)
that are generally and directly applicable to any regular member of the exponential family. Further-
more, the here derived M-steps can be combined with likewise generally applicable and efficient
variational E-steps using a recently suggested variational approach (Drefs et al., 2022a). Neither the
generic M-steps derived in this contribution nor the variational E-steps of Drefs et al. (2022a) require
any analytical derivations before they can be applied. If generic M-steps and variational E-steps are
combined, we then obtain an efficient EM optimization algorithm that is, without any derivations,
applicable to any observables that follow a regular exponential family distribution1. Finally, we
provide numerical evaluations for one- as well as two-parameter distributions of the exponential
family and point to some potential applications.

2. Preliminary Definitions

Before defining the family of LVM models, we provide details on exponential family distributions
which will be used throughout this paper. We use observable distributions p(y; ~η ) that take the form
of an exponential family distribution given by:

p(y; ~η ) = h(y) exp
(
~η T ~T (y)−A(~η )

)
, y ∈ Y, (3)

where Y is the domain of a scalar observable y, h(y) is the base measure, ~T (y) represents the
sufficient statistics of the data, and ~η and A(~η ) are the natural parameters and log-partition function,
respectively. The vectors ~T (y) = (T1(y), . . . , TL(y))T and ~η = (η1, . . . , ηL)T have L elements
each when the distribution p(y; ~η ) is an L-parameter distribution. We remark that a notational
alternative is provided by using p(y | ~η ) in (3) instead of p(y; ~η ). However, we here use the latter
notation (which describes p(·) as a function of y with given parameters ~η ) for the sake of a better
readability. We follow the same argumentation for the other probability density functions used in the
paper (including those of Eqns. (1) and (2)).

1. Generic applicability does by itself not mean that the EM algorithm derived here will necessarily be based entirely
on closed-form equations. Even estimating the parameters of many exponential family distributions is itself often
not possible in closed-form (e.g. for Gamma or Beta distributions). But if the parameters of the exponential family
distribution can be estimated in closed-form, then EM for the corresponding LVM will be closed-form. If the
parameters of the exponential family distribution can not be estimated in closed-form, then this will turn out to be the
only part requiring approximations (which are usually readily available). See end of Sec. 6 for details.
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The log-partition A(~η ) plays the role of a normalizer. Following from (3), it is for a given ~η
defined as:

A(~η ) = log
(∫

h(y) exp
(
~η T ~T (y)

)
dy
)
. (4)

Formally, the domain of A is usually defined to be the set of all natural parameters ~η for which
A(~η ) <∞. We will only consider exponential families that are regular, i.e., families for which the
set of all natural parameters ~η is a non-empty and open set (e.g. Bickel and Doksum, 2015; Efron,
2023). Furthermore, all integrals over the domain Y can be general Lebesgue integrals but we will
not use Lebesgue measures explicitly. For the purposes of this paper, the integrals can be considered
as using the ordinary Lebesgue measure on R in the continuous case, while in the discrete case
integrals become a summation over finite probabilities (compare, e.g., Wainwright and Jordan, 2008).
For any regular exponential family, and for any l, k ∈ {1, . . . , L}, we have (e.g. Bickel and Doksum,
2015; Efron, 2023):

∂A(~η )

∂ηl
= Ep(y; ~η )[Tl(y)],

∂2A(~η )

∂ηl∂ηk
= cov

(
Tl(y), Tk(y)

)
, (5)

where Ep(·)[f(y)] denotes the expectation value of f(y) w.r.t. the distribution p(·) (evaluated per
entry if f is a vector) and cov(·, ·) represents the covariance. Also note that an alternative notation for
the expectation value is 〈f(y)〉p(·) which has been used in previous works (e.g., Lücke and Sahani,
2008; Sheikh et al., 2014).

As an important tool to later derive parameter update equations, we will use the mean value
parametrization (a.k.a. the mean parametrization) of the exponential family (e.g. Wainwright and
Jordan, 2008; Cox, 2006; Efron, 2023). That is, we consider parameters ~w (as the model’s parameters)
defined by:

~w := Ep(y; ~η )[~T (y)], ~w = (w1, . . . , wL)T . (6)

The mapping from ~η to ~w is bijective, i.e. it is invertible, if the distribution has a minimal representa-
tion2 property (compare Wainwright and Jordan, 2008; Efron, 2023, and many others). Assuming
minimality from now on, there exists a function ~Φ which maps the mean value parameters to the
natural parameters as follows:

~η = ~Φ(~w) such that ~w = Ep(y; ~Φ(~w))[
~T (y)]. (7)

For some distributions of the exponential family the function ~Φ can be obtained in closed-form (e.g.,
for Poisson, Bernoulli and Gaussian). For others, however, a closed-form expression may in general
not be available. Still, the existence of the inverse function ~Φ is guaranteed as long as the distribution
has a minimal representation property. In the next section, we will show how the function ~Φ along
with other properties presented above will be exploited to define a specific family of generative
models for exponential family observables.

2. A distribution of the exponential family is said to be minimal if there are no linear dependencies among components
of the sufficient statistics, i.e., there is no coefficient ~a ∈ RL with ~a 6= ~0 such that

L∑
l=1

alTl(y) = constant for all y ∈ Y.
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3. Proposed Family of Latent Variable Models

We hereafter consider LVMs with the same notation as in Eqns. (1)-(2). However, we assume
the latents to be binary (i.e. each element sh ∈ {0, 1}), and for the sake of consistency with
previous work, we assume each sh to follow a Bernoulli distribution. Using small values of Bernoulli
parameters, the model can thus realize a sparse encoding of the latents. We remark, nonetheless,
that the analytical results derived in the following only require binary latents such that the results
will also apply for non-sparse encodings and priors more complex than H independent Bernoulli
distributions. As a further assumption we assume, similar to the standard SC, that all observables
yd are conditionally independent given the latents. Unlike standard SC, however, the conditional
distribution for the observables can follow any regular distribution of the exponential family (3) with
natural parameters depending on ~s. Finally, and importantly, the observables in our model class
depend on the latents through maximization.

3.1 Model Definition

We investigate LVMs according to the following generative model:

p(~s |Θ) =

H∏
h=1

(
πshh (1− πh)1−sh

)
, (8)

p(~y |~s,Θ) =
D∏
d=1

p
(
yd; ~̃ηd(~s,Θ)

)
, where (9)

p(y; ~η
)

= h(y) exp
(
~η T ~T (y)−A(~η )

)
, (10)

and where πh ∈ (0, 1) parameterizes the prior distribution on sh; we let ~π = (π1, . . . , πH)T. For
model (8)-(10), the latent variables ~s couple to the observed variable yd through the function ~̃ηd(~s,Θ)
which is defined further below (the function can be considered as a link function in a broader sense).
The observable distribution (10) will in the following also be referred to as noise distribution.

Note that ~̃ηd(~s,Θ) is a vector with L entries for each d. For one-parameter distributions of
the exponential family (Poisson, Exponential, Pareto etc.) L = 1, for two-parameter distributions
(Gamma, Beta etc.) L = 2, and so forth (e.g., Categorical and Multinomial distributions can be
mentioned for the case of arbitrary L). For standard SC, a Gaussian with known variance is commonly
considered (just the mean is parameterized). Standard SC then sets the mean of the observables using
a matrix W ∈ RD×H , see Eqns. (1) and (2). Here, we seek to couple latents and observables in an
analog but more generally applicable way.

In order to facilitate our notation, let us from now on assume two-parameter distributions (L = 2)
as it applies, e.g., for Gamma, Beta and Gaussian distributions. Arbitrary L will be treated later
on. For the generative model presented above, we will for each observable yd parameterize the
distribution (9) in terms of the mean value parameters ~w = (w1, w2)T (Eqn. 6). For this purpose and
for the L = 2 case, let w1 = W̄d and w2 = V̄d for each d, where W̄d and V̄d are functions depending
on the latents ~s and two matrices W and V with D ×H entries. Linear and non-linear combination
of latents to determine the observable distributions will be possible through different choices for the
functions W̄d and V̄d (see below). The notation using L = 2 serves for gaining some intuition as
(e.g., for Gaussian or Gamma) W̄d may denote the distribution mean of observable yd and V̄d the
distribution variance (or the second moment of the distribution). Figure 1 illustrates the structure of
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Figure 1: Graphical representation of the proposed generative model with (as an example) H = 4
latent variables and D = 5 observed variables. Given a binary vector ~s, the value yd of an observable
follows an exponential family distribution p(yd; ~̃ηd(~s,Θ)

)
with natural parameters determined by the

functions W̄d(~s,Θ) and V̄d(~s,Θ) for the distribution’s mean value parameters. The functions depend
on the latents and on the matrices W ∈ RD×H and V ∈ RD×H visualized at the right-hand-side.
Here, the set of all model parameters is Θ = (~π,W, V ) and N denotes the number of samples.

the proposed model where, in the case of L = 2, two matrices connect the latents to the observables.
Now, using the function ~Φ(~w) given by (7), we define the link from latents to observables as follows:

~̃ηd(~s,Θ) := ~Φ
(
W̄d(~s,Θ), V̄d(~s,Θ)

)
, d = 1, . . . , D. (11)

The mapping ~Φ, as mentioned before, is specific to the choice of observable distribution (10)
which is a regular exponential family distribution. Although a closed-form formulation of the
function is only available for some instances of the family, the function is well-defined as long as the
noise distribution (10) has a minimal representation property (the assumption that we consider here).
Thus, such a general link function is well-defined for the proposed data models using W̄d(~s,Θ)
and V̄d(~s,Θ) (also compare Fig. 1). For the case of arbitrary L, we will define this link using L
parameters and subsequently L matrices (see Sec. 6 further below). To complete the definition of our
generative models, it now remains to define the functions W̄d(~s,Θ) and V̄d(~s,Θ) which determines
the influence of latents on the observable distributions. Before that, let us elaborate the notation
above using a preeminent example of the exponential family distributions.

Example 1 To provide an intuition for the link defined by (11), consider Gaussian observation
noise. In that case, sufficient statistics and natural parameters are given by ~T (y) = (y, y2)T

and ~η = ( µ
σ2 ,

−1
2σ2 )T (where µ and σ2 are the mean and variance of the Gaussian distribution,

respectively). By expressing the mean value parameters ~w in terms of the natural parameters ~η, we
get:

~w =

(
µ

µ2 + σ2

)
=

1

4η2
2

(
−2η1η2

η2
1 − 2η2

)
. (12)

Given the equation above, the inverse mapping ~Φ can be computed in closed-form (in this case) and
is given by:

~Φ(~w) =
1

2(w2 − w2
1)

(
2w1

−1

)
. (13)
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Using the definition of the link function in (11), the coupling of latents to observables is consequently
given by:

~̃ηd(~s,Θ) = ~Φ
(
W̄d(~s,Θ), V̄d(~s,Θ)

)
(14)

=
1

2
(
V̄d(~s,Θ)− W̄ 2

d (~s,Θ)
) ( 2 W̄d(~s,Θ)

−1

)
.

In order to recover standard linear SC, we can complete the definition of ~̃ηd(~s,Θ) by using parameters
(σ2,W ) with a global, scalar σ2 ∈ R+ and W ∈ RD×H and further setting:

W̄d(~s,Θ) =
∑
h

Wdhsh and V̄d(~s,Θ) = σ2 + W̄ 2
d (~s,Θ), (15)

which then results in:

~̃ηd(~s,Θ) =

(
(W~s )d/σ

2

−1/2σ2

)
. (16)

That is, we recover the standard SC parametrization with µd = (W~s )d as the mean of observable d
and σ2 as its variance (with σ2 being the same for all d).

3.2 Definition of a Maximum Superposition Model

In Example 1, given a matrix W ∈ RD×H , the mean µd of observable d was given by (W~s )d.
Our definition of the link (11) from latents to observables is sufficiently flexible to also allow for
types of latent combinations other than the weighted linear sum that is very commonly used (e.g.,
for p-PCA, sparse coding etc). In this respect, let us first ask the question what aspects of a given
observable distribution the two functions W̄d and V̄d shall determine. Most commonly, the latents
determine the mean of observable d using summation (again as, e.g., for p-PCA, sparse coding etc).
For many members of the exponential family, the first mean value parameter coincides with the mean
of the corresponding exponential family distribution (that is we have T1(y) = y). Note that if there
exists an l with Tl(y) = y (which is not always the case), we will assume this sufficient statistics’
component to be listed at the first position (l = 1). If T1(y) = y, then (following from our definition)
the function W̄d(~s,Θ) alone directly determines the observable mean:

µd = Ep(y; ~̃ηd(~s,Θ))[y] = Ep(y; ~Φ(W̄d(~s,Θ),V̄d(~s,Θ)))[y]

= Ep(y; ~Φ(W̄d(~s,Θ),V̄d(~s,Θ)))[T1(y)] = W̄d(~s,Θ), (17)

where the last step follows from (7) and the fact that w1 = W̄d(~s,Θ). The function W̄d(~s,Θ) can
then be either a weighted summation W̄d(~s,Θ) = (W~s )d as in Example 1 or a non-linear function
of the latents. For our purposes, we will follow previous work (Lücke and Sahani, 2008; Bornschein
et al., 2013; Sheikh et al., 2019) and demand that the mean of an observable distribution be given
by a weighted maximum instead of a weighted sum. More concretely, we will replace (e.g., for the
Gaussian or Gamma distribution):

W̄d(~s,Θ) = (W~s )d =
∑

hWdhsh by W̄d(~s,Θ) = maxh{Wdhsh}. (18)
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Figure 2: Illustration of non-linear vs. linear superposition of generative fields. A Two generative
fields in the form of bars are combined through maximization and summation to generate data. B
Example of a noisy data point which is generated using the Exponential-MCA model (i.e., we used
the patches generated by the maximum superposition in A together with Exponential noise).

Figure 2 illustrates the differences between weighted summation and weighted maximization of the
latents using artificial generative fields in the form of bars. Maximization instead of summation
has been suggested before for acoustic data (Roweis, 2003; Lücke and Sahani, 2008; Sheikh et al.,
2019) and for visual data (Bornschein et al., 2013) where it aligns more closely with the actual data
generating process. As summation of generative fields is also referred to as a linear superposition of
generative fields, maximization can be considered as a non-linear superposition. In the following,
summation and maximization are, respectively, referred to linear or maximum superposition models.
Importantly for the purposes of this study, the specific properties of maximization will enable us to
derive a generic parameter optimization procedure for the family of data models (8)-(10).

Equation (18) would cover members of the exponential family such as Gaussian and Gamma
(as T1(y) = y holds for these distributions). However, to be applicable to the whole exponential
family, the definition of the maximum superposition has to be further generalized. The challenge is
that, in general, the sufficient statistics ~T (y) may not have an element that is proportional to y, and
also a definition for the function V̄d(~s,Θ) is required. As an example which makes a generalization
necessary consider the Beta distribution where T1(y) = log(y) and T2(y) = log(1 − y). As a
consequence, the definition of the maximum superposition has to involve both functions W̄d(~s,Θ)
and V̄d(~s,Θ). Nevertheless, it is possible to define W̄d(~s,Θ) and V̄d(~s,Θ) such that the mean of the
observables is determined by a maximum superposition. For this purpose, consider a weight matrix
M(Θ) withD×H entries which can potentially be a non-trivial function of the parameters Θ. Given
a latent vector ~s, we now require the mean µd of an observable d to be given by:

µd = Ep(y; ~Φ(W̄d(~s,Θ),V̄d(~s,Θ)))[y]
!

= maxh{Mdh(Θ) sh}. (19)

Clearly, if T1(y) = y, we can satisfy the demand by choosing Mdh(Θ) = Wdh and further setting
W̄d(~s,Θ) = maxh{Wdhsh}. From (17), we can consequently obtain:

µd = Ep(y; ~Φ(W̄d(~s,Θ),V̄d(~s,Θ)))[y] = W̄d(~s,Θ) = maxh{Wdhsh} = maxh{Mdh(Θ) sh}, (20)

which fulfils (19). For the general case, nonetheless, the definition of M(Θ) has to be more elaborate
in order to apply for any exponential family distribution. As mentioned before, we consider two
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D × H matrices W and V as part of the model parameters Θ, i.e. Θ = (~π,W, V ). We can then
define M(Θ) as follows:

∀d, h : Mdh(Θ) := F (Wdh, Vdh) where F (w, v) = Ep(y; ~Φ(w,v))[y]. (21)

Using matrix M(Θ), we now define our mappings W̄d(~s,Θ) and V̄d(~s,Θ) as follows:

W̄d(~s,Θ) := Wdh(d,~s,Θ), V̄d(~s,Θ) := Vdh(d,~s,Θ), (22)

where h(d,~s,Θ) := argmaxh{Mdh(Θ) sh}.

That is, we define the functions W̄d(~s,Θ) and V̄d(~s,Θ) via an index h(d,~s,Θ) which selects, for a
given observable d, the latent with the maximal value of Mdh(Θ). Using the relations in (21) and
(22) for the link (11) completes the definition of the non-linear superposition model. The model
represents a generalization of the superposition model (20) suitable for the whole exponential family.
To see this, we derive:

µd = Ep(y; ~̃ηd(~s,Θ))[y] = Ep(y; ~Φ(W̄d(~s,Θ),V̄d(~s,Θ)))[y]

= F (W̄d(~s,Θ), V̄d(~s,Θ)) = F (Wdh(d,~s,Θ), Vdh(d,~s,Θ))

= Mdh(d,~s,Θ)(Θ) = maxh{Mdh(Θ) sh}, (23)

which again fulfils (19) but this time for the general case. In virtue of (21) and (22), we do not have to
require that there exists a sufficient statistic T1(y) = y, i.e., no further restrictions to an exponential
family distribution have to be demanded. If T1(y) = y, then definition (21) results in F (w, v) = w.
Consequently, we drop back to the easier special case of Mdh(Θ) = Wdh.

