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Abstract

Gaussian process dynamical systems (GPDSs) have shown their effectiveness in many tasks
of machine learning. However, when they address multi-view data, current GPDSs do
not explicitly model the dependence between private and shared latent variables. Instead,
they introduce structurally and intrinsically discrete segmentation in the latent space. In
this paper, we propose the multi-view collaborative Gaussian process dynamical systems
(McGPDSs) model, which assumes that the private latent variable for each view is controlled
by its dynamical prior and the shared latent variable. The relevance between private
and shared latent variables can be automatically learned by optimization in the Bayesian
framework. The model is capable of learning an effective latent representation and generating
novel data of one view given data of the other view. We evaluate our model on two-view
data sets, and our model obtains better performance compared with the state-of-the-art
multi-view GPDSs.

Keywords: Gaussian process, multi-view machine learning, dynamical system, variational
inference, multi-output modeling

1. Introduction

A Gaussian process (GP) is a collection of random variables, any finite number of which have
a joint Gaussian distribution (Rasmussen and Williams, 2006). GPs are stochastic processes
over real-valued functions and completely specified by mean functions and covariance
functions (Rasmussen and Williams, 2006). Recently, GPs have been proved successful in
various areas of machine learning (Lawrence and Jordan, 2005; Andreas and Carlos, 2007;
Damianou et al., 2011; Lüthi et al., 2018; Feurer et al., 2018; Wei et al., 2019; Medina et al.,
2019) because GPs can provide flexible function approximation. For example, to implement
nonlinear dimensionality reduction, GP latent variables (GPLVMs) (Lawrence, 2004, 2005;
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Titsias and Lawrence, 2010) have been presented, which use the global latent variables and
assume the conditional independence among multiple outputs.

For modelling dynamics in sequential data, some Gaussian process dynamical systems
(GPDSs) have been proposed, which extend GPLVMs by adding dynamical priors on the
latent variables, such as GP dynamical models (GPDMs) (Wang et al., 2006), variational
GPDSs (VGPDSs) (Damianou et al., 2011), variational dependent multi-output GPDSs
(VDM-GPDSs) (Zhao and Sun, 2016) and collaborative Gaussian process dynamical systems
(CGPDSs) (Zhao et al., 2018). Specifically, the GPDM models the dynamics by adding
the Markov prior on the latent space and characterizes the variability among outputs via
constructing the output variances with different parameters. The VGPDS employs the GP
dynamical prior on the latent space, which is more flexible and can capture some specific
dynamical information such as periodicity with specific kernels. The VDM-GPDS models the
dependence among multiple outputs and employs convolution processes to capture the multi-
output dependence explicitly. The VDM-GPDS obtains better performance than the GPDM
and VGPDS, but the VDM-GPDS is time-consuming during training attributed to the
introduced convolution processes. The CGPDS expresses each output as the sum of a global
latent process and a local latent process, which can capture the universality and individuality
of all outputs. Moreover, the CGPDS assumes that the latent processes are conditionally
independent, which ensures the resulting evidence lower bound to be decomposed across
dimensions and allows the stochastic optimization. We will detail CGPDSs in Section 2 in a
self-contained form.

With the rapid development of information techniques, more and more data exhibit
multi-view characteristics such as the URL link and text in a web document, the audio
and image frames of a video, the surrounding words and image of a web image and so on.
Data of different modalities often offer complementary information, and multi-view learning
can exploit this information to learn representations, which are more comprehensive and
expressive than that of single-view learning (Sun et al., 2019). More specifically, multi-view
learning uses one function to model a view and optimizes all functions together during
training. Consensus and complementarity are the two core principles of multi-view learning.
The consensus principle maximizes the agreement on the representations of different views,
and the complementarity principle exploits the complementary information contained in
different views to represent multi-view data comprehensively (Li et al., 2018). Since multi-
view learning can use the consensus and complementarity properties of multiple views and
exploit the redundant views of the same input data, multi-view learning is often more natural
and effective than single-view learning (Sun, 2013; Xu et al., 2013; Li et al., 2018; Ding et al.,
2018).

Recently, several models extended GPLVMs or GPDSs to the scenario of multi-view
learning. The shared GPLVM assumed that each view has been generated from the same
low-dimensional latent variable corrupted by additive Gaussian noise (Shon et al., 2006).
Furthermore, a new version of the shared GPLVM, i.e., the subspace GPLVM, was proposed
(Ek and Lawrence, 2009), in which the latent space for each view is factorized into a shared
one, which captures the shared information across the views, and a private one, which
explains the remaining variance. Salzmann et al. (2010) learned the dimensionality of the
factorization by introducing regularizers. The manifold relevance determination (MRD)
(Damianou et al., 2012) improved the “hard” segmentation between the private and shared
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latent variables and employed the “soft” segmentation in the latent space. Concretely, the
MRD employed learned scales in the automatic relevance determination (ARD) kernels
and a pre-given threshold to determine whether a dimension is the private or shared latent
variable. This threshold requires to be specified manually and often varies for different
datasets, whose configuration thus needs expert knowledge and is time-consuming.

The above models do not explicitly model the correlation between private and shared
latent variables (dimensions). This kind of model assumption in the latent space brings the
structurally and intrinsically discrete segmentation between the shared and private latent
variables. On many real-world data sets, it is quite difficult to clearly divide the latent space
which generates multi-view observations into shared and private latent information because
private and shared latent information is complexly coupled and interacts with each other.
For example, in the multi-view data set which contains pictures of different faces under the
same lighting condition, we can take the characteristics of faces as private information and
the lighting condition as shared information. It is not difficult to figure out that intensely
bright lighting conditions can affect the characteristics of the face, such as the color of the
skin.

In this paper, we propose the multi-view collaborative Gaussian process dynamical
systems (McGPDSs) model, which makes full use of the characteristics of multi-view data
and the advantages of the CGPDSs. The proposed model relaxes the discrete structural
segmentation in the latent space and automatically learns the relevance between private and
shared latent variables through optimization. Since private latent variables are determined
by their dynamical priors and the shared latent variable, McGPDSs can model more complex
and abundant information of data. Experiments on the synthetic and real-world data sets
also validate the superiority of our proposed McGPDSs.

The contributions of our model are summarized as follows: 1) Our model extends the
CGPDS into multi-view learning, which possesses the advantages of the multi-view learning
and the CGPDS to model high-dimensional multi-output data. 2) Our model explicitly
models the relationship between shared and private latent variables and automatically learns
their relevance. 3) All parameters in our model can be learned through optimization.

The remainder of the paper is structured as follows. Section 2 introduces the related work
including multi-view learning, CGPDSs and several multi-view models based on GPLVMs
and GPDSs. Section 3 presents the proposed model in detail. Section 4 describes the
inference and learning techniques. Section 5 illustrates the procedure of prediction with
McGPDSs. Section 6 provides extensive experimental evaluations to validate the effectiveness
of our model, and Section 7 concludes the work and discusses future work.

2. Related Work

In this section, we first briefly review the related works on multi-view learning. Then we
give an introduction to CGPDSs (Zhao et al., 2018) and several multi-view models based on
GPLVMs and GPDSs (Shon et al., 2006; Ek and Lawrence, 2009; Damianou et al., 2012).

2.1 Multi-view Learning

Multi-view learning is concerned with learning from data represented by multiple views. It
has received increasing attention and been applied widely. Wei et al. (2018) evaluated the
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quality of community-based question answering through transductive multi-view learning.
Hu et al. (2018) proposed a shareable and individual multi-view metric learning approach
for visual recognition. Puyol et al. (2018) described a method of regional multi-view learning
for cardiac motion analysis, and the method was applied to the identification of dilated
cardiomyopathy patients. Jing et al. (2018) employed low-rank multi-view embedding
learning to predict the popularity of the micro video. Tulsiani et al. (2018) considered
multi-view consistency as the supervisory signal for learning shape and pose prediction.

In the literature, multi-view learning is closely related to other machine learning methods,
such as active learning, domain adaptation, and representation learning. More specifically,
Muslea et al. (2002) combined co-testing and co-EM where co-testing is a novel method
for active learning with multiple views and co-EM is used to generate classifiers and select
the unlabeled points with the largest amount of information for labeling. Muslea et al.
(2006) improved co-testing by considering differences between strong and weak views and
assuming strong views with more information. Domain adaptation solves the problem of
adapting a model trained on the source domain to the target domain, where the data from
the source and target domains are largely different. Domain adaptation can be applied in
the cross-language text classification task where documents in different languages represent
different views. Co-training (Wan, 2009) and multi-view co-classification (Amini and Goutte,
2010) have been proposed and successfully applied in the task.

Multi-view representation learning has been a promising research topic in recent years
on account of the ability to provide abundant and complementary information for learning
representations. Multi-view representation learning methods contain generative methods
including multi-modal topic learning (Cohn and Hofmann, 2001; Barnard et al., 2003; Blei
and Jordan, 2003), multi-view sparse coding (Jia et al., 2010; Cao et al., 2013; Liu et al.,
2014) and multi-view latent space Markov networks (Xing et al., 2012; Chen et al., 2010), and
deep neural methods including multi-modal autoencoders (Ngiam et al., 2011; Feng et al.,
2014; Wang et al., 2015), multi-model Boltzmann machines (Srivastava and Salakhutdinov,
2012) and multi-modal recurrent neural networks (Karpathy and Fei-Fei, 2015; Mao et al.,
2014; Donahue et al., 2015).

