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Abstract

Although being a crucial question for the development of machine learning algorithms, there
is still no consensus on how to compare classifiers over multiple data sets with respect to sev-
eral criteria. Every comparison framework is confronted with (at least) three fundamental
challenges: the multiplicity of quality criteria, the multiplicity of data sets and the ran-
domness of the selection of data sets. In this paper, we add a fresh view to the vivid debate
by adopting recent developments in decision theory. Based on so-called preference systems,
our framework ranks classifiers by a generalized concept of stochastic dominance, which
powerfully circumvents the cumbersome, and often even self-contradictory, reliance on ag-
gregates. Moreover, we show that generalized stochastic dominance can be operationalized
by solving easy-to-handle linear programs and moreover statistically tested employing an
adapted two-sample observation-randomization test. This yields indeed a powerful frame-
work for the statistical comparison of classifiers over multiple data sets with respect to
multiple quality criteria simultaneously. We illustrate and investigate our framework in a
simulation study and with a set of standard benchmark data sets.
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1. Introduction

With a surge of new classification algorithms, a statistically sound way to decide if a method
improves on its competitors is crucial. This task has eo ipso a multi-dimensional charac-
ter: one often compares several classifiers over several data sets relying on several quality
criteria, with accuracy, area under the curve, and Brier score being popular choices. De-
pending on the specific domain, also other criteria, such as model size, interpretability, and
computational demand, may be of interest (see, e.g., Lavesson and Davidsson (2007)). Ad-
ditionally, following the seminal work of Demšar (2006), increasing attention has been paid
to the question of statistical significance of observed classifier rankings, understanding the
investigated set of data sets as a sample from a (potentially infinite) universe of data sets.

In the latter context, a comparatively simple case occurs when only one quality criterion of
metric scale is of interest, which is additionally commensurable over the selection of data
sets at hand. Then classical statistical tests on mean differences for the respective criterion
may be performed, e.g., pairwise t-tests. Non-metric and/or non-commensurable criteria
are usually tackled by aggregating their values over the different data sets by some real-
valued quantity. For instance, by considering rank aggregates, tests in the vain of Demšar
(2006) can then be applied when judging statistical significance. Although seeming quite
intuitive, such aggregation-based approaches also have been shown to have severe short-
comings. First, the concrete choice of an aggregation procedure may heavily influence the
resulting classifier ranking. Moreover, even seemingly plausible aggregation procedures may
show paradoxical behavior; see, e.g., Benavoli et al. (2016), who substantially question the
validity of comparisons based on rank aggregation by demonstrating that adding further
classifiers can change the rank order between the initially compared ones. Naturally, this
problem becomes even more severe if the comparison is additionally carried out for more
than one – potentially differently scaled – quality criterion simultaneously (also compare
the discussion in Remark 3).

Moreover, relying on a formal analogy, a discussion of classifier comparison might benefit
from an embedding into the framework of social choice theory, where the aggregation of
multiple inputs is a well-established topic (e.g., Brams and Fishburn (2002)). Examples
utilizing this embedding include Eugster et al. (2012) and Mersmann et al. (2015)). How-
ever, this way of proceeding typically leads to impossibility results: Following Arrow (1950),
it can be shown that no aggregation rule exists that satisfies a set of weak and plausible
minimal requirements. This impossibility also applies when seemingly intuitive rules are
used for classifier comparison. Examples are rules in the spirit of de Borda (1781), which
evaluate classifiers by their average ranks along the different data sets and/or different cri-
teria, as well as rules in the spirit of de Condorcet (1785), where classifiers are ranked by
counting which performs better with respect to more quality criteria and/or on more data
sets.

In summary, these considerations suggest that aggregation should be avoided unless it can
be naturally derived from the underlying problem domain. Instead, it is important to look
for comparison frameworks that fully exploit the information but still allow for incompara-
bility if the available evidence is unclear. To develop such a framework, we first specify and
formalize the problem under consideration.
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1.1 Specification and Formalization of the Problem

To describe the different levels at which problems can arise when comparing classifiers, we
use the following notation, which will be generalized in Section 3: Let C denote the set of
classifiers under consideration, and D denote a set of data sets with respect to which the
classifiers are to be compared. Let further φ1, . . . , φn : C ×D → R be different quality crite-
ria to measure the goodness of classification of the different classifiers on the different data
sets, estimated, e.g., using cross-validation on each data set. The structure of the problem
is summarized in Table 1 for the situation that C = {C1, . . . Cq} and D = {D1, . . . , Ds}. A
closer look at Table 1 shows three different levels of challenges when comparing classifiers:

classifiers
data sets

D1 . . . Ds

C1

 φ1(C1, D1)
...

φn(C1, D1)

 . . .

 φ1(C1, Ds)
...

φn(C1, Ds)


...

...
...

...

Cq

 φ1(Cq, D1)
...

φn(Cq, D1)

 . . .

 φ1(Cq, Ds)
...

φn(Cq, Ds)


Table 1: A schematic presentation of the problem of comparing different classifiers over

multiple data sets with respect to multiple quality criteria simultaneously.

Level 1: In the case of multiple quality criteria, two classifiers can generally not be trivially
compared already on one single data set. For instance, consider a situation with conflicting
quality criteria such as φ1(C1, D) > φ1(C2, D) but at the same time φ2(C1, D) < φ2(C2, D).
Without further assumptions, no decision between the classifiers can be made in such situ-
ations: The component-wise dominance relation is a partial order (compare Section 2).

Level 2: Even if the problem in Level 1 can be circumvented (for instance if we indeed
happen to have component-wise dominance), the rank order of classifiers that holds over
one fixed data set may change or even completely reverse over another data set. For in-
stance, it might hold that φi(C1, D1) > φi(C2, D1) for all i ∈ {1, . . . , n} but there exists
some i0 ∈ {1, . . . , n} such that φi0(C1, D2) < φi0(C2, D2). This makes the comparison of
classifiers a decision problem under uncertainty about the data sets, and, of course, this
uncertainty should be adequately included in any further analysis of the problem.

Level 3: Since both the set of all relevant data sets and their probability distribution will
in general be unknown, it is often impossible to analyze the decision problem from Level 2
in practice. Instead, one can only analyze an empirical counterpart of the problem over a
sample of data sets. This means that even if one has found ways to meaningfully solve the
problems of Levels 1 and 2 and thus could define a meaningful order of classifiers for the
concrete sample of data sets, a different order of classifiers could occur as soon as another
sample of data sets is considered. The solution of such an empirical decision problem is
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subject to statistical uncertainty. It is desirable to control this statistical uncertainty by
constructing a suitable statistical test.

1.2 Relevance of Classifier Comparison and Related Work

The comparison of classifiers – or more generally learning algorithms – over multiple data
sets is a much-studied and widespread problem in machine learning research. For example,
in the classical benchmark setting, the performance of e.g. classifiers over different data sets
is considered in order to identify general patterns in the ranking of methods that hold inde-
pendently of a concrete data set. This type of classifier ranking is essential for practitioners
to make an informed choice about which methods, out of the huge variety of potential meth-
ods, should be considered for a given data set and evaluated, e.g. using cross-validation.
The same applies to researchers who want to improve on the best existing methods. There-
fore, benchmarking precedes the estimation of generalization performance, as it constitutes
the set of models considered for any given problem domain. Examples in this spirit include
Meyer et al. (2003); Hothorn et al. (2005); Eugster et al. (2012); Mersmann et al. (2015);
Bischl et al. (2016), to name only a few.

Taking into account that also the considered benchmark suite is only a selection of data
sets, the importance of detecting statistically significant differences between classifiers is
shown by a whole series of high-impact publications. A particularly influential paper is
Demšar (2006) (as well as its generalizing follow-ups Garćıa and Herrera (2008); Garćıa
et al. (2010)), proposing a rank-based statistical test to check if one classifier is preferable
to another based on a sample of data sets. Further examples include more recent papers
like Benavoli et al. (2016), who propose improvements for post hoc testing after classifier
comparison over multiple data sets, or Corani et al. (2017), who propose a Bayesian testing
approach and call the “statistical comparison of learning algorithms [...] fundamental in
machine learning”, see also Benavoli et al. (2017), de Campos and Benavoli (2017), Calvo
et al. (2019) and Chang (2020) in a very similar vain. For a general review of the statistical
assessment of the performance of supervised classification algorithms, see Santafe et al.
(2015); for an implementation of the framework, see Calvo and Santafé (2016). Typical
studies include Fernández-Delgado et al. (2014), where algorithms are ranked based on
mean accuracy on each data set, Ismail Fawaz et al. (2019), where time series classifiers are
compared, or Graczyk et al. (2010), where neural networks for regression are investigated.

Moreover, the variety of quality criteria, each representing different facets of the perfor-
mance quality, is also a much-noticed problem (Lavesson and Davidsson (2007); Yu and
Kumbier (2020)): If the concrete classification task allows expressing the performance sat-
isfactorily by a (one-dimensional) criterion, the problem should, of course, be evaluated
only by this criterion. Often, however, one wants to evaluate the performance via different
criteria (for example, accuracy, interpretability, and model complexity). Then, it is highly
relevant to be able to make statements about which classifier can best fulfil all quality di-
mensions simultaneously. Further, allowing for multiple criteria also reduces the amount
of potential arbitrariness of choosing one criterion out of multiple suitable candidates and
hence the researcher’s degrees of freedom (Simmons et al., 2016).

Finally, selecting classifiers with respect to multiple quality criteria is strongly connected
with multi-objective optimization, where one can find and analyze the Pareto-optimal points
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(Müssel et al., 2012; Deb, 2014; Jansen et al., 2023a). Approaches trying to solve such
problems by aggregates that combine and trade-off multiple quality criteria into one single
number are, e.g., discussed in Brazdil et al. (2003) or Marler and Arora (2010). Contrarily,
the generalized stochastic dominance concept used in this paper, which is closely related
to the one in Jansen et al. (2018, 2022a), allows a simultaneous evaluation of all criteria
involved, instead of retreating to only one aggregation rule.

