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Abstract

This paper studies convergence of empirical risks in reproducing kernel Hilbert spaces
(RKHS). A conventional assumption in the existing research is that empirical training data
are generated by the unknown true probability distribution but this may not be satisfied
in some practical circumstances. Consequently the existing convergence results may not
provide a guarantee as to whether the empirical risks are reliable or not when the data are
potentially corrupted (generated by a distribution perturbed from the true). In this paper,
we fill out the gap from robust statistics perspective (Krätschmer, Schied and Zähle (2012);
Krätschmer, Schied and Zähle (2014); Guo and Xu (2020)). First, we derive moderate
sufficient conditions under which the expected risk changes stably (continuously) against
small perturbation of the probability distributions of the underlying random variables and
demonstrate how the cost function and kernel affect the stability. Second, we examine
the difference between laws of the statistical estimators of the expected optimal loss based
on pure data and contaminated data using Prokhorov metric and Kantorovich metric,
and derive some asymptotic qualitative and non-asymptotic quantitative statistical robust-
ness results. Third, we identify appropriate metrics under which the statistical estimators
are uniformly asymptotically consistent. These results provide theoretical grounding for
analysing asymptotic convergence and examining reliability of the statistical estimators in
a number of regression models.

Keywords: Empirical risks, stability analysis, asymptotic qualitative statistical robust-
ness, non-asymptotic quantitative statistical robustness, uniform consistency

1. Introduction

A key element of supervised learning is to find a function which optimally fits to a training
set of input-output data and validate its performance with test data. Classical regression
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models and classification models are typical examples. However, with rapid development of
social and economic activities and computer technology, data size increases at an exponential
rate. This in turn requires much more powerful optimization models to understand the
behavior of complex systems with uncertainties on high dimensional parameter spaces and
efficient computational algorithms to solve them. Empirical risk minimization (ERM) is
one of them. The essence of ERM models is to use various approximation methods such
as sample average approximation (SAA) and stochastic approximation to approximate the
expected value of a random function with sampled data. Regularization is often needed since
these problems are usually ill-conditioned. Convergence analysis of SAA is well documented
in the literature of stochastic optimization, see, for instance, Rusczynśki and Shapiro (2003)
and references therein.

In the context of machine learning, the focus is not only on the convergence of statistical
estimators to their true counterparts as sample size increases, but also on scalability of the
learning algorithms because the size of machine learning problems are often very large
under some circumstances (Shalev-Shwartz et al., 2010). For instance, Norkin and Keyzer
(2009) consider a general nonparametric regression in RKHS and derive nonasymptotic
bounds on the minimization error, exponential bounds on the tail distribution of errors,
and sufficient conditions for uniform convergence of kernel estimators to the true (normal)
solution with probability one. In the regularized empirical least squares risk minimization,
the convergence of estimators can be referred to Cucker and Smale (2002a); Cucker and Zhou
(2007); Poggio and Smale (2003); Smale and Yao (2006). Caponnetto and De Vito (2007)
develop a theoretical analysis of the performance of the regularized least-square algorithm
in the regression setting when the output space is a general Hilbert space. They use the
concept of effective dimension to choose the regularization parameter as a function of the
number of samples and derive optimal convergence rates over a suitable class of priors of
distribution probabilities encoding our knowledge on the relation between input and output
data. More recently, Davis and Drusvyatskiy (2018) consider a stochastic optimization
problem of minimizing population risk, where the loss defining the risk is assumed to be
weakly convex. They establish dimension-dependent rates on subgradient estimation in full
generality and dimension-independent rates when the loss is a generalized linear model. We
refer readers to monograph (Cucker and Zhou, 2007) for the machine learning models in
infinite dimensional spaces for a comprehensive overview.

The problem of characterizing learnability is the most basic question of statistical learn-
ing theory. For the case of supervised classification and regression, the learnability is equiv-
alent to uniform convergence of the empirical risk to the expected risk (Alon et al., 1997;
Blumer et al., 1989). For the general learning setting, Shalev-Shwartz et al. (2010) and
Shalev-Shwartz and Ben-David (2014) establish that the stability is the key necessary and
sufficient condition for learnability. The existing literature on stability in learning uses many
different stability measures. Much of them consider the effect on the optimal value when
there exist small changes to the sample such as replacing, adding or removing one instant
from the sample, see the review paper (Shalev-Shwartz et al., 2010) for more detail. A
conventional assumption in the above stability is that all of the instants used in the sample
are independent and identically distributed (i.i.d.) and are drawn from the true proba-
bility distribution, indeed, many classical procedures of machine learning such as LASSO
heavily rely on the i.i.d. data with sub-Gaussian behaviour (Tibshirani, 1996). However,
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this may not be satisfied in some practical circumstances. As noted in Balasubramanian
and Yuan (2016), data from real-world experiments oftentimes tend to be corrupted with
outliers and/or exhibiting heavy tails. In finance, heavy-tailed processes are routinely used,
and in biology or medical experiments, datasets are regularly subject to some corruption
by outliers, see Lecué and Lerasle (2020). Consequently the existing convergence results
do not provide a guarantee as to whether empirical risks and kernel learning estimators
obtained from solving the ERM models are reliable when the empirical data contain some
noise. This issue is investigated by Steinwart and Christmann (2008) from robust statistics
point of view, that is, how data perturbation may affect the learning models, see Chapter
10 of the book. Robust statistics stems from Tukey (1960, 1962) and Hampel (1968, 1971)
and has been popularized by many others particularly the monographs by Huber (1981);
Huber and Ronchetti (2009). A well known approach in robust statistics is to examine
how the distribution of a statistical estimator is affected by the distribution of the under-
lying random variables generating the data under the Prokhorov metric, see Cont, Deguest
and Scandolo (2010); Krätschmer, Schied and Zähle (2012); Krätschmer, Schied and Zähle
(2014); Krätschmer, Schied and Zähle (2017). Another approach is to quantify the sensi-

tivity of a statistical estimator with respect to (w.r.t.) perturbation of a single data point
known as an outlier using a so-called influence function. Steinwart and Christmann (2008)
discuss in detail how the second approach can be effectively used to analyse impact of data
perturbation on learning models, see Chapter 10 of the book.

In a more recent development, Lecué and Lerasle (2020) propose a new robust ma-
chine learning approach where the estimators for robust machine learning are based on the
median-of-means (MOM) of the estimators of the mean of real valued random variables
and demonstrate that these estimators achieve optimal rates of convergence under minimal
assumptions on the dataset. Moreover, by studying the breakdown number of outliers that
a dataset can contain without deteriorating the estimation properties of a given estimator,
they demonstrate that the breakdown number of the estimator is of the order of number
of observations times the rate of convergence, and beyond the breakdown point, the rate of
convergence achieved by the estimator is the number of outliers divided by the number of
observations.

In this paper, we complement the existing research of statistical robustness in machine
learning from a different perspective: instead of focusing on the impact of outliers in a
dataset, we consider generic data perturbation and its impact on the empirical risks. The
rational behind this consideration is that in data driven problems, we might only know the
data are polluted but lack of specific information to identify a borderline between good
data and bad data. In that case we have to treat all of the data are potentially bad and
investigate the extent of data perturbation by which the resulting statistical estimators
remain stable. This requires us to take a topological approach to analyse the data structure
and we do so by taking the cutting edge results on qualitative statistical robustness by
Krätschmer, Schied and Zähle (2012); Krätschmer, Schied and Zähle (2014). The research
is carried in three main steps.

First, we carry out stability analysis on the optimal expected risk of a generic expected
loss minimization problem w.r.t. perturbation of the probability distribution of the under-
lying random data. This kind of analysis is well known in stochastic programming (see
Römisch (2003) and references therein) but not known in machine learning as far as we
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are concerned. The main challenge in the latter is that the decision variable is often a
functional (a function of the underlying random data). In the case when the support of the
random data is unbounded, the tail of the probability distribution of the random variables,
the tail of the kernel and the tail of the cost function interact and have a joint effect on
the stability of the optimal expected risk. We derive moderate sufficient conditions under
which the expected risk changes stably (continuously) against small perturbation of the
probability distribution and demonstrate how the cost function, the kernel and the random
data interactively affect the stability.

Second, we investigate the quality of empirical risk by examining the difference between
laws of the statistical estimators of the expected risk based on pure data and contaminated
data using metrics on probability measures (distributions). This kind of approach stems
from statistics (Hampel, 1971; Huber, 1981; Huber and Ronchetti, 2009) and is recently
applied to risk management, where empirical data are used to estimate risk measures of
some random losses by Cont, Deguest and Scandolo (2010), Krätschmer, Schied and Zähle
(2012); Krätschmer, Schied and Zähle (2014) and optimization by Guo and Xu (2020); Jiang
and Li (2022); Xu and Zhang (2022). Here we extend the research to machine learning as
we believe the approach can be effectively used to look into the interactions between model
errors and data errors from statistical point of view, and we do so in both qualitative and
quantitative manners.

Third, we discuss convergence of empirical risk which has a vast literature in machine
learning. Our focus in this paper is on a generic expected loss minimization model in an
infinite dimensional RKHS which requires us to take a particular caution on the tails of the
kernel and the cost function when they are both unbounded. We also look into the uniform
convergence of the statistical estimators w.r.t. a set of empirical distributions generated
near the true one and identify appropriate metrics under which the statistical estimators
are uniformly asymptotically consistent. A combination of all of these results provides some
new theoretical grounding for analysing asymptotic convergence and examining reliability
of the statistical estimators in a number of well-known regression models.

The rest of the paper are organized as follows. Section 2 sets up the background of the
model and statistical robustness, Section 3 presents stability of the expected risk against
perturbation of the probability distribution, Section 4 details qualitative and quantitative
analysis of statistical robustness and Section 5 gives uniform consistency analysis, Section
6 points out some future research.

2. Problem statement

Let X be the input space and Y the output space. The relation between an input x ∈ X
and an output y ∈ Y is described by a probability distribution P (x, y). Let Z denote the
product space X × Y . For each input x ∈ X, output y ∈ Y and z = (x, y), let c(z, f(x))
denote the loss caused by the use of f as a model for the unknown process producing y
from x and EP [c(z, f(x))] :=

∫
Z c(z, f(x))P (dz) the statistical average of the losses. If P is

known, then the problem of learning is down to find an optimal model such that the average
loss is minimized, i.e.,

inf
f∈F

R(f) := EP [c(z, f(x))], (1)
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where F is some functional class to be specified. Let ϑ(P ) denote the optimal value and
S∗(P ) the set of optimal solutions of (1). By indicating their dependence on P , we will
investigate the effect of a perturbation of P in forthcoming discussions. Without loss of
generality, we assume throughout the paper that c(z, f(x)) takes non-negative value as
our focus will be mainly on regression models, which means 0 ≤ ϑ(P ) < +∞ so long as
there exists f ∈ F such that R(f) < +∞. Existence of an optimal solution requires more
conditions, we will come back to this in the next subsection. In practice, F , Z and c(·, ·)
are known to learners. Here we list a few examples (Shalev-Shwartz et al., 2010).

• Regression. Let Z = X × Y where X and Y are bounded subsets of IRn and IR
respectively, let F be a set of functions f : IRn → IR and c(z, f(x)) = L(f(x) − y),
where L(·) is a loss function. Specific interesting cases include squared loss function
L(t) = 1

2 t
2, ε-insensitive loss function L(t) = max{0, |t| − ε} with ε > 0, hinge loss

function L(t) = max{0, 1 − t}, log-loss function L(t) = log(1 + e−t), Huber loss
function Lα(t) = t2/2 for |t| ≤ α and α|t| − α2/2 otherwise where α is some positive
constant, p-th power absolute loss function L(t) = |t|p for p > 0 in various regression
and support vector machine models, see Shafieezadeh-Abadeh et al. (2019).

• Binary Classification. Let Z = X × {0, 1} and F be a set of functions f : X →
{0, 1}, let c(z, f(x)) = 1f(x)6=y. Here c(·, ·) is a 0− 1 loss function, measuring whether
f misclassifies the pair (x, y).

In the rest of paper, our focus will be on the regression models.

2.1 Reproducing kernel Hilbert space

The nature of functions f in (1) needs to be specified. Let H denote a class of functions
f : X → Y . H is called hypotheses space if f is restricted to H. This is because the choice
of H is based on hypotheses of the structure of these functions.