2.2 CGPDS

CGPDSs aim to model multi-output sequential data. As a multi-output model, the CGPDS
supposes that each output is the sum of a global latent process and a designed local
latent process to capture dependence among multiple outputs and maintain the unique
characteristics of each output. Since standard Bayesian inference is analytically intractable,
CGPDSs adopt variational inference and introduce inducing points to learn the model.
Moreover, the evidence lower bound can be decomposed regarding dimensions attributed to
the conditional independence of outputs, which allows optimizing parameters in a stochastic
optimization framework. Figure 1 shows the graphical model of CGPDSs.

Given a multi-output sequential data Y ∈ RN×D with yn ∈ RD be the observation
at time tn ∈ R+, the CGPDS assumes that there are low-dimensional latent variables
X ∈ RN×Q (with Q � D) that generate the observations. Moreover, a GP prior on the
low-dimensional latent variables is used to model the dynamics, as in Damianou et al. (2011).
Specifically, the CGPDS is defined as a four-layer GPDS through the following generative
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Figure 1: The graphical model for the CGPDSs. The gray solid circles represent observations.
The black hollow circles represent latent variables. The cyan hollow circles
represent parameters.

process:

p(X|t) =

Q∏
q=1

N(xq|0,Kt,t),

where the xq ∈ RN is the qth row of X and Kt,t is the covariance matrix computed by
κ(t, t′).

p(h|X) = N (h|0,HX,X),

p(g|X) =

J∏
j=1

N (gj |0,Gj
X,X),

where latent processes h and {gj}Jj=1 are both GPs with input x, and the HX,X and Gj
X,X

are covariance matrices computed by κh(x,x′) and κjg(x,x′), respectively.
The CGPDS introduces latent processes h and {gj}Jj=1, which is entirely different from

the previous GPDSs such as the VGPDS and VDM-GPDS. The VGPDS uses a single GP
mapping from X to F (the noise-free version of the output Y ), which can only learn the
common information among multiple outputs, but cannot learn the unique information
of each output. The VDM-GPDS employs convolution processes to explicitly model the
dependence among multiple outputs. In the VDM-GPDS, the mapping from X to F
contains an ND ×ND matrix, which increases the computational complexity of the model
and prevents the model from scaling to large datasets. The CGPDS can capture the
dependence and differences among multiple outputs with a relatively simple model structure.

p(yd|g,h) = N (yd|`d + h, β−1I)
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= N (yd|
J∑
j=1

wdjgj + h, β−1I), (1)

where h is the global latent process which captures the dependence among outputs and `d is
the local latent process specific to the dth output which is constructed by latent processes
{gj}Jj=1 and weights {wdj}. The weights {wdj} represent the local parameters which are
different for D outputs. β is the inverse variance of the white Gaussian noise.

As shown in (1), the idea for constructing the output yd is inspired by the COGP (Nguyen
and Bonilla, 2014). The COGP models the dth output yd as the weighted sum of the dth
local latent process and J global latent processes, which contains (J +D) GPs in total. The
CGPDS uses a global latent process h and a local latent process `d constructed by J(J � D)
latent processes {gj}Jj=1, which includes (J + 1) GPs. In a word, CGPDSs can not only
capture the dependence among multiple outputs but also maintain the specific characteristics
of each output with fewer parameters. Last but not the least, fewer parameters would make
the model easier to learn.

2.3 Multi-view Models Based on GPLVMs and GPDSs

In this section, we give the introduction of related multi-view models based on GPLVMs
and GPDSs such as the shared GPLVM, subspace GPLVM and MRD.

The shared GPLVM assumes that all observations are generated from the same low-
dimensional latent variable with additional Gaussian noise. Figure 2(a) shows the graphical
model of the shared GPLVM. The dotted line represents the back-mapping from the output
space, which can constrain the latent space. The assumption of sharing the same latent
variable for all views is far from perfect for many datasets because this means data of all
views share main generating parameters. Therefore, ideally, the shared latent variable can
be used to connect all views and the private latent variables can be used to differentiate all
views. The back-constraint from the second view to the latent space represents the bijective
relationship between Y (2) and X(1,2). The back-constraint means that observation in the first
view Y (1) has to be accommodated by throwing away information which does not exist in the
second view Y (2). This model can also be considered as a feature selection model because it
uses information from one view to determine what is important for the other view.

A new version of the shared GPLVM, that is, the subspace GPLVM, introduces the
private latent variable for each view and a shared latent variable for all views. Figure 2(b)
represents the graphical model of the subspace GPLVM. The subspace GPLVM learns a
factorized latent representation within a single model. The model directly concatenates the
private latent variable of each view with the shared latent variable, and then generates the
data of each view. For inference, the subspace GPLVM seeks the maximum a posterior
(MAP) solution for the latent space. The fact that the latent variables are not integrated
out indicates that it is difficult to determine the structure of the latent space automatically.
The idea of employing factorized latent space in the multi-view learning has been proposed
in several works (Jia et al., 2011; Virtanen et al., 2012; Zhang et al., 2013).

The MRD can also learn a factorized latent representation and relax the previous
“hard” discrete segmentation of latent space. Figure 2(c) shows the graphical model of
the MRD with dynamics. A single latent variable X is used as the latent representation
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(a) Shared GPLVM (b) Subspace GPLVM (c) MRD

Figure 2: Development of multi-view models based on GPLVMs and GPDSs. (a) shows
the shared GPLVM where all the variances in the observations are shared in a
single shared latent variable. (b) shows the subspace GPLVM which introduces
private latent variables to express the variance in each view. (c) represents the
MRD which uses a single latent variable and selects the shared and private latent
dimensions according to the ARD weights w(1) and w(2) and a predetermined
threshold. The shadowed nodes represent observations. The black hollow nodes
represent latent variables. The cyan nodes represent parameters.

for all views where each dimension in X represents private or shared latent information.
The MRD adopts variational inference with inducing points in order to integrate out the
latent variable X. More precisely, the outputs of two view Y (1) and Y (2) are assumed
to be independent GPs with the zero mean and an ARD covariance function, that is,

κ(xi,xj) = (σard)
2 exp−

1
2

∑Q
q=1 wq(xi,q−xj,q)2 . Two sets of ARD weights w(1) and w(2) in this

model can be optimized in the Bayesian framework. An additional threshold δ is required to
be specified manually for each dataset. By comparing ARD weights with the threshold, the
MRD determines whether the dimension is private or shared and divides the latent space
into three subspaces with X = (X(1), Xs, X(2)). Here, Xs represents the shared subspace
which consists of the set of dimensions q ∈ [1, · · · , Q] with w(1)

q > δ and w(2)
q > δ. X(1) and

X(2) are private latent subspaces of two views, respectively. X(1) is composed of the set of
dimensions where w(1)

q > δ and w(2)
q < δ and analogously for X(2) (w(1)

q < δ and w(2)
q > δ).

There are two different versions of the MRD model, one with dynamic characteristics (with
the GP prior on the latent variable) and one without dynamic characteristics.

3. Multi-view Collaborative Gaussian Process Dynamical System

In this section, we extend the CGPDS to the scenario of multi-view learning and propose the
model of multi-view collaborative Gaussian process dynamical systems (McGPDSs). Figure
3 shows the graphical model of the McGPDS.

Specifically, we aim to model two views Y (1) ∈ RN×D1 and Y (2) ∈ RN×D2 in the same
model where y(1)

n and y(2)
n are the observations at time tn ∈ R+. We assume there is

a shared low-dimensional latent variable X(1,2) ∈ RN×Q which governs the generation of
the private low-dimensional latent variables, that is, X(1) ∈ RN×Q and X(2) ∈ RN×Q. The
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Figure 3: The graphical model for the McGPDS. The McGPDS explicitly models the
dependence between private and shared latent variables and automatically learns
the relevance between private and shared latent variables. The shadowed nodes
represent observations. The black hollow nodes represent latent variables.

private low-dimensional latent variable for each view generates the corresponding observation.
Moreover, we endow the GP prior on low-dimensional latent variables to model the dynamics.
Here, N represents the number of training points. D1 and D2 represent the dimensions of
two-view data, respectively. Q denotes the dimension of low-dimensional latent variables
(with Q� min(D1, D2)). The superscript (1) and (2) corresponds to the first and second
view, respectively. The superscript (1, 2) means the shared information for two views.

