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Abstract

The Hidden Markov Model (HMM) is a classic modelling tool with a wide swath of ap-
plications. Its inception considered observations restricted to a finite alphabet, but it was
quickly extended to multivariate continuous distributions. In this article, we further extend
the HMM from mixtures of normal distributions in d-dimensional Euclidean space to gen-
eral Gaussian measure mixtures in locally convex topological spaces, and hence, we christen
this method the Topological Hidden Markov Model (THMM). The main innovation is the
use of the Onsager-Machlup functional as a proxy for the probability density function in
infinite dimensional spaces. This allows for choice of a Cameron-Martin space suitable for
a given application. We demonstrate the versatility of this methodology by applying it to
simulated diffusion processes such as Brownian and fractional Brownian sample paths as
well as the Ornstein-Uhlenbeck process. Our methodology is applied to the identification
of sleep states from overnight polysomnography time series data with the aim of diagnos-
ing Obstructive Sleep Apnea in pediatric patients. It is also applied to a series of annual
cumulative snowfall curves from 1940 to 1990 in the city of Edmonton, Alberta.

Keywords: functional data, Gaussian measures, locally convex spaces, Onsager-Machlup
functional, stochastic processes.

1. Introduction

The Hidden Markov Model (HMM) was and still is a powerful tool for modelling diverse data
sets. Its inception dates to the work of Leonard Baum and his colleagues at the Institute for
Defense Analysis (Baum and Petrie, 1966; Baum et al., 1970) predating the advent of the
expectation-maximization (EM) algorithm (Dempster et al., 1977; Wu, 1983). Originally
developed for observations taking values within a finite alphabet, its applications included
speech recognition and genome sequences (Ferguson, 1980; Poritz and Richter, 1986; Juang
and Rabiner, 1985, 1991). Since then, it has been extended to many types of data including
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multivariate elliptically symmetric distributions (Liporace, 1982) and skewed distributions
(Chatzis, 2010).

When considering an ordered sequence of data points, the HMM assumes that the
sequence of observed data is independent conditional on a discrete state variable driven by
a Markov chain. For example, the daily number of people taking public transit to work
(observation) may depend on the weather (state). If we consider two weather states, snowy
and sunny, we can model the day-to-day changes in the weather as a Markov chain with a 2×
2 transition matrix. In this example, the weather is obviously observable. However, the true
power of the HMM is to learn hidden states that may not be immediately obvious. In this
way, the HMM aims to cluster observations, but assuming only conditional independence
(as opposed to full independence) based on the states of a Markov chain. An excellent
tutorial on HMMs can be found in Rabiner (1989) with many references to early work on
this model therein.

The following work considers extending the observation space of the Hidden Markov
Model from Euclidean space to general locally convex topological vector spaces (LCTVS)
specifically where the states of the Markov chain correspond to mean-shifted Gaussian
measures. As a result of this general formulation, our so-called Topological Hidden Markov
Model (THMM) can be adapted to many settings of interest from finite dimensional data to
functional data and stochastic process data. In Section 5, we show the method’s applicability
to a variety of simulated sample paths from stochastic processes such as fractional Brownian
motion and the Ornstein-Uhlenbeck process. In Section 6, we apply these algorithms to the
task of identifying sleep states from an electroencephalogram (EEG) time series collected
during overnight polysomnography. While this data is considered as a proof-of-concept
for the methodology, the ultimate goal for subsequent research is to be able to quickly
identify sleep disorders such as Pediatric Obstructive Sleep Apnea. Section 7 applies both
the classic HMM and the new THMM algorithms to cumulative snowfall curves from the
city of Edmonton, Alberta with an aim of identifying patterns in snowfall across a 50 year
time span.

In infinite dimensional spaces, there is no analogue of Lebesgue measure and thus no
probability densities and likelihood function to maximize. This is the central challenge
when working with functional and stochastic process data. Our main innovation in this
work is use the Onsager-Machlup functional for a general Gaussian measure (Bogachev,
1998) within the HMM emission function. This allows for fitting HMMs to data living in
a wide variety of spaces such as L2[0, 1] and the Sobolev space W 2,1

0 [0, 1] among others.
There have been many past works on deriving the Onsager-Machlup functional for various
Gaussian processes that we will make use of (Takahashi and Watanabe, 1981; Zeitouni,
1989; Shepp and Zeitouni, 1992; Capitaine, 1995; Ikeda and Watanabe, 2014).

There have been a few recent ventures taking the classic HMM into the realm of func-
tional data. In Martino et al. (2020), they focus on multivariate functional data and choose
the emission function to be the inverse squared L2 distance. The work of Sidrow et al.
(2021) proposed a more complicated hierarchical HMM model that can be used to partition
high frequency functional data with complicated dependence structures so that the pieces
can in turn be modelled via time series or functional data methods. For analyzing longitu-
dinal data, Altman (2007) proposes a mixed HMM that incorporates covariates and random
effects into the model. Apart from functional data, there has been much recent work into
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HMM fitting with nonparametric density estimation (De Castro et al., 2016; Gassiat and
Rousseau, 2016; Gassiat et al., 2016; Lehéricy, 2018).

There have been many papers written on clustering of functional data without any
regards to temporal ordering. In this work, we consider the kmeans.fd function from the
fda.usc R package (Febrero-Bande and Oviedo de la Fuente, 2012). More sophisticated
clustering and alignment methods can be found in fdacluster (Sangalli et al., 2010, 2014;
Stamm, 2023). However, our data sets of interest are already aligned with regularly spaced
observations, and thus we do not make use of fdacluster in this work. Nevertheless,
alignment of functional data within an HMM framework would be a challenging future
research topic. Other works on functional clustering methods include Bouveyron (2021)
and chapter 9 of Ferraty and Vieu (2006).

The classic Hidden Markov Model is introduced below in Section 2. The two main
algorithms, Baum-Welch and Viterbi, are outlined in Section 3. Section 4 details many
specific models of interest including parametric models like Brownian motion with linear
drift and non-parametric curve fitting. Section 5 demonstrates the power of the THMM
applied to a variety of simulated data sets. Section 6 further demonstrates the power of the
THMM by showing its efficacy in identifying sleep states from noisy pediatric EEG data
streams. Section 7 considers climatological data. Future extensions to this work are briefly
discussed in Section 8.

All theory contributions to justify this paper’s methodology can be found in Appendix A.
Appendix A.1 introduces notation for locally convex spaces, semi-norms, and Cameron-
Martin spaces. Appendix A.2 defines the Onsager-Machlup functional. Theorems justifying
the validity of the THMM are stated and proved in Appendices A.3 and A.4. We first prove
that each step of the algorithm does, in fact, improve the analogue of the likelihood function
which is based on the Onsager-Machlup functional. We secondly prove that the sequence
of reestimated parameters produced by the Baum-Welch algorithm has at least one limit
point and that all limit points of the sequence are critical points of the likelihood function.
Lastly, we show that in the dual sense, the corresponding sequence of mixtures of Gaussian
measures has a weak limit point as the number of iterations of the algorithm tends to
infinity. Lastly, Appendix A.6 contains a theorem and proof and short discussion regarding
model identifiability.

2. The Classic Hidden Markov Model

The classic HMM model is a type of dynamic Bayesian network (Sucar, 2015) with a long
history of development. A standard diagram of such a model can be found in Figure 1
whereas Figure 5.5 in Sucar (2015) displays more complicated extensions of the HMM. For
the classic HMM, we begin with an observation sequence O1, . . . , OT that lives in some
space X, which could be a finite space {1, 2, . . . , d} or Euclidean space Rd or otherwise.
In tandem, there is a hidden state sequence s = (s1, . . . , sT ) where st ∈ S = {1, 2, . . . , p},
which evolves as a p-state Markov chain with initial state probabilities ηj = P (s1 = j) and
p × p transition matrix A with ijth entry aij = P (st+1 = j | st = i), which is assumed to
be invariant to choice of t = 1, . . . , T − 1. However, nonhomogeneous Markov models with
time varying state transition probabilities have also been developed (Hughes et al., 1999).
Furthermore, there exist state dependent emission functions bj : X → R+ for j = 1, . . . , p,
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Hidden States: s1 s2 . . . sT

Observations:
O1 O2 OT

Figure 1: The classic Hidden Markov Model has observations Ot that are known, but has
states st that are unknown. Conditional on state st, the observation Ot is inde-
pendent of the other observations.

which assign a value to each observation Ot based on being emitted from each potential state
st = j. In the case of, say, multivariate Gaussian data in Rp, bj is simply the d-dimensional
probability density function with state dependent mean vector and covariance matrix. In
the classic HMM, it is assumed that the observation sequence is comprised of T elements
that are independent conditionally on the state sequence. This assumption is removed in
more complex variants of the HMM such as the autoregressive HMM discussed in Rabiner
(1989) and others.

The Baum-Welch algorithm offers an efficient way to estimate the unknown parameters
in the HMM that maximize the likelihood function

L(O1, . . . , OT |λ) =
∑
s∈ST

ηs1

T∏
t=1

astst+1bst(Ot)

where the summation is taken over ST = {1, . . . , p}T , the space of all pT state sequences,
and λ represents the collection of model parameters. The crux of the Baum-Welch algorithm
are the forward and backward probabilities

αt(j) = P (O1, . . . , Ot, st = j |λ)

βt(j) = P (Ot+1, . . . , OT | st = j, λ) ,

which can be computed recursively as outlined below in Algorithm 1. Estimation of the
state means is achieved as a weighted sum of the observations where the weights come
directly from the α and β probabilities. Namely, we wish to find the state means that
maximize the following sum

∑T
t=1 αt(j)βt(j)bj(Ot) for each state j.

Our implementation of Baum-Welch discussed in the next section is very similar to the
classic version. The main innovation is usage and justification of the Onsager-Machlup
functional for the emission functions bj as we do not have a probability density function to
use for the bj . Thus, the state dependent means live in the Cameron-Martin space H(γ).
More technical details can be found in the appendix.

3. The Topological HMM

Borrowing the notation from classic works on HMMs (Liporace, 1982; Rabiner, 1989), the
goal for fitting an HMM to an observation sequence O = (O1, . . . , OT ) is to find the model
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Algorithm 1 The THMM Baum-Welch Algorithm

Initialize model parameters:
ηj = P (s1 = j) , for j = 1, . . . , p (Initial probabilities)
aij = P (st+1 = j | st = i) , for i, j = 1, . . . , p (Transition probabilities)
hj ∈ H(γ) for j = 1, . . . , p (Center element for each state)

Iterate until convergence:
Forward Pass:

α1(j) = ηjbj(O1)
For t = 2, . . . , T :

αt(j) = P (O1, . . . , Ot, st = j | η,A, h) =
∑p

i=1 αt−1(i)aijbj(Ot)
Backward Pass:

βT (j) = 1
For t = (T − 1), . . . , 1:

βt(j) = P (Ot+1, . . . , OT | st = j, η, A, h) =
∑p

i=1 βt+1(i)ajibi(Ot+1)
Reestimation:

γt(i) = P (st = i |O, η,A, h) = αt(i)βt(i)∑p
j=1 αt(j)βt(j)

ξt(i, j) = P (st = i, st+1 = j |O, η,A, h) =
αt(i)aijbj(Ot+1)βt+1(j)∑p

i′,j′=1
αt(i′)ai′j′bj′ (Ot+1)βt+1(j′)

η̃j = γ1(j)

ãij =
∑T−1

t=1 ξt(i,j)∑T−1
t=1 γt(i)

hj = arg max
h∈H(γ)

∑T
t=1 αt(j)βt(j)bj(Ot) where bj(Ot) depends on h.

parameters and the state sequence s that maximize the likelihood L(O | s) =
∏T
t=1 bst(Ot).