Definition 1 Let H(X) be a Hilbert space of functions with inner product 〈·, ·〉 and k :
X × X → IR be a kernel, that is, there is a feature map Φ : X → H such that k(x, x) =
〈Φ(x),Φ(x)〉. H(X) is said to be a reproducing kernel Hilbert space (RKHS for short) if
there is a kernel k : X × X → IR such that: (a) k(·, x) ∈ H(X) for all x ∈ X and (b)
f(x) = 〈f, k(·, x)〉 for all f ∈ H(X) and x ∈ X. The corresponding norm is denoted by
‖ · ‖k.

A kernel k : X ×X → IR is said to be symmetric if k(x, t) = k(t, x) for each x, t ∈ X,
positive semidefinite if for any finite set {x1, · · · , xm} ⊂ X, the m ×m matrix k[x] whose
(i, j) entry is k(xi, xj) is positive semidefinite. A kernel k is called Mercer kernel if it is
continuous, symmetric and positive semidefinite.

Examples of Mercer kernels abound. Here we list some of them.

• Polynomial kernel: k(x1, x2) = (γ〈x1, x2〉 + 1)d, ∀x1, x2 ∈ IRn, where γ > 0 is a
constant, d ∈ N and N denotes the set of positive integers.

• Gaussian kernel: k(x1, x2) = e−γ‖x1−x2‖22 ,∀x1, x2 ∈ IRn, where γ > 0 is a constant.
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• Laplacian kernel: k(x1, x2) = e−γ‖x1−x2‖1 ,∀x1, x2 ∈ IRn, where γ > 0 is a constant.

• Sigmoid kernel: k(x1, x2) = tanh (a〈x1, x2〉+ b) , ∀x1, x2 ∈ IRn, where a, b > 0 are

constants, tanh(t) = et−e−t
et+e−t is the hyperbolic tangent function.

Let k : X ×X → IR be a Mercer kernel. Then there exist a Hilbert space Hk(X) and a
mapping Φ : X → Hk(X) such that

k(x, x′) = 〈Φ(x),Φ(x′)〉,∀x, x′ ∈ X.

Moreover Hk(X) has the reproducing property, see Theorem 5.2 in Mohri et al. (2012). If
we let

F =

{
n∑
i=1

αik(xi, ·) : n ∈ N, αi ∈ IR, xi ∈ X

}

with the inner product〈
n∑
i=1

αik(xi, ·),
n∑
j=1

βjk(xj , ·)

〉
=

n∑
i,j=1

αiβjk(xi, xj),

then F can be completed into the RKHS, see Boucheron et al. (2005). Throughout the
paper, we assume that a Mercer kernel k(·, ·) is given and Hk is the RKHS associated with
k. The functional class F in (1) is a subset of Hk and Z is a Polish space.

Before concluding this subsection, we come back to address our earlier question as to
when problem (1) has an optimal solution. The next theorem addresses this.

Theorem 1 Assume: (a) there exists a constant α such that the lower level set {f ∈ F :
R(f) ≤ α} is nonempty and bounded, (b) c(z, y) is convex in y for each z and c is continuous
over Z × Y , (c) there is a function φ such that

c(z, f(x)) ≤ φ(z), ∀z ∈ Z and f ∈ F .

Then problem (1) has an optimal solution when
∫
Z φ(z)P (dz) <∞.

The existence result is perhaps known, for instance, Theorem 5.2 in Steinwart and
Christmann (2008) shows existence of an optimal solution for a similar learning model with
Nemitski loss function. Here we include a proof as the setting is slightly different.

Proof. We first show that R(f) is continuous in f , where R(f) is defined as in (1). For
each x ∈ X,

|f̃(x)− f(x)| = |〈f̃ − f, k(·, x)〉| ≤ ‖f̃ − f‖k
√
k(x, x).

It follows from the continuity of c(x, ·) that for each z ∈ Z,

|c(z, f̃(x)− c(z, f(x))| → 0 as ‖f̃ − f‖k → 0.
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Since R(f) ≤
∫
Z φ(z)P (dz) < ∞ for all f ∈ F , by the Lebesgue dominated convergence

theorem,

lim
‖f̃−f‖k→0

|R(f̃)−R(f)| = lim
‖f̃−f‖k→0

∣∣∣∣∫
Z
c(z, f̃(x))P (dz)−

∫
Z
c(z, f(x))P (dz)

∣∣∣∣
=

∣∣∣∣∣
∫
Z

lim
‖f̃−f‖k→0

(c(z, f̃(x))− c(z, f(x)))P (dz)

∣∣∣∣∣
= 0,

which shows continuity of R in f as desired. Moreover, since c(z, y) is convex in y, R(f) is
also convex. Together with condition (a), we conclude by virtue of Proposition 6 on page
75 of Ekeland and Turnbull (1983) that R attains minimum in F .

Condition (a) is known as inf-compactness condition which is widely used for securing
existence of an optimal solution in the literature of continuous optimization, see e.g. Rock-
afellar and Wets (1998). It is satisfied when either F is bounded and/or c(z, ·) is coercive
for almost every fixed z. Condition (c) is a kind of growth condition to be used for securing
the well-definedness of R(f). To ease the discussion, we assume in the rest of the paper that
F is bounded, that is, there exists a positive number β such that ‖f‖k ≤ β for all f ∈ F ,
see e.g. Norkin and Keyzer (2009).

2.2 Sample average approximation

In practice, the true probability distribution P is unknown, but it is possible to obtain an
independent and identically distributed (i.i.d.) sample {zi = (xi, yi)}Ni=1 generated by P ,
which is known as training data. Given the sample, the goal of machine learning is to find
a function f : X → Y such that f solves

inf
f∈F

EPN [c(z, f(x))] :=
1

N

N∑
i=1

c(zi, f(xi)), (2)

where

PN (·) :=
1

N

N∑
i=1

1zi(·) (3)

denotes the empirical probability measure/distribution and 1zi(·) denotes the Dirac measure
at zi. Let ϑ(PN ) denote the optimal value (empirical risk), RPN (f) the objective function,
and S∗PN the set of optimal solutions of the sample average approximation problem (2).
Let fN (PN ) ∈ S∗PN denote an optimal solution of (2). Then fN (PN ) is called an estimator
and the framework generating fN (PN ) is called a learning algorithm. Notice that from
sampling point of view, we may write ϑ̂N (z1, · · · , zN ) and f̂N (z1, · · · , zN ) for ϑ(PN ) and
fN (PN ) respectively to indicate their dependence on the sample.

From computational perspective, problem (2) is often ill-conditioned. The issue can be
addressed by adopting a simple Tikhonov regularization approach:

ϑ(PN , λN ) = inf
f∈F

RλNPN (f) := EPN [c(z, f(x))] + λN‖f‖2k, (4)
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where λN > 0 is a regularization parameter. Note that problem (4) is well-defined even
when F is unbounded since the objective is coercive for each fixed N . Let S∗PN ,λN denote the
set of optimal solutions of problem (4) and fN (PN , λN ) ∈ S∗PN ,λN an optimal solution. Un-
der conditions in Theorem 1, we can show that a unique optimal solution exists. By virtue
of the representer theorem (see Kimeldorf and Wahba (1970), Schölkopf and Smola (2002)),
problem (4) has a solution which takes the form fλNN (x) =

∑N
j=1 αjk(xj , x) and by the repro-

ducing property (Norkin and Keyzer, 2009), ‖fλNN ‖2k = 〈fλNN , fλNN 〉 =
∑N

i,j=1 αiαjk(xi, xj).

As we commented earlier, here we may write ϑ̂N (z1, · · · , zN , λN ) and f̂N (z1, · · · , zN , λN )
for ϑ(PN , λN ) and fN (PN , λN ) respectively to indicate their dependence on the sample.

In general λN is driven to 0 but the choice of the value may affect the rate of convergence.
A number of papers have been devoted to this, see, for instance, Breheny and Huang (2015)
for logistic regression models in a finite dimensional space, Cucker and Smale (2002a) and
Caponnetto and De Vito (2007) for regularized least squares models in a infinite dimensional
RKHS.

Note also that under some special circumstances, the regularization may be interpreted
as a result of robust formulation or distributionally robust formulation of problem (2). For
instance, Xu et al. (2009) consider the case where the input data are potentially contami-
nated and show that a robust version of the model is equivalent to a regularized regression
model. Chen and Paschalidis (2018) consider a linear regression model where the true prob-
ability distribution of input-output data is unknown but it is possible to use empirical data
to construct a Wasserstein ball of probability distributions, the optimal solution is based
on the worst probability distribution from the ball. Under these circumstance, the authors
demonstrate that the distributionally robust regression model is equivalent to a regularized
regression model where the regularization parameter is the radius of the Wasserstein ball.
Shafieezadeh-Abadeh et al. (2019) extend the result to a nonlinear regression model, see
Theorem 28 in the paper.

2.3 Contamination of the training data

The current research of machine learning is mostly focused on the case that sample data are
generated by the true probability distribution P which means that they do not contain any
noise. As discussed in the introduction, this assumption may not be satisfied in practice.
Let z̃1, · · · , z̃N denote the perceived data which are potentially contaminated and

QN (·) :=
1

N

N∑
i=1

1z̃i(·) (5)

be the respective empirical distribution. Instead of solving problem (4), we solve, in practice,

inf
f∈F

EQN [c(z, f(x))] + λN‖f‖2k. (6)

The coerciveness of the objective function ensures well-definedness of the problem. Let
RλNQN (f), ϑ(QN , λN ) and fN (QN , λN ) denote respectively the objective function, the optimal
value and the optimal solution of problem (6). We are then concerned with the quality of
the learning model estimator fN (QN , λN ) and the associated empirical risk ϑ(QN , λN ).
Measurability of these quantities are guaranteed by Lemma 6.23 and Lemma A.3.18 in
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Steinwart and Christmann (2008). Note that in this setup, we often assume that z̃1, · · · , z̃N
are i.i.d.. This assumption differs from Lecué and Lerasle (2020) where the authors divide
the data into two categories: the outliers and the informative data. The former are usually
non-independent and not identically distributed. Here we follow the stream of new research
on statistical robustness in risk measurement led by Cont, Deguest and Scandolo (2010);
Krätschmer, Schied and Zähle (2012); Krätschmer, Schied and Zähle (2014) to assume that
each data could be potentially contaminated and they are generated by some underlying
probability distribution Q.

Note also that if we interpret the regularization model (4) as a result of distribution-
ally robust formulation (see Theorem 28 of Shafieezadeh-Abadeh et al. (2019)), then model
(6) may be interpreted as an equivalence of a distributionally robust optimization (DRO)
model where the sample data used for constructing the nominal empirical distribution in
the Wasserstein ball are potentially contaminated. In our view, the DRO models in Chen
and Paschalidis (2018); Shafieezadeh-Abadeh et al. (2019) are not about contamination of
training data, rather they are about incomplete information of the true probability distri-
bution. The DRO model picks up the worst estimate of the true probability distribution
rather than the worst perturbed data. This issue disappears when the sample size increases,
but the data contamination issue persists. The analysis in this paper has a potential to
address the issue in DRO models via (6).

There are two ways to proceed the research. One is to look into convergence of the
statistical quantities as the sample size N increases and the regularization parameter λN
goes to zero. Assume without loss of generality that the samples are i.i.d.. By law of large
numbers, QN converges to some probability distribution Q almost surely (a.s. for short) as
N goes to infinity and subsequently

fN (QN , λN )→ f(Q) and ϑ(QN , λN )→ ϑ(Q), a.s.. (7)

On the other hand, if we regard Q as a perturbation of the true unknown probability
distribution P , then we need to investigate whether

f(Q)→ f(P ) and ϑ(Q)→ ϑ(P ) (8)

as Q approaches P . The former is known as asymptotic convergence/consistency and the
latter is known as stability in the literature of stochastic programming (Römisch, 2003).
However, if we want to establish

fN (QN , λN )→ f(P ) and ϑ(QN , λN )→ ϑ(P ), a.s., (9)

then we require not only (8) but also (7) to hold uniformly for all Q near P . This will be
more demanding than the currently established convergence results.