Formally, the generative process is given as follows. The shared low-dimensional latent
variable X(1,2) is assumed to be a multi-dimensional GP indexed by time t, that is

x(1,2)
q (t) ∼ GP (0, κ(1,2)

x (t, t′)), q = 1, . . . , Q, (2)

where dimensions of the shared latent function x(1,2)(t) are independently drawn from a
GP with the covariance function κ(1,2)

x (t, t′) with parameters θ(1,2)
x . Since the latent variable

X(1,2) is conditionally independent given t, we have

p(X(1,2)|t) =

Q∏
q=1

N (x(1,2)
q |0,K(1,2)

t,t ), (3)

where K(1,2)

t,t is the covariance matrix computed by kernel κ(1,2)
x (t, t′). We also introduce two

latent variables X̃(1) and X̃(2) which follow view-specific dynamic priors, i.e.,

p(X̃(1)|t) =

Q∏
q=1

N (x̃(1)
q |0,K

(1)

t,t), (4)
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p(X̃(2)|t) =

Q∏
q=1

N (x̃(2)
q |0,K

(2)

t,t), (5)

where X̃(1) and X̃(2) are also assumed to be conditionally independent, and K(1)

t,t and K(2)

t,t

are covariance matrices computed by kernels κ(1)
x (t, t′) and κ(2)

x (t, t′), respectively.
Let X̂(1) be a noisy version of the shared latent variableX(1,2), i.e., X̂(1) ∼ N(X̂(1)|X(1,2), ε(1)).

The private latent variable X(1) is defined as a convex combination of the view-specific latent
variable X̃(1) and X̂(1), i.e., X(1) = (1 − α(1))X̂(1) + α(1)X̃(1), with the combination weight
α(1) ∈ [0, 1] which can adjust the importance of the two combination components. The
model can automatically learn the dependence between private and shared latent variables
by optimizing α(1). After integrating out X̂(1), the conditional distribution of X(1) given
X(1,2) and t is

p(X(1)|X(1,2), t) =

Q∏
q=1

N (x(1)
q |(1− α(1))x(1,2)

q , (α(1))2K(1)

t,t + (1− α(1))2ε(1)),

Similarly we define the private latent variable X(2), with

p(X(2)|X(1,2), t) =

Q∏
q=1

N (x(2)
q |(1− α(2))x(1,2)

q , (α(2))2K(2)

t,t + (1− α(2))2ε(2)),

where α(2) ∈ [0, 1] and ε(2) denotes the variance of the Gaussian noise in the second view.
The setting of latent space in our model is largely different from the previous multi-view

models based on GPLVMs and GPDSs, such as the shared GPLVM, subspace GPLVM and
MRD. The shared GPLVM employs a single shared latent variable for all views and all
variances in the observations are shared, where the private information cannot be modeled.
The subspace GPLVM introduces a factorized latent space where each view is connected with
an additional private latent space. The model employs MAP estimates so that the structure
of the latent space cannot be automatically determined. The MRD model also employs a
single latent space and determines whether a dimension is private or shared according to
the weights in the ARD covariance functions and the artificially specified threshold. All the
above models either use a single latent variable or do not explicitly model the relationship
between private and shared latent variables (dimensions). Our model explicitly models the
relevance between shared and private latent space. The relevance of the private and shared
latent variables can be automatically learned by optimizing the weights α(1) and α(2).

The mapping from X(1) to Y (1) (X(1) 7→ Y (1)) and the mapping from X(2) to Y (2)

(X(2) 7→ Y (2)) in the McGPDS employ the same idea as the mapping from X to Y (X 7→ Y )
in the CGPDS (Zhao et al., 2018). Additionally, attributed to conditional independence
assumption, the distributions of the outputs can be written as the product of D terms, that
is,

p(Y (1)|X(1)) =
D∏
d=1

N (y(1)

d |
J∑
j=1

wdjg
(1)

j (X(1)) + h(1)(X(1)), (β(1))−1),

p(Y (2)|X(2)) =
D∏
d=1

N (y(2)

d |
J∑
j=1

wdjg
(2)

j (X(2)) + h(2)(X(2)), (β(2))−1),
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where β(1) and β(2) are the inverse variance of the white Gaussian noise. The latent processes
h(1) and {g(1)

j }Jj=1 are GPs indexed by input X(1). Similarly, latent processes h(2) and

{g(2)

j }Jj=1 are GPs indexed by input X(2), and we have

h(1)(x(1)) ∼ GP (0, κ(1)

h (x(1),x(1)′)), h(2)(x(2)) ∼ GP (0, κ(2)

h (x(2),x(2)′)),

g(1)

j (x(1)) ∼ GP (0, κ(1)jg (x(1),x(1)′)), g(2)

j (x(2)) ∼ GP (0, κ(2)jg (x(2),x(2)′)),

where the kernels κ(1)

h (x(1),x(1)′) and κ
(1)j
g (x(1),x(1)′) are parameterized by θ(1)

h and θ
(1)j
g ,

respectively. Similarly, θ(2)

h and θ
(2)j
g are parameters of κ(2)

h (x(2),x(2)′) and κ
(2)j
g (x(2),x(2)′).

The mappings from X(1) to Y (1) and X(2) to Y (2 are different from the shared GPLVM,
subspace GPLVM and MRD. The shared GPLVM, subspace GPLVM and MRD employ one
GP mapping for each view to capture the common information of multiple outputs. These
models can not sufficiently model the characteristics of each output, while the mappings in
our model can well capture the differences and dependence among multiple outputs.

4. Inference and Learning

Given the model assumptions, we can get the joint distribution of observations and latent
variables for the proposed model,

p(Y (1), Y (2), H (1), H (2), G(1), G(2), X(1), X(1), X(1,2))

=
∏

K∈{(1),(2)}

p(Y K|GK, HK)p(GK, HK|XK)p(XK|X(1,2), t)p(X(1,2)|t), (6)

where the superscriptK ∈ {(1), (2)} of a variable indicates the view the variable corresponding
to and GK = [(gK1 )>, . . . , (gKJ )>]. The marginal likelihood can be calculated by integrating
out all the latent variables, which is commonly used as the goal of model learning. However,
the private low-dimensional variables X(1) and X(2) cannot be integrated out because they
appear nonlinearly in the inverse of the kernel matrices G(1)j

X,X , H(1)

X,X and G(2)j

X,X , H(2)

X,X ,
respectively. Throughout the paper, covariance matrices are represented by bold uppercase
characters with superscripts and subscripts. The corresponding GP can be inferred from
the character, with K for x, H for h and G for g, respectively. The superscript indicates
the view that the GP is from, while the subscript indicates the inputs where the covariance
matrix evaluated. Following Titsias and Lawrence (2010), we make some approximations to
the true posterior of the model using variational inference, thus deducing the variational
lower bound of the logarithmic marginal likelihood.

4.1 Variational Lower Bound

We introduce inducing points and adopt the structured variational inference method to
our model. In order to train the proposed model, we minimize the KL divergence between
approximate posterior and true posterior, which is equivalent to maximizing the evidence
lower bound of the logarithmic marginal likelihood.

First, we employ inducing variables to augment the model. Specifically, for each view
K ∈ {(1), (2)} and each latent function, we introduce a set of M inducing variables. We
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use {uKj ∈ RM}Jj=1 and vK ∈ RM to represent the value of gKj at inducing inputs ZKj
g ∈

RM×Q and the value of hK at inducing points ZKh ∈ RM×Q, respectively. Denote UK =
[(uK1 )>, . . . , (uKJ )>]. Attributed to the conditional independence assumption of latent variables

{gKj }Jj=1, we have p(UK|{ZKj
g }Jj=1) =

∏J
j=1N (uKj |0,G

Kj

Z,Z). p(V K|XK) is also assumed to be
zero-mean Gaussian with covariance matrix HKZ,Z . The conditional Gaussian distributions

are given as p(GK|UK, XK) =
∏J
j=1N (gKj |µKj

g , G̃
Kj

X,X) with µKj
g = GKj

X,Z(GKj

Z,Z)−1uKj and

G̃Kj

X,X = GKj

X,X − GKj

X,Z(GKj

Z,Z)−1GKj

Z,X . Additionally, p(HK|V K, XK) = N (HK|µKh , H̃KX,X)

with µKh = HKX,Z(HKZ,Z)−1vK and H̃KX,X = HKX,X −HKX,Z(HKZ,Z)−1HKZ,X .
Then, we introduce the joint variational distribution which is assumed to be factorized as

q(Θ(1))q(Θ(2))q(X(1))q(X(2))q(X1,2) where q(X(1)) = N (X(1)|µ(1), S(1)), q(X(2))=N (X(2)|µ(2),
S(2)) and q(X(1,2)) = N (X(1,2)|µ(1,2), S(1,2)). q(Θ(1)) and q(Θ(2)) are the variational distribu-
tions of latent variables {G(1), H (1), U (1), V (1)} and {G(2), H (2), U (2), V (2)} whose specific
forms are defined as

q(ΘK) = p(GK|UK, XK)p(HK|V K, XK)q(UK)q(V K), K ∈ {(1), (2)}. (7)

Finally, given the above assumptions, the lower bound of the logarithmic marginal
likelihood can be expressed as

Fv(q) =

∫ ∏
K

q(ΘK)q(XK)q(X(1,2)) log
∏
K

p(Y K|XK)p(XK|X(1,2), t)p(X(1,2)|t)

q(ΘK)q(XK)q(X(1,2))
dΘKdXKdX(1,2)

=−KL
[
q(X(1))q(X(2))q(X(1,2))||p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t)

]
+
∑
K

L̂K, K ∈ {(1), (2)}. (8)

The detailed calculation of the KL divergence is given below.