Generally, addressing multidimensional comparison problems by concepts of stochastic dom-
inance is promising, and approaches in this spirit are common in fields ranging from bio-
metrics (e.g., Davidov and Peddada (2013)) to econometrics (e.g., Whang (2019)). While
the literature on testing and/or checking algorithms for (first-order) stochastic dominance is
very rich in statistical contexts (e.g., McFadden (1989); Mosler and Scarsini (1991); Mosler
(1995); Barrett and Donald (2003); Schollmeyer et al. (2017); Range and Østerdal (2019);
Jansen et al. (2022b)), machine learning research relying on stochastic dominance seems to
be scarce. Exceptions include Dai et al. (2023), who considers optimization under stochas-
tic dominance constraints and Jansen et al. (2023b), who investigate stochastic orders for
random variables with locally varying scale of measurement.

1.3 Properties of our Approach and Overview

We propose a framework that

• allows a comparison of classifiers over multiple data sets with respect to multiple
quality criteria simultaneously (therefore accounting for Levels 1 and 2 above), and

• additionally addresses statistical uncertainty arising from the specific selection of the
set of benchmark data sets (compare Level 3) by a permutation-based statistical test.

To achieve this, we embed the problem of classifier comparison into a decision-theoretic
framework and propose a generalized notion of stochastic dominance that is

• information exhaustive, fully exploiting ordinal and partial metric information in the
criteria of classification quality, and thus it is

• typically going beyond first-order stochastic dominance on partially ordered sets, in
particular providing a more expressive ordering than a Pareto analysis, while it is

• still avoiding the pitfalls of aggregation.

Notably, the ordering power of our dominance relation can be explicitly modelled by a
parameter whose increase attenuates each quality dimension to the same extent. Still, our
criterion generally provides a partial ranking of the classifiers, deliberately allowing for
incomparability if there is not enough evidence or conceptual rigour for a clear distinction.

Deriving and discussing our framework, this paper is organized as follows: Section 2 recalls
required mathematical definitions. Section 3 introduces the concept of δ-dominance between
classification algorithms, while Section 4 gives an algorithm for detecting δ-dominance and
discusses how to test for it if only a sample of data sets is available. Sections 5 and 6
demonstrate the ideas presented on simulated data and with a set of standard benchmark
data sets. Section 7 elaborates on some promising future research perspectives.
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2. Preliminiaries

Throughout the paper, we consider binary relations at several points, be it on the set of
all quality vectors as in Equation (1), on a binary relation itself as in Equation (2), or on
the set of all classifiers as in Definition 6. We, therefore, begin with a compilation of some
important concepts in this context. First, recall that a binary relation R on a non-empty
set M is a subset of the Cartesian product of the set with itself, that is R ⊆M×M . Several
(potential) properties of binary relation occur in the sequel: R ⊆M ×M is called reflexive,
if (m,m) ∈ R, transitive, if (m1,m2), (m2,m3) ∈ R implies (m1,m3) ∈ R, antisymmetric, if
(m1,m2), (m2,m1) ∈ R implies m1 = m2 , and complete, if (m1,m2) ∈ R or (m2,m1) ∈ R
(or both) for arbitrary elements m,m1,m2,m3 ∈ M . A preference relation is a binary
relation that is complete and transitive; a preorder is a binary relation that is reflexive and
transitive; a linear order is a preference relation that is antisymmetric; a partial order is a
preorder that is antisymmetric.

Equipped with these concepts, we can now define the central ordering structure for us,
so-called preference systems. With the help of these systems, it is possible to model ordered
sets on which the scale of measurement can vary locally: The (potentially partial) ordinal
part of the system is modelled by a preorder on the set itself, while the (potentially partial)
metric part of the system is modelled by a preorder on the ordinal relation, which covers
those parts of the set for which a strength of order can also be specified. The following
Definitions 1, 2, and 3 have been introduced in a decision-theoretic context by Jansen et al.
(2018) and are also discussed in Jansen et al. (2022a). As these form the basis of our
generalized stochastic dominance concept, they are listed here for further reference.

Definition 1 Let A be a non-empty set and let R1 ⊆ A × A denote a preorder on A.
Moreover, let R2 ⊆ R1 × R1 denote a preorder on R1. Then the triplet A = [A,R1, R2] is
called a preference system on A.

Since the definition of a preference system does not restrict the interaction of the relations
R1 and R2 in any way, an additional consistency criterion is introduced. Here, for a preorder
R ⊆M ×M on a set M , we denote by PR ⊆M ×M its strict part and by IR ⊆M ×M its
indifference part, respectively defined by (m1,m2) ∈ PR ⇔ (m1,m2) ∈ R ∧ (m2,m1) /∈ R,
and (m1,m2) ∈ IR ⇔ (m1,m2) ∈ R ∧ (m2,m1) ∈ R. This leads to the following definition.

Definition 2 The preference system A = [A,R1, R2] is consistent if there exists a func-
tion u : A→ [0, 1] such that for all a, b, c, d ∈ A we have:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with = iff (a, b) ∈ IR1.

ii) If ((a, b), (c, d)) ∈ R2, then u(a)− u(b) ≥ u(c)− u(d) with = iff ((a, b), (c, d)) ∈ IR2.

The set of all such representations u satisfying i) and ii) is denoted by UA.

For consistent preference systems possessing R1-minimal and R1-maximal elements in A, it
may be useful to consider only representations that measure the utility of consequences on
the same scale. This proves of particular importance for the parameter δ in Definitions 5
and 6 to have a meaningful interpretation in terms of regularization. This leads to
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Definition 3 Let A = [A,R1, R2] be a consistent preference system containing a∗, a
∗ ∈ A

such that (a∗, a) ∈ R1 and (a, a∗) ∈ R1 for all a ∈ A. Then

NA :=
{
u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1

}
is called the normalized representation set of A.

Further, for a number δ ∈ [0, 1), we denote by N δ
A the set of all u ∈ NA satisfying

u(a)− u(b) ≥ δ ∧ u(c)− u(d)− u(e) + u(f) ≥ δ

for all (a, b) ∈ PR1 and for all ((c, d), (e, f)) ∈ PR2. We call A δ-consistent if N δ
A 6= ∅.

Finally, we will define the notion of an automorphism in the context of preference systems,
as we need this notion later in Proposition 1 and Proposition 2.

Definition 4 Let A = [A,R1, R2] be a preference system. A mapping T : A→ A is called
automorphism if it is bijective and if furthermore for arbitrary a, b, c, d ∈ A we have

(a, b) ∈ R1 ⇔ (T (a), T (b)) ∈ R1 and

((a, b), (c, d)) ∈ R2 ⇔ ((T (a), T (b)), (T (c), T (d))) ∈ R2.

3. Comparing Classifiers by Generalized Stochastic Dominance

We now propose a criterion for comparing classification algorithms with respect to multiple
quality measures on multiple data sets simultaneously. Specifically, our criterion generalizes
(first-order) stochastic dominance to the more structured setting of random variables taking
values in a preference system (instead of only a preordered set). To begin, recall that a
variable X is greater or equal than another variable Y with respect to (first-order) stochastic
dominance if the expectation of the variable u ◦X is greater or equal than the expectation
of the variable u ◦ Y for every real-valued representation u of the underlying preorder
(e.g., Mosler and Scarsini (1991)). Our generalization now aims at increasing the ordering
power by additionally allowing the partial metric information encoded in the underlying
preference system to be included in the analysis.

In our context, the variables under consideration are functions associated with the various
classifiers that assign a vector of quality values, or short quality vector, to each possible data
set. The set of all these quality vectors is then partially ordered by the component-wise
greater or equal relation (see Equation (1) below). However, since some of the considered
quality measures may also be interpretable on a metric scale, there is even more structure.
To be able to exploit this partial cardinal structure, we suitably define a preference system
on the set of quality vectors (see Equation (2) below). A natural generalization of stochastic
dominance is then to require the expectation dominance mentioned above no longer for all
representations of the component-wise partial order, but only for all representations of the
constructed preference system in the sense of Definitions 2 and 3.

3.1 Generalized Stochastic Dominance

Before turning to the construction just described in detail, we give the following central
definition of generalized stochastic dominance over preference systems for arbitrary random

7



Jansen, Nalenz, Schollmeyer and Augustin

variables. This relation can be viewed as a generalization of first-order stochastic dominance
in two respects: First, as just discussed, the relation R2 can also include partial metric
information. Second, the parameter δ allows to explicitly model from which threshold on a
difference in utility should be included in the analysis of the random variables.

Definition 5 Let A = [A,R1, R2] be a δ-consistent preference system and let [S, σ(S), π]
be a probability space. Denote by

F(A,S) :=
{
X ∈ AS : u ◦X is σ(S)-BR([0, 1])-measurable for all u ∈ UA

}
.

For random variables X,Y ∈ F(A,S), we say that X (A, π, δ)-dominates Y , abbreviated
with X ≥(A,π,δ) Y , whenever it holds that

Eπ(u ◦X) ≥ Eπ(u ◦ Y )

for all normalized representations u ∈ N δ
A respecting the threshold δ.

Remark 1 Consider the situation of Definition 5 again. For the special case that R2 is the
trivial preorder and δ = 0, the relation ≥(A,π,0) essentially reduces to classical first-order
stochastic dominance on partially ordered sets. Further, for the special case of δ = 0 and
relations R1 and R2 that are compatible in the sense of satisfying the axioms in Krantz
et al. (1971, Definition 1, p. 147) and, thus, admitting a representation that is unique up
to positive linear transformations, the relation ≥(A,π,0) essentially reduces to the classical
principle of maximizing expected utility. Finally, again setting δ = 0, the relation ≥(A,π,0)
can be viewed as that special case of the relation R∀∀ from Jansen et al. (2018, p. 123),
where the there mentioned set of probability measures M is chosen to consist solely of π,
that is M = {π} is a singleton.