The other is to examine the discrepancy between fN (QN , λN ) and fN (PN , λN ) (ϑ(QN , λN )
and ϑ(PN , λN )) via law of these estimators. The latter should be understood as estimators
when the noise in the samples is detached (an ideal case). This kind of research is in align-
ment with qualitative robustness in the literature of robust statistics and risk measurement,
see Cont, Deguest and Scandolo (2010); Guo and Xu (2020); Krätschmer, Schied and Zähle
(2014); Krätschmer, Schied and Zähle (2012) and references therein. We will give a formal

definition in Section 4.
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In both steps leading towards statistical robustness of ϑ(·), we will need to restrict the
perturbation of the probability measure P in the space with φ-weak topology instead of
usual weak convergence. This is primarily because we need to capture interactions between
the tails of the cost function and the kernel and the tail of the probability distribution of z.

2.4 φ-weak topology

We recall some basic concepts and results about weak topology which are needed for the
analysis. The materials are mainly extracted from Claus (2016), we refer readers to Chapter
2 in Claus (2016) and references therein for a more comprehensive discussion on the subject.

Definition 2 Let φ : Z → [0,∞) be a continuous function and

Mφ
Z :=

{
P ∈P(Z) :

∫
Z
φ(z)P (dz) <∞

}
,

where P(Z) is the set of all probability measures on the measurable space (Z,B(Z)) with
Borel sigma algebra B(Z) of Z.

Mφ
Z defines a subset of probability measures in P(Z) which satisfies the generalized

moment condition of φ.

Definition 3 (φ-weak topology) Let φ : Z → [0,∞) be a gauge function, that is, φ ≥ 1

holds outside a compact set. Define CφZ the linear space of all continuous functions h : Z →
IR such that for each h ∈ CφZ , there exists a positive constant Ch such that

|h(z)| ≤ Ch(φ(z) + 1),∀z ∈ Z.

The φ-weak topology, denoted by τφ, is the coarsest topology on Mφ
Z for which the mapping

gh :Mφ
Z → IR defined by

gh(P ) :=

∫
Z
h(z)P (dz), h ∈ CφZ

is continuous. A sequence {Pl} ⊂ Mφ
Z is said to converge φ-weakly to P ∈ Mφ

Z written

Pl
φ−→ P if it converges w.r.t. τφ.

From the definition, we can see immediately that φ-weak convergence implies weak
convergence under usual topology of weak convergence (defined through bounded continuous
functions). We denote the latter by Pl

w−→ P . Moreover, it follows by Corollary 2.62 in Claus

(2016) that the φ-weak topology on Mφ
Z is generated by the metric dlφ :Mφ

Z ×M
φ
Z → IR

defined by

dlφ(P ′, P ′′) := dlProk(P ′, P ′′) +

∣∣∣∣∫
Z
φ(z)dP ′ −

∫
Z
φ(z)dP ′′

∣∣∣∣ for P ′, P ′′ ∈Mφ
Z , (10)

where dlProk : P(Z)×P(Z)→ IR+ is the Prokhorov metric defined as follows:

dlProk(P ′, P ′′) := inf{ε > 0 : P ′(A) ≤ P ′′(Aε) + ε for allA ∈ B(Z)}, (11)

10
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where Aε := A + Bε(0) denotes the Minkowski sum of A and the open ball centred at 0
(w.r.t. the norm in Z). When φ ≡ 1, the second term in (10) disappears and consequently
dφ(P ′, P ′′) = dProk(P ′, P ′′). In that case, the φ-weak topology reduces to the usual topol-
ogy of weak convergence. Equivalence between the two topologies may be established over
a set which satisfies some uniform integration conditions, see Lemma 2.66 in Claus (2016)
and the reference therein.

Definition 4 (Fortet-Mourier metric) Let

Fp(Z) := {ψ : Z → IR : |ψ(z)− ψ(z̃)| ≤ Lp(z, z̃)‖z − z̃‖, ∀z, z̃ ∈ Z} , (12)

where ‖·‖ denotes some norm on Z and Lp(z, z̃) := max{1, ‖z‖, ‖z̃‖}p−1 for all z, z̃ ∈ Z and
p ≥ 1 describes the growth of the local Lipschitz constants. The p-th order Fortet-Mourier
metric over P(Z) is defined by

ζp(P,Q) := sup
ψ∈Fp(Z)

∣∣∣∣∫
Z
ψ(z)P (dz)−

∫
Z
ψ(z)Q(dz)

∣∣∣∣ . (13)

Fortet-Mourier metric is well-known in stochastic programming. The unique feature of
the metric is that it is induced by a class of locally Lipschitz continuous functions with
specified modulus and rate of growth. In the case when p = 1, it reduces to Kantorovich
metric

dlK,Z(P,Q) := sup
ψ∈F1(Z)

∣∣∣∣∫
Z
ψ(z)P (dz)−

∫
Z
ψ(z)Q(dz)

∣∣∣∣ . (14)

If Z = IR, dlK,IR(P,Q) is denoted by dlK,1(P,Q) for simplicity. We refer readers to see
Römisch (2003) for a comprehensive overview of the topic. From the definition, we can see
that

ζp(P,Q) ≤ EP×Q[Lp(z, z̃)‖z − z̃‖],

where P ×Q denotes the joint probability distribution of z and z̃. In the case when P and
Q are empirical distributions generated by i.i.d. sample, we have

EP×Q[Lp(z, z̃)‖z − z̃‖] =
1

N2

N∑
i,j=1

Lp(z
i, z̃j)‖zi − z̃j‖.

The latter may be used to give an estimate of ζp(P,Q) if we are able to obtain the i.i.d.
sample in practice.

3. Stability analysis

In this section, we investigate how the true risk of problem (1) is affected by a small
perturbation of the probability distribution P . This kind of research is well known in the
literature of stochastic programming (Römisch, 2003) but not in machine learning as far
as we are concerned. We proceed with some technical assumptions which stipulate the
properties of the cost function and the kernel.

11



Guo, Xu and Zhang

Assumption 1 For any compact subset Z0 of Z, let X0 be its orthogonal projection on X.
The set of functions {k(·, x) : x ∈ X0} is uniformly continuous over X0, i.e., for any ε > 0,
there exists a constant η > 0 such that

‖k(·, x′)− k(·, x)‖k < ε,∀x, x′ ∈ X0 : ‖x′ − x‖ < η,

where ‖ · ‖ is some norm on X.

Remark 1 To see how Assumption 1 can be possibly satisfied, we recall the notion of calm-
ness of kernel introduced by Assumption 25 in Shafieezadeh-Abadeh et al. (2019). The
kernel k is said to be calm from above, if there exists a concave smooth growth function
g : IR+ → IR+ with g(0) = 0 and g′(t) ≥ 1 for all t ∈ IR+ such that√

k(x′, x′)− 2k(x, x′) + k(x, x) ≤ g(‖x− x′‖),∀x, x′ ∈ X.

Under the calmness condition, for any ε > 0, there exists η > 0 such that

‖k(·, x′)− k(·, x)‖k =
√
〈k(·, x′)− k(·, x), k(·, x′)− k(·, x)〉

=
√
k(x′, x′)− 2k(x, x′) + k(x, x)

≤ g(‖x− x′‖) < ε

for all x, x′ with ‖x−x′‖ < η. The last inequality is due to the fact that the growth function
g is continuous with g(0) = 0. The calmness condition is non-restrictive, which can be
satisfied in the following cases for X = IRn, see Example 1 in Shafieezadeh-Abadeh et al.
(2019).

• Linear kernel: For k(x1, x2) = 〈x1, x2〉, g(t) = t.

• Gaussian kernel: For k(x1, x2) = e−γ‖x1−x2‖22, g(t) = max{
√

2γ, 1}t.

• Laplacian kernel: For k(x1, x2) = e−γ‖x1−x2‖1, g(t) =
√

2γt
√
n if 0 ≤ t ≤ γ

√
n/2 and

g(t) = t+ γ
√
n/2 otherwise.

• Polynominal kernel: The kernel k(x1, x2) = (γ〈x1, x2〉 + 1)d with γ > 0 and d ∈ N
fails to satisfy the calmness condition if X is unbounded and d > 1, in which case√
k(x1, x1)− 2k(x1, x2) + k(x2, x2) grows superlinearly. If X ⊂ {x ∈ IRn : ‖x‖2 ≤ R}

for some R > 0, however, the polynomial kernel is calm w.r.t. the growth function

g(t) =

{
max{ 1

2R

√
2(γR2 + 1)d, 1}t d is even,

max{ 1
2R

√
2(γR2 + 1)d − 2(1− γR2)d, 1}t d is odd.

Assumption 2 The cost function c(·, ·) satisfies the following properties.

(a) There is a gauge function φ(·) such that

c(z, f(x)) ≤ φ(z),∀z ∈ Z and f ∈ F , (15)

where φ(z)→∞ as ‖z‖ → ∞.

12
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(b) c : Z × Y → IR is uniformly continuous over any compact subset of Z × Y .

Remark 2 Inequality (15) is known as a growth condition where φ(z) controls the growth
of the cost function as ‖z‖ goes to infinity. It is trivially satisfied when Z is compact. Our
focus here is on the case that Z is unbounded. Obviously φ depends on the concrete structure
of c(·, ·). Consider for example c(z, f(x)) = 1

2‖y − f(x)‖2. Then

c(z, f(x)) ≤ ‖y‖2 + ‖f(x)‖2 = ‖y‖2 + |〈f, k(·, x)〉|2

≤ ‖y‖2 + ‖f‖2k‖k(·, x)‖2k.

Moreover, if there esists a positive number β such that ‖f‖k ≤ β, then we can work out an
explicit form of φ for some specific kernels.

• If k is a Linear kernel, then ‖k(·, x)‖2k = |k(x, x)| = ‖x‖2 and φ(z) := ‖y‖2 + β2‖x‖2.

• If k is a Gaussian kernel or Laplacian kernel, then ‖k(·, x)‖2k = 0 and φ(z) := ‖y‖2.

• If k is a Polynominal kernel, then ‖k(·, x)‖2k = (γ‖x‖2 + 1)d and

φ(z) := ‖y‖2 + β2(γ‖x‖2 + 1)d. (16)

From the examples above, we can see that φ captures not only the growth of the cost function
c(·, ·) but also the kernel. The growth rate of φ at the tail in turn affects the topology to be
used in the stability analysis in the next theorem.

Theorem 2 Assume that F is bounded with ‖f‖k ≤ β for all f ∈ F and Assumptions 1
and 2 hold. Then

lim
P ′

φ−→P

ϑ(P ′) = ϑ(P ). (17)

Proof. Since (Mφ
Z , τφ) is a Polish space by Theorem 2.59 Claus (2016), it suffices to show

that (17) holds for any sequence {Pl} ⊂ Mφ
Z with Pl

φ−→ P ∈ Mφ
Z . First, Pl

φ−→ P implies

that Pl
w−→ P and

lim
l→∞

∫
Z
φ(z)Pl(dz) =

∫
Z
φ(z)P (dz).

Moreover, by Lemma 2.61 in Claus (2016), for any ε > 0, there exists a positive constant
M0 > 1 such that ∫

Z
φ(z)1(M0,∞)(φ(z))P (dz) < ε (18)

and

sup
l∈N

∫
Z
φ(z)1(M0,∞)(φ(z))Pl(dz) < ε, (19)

where 1(M0,∞)(t) = 1 if t ∈ (M0,∞) and 0 otherwise. Let M > M0 and ZM := cl {z ∈ Z :
φ(z) < M}. Since φ is continuous, ∂ZM ⊂ {z ∈ Z : φ(z) = M}, where ∂ZM denotes the

13
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boundary of ZM . This means ZM is a P -continuity set except for countably many M 1.
Thus we can choose some M such that P (∂ZM ) = 0 and Z\ZM ⊂ {z ∈ Z : φ(z) ≥ M} ⊂
{z ∈ Z : φ(z) > M0}. Moreover since φ is coercive, i.e., φ(z) → ∞ as ‖z‖ → ∞, then ZM
is a compact set. Let G := {g : g(z) := c(z, f(x)) for f ∈ F} and

GM := {gM : ZM → IR|gM (z) := g(z) for z ∈ ZM , g ∈ G }.

It follows from Assumption 2 (a) that for each gM ∈ GM and z ∈ ZM , |gM (z)| ≤ supz∈ZM φ(z) <
∞, which implies that GM is uniformly bounded.