The task of choosing the best parameters is achieved via the Baum-Welch algorithm. De-
termining the best state sequence is done by the Viterbi algorithm. These are detailed in
Algorithms 1 and 2, respectively, which differ only from their original instantiations in the
choice of emission function bj and method of reestimation for the state means hj ∈ H(γ) for
j = 1, . . . , p. The space H(γ) where means are selected from is a user-specified Cameron-
Martin space. In the THMM setting, the emission functions bj are Onsager-Machlup func-
tionals, which is limit of the ratio of the Gaussian measures of two balls centred at some
element hj and at the origin element 0.

Many more technical details on this setup can be found in Appendices A.1 and A.2.
Theorems and proofs regarding the convergence properties of the Baum-Welch algorithm in
this setting are detailed in Appendices A.3 and A.4, which extend from the classic works of
Liporace (1982) and Wu (1983). Lastly, identifiability of this model is discussed in detail in
Appendix A.6, which extend the recent works of Gassiat and Rousseau (2016) and Gassiat
et al. (2016).

3.1 Baum-Welch

The Baum-Welch Algorithm (Baum and Petrie, 1966), detailed in Algorithm 1, takes a
form similar to that of an Expectation-Maximization algorithm. However, the Baum-Welch
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Algorithm 2 The Viterbi Algorithm

Initialize δ1(j) = ηjbj(O1) and φ1(j) = 0 for all i = 1, . . . , p.
For t = 2, . . . , T , compute the following for all j = 1, . . . , p

δt(j) = maxi=1,...,p {δt−1(i)aij} bj(Ot)
φt(j) = arg max

i=1,...,p
{δt−1(i)aij}

The final state is ŝT = arg maxi=1,...,p δT (i).
For t = (T − 1), . . . , 1, compute

ŝt = φt+1(ŝt+1).

algorithm predates the EM algorithm (Dempster et al., 1977) by about a decade. For
more classic references on HMMs, see those within Rabiner (1989). The THMM version
of Baum-Welch maximizes a replacement for the likelihood based on the Onsager-Machlup
functionals. Such models can be fitted with respect to other criterion such as Viterbi
Training (Lember and Koloydenko, 2008), for example.

The Baum-Welch algorithm works by computing so-called forward (alpha) and backward
(beta) probabilities given the model parameters. It then reestimates the model parameters
based on these probabilities. At each iteration, the likelihood increases and the algorithm
is run until the relative change in the likelihood becomes minuscule. Given the alpha
probabilities, the log likelihood is simply computed as `(O) =

∑p
j=1 logαT (j). Denoting

the log likelihood at iteration r to be `r, we stop the algorithm when the relative change
in the log likelihood, (`r+1 − `r)/`r+1, is less than a user specified tolerance, say, 10−6. In
practice, all of the terms in Algorithm 1 are computed on the log-scale to avoid numerical
stability issues.

Reestimation of the means is performed by

hj = arg max
h∈H(γ)

T∑
t=1

αt(j)βt(j)bj(Ot)

where the emission probabilities, bj(Ot), depend on choice of state mean hj . How this
equation is used depends on the type of model being fitted. Many specific examples are
considered below in Section 4.

As with both the classic HMM and EM-style algorithms, the choice of initialization
parameters can drastically affect the performance. In particular, we require each state to
have a mean hj ∈ H(γ), which furthermore lies within the convex hull of the observations
O1, . . . , OT . This will be discussed more in Appendix A. For parametric settings, we esti-
mate the parameters for each Ot and then pick random starting values roughly spread out
in this convex set. Alternatively, in the non-parametric setting, we can either randomly
select a single Ot for each state to start with or we can run a quick k-means clustering to
automatically choose the starting state means.

3.2 Viterbi

Given an observation sequence O1, . . . , OT , a state space, initial probabilities ηj , transition
probabilities aij , and emission probabilities bj(Ot), the Viterbi algorithm (Viterbi, 1967)
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finds the most probable state sequence; see Rabiner (1989) and references therein for more
details.

Let δt(j) = max(s1,...,st−1)∈St−1 P (s1, ..., st−1, st = j) be the highest probability of any
state sequence from 1 to t such that the state at time t is j. The probability of the most likely
state sequence ending in state st = j can be computed in a recursive fashion by maximizing
over st−1 at each time step. Let φt(j) be the state at time t− 1 that maximizes δt(j). The
goal of this algorithm is to compute the best state sequence denoted ŝ1, . . . , ŝT . The Viterbi
algorithm is detailed in Algorithm 2. We also consider soft clustering by considering the
posterior probabilities of being in each given state at each given time. While we only make
use of the classic Viterbi algorithm in this research, a comprehensive analysis of inference on
Markov paths can be found in Lember and Koloydenko (2014) and the references therein.
This may be of future interest especially when applied to complex data sets of interest.

4. Spaces of Interest

The following subsections contain specific settings of interest where the equations for the
Onsager-Machlup functional have been worked out explicitly. The first is the classic Eu-
clidean space setting, which coincides with the standard multivariate Gaussian HMM. Of
more novel interest are the various types of Wiener processes such as Brownian motion and
the Ornstein-Uhlenbeck process. Fractional Brownian motion with a fixed Hurst parameter
and non-parametric state mean estimation are also considered.

4.1 Euclidean Space

For the simplest setting, we can consider Ot ∈ Rd and each state st = j corresponding
to a multivariate Gaussian distribution with mean µj and common covariance Σ. In this
case, the Cameron-Martin norm is |h|H(γ) = sup{vTh : vTΣv ≤ 1} where E(v) = 0

and Var (v) = vTΣv. This leads to |h|H(γ) =
√
hTΣ−1h. The corresponding Cameron-

Martin inner product is 〈h, k〉H(γ) = hTΣ−1k. Thus, the log-emission function is log bj(Ot) =

−1
2(Ot − h)TΣ−1(Ot − h) and the reestimated mean vector is

m̃j = arg min
h∈Rd

T∑
t=1

αt(j)βt(j)(Ot − h)TΣ−1(Ot − h),

which can be simply solved via vector calculus to get

m̃j =

∑T
t=1 αt(j)βt(j)Ot∑T
t=1 αt(j)βt(j)

.

This formulation coincides with the classic HMM for multivariate Gaussian data when the
covariance matrix is fixed. Our current formulation of the HMM using the Onsager-Machlup
functional requires a fixed covariance structure across all system states. However, as we will
show below, this still allows the THMM to model many diverse types of data.

Theoretical justification for the reestimated means can be found in Lemma 5. In this
and the following specific cases, the reestimated means take the form of weighted averages
of the observed data points.
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4.2 Wiener Space with Smooth Norms

In a collection of articles and texts (Takahashi and Watanabe, 1981; Zeitouni, 1989; Shepp
and Zeitouni, 1992; Capitaine, 1995; Ikeda and Watanabe, 2014), the Onsager-Machlup
functional is derived for the diffusion process

dYτ = r(Yτ )dτ + dWτ , Y0 = y, Yτ ∈ Rd, τ ∈ [0, 1],

where r : Rd → Rd is a smooth function and Wτ is d-dimensional Brownian motion. That
is,

log

[
lim
ε→0

P (‖Y − Φ‖ < ε)

P (‖W‖ < ε)

]
= −1

2

d∑
k=1

∫ 1

0

∣∣∣Φ̇k,τ − rk(Φτ )
∣∣∣2dτ − 1

2

d∑
k=1

∫ 1

0

∂rk
∂yk

(Φτ )dτ

where Φ̇τ = dΦτ/dτ . Ikeda and Watanabe (2014) prove the above for the sup-norm and
Φ ∈ C2, the space of twice differentiable functions. Shepp and Zeitouni (1992) extended
this to all Φ such that Φ − y ∈ H(γ) and Lp norms for p ≥ 4 and Hölder norms with
0 < α < 1/3. Capitaine (1995) further shows that this result holds for a wide class of
smooth norms on Wiener space including Hölder norms with 0 < α < 1/2, Besov norms,
and Sobolev norms.

Brownian Motion with Drift

Many common stochastic processes arise from choices of r (see Pavliotis (2014) Section 5.3).
For example, in the case of one-dimensional Brownian motion with state j drift coefficient
cj , the diffusion equation is dYτ = cjdτ + dWτ , and the Onsager-Machlup functional /
log-emission function is

log bj(Ot,τ ) = log

[
lim
ε→0

P (‖Wτ + cjτ −Ot,τ‖ < ε)

P (‖Wτ‖ < ε)

]
= −1

2

∫ 1

0

∣∣∣Ȯt,τ − cj∣∣∣2dτ.
The observations Ot,τ should be projected into the Cameron-Martin space H(γ) allowing
for differentiation. In practice, smoothing methods may be required. The drift terms can
be reestimated within the Baum-Welch algorithm by

c̃j = arg min
h∈R

T∑
t=1

αt(j)βt(j)

{
1

2

∫ 1

0

∣∣∣Ȯt,τ − h∣∣∣2dτ} .
This leads to the weighted least squares estimate

c̃j =

∑T
t=1 αt(j)βt(j)[Ot,1 −Ot,0]∑T

t=1 αt(j)βt(j)
.

Restricting to a one-dimensional drift parameter is convenient for exposition, but not
necessary in practice. We could instead consider

dYτ = r(t)dτ + dWτ , Y0 = y, Yτ ∈ Rd, τ ∈ [0, 1],

where r(t) =
∑m

i=1 ciψi(t) for some functional basis ψ1, . . . , ψm. Thus, we would have m
parameters to estimate.
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Ornstein-Uhlenbeck Process

In the case of the one-dimensional Ornstein-Uhlenbeck (OU) process, dYτ = cj(µj−Yτ )dτ+
dWτ , the Onsager-Machlup functional is

log bj(Ot,τ ) = log

[
lim
ε→0

P (‖Wτ + cj(µj − Yτ )−Ot,τ‖ < ε)

P (‖W‖ < ε)

]
= −1

2

∫ 1

0

∣∣∣Ȯt,τ − cj(µj −Ot,τ )
∣∣∣2dτ +

cj
2
,

which leads to the following parameter reestimation:

(c̃j , µ̃j) = arg min
h∈R+,k∈R

T∑
t=1

αt(j)βt(j)

{
1

2

∫ 1

0

∣∣∣Ȯt,τ − h(k −Ot,τ )
∣∣∣2dτ − h

2

}
.