3.2 Utilizing Generalized Stochastic Dominance for Comparing Classifiers

As indicated at the beginning of the section, we now show how the relation ≥(A,π,δ) can be
utilized to compare classification algorithms with respect to multiple quality measures on
multiple data sets simultaneously. This requires some additional notation. Let

• D denote the set of all data sets that are relevant for the classification task in question,

• C denote the set of all classifiers that intend to classify the data sets from D,

• φi : C × D → Qi denote a criterion of classification quality for every i ∈ {1, . . . , n},

• φ := (φ1, . . . , φn) : D×C → Q, where Q := Q1×· · ·×Qn is the set of quality vectors.1

Specifically, for a data set D ∈ D and a classifier C ∈ C, the (not necessarily numerical)
reward φi(C,D) is interpreted as the quality of the classifier C for data set D with respect
to the classification quality criterion φi. Importantly, note that the different reward sets
Q1, . . . , Qn are not assumed to be of the same scale of measurement. In particular, this

1. Since D may or may not contain labels, it is not necessary to distinguish between different types of
classification tasks (such as, e.g., supervised or unsupervised) within the proposed framework.
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implies that some of the sets are of ordinal scale (i.e. are equipped with a preference order
but no metric), while others allow for a metric interpretation (i.e. are equipped with both
a preference order and a metric). However, all of them are assumed to be of at least
ordinal scale and to possess minimal and maximal elements. For every i ∈ {1, . . . , n},
the preference order of the space Qi will be denoted by ≥i. Note already now that these
assumptions directly imply that the setQ possesses minimal and maximal elements w.r.t. R1

from Equation (1), ensuring the normalized representation set (see Definition 3) of the
preference system C from Equation (3) to be well-defined.

Without loss of generality, we assume the quality criteria (φ1, . . . , φn) to be arranged such
that there exists k ∈ {1, . . . , n} for which the sets Q1, . . . , Qk are of metric scale, equipped
with metrics di : Qi × Qi → R, i = 1, . . . , k, respectively, whereas the remaining sets are
of ordinal scale not allowing for any meaningful metric interpretation. As a convention, we
write k = 0 if all quality criteria are only ordinally scaled. We then define a preference
system on the set Q of all quality vectors by setting

R1 :=
{

(q, p) ∈ Q×Q : qi ≥i pi for all i = 1, . . . , n
}

(1)

R2 :=
{

((q, p), (r, s)) ∈ R1 ×R1 : di(qi, pi) ≥ di(ri, si) for all i = 1, . . . , k
}

(2)

We denote the preference system which is composed of the set Q and the two relations just
defined by C, i.e., we have that

C = [Q, R1, R2]. (3)

The two relations R1 and R2 can be given the following natural interpretation. Here it
is important to note that the relations R1 and R2 do not (directly) order the classifiers
themselves, but rather the quality vectors they produce on the different datasets.

Interpretation of R1: Assume we have D ∈ D and Ci, Cj ∈ C such that φ(Ci, D) = q and
φ(Ci, D) = p. Then (q, p) ∈ R1 means that classifier Ci has at least as high quality as
classifier Cj for every considered quality measure, when evaluated on data set D.

Interpretation of R2: Assume we have D ∈ D and Ci, Cj , Ck, Cl ∈ C such that φ(Ci, D) = q
and φ(Ci, D) = p and φ(Ck, D) = r and φ(Cl, D) = s. Then ((q, p), (r, s)) ∈ R2 means
that, when evaluated on data set D, the dominance of Ci over Cj is at least as strong as the
dominance of Ck over Cl. This is due to the fact that there is component-wise dominance in
both cases and, additionally, the quality differences of Ci and Cj are at least as high as the
quality differences of Ck and Cl for those measures that allow for a metric interpretation.

To take the final step of transferring the dominance criterion from Definition 5 to the
comparison of classifiers, we still need to be clear about the random component in this
context. This is obviously the randomness over the data sets since we are after all concerned
with the expected classification quality. So, if now [D, σ(D), π] is a suitable probability
space, we can use (C, δ)-dominance to compare classifiers with respect to all quality criteria
simultaneously. To stress the crucial role of the concept, this special case deserves a separate
definition for further reference.
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Definition 6 Assume C to be δ-consistent. For Ci, Cj ∈ C, with C chosen such that
{φ(C, ·) : C ∈ C} ⊆ F(C,D), we say that Ci δ-dominates Cj, abbreviated with Ci %δ Cj,
whenever it holds that

φ(Ci, ·) ≥(C,π,δ) φ(Cj , ·).
In other words, it holds that Ci %δ Cj whenever

Eπ(u ◦ φ(Ci, ·)) ≥ Eπ(u ◦ φ(Cj , ·))

for all normalized representations u ∈ N δ
C respecting the threshold δ.

Remark 2 Since δ-dominance is a special case of (A, π, δ)-dominance as introduced in
Definition 5, Remark 1 applies here as well. In particular, if δ = 0 and R2 is the trivial
preorder, the relation %δ coincides with first-order stochastic dominance. However, in the
more interesting case that R2 is nontrivial, the relation %δ provides stronger ordering power
than classical first-order stochastic dominance since it can also fully exploit the available
partial cardinal information.

From a decision-theoretic point of view, the threshold parameter δ can be motivated by
the concept of just noticeable differences discussed in the seminal work of Luce (1956): It
quantifies the minimal utility difference the decision maker can notice/finds relevant given
utility is measured on a [0, 1]-scale. Translated to the context of comparing classifiers, it
rather can be seen as a regularization device: If some of the classifiers remain incomparable
for a threshold of δ = 0, then increasing δ provides the opportunity to strengthen the
ordering power of the dominance relation while attenuating the influence of all quality
measures used to the same degree. This proves particularly useful for the statistical test for
δ-dominance discussed in Section 4.2: Already very small values for δ can cause a remarkable
improvement of the power of the respective test, although the basic order is only marginally
changed (see also the discussion in Remark 4 and Footnote 6).

3.3 Some Useful Properties of the δ-Dominance Relation

The following proposition lists some important properties of the binary relation %δ just
introduced. Despite their elementary character, some of these properties will play an im-
portant role when applying the concepts in Sections 5 and 6.

Proposition 1 Consider the same situation as in Definition 6. The following holds:

i) For every ξ ∈ [0, δ], the relation %ξ defines a preorder on C.

ii) The relations are nested with increasing δ, i.e., we have %ξ1⊆%ξ2 for ξ1 ≤ ξ2 ∈ [0, δ].

iii) Let T : A→ A be an automorphism w.r.t. C. Then we have that Ci %δ Cj if and only
if CTi %δ C

T
j , where, for p ∈ {i, j}, CTp represents classifier Cp, but evaluated not in

the space A, but in the space T [A], i.e., where φ(Cp, ·) is replaced by T ◦ φ(Cp, ·).

Proof i) Reflexivity is trivially true. To verify transitivity, assume that Ci %ξ Cj and

Cj %ξ Ck. Choose u ∈ N ξ
C arbitrarily (this is always possible, since δ-consistency obviously

implies ξ-consistency). Then, by assumption and definition, it holds that

Eπ(u ◦ φ(Ci, ·)) ≥ Eπ(u ◦ φ(Cj , ·)) and Eπ(u ◦ φ(Cj , ·)) ≥ Eπ(u ◦ φ(Ck, ·))

10
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directly implying
Eπ(u ◦ φ(Ci, ·)) ≥ Eπ(u ◦ φ(Ck, ·)).

As u was chosen arbitrarily, this implies Ci %ξ Ck.

ii) Assume it holds ξ1 ≤ ξ2 ∈ [0, δ]. By definition and ξ-consistency for all ξ ∈ [0, δ] (see i)),

this implies ∅ 6= N ξ2
C ⊆ N

ξ1
C . Assume it holds that Ci %ξ1 Cj . By definition, this implies

Eπ(u ◦ φ(Ci, ·)) ≥ Eπ(u ◦ φ(Cj , ·))

for all u ∈ N ξ1
C and, due to the superset relation, also for all u ∈ N ξ2

C . Thus Ci %ξ2 Cj .

iii) Because of {u | u ∈ N δ
C} = {u ◦ T | u ∈ N δ

C} we have that

∀u ∈ N δ
C : Eπ(u ◦ φ(Ci, ·)) ≥ Eπ(u ◦ φ(Cj , ·))

is equivalent to

∀u ∈ N δ
C : Eπ(u ◦ T ◦ φ(Ci, ·)) ≥ Eπ(u ◦ T ◦ φ(Cj , ·)),

which shows the claim.

Remark 3 Benavoli et al. (2016) convincingly questioned the idea of comparing classifiers
by comparing their average ranks over multiple data sets, where the ranks are computed with
respect to some single quality measure φ. The main problem of such an approach is that
the comparison of two classifiers may depend on other classifiers that are irrelevant to the
problem under consideration: Specifically, if only two classifiers C1 and C2 are considered,
C1 may get a higher average rank than C2, but this relation is exactly reversed if a third
classifier C3 is considered, although the quality values of C1 and C2 are not changed. A
simple example of such a situation is given in Table 2.

φ(Ci, Dj) D1 D2 D3 D4 D5

C1 0.8 0.8 0.8 0.6 0.6
C2 0.6 0.6 0.6 0.8 0.8

φ(Ci, Dj) D1 D2 D3 D4 D5

C1 0.8 0.8 0.8 0.6 0.6
C2 0.6 0.6 0.6 0.8 0.8
C3 0.9 0.9 0.9 0.7 0.7

Table 2: On the left, C1 receives a rank sum of 8, dominating C2 with a rank sum of 7.
However, adding a third classifier C3 (right table) dominating C1 and C2 on D1, D2

and D3 and lying between C2 and C1 for D4 and D5, gives C2 and C1 rank sums
of 9 and 8, respectively. The ordering of C1 and C2 is reversed.

In the case where also multiple quality criteria φ1, . . . , φ5 are considered, a similar situation
may already occur on one specific fixed data set D. For a simple example, one can reinterpret
the columns in Table 2 as the quality values φk(Ci, D) of the respective classifier with respect
to the respective quality criteria on the fixed data set D: Comparing the average ranks of
the classifiers across the quality criteria gives again reversed rankings of C1 and C2 for
the tables on the left and on the right. Obviously, for the case of multiple classifiers and
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multiple quality criteria, both problems may occur at the same time, thereby even increasing
the problem. Note that this fact is well-known in social choice theory: the Borda rule from
voting theory (see Section 1) does not satisfy Arrow’s axiom of independence of irrelevant
alternatives (see, e.g., Brams and Fishburn (2002)).