The definition of functions W̄d(~s,Θ) and V̄d(~s,Θ) are relatively technical but allow for a general
definition of generative models using any exponential family (with a minimal representation property).
Our LVM defines a link ~̃ηd(~s,Θ) from latents to observables for the proposed data models which
is a consistent generalization of the maximum non-linearity (20) used, e.g., for Poisson (Lücke
and Sahani, 2008) and Gaussian (Lücke and Eggert, 2010) observables. In our case, the proposed
link remains consistently defined for all noise distributions of the exponential family. That is,
independently of the choice of noise distribution, the link ~̃ηd(~s,Θ) defined by (21) and (22) ensures
that the latents change the mean of the observables always according to the maximum superposition
model. This is in contrast to the previous LVMs for exponential family distributions such as EF-PCA
(Collins et al., 2002), Bayesian EF-PCA (Mohamed et al., 2009) and EF-SC (Lee et al., 2009) where
the latents set the natural parameters of the observables using a linear superposition model (we will
elaborate on these studies further below).

To summarize, the definition of the proposed family of generative models is given by (8)-(10) and
link (11) with (21) and (22). In analogy to previous models defined using the maximum non-linearity
(Lücke and Sahani, 2008), we will refer to the family of models as Exponential Family Maximal
Causes Analysis (EF-MCA). While the EF-MCA data models are very general, we will later see that
the chosen parametrization results in generic equations for parameter updates. Before that, we will
illustrate the above technical definitions using again the Gaussian distribution as an example.

Example 2 Consider the Gaussian case of Example 1. For the corresponding EF-MCA model, the
matrix M(Θ) is (because of T1(y) = y) given by Mdh(Θ) = Wdh and

W̄d(~s,Θ) = Wdh(d,~s,Θ) = maxh{Wdhsh} (24)

V̄d(~s,Θ) = Vdh(d,~s,Θ). (25)

10
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Using Eqn. (7) and the ~Φ function (13), we again obtain ~̃ηd(~s,Θ) similar to (14) but this time with
W̄d(~s,Θ) and V̄d(~s,Θ) given by (24) and (25), respectively. In terms of the standard Gaussian
parametrization, we would thus obtain as noise model:

p(yd; ~̃ηd(~s,Θ)) = N (yd; W̄d(~s,Θ), V̄d(~s,Θ)− W̄ 2
d (~s,Θ)).

The matrix V ∈ Θ thus allows for the latents to also parameterize the variance. We will later
see how this parametrization can also be changed back to the normal parametrization using a
matrix σ2

dh = Vdh −W 2
dh instead of Vdh (using σ2

dh is more closely aligned with the conventional
parametrization). Note, however, that we here use a variance element σ2

dh for each d and h which is in
contrast to a global scalar variance considered in (1)-(2). A generalization assuming a matrix

(
with

elements σ2
dh

)
, to the best of our knowledge, has not been considered before and the data model

presented in (8)-(10) together with (11), (21) and (22) is the first non-linear LVM which allows
for the training of two matrices (one corresponding to the mean of observables, W , and another
which parameterizes the variances, V ). This feature makes the data model more flexible compared
to previous approaches (e.g. Lücke and Eggert (2010); Puertas et al. (2010)) and provides more
information about the given dataset. The generalized Gaussian model has previously been applied
to model the statistics of natural image patches (Mousavi et al., 2020) where standard Gabor-like
generative fields were obtained together with variance profiles per latent variable. The new statistical
properties captured by the novel matrix V can predict richer response properties of simple cells in
primary visual cortex (V1) than conventional modeling using one matrix W for the mean responses
(we refer the reader to Mousavi et al. (2020) and Sec. 7.2.1 for more information). If we wanted to
enforce scalar variances (as conventionally used), we could define V̄d(~s,Θ) as in (15).

4. Relation to Previous Work on Gaussian and Non-Gaussian Observables

It has been the goal of many previous approaches to derive learning algorithms for non-Gaussian
data (see, e.g., Collins et al., 2002; Mohamed et al., 2009; Lee et al., 2009; Mohamed et al., 2012;
Giryes and Elad, 2014; Lu et al., 2016; Zhou et al., 2012; Salmon et al., 2014; Chiquet et al., 2018;
Tolooshams et al., 2020). Often the derivation of an update procedure for just a specific non-Gaussian
distribution is aimed at (e.g., by assuming Poisson distributed observables for count data, Salmon
et al., 2014). However, a subset of these approaches do aim at more generally deriving updates
allowing for a range of different non-Gaussian observable distributions (see, e.g., Collins et al., 2002;
Mohamed et al., 2009; Lee et al., 2009; Li and Tao, 2010; Chiquet et al., 2018; Tolooshams et al.,
2020).

As an important reference for this work, the approach of exponential family sparse coding (EF-
SC; Lee et al., 2009), for instance, defines a SC approach for noise distributions of the exponential
family. The work chooses a link function that assumes the natural parameter of an exponential family
distribution to be given by a linear superposition of generative fields. Essentially, if η̃d(~s,Θ) is the
natural parameter of a one-parameter distribution, then η̃d(~s,Θ) = (W~s )d (in Lee et al., 2009, W is
denoted by B). With a link defined in this way and a standard Laplacian prior, the posteriors of the
model maintain a mono-modal shape such that a maximum a-posteriori (MAP) approximation can
be applied (Lee et al., 2009). Nevertheless, MAP-based training of SC is usually restricted to the
generative fields; like for standard SC, neither prior parameters nor parameters of the noise model
are inferred. Cross-validation may be used in addition but is only feasible for very few additional
parameters.

11
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Setting the natural parameters of a given exponential family distribution using a linear super-
position may (while mathematically convenient) not in general capture the true data generating
process well. Which of the modeling choices is preferable (conventional linear superposition or a
specific maximum non-linearity) does very much depend on the data, of course. As an example
for the conventional linear modeling choice, consider Poisson noise as a one-parameter exponential
family distribution. Then the natural parameter is given by η = log(λ), where λ is the mean. Using
a linear superposition to set the natural parameter (as for EF-SC according to Lee et al. (2009))
would then mean λd = exp

(∑
hWdhsh

)
for an observable d. The same choice for the link was

used for the Poisson PCA approach (Salmon et al., 2014) which focuses on Poisson noise and
reported state-of-the-art denoising performance when it was first suggested (also see Giryes and Elad,
2014). The example shows that the conventional modeling choice results in a specific post-linear
non-linearity to set the mean of the observable distribution. Other distributions of the exponential
family will result in other types of non-linearities if the natural parameter is assumed to be set by a
linear sum. Examples of data that may well be described by a non-linear generative model include,
e.g., low-intensity images where image pixels may be assumed to approximately follow a Poisson
distribution whose mean is determined by a non-linearity that is close to a maximum function (also
compare Poisson FA; Zhou et al., 2012). Acoustic waveforms, on the other hand, suggest the use of
conventional linear modeling (with an appropriate noise distribution).

Most approaches like Poisson PCA (Salmon et al., 2014; Chiquet et al., 2018) or EF-PCA (Collins
et al., 2002; Sajama and Orlitsky, 2004; Li and Tao, 2010), use links from latents to observables
very similar to EF-SC (Lee et al., 2009). Concretely, the method for generalizing linear regression to
non-Gaussian data as introduced for the GLM (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989) was used in definitions of the corresponding models for unsupervised learning. Furthermore,
the parameter optimization procedures for unsupervised learning are themselves also often strongly
inspired by GLM parameter optimization (Collins et al., 2002; Lee et al., 2009, and others). EF-PCA
thus uses (like Poisson PCA) a deterministic optimization for parameter learning.

The original EF-PCA work only considered one-parameter distributions of the exponential family,
however, with sufficient statistics proportional to y (see Collins et al., 2002, Eqn. 2); this restriction
excludes the Pareto, Laplace and other one-parameter distributions. A fully Bayesian approach to
exponential family PCA (Mohamed et al., 2009) also uses the GLM-inspired linear superposition to
set the natural parameters but replaces MAP-based training with a Hybrid Monte Carlo approach
(which also allows for learning parameters other than the weight matrix). Bayesian EF-PCA is
formulated for distributions of the exponential family with one and several parameters, but the
concrete algorithm uses a sufficient statistic equal to the identity function (see Mohamed et al.,
2009, Eqn. 7). EF-SC (Lee et al., 2009) can be considered as more general in its initial formulation.
However, the used generative fields are all defined to set one-parameter distributions (their matrix B
sets the natural parameter of an exponential family distribution). Also for the Gaussian case, which
is used as an introductory example, a single-parameter Gaussian (with known variance) is chosen.
Closely related to such assumptions is the restriction to the natural exponential family as explicitly
discussed by some approaches (Chiquet et al., 2018; Tolooshams et al., 2020).

Notably, none of the above mentioned previous approaches, i.e. Poisson PCA (Salmon et al.,
2014), Poisson FA (Zhou et al., 2012), EF-PCA (Collins et al., 2002; Sajama and Orlitsky, 2004;
Chiquet et al., 2018), Bayesian EF-PCA (Mohamed et al., 2009) and EF-SC (Lee et al., 2009),
used any other than one-parameter distributions of the exponential family in their contributions as a
concrete example. Moreover, and to the best knowledge of the authors, the numerical experiments of
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these contributions (including EF-SC) actually only used the Bernoulli, Exponential or the Poisson
distribution (usually two of the three). Although, e.g. EF-SC, may in principle be able to treat other
distributions of the exponential family, the meaning of setting the natural parameters of a distribution
with more than one parameter using a linear superposition of the latents is arguably unclear. For
instance, even for the Gaussian (as a standard two-parameter distribution), the second moment
would be determined by two linear sums. Such a case (and more intricate cases resulting from other
two-parameter distributions) have not been discussed or treated by EF-SC nor by EF-PCA or similar
approaches. In addition, note that approaches such as EF-SC are restricted beyond being focused on
one-parameter distributions. As a deterministic MAP-based learning is used, only weight parameters
are updated (and neither additional noise nor prior parameters are learned).

In contrast to such previous approaches for exponential family observables, the here studied
EF-MCA models define the links from latents to the observables using a maximum superposition
model. Moreover, the link function always sets the mean of the observable distribution using the
auxiliary weight matrix M(Θ) which is defined by the two dictionaries W and V (if the distribution
has two parameters). This novel definition enables us to also treat more intricate cases such as
Gamma and Beta distributions (and, indeed, any two parameter distributions of the exponential
family). We will later show how our definitions can be generalized to exponential family distributions
with an arbitrary number of parameters L, and how a generic parameter optimization can be derived
using the EM algorithm. The derived algorithm will consequently apply for the entire set of (regular)
exponential family distributions. We note, however, that the proposed EF-MCA models exploit binary
latents (here in the form of Bernoulli distributed priors), which may be restrictive in some settings.
Also, the proposed link function defined by (11) with (21) and (22) imposes a specific non-linearity
in the form of a (weighted) maximum function. While these assumptions will be advantageous for
our focus on different (possibly intricate) noise models, other data models in the literature show
other advantages. Examples are, for instance, models with emphasis on learnable non-linearities to
link latents to observables; we discuss non-linear ICA (Hyvärinen and Pajunen, 1999) and VAEs
(Kingma and Welling, 2013) further below.

One example of studies which did investigate other than Bernoulli and Poisson distributions is
the work by Khan et al. (2010) where a generalized mixture of factor analyzers model is presented
that allows for addressing both continuous and discrete data (Gaussian and Multinomial distributions
have been treated). Moreover, they established a new variational EM algorithm based on a lower
bound of the Multinomial likelihood for fitting the model to the considered mixed data. Although
the model can, in principle, deal with binary and categorical data along with the continuous case, it
is not defined to subsume all distributions of the exponential family. Further examples are LVMs
with the focus on estimating the noise distribution for observables of unknown types (Valera and
Ghahramani, 2017; Molina et al., 2018; Vergari et al., 2019). Those approaches can typically select
between a predefined set of observable distributions to estimate the best fit given a set of (usually)
heterogeneous observations. Grounded on sum-product networks with assumptions such as piecewise
polynomial leaf distributions, generalized Bayesian inference procedures are developed (e.g. Molina
et al., 2018). Such approaches are consequently very different from approaches discussed above or
the here investigated approach. They are related to the considered approach here as being relatively
generally defined, however, and we will come back to common features when we discuss noise type
estimation in Sec. 7.2.2.

Still other lines of research for unsupervised learning follow deep generative modeling approaches
with variational autoencoders (VAEs; Kingma and Welling, 2013; Rezende et al., 2014) being among
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the most popular such models. In order to relate latents to observables, VAEs make use of non-linear
functions which are parameterized using deep neural networks (DNNs). The non-linear functions
are used to define an encoding model that, in the standard case, performs amortized inference (the
encoder) and a generative model (the decoder). VAEs owe much of their capabilities to the used
DNNs, while prior and observation noise distributions for standard VAEs are very elementary (i.e.,
diagonal Gaussians). Nevertheless, VAEs can in principle be used to also model non-Gaussian
observables, and standard stochastic gradient ascent for optimization is not limited to the Gaussian
case. However, already optimization of Gaussian VAEs is considered challenging: Major challenges
are inherited from DNN optimization (starting with choices for decoder architecture, many hyper-
parameters etc.) paired with the same choices for encoder DNN(s) and necessarily stochastic
optimization. Concrete examples of non-Gaussian VAEs use one specific observation noise, usually
in the form of elementary distributions such as Bernoulli or Poisson (e.g., Grønbech et al., 2020;
Jang et al., 2017; Baby and Bourlard, 2021). The latents are for standard forms of VAEs continuous
and usually Gaussian distributed. But variants with discrete latents have also been investigated (e.g.,
Jang et al., 2017; Maddison et al., 2017; Rolfe, 2017; Yin et al., 2019; Berliner et al., 2022; Drefs
et al., 2022b).

In a related field, recent works on non-linear ICA approaches focus on identifiability which
can be guaranteed under certain latent dependency conditions including temporal dependencies
(see, e.g., Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017; Hyvärinen et al., 2019).
Commonly for these approaches, a contrastive learning (CL) algorithm is applied in order to estimate
the non-linear ICA model: Hyvärinen and Morioka (2016) use a time-contrastive learning (TCL),
Hyvärinen and Morioka (2017) use a permutation-contrastive learning (PCL), and Hyvärinen et al.
(2019) use a generalized form of CL. Identifiability in non-linear ICA is, in principle, possible also
for non-Gaussian observation noise. Recent work explicitly specifies relatively general conditions
for noise and identifiability in a framework for structured non-linear ICA (Hälvä et al., 2021).
At the same time, the concrete realization of an algorithm within this framework uses Gaussian
noise (which is explicitly stated as limitation). In another related work, Khemakhem et al. (2020)
investigate an identifiable VAE (iVAE) that bridges the gap between VAEs and non-linear ICA. The
approach, however, assumes the noise distribution to be known and additive which likewise restricts
the applicability of the model to Gaussian distributed observables. A later extension of iVAE (termed
pi-VAE), was proposed by Zhou and Wei (2020) which assumes Poisson noise for the observables.
In the pi-VAE approach, the mean of the Poisson distribution is set by a link function that is defined
in terms of a general invertible function.

Other than non-linear ICA and VAEs, there also have been investigations of more conventional
deep models, e.g., on convolutional neural networks (CNNs), that focused on non-Gaussian ob-
servables. For example, contributions such as Remez et al. (2018, 2017) proposed an approach
for denoising images corrupted with Gaussian and Poisson noises using supervised training. Also,
the study by Tolooshams et al. (2020) considered observables of non-Gaussian distributions using
convolutional autoencoders trained in both a supervised or an unsupervised manner. The method
explicitly investigated the natural exponential family distributions which is a specific subset of the
exponential family.

For supervised learning (i.e., regression), GLMs do explicitly consider different noise distribu-
tions and specifically distributions of the exponential family with more than one parameter. GLMs
can, for instance, use a specific dependency of the observable variances on the mean to treat two-
parameter distributions. However, regression approaches for specific distributions (such as the Beta
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Table 1: Summary of related previous work as discussed in Secs. 1 and 4.