KL(q(X(1))q(X(2))q(X(1,2))||p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t))

=
1

2

Q∑
q=1

[[
log |A(1)|+ log |A(2)|+ log |K(1,2)

t,t | − log |S(1,2)
q | − log |S(1)

q | − log |S(2)
q |
]

+
[
(1− α(1))µ(1,2)

q − µ(1)
q

]>
(A(1))−1

[
(1− α(1))µ(1,2)

q − µ(1)
q

]
+
[
(1− α(2))µ(1,2)

q − µ(2)
q

]>
(A(2))−1

[
(1− α(2))µ(1,2)

q − µ(2)
q

]
+ Tr

[[
(1− α(1))2(A(1))−1 + (1− α(2))2(A(2))−1

]
S(1,2)
q

]
+ Tr

[
(K(1,2)

t,t )−1
[
µ(1,2)
q (µ(1,2)

q )> + S(1,2)
q

]]
+ Tr

[
(A(1))−1S(1)

q + (A(2))−1S(2)
q

]]
, (9)

where A(1) and A(2) represent (α(1))2K(1)

t,t + (1− α(1))2ε(1)I and (α(2))2K(2)

t,t + (1− α(2))2ε(2)I,
respectively.

Since the observations on different dimensions in each view are assumed to be conditionally
independent, the term L̂K can be decomposed regarding dimensions, which has the following
formula.

L̂K =
D∑
d=1

[
log

(βK)
N
2 |HKZ,Z |

1
2

(2π)
N
2 |βKψK4 + HKZ,Z |

1
2

+
J∑
j=1

log
|GKj

Z,Z |
1
2

|βK(wKdj)
2ψKj

5 + GKj

Z,Z |
1
2

11
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− 1

2
(yKd )>

(
βKI −

J∑
j=1

(βK)2(wKdj)
2ψKj

1 (βK(wKdj)
2ψKj

5 + GKj

Z,Z)−1(ψKj

1 )>

− (βK)2ψK0 (βKψK4 + HKZ,Z)−1(ψK0 )>
)

yKd −
βK

2
ψK2 +

βK

2
Tr(ψK4 (HKZ,Z)−1)

− βK

2

J∑
j=1

(wKdj)
2ψKj

3 +
βK

2

J∑
j=1

Tr((wKdj)
2ψKj

5 (GKj

Z,Z)−1)

]
, (10)

where ψK0 = 〈HKX,Z〉q(XK), ψ
Kj

1 = 〈GKj

X,Z〉q(XK), ψ
K
2 = Tr(〈HKX,X〉q(XK)), ψ

Kj

3 = Tr(〈GKj

X,X〉q(XK)),
ψK4 = 〈HKZ,XHKX,Z〉q(XK), and ψKj

5 = 〈GKj

Z,XGKj

X,Z〉q(XK). 〈·〉q(XK) denotes expectation under

the distribution q(XK). The detailed computations for the evidence lower bound and the
involved statistics are given in Appendix A and B, respectively.

The computational complexity for training McGPDS is dominated by computing the
inversions of the kernel matrices, and thus the computational complexity is O(V D(J +
1)M3 + (V + 1)N3), where V is the number of views.

4.2 Parameter Estimation

The parameters to be optimized in the proposed model include model parameters and
variational parameters. The model parameters involve hyperparameters in the kernel
functions of the latent variables {g(1),g(2),h(1),h(2), X(1), X(2), X(1,2)}, e.g., σ2f and αq in the

used ARD kernel κ(x, x′) = σ2f exp(−1
2

∑Q
q=1 αq(xq − x′q)2), the inverse variance of white

Gaussian noise {β(1), β(2)}, Gaussian noises {ε(1), ε(2)}, and weights {W (1),W (2), α(1), α(2)}.
The variational parameters include the mean and covariance of the variational distributions,
{µ(1), S(1),µ(2), S(2),µ(1,2), S(1,2)}, and the inducing inputs {Z(1), Z(1)

h , Z(2), Z(2)

h }. All the
parameters are jointly optimized through the gradient descent method. Here we give the
update rules for variational mean and covariance matrices, in which the optimization for
covariance employs the reparameterization trick inspired by Opper and Archambeau (2009).
The derivation is analogous to that in Damianou et al. (2011) and Damianou et al. (2016),
to which we refer the readers for more details.

The variational mean in the private latent space can be optimized by the gradient descent
method and the gradient of evidence lower bound w.r.t variational mean is given by

∂L
∂µKq

=
∂L̂K

∂µKq
− (AKq )−1

[
µKq − (1− αK)µ(1,2)

q

]
.

The private variational covariance matrix SKq can be reparameterized as

SKq = ((AKq )−1 + diag(λKq ))−1,

where diag(λKq ) = −2∂Fv(q)
∂SKq

is an N ×N diagonal and positive definite matrix, w.r.t which

the gradient of evidence lower bound is given by

∂L

∂λKq
= −(SKq ◦ SKq )(

∂L̂K

∂SKq
+

1

2
λKq ). (11)
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The shared variational parameters {µ(1,2), S(1,2)} have analytical solutions. After updating
the private variational parameters, we can update the shared variational parameters by the
following equations.

µ(1,2)
q = S(1,2)

q

[
(1− α(1))(A(1)

q )−1µ(1)
q + (1− α(2))(A(2)

q )−1µ(2)
q

]
, (12)

S(1,2)
q = [(1− α(1))2(A(1)

q )−1 + (1− α(2))2(A(2)
q )−1 + (Ktt

(1,2))−1]−1. (13)

5. Prediction with the McGPDS

Given the trained McGPDS which can jointly model observations of two views Y (1) and
Y (2) and learn the shared latent space X(1,2) and the private latent spaces X(1) and X(2), we
aim to generate the outputs from a view given the observations from the other view. For
example, generate Y (2)

∗ ∈ RN∗×D2 using Y (1)
∗ ∈ RN∗×D1 . The McGPDS has the capability to

accomplish this task by three steps, similar to MRD (Damianou et al., 2012).
In the first step, we use variational inference again to derive the posterior distributions of

the latent variables X(1)
∗ ∈ RN∗×Q and X(1,2)

∗ ∈ RN∗×Q which are most likely to govern the
generation of Y (1)

∗ . We use q(X(1)
∗ , X

(1,2)
∗ ) to approximate p(X(1)

∗ , X
(1,2)
∗ |Y (1)

∗ ). The approxi-
mate posterior distribution q(X(1)

∗ , X
(1,2)
∗ ) is the marginal distribution of q(X(1), X(1,2), X(1)

∗ ,
X(1,2)
∗ ). To obtain q(X(1), X(1,2), X(1)

∗ , X
(1,2)
∗ ), we maximize the variational lower bound of

the marginal likelihood p(Y (1), Y (1)
∗ ),

F (1)
∗ =−KL

[
q(X(1)

∗ , X
(1))q(X(1,2)

∗ , X(1,2))||p(X(1)
∗ , X

(1)|X(1,2)
∗ , X(1,2))p(X(1,2)

∗ , X(1,2))
]

+ L̂(1)(Y (1)
∗ , Y (1)),

(14)

where we’ve omitted time t and t∗ for brevity. Particularly, the lower bound can be
maximized using the same method as for training. The detailed calculation for F (1)

∗ is given
in Appendix C.

In the second step, we obtain the private latent variable which is also essential to generate
data from a view. Precisely, in order to generate observations Y (2)

∗ , we need to obtain the
private latent variable X(2)

∗ . However, just the observed test data from the first view Y (1)
∗

can hardly provide information for data in the second view Y (2)
∗ and thus it is quite difficult

to obtain an exact representation of X(2)
∗ . Therefore, we refer to the latent variables learned

from training data, X(1,2) and X(2), and employ the nearest neighbor to obtain the private
latent variable X(2)

∗ . Specifically, we find the shared latent variable from training data X̄(1,2)

which is closest to X(1,2)
∗ obtained by the first step, and acquire the variational distribution

of private latent variable X̄(2) directly from training data whose indexes correspond to X̄(1,2)

to approximate the posterior of private latent variable X(2)
∗ .

In the third step, we predict the output Y (2)
∗ using the marginal posterior distribution of

latent variable q(X(2)
∗ ) obtained through the second step. Specifically, Y (2)

∗ can be calculated
by

p(Y (2)
∗ ) =

∫
p(Y (2)
∗ |G(2)

∗ , H
(2)
∗ )p(G(2)

∗ |X(2)
∗ , U

(2))p(H (2)
∗ |X(2)

∗ , V
(2))q(U (2))q(V (2))q(X(2)

∗ )

dG(2)
∗ dH

(2)
∗ dX

(2)
∗ dU

(2)dV (2).

(15)

Note that the variational distributions q(U (2)) and q(V (2)) are obtained during the training
phase which need not be optimized during the prediction period. Since the integration in
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Algorithm 1 Prediction with the McGPDS

1: Input: training data for two views Y (1) and Y (2), McGPDS model trained via two-view

data (Y (1), Y (2)) and test data in the first view Y
(1)
∗ .

2: Output: generated observations in the second view Y (2)
∗ .

3: Maximize the evidence lower bound of the marginal likelihood p(Y
(1)
∗ , Y (1)) to obtain

q(X(1), X(1,2), X(1)
∗ , X

(1,2)
∗ ).