Generally, it seems that any method that uses ranks (and also any cardinal relative criterion
like that used in Webb (2000) and discussed in Demšar (2006)) is akin to violating the
independence of irrelevant alternatives. Note that in Demšar (2006) the rationale behind
computing ranks is to make the quality values for different data sets commensurable. This
implicitly assumes that beforehand the quality values for different data sets cannot be
compared at all. If, at the same time, one also does not want to compare on one data
set at least the values/ranks of different classifiers to avoid violating the independence of
irrelevant alternatives, then one effectively says that one quality value of one classifier for
one data set cannot be compared to any other quality value at all. This obviously will lead
to an unsolvable undertaking. In our approach to ranking classifiers, we do not use ranks at
all and instead demand that the quality values for different data sets are commensurable or
have been made commensurable beforehand. Despite the fact that there are many decision-
theoretic problems where it is difficult to specify an appropriate loss or utility function
(e.g., Cui (2021); Jakubczyk and Golicki (2020); Jansen et al. (2018)), we strongly think
that a specification ensuring commensurability along the data sets is possible in our case if
only all relevant details are specified to a sufficient extent.2

Against this background, one major advantage of comparing classifiers with respect to
our dominance relation %δ instead of applying rank-based approaches, is that, in fact,
independence of irrelevant alternatives is guaranteed: If it holds that Ci %δ Cj , then this
statement is independent of how the space C \{Ci, Cj} looks like, i.e. of how many classifiers
are considered besides Ci and Cj . In this way, our dominance relation circumvents one major
issue recently raised in the context of rank-based comparisons.

Another nice structural property of the relation %δ is that iii) in Proposition 1 is still valid
for a random automorphism, as long as this random automrphism is applied independently
of the process that generates the data sets. We will concretize this property in the following

Proposition 2 Let I be an index set, let {Tz | z ∈ I} be a family of automorphisms w.r.t. C
and let Z : Ω → I be an indexing random variable with law P that is independent of the
process that generates the data sets D. Let, for the moment, E be a shorthand notation
for the expectation w.r.t. the product law π ⊗ P . Let now T (ω) := TZ(ω) be a random

automorphism. Furthermore, assume that for every u ∈ N δ
C the conditional expectations

E(u ◦ T ◦ φ(Ci, ·) | Z = z) and E(u ◦ T ◦ φ(Cj , ·) | Z = z) exist. Then we have

∀u ∈ N δ
C : E(u ◦ φ(Ci, ·)) ≥ E(u ◦ φ(Cj , ·)) (4)

if and only if

∀u ∈ N δ
C : E(u ◦ T ◦ φ(Ci, ·)) ≥ E(u ◦ T ◦ φ(Cj , ·)). (5)

2. If the latter is not the case, combining the results from Cui (2021) with our framework seems to be a
promising avenue for future research.
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Proof Let (4) hold. Then for every fixed automorphism Tz and every arbitrary u ∈ N δ
C

we have Eπ(u ◦ Tz ◦ φ(Ci, ·)) ≥ Eπ(u ◦ Tz ◦ φ(Cj , ·)) and therefore E(u ◦ Tz ◦ φ(Ci, ·)) ≥
E(u ◦ Tz ◦ φ(Cj , ·)) (compare Proposition 1). This implies

E(u ◦ T ◦ φ(Ci, ·)) =

∫
E(u ◦ T ◦ φ(Ci, ·) | Z = z) dP (z)

=

∫
E(u ◦ Tz ◦ φ(Ci, ·)) dP (z) ≥

∫
E(u ◦ Tz ◦ φ(Cj , ·)) dP (z)

= E(u ◦ T ◦ φ(Cj , ·))

and therefore (5) holds for every arbitrary u ∈ N δ
C. The implication (5) =⇒ (4) follows

analogously by applying the corresponding inverse (random) automorphism.

Proposition 2 has a nice implication: If the quality values are observed with some additional
noise that can be described by a random automorphism, then the dominance criterion will
not change. Note that especially a random intercept or a random scaling of the cardinal
dimensions will not influence the notion of dominance. This particularly implies that in our
simulation study (see Section 5) we do not need to implement such random effects.

3.4 The GSD-δ Method

As %δ defines a preorder on the set C of all considered classifiers (see Proposition 1), it
naturally induces an ordering structure on this set. The method of obtaining this ordering
structure by relying on generalized stochastic dominance as the underlying relation will be
referred to as GSD-δ in the following (with GSD-0 abbreviated by GSD). In order to make
this method applicable in practice, two substantial questions have to be addressed. First,
the question on how to efficiently check for δ-dominance arises. Second, a test must be
developed to judge if in-sample differences between classifiers are statistically significant.

4. Testing for Dominance

In this section, we first establish a linear program for checking δ-dominance between two
classifiers if the set D of data sets is finite and the true probability law π over this set is
known. Taking into account the problem described in Level 3 from Section 1, i.e., the fact
that both π and the set D will in general be inaccessible, we then describe how to adapt this
linear program to check for δ-dominance in its empirical version, i.e., in the concrete sample
of data sets drawn from the distribution π. Afterwards, we discuss how the optimal value of
this adapted linear program can be reinterpreted as a test statistic for a statistical test for
distributional equality of the two competing classifiers and discuss how to extend this test
to the complete ordering structure between all considered classifiers. Finally, in preparation
for the comparative study carried out in Section 5, we briefly review the rank-based test
proposed in Demšar (2006) and suggest ways to extend it to more than one quality criterion.

4.1 A Linear Program for Checking δ-Dominance

We begin by discussing a linear program for checking δ-dominance in the finite case. For
that, consider again the preference system C as defined in Equation (3), however, with the
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additional assumption that the sets C (the classifiers under consideration) and D (the data
sets relevant for the comparison) are both finite. Without loss of generality, we can then
assume Q = {q1, . . . , qd} to be finite and that q1 and q2 are minimal and maximal elements
of Q with respect to R1, respectively.3 Moreover, we assume δ ∈ [0, 1) to be chosen such
that C is δ-consistent. A vector (u1, . . . , ud) ∈ [0, 1]d then contains the images of a utility
function u : Q → [0, 1] from N δ

C if it satisfies the system of linear (in-)equalities given by

• u1 = 0 and u2 = 1,

• ui = uj for every pair (qi, qj) ∈ IR1 ,

• ui − uj ≥ δ for every pair (qi, qj) ∈ PR1 ,

• uk − ul = ur − ut for every pair of pairs ((qk, ql), (qr, qt)) ∈ IR2 and

• uk − ul − ur + ut ≥ δ for every pair of pairs ((qk, ql), (qr, qt)) ∈ PR2 .

Denote by ∇δC the set of all vectors (u1, . . . , ud) ∈ [0, 1]d satisfying all these (in)equalities.
We then have the following proposition on how to check δ-dominance.

Proposition 3 Consider the same situation as described above. For Ci, Cj ∈ C, we con-
sider the linear programming problem

d∑
`=1

u` · [π(φ(Ci, ·)−1({q`}))− π(φ(Cj , ·)−1({q`}))] −→ min
(u1,...,ud)∈Rd

(6)

with constraints (u1, . . . , ud) ∈ ∇δC. Denote by optij the optimal value of this programming
problem. It then holds that Ci %δ Cj if and only if optij ≥ 0.

Proof First, let optij ≥ 0. Choose u ∈ N δ
C arbitrarily and let g : Rd → R denote the

objective function of the linear program. We then have

D(u) := Eπ(u ◦ φ(Ci, ·))− Eπ(u ◦ φ(Cj , ·)) = g(u(q1), . . . , u(qd)) ≥ 0 (7)

where the equation follows by simple manipulations of the expected values and the lower
bound of 0 follows since, by definition, (u(q1), . . . , u(qd)) ∈ ∇δC. Since u ∈ N δ

C was chosen
arbitrarily, this implies Ci %δ Cj .

Conversely, let optij < 0. Choose (u∗1, . . . , u
∗
d) ∈ ∇δC to be an optimal solution yielding

optij and define u : Q → [0, 1] by setting u(qi) := u∗i for all i = 1, . . . , d. We then have to
distinguish two different cases:

Case 1: δ > 0. One then easily verifies that u ∈ N δ
C and

D(u) = g(u∗1, . . . , u
∗
d) = optij < 0 (8)

Thus, u is a function from N δ
C with Eπ(u ◦ φ(Ci, ·)) < Eπ(u ◦ φ(Cj , ·)). Thus ¬(Ci %δ Cj).

3. As the sets C and D are finite, it makes no difference in what follows if we replace Q by the finite set
φ(C ×D). If φ(C ×D) does not contain minimal and maximal elements, we define new vectors q1 and q2
containing a minimal or maximal element of Qi in every dimension i, respectively. By re-indexing the
remaining vectors and considering the finite set φ(C × D) ∪ {q1, q2} we are done.
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Case 2: δ = 0. If u ∈ N 0
C, then the same argument as in the first case applies. Thus, assume

that u /∈ N 0
C. Then, since (u∗1, . . . , u

∗
d) ∈ ∇0

C, we still know that u is monotone but we no
longer have strict monotonicity with respect to the relations R1 and R2 of C (meaning
that properties i) and ii) from Definition 2 are still valid but without the iff condition).
Now, choose u+ ∈ N 0

C arbitrarily (this is always possible, since we assume 0-consistency).
If D(u+) < 0, then Eπ(u+ ◦ φ(Ci, ·)) < Eπ(u+ ◦ φ(Cj , ·)). This yields ¬(Ci %δ Cj). If
D(u+) ≥ 0, then we have

0 ≤ ξ :=
D(u+)

D(u+)−D(u)
< 1

and we can choose α ∈ (ξ, 1). One then easily verifies that uα := αu + (1 − α)u+ ∈ N 0
C

and that Eπ(uα ◦ φ(Ci, ·)) < Eπ(uα ◦ φ(Cj , ·)). This again yields that ¬(Ci %δ Cj), thereby
completing the proof.

4.2 A Statistical Test for δ-Dominance

Typically, the setting discussed in Section 4.1 will be heavily idealized as actually we are
in the situation described in Level 3 from Section 1: The true probability law π on the
set D as well as the set D itself will be unknown and inaccessible and, thus, the algorithm
for checking δ-dominance from Proposition 3 will not be directly applicable. Instead of
knowing the true components, we thus usually will have to work with an i.i.d. sample
D1, . . . , Ds ∼ π of data sets from D in such cases. Accordingly, for defining an empirical
version of the algorithm, i.e., an algorithm for checking δ-dominance in the observed sample,
we set D̂s := {D1, . . . , Ds} and then consider the empirical law given by

π̂(W) :=
1

s
· |{j : j ∈ {1, . . . , s} ∧ Dj ∈ W}| (9)

for all W ∈ 2D̂s . We then can simply run Proposition 3 with D replaced by D̂s and π
replaced by π̂. Of course, the result of this empirical version of Proposition 3 is then
subject to statistical uncertainty: even if the optimal value indicates δ-dominance within
the observed sample of data sets, this might not generalize to the true space D. Conversely,
it might also happen that there is δ-dominance in the true space D, while this dominance
cannot be detected in the observed sample.