Acronym Model Details Reference

Examples of LVMs with a linear component structure
EF-PCA exp. family obser. / dist. with sufficient stat. proportional to y Collins et al. (2002)

Bayes. EF-PCA exp. family obser. / sampling-based optim. / dist. with sufficient stat. proportional to y Mohamed et al. (2009)
EF-SC exp. family obser. / MAP approx. / only one parameter dist. used Lee et al. (2009)

Poiss. FA Poiss. obser. / sampling-based optim. Zhou et al. (2012)
Linear ICA contin. obser. / non-Gaussian sources Hyvärinen and Oja (2000)
Binary ICA binary obser. / non-stationary sources / linear mixing of sources followed by binarization Hyttinen et al. (2022)
NLSPCA Poiss. obser. / non-local (sparse) PCA / designed for Poiss. denoising Salmon et al. (2014)

SPDA Poiss. SC / designed for Poiss. denoising Giryes and Elad (2014)

Examples of LVMs with a specific non-linear component structure
non-linear ICA non-linear blind source separa. / slow feature analy. / temporal correl. Sprekeler et al. (2014)
non-linear ICA exp. family sources / temporal non-stationary structure / TCL Hyvärinen and Morioka (2016)
non-linear ICA non-Gaussian and temporally dependent stationary sources / PCL Hyvärinen and Morioka (2017)
non-linear ICA conditionally independent sources (given an auxiliary var.) / gen. CL Hyvärinen et al. (2019)

OCA Gauss. obser. / occlusion non-linearity / var. to control the depth of objects Henniges et al. (2014)
MCA Poiss. obser. / truncated approximation / binary latents Lücke and Sahani (2008)

ss-MCA Gauss. obser. / trunc. approx. / non-linear and spike-and-slab SC Shelton et al. (2012)
G-MCA Gauss. obser. / truncated variational approximations / binary latents Sheikh et al. (2019)

EF-MCA exp. family obser. / generic M-steps and EVO / binary latents / L dictionaries our contribution

Examples of related DNNs for Gaussian / non-Gaussian observables
DCEA natural exp. family obser. / trained both supervised and unsupervised Tolooshams et al. (2020)

DenoiseNet Poiss. obser. / designed for Poiss. denoising Remez et al. (2017)
TVAE Gauss. obser. / variational training based on EVO / binary latents Drefs et al. (2022b)
iVAE noisy (Gauss.) obser. / identifiable VAE (unifies non-linear ICA and VAE) Khemakhem et al. (2020)

pi-VAE Poiss. obser. / extends the iVAE model to Poisson noise Zhou and Wei (2020)

distribution) still require further considerations related to GLM techniques in order to realize concrete
regression algorithms (see, e.g., Ferrari and Cribari-Neto, 2004, for a concrete discussion).

In summary, the here considered LVM (while based on a standard bipartite graphical model)
is exceptionally general in allowing for any (regular) exponential family distribution to be used to
model observation noise. For a general treatment of such observables, the crucial challenge is, of
course, the derivation of a generic parameter optimization procedure, which we will address in the
following. Tab. 1 presents a short summary of the approaches discussed here.

5. Maximum Likelihood

Having defined the family of EF-MCA models in Sec. 3, we now seek parameters Θ that optimize the
models for a given set of N independent and identically distributed (i.i.d.) data points ~y (1), . . . , ~y (N).
We follow a standard maximum likelihood approach and seek parameters Θ that optimize the log-
likelihood L(Θ) =

∑
n log

(
p(~y (n) |Θ)

)
. We use the EM algorithm (Dempster et al., 1977; Neal

and Hinton, 1998) which instead of maximizing the log-likelihood directly, optimizes a lower bound
known as the free energy (Neal and Hinton, 1998) or the evidence lower bound (ELBO; Mcauliffe
and Blei, 2008). For the family of generative models defined in (8)-(10), the ELBO is given by:

F(q,Θ) :=
∑
n

∑
~s

q(n)(~s )
{∑

d

log
(
p(y

(n)
d ; ~̃ηd(~s,Θ))

)
+
∑
h

log(p(sh |Θ))
}

+H(q), (26)

where q(n)(~s ) for each n is a variational distribution, q = (q(1), . . . , q(N)) andH(q) is the Shannon
entropy term. The ELBO is the objective we seek to optimize, and its relation to the log-likelihood is,
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for completeness, given in Appendix B.3. In our learning algorithm, the ELBO is optimized iteratively
w.r.t. distributions q (the E-step) and w.r.t. the model parameters Θ (the M-step) as commonly done.
It has been shown, e.g. by Neal and Hinton (1998), that the ELBO is maximized w.r.t. distributions q
if, for each ~s and n, we equate q(n)(~s ) to the posteriors, i.e. q(n)(~s ) = p(~s | ~y (n),Θ). Indeed, the
distributions q(n)(~s ) can be the exact posteriors for tractable models (we refer to this case as full EM
or exact EM) or they can represent variational approximations (in this case we refer to variational
EM and consequently variational E-steps). The terms (variational) free energy F(q,Θ) or ELBO
are more common for intractable models, i.e., if the q(n) are approximations of intractable exact
posteriors.

For tractable models, the E-steps reduce to the computation of exact posteriors. For our EF-MCA
model, a generic form to compute the E-steps is, therefore, already given by Bayes’ rule as long
as the model is sufficiently small scale (small H). For larger scale EF-MCA models, Sec. 5.2 will
address how generic variational E-steps can be used. For all EF-MCA models, the central challenge
that we have to address here is, however, the derivation of parameter update equations in the M-step,
which is pertinent to the noise distribution. We therefore pursue such a task in the next section and
importantly show that the non-linear link function (22) enables us to derive a set of concise and
generally applicable updates that maximizes the ELBO (26).

5.1 Parameter Update Equations – The M-step

Following the standard optimization procedure, we will set the derivatives of F(q,Θ) w.r.t. all model
parameters to zero, and derive parameter update rules from the resulting equation systems. For this,
first note that the derivatives of F(q,Θ) will contain derivatives of W̄d(~s,Θ) and V̄d(~s,Θ). Then,
the following applies for these derivatives:

∂

∂Wdh
W̄d(~s,Θ) = Adh(~s,Θ),

∂

∂Wdh
V̄d(~s,Θ) = 0, (27)

∂

∂Vdh
V̄d(~s,Θ) = Adh(~s,Θ),

∂

∂Vdh
W̄d(~s,Θ) = 0, (28)

where

Adh(~s,Θ) :=

{
1 h = h(d,~s,Θ)

0 otherwise
(29)

which follows simply from considering the cases h = h(d,~s,Θ) and h 6= h(d,~s,Θ) separately. We
will later discuss the properties of the function Adh(~s,Θ) in Appendix A (in Lemma 1). Now, given
the equations above, we present the main result of this study: We derive concise equations for W
and V which guarantee that all derivatives of F(q,Θ) w.r.t. Wdh and Vdh vanish. These equations
can then be used for parameter updates in each M-step. For the sake of readability, however, we only
provide a proof sketch of the theorem now and present the full proof in Appendix A.1. Also, note
that we here discuss the case for L = 2, and the general case will be further presented in Sec. 6 and
Appendix A.3.

Theorem 1 Consider an EF-MCA data model (8)-(10) with p(y; ~η ) being a regular exponential
family distribution with L = 2. Furthermore, let the parameters Θ contain the matrices W and V
with D ×H entries and ~̃ηd(~s,Θ) to be defined as in Eqns. (11) and (21)-(22). Then, the derivatives
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of the ELBO (26) w.r.t. all matrix elements Wdh and Vdh are zero if for all d and h:

Wdh =

∑N
n=1 Eq(n) [Adh(~s,Θ)]T1(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θ)]
, (30)

and

Vdh =

∑N
n=1 Eq(n) [Adh(~s,Θ)]T2(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θ)]
, (31)

where Adh(~s,Θ) is given by (29).

Proof Sketch To proof the theorem, we decisively make use of the relations in (5) and the maximum
superposition defined in (11) and (21)-(22), and set the derivatives of the ELBO w.r.t. the dictionary
elements Wdh and Vdh to zero. In short, if we abbreviate W̄d(~s,Θ) and V̄d(~s,Θ) by W̄d and V̄d, then
for a single dictionary element Wdh we have (using the chain rule):

∂

∂Wdh
log
(
p
(
yd; ~̃ηd(~s,Θ)

))
=

∂

∂Wdh
log(p(yd; ~Φ(W̄d, V̄d))) (32)

=

2∑
l=1

Adh(~s,Θ)
( ∂

∂w
Φl(w, V̄d)

∣∣
w=W̄d

)(
Tl(yd)−

∂A(~η )

∂ηl

)∣∣∣
~η=~Φ(W̄d,V̄d)

.

For this expression we now substitute ∂A(~η )
∂η1

= Ep(y; ~η )[T1(y)] and ∂A(~η )
∂η2

= Ep(y; ~η )[T2(y)] from
Eqn. (5). Furthermore, we use that for any function g of W̄d and V̄d applies:

Adh(~s,Θ) g(W̄d, V̄d) = Adh(~s,Θ) g(Wdh, Vdh),

see Lemma 1 in Appendix A. We then obtain:

∂

∂Wdh
log
(
p
(
yd; ~̃ηd(~s,Θ)

))
=

2∑
l=1

Adh(~s,Θ)
( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)
×
(
Tl(yd)− Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
. (33)

Now, using Eqn. (26) and the definition of the mean value parameters, ~w := Ep(y; ~Φ(~w))[
~T (y)], we

get:

∂

∂Wdh
F(q,Θ) =

∑
n

∑
~s

q(n)(~s )
(∑

d′

∂

∂Wdh
log
(
p(y

(n)
d′ ; ~̃ηd′(~s,Θ))

))
(34)

=
∑
n

∑
~s

q(n)(~s )
2∑
l=1

Adh(~s,Θ)
( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)
×
(
Tl(y

(n)
d ) − Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
=

2∑
l=1

( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)∑
n

∑
~s

q(n)(~s )Adh(~s,Θ)

×
(
Tl(y

(n)
d ) − Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
.
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The expression is equal to zero, i.e. ∂F(q,Θ)
∂Wdh

= 0, if the following equations are satisfied:∑
n

Eq(n) [Adh(~s,Θ)]
(
T1(y

(n)
d )−Wdh

)
= 0, and (35)∑

n

Eq(n) [Adh(~s,Θ)]
(
T2(y

(n)
d )− Vdh

)
= 0. (36)

Then, the above equations yield (30) and (31), which completes the proof. �

Fulfilling Eqns. (30) and (31) guarantees vanishing derivatives and provides a generally applicable
approach for updating W and V in each M-step. We do remark, however, that we have not strictly
proven that (30) and (31) correspond to a maximum (and not a minimum or a saddle point). In this
respect, one can further investigate the second derivatives of the ELBO (26) at these stationary points
to observe if Eqns. (30) and (31) do in fact correspond to a maximum. We will later discuss this
point in Appendix A.2. Furthermore, we here emphasize that Eqns. (30) and (31) are valid for any
regular two-parameter distribution of the exponential family which includes Gaussian, Gamma, Beta
and many more, i.e., a large variety of noise models is covered. Importantly, the above theorem
reveals that the same functional form is obtained for the parameters of all these distributions under
the generative model (8)-(10) (note that we here considered the L = 2 case but the general case
will be discussed further below). A straightforward outcome of the foregoing theorem is when the
distribution does contain a sufficient statistic proportional to y, i.e. T1(y) = y. This specific form
yields a further simplification:

Corollary 1 Prerequisites as for Theorem 1. If the distribution p(y; ~η ) has a sufficient statistic
T1(y) = y, then the condition for Wdh is given by:

Wdh =

∑N
n=1 Eq(n) [Adh(~s,Θ)] y

(n)
d∑N

n=1 Eq(n) [Adh(~s,Θ)]
. (37)

The corollary is instructive about previous contributions: It explains why the update equation for
the original MCA data model (Lücke and Sahani, 2008) (which used Poisson noise) and the update
equation for the later MCA models (Lücke and Eggert, 2010; Bornschein et al., 2013; Sheikh et al.,
2019) (which used Gaussian noise) are identical and given by (37).

Finally, observe that Eqns. (30) and (31) do not represent closed-form solutions for W and V
since the right-hand-sides also depend on W and V through the function Adh(~s,Θ). We thus follow
previous work (e.g., Lücke and Sahani, 2008; Lücke and Eggert, 2010), and use Eqns. (30) and (31)
in the fixed-point sense and update (for each d and h):

W new
dh =

∑N
n=1 Eq(n) [Adh(~s,Θold)]T1(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θold)]
, (38)

and

V new
dh =

∑N
n=1 Eq(n) [Adh(~s,Θold)]T2(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θold)]
, (39)
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where also q(n) = q(n)(~s ; Θold) depends on the old parameters. If repeated updates result in the
values of W and V to converge, then the converged values fulfill (30) and (31), respectively.

To complete the M-step parameter updates, we can also derive updates for the prior parameters ~π.
Those derivations do not involve the specific form of the observables’ distribution. We can therefore
use previous derivations (e.g., Henniges et al., 2010; Puertas et al., 2010) and update ~π as follows:

πnew
h =

1

N

N∑
n=1

Eq(n) [sh], h = 1, . . . ,H. (40)

Algorithm 1: EM for training EF-MCA data models (for L = 2 parameter distributions)

initialize model parameters Θ = (~π,W, V );
repeat

consider the inverse mapping ~Φ defined in (7);
if the distribution p(y; ~η ) has a sufficient statistic T1(y) = y then

M(Θ) = W ;
else

consider the function F in (21) based on the relation of the natural parameters ~η and
the mean of p(y; ~η );
M(Θ) = F (W,V );

end
for each vector ~s of the latent space do

for d = 1 : D do
h(d,~s,Θ) = argmaxh{Mdh(Θ)sh};
W̄d = Wdh(d,~s,Θ) and V̄d = Vdh(d,~s,Θ);
~̃ηd = ~Φ(W̄d, V̄d);

end
for n = 1 : N do

q(n)(~s ) = p(~s | ~y (n),Θ);
for h = 1 : H and d = 1 : D do

compute q(n)(~s )sh;
compute q(n)(~s )Adh(~s,Θ) where Adh(~s,Θ) is defined in (29);

end
end

end
update parameters Θ using (38)-(40);

until parameters Θ have sufficiently converged;

5.2 Optimization of Variational Distributions – The E-step

The main focus of the previous section was the derivation of parameter updates in the M-step
(Eqns. (38)-(40)). These M-step equations contain expectation values w.r.t. distributions q(n)(~s )
that can be the exact posteriors p(~s | ~y (n),Θ) for sufficiently small scale models (small H). Larger
H require approximate posteriors q(n)(~s ) as the computational cost of evaluating expectations
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w.r.t. exact posteriors scales exponentially, i.e., with 2H . To enable efficient approximations in
variational E-steps, different approaches can be applied. For our purposes, we here use a variational
approximation based on truncated posteriors as a family of variational distributions (Lücke and
Eggert, 2010; Lücke and Sahani, 2008). Concretely, we use variational distributions q(n) defined as:

q(n)(~s | K(n)
,Θ) :=

p(~s | ~y (n),Θ)∑
~s ′∈K(n)

p
(
~s ′| ~y (n),Θ

)δ(~s ∈ K(n)
), n = 1, . . . , N, (41)

where the set K(n) contains, for each data point ~y (n), a fixed number of hidden states ~s, and where
the indicator function δ(~s ∈ K(n)) is equal to 1 if ~s is in the set K(n) (and 0 otherwise). Distributions
(41) approximate full posteriors by truncating sums over the whole latent space to sums over those
subsets K(n)

which ideally accumulate most of the posterior mass.
Variational approaches based on truncated posteriors have been shown to result in very efficient

optimization for mixture models (Hirschberger et al., 2022; Exarchakis et al., 2022) as well as LVMs
(e.g., Sheikh and Lücke, 2016; Shelton et al., 2017; Sheikh et al., 2019). When choosing q(n) as
defined by (41) to approximate full posteriors, the expectation values Eq(n) [Adh(~s,Θ)] in (38) and
(39) are, for the family of LVMs in (8)-(10), obtained as follows:

Eq(n) [Adh(~s,Θ)] =

∑
~s∈K(n)

p
(
~s, ~y (n) | Θ

)
Adh(~s,Θ)∑

~s ′∈K(n)

p
(
~s ′, ~y (n) | Θ

) (42)

=

∑
~s∈K(n)

exp
(∑

d

(
(~̃ηd(~s,Θ))T ~T (y

(n)
d )−A(~̃ηd(~s,Θ))

))
Bern(~s ;~π)Adh(~s,Θ)

∑
~s ′∈K(n)

exp
(∑

d

(
(~̃ηd(~s ′,Θ))T ~T (y

(n)
d )−A(~̃ηd(~s ′,Θ))

))
Bern(~s ′;~π)

,

where Bern(~s ;~π) abbreviates the Bernoulli prior in (8). Likewise, the expectation values Eq(n) [sh]
in (40) can be obtained (for each h) accordingly.

5.2.1 EVOLUTIONARY VARIATIONAL OPTIMIZATION (EVO)

Crucial for variational optimization of truncated posteriors (41) are strategies to efficiently and
effectively populate the K(n)

sets with latent states capturing high posterior mass. To this end, here
we apply a recently suggested strategy based on evolutionary algorithms (Evolutionary Variational
Optimization, EVO; Drefs et al. 2022a). The approach treats the sets K(n)

in Eqns. (41) and (42) as
variational parameters, which consequently yields the variational lower bound (26) to be reformulated
as follows (see Lücke, 2019, for a concrete discussion):

F(K(1,...,N),Θ) =
∑
n

log
( ∑
~s∈K(n)

p(~y (n), ~s | Θ)
)
.