4: Get the marginal distribution q(X(1)
∗ , X

(1,2)
∗ ) to obtain test mean µ

(1)
∗ and µ

(1,2)
∗ and

covariance S
(1)
∗ and S

(1,2)
∗ .

5: Find the optimal µ̂
(2)
∗ and Ŝ(2)

∗ using the K-nearest neighbor method according to the

distance between µ
(1,2)
∗ and µ(1,2).

6: q(X(2)
∗ ) ∼ N (µ̂

(2)
∗ , Ŝ

(2)
∗ ).

7: Predict Y (2)
∗ using Equation (15).

(15) is analytically intractable, we follow Damianou et al. (2011) to calculate the expectation
of g(2)

∗ and h(2)
∗ as E(g(2)

∗ ) and E(h(2)
∗ ), respectively, and estimate the expectation covariance

matrices with Monte Carlo sampling. The element-wise autocovariance matrices of g(2)
∗ and

h(2)
∗ are denoted as V(g(2)

∗ ) and V(h(2)
∗ ), respectively.

E(h(2)
∗ ) = ψ(2)

0∗b
(2)

h ,

E(g(2)j
∗ ) = ψ(2)j

1∗ b(2)j
g ,

V(h(2)j

ñ ) = b(2)

h

>
(ψ(2)

4ñ − ((ψ(2)

0ñ)>)ψ(2)

0ñ)b(2)

h + ψ(2)

2∗ − Tr
[
((H(2)

Z,Z)−1 − (H(2)

Z,Z + β(2)ψ(2)

4 )−1)ψ(2)

4∗
]
,

V(g(2)j

ñ ) = b(2)j
g
>

(ψ(2)j

5ñ − (ψ(2)j

1ñ )>ψ(2)j

1ñ )b(2)j
g + ψ(2)j

3∗ − Tr[((G−1Z,Z)(2)j − (G(2)j

Z,Z + β(2)w2
djψ

(2)j

5 )−1)

ψ(2)j

5∗ ],

where V(h(2)j

ñ ) denotes the ñth entry of V(h(2)
∗ ), and V(g(2)j

ñ ) denotes the (ñ× j)th entry of
V(g(2)

∗ ). b(2)

h = β(2)(H(2)

Z,Z +β(2)ψ(2)

4 )−1(ψ(2)

0 )>y(2),b(2)j
g = β(2)(G(2)j

Z,Z +β(2)ψ(2)j

5 )−1(ψ(2)j

1 )>y(2),

ψ(2)

0∗ = 〈H(2)

X∗,Z
〉
q(X

(2)
∗ )

, ψ(2)j

1∗ = 〈G(2)j

X∗,Z
〉
q(X

(2)
∗ )

, ψ(2)

2∗ = Tr(〈H(2)

X∗,X∗
〉
q(X

(2)
∗ )

), ψ(2)j

3∗ = Tr(〈G(2)j

X∗,X∗
〉
q(X

(2)
∗ )

),

ψ(2)

4∗ = 〈H(2)

Z,X∗
H(2)

X∗,Z
〉
q(X

(2)
∗ )

, ψ(2)j

5∗ = 〈G(2)j

Z,X∗
G(2)j

X∗,Z
〉
q(X

(2)
∗ )

, ψ(2)

0ñ = 〈H(2)

Xñ,Z
〉
q(X

(2)
ñ

)
, ψ(2)j

1ñ =

〈G(2)j

Xñ,u
〉
q(X

(2)
ñ

)
,

ψ(2)

4ñ = 〈H(2)

Z,Xñ
K(2)

hñ,Z
〉
q(X

(2)
ñ

)
, ψ(2)j

5ñ = 〈G(2)j

Z,Xñ
G(2)j

Xñ,Z
〉
q(X

(2)
ñ

)
, ñ = 1, . . . , N∗, d = 1, . . . , D and

j = 1, . . . , J . Since Y (2)

∗d =
∑J

j=1w
(2)

dj g(2)j
∗ + h(2)

∗ , d ∈ [1 . . . D], the expectation and covari-

ance of Y (2)

∗d are E(Y (2)

∗d ) =
∑J

j=1w
(2)

dj E(g(2)j
∗ ) + E(h(2)

∗ ) and V(Y (2)

∗d ) =
∑J

j=1(w
(2)

dj )2V(g(2)j
∗ ) +

V(h(2)
∗ ) + (β(2))−1I, where (y(2)

∗ )> = [(y(2)

∗1 )>, . . . , (y(2)

∗D)>]. The whole prediction process is
shown in Algorithm 1.

6. Experiments

In order to validate the effectiveness of the proposed McGPDS, we conduct experiments on
five multi-view datasets including two synthetic datasets and three real world datasets1. We

1. For an implementation of McGPDS in Matlab, see https://github.com/mcgpds/mcgpds.
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evaluate our model in two different kinds of tasks. The first is recovering the structures of
the latent variables when the correlation between the shared and private latent variables is
strong. The second is generating data from one view given data from the other view.

For comparison, all models are trained with the same initializations and we set J = 1 in
the proposed model. For the toy data experiments, we use linear kernel without inducing
points and the dimension of each view’s private latent variable is set to 1. For the real-world
data experiments, we use RBF kernel with the variance initialized to 1. We use 100 inducing
points and the dimension of each view’s private latent variable is set to 5 unless otherwise
stated. For all the experiments, alpha is initialized to 0.5 for each view and the mixture
weights in the output layer are independently initialized from a Gaussian distribution with
0 mean and 0.01 variance. For the K-nearest neighbor method, we set K = 1. In the
experiments, the shared GPLVM refers to the new version of the shared GPLVM, namely,
the subspace GPLVM. For MRD, we follow the setting in Damianou et al. (2012). All
experiments are repeated five times, and the average results are reported as the final results.
The root mean square error (RMSE) and mean standardized log loss (MSLL) are used as
the performance measures. MSLL is the mean negative log probability of all the test data,
where the predictive density is given by (15). The lower the RMSE and MSLL are, the
better the performance is.

6.1 Toy Data
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(a) Private Signal (cos(π2t))
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(b) Private Signal (cos(
√
5πt))
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(c) Shared Signal (sin(2πt))

Figure 4: The results of McGPDSs on the toy dataset. Red lines represent true signals, and
blue lines represent recovered signals.
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Figure 5: The results of MRD on the toy dataset. Red lines represent true signals, and blue
lines represent recovered signals.

First, we conduct the experiment on a synthetic dataset which is similar to the one used
by Salzmann et al. (2010) and Jia et al. (2010). We first generate three one-dimensional
latent variables using three signals: cos(π2t) and cos(

√
5πt) which generate the private

latent variables, and sin(2πt) which generates the shared latent variable. Then, we use
the randomly generated projection matrices to map the one-dimensional private latent
variables to the ten-dimensional space and the one-dimensional shared latent variable to
the five-dimensional space. The two-view sequential data Y (1) and Y (2) are constructed by
concatenating the ten-dimensional private variable of each view with the five-dimensional
shared variable. Therefore, both the generated sequences Y (1) and Y (2) are in 15 dimensions
in total, that is, y(1)

i ,y
(2)

i ∈ R15.

The proposed model is capable of learning the latent variables corresponding to the
observed sequential data. We use the McGPDS with a linear kernel function to recover the
latent signals: the private signals (cos(π2t) and cos(

√
5πt)) and the shared signal (sin(2πt)).

We compare our model with the state-of-the-art GP-based multi-view dynamical system,
i.e., MRD with dynamics.

Figure 4 shows the recovery results of the latent signals by our model. Specifically,
Figure 4(a), (b) and (c) show the true signals as well as the recovered signals by McGPDS
for cos(π2t), cos(

√
5πt) and sin(2πt), respectively. As shown in Figure 4, the recovered

signals almost exactly match the true signals (up to a translation), which demonstrates that
our model has the ability to learn an effective latent representation even when private latent
variables are orthogonal to shared latent variables. As a comparison, Figure 5 shows the
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results of the MRD with dynamics on this toy dataset. Figure 5(a) and (b) shows that the
recovered private signals by the MRD deviates significantly from the true signals in both
view. The only recovered signal that matches the true signal is the shared signal, as shown
in Figure 5(d).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Variance of the Private Signal of the Second View

0.0

0.2

0.4

0.6

0.8

1.0
α1
α2

Figure 6: The learned α(1) and α(2) of McGPDS on the toy dataset with different variance
of private latent signal of view 2.

Next, we test the interpretability of the learned combination weights, α(1) and α(2), on
another synthetic dataset. The shared latent signal is generated from sin(2πt) and the
private latent signals are generated from pure Gaussian noise. The variance of the Gaussian
noise of the first view is fixed to 0.1, while that of the second view varies from 0.1 to 1. The
observations from each view is constructed by concatenating its private signal and the shared
signal. Under this construction, the first view almost only contains the shared signal, while
the ratio of the private and the shared signals in the second view increases with the variance
of the former. We plot the learned α(1) and α(2) against the variance of the private latent
variable of view 2 in Figure 6. As expected, the learned α(2) increases with the variance of
the private signal of the second view, which coincides with the change of the significant of
the private signal. The learned α(1) also increases but at a slower rate, since large noise in
the second view adds difficulty in recovering the shared signal and the view-specific dynamic
has to complement.