In order to control the probability of an erroneous conclusion, an appropriate statistical
test should be carried out. A statistical test for the similar setup of classical stochastic
dominance between random variables with values in partially ordered sets is discussed in
Schollmeyer et al. (2017) and based on the two-sample observation-randomization test to be
found, e.g., in Pratt and Gibbons (2012, Chapter 6). We now demonstrate how a such test
can be transferred to our setting: As already emphasized, for the empirical version, classifier
Ci dominates classifier Cj if and only if the optimal value optij of the linear program (6)
is greater than or equal to zero. Therefore, it is natural to calculate optij in the observed
sample and reject the null hypothesis

H0 : Cj %δ Ci (10)
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if this value is larger than a critical value c. Since the distribution of the statistic optij under
the null hypothesis is difficult to handle, we use a permutation test that randomly swaps
the roles of the classifiers for every data point, i.e., for every data set in the sample. In this
way we can analyze the distribution of the test statistic under the most extreme hypothesis
in H0, i.e., the situation where the quality vectors of Ci and Cj are identically distributed.
Then one can reject the null hypothesis if the value of optij for the actually observed data
sets is larger than the (1−α)-quantile of the values obtained under the resampling scheme.

Importantly, note that we are actually interested in a statistical test that is only sensitive
for deviations from H0 in the direction of δ-dominance in the sense of Ci �δ Cj . Therefore
it would be desirable to take as the null hypothesis the negation of Ci �δ Cj . However,
under this null hypothesis, the analysis of the distribution of optij seems to be difficult.
Additionally, at least for R2 = ∅ and δ = 0, which corresponds to classical first-order
stochastic dominance, a consistent test seems to be unreachable,4 cf., Whang (2019, p.106)
and also Garcia-Gomez et al. (2019).

The concrete procedure for evaluating the distribution of optij has the following five steps:

Step 1: Use the sampled data sets to produce two separate samples (x1, . . . , xs) and
(y1, . . . , ys) from Q, one for each classifier under consideration. Thereby, we used the
notations xl := φ(Ci, Dl) and yl := φ(Cj , Dl) for all l = 1, . . . , s.

Step 2: Take the pooled sample z = (x1, . . . , xs, y1, . . . , ys).

Step 3: Take all index sets I ⊆ {1, . . . , 2s} of size s and compute the optimal out-
come optIij of the linear program (6) that would be obtained if Ci would have pro-
duced the quality vectors (zi)i∈I and if Cj would have produced the quality vectors
(zi)i∈{1,...,2s}\I .

Step 4: Sort all optIij in increasing order.

Step 5: Reject H0 if optij is greater than the d(1−α) ·
(
2s
s

)
e-th value of the increasingly

ordered values optIij , where α is the envisaged confidence level.

If
(
2s
s

)
is too large, instead of computing optIij for all index sets I, one can alternatively

compute optIij only for a large enough number N of randomly drawn index sets I.

Remark 4 Four important points should be added:

i) If the statistical test described in (10) is to be used to test the entire order structure
on the set C instead of just a single pairwise comparison, it must be performed for
n · (n − 1) pairs. Then, it must be corrected for multiple testing to guarantee the
specified global significance level.

ii) As already discussed at the end of Section 3.2, the parameter δ acts as a regularizer.
This becomes even clearer in the context of statistical testing: For δ = 0, the maximum
value of the linear program (6) is exactly zero in the dominance case and strictly less

4. A promising line of future research could be to reflect on whether the introduction of δ 6= 0 and/or
R2 6= ∅ indeed leads to a consistent test for the now ‘regularized’ null- and alternative hypotheses.
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than zero otherwise. Thus, in this case, it is impossible to compare the extent of
dominance for two different dominance situations using our test statistic. If, on the
other hand, we choose a value δ > 0 for the test, the maximum value of the linear
program (6) in the dominance case can also assume values strictly greater than zero.
In this way, different dominance situations can also be compared with each other in
this case: The further the maximum value is above zero, the greater the extent of
dominance. This potentially increases the power of the test, since situations can also
be distinguished in which dominance is present in the resample, but a greater degree
of dominance is present in the sample.

iii) As the parameter δ changes, of course, the hypotheses of the statistical test (10) also
change. Thus, strictly speaking, a different statistical test is performed for each δ.
However, it is important to note here that the extreme case of distributional equality
of the two competing classifiers for any δ belongs to the null hypothesis. Thus, the
test from (10) for arbitrary choices of δ is suitable for detecting systematic differences
in the distributions of the classifiers. Furthermore, it can be argued that a very small
value of δ > 0, changes the order little to nothing compared to %0 (and thus the
hypotheses of the associated statistical tests). However, it is shown (not least in the
simulation study from Section 5) that even such a very small value of δ > 0 can have
a clearly visible positive effect on the power of the associated test.

iv) In the special case of only one metrically scaled quality criterion (n = k = 1), the test
from (10) reduces to a permutation-based test on differences in expectation. In the
case of only one ordinally scaled quality criterion (n = 1, k = 0), the test reduces to a
test for (first-order) stochastic dominance (cf., Barrett and Donald (2003)).

4.3 Two Adoptions of Demšar’s Test to Multiple Quality Criteria

As alternative methods to GSD-δ, we now briefly review the rank-based test for compar-
ing competing classifiers as proposed in Demšar (2006) and suggest ways to extend it to
more than one quality criterion. In the original test, classifiers are ranked on each data set
based on their quality, typically estimated via cross-validation. Note that ranking is only
straightforward for one criterion, with no obvious way to extend it to multiple dimensions.

Ranks are then averaged over all data sets. The rationale is that data sets vary in difficulty
and therefore ranking is a way to bring the different data sets on the same scale and avoid
normality assumptions. The Friedman test can be applied to test for overall differences in
mean-ranks. If significant differences are detected, post-hoc tests, such as the Nemenyi test
can be used to determine which pairs of classifiers are significantly different. In the second
step, some form of correction for multiple testing is required to hold the overall α-level.

As the test by Demšar (2006) only accounts for differences between classifiers with respect
to one single quality criterion, it must first be adapted to the setting with multiple quality
criteria in order to allow a meaningful comparison with our approach. To reach a decision
for multiple quality criteria we propose the following two intuitive heuristics:

all-test : Classifier Ci is considered better than Cj if it performs significantly better on each
quality criterion.

one-test : Classifier Ci is considered better than classifier Cj if Ci performs significantly
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better in at least one dimension and if, additionally, in any other dimension classifier Cj
does not perform significantly better than classifier Ci.

It should be noted that when using the all-test or one-test heuristics the α-level of the
one-dimensional tests is no longer preserved. In the case of the one-test, the true type 1
error will exceed α and is therefore no longer a valid α-level test and instead becomes over-
sensitive (cf. Section 5 and Appendix A3 for an example of this effect on simulated data).
The all-test will often lead to a type 1 error much lower than α, as all dimensions need to
be significant and can be therefore considered as a very conservative α-level test. We do
not adjust the α level but note that the two approaches are perhaps the most intuitive ways
to combine tests on several quality criteria.

5. A Simulation Study

In this section, we perform a simulation study to compare the proposed statistical test for
δ-dominance from (10) for two different choices of δ with the adapted rank-based heuristics
(the all-test and the one-test) as discussed in Section 4.3. In addition, we compare how
well the relation %δ can reproduce the order structure in the ground-truth of the simula-
tion when evaluated only in the sample, and again contrast the rank-based sample orders
comparatively. Further, we shed some light on the role of δ for the performance of our test.

5.1 Design of the Simulation Study

Seven simulated classifiers C1, . . . , C7 with two-dimensional expected quality vectors θi ∈
[0, 1]2 are compared. Each of the two dimensions is interpreted as a separate synthetical
quality criterion, making the simulation independent of the choice of concrete performance
measures. Moreover, both quality criteria are assumed to be interpretable on a metric scale
in the sense of (non-trivially) contributing to the relation R2 from Equation (2). The struc-
ture among the classifiers C1, . . . , C7 in the ground-truth is then induced by the recursive
graph shown in Figure 1, where a separation parameter η controls the expected difference
in performance. A specific example of such a recursive graph is given in Figure 2.

The performances xij of classifier Ci on data set Dj , where j = 1, · · · , s, are i.i.d. drawn
from a normal distribution, i.e., xij ∼ N2(θi,Σε), where Σε = σεI and σε is a noise term,
which, together with η controls the difficulty in unravelling the underlying dominance struc-
ture. Note that the θi’s do not depend on the data set and therefore the difficulty is set
to be the same for each data set. Due to Proposition 2, the setting of varying difficulties
is also implicitly covered for many relevant situations: In particular, a random intercept
or a random scaling of the cardinal dimensions will not influence the notion of dominance,
making the simulation setup quite general (see also the discussion at the end of Section 3.3).

Within this ground-truth, independent of the choice of η > 0, there are ten pairs of clas-
sifiers between which there is component-wise expectation dominance. All other pairwise
comparisons are set to be non-dominated in either direction, meaning that each classifier is
preferable on one dimension. Note that under the assumption of independence and constant
variances, the component-wise expectation dominance in the ground-truth also implies that
there are ten pairs of classifiers which are in relation with respect to the orders underlying
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the test for δ-dominance, the all-test and the one-test, respectively. Note further that, since
the test proposed by Demšar (2006) only applies for a one-dimensional quality criterion, we
use the all-test and one-test heuristic described in Section 4.3 as our best effort to generalize
the test to multiple dimensions for a meaningful comparison.

θ1 =

(
1
1

)

θ2 = θ1 −
(
η
2η

)
θ3 = θ1 −

(
2η
η

)

θ4 = θ2 −
(

0.5η
0.5η

)
θ5 = θ2 −

(
0.25η
η

)
θ6 = θ3 −

(
η

0.25η

)
θ7 = θ3 −

(
0.5η
0.5η

)

Figure 1: Simulation setting specifying the dominance between the simulated classifiers.