Based on this form, the variational lower bound can be increased by replacing ~s ∈ K(n)
with

~s new /∈ K(n)
for each n such that p(~y (n), ~s new | Θ) > p(~y (n), ~s | Θ). EVO, specifically, treats the

bit vectors ~s as genomes and uses them to evolve ~s new through application of elementary genetic
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operations including selection, mutation and crossover. A requirement of EVO is that the model’s
joint p(~y (n), ~s | Θ) is analytically tractable in order to define a fitness function for the selection step.
Apart from that, EVO is generically applicable, i.e., the approach does not involve model-specific
derivations (in contrast to, e.g., mean-field approaches; Jordan et al. 1999). For details, see (Drefs
et al., 2022a,b).

For the family of LVMs we consider here, the required joints are directly defined by the chosen
exponential family distributions. Consequently, if the sufficient statistics ~T (y), the log-partition
A(~η ) and the link ~̃ηd(~s,Θ) are efficiently computable, then so are the expectation values (42) and
the entire variationally accelerated learning algorithm.

6. Parametrization of the Proposed Generative Models – General Case

Let us now finally generalize the definition of the proposed family of generative models presented
in (8)-(10) to any arbitrary L-parameter distribution. We remain using the independent Bernoulli
distributions of (8). For the noise distribution given by (9) and (10), however, instead of two matrices
W and V , we can in general considerLmatrices (corresponding to theL parameters of an exponential
family distribution). Let us denote these matrices by W (1) to W (L), i.e. Θ = (~π,W (1), . . . ,W (L)).
Therefore, we can generalize our definition of ~̃ηd(~s,Θ), which is now given by:

~̃ηd(~s,Θ) := ~Φ
(
W̄

(1)
d (~s,Θ), . . . , W̄

(L)
d (~s,Θ)

)
. (43)

Moreover, given L matrices W (1) to W (L) with D × H entries, we have to define the mappings
W̄

(1)
d (~s,Θ) to W̄ (L)

d (~s,Θ) for each observable d. In analogy to the L = 2 case, we do so by defining
a matrix M(Θ) as follows:

∀d, h : Mdh(Θ) := F (W
(1)
dh , . . . ,W

(L)
dh ) with F (~w) = Ep(y; ~Φ(~w))[ y ], (44)

where ~w is assumed a row vector. Using the matrix M(Θ), we now define our mappings W̄ (l)
d (~s,Θ)

for l = 1, . . . , L:

∀d, h : W̄
(l)
d (~s,Θ) := W

(l)
dh(d,~s,Θ) with h(d,~s,Θ) := argmaxh{Mdh(Θ) sh}. (45)

Also in the general case, definitions (44) and (45) guarantee that always the mean of observable d
is given by µd = maxh{Mdh(Θ) sh}. The above equations then finalize the definition of EF-
MCA data models where the noise distribution can now be any arbitrary regular distribution of the
exponential family. Then, for Eqns. (8)-(10) with (43)-(45), the following theorem applies which is a
straightforward generalization of Theorem 1:

Theorem 2 Consider an EF-MCA data model (8)-(10) with p(y; ~η ) being a regular exponential
family distribution with sufficient statistics ~T (y) of length L ∈ N. Moreover, let the parameters Θ
contain L matrices W (1), . . . ,W (L) with D ×H entries and let ~̃ηd(~s,Θ) be defined as in (43)-(45).
Then, the derivatives of the ELBO (26) w.r.t. all W (l)

dh are zero if for all d, h, and l:

W
(l)
dh =

∑N
n=1 Eq(n) [Adh(~s,Θ)]Tl(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θ)]
, (46)

where Adh(~s,Θ) is given by (29).
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Proof The proof is a direct generalization of the proof of Theorem 1 and will be further presented in
Appendix A.3.

Now, given the relations (46) for the matrices W (l), l = 1, . . . , L, the following update equations
can be used (likewise in a fixed-point sense):

∀d, h : (W
(l)
dh )new =

∑N
n=1 Eq(n) [Adh(~s,Θold)]Tl(y

(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θold)]
. (47)

For the proposed EM algorithm, now in the general case, we initialize dictionaries W (l)
dh for l =

1, . . . , L and update their elements in each M-step using (47). After convergence, the converged
dictionaries represent the optimal (possibly local optima) parameters of the model. Moreover, note
that the prior parameter update remains unchanged and is given by (40). Finally, also note that the
application of EVO as variational acceleration is possible in the same way as for L = 2.

Having obtained a generic optimization procedure for general EF-MCA, let us finally emphasize
again in what sense the procedure is directly applicable. Optimization for the general case iterates
M-step equations (47) and (40) and the E-step (which can optionally use full posteriors or the
truncated posteriors in (41)). Given a distribution of the exponential family, we require for those
equations the following: The sufficient statistics ~T (y), the log-partitionA(~̃ηd(~s,Θ)), and the function
Adh(~s,Θ). For essentially all exponential family distributions conventionally used as noise models
in LVMs, the sufficient statistics and log-partition functions A(~η ) are efficiently computable. Also
the mapping ~̃ηd(~s,Θ) from the standard parametrization to the natural parameters is usually a closed-
form function. Only the function Adh(~s,Θ) of (29) can contain a potential analytical intractability.
The function is defined using h(d,~s,Θ) of Eqns. (43) to (45) and involves the (L dimensional)
mapping ~Φ from the mean parameters to the natural parameters. For many examples the mapping
is known to be closed-form (e.g., Bernoulli, Poisson, Exponential, Gaussian, Categorical etc.) or
partly closed-form (e.g., Gamma). If the mapping is not closed-form (e.g., Beta, Gamma), then our
optimization inherits precisely the same analytical intractability problem as parameter optimization
for the single distribution itself already exhibits. However, the intractability problem is in all common
cases low-dimensional (usually L = 1 or 2), and the function ~Φ is smooth and one-to-one, i.e.,
analytical or numerical solutions are usually available.

The here derived generic optimization thus contrasts with more formal frameworks of EM-like
optimization that are discussed in the context of exponential families and/or graphical models.
Usually such frameworks rest on assumptions for the variational distributions such as mean-field
assumptions (e.g. Saul et al., 1996; Opper and Saad, 2000); or assumptions for the generative model
itself (Wainwright and Jordan, 2008). For instance, if we assume the generative model to have an ex-
ponential family representation of its joint distribution, it is (under mild conditions) straightforward3

to derive a general M-step which takes the form:
∑

n

(
Eq(n) [~T (~y,~s )]− E

p(~y,~s | ~ζ(Θ))
[~T (~y,~s )]

)
= ~0,

where ~T (~y,~s ) denotes the joint sufficient statistics given an observation ~y and a latent variable ~s,
and ~ζ(Θ) represents the natural parameter of the joint. Such a general M-step can serve theoretical
considerations, or it can serve as a starting point to derive efficient optimization procedure (e.g.,

3. One needs to use the exponential family form of the joint. Then the derivative of F(q,Θ) in (81) has to be computed
using the equivalent of (5) for the joint distribution. Mild conditions have to apply for the parametrization from
standard parameters Θ to natural parameters ~ζ which are usually fulfilled.
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if mean-field approaches are developed, Blei et al., 2017; Wainwright and Jordan, 2008). It does
by itself not necessarily represent a directly applicable optimization procedure, however. In the
case of the here considered EF-MCA models, a joint exponential family which is genuine (i.e.,
truly non-curved, see Efron, 1975; Bickel and Doksum, 2015; Efron, 2023) is not available, and
differentiability of a (joint) partition function is not given because of the used maximum non-linearity.
As a further example, energy models (compare Hinton et al., 2006; LeCun et al., 2006; Fischer and
Igel, 2014) usually do have a joint exponential family distribution by definition. However, their
partition function is usually computationally intractable.

7. Numerical Verification and Example Applications

We now numerically verify the derived optimization procedure using different well-known distribu-
tions of the exponential family as examples. Concretely, we use Bernoulli, Poisson and Exponential
as one-parameter distributions, and Gaussian, Gamma and Beta as two-parameter distributions of the
family, and optimize the corresponding EF-MCA data models with EM presented in Alg. 1. We use
the results of Theorem 1 (and Theorem 2 as the general case) for the M-steps. For the E-steps, we use
full posteriors when the used models are sufficiently small or apply approximations (41) otherwise4.
For technical details, we refer to Appendix C, and also refer to Mousavi et al. (2021) for further
examples of the approach applied to Beta-distributed observables.

7.1 Artificial Data

First, an example with artificial data and known data-generating parameters Θgen (the ground-truth
parameters) was considered to verify and evaluate the derived optimization procedure. Specifically,
using the setup of a bars test (Földiák, 1990; Lücke and Sahani, 2008; Drefs et al., 2022a), we were
interested in how well the derived update equations recover ground-truth parameters. We generated
data using the generative model (8)-(10) itself using link (11) with (21) and (22), and considered
Exponential and Bernoulli distributions for observables to assess the efficacy of the proposed updates
(38) and (40) in increasing the log-likelihood of the data. We refer to the corresponding EF-MCA
models as Exponential-MCA (E-MCA) and Bernoulli-MCA (B-MCA) models, respectively.

For data generation and for the models, we used H = 10 generative fields ~Wh in the form of
horizontal and vertical bars each occupying 5 pixels on a D = 5× 5 grid. The latents were sampled
independently (according to the prior) with probability πh for h = 1, . . . ,H , and the corresponding
generative fields were superimposed non-linearly according to (22). We generated two sets of data
points using the given EF-MCA models: One with Exponential distribution as the observation
noise and another with Bernoulli distribution. We then trained the corresponding EF-MCA models
using each of the generated datasets: E-MCA was trained using the data with Exponential noise
and likewise B-MCA using the data with Bernoulli noise. Details of the experimental settings and
parameter initializations are presented in Appendix C.1.

We repeated this procedure 100 times and closely examined the behaviour of the log-likelihood
functions for each of the runs. The results are depicted in Fig. 3. As it can be seen, the application of
the optimization procedure (Theorems 1 and 2) gives rise to a robust and reliable algorithm that in
practice monotonically increases the log-likelihood of the data to at least local log-likelihood optima
(note that we used full posteriors here). Also, the figure illustrates that the algorithms converge to

4. The codes are available in https://github.com/tvlearn/evo.
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A B

Figure 3: Behaviour of the log-likelihood functions corresponding to (A) E-MCA and (B) B-MCA
for 100 runs using artificial bars test. Different colors denote different runs of the algorithms.
Both algorithms result in a monotonic increase of the log-likelihood function and demonstrate fast
convergence (at least to a local optimum). Out of 100 runs, 71 for E-MCA and 29 for B-MCA,
respectively, converged to the global optimum (i.e., to the ground-truth log-likelihood denoted by
the red horizontal line). The best runs achieved slightly higher log-likelihoods compared to the
ground-truth, which may be attributed to the effect of overfitting due to the finite sample sizes.

ground-truth log-likelihood values (log-likelihood values computed using the generative parameters;
red horizontal lines in Fig. 3) in some cases. In these runs, the learned parameters are very close
to the generating ones with small differences that could be due to finite sample size effects (we
have observed that increasing the number of data points instantly increases the estimation accuracy).
Nevertheless, local optima can be observed for some cases where the learned log-likelihood values
differ significantly from the ground-truth. This effect appears to be pronounced to varying degrees
in different models. For instance, in the P-MCA model, we here observed 83 out of 100 runs that
converged to global optimum. In comparison, the P-MCA approach of Lücke and Sahani (2008),
when trained using exact EM, converged to global optimum in 92 out of 100 runs, i.e. more often
compared to the P-MCA model studied here. Such a difference, however, is expected since the
latter model exploits an additional annealing procedure to avoid local optima. While such annealing
approaches have been commonly investigated in previous studies, our focus in this work remains
on evaluating the monotonically increasing log-likelihood function for each of the EF-MCA data
models (we will discuss further details in Appendix C.1). Also Fig. 4 displays the model parameters
learned in one such run for the E-MCA algorithm.

Besides the local optima effect, we also found the sparseness (the value of
∑

h πh or simply πH
if we use the same π for all h) to be an important factor influencing the outcome of the algorithm:
The reliability of the algorithm (the probability of recovering all model parameters; compare, e.g.,
Spratling (1999)) showed to decrease as the sparseness increases (see Appendix C.1 for details).
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Figure 4: A 12 examples of input data. B Learned generative fields using the E-MCA model with the
number of iterations illustrated on the left hand side. C Behaviour of the πh values for h = 1, . . . ,H
(top) and the log-likelihood function (bottom) given the 50 EM iterations. Here the generating
parameter is πgen

h = 0.2 for all h (i.e., the sparseness is 2); see Appendix C.1 for more details.

7.2 More Realistic Data

After the initial verification above, let us now point to some example applications on real data.
Applications often require large models such that computing full posteriors becomes infeasible. To
scale the algorithms to larger sizes, we applied variational E-steps as described in Sec. 5.2 using
|K(n) | = 60 variational states for each n.

7.2.1 FEATURE EXTRACTION – NATURAL IMAGE PATCHES

For the first application to real data, we considered the model of Example 2, i.e., Gaussian-MCA.
As discussed, the model has two matrices that we can optimize using Theorem 1: W for the mean
and a combination of V and W for the variance of the Gaussian. To facilitate interpretation, we
reparameterized the matrices back to the normal Gaussian parameters by setting σ2

dh = Vdh −W 2
dh

(see Appendix B.1 for details). Also, we followed Bornschein et al. (2013) and used a maximum
magnitude non-linearity, i.e., we replaced h(d,~s,Θ) in (22) by (since M(Θ) = W for Gaussian):

h(d,~s,Θ) = argmaxh{|Wdhsh|}, (48)

where |x| denotes the absolute value of x. Such choice does not affect our main results from
Theorems 1 and 2 as the relations in (27)-(28) and also the proofs (in Appendix A.1) remain valid.

Using a set of N = 100, 000 ZCA-whitened image patches of size D = 20 × 20 pixels taken
from a database of natural scenes (van Hateren and van der Schaaf, 1998), we trained a Gaussian-
MCA model with H = 1, 000 components to learn individual dictionaries for component means
and component variances. After training, we observed a large variety of generative fields (GFs) for
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A

B

Figure 5: A Exemplary dictionary elements ~Wh and ~σh learned by Gaussian-MCA on natural image
patches of D = 20× 20 pixels (20 generative fields each; we depict standard deviations σdh instead
of Vdh to facilitate interpretation). See Appendix C.2 for all H = 1000 dictionaries. B Illustration
of data encoding. The left part depicts an exemplary training data point. The middle part depicts a
latent vector ~s with high posterior probability as well as the dictionary elements of the components h
associated with the non-zero entries in ~s. These components effectively determine the Gaussian
mean W̄ and standard deviation σ̄ through a point-wise maximum magnitude non-linearity as shown
on the right part (W̄ = {Wdh(d,~s,Θ)}Dd=1 and σ̄ = {σdh(d,~s,Θ)}Dd=1 with h(d,~s,Θ) given by (48)).

the component means (including the familiar Gabor-like and globular fields that have likewise been
observed in previous studies using MCA models; e.g., Lücke and Sahani 2008; Bornschein et al.
2013) together with a large variety of GFs for component variances. Figure 5 illustrates 20 examples
of such GFs (see Appendix C.2 for the full dictionaries). The observed variety of variance GFs stands
in contrast to a uniform variance with equal value for all latents and observables (i.e., σdh = σ, ∀d, h)
as assumed by standard SC or previous MCA versions. Compared to such previous approaches, a
generalized encoding capturing component means and component variances may provide a more
elaborate model of the combination of first- and second-order statistics in real-world datasets. Such
variance GFs may be used, e.g., to model intricate image structures, and/or to further analyze the
effect of added noise on different parts of the image patches (also see Mousavi et al., 2020, 2021).

Besides, the data and model dimensionalities (i.e., the values of N , D, H) used here demonstrate
the scalability of the proposed EF-MCA data models when accelerated by EVO (Sec. 5.2.1).

7.2.2 NOISE TYPE ESTIMATION

Next, we considered the problem of determining the unknown noise type of a given dataset. This
problem is of importance for data analysis in a number of applications and has been actively
researched during the last years (see Appendix C.3 for a discussion of related work). Here, the
results of Theorems 1 and 2 enabled us to develop approaches for determining the type of the data
distribution. As a proof-of-concept in this direction, we investigated how, e.g., Gaussian-, Gamma-
and Beta-MCA models can be used to determine which of the three noise distributions is better suited
for a given dataset. To quantify suitability, we compared variational lower bounds (as approximations
to log-likelihoods) obtained with the three models on a given dataset. Note that the considered
models have the same number of parameters such that we can directly use their lower bounds for
model selection (i.e., we do not have to consider penalty terms for the number of parameters; see,
e.g., MacKay (2003) for a comparison regarding AIC or BIC).
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Table 2: Comparison of the obtained ELBO values by the three different EF-MCA data models
when trained on images corrupted with three different noises: Gaussian, Gamma and Beta were
investigated here. Corrupted images were linearly rescaled to the interval (0, 1) for the sake of a
reliable comparison. In addition, we trained all the models with the same settings of hyper-parameters.
For the case of Gamma-MCA (and also Beta-MCA for some cases), we used the approach presented
in Appendix C.1 to avoid local optima. The results correspond to the highest value of the ELBO for
each model among three different runs, and the bold numbers represent the best fit (for each noisy
image) among the three models. We refer the reader to Sec. 7.2.2 and Appendix C.3 for more details.