Next, we prove that GM is equi-continuous over ZM . Since F is bounded, problem (1)
is equivalent to

min
‖f‖k≤β

R(f). (20)

By the reproducing property of the kernel k(·, ·), i.e., f(x) = 〈f, k(·, x)〉 for every f ∈ F ,
we have

|f(x′)− f(x)| = |〈f, k(·, x′)〉 − 〈f, k(·, x)〉| ≤ ‖f‖k‖k(·, x′)− k(·, x)‖k
≤ β‖k(·, x′)− k(·, x)‖k. (21)

The uniform continuity of k(·, x) over ZM (under Assumption 1) ensures the equicontinuity
of F over ZM . Moreover, under Assumption 2(b), GM is also equicontinuous because c(·, ·)
is uniformly continuous over any compact set.

Let Ql, Q be measures on ZM defined by Ql(A) = Pl(A) and Q(A) = P (A) for A ∈
B(ZM ) respectively. Since ZM is a continuity set of P , then Pl

w−→ P imply Ql
w−→ Q. Since

GM is uniformly bounded and equi-continuous, by Theorem 3.1 in Rao (1962),

lim
l→∞

sup
gM∈GM

∣∣∣∣∫
ZM

gM (z)Ql(dz)−
∫
ZM

gM (z)Q(dz)

∣∣∣∣ = 0. (22)

On the other hand, under the growth condition (15), (18) and (19) imply

sup
g∈G

∫
Z\ZM

|g(z)|P (dz) ≤
∫
Z\ZM

φ(z)P (dz)

≤
∫
Z
φ(z)1(M0,∞)(φ(z))P (dz) < ε (23)

and

sup
g∈G

sup
l∈N

∫
Z\ZM

|g(z)|Pl(dz) ≤ sup
l∈N

∫
Z\ZM

φ(z)Pl(dz)

≤ sup
l∈N

∫
Z
φ(z)1(M0,∞)(φ(z))Pl(dz) < ε. (24)

1. A set S is said to be a P -continuity set if P (∂S) = 0, see Section 2 in Chapter 1 in Billingsley (1999)
and the proof of Theorem 2.1 in Billingsley (1999).
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Together with (22), we have

|ϑ(Pl)− ϑ(P )| ≤ sup
f∈F

∣∣∣∣∫
Z
c(z, f(x))Pl(dz)−

∫
Z
c(z, f(x))P (dz)

∣∣∣∣
= sup

g∈G

∣∣∣∣∫
Z
g(z)Pl(dz)−

∫
Z
g(z)P (dz)

∣∣∣∣
≤ sup

g∈G

∣∣∣∣∫
ZM

g(z)Pl(dz)−
∫
ZM

g(z)P (dz)

∣∣∣∣
+

∫
Z\ZM

|g(z)|P (dz) +

∫
Z\ZM

|g(z)|Pl(dz)

≤ sup
gM∈GM

∣∣∣∣∫
ZM

gM (z)Ql(dz)−
∫
ZM

gM (z)Q(dz)

∣∣∣∣+ 2ε < 3ε

for sufficiently large l. The proof is complete.
The theorem tells us that ϑ(Q) is close to ϑ(P ) when Q is perturbed from P under the

φ-weak topology. Observe that the empirical probability measure PN ∈Mφ
Z . Moreover, by

Theorem 11.4.1 in Dudley (2004), PN converges to P a.s., and since EP [φ] <∞, it follows by
the strong law of large numbers (see e.g. Theorem 8.3.5 in Dudley (2004)), EPN [φ]→ EP [φ]

a.s.. Together, we conclude by definition that PN
φ→ P a.s. as N → ∞. Consequently we

have

lim
N→∞

ϑ(PN ) = ϑ(P ), a.s.. (25)

The topological structure of Mφ
Z affects the stability of ϑ(·): a larger Mφ

Z means that ϑ(·)
remains stable w.r.t. a greater freedom of perturbation from P . In the case when Z is a
compact set, Mφ

Z = P(Z), which means ϑ(·) remains stable for any perturbation of the
probability measure from P locally. The tail behaviour of c(z, f(x)) affects the structure of

Mφ
Z , we explain this through next example.

Example 1 Consider the least squares regression model with Polynomial kernel. By (16)

Mφ
Z =

{
P ∈P(Z) :

∫
Z

[
‖y‖2 + β2(γ‖x‖2 + 1)d

]
P (dz) <∞

}
=

{
P ∈P(Z) :

∫
Z
‖y‖2P (dz) <∞,

∫
Z
‖x‖2dP (dz) <∞

}
.

We can see from the formulation above that a larger d requires a thinner tail of P and hence
a smaller set Mφ

Z , consequently the stability result is valid for a smaller class of probability
distributions.

In the case of Gaussian kernel or Laplacian kernel,

Mφ
Z =

{
P ∈P(Z) :

∫
Z
‖y‖2P (dz) <∞

}
,

which is the set of probability measures with finite second order moment of y. In all these
cases, Mφ

Z consists of sub-Gaussian distributions on P(Z).
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It might be interesting to ask whether we will be able to show the continuity of ϑ(·)
by using the well-known maximum theorem in parametric programming. The answer is
yes but it requires similar conditions and we will not be able to simplify the proof. Let us
explain why.

A key step to use the maximum theorem is to show that EP [c(z, f(x))] is jointly con-

tinuous in (f, P ). Let f̃ , f ∈ F and P̃ , P ∈Mφ
Z . Observe that

|EP̃ [c(z, f̃(x))]− EP [c(z, f(x)]|
≤ |EP̃ [c(z, f̃(x))]− EP̃ [c(z, f(x)]|+ |EP̃ [c(z, f(x))]− EP [c(z, f(x)]|.

Assumption 2 (a) ensures

lim
P̃
φ−→P

|EP̃ [c(z, f(x))]− EP [c(z, f(x)]| = 0. (26)

On the other hand, under Assumption 2 (a),

|EP̃ [c(z, f̃(x))]− EP̃ [c(z, f(x)]| ≤ 2EP̃ [φ(z)] <∞.

By the Lebesgue dominated convergence theorem,

lim
f̃→f
|EP̃ [c(z, f̃(x))]− EP̃ [c(z, f(x)]| = |EP̃ [ lim

f̃→f
(c(z, f̃(x))− c(z, f(x)))]| = 0. (27)

However, (27) holds only for fixed P̃ but we need the equality hold uniformly for all P̃ close
to P , which in turn requires some delicate handling of the tails as in the proof of Theorem 2.
We leave interested readers for an exercise.

Finally, we note that our stability result in Theorem 2 should be distinguished from
those in Shalev-Shwartz et al. (2010) where stability is used to examine the difference of the
costs resulting from kernel learning estimators based on different samples. It should also
be differentiated from classical stability results in stochastic programming under pseudo-
metric:

dlG (Q,P ) := sup
ψ∈G

∣∣∣∣∫
Z
ψ(z)Q(dz)−

∫
Z
ψ(z)P (dz)

∣∣∣∣ , (28)

where G is a class of measurable functions mapping from Z to IR (see e.g. Römisch and
Schultz (1991); Römisch (2003)). To see this, let {Ql} ⊂P(Z) be a sequence of probability
measures converging to P under the metric, i.e.,

dlG (Ql, P ) = sup
ψ∈G

∣∣∣∣∫
Z
ψ(z)Ql(dz)−

∫
Z
ψ(z)P (dz)

∣∣∣∣→ 0. (29)

The convergence above does not indicate under which topology Ql converges to P . Con-
versely the convergence of Ql to P under φ-weak topology may not guarantee the uniform
convergence (29). However, if G is equicontinuous and |ψ(z)| ≤ φ(z) for all ψ ∈ G and
z ∈ Z, then the convergence of Ql to P under φ-weak topology implies dlG (Ql, P ) → 0,
see Theorem 3.2 of Rao (1962). In a particular case that G comprises all Lipschitz contin-
uous functions with modulus 1, dlG (Q,P ) reduces to the well-known Kantorovich metric.
Since the Kantorovich metric generates the φ-weak topology with φ(z) = ‖z‖ in the finite
dimensional space (see Proposition 2.63 of Claus (2016)), then the two convergences are
equivalent.
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4. Statistical robustness

We now move on to discuss statistical robustness of the machine learning model (4). To
ease the exposition, let Z⊗N denote the Cartesian product Z ⊗ · · · ⊗ Z and B(Z)⊗N its
Borel sigma algebra. Let P⊗N denote the probability measure on the measurable space(
Z⊗N ,B(Z)⊗N

)
with marginal P and Q⊗N with marginal Q. We will consider statistical

estimators mapping from
(
Z⊗N ,B(Z)⊗N

)
to IR and examine their convergence.

4.1 Qualitative robustness

We begin by a formal definition of statistical estimator T (·, λ) parameterized by λ, where
T (·, λ) maps from a subset of M ⊂ P(Z) to IR. To ease the exposition, we write ~zN

for (z1, · · · , zN ) and T̂N (~zN , λN ) for T (PN , λN ) for fixed sample size N . The following
definition is based on Definition 2.11 in Krätschmer, Schied and Zähle (2014).

Definition 5 (Statistical robustness) Let M ⊂ P(Z) be a set of probability measures
and dlφ be defined as in (10) for some gauge function φ : Z → IR, let {λN} be a sequence of
parameters. A parameterized statistical estimator T (·, λN ) is said to be robust on M with
respect to dlφ and dlProk if for all P ∈ M and ε > 0, there exist δ > 0 and N0 ∈ N such
that

Q ∈M, dlφ(P,Q) ≤ δ =⇒ dlProk

(
P⊗N ◦ T̂N (·, λN )−1, Q⊗N ◦ T̂N (·, λN )−1

)
≤ ε forN ≥ N0.

In this definition, P⊗N ◦T̂N (·, λN )−1 and Q⊗N ◦T̂N (·, λN )−1 are two probability distribu-
tions of random variable T̂N (·, λN ) mapping from probability spaces

(
Z⊗N ,B(Z)⊗N , P⊗N

)
and

(
Z⊗N ,B(Z)⊗N , Q⊗N

)
respectively to IR, and the Prokohorov metric is used to measure

the difference of the two distributions (also known as laws in the literature (Cont, Deguest
and Scandolo, 2010; Krätschmer, Schied and Zähle , 2014)). The statistical robustness re-
quires the difference of statistical estimators under the Prokhorov metric to be small when
the difference between P and Q is small under the metric dlφ. The definition relies heavily
on the adoption of the two metrics. In Cont, Deguest and Scandolo (2010), the authors use
Lévy metric for both. Krätschmer, Schied and Zähle (2014) argue that the Levy metric
underestimates the impact of the tail distributions of P and Q and subsequently propose to
use dlφ to replace the Lévy metric. Since the former is tighter than the later, it means the
perturbation under dlφ is more restrictive and hence enables one to examine finer difference
between the laws of the statistical estimators.

Statistical robustness is also called qualitative robustness in this paper in that there is
no explicit quantitative relationship between ε and δ. To establish the statistical robustness,
we need the following Uniform Glivenko-Cantelli property.

Definition 6 (Uniform Glivenko-Cantelli property) Let φ be a gauge function and

dlφ be defined as in (10). Let M be a subset of Mφ
Z . The metric space (M, dlφ) is said to

have Uniform Glivenko-Cantelli (UGC) property if for every ε > 0 and δ > 0, there exists
N0 ∈ N such that

P⊗N
(
~zN : dlφ(P, PN ) ≥ δ

)
≤ ε for allP ∈M, N ≥ N0. (30)
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Recall that PN is constructed through i.i.d. sample generated by random variable z
with probability distribution P . The UGC property requires that for all P ∈ M, their
empirical probability measures converge to their true counterparts uniformly as the sample
size goes to infinity. The convergence under dlφ means not only the weak convergence but
also convergence of the moment of φ which captures the tails of P .

Theorem 3 (Statistical robustness) Let

Mφp

Z,κ := {P ∈P(Z) :

∫
Z
φ(z)pP (dz) ≤ κ}, (31)

where κ > 0 and p > 1 are some positive constants. Assume: (a) ϑ(P ) is well-defined for

every P ∈ Mφp

Z,κ, (b) the conditions in Theorem 2 are satisfied, (c) λN → 0 as N → ∞.

Then for any ε > 0 and fixed P ∈ Mφp

Z,κ, there exist positive numbers δ > 0 and N0 ∈ N
such that

Q ∈Mφp

Z,κ, dlφ(P,Q) ≤ δ =⇒ dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤ ε (32)

for N ≥ N0 and λN ≤ ε
6β2 , where ϑ̂N (~zN , λN ) := ϑ(PN , λN ) denotes the optimal value of

problem (4), PN is a sequence of empirical probability measures defined by (3) and β is a
positive constant.