θ1 =

(
1
1

)

θ2 =

(
0.9
0.8

)
θ3 =

(
0.8
0.9

)

θ4 =

(
0.85
0.75

)
θ5 =

(
0.875
0.7

)
θ6 =

(
0.7

0.875

)
θ7 =

(
0.75
0.85

)

Figure 2: Example for ∆ = 0.1. Each entry in θ is the expected value on the correspond-
ing quality dimension drawn from normal distribution with fixed variance and
normalized to [0, 1].

5.2 Results

In this simulation setup, we consider a total of twelve different simulation scenarios, namely
all combinations of η ∈ {0.01, 0.05, 0.1} (i.e. varying the separation parameter) and s ∈
{7, 10, 15, 18} (i.e. varying the number of sampled data sets). Within each simulation sce-
nario, we carry out a total of 25 simulation runs. In each of the simulation runs, the number
of resamples drawn for the corresponding resample test is chosen to increase with the num-
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ber d of sampled data sets. Concretely, we are interested in the following questions:

How well does the order structure found in the sample reproduce the ground-truth?

To answer this question, we proceed as follows: In each simulation run, we compute the
order structure of the three orders underlying the tests in the sample and compare it to
the true dominance structure in the ground-truth. Specifically, we compute δ-dominance
in the sample by the empirical variant of the linear program from Proposition 3 discussed
earlier. For receiving the (coinciding) orders underlying the all-test and the one-test, we
compute the average rank of each classifier along the data sets under each quality criterion,
and then define a classifier to dominate another one whenever its average rank is superior
in both quality dimensions. To measure the similarity of the orders in ground-truth and in
the sample, we use the F-score, i.e., a trade-off measure between non-detected dominances
(false negatives, FN ) and falsely detected dominances (false positives, FP).5

The results of the analyses carried out in the samples for the twelve simulation scenarios
are visualized in Figure 3. The results show a balanced picture with regard to the different
methods: All methods reproduce the order in the ground-truth about equally well. As ex-
pected, the F-score of the methods tends to improve with increasing separation parameter
η and increasing sample size d, with some random fluctuations which are especially visible
for the lowly separated simulation scenarios.

How well do the statistical significance tests reproduce the groundt-ruth?

To answer this question, under each simulation run in each scenario, we perform four differ-
ent statistical tests: the δ-dominance test for δ = 0, the δ dominance test for δ = 10−5, the
all-test, and the one-test.6 It is important to note that the one-test was included only for
the sake of completeness: As already described in Section 4.3, this test in general will not
adhere to (and often drastically exceed) the specified α-level. Thus, the comparison with
significance tests at this level is of course extremely problematic.

To measure the similarity of the order in the ground truth and the order given by the
significant edges, we again use the F-score. The used global confidence level is α = 0.05.
The method used for correcting for multiple testing is the (very conservative) Bonferroni-
correction for all four tests. The results of the analyses carried out at the test level for the
twelve simulation scenarios are visualized in Figure 4.

Some remarkable observations: Under each simulation scenario, both tests for δ-dominance
reveal the order structure at a global significance level of α = 0.05 at least as well as the
all-test heuristic. This dominance becomes increasingly clear as the separation parameter δ
and the number d of simulated data sets increase. As expected, the F-score of all methods
tends to improve with increasing separation parameter η and increasing sample size d. In-
terestingly, both tests for δ-dominance outperform also the one-test heuristic for separation
parameters η ≥ 0.05 and at least 15 data sets, although this heuristic exceeds the given

5. The F-Score is defined as F = 2·TP
2·TP+FP+FN

, with TP the number of correctly detected dominances. An
analysis under other measures (such as the Jaccard index) essentially yields the same results.

6. The idea behind choosing an extremely small value such as 10−5 for δ in the second test, is to change
the hypotheses of the test as little as possible compared to the test for δ = 0, but still benefit from the
gain in power that a strictly positive δ brings (cf. Remark 4 for further details).
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first-type error probability of 0.05 (cf. A3).7

Furthermore, the comparison of the two tests for δ-dominance for δ = 0 and δ > 0 confirms
the gain in power for the latter case already theoretically indicated in Remark 4 iii): The
F-Score of the dominance test for δ > 0 exceeds the one of the dominance test for δ = 0 for
every simulation scenario. Especially remarkable is the fact that this effect already occurs
for a very small value of δ = 10−5. Since for such a small δ the order %δ is presumably
changed only very marginally compared to %0, this suggests once more that the parameter
δ, in addition to its decision-theoretic interpretation, also has a pure regularization compo-
nent and helps to make the hypotheses more separable.

Summary of the results: We have shown that the proposed statistical test for δ-dominance
reveals the ordering structure in the ground-truth more adequately than the all-test heuristic
in each of the considered simulation scenarios. Further, we demonstrated that in the sce-
narios with at least medium separation (η ≥ 0.05) and enough data sets available (d ≥ 15),
the tests for δ-dominance also outperform the one-test heuristic, even if this heuristic does
not guarantee the global α-level. Finally, it turned out that the test for δ-dominance with
δ > 0 reproduces the order structure in all simulation scenarios at least as well as the test
with δ = 0, even for very small choices of the parameter δ.

6. Experiments with UCI Data Sets

We now showcase on standard benchmark data sets how the relation %δ and the resulting
GSD-δ method can be used to rank classifiers based on their performance on multiple data
sets with respect to multiple quality criteria. In addition, we use the statistical test proposed
in Section 4.2 to investigate which of the orderable pairs of classifiers found in the sample
may also be assumed to be statistically significant. As in Section 5, we again compare our
results with those obtained under the adapted rank-based tests from Section 4.3. Finally,
we examine how our results change when the analyses are based on classical stochastic
dominance instead of the generalized stochastic dominance order %δ.

6.1 Experimental Setup

For comparison, we use 16 binary classification benchmark data sets. All data sets are
taken from the UCI machine learning repository (Dua and Graff, 2017). The data sets
strongly vary in size, dimensionality and class imbalance. For the classifier comparison, we
consider the three well-established criteria accuracy, area under the curve and Brier score.
On each data set, 10-fold cross-validation is performed, and results are averaged for each
criterion and classifier separately. Importantly, note that in the following analyses all three
of these quality criteria are considered to be of metric scale and, accordingly, all equally
contribute to the construction of the relation R2 as most generally defined in Equation (2).8

We compare two groups of algorithms:

7. We note that much better trade-offs (reflected in F-score) can be found for GSD and GSD-δ if we do not
enforce an overall but instead individual α-level of 0.05 (cf. A3 for the evaluation without Bonferroni
correction, where we can see that GSD uniformly outperforms the one-test). Presumably, this could also
be achieved using a more efficient multiple-testing correction strategy.

8. An exception is of course given by Section 6.3, where a comparison with classical stochastic dominance
is considered, and, thus, all three quality criteria are considered to be purely ordinal for this case.
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Figure 3: The figure shows the empirical distribution of the F-scores (larger is better) in
the samples (without statistical test) of the different methods along the 25 simu-
lation runs separately for the twelve different scenarios. The F-score is computed
by counting the number of TPs, FPs, and FNs in the respective sample order
compared with ground-truth and then evaluating the formula from Footnote 5.

• For decision tree based classifiers we included classification and regression trees (CART)
(Breiman et al., 1983), random forests (RF) (Breiman, 2001), gradient boosted trees
(GBM) (Friedman, 2002) and boosted decision stumps (BDS) (trees with depth 2).

• As examples of more traditional models we included generalized linear models (GLM),
lasso regression (LASSO) (Tibshirani, 1996), elastic net (EN) (Zou and Hastie, 2005)
and ridge regression (RIDGE), implemented in the glmnet R-package.

Generally, we expected the ensemble methods RF and GBM to dominate other methods,
especially CART, whereas the ordering of the remaining methods is expected to be less
clear. More details on data set selection, quality criteria and algorithm implementation can
be found in Appendix A2.
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Figure 4: The figure shows the empirical distribution of the F-scores (larger is better) of
the significant orders of the different methods along the 25 runs separately for
the twelve scenarios. The F-score is computed by counting the number of TPs,
FPs and FNs in the respective significant order compared with ground-truth. To
account for multiple testing, the Bonferroni-correction is used in all cases.

6.2 Results

In the sample of data sets just described, evaluated and visualized in the three Hasse
diagrams9 in Figure 5, the following picture emerges: even though some of the classifiers
remain incomparable even for a maximum threshold of δmax = 0.0077, concretely BDS and
RF as well as EN and LASSO, a clear best classifier for this sample can be identified already
for a minimum threshold of δmin = 0, namely GBM. In this case also two clear second-best,
but incomparable to each other, classifiers can be seen, namely RF and BDS.

While an analysis under δmin leaves the classifier pairs

9. Hasse diagrams are graph representations of partial orders: Whenever two nodes can be connected by a
path leading top down in the graph, then the upper node dominates the lower node with respect to the
considered partial order. Nodes that cannot be connected by such a top-down path are incomparable.
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(GLM,RIDGE), (GLM, EN), (GLM, LASSO), (RIDGE, LASSO), (RIDGE, EN)

incomparable to each other, raising the threshold to an intermediate level of δ = 0.004
makes RIDGE dominant to both EN and LASSO. Raising the threshold even more to δmax,
the GLM classifier becomes dominant over EN, LASSO and RIDGE. Note that the order un-
der threshold δmax is the most structured relation we can hope for in this concrete sample:
There exists no δ for which the relation %δ is a linear (or a preference) order. In particular,
the classifiers BDS and RF as well as EN and LASSO remain incomparable in this sample
no matter what threshold value is chosen.

delta = 0

BDS

CART

EN

GBM

GLMLASSO

RF

RIDGE

delta=0.004

BDS

CART

EN

GBM

GLM

LASSO

RF

RIDGE

delta=0.0077

BDS

CART

EN

GBM

GLM

LASSO

RF

RIDGE

Raising the threshold to 0.004
makes RIDGE dominate both
EN and LASSO.

Raising the threshold to 0.0077
makes GLM dominate RIDGE,
EN and LASSO.