Noise Model House Camera Peppers Saturn Bridge Flag Average

Beta
Beta-MCA 39.00 -28.89 37.93 57.82 31.29 78.88 36.00

Gamma-MCA 15.39 -29.02 25.80 58.96 16.23 97.25 30.76
Gaussian-MCA 16.89 -42.36 14.73 32.31 7.99 66.00 15.92

Gamma
Beta-MCA 125.16 251.87 215.27 562.55 159.46 138.78 242.18

Gamma-MCA 125.91 266.36 217.71 554.82 159.47 139.96 244.03
Gaussian-MCA 116.38 232.57 200.05 534.19 143.00 118.13 224.05

Gaussian
Beta-MCA 123.43 143.77 119.66 150.23 116.20 146.02 133.21

Gamma-MCA 121.70 143.15 118.50 148.65 114.11 143.97 131.68
Gaussian-MCA 124.15 144.42 120.63 151.30 117.05 145.67 133.87

We investigated noise type estimation using both visual and acoustic data. We also refer the reader
to Appendix C.3 for technical details of the experiments, Examples 1, 2 and Appendices B.1 and B.2
for detailed information regarding the parametrization of the Gaussian-MCA and the Gamma-MCA
models, respectively, as well as to (Mousavi et al., 2021) for the details of the Beta-MCA.

Visual Data. We here considered standard benchmark images (depicted in Fig. 11), to which
we either added Gaussian, Gamma or Beta noise. We then trained the three models of Gaussian-,
Gamma- and Beta-MCA on each of the noisy images. In order to have a reliable comparison, we ran
each algorithm three times (each time with a new set of initial parameters and for 100 variational
EM iterations), and picked the one with the highest ELBO among these three runs. The results are
presented in Tab. 2. As can be observed and expected, the lower bound is, in most cases, highest
when the noise distribution assumed by the model matches the actual noise in the data. Factors
potentially causing the few discrepancies between the best model (in terms of lower bound) and
actual noise type, as well as the small differences between the lower bounds that observed in some
cases may include, e.g., local optima effects and/or the noise levels which we have used for the
experiments (we used noise level of 50 for the cases of Gaussian or Gamma noise and 0.1, 0.2 or 0.3
for the case of Beta noise).

Acoustic Data. As a further example for data with natural noise sources, we considered the
CHiME dataset (Foster et al., 2015) and fitted Gaussian- and Gamma-MCA models to amplitude
spectrograms of three selected audio files. For both algorithms, we performed three runs for each
audio example, and for comparison then selected the one with the highest ELBO (which can be
computed efficiently). The resulting ELBO values are shown in Tab. 3. The higher ELBOs observed
for Gamma-MCA suggest the Gamma distribution as a better suited noise model compared to
Gaussian for the considered data, which is consistent with amplitude data being positive. While
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Table 3: Results of the noise type estimation experiment with natural noise sources (see Sec. 7.2.2
and Appendix C.3 for details). Listed are the highest ELBO values among three different runs given
each of the considered audio examples.

Gaussian-MCA Gamma-MCA
audio example 1 215.20 298.53
audio example 2 95.61 250.77
audio example 3 47.36 206.14

differences of the ELBO values across runs showed to be comparably small, larger differences across
audio examples and algorithms could be observed. These may be attributed to, among other things,
differences between the content and noise sources in the individual audio files (see Appendix C.3 for
data-related details).

The experiments reveal the efficacy of the updates (38) and (39) and demonstrate applicability of
the algorithms for noise type estimation at large scales. Model selection using other types of noise
distributions can proceed along the same line but require a more elaborate treatment (compare, e.g.,
Valera and Ghahramani, 2017) which exceeds the purposes of this study.

7.2.3 DENOISING

Finally, we used the presented algorithms to denoise images corrupted by non-Gaussian noises. This
task can be considered more difficult compared to the removal of additive white Gaussian noise
which numerous established denoising algorithms are optimized for (compare, e.g., Dabov et al.,
2007; Gu et al., 2014; Burger et al., 2012; Chaudhury and Roy, 2017; Chen and Pock, 2017; Zhang
et al., 2017; Tai et al., 2017; Zhang et al., 2018). We investigated two different noise types, namely
Poisson and Exponential, and used standard test images for benchmarking (see Appendix C.4 and
Fig. 11 for details on the images used). Concretely, we applied Poisson-MCA (P-MCA) to denoise
images corrupted by Poisson noise and analogously Exponential-MCA (E-MCA) to denoise images
corrupted by Exponential noise. The family of EF-MCA models allows for treating a much larger
variety of noise distributions, of course, but focusing on P- and E-MCA may illustrate the potential
also for other noise types. For denoising images with Beta noise (using the Beta-MCA model), the
reader may be referred to Mousavi et al. (2021).

In general, one can see denoising as a (non-)linear inverse problem (compare Tarantola, 2005)
where the task is to estimate the underlying non-noisy image using a specific method. Formally,
given a set Ycorrupted = f(Yoriginal) of corrupted data points (f denotes a noise operator, in this
case Poisson or Exponential), we aim at estimating the uncorrupted data Yoriginal by Yestimate. A
variety of different approaches have been investigated in the literature in order to either obtain the
corresponding Yestimate using a so-called denoiser (like the approaches mentioned above), or to
somehow improve the performance of a given denoiser (either for denoising or for other relevant
tasks) using established methods like the work by, e.g., Kadkhodaie and Simoncelli (2021) that uses
the prior embedded within a denoiser. We here employed the proposed EF-MCA data models to
restore the non-noisy images by only observing a noisy version of the clean images. That is, P-MCA
and E-MCA models were directly applied to the noisy image itself (using overlapping patches)
without leveraging external, clean training data. This task is also referred to as zero-shot denoising
(compare, e.g., Shocher et al., 2018; Imamura et al., 2019). In detail, we followed Drefs et al. (2022a)
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(b) Corrupted image (c) Denoised with P-MCA(a) Original image

Figure 6: Denoising of the House, Saturn and Bridge images when corrupted by Poisson noise (at
peak value 2). The figure illustrates the original and noisy images together with the reconstructed
images using P-MCA trained with H = 100 and D = 400 for 100 variational EM iterations. The
corresponding PSNR values of the reconstructed images are 24.66 (House), 28.39 (Saturn) and
20.15 (Bridge); while the PSNR values of the noisy images are 4.94 (House), 7.11 (Saturn) and 6.21
(Bridge). In addition, the denoised House image can be compared with Fig. 9 of Giryes and Elad
(2014) which depicts the reconstructed images using BM3D, SPDA and NLSPCA methods.

and, given that T (y) = y for Poisson and Exponential distributions (i.e., M(Θ) = W ), used the
following formula5 to estimate the non-noisy image pixels:(

~y
(n)
estimate

)
d

= Eq(n) [W̄d(~s,Θ)], (49)

where d corresponds to pixel d of the image patch n.

Poisson noise. After Gaussian denoising, Poisson noise removal benchmarks do presumably pro-
vide the most extensive opportunities for quantitative comparisons of different denoising algorithms.
One possibility for denoising an image corrupted by Poisson noise is to simply ignore the specific
properties of Poisson noise and employ a method that is tailored to Gaussian noise. For instance,
BM3D (Dabov et al., 2007) can be applied directly. BM3D is a well-known denoising method which

5. Estimators of other distributions would use the corresponding M(Θ) matrix (see Mousavi et al., 2021, for denoising
images corrupted by Beta noise).

29



MOUSAVI, DREFS, HIRSCHBERGER, AND LÜCKE

often outperforms SC or k-SVD (Aharon et al., 2006) algorithms on image denoising benchmarks.
The original method is tailored to 2D-images corrupted by Gaussian noise, however.

A frequently followed alternative approach is converting the Poisson noise to Gaussian, and
then applying an algorithm which assumes Gaussian observables. Such methods apply a non-linear
variance-stabilizing transformation (VST) such as Anscombe (Anscombe, 1948) or Fisz (Fisz, 1955)
that produces a signal in which the noise can approximately be treated as Gaussian with unit variance.
Approaches such as VST+BM3D use the Anscombe root transformation followed, in this case, by
standard BM3D (e.g., Makitalo and Foi, 2010). Such approaches, however, are specific to Poisson
noise as similar transformations are in general not available for all exponential family distributions.
But also in the case of Poisson noise, transformation to Gaussian noise can be problematic. In
fact, it is known that transformation-based methods can yield poor results for low-intensity signals
(Salmon et al., 2014; Makitalo and Foi, 2010). It should be noted that the Poisson noise is not
additive and the peak value of the original image determines the strength of the noise (the lower
the peak is, the stronger the noise will be). For low peak values (e.g. lower than 3), VSTs are less
effective. As a result, many approaches have been suggested to improve such transformations or
exploit alternative approaches in the case of low-intensity signals (e.g., Salmon et al., 2014; Makitalo
and Foi, 2010; Rond et al., 2016; Azzari and Foi, 2016; Giryes and Elad, 2014). One example is the
P4IP approach (Rond et al., 2016) that applies a general plug-and-play prior approach on Poisson
inverse problems. The method still relies on Gaussian-based denoising algorithms, however. Other
studies (such as Makitalo and Foi, 2010; Azzari and Foi, 2016) attempt to improve the transformation
techniques in order to increase the performance of the methods. A prominent work is an iterative
VST framework, known as I+VST+BM3D, introduced by Azzari and Foi (2016) that, in a series of
consecutive iterations, combines the noisy observation with a previously estimation of the image in
order to improve the signal-to-noise ratio (SNR). The algorithm can then cope with extremely low
SNR cases and produce state-of-the-art denoising results.

More relevant for comparison to our approach are methods that explicitly assume a Poisson noise.
As discussed in the previous experiment, a data model that exploits the properties of the Poisson
distribution (for the case of Poisson denoising) may be more suitable rather than a Gaussian-based
model. In this direction, one important study is the work by Salmon et al. (NLSPCA; 2014) that uses
Poisson PCA in which the link between latents and observables (as discussed before) is considered
to be a weighted linear sum that sets the Poisson’s natural parameter. In another study, Giryes and
Elad (SPDA; 2014) introduce a Poisson sparse coding model capable of learning dictionaries from a
Poisson distributed dataset. Their method likewise considers a linear superposition of the latents.
In contrast, the P-MCA model that is used here uses maximization to directly set the means of the
Poisson observables. Figure 6 illustrates the reconstructed ’House’, ’Saturn’ and ’Bridge’ images
using the P-MCA model. The estimated ‘House’ image can be further compared with Fig. 9 depicted
by Giryes and Elad (2014) which presents the results of BM3D, SPDA and NLSPCA.

In addition to the approaches presented above, deep learning-based techniques have also been
applied to Poisson denoising in recent years (see, e.g., Remez et al., 2017; Kumwilaisak et al., 2020;
DeGuchy et al., 2019; Jin et al., 2018; Tolooshams et al., 2020). Importantly, Remez et al. (De-
noiseNet; 2017) explored deep CNNs to denoise low-light images and reported state-of-the-art results
for Poisson denoising at different peak values (also see Remez et al., 2018, for a further development).
Another DNN-based algorithm for Poisson denoising is DCEA presented by Tolooshams et al. (2020)
which, similar to DenoiseNet, considers a supervised setting for training. As mentioned earlier, the
contribution considers distributions of the natural exponential family which includes the Poisson
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Table 4: Comparison of the PSNR values (in terms of dB) for the considered Poisson denoising
benchmarks. The algorithms are divided into two groups for peaks 0.2 and 0.5, and three groups for
peaks 1 and 2 (values of DenoiseNet and DCEA-UC do not exist for peaks 0.2 and 0.5). NLSPCA,
SPDA and P-MCA are LVMs that assume a Poisson noise while the others are task-specific and
highly optimized algorithms that either assume a Gaussian denoiser (the BM3D-based methods and
P4IP) or a DNN-based approach that is trained supervised (DenoiseNet and DCEA-UC). For each
peak value and each image, the bold numbers denote the best PSNRs in comparison to the other
models of the corresponding subgroup; and the underlined number denotes the best PSNR among all
models. Listed values are averages over five noise realizations. See Secs. 7.2.3 and C.4 for details.

Method Peak House Camera Peppers Saturn Bridge Flag
BM3D 0.2 18.37 17.35 17.10 22.02 17.09 14.28

VST+BM3D 17.79 16.90 16.96 21.38 17.12 13.53
I+VST+BM3D 19.68 18.40 17.54 23.13 18.13 17.49

P4IP 19.48 17.82 17.31 23.05 17.54 14.82
SPDA 17.83 16.93 16.75 21.52 16.80 16.58

NLSPCA 18.91 17.79 17.45 22.90 17.46 16.48
P-MCA (H = 20) 19.69 18.19 17.35 23.00 17.45 16.75
P-MCA (H = 30) 19.36 18.48 17.46 23.30 17.51 17.09

BM3D 0.5 20.27 18.83 18.49 23.86 18.24 15.87
VST+BM3D 19.61 18.46 18.41 23.75 18.26 15.58

I+VST+BM3D 21.54 19.79 19.05 25.78 19.08 18.60
P4IP 20.93 19.27 18.86 25.19 18.47 16.50

SPDA 20.51 18.90 18.66 25.50 18.46 19.67
NLSPCA 20.85 19.23 18.78 24.91 18.50 18.80

P-MCA (H = 20) 21.58 19.49 18.96 25.79 18.52 18.50
P-MCA (H = 30) 21.86 19.67 18.94 25.48 18.47 19.06

DenoiseNet 1 22.87 21.59 21.43 26.26 19.83 19.45
DCEA-UC 23.00 21.47 20.91 - 19.87 -

BM3D 22.35 20.37 19.89 25.89 19.22 18.31
VST+BM3D 21.64 20.19 19.71 25.82 19.43 18.46

I+VST+BM3D 23.04 21.07 20.44 27.27 19.86 19.74
P4IP 22.67 20.54 20.07 27.05 19.31 19.07

SPDA 22.73 20.23 19.99 27.02 19.20 22.54
NLSPCA 22.09 20.32 19.62 26.89 18.94 20.26

P-MCA (H = 100) 23.42 20.54 20.35 27.46 19.34 21.28
DenoiseNet 2 24.77 23.25 23.19 28.37 20.80 21.38
DCEA-UC 24.52 22.94 22.94 - 20.82 -

BM3D 24.18 22.13 21.97 27.42 20.31 20.81
VST+BM3D 23.79 21.97 22.02 27.95 20.49 20.79

I+VST+BM3D 24.62 22.25 21.93 28.85 20.69 21.18
P4IP 24.65 21.87 21.33 28.93 20.16 21.04

SPDA 25.09 21.54 21.23 29.38 20.15 24.92
NLSPCA 23.86 20.76 20.52 28.22 19.47 20.86

P-MCA (H = 100) 24.70 21.16 21.44 28.64 20.11 21.41
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distribution. Tolooshams et al. investigated their approach in two different settings: Constrained and
unconstrained DCEA, referred to as DCEA-C and DCEA-UN, respectively. Also compare related
work by Kumwilaisak et al. (2020) who use multi-directional long-short term memory (LSTM)
networks along with the CNNs. Nevertheless, there are substantial differences between, for instance,
DenoiseNet or DCEA-UN, on the one hand, and P-MCA, on the other. P-MCA is trained directly on
the noisy image and the approach does not require a-priori information about the peak value of the
corrupted data; this contrasts with DenoiseNet or DCEA-UN which are both trained supervised.

Table 4 presents a quantitative performance comparison of different approaches using the standard
measure of peak-signal-to-noise-ratio (PSNR). The methods we chose for comparison represent, to
our best knowledge, state-of-the-art results for Poisson denoising at different peak values. We here
chose four peak values and reported results for P-MCA considering different latent dimensionalities
H and using models with D = 20× 20 observables. In general, we observed that lower values of
H produce better results for low peak values while larger H values result in better performance for
high peak values. An explanation could be that the information content of noisy data is lower (if the
amount of data points remains the same) such that it becomes difficult to estimate the large number of
parameters as required for a large H . Consequently, such a hyper-parameter can be further optimized
for our learning algorithm (observe the different H values for P-MCA in Tab. 4).

As it can be observed in Tab. 4, P-MCA produces competitive results and, in some cases, out-
performs the other models; but it can also be outperformed, e.g., by I+VST+BM3D, DenoiseNet
or DCEA-UN in different settings. At a closer inspection, however, these approaches are using
considerable fine-tuning specific to images. Furthermore, the major difference compared to De-
noiseNet or DCEA-UN is their supervised settings where they use clean (non-noisy) data for training.
P-MCA is, like SPDA and NLSPCA, not tailored to images. All these three approaches also have in
common that they are directly based on the assumption of a Poisson distribution for the observables.
Considering Tab. 4, P-MCA shows, in comparison to SPDA and NLSPCA, improved performance in
terms of PSNR values in many of the investigated settings (especially at very low peak values). Such
improvements for one example of the exponential family (P-MCA) may argue in favor of the general
approach represented by the proposed LVMs and their optimization based on Theorems 1 and 2.
It should be mentioned that we did not rigorously optimize the performance of the P-MCA model
(and the other EF-MCA algorithms applied here) using, e.g., extensive parameter tuning. In general,
task performance could be improved, e.g., by exploiting task-specific patch-averaging procedures or
additional methods to avoid local optima.