The derivative with respect to k inside the curly brackets gives similarly to the above
Brownian motion that

µ̃j =

∑T
t=1 αt(j)βt(j)

∫ 1
0 {hȮt,τ + h2Ot,τ}dτ∑T

t=1 αt(j)βt(j)h
2

=

∑T
t=1 αt(j)βt(j){Ot,1 −Ot,0 + h

∫ 1
0 Ot,τdτ}∑T

t=1 αt(j)βt(j)h
.

The derivative with respect to h inside the curly brackets gives∫ 1

0

[
Ȯt,τ − h(k −Ot,τ )

]
(Ot,τ − k)dτ − 1

2

= −k(Ot,1 −Ot,0) +

∫ 1

0
Ȯt,τOt,τdτ + h

∫ 1

0
(k −Ot,τ )2dτ − 1

2
.

Thus,

c̃j =

∑T
t=1 αt(j)βt(j)

[
1
2 + k(Ot,1 −Ot,0)−

∫ 1
0 Ȯt,τOt,τdτ

]
∑T

t=1 αt(j)βt(j)
[∫ 1

0 (k −Ot,τ )2dτ
] .

In practice, we reparametrize the OU process to stabilize this nonlinear optimization over
the two parameters, which is discussed in Section 5.2.

4.3 Fractional Brownian Motion

In Moret and Nualart (2002), the Onsager-Machlup functional is derived for fractional
Brownian motion in the Singular Case, which is where the Hurst parameter is 1

4 < ν < 1
2 ,

and the Regular Case where the Hurst parameter is ν > 1
2 . Note that for ν = 1

2 , we have
standard Brownian motion. The process considered is

Yτ = y +W ν
τ +

∫ τ

0
r(Ys)ds
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where r ∈ C2
b (R), the space of bounded functions with two continuous derivatives.

The Onsager-Machlup functional for the singular case from Theorem 7 in Moret and
Nualart (2002) is

log

[
lim
ε→0

P (‖Y − Φ‖ < ε)

P (‖W ν‖ < ε)

]
= −1

2

∫ 1

0

{
Φ̇τ − τ−υIυ0+τ

υr(Φτ )
}2
dτ − 1

2
dν

∫ 1

0
r′(Φτ )dτ

where KνΦ̇ = Φ− x, υ = |ν − 1/2|, Kν is the operator such that dW ν
t = Kν(t, s)dWs,

dν =

√
2νΓ(3/2− ν)Γ(ν + 1/2)

Γ(2− 2ν)
,

and Iυa+f(x) = Γ(υ)−1
∫ x
a (x − y)υ−1f(y)dy is called the left fractional Riemann-Liouville

Integral.
In the simplest non-trivial setting of r = c ∈ R and fixed υ ∈ (0, 1/4), we aim to solve

for the drift term c such that

c̃j = arg min
h∈R

T∑
t=1

αt(j)βt(j)

{
1

2

∫ 1

0

{
Φ̇τ − hτ−υIυ0+τ

υ
}2
dτ

}
.

In this case, the integral Iυ0+τ
υ is a scaled Beta function and τ−υIυ0+τ

υ = τυΓ(υ+1)/Γ(2υ+
1). Thus, some simple calculus results in

c̃j =
Γ(2υ + 2)

Γ(υ + 1)

∑T
t=1 αt(j)βt(j)

∫ 1
0 τ

υȮt,τdτ∑T
t=1 αt(j)βt(j)

.

Setting υ = 0 in the above returns us to the formula for c̃j derived from Brownian motion
with drift.

Similarly, the Onsager-Machlup functional for the regular case, ν > 1/2, from Theorem 8
in Moret and Nualart (2002) is

log

[
lim
ε→0

P (‖Y − Φ‖ < ε)

P (‖W ν‖ < ε)

]
= −1

2

∫ 1

0

{
Φ̇τ − τωDω

0+τ
−ωr(Φτ )

}2
dτ − 1

2
dν

∫ 1

0
r′(Φτ )dτ

for ω = ν − 1/2 and Dω
0+ is the left-sided Riemann-Liouville derivative defined as

Dω
a+f(x) =

1

Γ(1− ω)

d

dx

∫ x

a

f(y)

(x− y)ω
dy.

If we consider the linear drift setting of r = c ∈ R, then τωDω
0+τ
−ω = (1 − 2ω)τ−ωΓ(1 −

ω)/Γ(2− 2ω). A little more calculus gives us

c̃j =
Γ(2− 2ω)

Γ(1− ω)

∑T
t=1 αt(j)βt(j)

∫ 1
0 τ
−ωȮt,τdτ∑T

t=1 αt(j)βt(j)
,

which coincides nicely with the singular case as −ω = υ.
Applying our THMM algorithm to fractional Brownian motion extends the range of pos-

sible stochastic processes we can consider. When the Hurst parameter ν > 1/2, the process
has positively correlated increments and thus appears smoother than standard Brownian
motion. In comparison, processes with ν < 1/2 exhibit negatively correlated increments
and thus appear rougher than standard Brownian motion.

10
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4.4 Non-Parametric State Means

The previous sections consider estimation of specific real valued parameters under different
stochastic models. However, a more flexible approach is to treat estimation of the means
non-parametrically. This is achieved by using the formulae derived from the Onsager-
Machlup functional at the beginning of Section A.2 directly.

Indeed, the emission function and mean for state j can be shown to be

bj(Ot) = exp

(
−1

2
|Ot − hj |2H

)
and hj =

∑T
t=1 αt(j)βt(j)Ot∑T
t=1 αt(j)βt(j)

,

respectively. To see the latter equation, let Rγ be the covariance operator for Gaussian
measure γ. We note that

T∑
t=1

αt(j)βt(j)|Ot − hj |2H =

T∑
t=1

αt(j)βt(j)Rγ(O∗t − h∗j )(O∗t − h∗j )

=
T∑
t=1

αt(j)βt(j)

∫
X

(O∗t − h∗j )2γ(dx),

which is minimized by h∗j =
∑T

t=1 αt(j)βt(j)O
∗
t /
∑T

t=1 αt(j)βt(j). Applying the operator Rγ
to each side recovers the optimal hj .

In practice, one must select a suitable Gaussian measure / Cameron-Martin space for the
problem at hand. For example, in Section 6, we analyze a sequence of Electroencephalogram
(EEG) signals under the standard Wiener measure. In this setting, H = W 2,1

0 [0, 1], the
Sobolev space of absolutely continuous functions h such that ḣ := ∂h(τ)/dτ ∈ L2[0, 1] with
h(0) = 0. As a consequence, the emission function becomes

bj(Ot) = exp

(
−1

2

∫ 1

0

∣∣∣Ȯt(τ)− ḣj(τ)
∣∣∣2dτ) .

However, it is worth emphasizing that other Cameron-Martin norms can be considered and
may improve performance of algorithm.

5. Simulated Data Analysis

In the following sections, we test our THMM algorithm on a variety of simulated data sets
from three different settings: Brownian motion with linear drift, the Ornstein-Uhlenbeck
process, and fractional Brownian motion with linear drift. To evaluate its performance
accuracy, we use the adjusted Rand index (ARI) as our performance metric. The ARI is
a popular method of measuring the agreement between two sets of labels and is computed
in R via the adjustedRandIndex() function in the mclust package (Scrucca et al., 2016).
An ARI value of 1 indicates a perfect match whereas an ARI value of 0 indicates random
guessing. We secondly compare clustering accuracy using cross entropy as an alternative
measurement.

For each of the following simulations, it is possible to concoct an algorithm specifically
designed to perform well on that specific data set; e.g. via feature selection. The true power

11
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of the THMM approach is that it is generally applicable and adaptable to all of these settings
of interest as well as others not considered in this work. R code to recreate these simulations
can be found at https://github.com/cachelack/Topological-Hidden-Markov-Model.

git. This also includes the THMM variants of the Baum-Welch and Viterbi algorithms.

Nevertheless, for the sake of comparison, we use functional Principal Components Anal-
ysis (fPCA) to project the T = 200 samples onto the first k principal components. Then, a
classic multivariate Gaussian HMM is fit to this Rk-valued data using the R package mhsmm

(O’Connell and Højsgaard, 2011).

5.1 Brownian Motion with Drift

For a simple setting to test the THMM algorithm, we simulate a sequence of T = 200 Brow-
nian sample paths with 5 different states corresponding to different drift parameters. For
the “low separation” simulation, the drift parameters are −4,−2, 0, 2, 4. For the “medium
separation” simulation, the drift parameters are −8,−4, 0, 4, 8. We consider two different
transition matrices,

A1 =


0.64 0.09 0.09 0.09 0.09
0.09 0.64 0.09 0.09 0.09
0.09 0.09 0.64 0.09 0.09
0.09 0.09 0.09 0.64 0.09
0.09 0.09 0.09 0.09 0.64

 and A2 =


0.04 0.44 0.04 0.04 0.44
0.44 0.04 0.44 0.04 0.04
0.04 0.44 0.04 0.44 0.04
0.04 0.04 0.44 0.04 0.44
0.44 0.04 0.04 0.44 0.04

 ,

where A1 makes the Markov chain remain in the same state with high probability whereas
A2 results in more state switching behaviour. In latter simulations, we only consider A1 for
generating data as the performance of all methods considered does not appear to vary for
transition matrices A1 and A2. Examples of this data are displayed in Figure 2.

The results of running the Baum-Welch and Viterbi algorithms making use of the
Onsager-Machlup functional for Brownian motion with drift, see Section 4.2, are displayed
in Tables 1 and 2. The performance of the THMM algorithm outperforms the combination
of fPCA and the classic HMM in each of the four cases in both ARI and cross entropy. In
each test, two principal components were used for the fPCA HMM approach, which gave
the strongest performance after considering 1, . . . , 5 principal components.

We do note that our algorithm run in this setting is specifically designed to detect
Brownian motion with drift and, in fact, estimates the drift parameters with high accuracy.
If we did not wish to restrict ourselves to a such parametric model, we could fit a THMM
model non-parametrically using the L2 norm distance. For the data generated by matrix
A1, we have ARI values of 0.452 and 0.806 for low and medium separation, respectively.
Meanwhile, Table 1 reports ARIs of 0.528 and 0.894 for the parametric setting. Hence,
only a little accuracy is lost for not a priori knowing the correct model to fit to the data.
For completeness, the same behaviour is seen for transition matrix A2 where the ARIs for
non-parametric fitting are 0.453 and 0.889 compared to the parametric values of 0.471 and
0.952 for low and medium separation, respectively.