Figure 5: Hasse diagrams of %δ in the sample for the threshold values δmin = 0 (top),
δ = 0.004 (middle) and δmax = 0.0077 (bottom).

Next, similar to what we did in the simulation study in Section 5, we perform the following
three statistical tests for all pairwise comparisons: the test for δ-dominance from Equa-
tion (10) for δmin and δ = 10−5, as well as the all-test as described in Section 4.3. The
one-test is omitted since this test will in general drastically exceed the envisaged confidence
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level α, which was illustrated in the simulation study in Section 5. Also note that the
choice of a threshold value of 10−5 can be exactly motivated as done in Section 5: Such a
small value will ensure to change the hypotheses of the test as little as possible compared
to the test for δmin, but still benefit from the gain in power that a strictly positive δ brings
(compare in particular Footnote 6 and Remark 4). The results are as follows:

Dominance tests for δmin: Here we find only one of the pairwise tests to be significant on a
confidence level of α = 0.05 (interpreted as a single test), namely the test of GBM over BDS
(even enlarging the number of resamples from N = 1000 to N = 10000 does not change the
situation). For all other pairwise comparison, no significant distributional difference can be
identified for any confidence level smaller or equal to 0.05. Note that under any correction
procedure for multiple testing, no significant ordering structure among the classifiers can
be found using this test.

all-test : This test finds three pairwise comparisons of classifiers to be significant on a con-
fidence level of α = 0.05: BDS over CART, GBM over CART and RF over CART. Again, for
all other pairwise comparisons, no significant distributional difference can be identified on
this level. Interestingly, the pairs of identified significant pairwise comparisons of classifiers
are disjoint for this test and the resampling test for δmin. Note that these three pairwise
comparisons of classifiers still remain significant at a global α-level of 0.05 under any cor-
rection procedure for multiple testing (concretely, Bonferroni-correction was used here).

Dominance tests for δ = 10−5: The results for the resample tests for all pairwise compar-
isons of classifiers are given in Table 3. Concretely, for every pair (Ci, Cj) of classifiers, the
table gives the share of resamples with test statistic strictly smaller than the test statistic in
the original data, i.e., the value 1

N

∑
I∈IN 1{optIij<optij}

, with IN the set of resampled index

sets. A line symbolizes that this share was strictly below 0.95.

The table shows directly that – interpreted as one global test on the whole ordering struc-
ture on the considered set C with global level α = 0.05 – a whole series of significant pairwise
comparisons emerge: First, all classifiers dominate the CART method significantly. Next,
the GBM method dominates significantly all methods except GLM and RF. Furthermore,
it can be seen that – now interpreted as single tests at individual level α = 0.05 – BDS
dominates the methods LASSO and RIDGE, as well as RF dominates the method EN. Here
it is important to note that the latter three pairwise comparisons are no longer significant
when corrected with any procedure for multiple testing.

Interpretation of the results: Table 3 shows that GBM, RF and GLM are not significantly
different from each other and are also not significantly dominated by any other method. All
other methods are, depending on the choice of α-level and correction method, dominated
by some other model. CART is dominated by all other methods, including the linear model-
based methods, indicating that for most data sets linear models work quite well, without
strong non-linearities or interaction effects. On the other hand, single CART models may
overfit which is a well-known issue of decision trees.

It is also interesting to note that the regularized regression models do not perform signifi-
cantly better than GLM. The reason might be that the regularization parameter is chosen
via cross-validation, which might become unstable for smaller data sets. Also, some data
sets might not include irrelevant predictors, making plain GLM a better choice. This could
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also be the reason why GLM is not dominated by GBM, as the hyper-parameters in GBM
are not chosen via cross-validation and therefore might be suboptimal. GBM as the more
flexible model outperforms BDS for all reasonable significance levels, whereas GBM and RF
are considered incomparable, which is in line with our expectations.

Generally speaking, using the proposed resample test for δ-dominance may lead to con-
servative results, however, still finds more structure than the all-test heuristic, which is
the only competitor we could extract from the literature. Recall again that the one-test
heuristic is omitted here, as it does not hold the α level as discussed in Section 4.3 and,
therefore, cannot be meaningfully compared to statistical tests meeting this level. As the
results found by GSD are very trustworthy, as shown in the simulation study, we are able
to make more definite statements about the performance, such as that GBM outperforms
LASSO and most often EN and RIDGE regression.

Finally, it should be mentioned that the advantages of a small value of δ > 0 are also clearly
shown in the concrete application: The test with δ = 10−5 finds remarkably more structure
compared to the test with δmin, although due to the very small value of δ the hypotheses
of the underlying tests do hardly change.10

BDS CART EN GBM GLM LASSO RF RIDGE

BDS − 1.000 0.976 − − 0.967 − 0.951
CART − − − − − − − −

EN − 0.998 − − − − − −
GBM 0.998 1.000 0.998 − − 0.999 − 0.997
GLM − 1.000 − − − − − −

LASSO − 0.997 − − − − − −
RF − 1.000 0.953 − − − − −

RIDGE − 0.999 − − − − − −

Table 3: Results of the resample tests with δ = 10−5 and N = 1000 for all binary compar-
isons: For every pair (Ci, Cj) of classifiers, the table gives the share of resamples
with test statistic strictly smaller than the test statistic in the original data. A
line symbolizes that this share was strictly below 0.95.

6.3 Comparison with First-Order Stochastic Dominance

To complete our study, we briefly compare the analysis results from Section 6.2 with the
results that would be obtained under an analysis under (first-order) stochastic dominance.
As discussed in Remark 1 in Section 3, (first-order) stochastic dominance arises as that
special case of our dominance relation %δ where the relation R2 from the preference system
C defined in Equation (3) is the trivial preorder, and the threshold parameter δ is chosen
to be 0. Importantly, note that R2 being the trivial preorder corresponds to the situation
in which all the quality measures used are interpreted on a purely ordinal scale.

10. As an indicator of how small this change of the underlying order actually is, one can name the fact that,
restricted to the observed sample, the orders %0 and %0.00001 do actually coincide.
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The detailed analysis results of the considered sample of data sets under classical stochastic
dominance can be found in Appendix A1. In summary, we observe that an analysis under
our dominance relation %δ (with non-trivial R2 and maybe even δ > 0) allows for a much
more structured comparison of the competing classifiers than is the case with an analysis
under classical stochastic dominance. This is due to the fact that our dominance relation
also allows us to fully exploit the information of the metrically interpretable quality criteria
(here, all three). In contrast, stochastic dominance considers all dimensions of the quality
vectors as purely ordinal. Thus, the application example suggests that ignoring available
(partial) metric information may indeed lead to ignoring relevant information about the
underlying ordering structure.

7. Summary and Concluding Remarks

In this paper, we have developed a general framework for comparing classifiers with re-
spect to different quality criteria on different data sets simultaneously. The basic idea of
this comparison is based on a generalized version of classical multidimensional stochastic
dominance, which also allows to include adequately the metric information of the quality
measures used and can be regularized while attenuating the influence of the quality mea-
sures to the same extent. We have demonstrated how this dominance relation between
classifiers can be detected by linear programming. Further, we showed how the optimal
value of the linear program applied to a sample of data sets can be used as a statistic for
statistically testing whether there is dominance between two competing classifiers. As the
distribution of our test statistic is difficult to analyze, this test was performed by means
of a permutation-based adapted two-sample observation-randomization test. Finally, we
have illustrated the benefits of the proposed dominance concept over existing methods in
a simulation study and applied it to real-world data sets comparing eight classifiers with
respect to three quality criteria. There are several promising directions for future research:

Incorporating classification difficulty: At this stage, the construction of our ordering %δ

does not incorporate differences in the difficulty of classifying different data sets. However,
as the heterogeneity of the considered space of data sets D increases, a co-consideration
of these differences becomes more and more relevant. In principle, we believe that there
would be two different ways to account for this: First, the quality vectors of the classifiers
can be transformed before the dominance analysis with a loss function that depends on
the data set. In this way, the challenges in comparing the difficulties would be outsourced
to a pre-processing step. Of course, however, finding suitable loss functions is a research
topic of its own. A second possibility is to incorporate the classification difficulty directly
into the modeling of the underlying preference system. For this purpose, the framework
of state-dependent preference systems recently developed in Jansen and Augustin (2022)
would presumably be directly transferable.

Reducing computational complexity for special cases: In its current form, the number of con-
straints of the linear program for checking %δ-dominance given in Proposition 3 increases
with a complexity of at worst O(d4), where d denotes the number of possible quality vectors
(or the number of attained quality vectors in the observed sample, respectively). It certainly
deserves further research on how this worst-case complexity can be reduced if additional
constraints on the considered preference system’s metric relation R2 are imposed.
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Extension to multi-criteria decision making: The concepts presented here need by no means
be limited to the comparison of classifiers. Thinking a bit more abstractly, any algorithms
could be statistically compared with respect to different performance measures simultane-
ously in exactly the same way, including regression and even unsupervised learning settings,
as long as meaningful quality criteria can be formulated. In principle, our framework could
also be applied to general multi-criteria decision problems under uncertainty. An interesting
aspect is that also multi-criteria decision problems can be analyzed with respect to purely
ordinal as well as metrically scaled decision rules simultaneously.
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Appendix A.

A.1 Comparison with First-Order Stochastic Dominance

If we analyze the same situation as described in Section 6.1, however, this time by means of
(first-order) stochastic dominance, we receive the results which are visualized in Figure 6.
The first major difference from the analysis based on our dominance relation is the ordering
under a threshold of δ = 0: While a relatively structured picture emerged for the analysis
under our dominance relation %0 already in this case (compare the top picture in Figure 5),
the analysis based on (first-order) stochastic dominance yields only two pairs of comparable
classifiers, viz BDS over CART as well as GBM over CART. Based on stochastic dominance,
no clear best and worst classifiers can be identified within this concrete sample.

Considering the remaining five analyses under successively increasing threshold δ, two as-
pects, in particular, should be emphasized. First, as expected, the higher the threshold
value, the more comparable the classifiers. In comparison to the analysis based on our
dominance relation %δ under increasing δ, however, it is noticeable that even with thresh-
old values that are higher by a factor of about ten, there still arise more weakly structured
situations. Second, it is striking that even when analyzed with a relatively high threshold
of δ = 0.06, no clear best classifier can be identified: The methods RF and GBM remain
incomparable here. Note that the order under threshold δ = 0.06 is the best we can get:
There exists no δ for which %δ possesses a superset of comparable pairs of classifiers.