Proof. The results follow straightforwardly from Theorem 2 and Theorem 2.4 in Krätschmer,
Schied and Zähle (2012). We include a proof for self-containing. By triangle inequality

dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤ dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1,1inff∈F RP (f)

)
+ dlProk

(
1inff∈F RP (f),1inff∈F RQ(f)

)
+dlProk

(
1inff∈F RQ(f), Q

⊗N ◦ ϑ̂N (·, λN )−1
)
,

where 1a denotes the Dirac measure at a ∈ IR. Under condition (b), for the given ε there
exists a constant δ0 > 0 such that

dlProk

(
1inff∈F RP (f),1inff∈F RQ(f)

)
= dlProk

(
1ϑ(P ),1ϑ(Q)

)
= |ϑ(P )− ϑ(Q)| ≤ ε

3

for all Q ∈Mφp

Z,κ with dlφ(P,Q) ≤ δ0. So we are left to show that

dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1,1inff∈F RP (f)

)
≤ ε

3
(33)

and

dlProk

(
1inff∈F RQ(f), Q

⊗N ◦ ϑ̂N (·, λN )−1
)
≤ ε

3
(34)

for N sufficiently large. By Strassen’s theorem (Huber, 1981), (33) and (34) are implied
respectively by

P⊗N
(
~zN :

∣∣∣∣ϑ̂N (~zN , λN )− inf
f∈F

RP (f)

∣∣∣∣ ≥ ε

3

)
≤ ε

3
(35)
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and

Q⊗N
(
~̃zN :

∣∣∣∣ϑ̂N (~̃zN , λN )− inf
f∈F

RQ(f)

∣∣∣∣ ≥ ε

3

)
≤ ε

3
. (36)

Using the definition of the optimal values, (35) and (36) can be rewritten respectively as

P⊗N
(
~zN :

∣∣∣∣ inf
f∈F

EPN {c(z, f(x)) + λN ‖f‖2k} − inf
f∈F

RP (f)

∣∣∣∣ ≥ ε

3

)
≤ ε

3
,

Q⊗N
(
~̃zN :

∣∣∣∣ inf
f∈F

EQN {c(z, f(x)) + λN ‖f‖2k} − inf
f∈F

RQ(f)

∣∣∣∣ ≥ ε

3

)
≤ ε

3
.

Note that we may set N0 ∈ N sufficiently large such that λN ≤ ε
6β2 for all N ≥ N0.

Consequently the two inequalities above are implied by

P⊗N
(
~zN :

∣∣∣∣ inf
f∈F

RPN (f)− inf
f∈F

RP (f)

∣∣∣∣ ≥ ε

6

)
≤ ε

3

and

Q⊗N
(
~̃zN :

∣∣∣∣ inf
f∈F

RQN (f)− inf
f∈F

RQ(f)

∣∣∣∣ ≥ ε

6

)
≤ ε

3
,

or equivalently

P⊗N
(
~zN :

∣∣∣ϑ̂N (~zN )− ϑ(P )
∣∣∣ ≥ ε

6

)
≤ ε

3
(37)

and

Q⊗N
(
~̃zN :

∣∣∣ϑ̂N (~̃zN )− ϑ(Q)
∣∣∣ ≥ ε

6

)
≤ ε

3
(38)

for all Q ∈ Mφp

Z,κ and dlφ(P,Q) sufficiently small. By the continuity of ϑ, there exists a
constant δ > 0 such that when dlφ(P ′, P ) < 2δ, |ϑ(P ′)− ϑ(P )| < ε

12 . On the other hand, it

follows by Corollary 3.5 in Krätschmer, Schied and Zähle (2012) that (Mφp

Z,κ, dlφ) has the
UGC property which implies that

Q⊗N (dlφ(QN , Q) ≥ δ) ≤ ε

3
(39)

for all Q ∈ Mφp

Z,κ including Q = P . This shows (37) when N0 is chosen sufficiently large.
Next, we show (38) which is more challenging than (37) because it requires the inequality
to hold uniformly for all Q close to P . Let dlφ(Q,P ) ≤ δ. By (39)

ε

3
≥ Q⊗N

(
~̃zN : dlφ(QN , Q) ≥ δ

)
(40)

≥ Q⊗N
(
~̃zN : dlφ(QN , P ) ≥ δ + dlφ(Q,P )

)
≥ Q⊗N

(
~̃zN : dlφ(QN , P ) ≥ 2δ

)
≥ Q⊗N

(
~̃zN : |ϑ(QN )− ϑ(P )| ≥ ε

12

)
≥ Q⊗N

(
~̃zN : |ϑ(QN )− ϑ(Q)| ≥ |ϑ(P )− ϑ(Q)|+ ε

12

)
≥ Q⊗N

(
~̃zN : |ϑ(QN )− ϑ(Q)| ≥ ε

6

)
= Q⊗N

(
~̃zN :

∣∣∣ϑ̂N (~̃zN )− ϑ(Q)
∣∣∣ ≥ ε

6

)
,∀Q ∈Mφp

Z,κ.
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The conclusion follows.
We make a few comments about the conditions and results of this theorem.
First, the conclusions of Theorem 3 hold for the case that λN ≡ 0 for all N , which means

that the empirical risk obtained from solving the unregularized problem (2) is statistically
robust under the same conditions.

Second, the set Mφp

Z,κ differs from Mφp

Z in that the former imposes a bound for the

moment value uniformly for all P ∈ Mφp

Z,κ whereas the latter does not have such unifor-

mity. This is because we need the UGC property of (Mφp

Z,κ, dlφ) in order for us to apply
Corollary 3.5 in Krätschmer, Schied and Zähle (2012). For example, in the least squares
regression model with polynomial kernel, we have

Mφp

Z,κ =

{
P ∈P(Z) :

∫
Z

[
‖y‖2 + β2(γ‖x‖2 + 1)d

]p
P (dz) < κ

}
.

In the case of Gaussian kernel or Laplacian kernel,

Mφp

Z,κ =

{
P ∈P(Z) :

∫
Z
‖y‖2pP (dz) < κ

}
.

Third, by (38), we can obtain for any ε > 0, there exist constants δ > 0 and N0 ∈ N
such that

Q ∈M, dlφ(P,Q) ≤ δ =⇒ Q⊗N
(
~̃zN : |ϑ(Q)− ϑ(QN )| ≥ ε

6

)
≤ ε

3

for N ≥ N0. This implies uniform convergence of ϑ(QN ) to ϑ(Q) for all Q near P as opposed
to pointwise convergence (for each fixed Q) in stochastic programming. The uniformity
does not come out for free: it restricts both P and Q to the φ-weak topological space of
probability measures.

Fourth, in practice, since P is unknown, it is difficult to identify δ for a specified ε.
The usefulness of (32) should be understood as that it provides a theoretical guarantee:
if the training data is generated by some probability distribution Q which is close to the
true distribution P 2, and Q satisfies moment condition (31) (which may be examined by
through empirical data, i.e.,

∫
Z φ(z)pQN (dz) ≤ κ), then the optimal value obtained with

the perceived data is close to the one with pure data. An effective way to address the
difficulty is to derive quantitative statistical robustness under some additional conditions
in which case the relationship between ε and δ may be explicitly established, we will come
back to this in the next subsection.

Fifth, Theorem 3 does not tell us how N0 depends on ε and δ. The dependence may
be derived under some special circumstances when φ(·) = ‖ · ‖q for some positive number q
and Z is a finite dimensional space. In the rest of this subsection, we discuss this.

Observe first that from Remark 2, φ(·) can be chosen as ‖ · ‖q for some kernels. For this
particular form of φ, we show next how the threshold value N0 in Theorem 3 behaves as a
function of ε, δ and the dimension of z. To this end, we need the following two intermediate
results.

2. In practice, we may draw M groups of samples with size N and use them to construct histograms, if
all of the histograms are close to each other, then we may predict that PN is in the vicinity of QN and
hence P is in the vicinity of Q.
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Lemma 1 (Claus, 2016, Proposition 2.63) For any q ≥ 1, let Mq
IRn := {P ∈ P(IRn) :∫

IRn ‖z‖
qP (dz) < ∞}. The ‖ · ‖q-weak topology on Mq

IRn is generated by the Wasserstein
metric dlW,q :Mq

IRn ×M
q
IRn → IR of order q:

dlW,q(P,Q) := inf
π

{(∫
IRn×IRn

‖ξ − ξ̃‖qπ(dξ,dξ̃)

) 1
q

}
,

where π is among all probability measures over IRn × IRn with marginals P and Q.

Lemma 2 Let P ∈Mq
IRn with 1 ≤ q < n/2. Assume that there exist α > 2 and κ > 0 such

that
∫

IRn ‖ξ‖
αqP (dξ) ≤ κ. Then for all N ≥ 1 and δ > 0

PN (dlW,q(P, PN ) ≥ δ) ≤ a(N, δ)1(−∞,1](δ) + b(N, δ), (41)

where a(N, δ) := c1 exp (−c2Nδ
n) and b(N, δ) := c1N(Nδq)−(αq−η)/q for any η ∈ (0, αq).

The positive constants c1 and c2 depend on q, n, α, κ and η.

Proof. The result follows directly from Theorem 2 in Fournier and Guilline (2015).

Note that by setting η := αq
2 and the right hand side of (41) to ε, we can obtain

PN (dlW,q(P, PN ) ≥ δ) ≤ ε, (42)

for all N ≥ N0, where

N0 := max

{
ln(2c1/ε)

c2δn
,

(
ε

2c1
δαq/2

)1−α/2
}
.

The dependence of the constants c1 and c2 on q, n α and κ implies that N0 depends on δ,
ε, q, n, α and κ. This shows inequality (42) holds for all P satisfying

∫
IRn ‖ξ‖

αqP (dξ) ≤ κ
and hence the space (Mαq

IRn,κ, dlW,q) has the UGC property, the next proposition addresses
this.

Proposition 1 Let Mαq
IRn,κ := {P ∈ P(IRn) :

∫
IRn ‖ξ‖

αqP (dξ) ≤ κ} with 1 ≤ q < n/2,

κ > 0 and α > 2. Then the space (Mαq
IRn,κ, dlW,q) has the UGC property, that is, for every

ε > 0 and δ > 0,

PN (dlW,q(P, PN ) ≥ δ) ≤ ε,∀P ∈Mαq
IRn,κ (43)

for N ≥ N0 := max

{
ln(2c1/ε)
c2δn

,
(

ε
2c1
δαq/2

)1−α/2
}

, where the positive constants c1 and c2

depend on q, n α and κ.

Theorem 4 (Statistical robustness for φ(·) := ‖ · ‖q) Consider the case that Z = IRn.
Let Mαq

IRn,κ be defined as in Proposition 1 with κ > 0 and α > 2, and λN ≡ 0. Assume: (a)
the conditions in Theorem 2 are satisfied, (b) the function φ in Assumption 2 (a) take the
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form of ‖ · ‖q with 1 ≤ q < n/2. Then for any ε > 0 and P ∈ Mαq
IRn,κ, there exists positive

number δ > 0 such that for all Q ∈Mαq

IRk,κ
with dlW,q(P,Q) ≤ δ,

dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤ ε (44)

for all N ≥ N0 := max

{
ln(6c1/ε)
c2δn

,
(

ε
6c1
δαq/2

)1−α/2
}

, where the positive constants c1 and c2

depend on q, n α and κ.

Proof. By the proof of Theorem 3, it suffices to find δ and N0 such that

|ϑ(P )− ϑ(Q)| ≤ ε

3
, (45)

P⊗N
(
~zN :

∣∣∣ϑ̂N (~zN )− ϑ(P )
∣∣∣ ≥ ε

3

)
≤ ε

3
, (46)

Q⊗N
(
~̃zN :

∣∣∣ϑ̂N (~̃zN )− ϑ(Q)
∣∣∣ ≥ ε

3

)
≤ ε

3
. (47)

By Theorem 2 and Lemma 1, there exists a constant δ > 0 such that |ϑ(P ′)− ϑ(P )| < ε
6

when dlW,q(P
′, P ) < 2δ. On the other hand, it follows by Proposition 1 that (Mαq

IRn,κ, dlW,q)
has the UGC property, which implies that

Q⊗N
(
~zN : dlW,q(QN , Q) ≥ δ

)
≤ ε

3
(48)

for all Q ∈ Mαq
IRn,κ including Q = P when N ≥ N0 := max

{
ln(6c1/ε)
c2δn

,
(

ε
6c1
δαq/2

)1−α/2
}

.