In the simulations to follow, we only report findings for transition matrix A1. This is
because the performances of the methods under comparison are agnostic to this choice of
transition matrix. Also, matrix A1 models data that likely remains in a given state for more
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Figure 2: Simulated Brownian motion with five states with drift parameters (−4,−2, 0, 2, 4)
on the left and (−8,−4, 0, 4, 8) on the right.

timesteps before switching to a new state, which is what we expect from our motivating
pediatric obstructive sleep apnea data set.

5.2 Ornstein-Uhlenbeck Process

The one-dimensional Ornstein-Uhlenbeck process has the form

dYτ = c(µ− Yτ )dτ + dWτ

with two parameters. The mean parameter µ is where the process tends to in the long run,
and the concentration parameter c determines how tightly the process fluctuates around
its mean. However, this form is numerically challenging to optimize. Instead, the THMM
estimates the transformed variables b0 = cµ and b1 = c. This is implemented in R via the
optim function with the L-BFGS-B method. The function to minimize is

u(b0, b1) =

∑T
t=1 αt(j)βt(j)

{
1
2

∫ 1
0 {Ȯt,τ − (b0 − b1Ot,τ )}2dτ − b1

2

}
∑T

t=1 αt(j)βt(j)

with derivatives

∂u

∂b0
= −

∑T
t=1 αt(j)βt(j)

{∫ 1
0 {Ȯt,τ − (b0 − b1Ot,τ )}dτ

}
∑T

t=1 αt(j)βt(j)

∂u

∂b1
=

∑T
t=1 αt(j)βt(j)

{∫ 1
0 {Ȯt,τ − (b0 − b1Ot,τ )}Ot,τdτ − 1

2

}
∑T

t=1 αt(j)βt(j)

where we divide everything by
∑T

t=1 αt(j)βt(j) for numerical stability reasons.
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THMM with BMWD
Low Separation

True States Est
A B C D E drift

a 26 6 . . . -3.98
b 10 27 10 . . -1.77
c . 2 8 10 . 0.85
d . . 10 41 2 1.89
e . 1 . 4 43 3.81

drift -4 -2 0 2 4

ARI: 0.528 Ent: 2.859

HMM with fPCA
Low Separation

True States
A B C D E

a 26 9 . . .
b . 16 6 . .
c 6 6 1 . .
d 4 3 3 . .
e . 2 18 55 45

ARI: 0.338 Ent: 2.277

THMM with BMWD
Medium Separation

True States Est
A B C D E drift

a 36 2 . . . -7.99
b . 33 4 . . -3.57
c . 1 23 . . -0.03
d . . 1 53 . 3.72
e . . . 2 45 7.94

drift -8 -4 0 4 8

ARI: 0.894 Ent: 0.463

HMM with fPCA
Medium Separation

True States
A B C D E

a 18 17 5 . .
b 14 13 2 . .
c 4 6 5 2 .
d . . 16 52 3
e . . . 1 42

ARI: 0.534 Ent: 3.070

Table 1: Confusion matrices showing the alignment of true states (A-E) with estimated
states (a-e) for transition matrix A1 for both the THMM (top) and fPCA HMM
(bottom). The left is low separation, and the right is medium separation. The
ARI and cross entropy are listed at the bottom of each table.
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THMM with BMWD
Low Separation

True States Est
A B C D E drift

a 38 8 . . . -3.57
b 2 30 20 . . -1.47
c . 3 17 9 2 0.51
d . . 7 27 8 2.31
e . . . 1 28 4.00

drift -4 -2 0 2 4

ARI: 0.471 Ent: 2.56

HMM with fPCA
Low Separation

True States
A B C D E

a 33 11 1 . .
b . 18 19 3 .
c . 3 21 29 10
d 7 9 2 1 .
e . . 1 4 28

ARI: 0.347 Ent: 3.32

THMM with BMWD
Medium Separation

True States Est
A B C D E drift

a 40 1 . . . -7.79
b . 40 . . . -3.80
c . . 44 1 . -0.16
d . . . 35 1 4.19
e . . . 1 37 7.87

drift -8 -4 0 4 8

ARI: 0.952 Ent: 0.154

HMM with fPCA
Medium Separation

True States
A B C D E

a 39 1 . . .
b 1 38 . . .
c . 2 44 1 .
d . . . 35 .
e . . . 1 38

ARI: 0.925 Ent: 0.226

Table 2: Confusion matrices showing the alignment of true states (A-E) with estimated
states (a-e) for transition matrix A2 for both the THMM (top) and fPCA HMM
(bottom). The left is low separation, and the right is medium separation. The
ARI and cross entropy are listed at the bottom of each table.
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Figure 3: Simulated Ornstein-Uhlenbeck Processes with 5 states, mean parameters µ =
(−2, 0, 4, 2, 1) and concentration parameters c = (4, 4, 8, 2, 20).

In this simulation, five states were once again used to generate data with means µ =
(−2, 0, 4, 2, 1) and c = (4, 4, 8, 2, 20). The transition matrix is A1 from above for Brownian
motion with drift, and T = 200 again. The OU sample paths coloured by their state are
displayed in Figure 3.

Table 3 displays the results of the Baum-Welch and Viterbi algorithms on this simulated
data set as well as applying fPCA with 2 principal components and then fitting a classic
HMM model on the data projected onto R2. In this setting, the THMM had slightly higher
ARI and cross entropy values when compared to the fPCA HMM approach. Thus, their
performances in this setting are comparable. Our algorithm had a hard time differentiating
between states D and E with parameters (2, 2) and (1, 20). Of note, the THMM algorithm
seems to recover the mean parameters with high accuracy, but does not perform as well
with estimation of the concentration parameters for the OU process.

When we collapse states D and E into a single state and fit a 4-state THMM model
and fPCA-HMM model to this data, we get almost perfect performance from the THMM
whereas the fPCA HMM performs worse than before. These results are in Table 4.
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OU Process via THMM
True States Estimated

A B C D E mean conc

a 40 . . . . -1.96 3.95
b . 38 . . . -0.33 6.39
c . . 44 . . 4.10 5.15
d . . . 20 . 2.70 5.30
e . 3 . 17 38 1.22 5.54

mean -2 0 4 2 1
conc 4 4 8 2 20

ARI: 0.806 Ent: 0.997

OU Process via fPCA HMM
True States

A B C D E

a 30 25 . . .
b 6 11 . . .
c . . 28 . .
d . . . 54 .
e . . . 1 45

ARI: 0.797 Ent: 0.816

Table 3: Confusion matrix showing the alignment of true states (A-E) with estimated states
(a-e) for the OU process data using transition matrix A1.

OU Process via THMM
True States Estimated

A B C D mean conc

a 36 0 0 0 -1.95 3.69
b 0 36 0 1 -0.08 5.67
c 0 0 28 0 3.13 4.35
d 0 0 0 99 1.78 4.85

ARI: 0.985 Ent: 0.014

OU Process via fPCA HMM
True States

A B C D

a 36 0 0 0
b 0 36 0 44
c 0 0 28 0
d 0 0 0 56

ARI: 0.525 Ent: 0.837

Table 4: Confusion matrix for the same data as from Table 3 but with states D and E
merged into a single state D.
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Figure 4: Example sample paths of fractional Brownian motion with Hurst parameter of
0.8 (left) and 0.25 (right).

5.3 Fractional Brownian Motion

To test the THMM algorithm applied to fractional Brownian motion, we first simulate 200
sample paths with a Hurst parameter of ν = 0.8, which gives a Gaussian process with
positively correlated increments, i.e. it is smoother than the standard Wiener process.
Simulation was achieved by first simulating Gaussian white noise and transforming it based
on the covariance function

cov (Yτ1 , Yτ2) =
1

2

(
τ2ν

1 + τ2ν
2 − |τ1 − τ2|2ν

)
.

This data is displayed in Figure 4. The same transition matrix A1 was used and the 5-long
vector of drift terms is c = (−10,−6,−2, 0, 2). In this work, we treat the Hurst parameter as
a tunable input to the THMM algorithm rather than a parameter to be estimated from the
data. Hence, we run the THMM algorithm for ν = 0.25, 0.5, 0.8 to compare performance.

Table 5 shows the results of this simulation. Choosing the Hurst parameter to be ν = 0.5
gave the best ARI and cross entropy values. However, these values were extremely close to
choosing ν = 0.8 being the “right” choice in the sense of coinciding with how the data was
generated. The choice of ν = 0.25 performed much worse; this is expected as the algorithm
is expecting much rougher sample paths than what it is given. Lastly, the fPCA approach
with, once again, 2 principal components has worse performance than any of the THMM
runs.

We repeat the same experiment but for fractional Brownian motion with a Hurst pa-
rameter of 0.25, which gives negatively correlated increments and rougher looking paths.
The true drift coefficients are set to be (−16,−8,−4, 0, 8) as the paths are harder to dis-
tinguish than in the previous simulation due to the added roughness of the sample paths.
The results from Table 6 show that setting the Hurst parameter in the THMM algorithm
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Drift Vector ARI Ent

Truth -10. -6. -2. 0. 2.
ν = 0.25 -13.42 -13.93 -10.65 -2.89 1.56 0.399 1.70
ν = 0.5 -10.21 -5.72 -1.42 0.06 1.98 0.692 1.19
ν = 0.8 -9.77 -5.43 -1.16 0.15 1.95 0.676 1.23
fPCA 0.342 1.98

Table 5: A comparison of the THMM algorithm run on fractional Brownian motion with
Hurst parameter of 0.8 for different choices of ν as an input to the algorithm.

Drift Vector ARI Ent

Truth -16. -8. -4. 0. 8.
ν = 0.25 -19.22 -18.63 -7.82 -0.78 8.98 0.677 1.44
ν = 0.5 -15.65 -7.58 -4.78 -0.17 7.72 0.741 1.23
ν = 0.8 -14.62 -6.13 -2.66 0.15 7.62 0.662 1.70
fPCA 0.540 2.52

Table 6: A comparison of the THMM algorithm run on fractional Brownian motion with
Hurst parameter of 0.25 for different choices of ν as an input to the algorithm.

to the ν = 1/2 once again gave the best ARI and cross entropy values. The other THMM
runs with ν = 0.25, 0.8 gave comparable performance whereas fPCA, once again, displayed
the worst performance.

Of note, in both Table’s 5 and 6, the THMM algorithm with ν = 0.25 results in the
first two states coinciding and thus harming the performance. Furthermore, superior per-
formance is shown to occur when we keep ν = 1/2, which assumes standard Brownian
motion. However, future investigations into fractional Brownian motion in the context of
the THMM algorithm may yield other results. Certainly, data driven state-based estimation
of the Hurst parameter would be of future interest.