6.2 Human Motion Data

In this experiment, we use the human motion data which contain a set of 3D human poses
and their corresponding silhouettes. The data are collected by Agarwal and Triggs (Ankur
and Bill, 2006). We use 566 frames for training which contain 5 sequences corresponding to
walking motions in different directions. The test data is a separate walking sequence of 158
frames. The pose data are 63-dimensional joint location vectors, and the silhouette data are
100-dimensional histogram of oriented gradients (HOG) vectors. We consider the task of
generating data from a view given the other view, that is, we generate the corresponding 3D
human poses given the silhouette data. We use the RBF kernel for all GPs and 100 inducing
points for McGPDS. Dimensions of the shared and both private latent variables are set to 5
for all the models.

As described in the previous section, given test data in the first view Y (1)

test, McGPDS
optimises the private latent variables in the first view X(1)

test and the shared latent points X(1,2)

test .
Then, the training latent variables X(2) in the second view are selected as the test private
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Table 1: The RMSE and MSLL on the human motion dataset.

RMSE MSLL

NNYspace 2.65±0.00 -
NNXspace (X learned by MRD) 3.19±0.03 -
NNXspace (X learned by McGPDS) 2.40±0.03 -
Shared GPLVM 5.15±0.01 3.41±0.17
MRD without dynamics 5.03±0.01 3.37±0.03
MRD with dynamics 2.65±0.01 3.01±0.25
Independent CGPDS 2.69±0.13 3.22±0.23
McGPDS 2.37± 0.03 2.60±0.05
McGPDS+GPLVM 2.62± 0.04 3.78±0.25
McGPDS+Linear 2.81± 0.15 -

latent variables X(2)

test according to the similarity of X(1,2) and X(1,2)

test . Finally, McGPDS
generates a set of novel poses Y (2)

test based on these selected training latent points X(2).

In this experiment, we compare our model with seven different methods, the nearest
neighbor (NN) in silhouette space (NNYspace), the NN method in the X space (X learned by
MRD), the NN method in the X space (X learned by McGPDS), the shared Gaussian process
latent variable model (GPLVM), the MRD without dynamics, the MRD with dynamics and
the independent CGPDS model. NNYspace finds the predicted 3D pose from training data
whose silhouette is the closest to the corresponding test silhouette. Similarly, NNXspace
finds the predicted 3D pose from training data whose shared latent information is the closest
to the corresponding shared information of test data. The independent CGPDS model use
one CGPDS on each view independently. To demonstrate the usefulness of the two key
components in McGPDS, i.e., modelling the private latent variables using GPS with the
mixture mean and covariance, and modelling the map from the private latent variables to
observations with CGPDS, we conduct ablation studies for them. More specifically, we run
two methods, McGPDS+GPLVM, which is McGPDS with the prior of the private latent
variables replaced by that of GPLVM, and McGPDS+Linear, which is McGPDS with the
output coupling layer replaced by a linear map, on the human motion dataset with the other
setting unchanged.

Table 1 shows the RMSE and MSLL on the human motion dataset. As shown in Table 1,
our model (McGPDS) obtains the lowest RMSE 2.37±0.03 and the lowest MSLL 2.60±0.05,
which means that our model outperforms the state-of-the-art model (MRD with dynamics).
Both McGPDS and MRD with dynamics outperform the independent CGPDS model, which
confirms the usage of shared latent space structures. In addition, NNXspace (X learned by
McGPDS) performs better than NNXspace (X learned by MRD). The ablation studies also
confirms the usage of the two key components. Figure 7 demonstrates the results visually.
As shown in Figure 7, the 3D poses generated by our model are closest to the true poses.

To better understand the impact of dimensionality and number of inducing points in
McGPDS, we plot the RMSE and MSLL against total dimension of private latent variables
in Figure 8(a) and the RMSE, MSLL and training time against number of inducing points in
Figure 8(b). Figure 8(a) shows that the RMSE of McGPDS decreases as the total dimension
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Figure 7: The results of generating 3D poses given silhouettes. The left-most side of each
line represents the test silhouette. The remaining parts, from left to right, are
the true poses, poses generated by MRD without dynamics, poses generated by
NNXspace (X learned by the McGPDS), poses generated by MRD with dynamics,
and poses generated by McGPDS, respectively.

of private latent variables increases, implying that larger latent space provides McGPDS
more capability to capture multiview dynamics. The increase of MSLL is possibly due to the
increase of number of variables, which encourages the model to upweight the KL divergence
term in the ELBO, leading to an increase in the variance of the likelihood and thus in the
MSLL. Figure 8(b) shows how the training time increases with the number of inducing
points, while the impact of the latter on RMSE and MSLL is moderate.

6.3 CUAVE Data

In this experiment, we employ the CUAVE data which are composed of the videos showing a
person speaking Arabic numerals and the corresponding Mel frequency cepstral coefficients
(mfcc) features of the audio signals. Each video is represented by a 3750-dimensional vector
and each mfcc feature is represented by a 13-dimensional vector. We use 194 frames of
videos and mfcc features as training data and 51 frames of videos for testing. Our task is to
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Figure 8: (a) RMSE and MSLL of McGPDS with different total dimension of private latent
variables on the human motion dataset. (b) RMSE, MSLL and training time(hr) of
McGPDS with different number of inducing points on the human motion dataset.

Table 2: The RMSE and MSLL on the CUVAE dataset.

RMSE MSLL

NNYspace 1.31±0.00 -
NNXspace (X learned by MRD) 1.70±0.10 -
NNXspace (X learned by McGPDS) 1.38±0.15 -
Shared GPLVM 1.61±0.01 4.70±0.27
MRD without dynamics 1.29±0.01 4.34±0.13
MRD with dynamics 1.24±0.03 3.45±0.20
McGPDS 1.19±0.03 1.94±0.07

generate mfcc features given the frames of the videos. We use the RBF kernel for all GPs
and 100 inducing points for McGPDS. Dimensions of the shared and both private latent
variables are set to 5 for all the models.

From Table 2, we can see that our model obtains the best performance (with the lowest
RMSE 1.19± 0.03 and lowest MSLL 1.94± 0.07) on the CUAVE dataset. The method
NNXspace (X learned by McGPDS) is also better than NNXspace (X learned by MRD) in
the CUAVE dataset. These results show that our model can obtain more reasonable latent
representation, and thus generate observations closer to the truth.

6.4 Classification

In the final experiment, we examine McGPDS on a classification task. We use the Oil
dataset, which contains 1000 12-dimensional examples from 3 classes. The observations
constitute the first view, while the corresponding labels are taken as the second view in the
form of one-hot encoding. Following the setting of Damianou et al. (2012), we select 10
random subsets of the data with increasing number of training points and compare to the
NN method in the data space. Figure 9 shows that the accuracy of McGPDS is worse than
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Figure 9: Accuracy of McGPDS and NN on the Oil Dataset.

NN when the training set is small and is comparable to NN as the number of training points
increases. There are two possible reasons for the mediocre performance of McGPDS on
small-size non-dynamic data. First, McGPDS uses three GPs to model the time dynamics,
while the time stamps of non-dynamic data provide little, if not misleading, information on
the observations. Second, McGPDS uses a mixture of GPs to model the observations, while
the observations from view 2 of the used dataset is just the one-hot representation of labels.
Both of these could potentially make McGPDS perform not so well on non-dynamic small
data. We leave the application of McGPDS to classification for future work.

7. Conclusion

In this paper, we have proposed the McGPDS, which extends the CGPDS into the scenario
of multi-view learning with flexible and general modeling in the latent space. As a novel
hierarchical multi-view framework, the McGPDS takes full use of the characteristics of the
multi-view data and the advantages of the CGPDS. The setting on the latent space is elastic
and reasonable, where the relationship between private and shared latent variables can
be learned adaptively via optimizing weights. We introduce inducing points and employ
variational inference to integrate out the latent variables. The proposed model is trained
through maximizing the evidence lower bound.