Then

P⊗N
(
~zN :

∣∣∣ϑ̂N (~zN )− ϑ(P )
∣∣∣ ≥ ε

3

)
≤ P⊗N (dlW,q(PN , P ) ≥ δ) ≤ ε

3
,

which means (46) holds. Next, we show (47) is guaranteed by (48). Let Q ∈ Mαq
IRn,κ

with dlW,q(Q,P ) ≤ δ, Following a similar argument to that of (40), we can obtain (with
dlφ = dlW,q)

ε

3
≥ Q⊗N

(
~̃zN : dlW,q(QN , Q) ≥ δ

)
≥ Q⊗N

(
~̃zN :

∣∣∣ϑ̂N (~̃zN )− ϑ(Q)
∣∣∣ ≥ ε

3

)
.

Since the inequality holds uniformly for all Q ∈Mαq
IRn,κ with dlW,q(Q,P ) ≤ δ, the conclusion

follows.
Note that in Theorem 4, N0 depends on the dimension of z and hence suffers from curse

of dimensionality when the dimension is large. To address the issue, we may strengthen
the condition on c(z, f(x)) by requiring it to be locally Lipschitz continuous with specified
growth of the Lipschitz modulus as z goes to infinity. We will address the issue in the next
subsection.

4.2 Quantitative robustness

In the previous section, there is no explicit relationship between ε and δ in the qualitative
robustness result. In this section, we address the issue under the following additional
condition.
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Assumption 3 The cost function c(z, f(x)) satisfies the following property:

|c(z, f(x))− c(z′, f(x′))| ≤ Lp(z, z′)‖z − z′‖,∀z, z′ ∈ Z, f ∈ F , (49)

where Lp(z, z
′) := max{1, ‖z‖, ‖z′‖}p−1 and p ≥ 1 is a fixed positive number.

To see how the assumption may be satisfied, we consider the case that c : Z × Y → IR
satisfies

|c(z, f(x))− c(z′, f(x′))| ≤ max{L(z), L(z′)}(‖z − z′‖+ |f(x)− f(x′)|),∀z, z′ ∈ Z.

When ‖f‖k ≤ β for some positive number β (see (20)), the calmness condition in Remark
1 implies

|f(x)− f(x′)| = |〈f, k(·, x)〉 − 〈f, k(·, x′)〉| ≤ β‖k(·, x)− k(·, x′)‖k ≤ βg(‖x− x′‖).

Consequently, we have

|c(z, f(x))− c(z′, f(x′))| ≤ max{L(z), L(z′)}(‖z − z′‖+ βg(‖x− x′‖)) (50)

for all z, z′ ∈ Z and f ∈ F . In Example 2, we will explain in detail how L(·) may be
figured out and in a combination with specific form of function g(·), inequality (50) leads
to inequality (49) for some specific cost functions and kernels in regression models.

We now return to our discussion on the quantitative description of the discrepancy
between P⊗N ◦ ϑ̂N (·, λN )−1 and Q⊗N ◦ ϑ̂N (·, λN )−1. Our idea is to use Kantorovich metric
to measure the difference, i.e.,

dlK,1

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
,

which is bounded by the difference of P and Q under ζp metric. The next technical result
prepares for such a conversion.

Lemma 1 For ~z := (z1, · · · , zN ) ∈ Z⊗N and Lp(·, ·) being defined in Assumption 3, let

Ψ :=

ψ : Z⊗N → IR : |ψ(~̃z)− ψ(~̂z)| ≤ 1

N

N∑
j=1

Lp(z̃
j , ẑj)‖z̃j − ẑj‖

 ,

and

dlΨ(P⊗N , Q⊗N ) := sup
ψ∈Ψ

∣∣∣∣∫
Z⊗N

ψ(~z)P⊗N (d~z)−
∫
Z⊗N

ψ(~z)Q⊗N (d~z)

∣∣∣∣ .
Then

dlΨ(P⊗N , Q⊗N ) ≤ ζp(P,Q)< +∞, ∀P,Q ∈ Pp(Z),

where ζp(P,Q) is defined in Definition 4 and

Pp(Z):=

{
P ∈P(Z) :

∫
Z
‖z‖pP (dz) < +∞

}
. (51)
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Proof. The result is established in Lemma 4.1 in Wang et al. (2020) which is an extension
of Lemma 1 in Guo and Xu (2020) (which is presented when p = 1). Here we include a
proof for self-containedness. Let ~zj := {z1, · · · , zj} and ~z−j := {z1, · · · , zj−1, zj+1, · · · , zN}
with z1, · · · , zN ∈ Z. For any P 1, · · · , PN ∈P(Z) and any j ∈ {1, · · · , N}, denote

P−j(d~z−j) := P 1(dz1) · · ·P j−1(dzj−1)P j+1(dzj+1) · · ·PN (dzN )

and h~z−j (z
j) :=

∫
Z⊗(N−1) ψ(~z−j , zj)P−j(d~z−j). Then

|h~z−j (z̃j)− h~z−j (ẑj)| ≤
∫
Z⊗(N−1)

∣∣ψ(~z−j , z̃j)− ψ(~z−j , ẑj)
∣∣P−j(d~z−j)

≤
∫
Z⊗(N−1)

1

N
Lp(z̃

j , ẑj)‖z̃j − ẑj‖P−j(d~z−j)

≤ 1

N
Lp(z̃

j , ẑj)‖z̃j − ẑj‖.

Let W denote the set of functions h~z−j (z
j) generated by ψ ∈ Ψ. By the definition of dlΨ

and the p-th order Fortet-Mourier metric,

dlΨ(P−j × P̃ j , P−j × P̂ j) = sup
ψ∈Ψ

∣∣∣∣∫
Z

∫
Z⊗(N−1)

ψ(~z−j , zj)P−j(d~z−j)P̃ j(dzj)

−
∫
Z

∫
Z⊗(N−1)

ψ(~z−j , zj)P−j(d~z−j)P̂ j(dzj)

∣∣∣∣
= sup

h
~z−j∈W

∣∣∣∣∫
Z
h~z−j (z

j)P̃ j(dzj)−
∫
Z
h~z−j (z

j)P̂ j(dzj)

∣∣∣∣
≤ 1

N
ζp(P̃

j , P̂ j), (52)

where the inequality is due to Nh~z−j (z
j) ∈ Fp(Z) and the definition of ζp(P,Q). Finally,

by the triangle inequality of the pseudo-metric, we have

dlΨ
(
P⊗N , Q⊗N

)
≤ dlΨ

(
P⊗N , P⊗(N−1) ×Q

)
+ dlΨ

(
P⊗(N−1) ×Q,P⊗(N−2) ×Q⊗2

)
+ · · ·+ dlΨ

(
P ×Q⊗(N−1), Q⊗N

)
≤ 1

N
ζp(P,Q)×N = ζp(P,Q).

The proof is complete.
With Lemma 1, we are ready to state our main result.

Theorem 5 (Quantitative statistical robustness) Let Pp(Z) be defined as in (51).
Under Assumption 3,

dlK,1

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤ ζp(P,Q) (53)

for any N ∈ N and any P,Q ∈ Pp(Z), where p is defined as in Assumption 3. In the case
when p = 1,

dlK,1

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤ dlK,Z(P,Q) (54)
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and

dlProk

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
≤
√
dlK,Z(P,Q). (55)

Proof. Inequality (54) follows from inequality (53) whereas inequality (55) follows from
inequality (54) and Corollary 2.18 in Huber and Ronchetti (2009). Thus it suffices to show
(53). By definition

dlK,1

(
P⊗N ◦ ϑ̂N (·, λN )−1, Q⊗N ◦ ϑ̂N (·, λN )−1

)
(56)

= sup
g∈G

∣∣∣∣∫
IR
g(t)P⊗N ◦ ϑ̂N (·, λN )−1(dt)−

∫
IR
g(t)Q⊗N ◦ ϑ̂N (·, λN )−1(dt)

∣∣∣∣
= sup

g∈G

∣∣∣∣∫
Z⊗N

g(ϑ̂N (~zN , λN ))P⊗N (d~zN )−
∫
Z⊗N

g(ϑ̂N (~zN , λN ))Q⊗N (d~zN )

∣∣∣∣ ,
where G denotes the set of all Lipschitz continuous functions with modulus bounded by
1 and we write ~zN for (z1, · · · , zN ) and ϑ̂N (~zN , λN ) for ϑ̂N to indicate its dependence on
z1, · · · , zN . To see the well-definiteness of the pseudo-metric, we note that for each g ∈ G ,

|g(ϑ̂N (~zN , λN ))| ≤ |g(ϑ̂N (~zN0 , λN ))|+ |ϑ̂N (~zN , λN )− ϑ̂N (~zN0 , λN )|, (57)

where ~zN0 ∈ Z⊗N is fixed. By the definition of ϑ̂N (~zN , λN ), we have

|ϑ̂N (~zN , λN )− ϑ̂N (~zN0 , λN )|

=

∣∣∣∣∣∣min
f∈F

1

N

N∑
j=1

(
c(zj , f(xj)) + λN‖f‖2k

)
−min

f∈F

1

N

N∑
j=1

(
c(zj0, f(xj0)) + λN‖f‖2k

)∣∣∣∣∣∣
≤ 1

N

N∑
j=1

sup
f∈F
|c(zj , f(xj))− c(zj0, f(xj0))|

≤ 1

N

N∑
j=1

Lp(z
j , zj0)‖zj − zj0‖. (58)

Combining (57) and (58), we deduce that∫
Z⊗N

g(ϑ̂N (~zN , λN ))P⊗N (d~zN ) <∞,∀P ∈ Pp(Z).

The same argument can be made on
∫
Z⊗N g(ϑ̂N (~zN , λN ))Q⊗N (d~zN ) for Q ∈ Pp(Z).

Next, we show (53). We do so by applying Lemma 1 to the right hand side of (56).
To this end, we need to verify the condition of the lemma. Define ψ : Z⊗N → IR by
ψ(~zN ) := g(ϑ̂N (~zN , λN )). Since g is Lipschitz continuous with modulus bounded by 1, by
(58) we have ∣∣∣ψ(~̃zN )− ψ(~̂zN )

∣∣∣ = |g(ϑ̂N (~̃zN , λN ))− g(ϑ̂N (~̂zN , λN ))|

≤ |ϑ̂N (~̃zN , λN )− ϑ̂N (~̂zN , λN )|

≤ 1

N

N∑
j=1

Lp(z̃
j , ẑj)‖z̃j − ẑj‖,

25



Guo, Xu and Zhang

which means that ψ is in the set Ψ in Lemma 1. The rest follows from application of the
lemma to (56).

Theorem 5 strengthens the qualitative statistical robustness results in several aspects.

1. It gives rise to an explicit quantitative relationship between dlK,1(P⊗N◦ϑ̂N (·, λN )−1, Q⊗N◦
ϑ̂N (·, λN )−1) and ζp(P,Q). This is benefited partially from use of the dual representa-
tion of the Kantorovich metric in the quantification of the former and partially from
use of Fortet-Mourier metric for quantification of the latter. As noted immediately
after Definition 4, ζp(P,Q) may be estimated via sample data, which means the er-
ror bound established in (53) is practically obtainable and this is a significant step
forward from the qualitative robustness result.

2. The error bound does not depend on the regularization parameters because from the
proof we can see that the regularization terms are cancelled. It does not mean that
the parameter has no effect on the statistical performance of the empirical risk, rather
it means the error bound does not capture such effect. It also raises the prospect
of application of the quantitative statistical robustness results to problems with non-
Hilbertian regularizations (Unser (2019)).

3. Inequalities (53) and (54) hold for all N ∈ N which means the quantitative statis-
tical results are independent of the sample size. This effectively addresses curse of
dimensionality suffered by the qualitative statistical robustness results as indicated in
Theorem 4.