5.4 Nonparametric Fitting and k-means

Often, we do not wish to impose a parametric model like Brownian motion with drift
and instead want only for the THMM algorithm to find the most representative mean
curve for each Markov state. To test the THMM’s ability to fit such models, we generate
t = 1, . . . , 200 phase-shifted sinusoidal curves of the form

Ot(τ) = sin(2π(τ + 0.2(j − 1))) + εt(τ)

for τ ∈ [0, 1], state j = 1, . . . , 5, and error term

εt(τ) =
√

2
16∑
k=1

Zk
sin(kπτ)

kπ
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Figure 5: The generated sinusoidal data plotted along with the cluster mean curves.

where Zk
iid∼ N (0, 0.16) making εt the truncated Karhunen-Loeve expansion for a Brownian

Bridge process. The five Markov states evolve with respect to the same transition matrix
A1 from above. The data so generated is displayed in Figure 5 along with the state mean
curves fitted by three different methods. The results of all seven different methods applied
to this simulated data set are displayed in Table 7

The choice of Cameron-Martin norm will drastically affect the performance of the
THMM algorithm, and thus care must be shown when choosing the norm to use. In this
example, imposing the L2 norm,

dL2(Ot, hj) =

∫ 1

0
|Ot − hj |2dτ,

results is a very quick convergence of the THMM algorithm in 264 iterations of the Baum-
Welch algorithm. However, this version of the algorithm typically gets stuck in a sub-
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Method ARI Ent Iterations

Functional k-means 0.823 0.708
THMM L2 0.743 0.922 264

THMM W 2,1
0 0.000 4.173 10,000

fPCA & HMM 0.549 1.067
THMM L2 with k-means 1.000 0.000 11

THMM W 2,1
0 with k-means 0.001 0.119 10,000

fPCA & HMM with k-means 0.808 0.322

Table 7: A comparison of methods for clustering the simulated sinusoidal data. The THMM
under the L2-norm starting from the output of functional k-means achieves perfect
clustering.

optimal critical point with little hope of escaping. The problem of getting stuck in a
local optimum—a common occurrence with EM-type algorithms—can be alleviated by first
running functional k-means clustering and then implementing the THMM algorithm with
the k-means output as starting vectors. Using k-means as a preprocessing step before a
more complex EM-type algorithm is common in the clustering literature. In this case,
the kmeans.fd function from the fda.usc R package (Febrero-Bande and Oviedo de la
Fuente, 2012) was first applied and achieved an ARI of 0.823. Then, the k-means output
was inputted into the THMM algorithm under the L2 norm, which increased the ARI to a
perfect 1.0 in only 11 Baum-Welch iterations.

In contrast to L2, we can use the Sobolev W 2,1
0 norm imposing the metric

d
W 2,1

0
(Ot, hj) =

∫ 1

0
|Ȯt − ḣj |2dτ

on the THMM algorithm. Unlike in the L2 case, under this norm, the algorithm was run
for 10,000 iterations both with a random start and with starting state-means determined
by functional k-means. In both cases, it completely failed to cluster this simulated data.

Lastly, our THMM was once again compared to the classic multivariate HMM with
fPCA. In this simulation, the best results were achieved by setting the number of principal
components to 4. The HMM was fit with both random starting mean vectors (ARI of
0.549) and with k-means determined mean vectors (ARI 0.808). The drastic increase in
the ARI coincides with what occurred for the THMM algorithm under the L2 norm, and
demonstrates the utility in using an algorithm like k-means to find a good starting point
for the Baum-Welch or other EM-type algorithms.

6. Pediatric Obstructive Sleep Apnea Data

This section demonstrates the performance of the THMM on a real data set of critical
importance to the health of pediatric patients. Obstructive sleep apnea is a chronic condition
characterized by frequent episodes of upper airway collapse during sleep, which over time
can be detrimental to one’s health.
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6.1 Data Overview

The gold standard for diagnosis of obstructive sleep apnea in children is by overnight
polysomnography in a hospital or sleep clinic. Polysomnography provides multi-channel
time series including an electroencephalogram (EEG), electrocardiography (ECG), elec-
trooculography (EOG), and electromyography (EMG). Even for a single patient, this data
is vast and should eventually be considered jointly to label sleep states and identify sleep
disorders. However to illustrate application of the THMM algorithms in this work, we
chose one channel of EEG from one patient labelled as CF050 to be used as a proof-of-
concept. This patient was selected from a group of seventy four pediatric patients with
potential obstructive sleep apnea in a clinical study, Pro00057638, approved by University
of Alberta. The sampling rate for EEG is 512 samples per second. Each signal was split
into a sequence of epochs, i.e. 30 second intervals. These signals were transformed into
power spectral densities (PSD) using Welch’s method (Welch, 1967) for each epoch. The
reason for dividing time series into 30 second intervals is to group them with respect to five
sleep stages: wake, rapid eye-movement (REM), and non-rapid eye-movement (NREM).
The NREM category is further divided into three states: NREM1, NREM2, NREM3. The
sleep stages are labelled per epoch by a sleep technician. For every sleep stage not labelled
as wake, the patient is considered to be asleep. The spectral densities for each epoch may
then be used to identify possible underlying states such as the sleep stages. There were 948
epochs in patient CF050.

Markov models and HMMs have a long history of being applied to the modelling of
sleep states (Zung et al., 1965; Yang and Hursch, 1973; Kemp and Kamphuisen, 1986).
The work of Penny and Roberts (1998) considered an HMM with Gaussian observations
for EEG analysis. This was followed by similar analyses in Flexer et al. (2002, 2005).
More recent work includes Doroshenkov et al. (2007), Pan et al. (2012), and Chen et al.
(2015). Typically, these approaches are based on various discretization and feature selection
methods whose output is then fed into the classic HMM. Our THMM takes the entire power
spectral density curve into account and hence obviates the need for such feature selection
steps. Note that the following data analysis is meant as a proof-of-concept for the proposed
methodology; a comprehensive analysis of the full multichannel data set is left to future
work.

6.2 Raw Data Analysis

The EEG PSD curves for patient CF050 was run through the THMM variant of the Baum-
Welch algorithm under Wiener measure and the H = W 2,1

0 [0, 1] norm. The first experiment
combined REM and the NREM states into one category “asleep” to contrast with the
“awake” category. Figure 6 shows the data and the predicted vs the true state means both
for the fully-functional THMM model and the fPCA + HMM model. The estimated mean
curves are very similar to the true mean curves. The estimated Markov transition matrix
and the “true” transition probabilities are, respectively,

Â
W 2,1

0
=

(
0.910 0.090
0.176 0.824

)
and A =

(
0.933 0.067
0.025 0.975

)
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Figure 6: A comparison of the predicted and true states and means for the EEG PSD data
set over the first 50 frequencies using the THMM model under the W 2,1

0 norm (top
row) and using fPCA with 2 principal components and the multivariate HMM
(bottom row).

where A was computed by counting the number of transitions between states as labelled by
the sleep technician. It is worth noting that patients typically remain asleep or awake for
many sequential epochs, i.e. 30-second time segments.

The leftside columns of Tables 8 and 9 display the results of two-state clustering of this
raw OSA data under a variety of methods. The best performer with respect to ARI is the
THMM algorithm under the W 2,1

0 norm. The best performer with respect to cross entropy
is fPCA with the multivariate HMM when two principal components are used. The two
functional k-means methods have poor performance, but these do not take into account
temporal dependence in the data. Hence, this reinforces the necessity of using models that
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True States
Raw Data Smoothed Data

Method Predicted Awake Asleep Awake Asleep

k-means L2 Awake 214 233 212 232
Asleep 39 462 41 463

k-means W 2,1
0 Awake 223 686 228 683

Asleep 30 9 25 12

fPCA HMM Awake 243 115 243 118
Asleep 10 580 10 577

THMM L2 Awake 223 367 223 366
Asleep 30 328 30 329

THMM W 2,1
0 Awake 247 75 241 46

Asleep 6 620 12 649

THMM W 2,2
0 Awake 250 313 247 46

Asleep 3 382 6 649

Table 8: Confusion matrices for the results of fitting a two-state THMM to raw and kernel
smoothed EEG PSD curves, left and right, respectively.

take temporal ordering into account. For the THMM model, the choice of norm makes a
large difference in performance. Unlike in the simulated data, functional k-means was not
used to seed the THMM algorithm as their performances were quite poor on this data.

As an additional experiment under the W 2,1
0 , a particularly poor starting point for the

Baum-Welch algorithm was chosen so that the progress of the algorithm could be tracked
with respect to both the likelihood and the ARI. The left plot in Figure 7 shows how the
likelihood grows over the initial iterations only to plateau around iteration 10. However,
it begins to climb to a new plateau after 30-40 iterations. In unison, the right plot shows
improvement in the ARI from below zero to its final value of 0.68. The final confusion
matrix is displayed in Table 8. Most alternative starting points for the algorithm converged
to the same final parameters. In some cases, the ARI rose above 0.680 only to fall back to
it. Hence, it is worth emphasizing that each iteration of the Baum-Welch algorithm will
increase the likelihood but may result in an increase or a decrease in the ARI.

A comparison of the predicted state sequence with the true state sequence is featured
in Figure 8 where the states are predicted via the Viterbi algorithm from the THMM with
the W 2,1

0 norm. The figure highlights the fact that the expected duration that the HMM
remains in a given state follows a geometric distribution. Hence, the classic HMM will switch
states more frequently than what may be observed in practice. Variable state duration or
hidden semi-Markov models allow for longer sojourns in a given state and may improve
the predicted state sequence for such EEG data as well as others. It is also possible to
soft-cluster the data rather than making a hard decision on to which state the observation
belongs. However, in this case, only 6 of the 948 observations had a probability between
10% and 90% of being in the awake state. That is, most of the predicted a posteriori state
probabilities were numerically equal to either 1 or 0.
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Raw Data Smoothed Data
Method ARI Ent Iterations ARI Ent Iterations

k-means L2 0.180 1.057 0.178 1.059

k-means W 2,1
0 0.095 0.785 0.072 0.981

fPCA HMM 0.536 0.319 0.527 0.327
THMM L2 0.013 0.811 12 0.014 0.812 12

THMM W 2,1
0 0.680 0.396 30 0.762 0.278 12

THMM W 2,2
0 0.104 0.858 19 0.786 0.260 15

Table 9: ARI, cross entropy, and number of iterations for comparison of two-state clustering
methods for the pediatric OSA data.
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Figure 7: Tracking the increase in likelihood (left) and ARI (right) as the THMM algorithm
runs.
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Figure 8: Comparison of the predicted state sequence via the THMM and the true state
sequence based on the raw EEG PSD curves.

6.3 Kernel Smoothed Data Analysis

A subtle point from the above theory is that the observations Ot do not remain as elements
of the LCTVS X, but are instead considered within the Cameron-Martin space H. In the
case of Wiener measure and W 2,1

0 [0, 1], that implies that we want a smooth analogue of Ot.
Thus, we can use, for example, Nadaraya-Watson kernel regression to create a smoothed
version of each Ot via the function ksmooth in the base stats package in R. Repeating the
above experiment for a smoothed EEG PSD curves with two states improves the ARI from
0.680 to 0.762. However, the strongest performance with respect to both ARI and cross
entropy is the THMM model under the W 2,2

0 norm. The confusion matrices and the ARI
and cross entropy values are displayed on the right side of Tables 8 and 9, respectively. Of
course, elements of W 2,2

0 are smoother than those of W 2,1
0 , which in turn are smoother than

those of L2. Hence, it is intuitively reasonable to see a big improvement of performance
under the W 2,2

0 norm after the data is preprocesses with a Gaussian kernel smoother.