Besides the comparisons presented above, we also compared the performance of the P-MCA
model with other similar Gaussian-based LVMs trained with EVO. To this, we considered a version
of MCA studied in Sheikh et al. (2019), binary sparse coding (BSC; Henniges et al., 2010), truncated
variational autoencoder (TVAE; Drefs et al., 2022b) and evolutionary spike-and-slab sparse coding
(ES3C; Drefs et al. (2022a); also compare Sheikh et al. (2014); Goodfellow et al. (2012)). These are
all linear or non-linear LVMs that use binary latents (except ES3C that uses a spike-and-slab prior)
and we have trained all of them using EVO (Drefs et al., 2022a) with identical hyper-parameters
(the details are discussed in Appendix C.4). Figure 7 depicts the performance comparison of these
approaches for Poisson denoising at peak value 1 (also see Fig. 12). As observed, P-MCA outperforms
all the other models (that are tailored to the Gaussian noise) in both achieving higher ELBO values
(although the models are not directly comparable due to the different number of parameters), and
also higher PSNRs for the reconstruction. We also repeated the experiment at the peak value of 4. In
that case, TVAE obtained the highest PSNRs followed by P-MCA being the second best model.
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Figure 7: Comparison of the PSNR and ELBO values obtained by the considered LVMs for Poisson
denoising at peak 1. The results correspond to one run of each algorithm. Best values are highlighted.

(a) Original image (b) Corrupted image (c) P-MCA (9.53) (d) E-MCA (23.41)

(e) G-MCA (7.20) (f) ES3C (8.39) (g) BM3D (22.61) (h) VST+BM3D (5.82)

Figure 8: Denoising of the House image when corrupted by Exponential noise (we did not rescale the
image before adding noise). Depicted are (a) original, (b) corrupted and (c)-(h) reconstructed images
and the corresponding PSNRs in terms of dB obtained by different models (see text for details).
Here, E-MCA achieves the highest PSNR in comparison to the others which is consistent with its
Exponential noise assumption. Note that P-MCA and E-MCA use one-parameter distributions as
noise models and only use the information of one dictionary (related to the mean) while the others
(G-MCA, ES3C and BM3D) use additional information corresponding to the variance parameter.

Exponential noise. Exponential noise is treated much less frequently such that a comparison
similar to Tab. 4 is not possible. Instead, we here used the example of Exponential noise to highlight
the importance of using the correct noise distribution. That is, we exploited E-MCA as an instance
of our LVMs with Exponential noise together with P-MCA and G-MCA (i.e., models assuming
Poisson and Gaussian noise, respectively) for denoising the House image corrupted by Exponential
noise. Additionally, we further applied the BM3D, VST+BM3D and ES3C algorithms. As illustrated
in Fig. 8, E-MCA achieved the highest PSNR compared to all other approaches, which could be
expected because E-MCA assumes the true image noise. Also, BM3D performed reasonably well;
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however, in combination with the Anscombe transformation, the algorithm (VST+BM3D) achieved
the lowest PSNR, which may be attributed to the Anscombe transformation being specific to Poisson
noise. Visual inspection may even argue in favor of using the right noise model more than what
PSNRs would suggest. In fact, Fig. 8 shows larger differences between the reconstructed images by
E-MCA and BM3D than what may be expected by considering the PSNRs of the two approaches.

8. Discussion

Latent variable models (LVMs) have found very wide-spread use in Machine Learning, Statistics
and Artificial Intelligence applications. A central element of basically all LVM approaches is the
procedure which optimizes an LVM’s parameters given a set of data points. For non-Gaussian
observables, optimization is typically much more challenging than for Gaussian observables, and
especially so when we seek generic optimization methods for a broad class of observable distributions.

Here we studied an example of LVMs with a very generally defined range of observable dis-
tributions. By using binary latents in combination with maximization in order to link latents to
the means of observables, we could address parameter optimization in general. While it would
be challenging to use gradient based approaches for the maximum, the maximum combination of
latents has convenient analytical properties. In our study, these properties allowed for the derivation
of the main result: A general set of concise parameter update equations applicable to any (regular
and minimal) distribution of the exponential family. For small scale problems, optimization can
be performed based on full posteriors. For larger scale problems, we applied a novel variational
acceleration (EVO; Drefs et al., 2022a), which is likewise generically and directly applicable (see
Sec. 5.2.1).

The most closely related approach, EF-SC (Lee et al., 2009), used MAP-based optimization and
distributions of the exponential family with a weighted linear sum to define the natural parameters of
the used observation noise. Such a link from latents to observables has advantages in terms of MAP-
based training (mono-modal posteriors are maintained). A disadvantage is that different observable
distributions essentially define different non-linear superposition models, i.e., the observable means
depend differently on the weighted summation of latents for different observation distributions. Also,
how to realize a link from latents to two (or more) parameter distributions seems to be an open
question for previous approaches. At least (and as previously stated), neither EF-SC nor PCA-like
approaches which use the same link (Collins et al., 2002; Mohamed et al., 2009; Salmon et al.,
2014) report numerical results for exponential family distributions with more than one parameter.
Additionally, EF-SC would not be able to learn prior parameters because of the used MAP approaches
(additional cross-validation would be required). In contrast, the family of LVMs considered here is
generally defined with parameter update equations (Theorems 1 and 2) that are directly applicable
to any choice of a (regular and minimal) exponential family distribution. The used exact inference
(for small H) or variational approximation (for large H), furthermore, allows for learning of
prior parameters. For the approach investigated here, we consequently argue that it represents
an exceptionally flexible and generally applicable LVM approach for unsupervised learning. It
encompasses, in principle, any choice of an exponential family distribution for its observables. As
such, it allows for using many more distributions of the family than have here or elsewhere been
considered including Categorical, Dirichlet, normal-gamma etc. Preliminary example algorithms
based on one- and two-parameter distributions of the exponential family suggest that feasible and
competitive learning algorithms are obtained when applying the results derived here.
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The LVMs considered here share with the generalized linear model (GLM; Nelder and Wedder-
burn, 1972) that both approaches are relatively generally defined. For the here considered LVMs
(EF-MCA), Theorems 1 and 2 in conjunction with EVO represent a generic optimization proce-
dure; for GLMs an example of a generic optimization is based on iterative reweighted least square
optimization which results in generally applicable (iterative) parameter updates (McCullagh and
Nelder, 1989). The importance of the latter and similar approaches is reflected by a large variety
of software packages for GLMs (Kosmidis, 2019). The class of EF-MCA models and the class of
GLM models differ very significantly, however. Most salient is the focus of GLMs on regression
compared to the focus on unsupervised learning for EF-MCA. However, also taking this difference
aside, GLMs and EF-MCA strongly differ by how latents are linked to observables. GLMs are by
definition (and by name) using weighted summation while EF-MCA uses weighted maximization.
Furthermore, GLMs usually consider continuous latents while EF-MCA considers binary latents.
Finally, also the treatment of multiple parameter distributions is different: GLMs can be defined with
observable variances depending on the mean in a specific way, while the focus remains regression
through modeling of the mean dependence. For EF-MCA, multiple matrices are used to link latents
and observables (see Fig. 1) in the case when observable distributions with multiple parameters are
used (compare Fig. 5). The use of multiple matrices is also a distinguishing feature compared to
the other unsupervised learning approaches with more generally defined observable distributions
(Collins et al., 2002; Mohamed et al., 2009; Lee et al., 2009).

Nevertheless, the central results here (i.e., the generic parameter update equations discussed in
Theorems 1 and 2) are based on the assumption of binary latents and a maximum superposition, which
may limit the application of our EF-MCA data models. While for many types of data, summation
is a plausible assumption (e.g. acoustic waveforms for acoustic data), it has been argued that, e.g.,
for images or spectrogram representations of sounds, a maximum superposition from latents to
observables is more closely aligned with the true generating process (see, e.g., Roweis, 2003; Lücke
and Sahani, 2008; Bornschein et al., 2013; Frolov et al., 2015; Sheikh et al., 2019, for a discussion).
Likewise, discrete latents may represent more realistic modeling choices in some cases (e.g. for
diseases/symptoms relations, Šingliar and Hauskrecht, 2006; Jernite et al., 2013; Mousavi et al.,
2021) while for other data continuous latents are clearly more suitable.

In order to numerically investigate the derived optimization procedure, we used example applica-
tions which included structure finding in image patches, automatic estimation of noise distributions
(also compare Vergari et al., 2019; Valera and Ghahramani, 2017), and denoising of images subject
to non-Gaussian noises. In the case of Poisson noise, where a number of alternative approaches are
available for comparison, we observed competitive performance. In particular, denoising results im-
proved on models which used Poisson noise with linear superposition, namely the P-MCA algorithm
improved on Non-Local Sparse Principal Component Analysis (NLSPCA; Salmon et al., 2014) and
the Sparse Poisson Denoising Algorithm (SPDA; Giryes and Elad, 2014). Comparison to NLSPCA
and SPDA may be particularly interesting in the context of this work. Both NLSPCA and SPDA use
the standard linear link to observables via the natural parameter of the Poisson distribution, whereas
P-MCA sets the mean of the Poisson using maximization. Besides, NLSPCA and SDPA exploit
continuous latents while P-MCA uses binary latents. Tab. 4 shows, in general, a better denoising per-
formance of P-MCA compared to both NLSPCA and SDPA at low-SNR values (although SPDA also
yields very competitive results in some cases). Poisson noise is just one example of an exponential
family distribution, and denoising is just one application. Still, we note that P-MCA is competitive
for the task without using additional, task-specific mechanisms (compare NLSPCA and SDPA) and
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without extensive fine-tuning of hyper-parameters. Further applications of our approach included
observables following Bernoulli and Exponential distributions (both one-parameter distributions)
and, importantly, observables following Gaussian, Gamma and Beta distributions (as two-parameter
distributions). The Beta distribution has also been considered in an application of our results to
medical data of hearing impairments (Mousavi et al., 2021).

In analogy to the literature on standard SC, further application examples would include inpainting,
compression, feature learning, or compressed sensing using in principle any regular exponential
family as observable distribution. Future work may also include the use of more richly structured
prior distributions. As the derived update equations apply in general for any binary latents, the
independent Bernoulli prior could also be replaced by more general distributions for binary variables
(e.g. Dai et al., 2013) including those parameterized by deep models. Binary latents for deep
generative graphical models are very common such that, e.g., deep SBNs (Saul et al., 1996; Gan et al.,
2015) or deep restricted Boltzmann Machines (Larochelle and Bengio, 2008) could be used as well
as deep models with deterministic non-linearities (e.g. Jang et al., 2017). Future research may also
investigate how the current results can be extended to other forms of non-linear superpositions. The
non-linearity (48) or an occlusion non-linearity as discussed by Dai and Lücke (2014) do maintain
crucial properties required for Theorems 1 and 2, for instance. And non-linear superposition models
could go further in the direction of deep models, e.g., by using repeated maximization with several
layers of stochastic binary latents. Finally, also hybrid approaches combining results of LVMs with
binary and continuous latents (cf. Sec. 4) could represent a promising future research direction.
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Appendix A. Proof of the Main Theorems

We here provide the full proofs of Theorems 1 and 2 as well as further details. First consider
the function Adh(~s,Θ) defined in (29). We show that the function has a useful property which is
exploited in our proofs. For special cases of EF-MCA data models, this property has been observed
before (Lücke and Sahani, 2008; Lücke and Eggert, 2010) but the following Lemma represents the
required generalization for exponential family observables.

Lemma 1 Consider W̄d(~s,Θ) and V̄d(~s,Θ) that are defined in (22). Then, for any well-behaved
function g and any arbitrary ~s ∈ {0, 1}H , we have

Adh(~s,Θ) g
(
W̄d(~s,Θ), V̄d(~s,Θ)

)
= Adh(~s,Θ) g(Wdh, Vdh). (50)
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Proof Given a vector ~s, for each pair (do, ho) either of the following applies:

ho = h(do, ~s,Θ), or ho 6= h(do, ~s,Θ),

where h(do, ~s,Θ) = argmaxh{Mdoh(Θ) sh}. First, let ho = h(do, ~s,Θ). It follows from (22) that

Adoho(~s,Θ)g
(
W̄do(~s,Θ), V̄do(~s,Θ)

)
= Adoho(~s,Θ)g(Wdoh(do,~s,Θ), Vdoh(do,~s,Θ))

= Adoho(~s,Θ)g(Wdoho , Vdoho).

On the other hand, it follows from ho 6= h(do, ~s,Θ) and (29) that Adoho(~s,Θ) = 0 which trivially
satisfies the claim in (50).

The lemma illustrates how multiplication by Adh(~s,Θ) simplifies the left-hand-side of the equation
(50) to the right-hand-side expression in which the second factor is independent of ~s. The function g
can be any arbitrary function with arguments W̄d(~s,Θ) and V̄d(~s,Θ). Moreover, it should be noted
that we here assumed the case of L = 2 and presented the lemma using W̄d(~s,Θ) and V̄d(~s,Θ). For
the case of arbitrary L, the straightforward generalization of the lemma applies by considering the
definition (45) and a function g with argument(s) W̄ (1)

d (~s,Θ), . . . , W̄
(L)
d (~s,Θ). The general case

will be used for the proof of Theorem 2.

A.1 Parameter Update Equations – Two-Parameters Case

We first prove Theorem 1 and show that the derivatives of F(q,Θ) w.r.t. Wdh and Vdh yields the
corresponding equations for W and V in (30) and (31).
Proof of Theorem 1 Consider a single dictionary element Wdh and, for the sake of brevity, let us
abbreviate W̄d(~s,Θ) and V̄d(~s,Θ) by W̄d and V̄d, respectively. Then using the chain rule and Eqns.
(11) and (27)-(28), we obtain:

∂

∂Wdh
log(p(yd; ~̃ηd(~s,Θ))) =

∂

∂Wdh
log(p(yd; ~Φ(W̄d, V̄d))) (51)

=

2∑
l=1

( ∂

∂Wdh
Φl(W̄d, V̄d)

)( ∂

∂ηl
log(p(yd; ~η ))

∣∣
~η=~Φ(W̄d,V̄d)

)
=

2∑
l=1

( ∂

∂Wdh
W̄d

)( ∂

∂w
Φl(w, V̄d)

∣∣
w=W̄d

)( ∂

∂ηl
log(p(yd; ~η ))

∣∣
~η=~Φ(W̄d,V̄d)

)
+

2∑
l=1

( ∂

∂Wdh
V̄d︸ ︷︷ ︸

= 0

)( ∂
∂v

Φl(W̄d, v)
∣∣
v=V̄d

)( ∂

∂ηl
log(p(yd; ~η ))

∣∣
~η=~Φ(W̄d,V̄d)

)

=

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, V̄d)

∣∣
w=W̄d

)(
Tl(yd)−

∂A(~η )

∂ηl

)∣∣∣
~η=~Φ(W̄d,V̄d)

.

Moreover, from (5) we know that for any regular distribution (i.e. with finiteA(~η )) of the exponential
family, A(~η ) satisfies:

∂A(~η )

∂η1
= Ep(y; ~η )[T1(y)] and

∂A(~η )

∂η2
= Ep(y; ~η )[T2(y)]. (52)
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Thus, we can further simplify:

∂

∂Wdh
log(p(yd; ~̃ηd(~s,Θ))) =

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, V̄d)

∣∣
w=W̄d

)
(53)

×
(
Tl(yd) − Ep(y; ~η )[Tl(y)]

)∣∣∣
~η=~Φ(W̄d,V̄d)

=

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, V̄d)

∣∣
w=W̄d

)(
Tl(yd)− Ep(y; ~Φ(W̄d,V̄d))[Tl(y)]

)
.

Now, using Lemma 1 we obtain:

∂

∂Wdh
log(p(yd; ~̃ηd(~s,Θ))) =

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)
×
(
Tl(yd)− Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
. (54)

Note that the above equation depends on parameter ~s of the hidden states only through the function
Adh(~s,Θ). This is an important property of Lemma 1 that alleviates the complexity of the aforemen-
tioned equation and enables us to extract a set of concise update equations for dictionaries W and V .
To see this, we derive (using Eqn. (26)):

∂

∂Wdh
F(q,Θ) =

∑
n

∑
~s

q(n)(~s )
(∑

d′

∂

∂Wdh
log
(
p(y

(n)
d′ ; ~̃ηd′(~s,Θ))

))
=
∑
n

∑
~s

q(n)(~s )
(∑

d′

2∑
l=1

(
Ad′h(~s,Θ)

)( ∂

∂w
Φl(w, Vd′h)

∣∣
w=Wd′h

)
×
(
Tl(y

(n)
d′ )− Ep(y; ~Φ(Wd′h,Vd′h))[Tl(y)]

)
δdd′
)

=
∑
n

∑
~s

q(n)(~s )

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)
×
(
Tl(y

(n)
d )− Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
=

2∑
l=1

( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)∑
n

Eq(n) [Adh(~s,Θ)]

×
(
Tl(y

(n)
d )− Ep(y; ~Φ(Wdh,Vdh))[Tl(y)]

)
, (55)

where δdd′ denotes the Kronecker delta, and using our mean value parametrization defined by
~w := Ep(y; ~Φ(~w))[

~T (y)], we have:

∂

∂Wdh
F(q,Θ) =

( ∂

∂w
Φ1(w, Vdh)

∣∣
w=Wdh

)∑
n

Eq(n) [Adh(~s,Θ)]
(
T1(y

(n)
d )−Wdh

)
(56)

+
( ∂

∂w
Φ2(w, Vdh)

∣∣
w=Wdh

)∑
n

Eq(n) [Adh(~s,Θ)]
(
T2(y

(n)
d )− Vdh

)
.
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Now, independently of the functions ∂
∂wΦl(w, Vdh)

∣∣
w=Wdh

for l = 1, 2, the derivative of the ELBO

w.r.t. Wdh is zero, i.e. ∂F
∂Wdh

= 0, if it is the case that:∑
n

Eq(n) [Adh(~s,Θ)]
(
T1(y

(n)
d )−Wdh

)
= 0 and (57)∑

n

Eq(n) [Adh(~s,Θ)]
(
T2(y

(n)
d )− Vdh

)
= 0 . (58)

Rearranging terms yields (30) and (31) and completes the proof. The proof proceeds along the same
lines for ∂F

∂Vdh
which results in the same set of equations.