4. As we can see from the proof of Theorem 5, the quantitative statistical robustness
results are established without relying on the stability result established in Theorem 2.
Of course, under the strengthened conditions as stated in Assumption 3, we can obtain
by the definition of the Fortet-Mourier metric that

|ϑ(Q)− ϑ(P )| ≤ ζp(Q,P ).

The next example illustrates how the theorem works in some concrete regression models.

Example 2 Consider the least squares regression model, where c(z, f(x)) = 1
2 |y − f(x)|2

and z = IRn × IR. We have

|c(z, f(x))− c(z′, f(x′))| =
1

2

∣∣|y − f(x)|2 − |y′ − f(x′)|2
∣∣

≤ 1

2

(
|y|+ |f(x)|+ |y′|+ |f(x′)|)(|y − y′|+ |f(x)− f(x′)|

)
.

In the case when there exists a positive constant β such that ‖f‖k ≤ β and the calmness
condition in Remark 1 holds,

|f(x)| ≤ ‖f‖k‖k(x, ·)‖k ≤ β‖k(x, ·)‖k = β
√
k(x, x),∀f ∈ F

and

|f(x)− f(x′)| = |〈f, k(·, x)〉 − 〈f, k(·, x′)〉| ≤ β‖k(·, x)− k(·, x′)‖k ≤ βg(‖x− x′‖).
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Let η(z) := |y|+ β
√
k(x, x). Then,

|c(z, f(x))− c(z′, f(x′))| ≤ max
{
η(z), η(z′)

}
(|y − y′|+ βg(‖x− x′‖)).

• In the case of linear kernel, η(z) = |y|+ β‖x‖ ≤ (1 + β)‖z‖, g(t) = t, and

|c(z, f(x))− c(z′, f(x′))| ≤ (1 + β)2 max
{

1, ‖z‖, ‖z′‖
}
‖z − z′‖.

By Theorem 5, dlK,1

(
P⊗N ◦ ϑ̂−1

N , Q⊗N ◦ ϑ̂−1
N

)
≤ (1 + β)2ζ2(P,Q) for all N ∈ N and

any P,Q ∈ P2(IRn+1).

• In the case of Gaussian kernel, η(z) = |y| ≤ ‖z‖, g(t) = max{
√

2γ, 1}t, and

|c(z, f(x))− c(z′, f(x′)) ≤ max{
√

2γ, 1}max
{

1, ‖z‖, ‖z′‖
}
‖z − z′‖.

By Theorem 5, dlK,1

(
P⊗N ◦ ϑ̂−1

N , Q⊗N ◦ ϑ̂−1
N

)
≤ max{

√
2γ, 1}ζ2(P,Q) for all N ∈ N

and any P,Q ∈ P2(IRn+1).

• In the case of polynomial kernel,

η(z) = |y|+ β
√

(γ‖x‖2 + 1)d ≤ (1 + β(γ + 1)d/2) max{1, ‖z‖}d.

For fixed z and z′, let R := max{1, ‖z‖, ‖z′‖}. Then by Remark 1,

‖k(·, x)− k(·, x′)‖k

≤
{

max{ 1
2R

√
2(γR2 + 1)d, 1}‖x− x′‖, if d is even,

max{ 1
2R

√
2(γR2 + 1)d − 2(1− γR2)d, 1}‖x− x′‖, if d is odd,

≤ max{(1 + γ)d/2, 1}max{1, ‖z‖, ‖z′‖}d−1‖z − z′‖.

Let A := (1 + β(γ + 1)d/2) max
{

2β(1 + γ)d/2, 2β, 2
}

. Then

|c(z, f(x))− c(z′, f(x′))| ≤ Amax
{

1, ‖z‖, ‖z′‖
}2d−1 ‖z − z′‖.

By Theorem 5, dlK,1

(
P⊗N ◦ ϑ̂−1

N , Q⊗N ◦ ϑ̂−1
N

)
≤ Aζ2d(P,Q) for all N ∈ N and any

P,Q ∈ P2d(IR
n+1).

We can derive similar results for the regression models with ε-insensitive loss function,
hinge loss, log-loss function, Huber’s loss function and p−th power absolute loss function,
we leave readers for exercises.

Remark 3 It might be interesting to study the discrepancy between fλNN (PN ) and fλNN (QN ).
To this end, we assume that c(z, f(x)) is strong convex in f for almost all z. In such a case,
R(f) = EP [c(z, f(x))] is also strongly convex and so is R(f) + λ‖f‖k, which implies that
problem (1) and the regularized problem (4) have a unique solution. Moreover, the strong
convexity implies that problem (4) satisfies the second order growth condition at fλNN (PN ),
that is, there exists a positive constant α such that

RλNPN (f)− ϑ(PN , λN ) ≥ α‖f − fλNN (PN )‖2k,∀f ∈ F .
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By virtue of Lemma 3.8 in Liu and Xu (2013), under Assumption 3, we can use the in-
equality to obtain

‖fλNN (PN )− fλNN (QN )‖k ≤
√

3

α
sup
f∈F
|EPN [c(z, f(x))]− EQN [c(z, f(x))]|

≤
√

3

α
ζp(PN , QN ).

If ζp(PN , QN )→ 0, then ‖fλNN (PN )−fλNN (QN )‖k → 0. However, we are unable to establish
the kind of estimation in (53) for the optimal solutions because of the non-linearity of the
bound √

3

α
sup
f∈F
|EPN [c(z, f(x))]− EQN [c(z, f(x))]|

for ‖fλNN (PN )− fλNN (QN )‖k in terms of the difference of the function values.

5. Uniform consistency

In this section, we move on to investigate convergence of ϑ(PN , λN ) to ϑ(P ) as N →∞ and
λN → 0. We proceed the investigation in two steps: first pointwise convergence for fixed
P ∈P(Z) and then uniform convergence for all P over a subsetM of P(Z). To this end,
we introduce the following assumption on the cost function.

Assumption 4 There exist a continuous function r : Z → IR+ and a constant ν ∈ (0, 1]
such that for any compact subset Ẑ ⊂ Z

|c(z, f(x))− c(z, g(x))| ≤ r(z)‖f − g‖ν
Ẑ,∞,∀f, g ∈ F , z ∈ Ẑ, (59)

where ‖f − g‖Ẑ,∞ := supz=(x,y)∈Ẑ |f(x)− g(x)|.

The assumption requires c(z, ·) to be Hölder continuous over F uniformly for z ∈ Ẑ. It
should be distinguished from Assumption 3 which requires c(z, f(x)) to be locally Lipschitz
continuous in z for all f ∈ F . In a particular case when there exists a positive constant
such that ‖f‖k ≤ β, this assumption is satisfied by all of the loss functions in regression
models that we list at the beginning of Section 2.

Theorem 6 (Consistency of ϑ(PN , λN )) Assume: (a) the conditions in Theorem 2 are
satisfied, (b) Assumption 4 holds, (c) M(t) := EP [etφ(z)] is finite valued for all t in a

neighborhood of zero and EP [r(z)] < ∞ for P ∈ Mφ
Z . Then for any δ > 0, there exist

positive constants ε < δ/6, α(ε, δ) and γ(ε, δ), independent of N and a positive number N0

such that

P⊗N

(
sup
f∈F
|EPN [c(z, f(x))] + λN‖f‖2k − EP [c(z, f(x))| ≥ δ

)
≤ α(ε, δ)e−Nγ(ε,δ),

(60)

28



Statistical Robustness of Empirical Risks in Machine Learning

when N ≥ N0 and λN ≤ ε/β2 for some positive constant β and hence

P⊗N (|ϑ(PN , λN )− ϑ(P )| ≥ δ) ≤ α(ε, δ)e−Nγ(ε,δ) (61)

and

P⊗N
(
|EP [c(z, fλNN (x))]− ϑ(P )| ≥ 2δ

)
≤ 2α(ε, δ)e−Nγ(ε,δ), (62)

where fλNN ∈ S∗PN ,λN .

In the literature of machine learning, consistency analysis refers to (62) whereas in
stochastic programming, it refers to (61). The consistency analysis is mostly focused on the
case when Z is a compact set. Norkin and Keyzer (2009) comment that compactness of Z
or Y is commonly accepted in the statistical learning literature, where it allows us to apply
exponential concentration measure inequalities for bounded random variables as developed
by Bernstein, McDiarmid, and Hoeffding; see, for example, Cucker and Smale (2002a,b),
Bousquet and Elisseeff (2002), Bartlett and Mendelson (2002), Schölkopf and Smola (2002),
Poggio and Smale (2003), De Vito et al. (2005), Boucheron et al. (2005), Takeuchi et al.
(2006), and Cucker and Zhou (2007).

Caponnetto and De Vito (2007) is one of a few exceptions which studies convergence
of the empirical risk of a regularized least-square problem in a reproducing kernel Hilbert
space with unbounded feasible set. Under some moderate conditions, they derive optimal
choice of the regularization parameter and optimal rate of convergence of the empirical
risk over a class of underlying data generating distributions (priors) defined by a uniformly
bounded kernel. In the case when X is a complete measurable space, Y = IR and k is a
bounded kernel, Steinwart and Christmann (2008) show that EP [c(z, fλNN (x))] converges to
ϑ(P ) in distribution as N →∞, see Theorem 9.1 in Steinwart and Christmann (2008).

Note also that in machine learning, the constants α(ε, δ) and γ(ε, δ) are often optimized.
Our focus here is slightly different: while we are also aiming to derive exponential rate
of convergence, we concentrate more on how to overcome the complexities and challenges
arising from a generic form of the cost function and an unbounded kernel. For instance,
the exponential rate of convergence in (60) holds uniformly for all f ∈ F . This kind of
result may not hold in general, see a counter example in Shalev-Shwartz et al. (2010). Here
we manage to establish the uniform convergence by showing equi-continuity of the class
of functions in F and their uniform boundedness over a compact subset of Z under some
moderate conditions.
Proof of Theorem 6. Observe that inequality (60) implies

P⊗N
(
|EPN [c(z, fλNN (x))] + λN‖fλNN ‖

2
k − EP [c(z, fλNN (x))| ≥ δ

)
≤ α(ε, δ)e−Nγ(ε,δ), (63)

and a combination of (63) and (61) yields (62). Thus it suffices to prove (60) and (61).

Since P ∈Mφ
Z , then for any ε > 0, there exists a constant r > 0 such that∫

Z
φ(z)1(r,∞)(φ(z))P (dz) ≤ ε.
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Moreover, by Cramér’s large deviation theory (Dembo and Zeitouni, 1998), there exist
positive numbers C0 and γ0 such that

P⊗N
(∫

Z
φ(z)1(r,∞)(φ(z))PN (dz) ≥ 2ε

)
≤ C0e

−γ0N .

Under the coercive condition on φ in Assumption 2 (a), there exists a compact set Zε =
(Xε, Yε) ⊂ Z such that {z ∈ Z : φ(z) ≤ r} ⊂ Zε. Thus

sup
f∈F

∫
Z\Zε

|c(z, f(x))|P (dz) ≤
∫
Z\Zε

φ(z)P (dz) ≤
∫
{z∈Z:φ(z)>r}

φ(z)P (dz) ≤ ε

(64)

and

P⊗N

(
sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz) ≥ 2ε

)
≤ P⊗N

(∫
Z\Zε

φ(z)PN (dz) ≥ 2ε

)

≤ P⊗N

(∫
{z∈Z:φ(z)>r}

φ(z)PN (dz) ≥ 2ε

)
≤ C0e

−γ0N . (65)

Moreover, under Assumption 1, there exists η > 0 such that for any x, x′ ∈ Xε satisfying
‖x− x′‖ < η,

|f(x′)− f(x)| = |〈f, k(·, x′)〉 − 〈f, k(·, x)〉| ≤ ‖f‖k‖k(·, x′)− k(·, x)‖k
≤ β‖k(·, x′)− k(·, x)‖k ≤ βε,

which implies that F is equi-continuous when it is restricted to Xε.