6.4 Modelling Five Sleep States

The clustering task becomes much more challenging when considering all five sleeps states:
awake, REM, NREM1, NREM2, and NREM3. Nevertheless, the THMM model can discern
some patterns in the EEG PSD data set. For this analysis, we only consider the PSD curves
smoothed as discussed above via Nadaraya-Watson kernel regression. This is because the
THMM model and the fPCA HMM model both had stronger clustering performance after
application of a Gaussian kernel smoother. In what follows, the fPCA HMM model was fit
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0 200 400 600 800

5−State THMM Prediction

Awake

REM

NREM1

NREM2

NREM3

Figure 9: Comparison of the predicted state sequence (red dashed line) via the THMM
under the W 2,1

0 norm and the true state sequence (black solid line) based on the
kernel smoothed EEG PSD curves.

with five principal components that was chosen purposefully as it resulted in the best ARI
and cross entropy values.

A comparison of the predicted sleep states and true sleep states can be seen in Figure 9.
The red dashed line represents the states predicted by the THMM algorithm fitted to the
kernel smoothed data using the W 2,1

0 norm. The ARI is only 0.632, but the algorithm still
is able to track sleep states to some extent. Confusion matrices for the THMM with the
W 2,1

0 norm, THMM with the W 2,2
0 norm, and fPCA HMM are displayed in Table 10, and

ARI and cross entropy values can be found in Table 11. The THMM with W 2,1
0 and with

W 2,2
0 both perform similarly and perform better than fPCA HMM even after fine tuning

the number of principal components to maximize the ARI.

A close look at the confusion matrices in Table 10 show some interesting patterns. All
three methods assign a significant number of awake epochs to the NREM1 state. Then,
many of the true NREM1 states are confounded with the NREM2 states. This is a rea-
sonable error to make as NREM1 corresponds to light sleep with NREM2 being deeper
and NREM3 being the deepest. Such model interpretability will allow for future research
involving more OSA data to achieve even stronger clustering accuracies.

7. Cumulative Snowfall Curves

An alternative application of the THMM is to model climate data. In this section, we
consider 50 years (winters) of cumulative snowfall growth curves from the city of Edmon-
ton, Alberta as recorded by the Meteorological Service of Canada (see https://climate.
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True States
Method Predicted Awake REM NREM1 NREM2 NREM3

Awake 180 . 1 . .
REM . 84 . 57 8

fPCA HMM NREM1 70 10 11 27 15
NREM2 3 4 22 215 31
NREM3 . . . 7 203

Awake 207 2 2 8 3
REM 2 88 2 16 .

THMM W 2,1
0 NREM1 33 5 2 7 3

NREM2 11 3 28 270 43
NREM3 . . . 5 208

Awake 212 . 8 5 .
REM 2 90 . . 66

THMM W 2,2
0 NREM1 34 4 2 9 2

NREM2 5 4 24 287 28
NREM3 . . . 5 161

Table 10: Confusion matrices for the results of fitting a five-state THMM and five-state
fPCA HMM to kernel smoothed EEG PSD curves.

Method ARI Ent Iterations

fPCA HMM 0.535 2.191

THMM W 2,1
0 0.632 1.425 62

THMM W 2,2
0 0.636 1.805 64

Table 11: ARI, cross entropy, and number of iterations for comparison of five-state cluster-
ing methods for the pediatric OSA data.
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weather.gc.ca/). The data was collected at station number 3012208 at latitude 53◦34’24
N longitude 113◦31’06 W, which was the location of the now-closed City Centre Airport.
The data considered spans from the winter of 1940/1941 until the winter of 1989/1990 and
was collected daily. A Gaussian kernel smoother was used to preprocess these growth curves
prior to analysis.

7.1 Two-State Models

If only the total snowfall is considered as a univariate time series, a classic Gaussian HMM
model can be fit using the mhsmm package in R (O’Connell and Højsgaard, 2011). This
naturally splits winters into high snowfall (mean = 192.5 cm) and low snowfall (mean
= 111.9 cm) years. Similarly, two-state THMMs under the W 2,1

0 and the L2 norms also
split the winters into heavier and lighter snowfalls. However, the heavy snowfall category
contains those years with consistently higher snowfall over the entire winter; i.e. the heavy
snowfall curves are shifted up and left. We also fit the fPCA HMM to this data using four
principal components. In this case, we cannot select the number of components based on
purposefully maximizing the ARI as there is no ground truth to conform to. Instead, four
was chosen to get the explained variation in the data above 99%. Lastly, the THMM with
the W 2,2

0 norm was also fit to the data, but appeared to be assigning curves to states at
random.

For each of the five methods considered, 20 models were fit and the fitted model that
returned the highest likelihood was kept. Table 12 computes the ARI for the predicted
state sequence for each pairing of fitted models. The THMM under the W 2,2

0 norm is seen
to diverge from the other models. In contrast, the other four models all reasonably agree on
which years should be put into which state. The states in these four models correspond to
higher and lower snowfall years as can be seen visually in Figure 10. The fitted transition
matrices indicates that back-to-back heavy snowfall winters are unlikely:

ÃL2 =

(
0.154 0.846
0.306 0.694

)
, Ã

W 2,1
0

=

(
0 1

0.321 0.679

)
,

ÃfPCA =

(
0.285 0.715
0.216 0.784

)
, ÃUni =

(
0 1

0.255 0.745

)
.

Furthermore, these models predict that heavier snowfall years occur at a rate of once every
3.1 to 4.6 years.

7.2 Four-State THMM

A four-state THMM model applied to these smoothed cumulative snowfall growth curves
results in more interesting findings. Mainly, it identifies three Markov states corresponding
to low, medium, and high snowfall. The fourth state is reserved for the winter of 1954/1955
alone, which had little snowfall until 18 April when 47.5 cm of snow fell during a three-day
storm. This event was the largest recorded snowfall in Edmonton’s recorded history. The
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Figure 10: Fitted two-state THMM’s (top row) under the L2 and W 2,1
0 norms for cumulative

snowfall curves and (bottom row) fPCA HMM for cumulative curves and a
univariate HMM fit to total snowfall in the city of Edmonton, Alberta.

THMM HMM

L2 W 2,1
0 W 2,2

0 fPCA Uni

THMM L2 0.611 -0.014 0.611 0.751

THMM W 2,1
0 0.611 -0.009 0.413 0.670

THMM W 2,2
0 -0.014 -0.009 -0.015 -0.007

fPCA HMM 0.611 0.413 -0.015 0.670
Uni HMM 0.751 0.670 -0.007 0.670

Table 12: A comparison based on ARI of how well two-state HMM models fit to the snowfall
data coincide with respect to their Viterbi paths.
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Figure 11: Fitted four state THMM for cumulative and total snowfall in the city of Ed-
monton Alberta, respectively.

fitted transition matrix is

Ã =


0 1 0 0
0 0 0.43 0.57
0 0.40 0.52 0.08

0.05 0.15 0.18 0.62

 .

Note that Ã2,2 = 0 indicating that back-to-back heavy snowfall years do not occur in this
50 year data set. This is consistent with the two-state models discussed above. A plot of
the data with the four mean curves superimposed on top is displayed in Figure 11.

8. Future Investigations

The following subsections propose areas of research for future investigation with respect to
the THMM methodology.

8.1 Estimation of the Hurst Parameter

In this work, we only consider fractional Brownian motion with a fixed Hurst parameter
chosen by the analyst. However much past research has gone into estimation of the Hurst
parameter from data; see Berzin and León (2008); Kubilius and Mishura (2012); Hu et al.
(2019) and others. Future work could incorporate estimation of the Hurst parameter within
the THMM algorithms. This would allow for models to be fit where each Markov state will
have its own estimated Hurst parameter and thus its own Gaussian Measure / Cameron-
Martin space.
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8.2 Regularized Learning

The Onsager-Machlup functional for a Gaussian measure as first presented in Bogachev
(1998) is

lim
ε→0

γ(Vε + h)

γ(Vε + k)
= exp

(
1

2
|πqk|2H −

1

2
|πqh|2H

)
.

In this work, we set k = 0 and h = Ot − hj . However, retaining k in the above equation
results in the following optimization problem:

arg min
hj∈H

T∑
t=1

αt(j)βt(j)
{
|Ot − hj |2H − |k|2H

}
.

Thus, choosing a nonzero k to be a function of hj will affect the final fit of the THMM.

8.3 Extensions Beyond the HMM

The Hidden Markov Model is an eminently useful modelling tool. However, there are many
models that extend and complicate the beautiful simplicity of the original HMM. Future
work can consider extending our proposed THMM from a finite number of discrete states
to a countably infinite state space using ideas from the infinite HMM (Beal et al., 2001).
Continuous state space HMMs have also been considered with respect to the Kalman filter.
Other ways of adding dependency exist as well including autoregressive HMMs that are
discussed in Juang and Rabiner (1985) and Rabiner (1989) as well as in the recent works of
Lawler et al. (2019) and Sidrow et al. (2021) who use this tool to model animal behaviour.
Lastly, a Topological Hidden Markov Random Field could be implemented to model spatial
time series of climate data.

Acknowledgments

We would like to acknowledge support for this project from the Natural Sciences and En-
gineering Research Council of Canada and the McIntyre Memorial fund from the School of
Dentistry at the University of Alberta.

32



Topological Hidden Markov Models

Appendix A. Theoretical Guarantees

In what follows, detailed proofs are presented to demonstrate the theoretical soundness of
considering an HMM and running the Baum-Welch algorithm in locally convex spaces.

A.1 Definitions and Notation

A locally convex topological vector space (LCTVS) generalizes normed spaces and can be
constructed in a few equivalent ways. In this work, we define our LCTVS’s via a family of
seminorms.

Definition 1 (Seminorm) Let X be a real vector space, then q : X → R is a seminorm
if it satisfies the following properties.

1. q(x) ≥ 0 for all x ∈ X.

2. q(cx) = |c|q(x) for all x ∈ X and c ∈ R.

3. q(x1 + x2) ≤ q(x1) + q(x2).

Of note, unlike a norm, q(x) = 0 does not necessarily imply that x = 0.

Definition 2 (Locally Convex Space) A real vector space X with Q, a collection of
seminorms, is said to be a locally convex topological vector space. The seminorms in Q
induce a topology on X, which is the coarsest topology such that the q ∈ Q are continuous.

An example of a LCTVS is X = C0([0, 1],R), the space of continuous functions x :
[0, 1]→ R, x(0) = 0 with qτ (x) = |x(τ)| for τ ∈ [0, 1]. More generally, we can consider X∗,
the space of linear functionals on X, and take qf (x) = |f(x)| for any x ∈ X and f ∈ X∗.
Thus, we have a TVS X with the weak topology.