A.2 Data Set Selection and Implementation in Section 6.1

Data Set Selection. The data sets used for the experiments in Section 6.1 are taken from
the UCI machine learning repository (Dua and Graff, 2017). The selection criteria are:
We only consider binary classification, but note that the method can be extended to any
learning task where performance criteria of at least ordinal scale exist. We chose data sets
with mostly numerical features or features with low cardinality. Only data sets with a low
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Figure 6: Hasse diagrams of %δ for six different threshold values δ with all quality criteria
treated purely ordinal. The relation %0 coincides with stochastic dominance.

number of missing values are considered. Generally, we selected data sets, such that the
need for pre-processing is minimal.

Algorithm Settings. We briefly describe the implementation of the compared methods:
Ridge, Elastic Net and Lasso Regression are fit using the R-package (R Core Team, 2021)
glmnet (Friedman et al., 2010). The optimal λ is determined via cross-validation. The
mixing parameter in Elastic Net is set to 0.5. GBM and Gradient boosted decision stumps
are fit using the gbm R-package (Greenwell et al., 2020). Gradient boosting uses 300 trees
with a learning rate of 0.02 and a maximum depth of 3. The stumps use 500 trees and a
learning rate of 0.05. Random Forest is fit using the randomForest R-package (Liaw and
Wiener, 2002) with default settings. For CART we use the rpart R-package (Therneau
and Atkinson, 2019) with default settings. Note that the results for all algorithms could
likely be improved with parameter tuning, however, we used reasonable default values for the
comparison. Our aim is solely to showcase our method, not to make any definite statements
about the general performance of popular machine learning methods.
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A.3 More Detailed Results

Figure 7: The figure shows the empirical distribution of the number of false positives.

Figure 8: The figure shows the empirical distribution of the number of false negatives.

Empirical Results. Tables 4, 5, and 6 show the raw performance values over the 16 analyzed
data sets that the classifier comparison is based on. Figures 7, 8, and 9 show the empirical
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Figure 9: F-score for the different tests, without Bonferroni correction. A much better
trade-off is achieved for GSD and GSD-δ.

distributions of the number of false positives, the number of false negatives, and the F-scores
for the different tests without correction for multiple testing.

data set Boosted Stumps CART ElasticNet GBM glm Lasso rf Ridge

australian 0.937 0.901 0.930 0.943 0.929 0.929 0.937 0.931
banknote 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000

biodeg 0.926 0.847 0.917 0.926 0.922 0.917 0.937 0.916
blood transfusion 0.738 0.722 0.751 0.736 0.752 0.752 0.670 0.751

diabetes 0.830 0.763 0.833 0.838 0.831 0.833 0.826 0.832
haberman 0.657 0.556 0.717 0.697 0.713 0.728 0.673 0.720

heart 0.906 0.823 0.904 0.902 0.912 0.906 0.904 0.910
ILPD 0.728 0.674 0.714 0.732 0.738 0.717 0.754 0.719

Ionosphere 0.972 0.915 0.910 0.973 0.866 0.904 0.980 0.913
liver 0.649 0.587 0.671 0.650 0.668 0.662 0.606 0.672

parkinsons 0.942 0.830 0.873 0.957 0.866 0.867 0.951 0.853
pop failures 0.910 0.817 0.943 0.937 0.952 0.941 0.923 0.942

sonar 0.904 0.784 0.831 0.927 0.755 0.838 0.946 0.855
spambase 0.981 0.892 0.952 0.981 0.971 0.952 0.986 0.952

wbdc 0.993 0.960 0.994 0.992 0.962 0.994 0.991 0.993
wilt 0.990 0.956 0.970 0.989 0.977 0.970 0.989 0.963

Table 4: AUC for the different methods on the 16 data sets.
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data set Boosted Stumps CART ElasticNet GBM glm Lasso rf Ridge

australian 0.865 0.845 0.859 0.864 0.859 0.859 0.867 0.859
banknote 0.995 0.965 0.975 0.989 0.987 0.975 0.993 0.977

biodeg 0.870 0.824 0.861 0.866 0.865 0.860 0.871 0.856
blood transfusion 0.788 0.784 0.771 0.789 0.770 0.771 0.761 0.773

diabetes 0.751 0.734 0.769 0.763 0.773 0.771 0.768 0.772
haberman 0.735 0.719 0.735 0.729 0.742 0.735 0.725 0.732

heart 0.805 0.786 0.832 0.812 0.842 0.839 0.815 0.848
ILPD 0.700 0.671 0.710 0.712 0.724 0.708 0.705 0.712

Ionosphere 0.926 0.875 0.869 0.937 0.878 0.872 0.937 0.877
liver 0.583 0.569 0.629 0.606 0.615 0.626 0.554 0.629

parkinsons 0.902 0.841 0.876 0.922 0.860 0.876 0.907 0.861
pop failures 0.926 0.928 0.915 0.943 0.957 0.915 0.924 0.915

sonar 0.818 0.755 0.756 0.842 0.736 0.737 0.842 0.794
spambase 0.944 0.893 0.884 0.939 0.927 0.884 0.954 0.884

wbdc 0.963 0.944 0.961 0.961 0.960 0.961 0.963 0.956
wilt 0.976 0.977 0.943 0.980 0.969 0.943 0.982 0.945

Table 5: Accuracy on the 16 data sets.

data set Boosted Stumps CART ElasticNet GBM glm Lasso rf Ridge

australian 0.095 0.119 0.106 0.091 0.101 0.106 0.096 0.106
banknote 0.011 0.032 0.034 0.011 0.009 0.034 0.006 0.041

biodeg 0.099 0.141 0.123 0.100 0.101 0.123 0.093 0.126
blood transfusion 0.156 0.157 0.159 0.156 0.155 0.159 0.183 0.159

diabetes 0.163 0.195 0.163 0.158 0.158 0.163 0.161 0.163
haberman 0.191 0.203 0.184 0.187 0.183 0.183 0.194 0.184

heart 0.134 0.168 0.132 0.133 0.128 0.132 0.131 0.130
ILPD 0.182 0.224 0.187 0.179 0.176 0.187 0.172 0.187

Ionosphere 0.058 0.099 0.114 0.051 0.105 0.117 0.050 0.111
liver 0.248 0.278 0.234 0.242 0.228 0.235 0.253 0.233

parkinsons 0.070 0.126 0.112 0.061 0.111 0.114 0.072 0.117
pop failures 0.052 0.058 0.061 0.043 0.033 0.061 0.055 0.061

sonar 0.120 0.204 0.181 0.110 0.264 0.176 0.124 0.169
spambase 0.046 0.094 0.112 0.048 0.059 0.112 0.039 0.111

wbdc 0.025 0.050 0.059 0.028 0.040 0.059 0.030 0.062
wilt 0.017 0.019 0.044 0.015 0.024 0.044 0.013 0.044

Table 6: Brier Score on the 16 data sets.
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B. Rüger, and H. Strecker, editors, Grundlagen der Statistik und ihre Anwendungen:
Festschrift für Kurt Weichselberger, pages 149–155. Physica-Verlag, 1995.

K. Mosler and M. Scarsini. Some theory of stochastic dominance. In K. Mosler and
M. Scarsini, editors, Stochastic Orders and Decision under Risk, pages 203–212. Insti-
tute of Mathematical Statistics, Hayward, CA, 1991.

C. Müssel, L. Lausser, M. Maucher, and H. Kestler. Multi-objective parameter selection
for classifiers. Journal of Statistical Software, 46:1–27, 2012.

J. Pratt and J. Gibbons. Concepts of Nonparametric Theory. Springer, 2012.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

T. Range and L. Østerdal. First-order dominance: stronger characterization and a bivariate
checking algorithm. Mathematical Programming, 173:193––219, 2019.

G. Santafe, I. Inza, and J. A. Lozano. Dealing with the evaluation of supervised classification
algorithms. Artificial Intelligence Review, 44:467–508, 2015.

G. Schollmeyer, C. Jansen, and T. Augustin. Detecting stochastic dominance for poset-
valued random variables as an example of linear programming on closure systems, 2017.
URL https://epub.ub.uni-muenchen.de/40416/13/TR_209.pdf. Technical Report
209, Department of Statistics, LMU Munich.

J. P. Simmons, L. D. Nelson, and U. Simonsohn. False-positive psychology: undisclosed
flexibility in data collection and analysis allows presenting anything as significant. Psy-
chological Science, 22(11):1359–1366, 2016.

T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2019.
URL https://CRAN.R-project.org/package=rpart. R package version 4.1-15.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

G. Webb. Multiboosting: A technique for combining boosting and wagging. Machine
Learning, 40:159–196, 2000.

Y.-J. Whang. Econometric Analysis of Stochastic Dominance: Concepts, Methods, Tools,
and Applications. Cambridge University Press, 2019.

36

https://www.R-project.org/
https://epub.ub.uni-muenchen.de/40416/13/TR_209.pdf
https://CRAN.R-project.org/package=rpart


Comparing classifiers by generalized stochastic dominance

B. Yu and K. Kumbier. Veridical data science. Proceedings of the National Academy of
Science, 117(8):3920–3929, 2020.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Methodological), 67(2):301–320, 2005.

37


	Introduction
	Specification and Formalization of the Problem
	Relevance of Classifier Comparison and Related Work
	Properties of our Approach and Overview

	Preliminiaries
	Comparing Classifiers by Generalized Stochastic Dominance
	Generalized Stochastic Dominance
	Utilizing Generalized Stochastic Dominance for Comparing Classifiers
	Some Useful Properties of the -Dominance Relation
	The GSD- Method

	Testing for Dominance
	A Linear Program for Checking -Dominance
	A Statistical Test for -Dominance
	Two Adoptions of Demšar's Test to Multiple Quality Criteria

	A Simulation Study
	Design of the Simulation Study
	Results

	Experiments with UCI Data Sets
	Experimental Setup
	Results
	Comparison with First-Order Stochastic Dominance

	Summary and Concluding Remarks
	
	Comparison with First-Order Stochastic Dominance
	Data Set Selection and Implementation in Section 6.1
	More Detailed Results