The effectiveness of our model for multi-view learning has been empirically validated
on synthetic and real-world two-view datasets. For future work, we will extend our model
beyond the current two views. The methodology can be similar to the current scenario,
but deriving the ELBO for more-than-two-view cases is non-trivial and the applications of
generating one or multiple views from other views will be more challenging.
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Appendix A. Derivation of the Evidence Lower Bound for Training

In this section, we give the detailed derivation of the evidence lower bound for training data.
Given two views of data, Y (1) and Y (2), the joint probability distribution for the proposed
model is given by

p(Y (1), Y (2), H (1), H (2), G(1), G(2), X(1), X(2), X(1,2)) = p(Y (1)|G(1), H (1))p(Y (2)|G(2), H (2))

p(G(1), H (1)|X(1))p(G(2), H (2)|X(2))p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t). (16)

We can get the logarithm of the marginal likelihood by integrating the latent variables,

p(Y (1), Y (2)) =

∫
p(Y (1)|G(1), H (1))p(Y (2)|G(2), H (2))p(G(1), H (1)|X(1))p(G(2), H (2)|X(2))

p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t)dH (1)dH (2)dG(1)dG(2)dX(1)dX(2)dX(1,2). (17)

Note that the integration w.r.t X(1) and X(2) is intractable, because X(1) appears
nonlinearly in the inverse of the matrices G(1)

X,X and H(1)

X,X and X(2) appears nonlinearly in

the inverse of the matrices G(2)

X,X and H(2)

X,X . Therefore, we introduce inducing variables
U and V to augment the model and compute the lower bound of its logarithmic marginal
likelihood. The augmented joint probability density takes the form as

p(Y (1),Y (2), H (1), H (2), G(1), G(2), U (1), U (2), V (1), V (2), X(1), X(2), X(1,2))

=p(Y(1)|G(1), H (1))p(G(1)|U (1), X(1))p(H (1)|V (1), X(1))p(U (1)|X(1))p(V (1)|X(1))

p(Y (2)|G(2), H (2))p(G(2)|U (2), X(2))p(H (2)|V (2), X(2))p(U (2)|X(2))p(V (2)|X(2))

p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t). (18)

In the above formula, p(U (1)|X(1)) and p(U (2)|U (2)) are zero-mean Gaussian with covariance
matrices G(1)

Z,Z and G(2)

Z,Z and p(V (1)|X(1)) and p(V (2)|X(2)) are zero-mean Gaussian with

covariance matrices H(1)

Z,Z and H(2)

Z,Z . Precisely, they are expressed as

p(U (1)|X(1)) =
J∏
j=1

N (u(1)

j ; 0,G(1)j

Z,Z), (19)

p(U (2)|X(2)) =

J∏
j=1

N (u(2)

j ; 0,G(2)j

Z,Z), (20)

p(V (1)|X(1)) = N (V (1); 0,H(1)

Z,Z), (21)

p(V (2)|X(2)) = N (V (2); 0,H(2)

Z,Z). (22)

The conditional distributions for latent variables G and H given the inducing variables U
and V are Gaussian, which have the following forms.

p(GK|UK, XK) =
J∏
j=1

N (gKj ;µKj
g , K̃

Kj
g ), (23)

p(HK|V K, XK) = N (HK;µKh , K̃
K
h), (24)
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whereK ∈ {(1), (2)}. The specific expressions for the related statistics are µKj
g = GKj

X,Z(GKj

Z,Z)−1uKj ,

K̃Kj
g = GKj

X,X−GKj

X,Z(GKj

Z,Z)−1GKj

Z,X , µKh = HKX,Z(HKZ,Z)−1vK and K̃Kh = HKX,X−HKX,Z(HKZ,Z)−1HKZ,X .

We now adopt the variational inference method to approximately compute the integral.
Specifically, we introduce a joint variational distribution q(Ω) over all the latent variables
denoted by Ω, which has the factorized form as

q(Ω) = q(Θ(1))q(Θ(2))q(X(1))q(X(2))q(X(1,2)), (25)

where

q(X(1)) = N (X(1)|µ(1), S(1)),

q(X(2)) = N (X(2)|µ(2), S(2)),

q(X(1,2)) = N (X(1,2)|µ(1,2), S(1,2)),

q(Θ(1)) = p(G(1)|U (1), X(1))p(H (1)|V (1), X(1))q(U (1))q(V (1)),

q(Θ(2)) = p(G(2)|U (2), X(2))p(H (2)|V (2), X(2))q(U (2))q(V (2)).

The evidence lower bound of the logarithmic marginal likelihood log p(Y (1), Y (2)) is

Fv(q, θ) =

∫
q(Θ(1))q(X(1)) log

p(Y (1)|G(1), H (1))p(G(1)|X(1))p(H (1)|X(1))

q(Θ(1))
dG(1)dH (1)dX(1)

+

∫
q(Θ(2))q(X(2)) log

p(Y (2)|G(2), H (2))p(G(2)|X(2))p(H (2)|X(2))

q(Θ(2))
dG(2)dH (2)dX(2)

−
∫
q(X(1))q(X(2))q(X(1,2)) log

q(X(1))q(X(2))q(X(1,2))

p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t)
dX(1,2)dX(1)dX(2)

= L̂(1) + L̂(2) −KL(q(X(1))q(X(2))q(X(1,2))||p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t)).
(26)

The detailed computation of the first term L̂(1) in Equation (26) is given by

L̂(1) =

∫
q(U (1), V (1))q(X(1)) log

p(Y (1)|U (1), V (1), X(1))p(U (1), V (1))

q(U (1), V (1))
dU (1)dV (1)dX(1), (27)

where log p(Y (1)|U (1), V (1), X(1)) in the lower bound can be approximated by

log p(Y (1)|U (1), V (1), X(1)) ≥ 〈log p(Y (1)|G(1), H (1))〉p(G(1),H(1)|U(1),V (1))

=

D∑
d=1

〈log p(Y (1)

d |G
(1), H (1))〉

p(G(1)|U(1))p(H(1)|V (1))

=
D∑
d=1

[
logN (Y (1)

d |
J∑
j=1

w(1)

dj µ
(1)j
g + µ(1)

h , (β
(1))−1I)− β(1)

2
Tr(K̃(1)

h )

− β(1)

2
Tr(

J∑
j=1

(w(1)

dj )2(K̃(1)j
g ))

]
. (28)
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As the outputs Y (1) are conditionally independent, the lower bound can be written as a
sum of D terms, that is, L̂(1) =

∑D
d=1 L̂

(1)

d , where L̂(1)

d is given by

L̂(1)

d =

∫
q(u(1),v(1))q(X(1)) log

N (y(1)

d |
∑J

j=1w
(1)

dj µ
(1)j
g + µ(1)

h , (β
(1))−1I)p(u(1),v(1))

q(u(1),v(1))

du(1)dv(1)dX(1) −
∫
β(1)

2
Tr(K̃(1)

h )q(X(1))dX(1) −
∫
β(1)

2
Tr(

J∑
j=1

(w(1)

dj )2K̃(1)j
g )q(X(1))dX(1).

By changing the integration order, we get

L̂(1)

d =

∫
q(u(1),v(1)) log

e
〈logN(y

(1)
d ;

∑J
j=1 w

(1)
dj µ

(1)j
g +µ

(1)
h ,(β(1))−1I)〉

q(X(1))p(u(1),v(1))

q(u(1),v(1))
du(1)dv(1)

− β(1)

2
Tr(〈K̃(1)

h 〉q(X(1)))−
β(1)

2
Tr(〈

J∑
j=1

(w(1)

dj )2K̃(1)j
g 〉q(X(1))), (29)

where the optimal variational distribution q(u(1),v(1)) for the dth output that gives rise to
this lower bound is

q(u(1),v(1)) ∝ e〈logN (y
(1)
d ;

∑J
j=1 w

(1)
dj µ

(1)j
g +µ

(1)
h ,(β(1))−1I)〉

q(X(1))p(u(1),v(1)). (30)

The optimal variational distribution is analytically Gaussian,

q(u(1),v(1)) =N
(
v(1); H(1)

Z,Z(β(1)ψ(1)

4 + H(1)

Z,Z)−1(ψ(1)

0 )>β(1)y(1)

d ,H
(1)

Z,Z(β(1)ψ(1)

4 + H(1)

Z,Z)−1H(1)

Z,Z

)
·
J∏
j=1

N
(
u(1)

j ; G(1)j

Z,Z((β(1)(w(1)

dj )2ψ(1)j

5 + G(1)j

Z,Z)−1(ψ(1)j

1 )>w(1)

dj β
(1)y(1)

d ,

G(1)j

Z,Z((β(1)(w(1)

dj )2ψ(1)j

5 + G(1)j

Z,Z)−1G(1)j

Z,Z

)
, (31)

where ψ(1)

0 = 〈H(1)

X,Z〉q(X(1)), ψ
(1)j

1 = 〈G(1)j

X,Z〉q(X(1)), ψ
(1)

2 = Tr(〈H(1)

X,X〉q(X(1))) , ψ(1)j

3 =

Tr(〈G(1)j

X,X〉q(X(1))), ψ
(1)

4 = 〈H(1)

Z,XH(1)

X,Z〉q(X(1)) and ψ(1)j

5 = 〈G(1)j

Z,XG(1)j

X,Z〉q(X(1)).
Furthermore, the optimal lower bound can be obtained using Jensen’s inequality,

L̂(1)

d ≤ log

∫
e
〈logN (y

(1)
d ;

∑J
j=1 w

(1)
dj µ

(1)j
g +µ

(1)
h ,(β(1))−1I)〉

q(X(1))p(u(1),v(1))du(1)dv(1)

− β(1)

2
Tr(〈K̃(1)

h 〉q(X(1)))−
β(1)

2
Tr(〈

J∑
j=1

(w(1)

dj )2K̃(1)j
g 〉q(X(1)))

= log

 (β(1))
N
2 |G(1)

Z,Z |
1
2 |H(1)

Z,Z |
1
2

(2π)
N
2 |β(1)(w(1)

dj )2ψ(1)

5 + G(1)

Z,Z |
1
2 |β(1)ψ(1)

4 + H(1)

Z,Z |
1
2

exp{−1

2
(y(1)

d )>F (1)

d y(1)

d }


− β(1)

2
Tr(〈K̃(1)

h 〉q(X(1)))−
β(1)

2
Tr(〈

J∑
j=1

(w(1)

dj )2K̃(1)j
g 〉q(X(1))), (32)
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where F (1)

d = β(1)I− (β(1))2(w(1)

dj )2ψ(1)

1 (β(1)(w(1)

dj )2ψ(1)

5 +G(1)

Z,Z)−1(ψ(1)

1 )>− (β(1))2ψ(1)

0 (β(1)ψ(1)

4 +

H(1)

Z,Z)−1(ψ(1)

0 )>.