The focus of this work is on Gaussian measures on a LCTVS X. We say that γ is a
Gaussian measure defined on the cylindrical σ-field E(X) if the induced measure γ ◦ f−1

on R is Gaussian for all f ∈ X∗. We furthermore take γ to be a Radon Gaussian measure,
which is still sufficiently general for most applications of interest.

Definition 3 (Radon Measure) A measure µ defined on the Borel σ-field B(X) for a
topological space X is Radon if for every B ∈ B(X) and every ε > 0, there exists a compact
set Kε ⊂ B such that µ(B \Kε) < ε.

In the case that X is a separable Fréchet space, the cylindrical σ-field coincides with the
Borel σ-field and furthermore every Borel measure is Radon; see Bogachev (1998), Theo-
rems A.3.7 and A.3.11.

We define similarly to Bogachev (1998) the following terms. For a locally convex space
X, X∗ is the topological dual space consisting of continuous linear functionals. The mean
of γ is aγ(f) =

∫
X f(x)γ(dx) with aγ ∈ X∗∗. The covariance operator is Rγ : X∗ → X∗∗

defined by

Rγ(f)(g) =

∫
X

[f(x)− aγ(f)] [g(x)− aγ(g)] γ(dx).
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X∗γ is the closure of {f − aγ(f) : f ∈ X∗} embedded into L2(γ). The Cameron-Martin
space is

H(γ) =
{
h ∈ X : |h|H(γ) <∞

}
where the norm is |h|H(γ) = sup{l(h) : l ∈ X∗, Rγ(l)(l) ≤ 1}. In what follows, we typically
omit γ from the notation and just write the Cameron-Martin norm as |h|H . Lemma 2.4.1
of Bogachev (1998) proves that if some h ∈ X is in H(γ), then there is a h∗ ∈ X∗γ such that
h = Rγ(h∗) with |h|H(γ) = ‖h∗‖L2(γ). Lastly, if Rγ(X∗γ) ⊂ X, then H(γ) = Rγ(X∗γ) and

|Rγ(f)|H(γ) =
√
Rγ(f)(f) where the operator Rγ is extended to X∗γ as follows:

Rγ : X∗γ → X∗∗, Rγ(f)(g) =

∫
X
f(x) [g(x)− aγ(g)] γ(dx).

Thus, 〈h, k〉H(γ) = 〈h∗, k∗〉L2(γ), and the Cameron-Martin space H(γ) ⊂ X gains the Hilbert
space structure of X∗γ . In this case, the mapping Rγ is an isomorphism between X∗γ and
H(γ). This is necessarily true for Radon Gaussian measures (Bogachev, 1998, Theorem
3.2.3).

A.2 Onsager-Machlup Functional

For a Gaussian measure γ on a metric space X, we can consider the Onsager-Machlup
functional, which is

I(a, b) = lim
ε→0

γ(K(a, ε))

γ(K(b, ε))
, a, b ∈ X

where K(a, ε) is a closed ball of radius ε > 0 centred at a ∈ X. Hence, we consider the
limit as the radii of the two balls shrink to zero. For a locally convex space, Bogachev
(1998) introduces the notation for an epsilon ball Vε = {x ∈ X : q(x) ≤ ε} with h-shift
Vε + h = {x+ h ∈ X : q(x) ≤ ε} where q is a seminorm. We are interested in the ratio

γ(Vε + h)

γ(Vε)
=

e−|h|
2
H/2

γ(Vε)

∫
Vε

eh
∗(x)γ(dx)

where h∗ ∈ X∗γ is such that h = Rγh
∗. Furthermore, we denote the integral

Jε(f) =
1

γ(Vε)

∫
Vε

ef(x)γ(dx)

and Fq = {f ∈ X∗γ : limε→0 Jε(f) = 1} is a closed linear subspace of X∗γ (Bogachev, 1998,

Lemma 4.7.2). Via Lemma 4.7.4 (Bogachev, 1998), we can also define Fq as R−1
γ Z⊥ where

Z = {a ∈ H(γ) : q(a) = 0}. Lastly, Pq : X∗γ → Fq is an orthogonal projection.
Given this setup, the Onsager-Machlup function is (Bogachev, 1998, Corollary 4.7.8)

lim
ε→0

γ(Vε + h)

γ(Vε + k)
= exp

(
1

2
|πqk|2H −

1

2
|πqh|2H

)
for h, k ∈ H(γ) where πq is the orthogonal projection onto Z⊥, which can be written as
πq = RγPqR

−1
γ . We will use this for the emission function within the HMM framework.

Namely, we choose

bj(Ot) = lim
ε→0

γ(Vε + {Ot − hj})
γ(Vε)

= exp

(
−1

2
|πq{Ot − hj}|2H

)
.
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Here, we require Ot − hj ∈ H(γ), which may necessitate a modification of Ot such as
application of a kernel smoother.

A.3 Reestimation and Maximum Likelihood

In this section, we extend proofs from past work (Liporace, 1982; Wu, 1983) to show that
the Baum-Welch and EM algorithms satisfy nice convergence properties. Given a finite
sequence of observations O = {Ot}Tt=1, initial state probabilities {ηj}j∈S , a p × p Markov
transition matrix A with ijth entry aij , state means {mj}j∈S and a state sequence s =
(s1, . . . , sT ) ∈ ST , we can define our analogue of the likelihood function (refer to Section 2
for the classic HMM setup) to be

Lλ(O) =
∑
s∈ST

(
ηs1

T∏
t=1

ast−1st

)
exp

{
−1

2

T∑
t=1

|πq(Ot −mst)|2H

}

where the sum is taken over all state sequences and λ = ({ηj}j∈S , {aij}i,j∈S , {mj}j∈S)
denotes the selection of parameters. Let Λ be the space of all possible parameters λ. The
initial probabilities {ηj}j∈S and each row of {aij}i,j∈S lie in the p−1 simplex, i.e. the closed
convex hull of the unit vectors in Rp, which is compact. Furthermore, each mj for j ∈ S
lies in H0, a convex subset of the Cameron-Martin space H(γ). Thus, Λ is a closed convex
subset of Rp ×Rp×p ×H(γ)p. For a specific state sequence s ∈ ST , we write Lλ(O, s) to be
the summand of Lλ(O) for s. The reestimation transformation Q : Λ×Λ→ R is a bivariate
function given by

Q(λ, λ̃) =
∑
s∈ST

Lλ(O, s) logLλ̃(O, s)

=
∑
s∈ST

[
Lλ(O, s)

{
log η̃s1 +

T∑
t=1

log ãst−1st −
1

2

T∑
t=1

|πq(Ot − m̃st)|2H

}]
.

The Baum-Welch algorithm is part of the family of majorize-minimization algorithms that
optimize this function in an iterative fashion in order to obtain parameter estimates, instead
of directly optimizing the likelihood. Our goal in this section is to prove that maximizing
Q(λ, λ̃) over all λ̃ increases the likelihood, i.e. Lλ(O) ≤ Lλ̃(O), and that the the reesti-
mation procedure stabilizes only at critical points of the likelihood. When talking about
differentiability in this paper, we will always be referring to the Fréchet derivative.

Lemma 4 The likelihood function L(λ) = Lλ(O) and the reestimation function Q are
differentiable with respect to the state means.

Proof
Firstly, we note that the squared norm on real Hilbert spaces is differentiable, since

‖x+ h‖2 = 〈x+ h, x+ h〉 = ‖x‖2 + ‖h‖2 + 2〈x, h〉 = ‖x‖2 + 2〈x, h〉+O(h)

is linear in h. Differentiability of both functions in {mj}j∈S then follows from this and the
smoothness of projections (Coleman, 2012, Corollary 6.2).

35



Kashlak, Loliencar, and Heo

Lemma 5 The function ψ({m̃j}j∈S) =
∑

s∈ST Lλ(O, s)
∑T

t=1|πq(Ot − m̃st)|2H has global
minima for each

m̃j ∈

{
z +

∑T
t=1 αt(j)βt(j)πq(Ot)∑T

t=1 αt(j)βt(j)
: z ∈ Z

}
where Z = {a ∈ H : q(a) = 0}. Furthermore, these are the only critical points of the
function.

Proof Let us denote Tj(s) = {t : st = j} ⊆ {1, . . . , T}, Sj(t) = {s : st = j} ⊂ ST , and
assume the forward and backward probabilities are known at the current step, denoted by
αt and βt respectively. We may then rewrite our function ψ as follows.

ψ({m̃j}j∈S) =
∑
s∈ST

Lλ(O, s)

p∑
j=1

∑
t∈Tj(s)

|πq(Ot − m̃j)|2H

=

p∑
j=1

T∑
t=1

∑
s∈Sj(t)

Lλ(O, s)|πq(Ot − m̃j)|2H

=

p∑
j=1

T∑
t=1

αt(j)βt(j)|πq(Ot − m̃j)|2H .

Each of the p terms in the outer sum is a non-negative function of only one of the parameters
m̃j to be optimized. We may therefore separately optimize each of the terms. Abusing
notation and letting m̃j represent the set of minimizers for ψ, we have

m̃j = arg min
m∈H

T∑
t=1

αt(j)βt(j)|πq(Ot −m)|2H .

We note here that the arg min is invariant under translation by elements in Z. For B1(0) ⊂
X, the ball of radius 1 about the origin,

πq(m̃j) = arg min
h∈Z⊥

T∑
t=1

αt(j)βt(j)|πq(Ot)− h|2H

= arg min
h0∈Z⊥∩B1(0)

c>0

T∑
t=1

αt(j)βt(j)|πq(Ot)− ch0|2H

= arg min
h0∈Z⊥∩B1(0)

c>0

T∑
t=1

αt(j)βt(j)
{
|πq(Ot)|2H + c2|h0|2H − 2c 〈πq(Ot), h0〉H

}

= arg min
h0∈Z⊥∩B1(0)

c>0

T∑
t=1

αt(j)βt(j)
{
c2 − 2c 〈πq(Ot), h0〉H

}

= arg min
h0∈Z⊥∩B1(0)

c>0

{
c2

T∑
t=1

αt(j)βt(j)− 2c

〈
T∑
t=1

αt(j)βt(j)πq(Ot), h0

〉
H

}
.
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Now we note that the variable h0 minimizing the above equation is independent of the
choice of c and that the second term is minimized exactly when h0 is parallel to the term in
the inner product, i.e. h0 =

∑T
t=1 αt(j)βt(j)πq(Ot)|

∑T
t=1 αt(j)βt(j)πq(Ot)|

−1
H . We therefore

have

arg min
h0∈Z⊥∩B1(0)

c>0

{
c2

T∑
t=1

αt(j)βt(j)− 2c

〈
T∑
t=1

αt(j)βt(j)πq(Ot), h0

〉
H

}

= arg min
c>0

{
c2

T∑
t=1

αt(j)βt(j)− 2c

∣∣∣∣∣
T∑
t=1

αt(j)βt(j)πq(Ot)

∣∣∣∣∣
H

}
.