A.2 Second Derivatives

Theorem 1 provides equations (30) and (31) for the matrices W and V . Fulfilling the equations
implies that the derivatives of F(q,Θ) w.r.t. W and V vanish. If we assume convergence of the
corresponding fixed-point equations (38) and (39) that we use as M-steps, thenW and V approach the
values that solve (30) and (31) arbitrary closely. And in the numeric evaluations such convergence is
observed. The M-step includes, for completeness, also the update for ~π in (40). If we further suppose
for the M-step that W and V have fully converged (and that ~π has been updated) then all derivatives
of F(q,Θ) vanish, i.e., F(q,Θ) has a fixed-point w.r.t. the model parameters Θ = (~π,W, V ). But
vanishing derivatives can also correspond to (local) minima or saddle points and not necessarily
maxima. We can gather more information about the fixed-points by considering, e.g., the updates
(38) for one element Wdh of the matrix W . If we now divert from the fixed-point by changing Wdh,
we can ask if the objective F(q,Θ) then increases or decreases. We do so by evaluating the second
derivative at an (arbitrary) fixed-point of F(q,Θ). We start with the first derivative:

∂

∂Wdh
F(q,Θ) =

∑
n

∑
~s

q(n)(~s )
∂

∂Wdh

(∑
d′

log
(
p(y

(n)
d′ ; ~̃ηd′(~s,Θ))

))
(59)

=
∑
n

∑
~s

q(n)(~s )

2∑
l=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl(w, Vdh)

∣∣
w=Wdh

)(
Tl(y

(n)
d )− ∂A(~η )

∂ηl

)∣∣∣
~η=~Φ(Wdh,Vdh)

=
( ∂

∂w
Φ1(w, Vdh)

∣∣
w=Wdh

)
︸ ︷︷ ︸

:= G1

∑
n

∑
~s

q(n)(~s )
(
Adh(~s,Θ)

)(
T1(y

(n)
d )− ∂A(~η )

∂η1

)∣∣∣
~η=~Φ(Wdh,Vdh)︸ ︷︷ ︸

:= X1

+
( ∂

∂w
Φ2(w, Vdh)

∣∣
w=Wdh

)
︸ ︷︷ ︸

:= G2

∑
n

∑
~s

q(n)(~s )
(
Adh(~s,Θ)

)(
T2(y

(n)
d )− ∂A(~η )

∂η2

)∣∣∣
~η=~Φ(Wdh,Vdh)︸ ︷︷ ︸

:= X2

.

Then, considering the definitions of the terms X1, X2, G1 and G2 above, the second derivative yields
(at the fixed-point):

∂2

(∂Wdh)2
F(q,Θ) =

∂G1

∂Wdh
X1 +G1

∂X1

∂Wdh
+

∂G2

∂Wdh
X2 +G2

∂X2

∂Wdh

= G1
∂X1

∂Wdh
+G2

∂X2

∂Wdh
, (60)
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since X1 = X2 = 0 as W and V satisfy (30) and (31). Now, using the chain rule we get:

∂X1

∂Wdh
=
(∂X1

∂η1

∂η1

∂Wdh

)∣∣∣
~η=~Φ(Wdh,Vdh)

+
(∂X1

∂η2

∂η2

∂Wdh

)∣∣∣
~η=~Φ(Wdh,Vdh)

= −
(∑
n,~s

q(n)(~s )Adh(~s,Θ)
∂2A(~η )

∂η1∂η1

( ∂

∂Wdh
Φ1(Wdh, Vdh)

))∣∣∣
~η=~Φ(Wdh,Vdh)

−
(∑
n,~s

q(n)(~s )Adh(~s,Θ)
∂2A(~η )

∂η2∂η1

( ∂

∂Wdh
Φ2(Wdh, Vdh)

))∣∣∣
~η=~Φ(Wdh,Vdh)

= −
∑
n,~s

q(n)(~s )Adh(~s,Θ)
(∂2A(~η )

∂η1∂η1
G1 +

∂2A(~η )

∂η2∂η1
G2

)∣∣∣
~η=~Φ(Wdh,Vdh)

. (61)

Note that we here treat Adh(~s,Θ) as a constant since the second derivative of W̄d w.r.t. Wdh is equal
to zero (recall Eqns. (27)-(28)). Similarly we can show:

∂X2

∂Wdh
= −

∑
n,~s

q(n)(~s )Adh(~s,Θ)
(∂2A(~η )

∂η1∂η2
G1 +

∂2A(~η )

∂η2∂η2
G2

)∣∣∣
~η=~Φ(Wdh,Vdh)

. (62)

Now, inserting (61) and (62) into (60), we get:

∂2

(∂Wdh)2
F(q,Θ) = G1

∂X1

∂Wdh
+G2

∂X2

∂Wdh

= G1

(
−
∑
n,~s

q(n)(~s )Adh(~s,Θ)
(∂2A(~η )

∂η1∂η1
G1 +

∂2A(~η )

∂η2∂η1
G2

)∣∣∣
~η=~Φ(Wdh,Vdh)

)
+G2

(
−
∑
n,~s

q(n)(~s )Adh(~s,Θ)
(∂2A(~η )

∂η1∂η2
G1 +

∂2A(~η )

∂η2∂η2
G2

)∣∣∣
~η=~Φ(Wdh,Vdh)

)
= −

∑
n,~s

q(n)(~s )Adh(~s,Θ)GT (Wdh, Vdh)
(
HA

)
G(Wdh, Vdh),

where HA denotes the Hessian matrix ofA (based on (5), it also corresponds to the covariance matrix

between T1(y) and T2(y)), and G :=

(
G1

G2

)
. The term GT (Wdh, Vdh)

(
HA

)
G(Wdh, Vdh) constructs

a quadratic form, and the Hessian of the log-partition A(~η ) is known to be positive semi-definite;
and also positive definite for minimal representations (e.g., Wainwright and Jordan, 2008; Bickel and
Doksum, 2015). As q(n)(~s ) and Adh(~s,Θ) are non-negative, we therefore obtain:

∂2

(∂Wdh)2
F(q,Θ) ≤ 0 . (63)

The second derivative can, furthermore, be considered strictly smaller than zero under mild con-
ditions. For instance, we can demand the condition that there exist indices n′ and ~s ′ such that
q(n′)(~s ′)Adh(~s ′,Θ) 6= 0, then it follows that Eq(n) [Adh(~s,Θ)] 6= 0. The condition can only be
violated artificially with potentially few data points with specific properties, and the condition is
satisfied for the types of data that are usually of interest (including all data considered in this work). If
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the condition is combined with properties of ~Φ ensuring non-zero G(Wdh, Vdh) and with minimality
(ensuring positive definite HA), then strictly smaller second derivatives are obtained. Consequently,
the diversion of Wdh from the fixed-point result in a decrease of the objective, and (assuming
convergence) updates (38) will increase F(q,Θ) until a (local) maximum is reached.

Nonetheless, it is challenging to infer a more general behavior. First of all, the fixed-point
updates (38) could in theory show intricate behavior such as convergence to an attractor for difference
equations. Moreover, in practice all model parameter Θ are updated which would require the analysis
of all second derivatives including all mixed second derivatives for all parameters (amounting to an
exhaustive classification of all fixed-points). Further investigations would also require the combined
optimization using E- as well as M-steps. Still, Eqn. (63) provides some information about the
individual updates (38), and it applies for an arbitrary Wdh, of course, and for an arbitrary fixed-point.
We also do note that the very same result is obtained for individual updates of Vdh using (39), i.e.,
the derivations will be analogous, with the same result of second derivatives being smaller than zero.

A.3 Parameter Update Equations – General Case

We derived Theorem 1 for the case of L = 2, i.e., for distributions of the exponential family with
sufficient statistics of length two. This choice was for notational convenience only, and the proof
of Theorem 1 suggests a straightforward generalization for arbitrary L. We already discussed the
generalization of our formulations in Sec. 6 and stated Theorem 2 for the general case. Here we
provide the proof of Theorem 2. First recall the details presented in Sec. 6. Then, similar to the L = 2

case, observe that the derivatives of F(q,Θ) contain derivatives of W̄ (l)
d (~s,Θ) for l = 1, . . . , L

w.r.t. the dictionary elements W (l)
dh for each d and h. For these derivatives the generalization of

Eqns. (27)-(28) becomes:

∂

∂W
(l)
dh

W̄
(l′)
d (~s,Θ) =

{
Adh(~s,Θ) if l = l′

0 otherwise

}
= Adh(~s,Θ)δll′ , (64)

where Adh(~s,Θ) is given by (29). Lemma 1 can be also generalized by again considering the cases
h = h(d,~s,Θ) and h 6= h(d,~s,Θ) separately, which then yields:

Adh(~s,Θ) g
(
W̄

(1)
d (~s,Θ), . . . , W̄

(L)
d (~s,Θ)

)
= Adh(~s,Θ) g(W

(1)
dh , . . . ,W

(L)
dh ). (65)

Proof of Theorem 2 Consider a single parameter W (l)
dh for an arbitrary l = 1, . . . , L and abbreviate

W̄
(l)
d (~s,Θ) by W̄ (l)

d . Then, using the chain rule and Eqn. (43), we get:

∂

∂W
(l)
dh

log
(
p(yd; ~̃ηd(~s,Θ))

)
=

∂

∂W
(l)
dh

log
(
p(yd; ~Φ(W̄

(1)
d , . . . , W̄

(L)
d ))

)
(66)

=
L∑
l′=1

( ∂

∂W
(l)
dh

Φl′(W̄
(1)
d , . . . , W̄

(L)
d )

)( ∂

∂ηl′
log(p(yd; ~η ))

∣∣
~η=~Φ(W̄

(1)
d ,...,W̄

(L)
d )

)
=

L∑
l′=1

{ L∑
l′′=1

( ∂

∂W
(l)
dh

W̄
(l′′)
d

)( ∂

∂w
Φl′(W̄

(1)
d , . . . , w, . . . , W̄

(L)
d )

∣∣
w=W̄

(l′′)
d

)}
×
( ∂

∂ηl′
log(p(yd; ~η ))

∣∣
~η=~Φ(W̄

(1)
d ,...,W̄

(L)
d )

)
.
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Now, using (64) and also (5) that states for any regular distribution of the exponential family
∂A(~η )
∂ηl′

= Ep(y; ~η )[Tl′(y)], we obtain:

∂

∂W
(l)
dh

log(p(yd; ~̃ηd(~s,Θ))) =

L∑
l′=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl′(W̄

(1)
d , . . . , w, . . . , W̄

(L)
d )

∣∣
w=W̄

(l)
d

)
×
(
Tl′(yd)−

∂A(~η )

∂ηl′

)∣∣∣
~η=~Φ(W̄

(1)
d ,...,W̄

(L)
d )

=
L∑
l′=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl′(W̄

(1)
d , . . . , w, . . . , W̄

(L)
d )

∣∣
w=W̄

(l)
d

)
×
(
Tl′(yd) − Ep(y; ~η )[Tl′(y)]

)∣∣∣
~η=~Φ(W̄

(1)
d ,...,W̄

(L)
d )

=
L∑
l′=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl′(W̄

(1)
d , . . . , w, . . . , W̄

(L)
d )

∣∣
w=W̄

(l)
d

)
×
(
Tl′(yd) − E

p(y; ~Φ(W̄
(1)
d ,...,W̄

(L)
d ))

[Tl′(y)]
)
.

Further, using (65) simplifies the above equation as follows:

∂

∂W
(l)
dh

log(p(yd; ~̃ηd(~s,Θ))) =
L∑
l′=1

(
Adh(~s,Θ)

)( ∂

∂w
Φl′(W

(1)
dh , . . . , w, . . . ,W

(L)
dh )

∣∣
w=W

(l)
dh

)
×
(
Tl′(yd) − E

p(y; ~Φ(W
(1)
dh ,...,W

(L)
dh ))

[Tl′(y)]
)
.

Note that the equation now depends on the hidden state ~s only through the functionAdh(~s,Θ). Then,
using Eqn. (26), it can be stated that:

∂

∂W
(l)
dh

F(q,Θ) =
∑
n

∑
~s

q(n)(~s )
(∑

d′

∂

∂W
(l)
dh

log
(
p(y

(n)
d′ ; ~̃ηd′(~s,Θ))

))
=
∑
n

∑
~s

q(n)(~s )
L∑
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(
Adh(~s,Θ)

)( ∂

∂w
Φl′(W
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dh , . . . , w, . . . ,W

(L)
dh )

∣∣
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(l)
dh

)
×
(
Tl′(y

(n)
d ) − E

p(y; ~Φ(W
(1)
dh ,...,W

(L)
dh ))

[Tl′(y)]
)

=

L∑
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( ∂

∂w
Φl′(W

(1)
dh , . . . , w, . . . ,W

(L)
dh )

∣∣
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(l)
dh

)
×
∑
n

Eq(n) [Adh(~s,Θ)]
(
Tl′(y

(n)
d )−W (l′)

dh

)
,

where for the last step we exploited the mean value parametrization defined by ~w := Ep(y; ~Φ(~w))[
~T (y)].

Therefore, independently of the functions ∂
∂wΦl′(W

(1)
dh , . . . , w, . . . ,W

(L)
dh )

∣∣
w=W

(l)
dh

for each l′, we
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have ∂F
∂W

(l)
dh

= 0 if for all l = 1, . . . , L we have:

∑
n

Eq(n) [Adh(~s,Θ)]
(
Tl(y

(n)
d )−W (l)

dh

)
= 0, (67)

which yields Eqn. (46) and completes the proof.

The general case does, of course, also include theL = 1 case and consequently Bernoulli, Exponential
or the Poisson distribution. Moreover, similar to the L = 2 case, we can gather further information
about points where W (l)

dh satisfies Eqn. (46). Considering the second derivatives again as in Sec. A.2,
we can likewise show that fixed-point solutions for a single W (l)

dh and for fixed d and h correspond to
(local) maxima if the Hessian matrix HF is positive definite.

Appendix B. Additional Details on Parameter Update Equations

B.1 Parametrization of the Gaussian-MCA

For Gaussian-MCA (G-MCA) in Example 2, the generative model was shown to be given by:

p(~s |Θ) =

H∏
h=1

(
πshh (1− πh)1−sh

)
, (68)

p(~y |~s,Θ) =
D∏
d=1

N (yd; W̄d(~s,Θ), V̄d(~s,Θ)− W̄ 2
d (~s,Θ)), (69)

where we can use the update equations of Theorem 1 for W and V . To obtain some intuition, we can
also define the function:

σ̄2
d(~s,Θ) = V̄d(~s,Θ)− W̄ 2

d (~s,Θ), ∀d.

Because of the definition of W̄d(~s,Θ) and V̄d(~s,Θ) in (22) we get:

σ̄2
d(~s,Θ) = σ2

dh(d,~s,Θ) where h(d,~s,Θ) = argmaxh{Wdhsh} and σ2
dh = Vdh −W 2

dh,

such that σ2 is a matrix with D ×H entries. The considered generative model then becomes:

p(~s |Θ) =

H∏
h=1

(
πshh (1− πh)1−sh

)
, (70)

p(~y |~s,Θ) =
D∏
d=1

N (yd; W̄d(~s,Θ), σ̄2
d(~s,Θ)). (71)

The latents thus change the mean via the matrix W and the variance via the matrices V and W . We
can now use the update rules for Vdh andWdh and compute the elements σ2

dh as a result. Alternatively,
we can also combine the update rules for Vdh and Wdh to directly obtain an update rule for σ2

dh:
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(σ2
dh)new = V new

dh − (W new
dh )2 = V new

dh − 2W new
dh W new

dh + (W new
dh )2

=

∑N
n=1 Eq(n) [Adh(~s,Θ)] (y

(n)
d )2∑N

n=1 Eq(n) [Adh(~s,Θ)]
− 2

∑N
n=1 Eq(n) [Adh(~s,Θ)] y

(n)
d∑N

n=1 Eq(n) [Adh(~s,Θ)]
W new
dh + (W new

dh )2

=

∑N
n=1 Eq(n) [Adh(~s,Θ)]

(
(y

(n)
d )2 − 2y

(n)
d W new

dh + (W new
dh )2

)∑N
n=1 Eq(n) [Adh(~s,Θ)]

=

∑N
n=1 Eq(n) [Adh(~s,Θ)]

(
y

(n)
d −W new

dh

)2∑N
n=1 Eq(n) [Adh(~s,Θ)]

. (72)

This form of update is more familiar as it evaluates the square deviation from the mean given by
W new
dh . Also note that we first have to compute W new

dh before updating σ2
dh, which is in analogy, e.g.,

to standard Gaussian mixtures for variance (or covariance) updates. For the G-MCA application of
Sec. 7.2.1, we showed Wdh and σdh (standard deviations) for whitened natural image patches.