Therefore, the closed-form of the first term L̂(1) in the lower bound of the approximated
logarithmic marginal log-likelihood in Equation (26) is given by

L̂(1) =
D∑
d=1

[
log

(β(1))
N
2 |H(1)

Z,Z |
1
2

(2π)
N
2 |β(1)ψ(1)

4 + H(1)

Z,Z |
1
2

+
J∑
j=1

log
|G(1)j

Z,Z |
1
2

|β(1)(w(1)

dj )2ψ
(1)j
5 + G

(1)j
Z,Z |

1
2

− 1

2
(y(1)

d )>
(
β(1)I −

J∑
j=1

(β(1))2(w(1)

dj )2ψ
(1)j
1 (β(1)(w(1)

dj )2ψ
(1)j
5 + G

(1)j
Z,Z )−1(ψ

(1)j
1 )> − (β(1))2ψ(1)

0

(β(1)ψ(1)

4 + H(1)

Z,Z)−1(ψ(1)

0 )>
)

y(1)

d −
β(1)

2
ψ(1)

2 +
β(1)

2
Tr(ψ(1)

4 (H(1)

Z,Z)−1)− β(1)

2

J∑
j=1

(w(1)

dj )2ψ
(1)j
3

+
β(1)

2

J∑
j=1

Tr((w(1)

dj )2ψ
(1)j
5 (G

(1)j
Z,Z )−1)

]
, (33)

and similarly for L̂(2),

L̂(2) =

D∑
d=1

[
log

(β(2))
N
2 |H(2)

Z,Z |
1
2

(2π)
N
2 |β(2)ψ(2)

4 + H(2)

Z,Z |
1
2

+

J∑
j=1

log
|G(2)j

Z,Z |
1
2

|β(2)(w(2)

dj )2ψ
(2)j
5 + G

(2)j
Z,Z |

1
2

− 1

2
(y(2)

d )>
(
β(2)I −

J∑
j=1

(β(2))2(w(2)

dj )2ψ
(2)j
1 (β(2)(w(2)

dj )2ψ
(2)j
5 + G

(2)j
Z,Z )−1(ψ

(2)j
1 )> − (β(2))2ψ(2)

0

(β(2)ψ(2)

4 + H(2)

Z,Z)−1(ψ(2)

0 )>
)

y(2)

d −
β(2)

2
ψ(2)

2 +
β(2)

2
Tr(ψ(2)

4 (H(2)

Z,Z)−1)− β(2)

2

J∑
j=1

(w(2)

dj )2ψ
(2)j
3

+
β(2)

2

J∑
j=1

Tr((w(2)

dj )2ψ
(2)j
5 (G

(2)j
Z,Z )−1)

]
. (34)

For the calculation of KL divergence, for simplification, we employ A(1)
q and A(2)

q to
represent (α(1))2K(1)

t,t + (1− α(1))2ε(1)I and (α(2))2K(2)

t,t + (1− α(2))2ε(2)I, respectively. Then
the specific calculation is given below.

KL(q(X(1))q(X(2))q(X(1,2))||p(X(1)|X(1,2), t)p(X(2)|X(1,2), t)p(X(1,2)|t))

=
1

2

Q∑
q=1

[[
log |A(1)

q |+ log |A(2)
q |+ log |K(1,2)

t,t | − log |S(1,2)
q | − log |S(1)

q | − log |S(2)
q |
]

+
[
(1− α(1))µ(1,2)

q − µ(1)
q

]>
(A(1)

q )−1
[
(1− α(1))µ(1,2)

q − µ(1)
q

]
+
[
(1− α(2))µ(1,2)

q − µ(2)
q

]>
(A(2)

q )−1
[
(1− α(2))µ(1,2)

q − µ(2)
q

]
+ Tr

[[
(1− α(1))2(A(1)

q )−1 + (1− α(2))2(A(2)
q )−1

]
S(1,2)
q

]
+ Tr

[
(K(1,2)

t,t )−1
[
µ(1,2)
q (µ(1,2)

q )> + S(1,2)
q

]]
+ Tr

[
(A(1)

q )−1S(1)
q + (A(2)

q )−1S(2)
q

]]
. (35)
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Appendix B. Computation of Statistics ψ0, ψ1, ψ2, ψ3, ψ4, ψ5

ψ(1)

0 , ψ(1)

1 , ψ(2)

0 and ψ(2)

1 are N × M matrices. ψ(1)

2 , ψ(1)

3 , ψ(2)

2 and ψ(2)

3 are scalars. ψ(1)

4 ,
ψ(1)

5 , ψ(2)

4 , ψ(2)

5 are (J ×M) × (J ×M) matrices. we use the ARD kernel κARD(x,x′) =

σ2f exp(−1
2

∑Q
q=1 αp(xq − x′q)

2), and obtain

(ψ(1)

0 )n,m = (〈H(1)

X,Z〉q(X(1))
)n,m =

∫
κ(1)h(x(1)

n , z
(1)h
m )N (x(1)

n |µ(1)
n ,S

(1)
n )dx(1)

n

=
(σ2f )(1)h∏Q

q=1(S
(1)
nqα

(1)h
q + 1)

1
2

exp

(
−1

2

Q∑
q=1

(z(1)h
mq − µ(1)

nq)2α
(1)h
q

S(1)
nqα

(1)h
q + 1

)
, (36)

(ψ(1)j

1 )n,m = (〈G(1)j

X,Z〉q(X(1))
)n,m =

∫
κ(1)

j (x(1)
n , z

(1)
m )N (x(1)

n |µ(1)
n ,S

(1)
n )dx(1)

n

=
(σ2f )(1)j∏Q

q=1(S
(1)
nqα

(1)

jq + 1)
1
2

exp

(
−1

2
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q=1

(z(1)
mq − µ(1)

nq)2α
(1)

jq

S(1)
nqα

(1)

jq + 1

)
, (37)

ψ(1)

2 = Tr(〈H(1)

X,X〉q(X(1))) = N(σ2f )(1)h, (38)

ψ(1)j

3 = Tr(〈G(1)j

X,X〉q(X(1))) = N(σ2f )(1)j , (39)

(ψ(1)

4 )m,m′ = (〈H(1)

Z,XH(1)

X,Z〉q(X(1)))m,m′

=
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n=1
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n , z
(1)h
m )k(1)h(x(1)

n , z
(1)h

m′ )N (x(1)
n |µ(1)
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(1)
n )dx(1)

n

= (σ4f )(1)h
N∑
n=1

Q∏
q=1

exp


−
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(1)h
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 , (40)

(ψ(1)j
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=
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exp


−
α
(1)
jq (z

(1)
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(1)
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2
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(1)
jq (µ
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nq−
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(1)
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)2

2α
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2

 . (41)

The statistics ψ(2)

0 , ψ(2)

1 , ψ(2)

2 , ψ(2)

3 , ψ(2)

4 , ψ(2)

5 in the second view have the similar formulas.

Appendix C. Derivation of Varitional Lower Bound for Testing

Given test data in the first view Y (1)
∗ , we maximize a variational lower bound on the

logarithmic marginal likelihood log p(Y (1), Y (1)
∗ ) which can be expressed as follows. For
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brevity, we’ve omitted time t and t∗.

F (1)
∗ = log

∫
p(Y (1)
∗ , Y (1)|X(1)

∗ , X
(1))p(X(1)

∗ , X
(1)|X(1,2)

∗ , X(1,2))p(X(1,2)
∗ , X(1,2))

dX(1,2)
∗ dX(1)

∗ dX
(1)dX(1,2)

≥
∫
q(X(1)

∗ , X
(1))q(X(1,2)
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∗ , X
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dX(1,2)
∗ dX(1)

∗ dX
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dX(1)
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+

∫
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(1))q(X(1,2)
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= L̃(1)(Y (1)
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[
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p(X(1,2)
∗ , X(1,2))

]
, (42)

The quantity F (1)
∗ can be maximized using the same method as for training. In addition,

parameters of the new variational distribution q(X(1), X(1)
∗ ) are jointly optimized because

X(1) and X(1)
∗ are coupled in q(X(1), X(1)

∗ ), and so are q(X(1,2), X(1,2)
∗ ). Specially, the quantity

L̃(1)(Y (1)
∗ , Y (1)) can be expressed as

L̃(1)(Y (1)
∗ , Y (1)) =

D∑
d=1

[
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2 |H(1)
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1
2
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(1)j
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, (43)

and the KL divergence can be expressed as

KL

[
q(X(1), X(1)

∗ )q(X(1,2), X(1,2)
∗ )||p(X(1), X(1)

∗ |X(1,2), X(1,2)
∗ )p(X(1,2), X(1,2)

∗ )

]
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1

2
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]
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+
[
(1− α(1))µ̃(1,2)
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where ψ̃0
(1)

= 〈H(1)

X,Z〉q(X(1),X
(1)
∗ )

, ψ̃(1)j
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.
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