Let ∆ε := supx∈Xε ‖k(·, x)‖k. Then for any f ∈ F ,

sup
x∈Xε

|f(x)| = sup
x∈Xε

|〈f, k(·, x)| ≤ ‖f‖k sup
x∈Xε

‖k(·, x)‖k ≤ β∆ε,

which implies that F is uniformly bounded when it is restricted to Xε. Let r̄ := max{|r(z)| :
z ∈ Zε} where r(z) is defined in Assumption 4, and ε̄ := (ε/r̄)1/ν . By Ascoli-Arzela Theorem

(Brown, 2004), there exists an ε̄-net of FK := {f1, . . . , fK} ⊂ F such that F =
K⋃
k=1

F ε̄k, where
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F ε̄k := {f ∈ F : supx∈Xε |f(x)− fk(x)| ≤ ε̄} for k = 1, . . . ,K. Therefore,

|ϑ(PN , λN )− ϑ(P )|

=

∣∣∣∣∣sup
f∈F
{EPN [c(z, f(x))] + λN‖f‖2k} − sup

f∈F
EP [c(z, f(x))]

∣∣∣∣∣
≤

∣∣∣∣∣sup
f∈F

EPN [c(z, f(x))1Zε(z)]− sup
f∈F

EP [c(z, f(x))1Zε(z)]

∣∣∣∣∣+ ε

+ sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz) + sup
f∈F

∫
Z\Zε

|c(z, f(x))|P (dz)

≤

∣∣∣∣∣sup
k∈K

sup
f∈F ε̄k

EPN [c(z, f(x))1Zε(z)]− sup
k∈K

sup
f∈F ε̄k

EP [c(z, f(x))1Zε(z)]

∣∣∣∣∣+ 2ε

+ sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz)

≤ sup
k∈{1,...,K}

sup
f∈F ε̄k

|EPN [c(z, f(x))1Zε(z)− c(z, fk(x))1Zε(z) + c(z, fk(x))1Zε(z)]

−EP [c(z, f(x))1Zε(z)− c(z, fk(x))1Zε(z) + c(z, fk(x))1Zε(z)]|+ 2ε

+ sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz)

≤ sup
k∈{1,...,K}

|EPN [c(z, fk(x))1Zε(z)]− EP [c(z, fk(x))1Zε(z)]|+ 4ε

+ sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz),

where the first inequality holds due to ‖f‖k ≤ β and λN ≤ ε/β2 for N ≥ N0, and the last
inequality holds because under Assumption 4 we have

EP [c(z, f(x))1Zε(z)− c(z, fk(x))1Zε(z)] ≤ EP [r(z)‖f − fk‖νZε,∞1Zε(z)]

≤ r̄ε̄ν = ε

and

EPN [c(z, f(x))1Zε(z)− c(z, fk(x))1Zε(z)] ≤ EPN [r(z)‖f − fk‖νZε,∞1Zε(z)]

≤ r̄ε̄ν = ε.

It follows from by the classical Cramér’s large deviation theorem that for each k there exist
positive constants C(ε, δ, fk) and γ(ε, δ, fk) such that

P⊗N (|EPN [c(z, fk(x))1Zε(z)]− EP [c(z, fk(x))1Zε(z)]| ≥ δ − 6ε) ≤ C(ε, δ, fk)e
−Nγ(ε,δ,fk).
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Hence, we have

P⊗N

(
sup
f∈F
|EPN [c(z, f(x))] + λN‖f‖2k − EPN [c(z, f(x))]| ≥ δ

)

≤ P⊗N

(
sup

k∈{1,...,K}
|EPN [c(z, fk(x))1Zε(z)]− EP [c(z, fk(x))1Zε(z)]| ≥ δ − 6ε

)

+P⊗N

(
sup
f∈F

∫
Z\Zε

|c(z, f(x))|PN (dz) ≥ 2ε

)
≤

∑
k∈{1,...,K}

P⊗N (|EPN [c(z, fk(x))1Zε(z)]− EP [c(z, fk(x))1Zε(z)]| ≥ δ − 6ε)

+C0e
−γ0N

≤
∑

k∈{1,...,K}

C(ε, δ, fk)e
−Nγ(ε,δ,fk) + C0e

−γ0N ,

which implies (60). Finally, (61) follows from (60) due to the fact that

|ϑ(PN , λN )− ϑ(P )| ≤ sup
f∈F
|EPN [c(z, f(x))] + λN‖f‖2k − EP [c(z, f(x))|.

The proof is complete.
Next we study uniform convergence of the regularized empirical risk with respect to a

class of empirical probability distributions as the sample size increases. In practice, we may
be able to obtain empirical data but often do not know the true probability distribution
generating the data. Our next result states that the empirical risk converges to its true
counterpart uniformly for all empirical data to be used in the machine learning model.

Theorem 7 (Uniform consistency of ϑ(PN , λN )) Let

Mφp

Z,κ =

{
P ∈P(Z) :

∫
Z
φ(z)pP (dz) ≤ κ

}
for some fixed p > 1 and κ > 0. Assume: (a) the conditions in Theorem 2 are satisfied, (b)
Assumption 4 hold, (c) M is a weakly compact (i.e., tight 3 and closed under the φ-weak

topology) subset of Mφp

Z,κ. Then for every ε > 0 and δ > 0, there exists N0 such that

sup
P∈M

P⊗N (|ϑ(PN , λN )− ϑ(P )| ≥ δ) ≤ ε, (66)

when λN ≤ δ/(4β2), where β is is some positive constant and N ≥ N0.

The uniform convergence (66) is closely related to learnability in statistical learning
theory which is defined as the uniform convergence of R(fN (PN )) to ϑ(P ) for all empirical
probability distributions drawn from P(Z), where R(·) is defined as in (1), see Definition

3. M is tight under the φ-weak topology if for any ε > 0, there exists a compact set K ⊂ Z such that
supP∈M

∫
Z\K φ(t)P (dt) ≤ ε.
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1 in Shalev-Shwartz et al. (2010). Here we are looking into the convergence for all PN
whose true counterpart is drawnM. This applies to the case that there is some incomplete
information about the nature of P .
Proof of Theorem 7. We first show that (66) holds for each P ∈ M ⊂Mφp

Z,κ. For fixed

P̄ , by the continuity of ϑ(·) at P̄ , for any δ > 0, there exists a positive constant η > 0 such
that

|ϑ(Q)− ϑ(P̄ )| < δ/2

for each Q satisfying dφ(Q, P̄ ) < η. It follows by Corollary 3.5 in Krätschmer, Schied and

Zähle (2012) that (Mφp

Z,κ, dlφ) has the UGC property for all p > 1 and κ > 0, that is, for
any ε, η > 0, there exists N0 ∈ N such that for all N ≥ N0

P⊗N (dlφ(PN , P ) ≥ η) ≤ ε, ∀P ∈Mφp

Z,κ.

Thus, for any ε > 0 and δ > 0, there exists N0 such that for all N ≥ N0

P̄⊗N
(
|ϑ(P̄N )− ϑ(P̄ )| ≥ δ/2

)
≤ P̄⊗N

(
dlφ(P̄N , P̄ ) ≥ η

)
≤ ε.

Consequently, we have

ϑ(P̄N , λN )− ϑ(P̄ ) = inf
f∈F
{EP̄N [c(z, f(x))] + λN‖f‖2k} − inf

f∈F
EP̄ [c(z, f(x))]

= inf
f∈F
{EP̄N [c(z, f(x))] + λN‖f‖2k} − inf

f∈F
EP̄ [c(z, f(x))]

≤ inf
f∈F

EP̄N [c(z, f(x))] + sup
f∈F

λN‖f‖2k − inf
f∈F

EP̄ [c(z, f(x))]

≤ | inf
f∈F

EP̄N [c(z, f(x))]− inf
f∈F

EP̄ [c(z, f(x))]|+ sup
f∈F

λN‖f‖2k

= |ϑ(P̄N )− ϑ(P̄ )|+ λNβ
2.

Likewise, we can show that

ϑ(P̄ )− ϑ(P̄N , λN ) ≤ |ϑ(P̄N )− ϑ(P̄ )|+ λNβ
2.

Thus

P̄⊗N
(
|ϑ(P̄N , λN )− ϑ(P̄ )| ≥ δ

)
≤ P̄⊗N

(
|ϑ(P̄N )− ϑ(P̄ )| ≥ δ/2

)
≤ ε

when λN ≤ δ/(4β2). Therefore, (66) holds when P is fixed at P̄ .
Now we show (66) holds for all P ∈ M. Assume for the sake of a contradiction that

there exist some positive numbers ε0 and δ0 such that for any s ∈ N, there exist s′ > s,
Ps′ ∈M and some Ns′ ≥ s such that

P
⊗Ns′
s′

(
|ϑ(PNs′ , λNs′ )− ϑ(Ps′)| ≥ δ0

)
> ε0. (67)

Let s increase. Then we obtain a sequence of {Ps′} which satisfies (67). SinceM is weakly
compact under the φ-weak topology, then {Ps′} has a converging subsequence. Assume
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without loss of generality that Ps′
φ−→ P∗ ∈ M. Since ϑ(·) is continuous at P∗, then there

exists η > 0 such that |ϑ(Q)− ϑ(P∗)| < δ0/4 for Q satisfying dlφ(Q,P∗) < η and then

|ϑ(Q,λ′)− ϑ(P∗)| ≤ |ϑ(Q)− ϑ(P∗)|+ λ′β2 < δ0/2

for λ′ ≤ δ0/(4β
2). By Ps′

φ−→ P∗, there exists s′0 such that dlφ(Ps′ , P∗) < η/2 and λs′ ≤
δ0/(4β

2) for s′ ≥ s′0, and then |ϑ(Ps′)− ϑ(P∗)| < δ0/4 and |ϑ(Ps′ , λs′)− ϑ(P∗)| < δ0/2. On
the other hand, by the UGC property, there exists a constant N0 > 0 such that

P
⊗Ns′
s′ (dlφ(PNs′ , P∗) ≥ η) ≤ P

⊗Ns′
s′ (dlφ(PNs′ , Ps′) + dlφ(Ps′ , P∗) ≥ η)

= P
⊗Ns′
s′ (dlφ(PNs′ , Ps′) ≥ η − dlφ(Ps′ , P∗))

≤ P
⊗Ns′
s′ (dlφ(PNs′ , Ps′) ≥ η/2) ≤ ε0

for Ns′ ≥ N0 and s′ ≥ s′0. Therefore,

P
⊗Ns′
s′

(
|ϑ(PNs′ , λNs′ )− ϑ(P∗)| ≥ δ0/2

)
≤ P⊗Ns′s′ (dlφ(PNs′ , P∗) ≥ η) ≤ ε0,

and

P
⊗Ns′
s′

(
|ϑ(PNs′ , λNs′ )− ϑ(Ps′)| ≥ δ0

)
≤ P

⊗Ns′
s′

(
|ϑ(PNs′ , λNs′ )− ϑ(P∗)|+ |ϑ(Ps′)− ϑ(P∗)| ≥ δ0

)
≤ P

⊗Ns′
s′

(
|ϑ(PNs′ , λNs′ )− ϑ(P∗)| ≥ 3δ0/4

)
≤ ε0,

which leads to a contradiction with (67) as desired.

6. Concluding remarks

In this paper, we present some theoretical analysis about statistical robustness of empirical
risk in machine learning and we do so for the regularized problem (6). All of our results
hold when the regularization parameter is set zero, which means that they are applicable
to non-regularized problem (2). There are a number of issues remain to be explored.

First, our focus is on empirical risk but it might be interesting to extend the discussion
to kernel learning estimators. Moreover, our analysis in statistical robustness and uniform
consistency does not capture the effect of the optimal choice of the regularization parameter
in learning process, but we envisage the effect exists and will be helpful to quantify it.
Furthermore, it might be interesting to carry out some numerical experiments to examine
the statistical robustness of the empirical risk. Second, there is a prospect to extend the
statistical robustness results established in this paper to deep learning model based on the
recent representer theorem (Unser, 2019, Theorem 4). To see this, we note that our main
statistical robustness results, Theorem 3 and Theorem 5 do not rely on the structure of
RKHS directly, rather they depend on the continuity of the optimal value of ϑ(P ) w.r.t.
P and ϑ(PN , λN ) w.r.t. PN (samples). The main stability result, Theorem 2, depends on
the structure of RKHS but we envisage that a similar result can be established outside
framework of RKHS when f is confined to a class of piecewise linear functions as specified
in Theorem 4 of Unser (2019). Of course, all these will have to be carried out under a
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completely different regularized learning framework in a Banach space equipped with total
variation distance, see (15) in Unser (2019). We leave all these for future research as they
require much more intensive work.
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V. Krätschmer, A. Schied and H. Zähle, Qualitative and infinitesimal robustness of tail-
dependent statistical functionals, J. Multi. Anal., 103(2012): 35-47.
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