B.2 Parametrization of the Gamma-MCA

Let Gamma be the noise distribution in (8)-(10); i.e., consider the following generative model:

p(~s |Θ) =
H∏
h=1

(
πshh (1− πh)1−sh

)
, (73)

p(~y |~s,Θ) =

D∏
d=1

Gamma(yd; ~̃ηd(~s,Θ)), for yd ∈ (0,∞). (74)

Given the shape and rate parameters α, β > 0 of the Gamma distribution, the natural parameters and
sufficient statistics are given by:

~η = (−β, α− 1)T , ~T (y) = (y, log(y))T .

Now, based on the mean value parametrization in (6) and also (7), we get:

w1 = Ep(y; ~Φ(~w))[y] and w2 = Ep(y; ~Φ(~w))[log(y)],

where Ep(y; ~Φ(~w))[y] represents the mean of observables and is equal to −η2+1
η1

. Also we know that

Ep(y; ~Φ(~w))[log(y)] = ψ(η2 + 1)− log(−η1),

with the Digamma function ψ(·) defined by:

ψ(x) =
d

dx
log(Γ(x)) = log(x)− 1

2x
− 1

12x2
+ . . . . (75)

Thus, the relation between the mean value parameters and the natural parameters can be expressed
by:

~w =

(
w1

w2

)
=

(
−η2+1

η1
ψ(η2 + 1)− log(−η1)

)
.
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In order to compute the function ~Φ, we further substitute η1 = −η2+1
w1

(the first equation above) into
w2 = ψ(η2 + 1)− log(−η1) (the second equation above) that yields:

w2 ≈ log(η2 + 1)− 1

2(η2 + 1)
− log(

η2 + 1

w1
) = − 1

2(η2 + 1)
+ log(w1), (76)

where we approximated the Digamma function with its first two terms. Then, after some simplifica-
tions, it can be easily seen that the above system of equations results in:

η1 ≈
−1

2w1(log(w1)− w2)
and η2 ≈

1

2(log(w1)− w2)
− 1. (77)

Therefore, using the natural parameters (77) and the definition of the link function in (11), we get:

~̃ηd(~s,Θ) = ~Φ
(
W̄d(~s,Θ), V̄d(~s,Θ)

)
≈

 −1

2W̄d(~s,Θ)
(

log(W̄d(~s,Θ))−V̄d(~s,Θ)
)

1

2
(

log(W̄d(~s,Θ))−V̄d(~s,Θ)
) − 1

 .

The function ~Φ defines the link between natural and mean value parameters which will be used in the
EM algorithm. Observe that in each EM iteration, we require to compute ~̃ηd(~s,Θ) (e.g., to compute
the posteriors) given the mean value parameters W̄d(~s,Θ) and V̄d(~s,Θ). These mean values can be
further used to estimate the variance of the Gamma distribution such as σ̄2

d(~s,Θ). Alternatively, we
can use the variance formula of the Gamma distribution (given by σ2 = η2+1

η21
) and let:

σ̄2
d(~s,Θ) ≈ 2W̄ 2

d (~s,Θ)
(

log(W̄d(~s,Θ))− V̄d(~s,Θ)
)
, ∀d, (78)

where (similar to the Gaussian case)

σ̄2
d(~s,Θ) = σ2

dh(d,~s,Θ) and h(d,~s,Θ) = argmaxh{Wdhsh}. (79)

Likewise, the variance elements can be directly updated in each M-step by:

(σ2
dh)new ≈ 2(W new

dh )2
(

log(W new
dh )− V new

dh

)
= 2(W new

dh )2
(∑N

n=1 Eq(n) [Adh(~s,Θ)] log(W new
dh )∑N

n=1 Eq(n) [Adh(~s,Θ)]
−
∑N

n=1 Eq(n) [Adh(~s,Θ)] log(y
(n)
d )∑N

n=1 Eq(n) [Adh(~s,Θ)]

)
= 2

∑N
n=1 Eq(n) [Adh(~s,Θ)] (W new

dh )2
(

log(W new
dh )− log(y

(n)
d )
)∑N

n=1 Eq(n) [Adh(~s,Θ)]
. (80)

The above equation has been used for updating the variance of the Gamma-MCA model in our
experiments in Sec. 7.2.2. Despite the approximation of the Digamma function, we observed that the
aforementioned equation provides, in practice, a good estimation of the variance parameter. Other
approximations of the Digamma function can be further used to improve the performance of the
method. For instance, we also used the first three and also four terms of the Digamma function in
(75) for our experiments and consistently observed a better approximation of the variance.
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B.3 The Evidence Lower Bound (ELBO)

For completeness, we here show the ELBO / free energy (26) can be derived as a lower bound of
the log-likelihood function. For this, we use the view as presented, e.g., by Neal and Hinton (1998);
Bishop (2006) and introduce variational distributions q(n)(~s ) defined over the latent variables (as
discussed before, these distributions can be full posteriors p(~s | ~y (n),Θ), or denote approximations
in the case of intractable posteriors). Then, for an EF-MCA data model (8)-(10) we have:

L(Θ) =
∑
n

log
(∑

~s

q(n)(~s )
p(~y (n), ~s |Θ)

q(n)(~s )

)
≥
∑
n

∑
~s

q(n)(~s ) log
(p(~y (n), ~s |Θ)

q(n)(~s )

)
=
∑
n

∑
~s

q(n)(~s ) log
(
p(~y (n), ~s |Θ)

)
−
∑
n

∑
~s

q(n)(~s ) log
(
q(n)(~s )

)
= F(q,Θ), (81)

where we used Jensen’s inequality in the first line (see, e.g., Bishop, 2006, for the details). The last
equation above then represents the free energy function F(q,Θ) (or the ELBO) given by (26).

Appendix C. Additional Details on Numerical Experiments

C.1 The Bars Test

For the bars tests presented in Sec. 7.1, we set πgen
h = 0.2 for h = 1, . . . ,H (i.e., two active bars on

average per data point) and generatedN = 1000 i.i.d. data points according to each of the considered
EF-MCA models. The ground-truth parameter W was set to a value of 10 for the bars and 1 for the
non-bar pixels in the case of E-MCA, and 0.99 for the bars and 0.01 for the non-bars in the case
of B-MCA. Next, we trained E- and B-MCA models on their corresponding datasets and updated
their parameters using (38) and (40) for 50 full EM iterations. We initialized W by computing the
mean of the data and adding a small amount of Gaussian noise; also the priors πh were initialized at
0.3 for each h. In each EM iteration, the fixed-point M-step equation was iterated only once, as we
observed comparable results compared to running it multiple times for both E- and B-MCA models.
Also for P-MCA, we usedH = 6,D = 9 and set other parameters to be similar to the E-MCA model.

Relation to Previous MCA Approaches. In previous studies (e.g., Lücke and Sahani, 2008; Lücke
et al., 2009; Lücke and Eggert, 2010; Bornschein et al., 2013), the maximum function has been
commonly approximated using a smooth function for the sake of numerical stabilities. That is, for
the case of Poisson or Gaussian distributions (where M(Θ) = W ), a smooth function W̄ ρ

d is used to
approximate the function W̄d as ρ approaches infinity:

W̄ ρ
d (~s,Θ) :=

( H∑
h=1

(Wdhsh)ρ
) 1
ρ where lim

ρ→∞
W̄ ρ
d (~s,Θ) = W̄d(~s,Θ).

Parameter ρ does in fact control the level of non-linearity and it can be varied during the learning (as
it has been done by Lücke et al., 2009), or it can be set to a large fixed value (similar to the procedure
considered by Bornschein et al., 2013, who used, e.g., ρ = 21). Consequently, Adh(~s,Θ) can be
rewritten by (see, e.g., Lücke and Sahani, 2008, for the details):

Adh(~s,Θ) := lim
ρ→∞

( ∂

∂Wdh
W̄ ρ
d (~s,Θ)

)
= lim

ρ→∞

sh(Wdh)ρ∑
h sh(Wdh)ρ

.
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Figure 9: Differences of log-likelihoods between trained B-MCA models and ground-truth values
for bars test datasets. Average active number of bars (πH) is set by different prior probabilities
0.2 ≤ π ≤ 0.5 in step size 0.05. Individual runs are shown with small offsets along the π-axis for a
better visualization. Percentages refer to the fraction of runs that converged to ground-truth values (in
such cases, the learned log-likelihoods are usually higher than the ground-truth due to overfitting).

We here observed that such an approximation is beneficial to avoid numerical instabilities which can
be used, e.g., along other approaches for avoiding local optima.

Avoiding Local Optima. In our bars test experiments, we executed the algorithms multiple times
while holding the hyper-parameters fixed and using different realizations of the initial model pa-
rameters in each run. We observed that the best solutions recovered all bars with high accuracy.
Nonetheless, as mentioned before, slight overfitting effects occurred in some cases that could be
diminished by increasing the number of data points. We also frequently observed that the algorithms
could not recover the ground-truth parameters. This can be seen as the effect of local optima which
is different for each of the EF-MCA models. Local optima effects showed, for instance, to be more
severe for Gamma-MCA compared to others. While annealing methods have frequently been applied
as a measure against local optima effects (e.g., Ueda and Nakano, 1998; Lücke and Sahani, 2008),
we here investigated an alternative approach in order to prevent the algorithm from converging to
sub-optimal solutions. In detail, we first employed the Gaussian-MCA model as it is shown to be
more robust against local optima and performed 50 EM iterations. We then used the learned Θ
parameters (of the Gaussian-MCA) to initialize the parameters of the desired EF-MCA model. We
observed that, e.g. for Gamma-MCA, such a method helps alleviate the effect of local optima.

Reliability For Binary Data. In addition to the local optima effect, the inherent complexity of the
model can also affect its performance. That is, for instance, increasing the sparseness (i.e.,

∑
h πh

which in this case is equal to πH as we assumed πh = π for h = 1, . . . ,H) will decrease the
reliability of the model. In fact, one measure that has been of interest is how robust an algorithm is
w.r.t. the average number of active bars, and how often it reaches the global vs. any local optimum.
The probability of recovering all bars has been commonly termed reliability of the algorithm
(Spratling, 2006). In the following, we investigate the reliability of the Bernoulli-MCA (B-MCA)
model for different levels of sparseness. For our purposes, we notably did not optimize learning to
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improve reliability (e.g., by introducing annealing procedures; Lücke and Eggert, 2010) but used
the canonical form of B-MCA with exact E-steps (i.e., full posteriors) and updated W and ~π using
Eqns. (38) and (40). We generated artificial datasets according to the B-MCA model similar to the
procedure presented above with Wdh ∈ {0.01, 0.99} and varied the value of π that determines the
average number of active bars per data point. For each value of π, we generated 200 different bars
datasets each with N = 1000 data points and then fitted a B-MCA model. We computed 50 full EM
iterations with the same initialization as the experiments above and measured the reliability in terms
of the percentage of all trained B-MCA models that achieved a higher log-likelihood value than the
ground-truth. It should be noted that we commonly observed the overfitting effect as we used a finite
sample size here and thus, the best runs were observed to have log-likelihood values that are slightly
higher than the ground-truth log-likelihood. Results are presented in Fig. 9.

As it can be observed, the best runs reach higher log-likelihood values than the ground-truth.
These runs do recover all bar patterns and the prior parameters. Even for values π = 0.5, i.e., for five
out of ten bars per data point on average, one to two out of 100 runs do extract all bars. Thus, the best
runs in terms of higher log-likelihood values can be automatically determined without knowledge
of the ground-truth such that the proposed algorithm (B-MCA here) yields a reliable approach for
extracting all bars for binary data (compare Spratling, 2006; Frolov et al., 2015).

C.2 Feature Extraction – Natural Image Patches

To initialize the model parameters Θ = {~π,W, σ2} of the Gaussian-MCA model described in
Sec. 7.2.1, we followed the procedure used in Mousavi et al. (2020): The πinit

h were randomly
uniformly drawn from the interval [0.1, 0.5] for h = 1, . . . ,H . The generative fields (GFs) for
component variances were set equal to the average variance per pixel, i.e., (σ2

dh)init = σ2
Y ∀d, h

with σ2
Y = 1

DN

∑D
d=1

∑N
n=1(y

(n)
d − ȳd)2 and ȳd = 1

N

∑N
n=1 y

(n)
d . The initial values for the GFs

for component means were obtained by clustering the dataset using a variational GMM algorithm
(we used the var-GMM-S algorithm implemented in (Hirschberger, 2019) together with the default
hyper-parameters; also see Hirschberger et al. (2022); Forster and Lücke (2018)), and then setting
~W init
h equal to the learned H cluster centers. In order to ensure positive values for σ̄ (see, e.g., Fig. 5),

we used the background model discussed in Mousavi et al. (2021) and enforced one hidden unit
s1 = const = 1 during learning. We performed 500 EM iterations, initially updating only W and
~π, while σ2 remained fixed at its initial value. After approximately half of the iterations, i.e., when
we could no longer observe significant changes of the lower bound, we fixed W and ~π and only
updated σ2 for the remaining EM steps (we found this procedure to help avoiding oscillations of the
lower bound which we observed when updating all parameters jointly from the beginning). Figure 10
depicts the H = 1000 learned GFs as well as the learned priors (the GFs for the background unit
correspond to the first depicted dictionary element, the respective prior equals one).

Using compute resources of the HPC cluster CARL of the University of Oldenburg (which is
equipped with Intel Xeon E5-2650 v4 12C, E5-2667 v4 8C and E7-8891 v4 10c CPUs), we observed
an average runtime of approximately 10 minutes per EM step for our implementation when being
executed distributedly on 556 CPU cores.

C.3 Noise Type Estimation

The problem of noise type estimation has been addressed in a number of contributions. Teymurazyan
et al. (2013), for instance, studied the problem of distinguishing the type of noise in Positron
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Figure 10: Complete dictionaries with H = 1, 000 component means and component variances
learned from natural image patches using Gaussian-MCA (for improved visibility, we illustrate
standard deviations instead of variances; compare Sec. 7.2.1). The generative fields are ordered
according to their activations, starting with the fields corresponding to the most active hidden units.
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Figure 11: Original images used for denoising benchmarks.

Emission Tomography (PET) data (Teymurazyan et al., 2013). In PET, radioactive fluids are injected
into humans or animals in order to obtain images for diagnostics or scientific studies. As a result,
knowing the type of noise is crucial for different image processing routines (Teymurazyan et al.,
2013; Mou et al., 2018). Other related work focused on machine learning automation (e.g., Valera
and Ghahramani, 2017; Vergari et al., 2019). In Valera and Ghahramani (2017), a Bayesian approach
is presented to infer the type of data in categories such as categorical, ordinal, count, real-valued,
positive real-valued or interval (also see Molina et al., 2018). As discussed in Sec. 4, such approaches
are different from our work here as they exploit (among other differences) a mixture of likelihood
functions. We, on the other hand, trained each of the EF-MCA data models here and directly used
the obtained ELBOs to infer the noise type of a given dataset.

For the experiments in Sec. 7.2.2, we used D = 144 and H = 100 (for images) or H = 512
(for acoustic data), and trained the EF-MCA data models for 100 variational EM iterations. The
three examples in Tab. 3 that we selected from the CHiME dataset (Foster et al., 2015) were: CR-
lounge-200110-1711.s0-chunk46.48kHz.wav, CR-lounge-200110-1601.s0-chunk25.48kHz.wav and
CR-lounge-200110-1601.s0-chunk7.48kHz.wav. Amplitude spectrograms were computed as follows:
Time domain signals were resampled to 22.050 Hz and cut into 2 seconds long mono segments. We
then computed the STFT using a 2048-point FFT, 512 samples frame shift and Hann windowing.
This resulted in spectrograms with 1025 frequency channels and 87 time steps. The amplitude
spectrograms were then cut into patches of size D = 12× 12 resulting in N = 77, 064 data points.
After learning, we observed very small values of components σdh (between 0.1 and 0.2) for both
Gaussian- and Gamma-MCA models which resulted in very high, positive free energies in Tab. 3.

C.4 Denoising

We used images with gray scales in the interval [0, 255] (see the original images in Fig. 11) and,
rescaled the pixel amplitudes by dividing by the maximum amplitude and then multiplying by the
desired peak value. Similar to Drefs et al. (2022a), we further cut the images into smaller patches
by moving a sliding window over the noisy versions. We then employed the EF-MCA algorithms
with D = 20× 20 (similar to Giryes and Elad, 2014) and different H values (for Poisson noise), and
D = 12× 12 and H = 512 (for Exponential noise). Each algorithm was trained for 100 variational
EM iterations without any annealing or further pre- or post-processing. For both E- and P-MCA, we
manually set the minimum value of W to 10−2 after each M-step in order to avoid zero values.

Tab. 4 lists the PSNR values for VST+BM3D, I+VST+BM3D and P4IP from Azzari and Foi
(2016), BM3D, NLSPCA and SPDA from Giryes and Elad (2014), DenoiseNet from Remez et al.
(2017) and DCEA-UC from Tolooshams et al. (2020). Also, Fig. 12 presents the reconstructed
images using different generative models exploited for Poisson denoising.
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Figure 12: Reconstructed images obtained by different LVMs for Poisson denoising at peak value 1.
The corresponding PSNR and ELBO values are presented in Fig. 7.
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