Thus we have

c =
|
∑T

t=1 αt(j)βt(j)πq(Ot)|H∑T
t=1 αt(j)βt(j)

and πq(m̃j) = ch0 =

∑T
t=1 αt(j)βt(j)πq(Ot)∑T

t=1 αt(j)βt(j)
.

It follows that the members of the product of sets {πq(m̃j) + Z} over j ∈ S are the global
minima of ψ over the open convex set H0, and thus, they are local minima, and hence, they
are also critical points (Coleman, 2012, Corollary 2.5). The lack of other critical points
follows from the convexity of ψ over Hp

0 owing to the convexity of the square norm and
linearity of πq. See Theorem 7.4 (c) and Proposition 7.4 from Coleman (2012).

Theorem 6 Every critical point of the reestimation function Q(λ, ·) is a global maximum
and at least one such point exists. Additionally, if q is a norm, this maximum is unique.

Proof

The reestimation function Q(λ, λ̃) can be written as

Q(λ, λ̃) =
∑
s∈ST

[
Lλ(O, s)

{
log η̃s1 +

T∑
t=1

log ãst−1st −
1

2

T∑
t=1

|πq,st(Ot − m̃st)|2H

}]

=
∑
s∈ST

Lλ(O, s) log η̃s1︸ ︷︷ ︸
(1)

+
∑
s∈ST

Lλ(O, s)
T∑
t=1

log ãst−1st︸ ︷︷ ︸
(2)

− 1

2

∑
s∈ST

T∑
t=1

Lλ(O, s)|πq(Ot − m̃st)|2H︸ ︷︷ ︸
(3)

.

The arg max of the above in λ̃ = ({η̃j}j∈S , {ãij}i,j∈S , {m̃j}j∈S) can be broken down into
taking the arg max of (1) and (2) and the arg min of (3), in {η̃j}j∈S , {ãij}i,j∈S and {m̃j}j∈S ,
respectively, in an independent manner. The max of Q(λ, ·) occurs exactly at the Cartesian
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product set of these points. For (1) and (2), we note that since
∑p

i=1 η̃i = 1 and
∑p

j=1 ãij = 1
for each i, the boundary of their respective optimizations over Λ (using Lagrange multipliers
for example) occur when at least one term in the sum is 0. However, in this case, the logs
approach−∞ so that (1) and (2) cannot be maximized at the boundaries. It follows that any
global maxima for these terms must occur at critical points. The reestimation formulae from
Algorithm 1 give these points (see Theorem 2 in Liporace (1982) for derivation). Lastly, term
(3) is maximized over the Hilbert space H(γ), so that any extrema are necessarily critical
points (Coleman, 2012, Corollary 2.5) and at least one such point exists by Lemma 5. The
product of these sets then gives the existence of critical points for Q(λ, ·).

Additionally, since the log function is strictly concave, terms (1) and (2) are strictly
concave in their respective arguments. Due to the strict convexity of squared norms, term
(3) is also concave in its argument, becoming strictly concave when q is a norm and πq is
the identity map on H(γ). It follows that every critical point of Q(λ, ·) is a global maximum
and uniqueness holds due to strict concavity when q is a norm (Coleman, 2012, Theorem
7.4, Proposition 7.3, Proposition 7.4).

Theorem 7 A point λ in the parameter space is a critical point of Lλ(O) if and only if it
is a fixed point of the reestimation function, i.e. Q(λ, λ) = maxλ̃Q(λ, λ̃). Furthermore

Q(λ, λ̃) > Q(λ, λ)⇒ Lλ̃(O) > Lλ(Ot).

Hence increasing Q(λ, ·) improves the likelihood.

Proof This closely follows the proof in Liporace (1982). First, we note that for any real

valued function ψ on a normed space, ψ(x)d log(ψ(x))
dx = dψ(x)

dx . Suppose λ is a critical point
of Lλ(O). Then,

0 = ∇λ̃Lλ̃(O)|λ̃=λ =
∑
s∈ST

∇λ̃Lλ̃(O, s)|λ̃=λ

=
∑
s∈ST

Lλ(O, s)∇λ̃log(Lλ̃(O, s))|λ̃=λ = ∇λ̃Q(λ, λ̃)|λ̃=λ

implying that λ is a critical point of Q(λ, ·), so that by Theorem 6, it is a fixed point of the
reestimation. Furthermore, as log x ≤ x− 1 with equality holding if and only if x = 1,

Q(λ, λ̃)−Q(λ, λ) =
∑
s∈ST

Lλ(O, s) log

{
Lλ̃(O, s)

Lλ(O, s)

}

≤
∑
s∈ST

Lλ(O, s)

(
Lλ̃(O, s)

Lλ(O, s)
− 1

)
= Lλ̃(O)− Lλ(O).

Thus, Q(λ, λ̃) > Q(λ, λ) implies Lλ̃(O) > Lλ(O) as inequality in the above equation is an
equality if and only if Lλ̃(O, s) = Lλ(O, s) for each s ∈ S thereby implying Lλ̃(O) = Lλ(O).
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A.4 Limits for Model Parameters

In this section, we show that that the parameter sequence produced by the Baum-Welch
algorithm satisfies nice convergence properties where the parameters have a limit point that
is a critical point of the likelihood. A similar technique to the classical proofs in Wu (1983) is
used. This requires two theorems, Berge’s Maximum Theorem and Zangwill’s Convergence
Theorem, and some preliminary definitions and notation. Our main result is Theorem 10
below.

We recall that the parameter space Λ for λ = ({ηj}j∈S , {aij}i,j∈S , {mj}j∈S) is a closed
convex subset of Rp × Rp×p × H(γ)p, which is additionally compact when projected onto
Rp×Rp×p. Now by Lemma 5, when considering the optimization problem for the likelihood,
each mj can be considered to lie in conv({Ot}) + Z where conv({Ot}) ⊂ H(γ) is the
closed convex hull of the observation sequence. Without loss of generality, we may take
mj =

∑T
t=1 αt(j)βt(j)πq(Ot)/

∑T
t=1 αt(j)βt(j) in our reestimation formulas by assigning

the component in Z to be 0. Then, each state mean mj lies in conv({Ot}), which is
compact being the closed convex hull of a finite set of points (Charalambos and Border,
2013, Corollary 5.30) (Rudin, 1991, Theorem 3.20). Therefore, the arg max of our objective
function over λ can be restricted to a compact convex subset C ⊂ Λ. We note that in the
case q is a norm, Z = {0} and the reestimation formula automatically restricts to C (see
Theorem 6).

Given metric spaces X, Y , a function f : X → P (Y ), where P (Y ) is the power set of Y ,
is called a correspondence on X. Such a map is said to be closed or upper hemicontinuous
if given sequences {xn} ⊂ X and {yn} ⊂ Y such that yn ∈ f(xn) for each n ∈ N, xn → x
and yn → y imply y ∈ f(x). On the other hand, it is said to be lower hemicontinuous if for
any sequence {xn} ⊂ X, xn → x implies that for each y ∈ f(x), there exists a subnet xkn
of {xn} and a sequence {yn} ⊂ Y with yn ⊂ f(xkn) such that yn → y. A correspondence
that is both upper and lower hemicontinuous is said to be continuous.

Theorem 8 (Berge’s Maximum Theorem) (Charalambos and Border, 2013, Theorem
17.31) Let X and Y be Hausdorff topological spaces and let φ : X → P (Y ) be a continuous
correspondence such that φ(x) is non-empty and compact for all x ∈ X. Additionally
suppose f : X × Y → R is continuous. Then the correspondence µ : X → P (Y ) given by
µ(x) = arg max

y∈φ(x)
f(x, y) has non-empty compact values and is upper hemicontinuous.

Let X = Λ, Y = Λ in the above theorem, and let φ : Λ→ P (Λ) be given by the constant
map φ(x) = C where we recall that C is non-empty, compact, and convex. This is continuous.
By choosing f : Λ×Λ→ R with f(x, y) = Q(x, y), the map λ 7→ µ(λ) = arg max

y∈C
Q(λ, y) is

upper hemicontinuous by Theorem 8.

Theorem 9 (Zangwill’s Convergence Theorem) (Zangwill, 1969, page 91) Suppose
M is a correspondence M : X → P (X) that generates a sequences {xn} with xn+1 ∈M(xn)
that is initiated with x0 ∈ X. Suppose a “solution set” Γ ⊂ X is given and suppose that

1. {xn} ⊂ S for a compact set S ⊂ X

2. There is continuous function f on X satisfying
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(a) if x ∈ Γ, then f(x) ≤ f(y) for all y ∈M(x)

(b) if x 6∈ Γ, then f(x) < f(y) for all y ∈M(x)

3. M is upper hemicontinuous on X \ Γ

Then, every limit point of {xn} lies in Γ.

Theorem 10 Suppose {λn} is the sequence generated by Algorithm 1 with M : Λ→ P (Λ)
defined as λ 7→ arg max

λ̃∈C
Q(λ, λ̃) and λn+1 ∈ M(λn). Then, all the limit points of {λn}

are critical points of the likelihood, achieving the same likelihood, and the sequence Lλn(O)
converges to this value. Furthermore, at least one such point exists.

Proof Let us denoteM = arg max
λ∈Λ

Lλ(O), the set of critical points of the likelihood function

of L(λ) = Lλ(O) on Λ and consider M as given. Note that the points {λn} generated by
Algorithm 1 satisfy the following conditions

1. {λn} ⊂ C ⊂ Λ where C is compact and convex;

2. L : Λ→ R, λ 7→ Lλ(O) is continuous and by Theorem 7

(a) If λ 6∈ M, then, it is not a fixed point of the reestimation i.e. for all λ̃ ∈ M(λ),
Q(λ, λ̃) > Q(λ, λ) which implies L(λ̃) > L(λ).

(b) However if λ ∈ M, then by the definition of M(λ), Q(λ, λ̃) ≥ Q(λ, λ) which
implies L(λ̃) ≥ L(λ).

3. Lastly, take φ : Λ → P (Λ) to be the constant correspondence given by λ 7→ C. It is
easily checked that this is hemicontinuous and clear that φ(λ) is compact and non-
empty for each λ ∈ Λ. Further, since Q : Λ× Λ→ R, (λ, λ̃) 7→ Q(λ, λ̃) is continuous,
by Berge’s maximum theorem, M is upper hemicontinuous on all of Λ, whence on
Λ \ Γ.

As all of the requirements for the Zangwill’s Convergence Theorem are satisfied, every
limit point of {λn} lies in M so that the first part of the theorem holds. Note that by
Theorem 7 and the monotone convergence theorem {L(λn)} converges to supn L(λn). If λ
is any limit point of λn, then by the uniqueness of the limit, L(λ) = supn L(λn) whereby
all such limit points give the same likelihood. That such a limit point always exists follows
from C being compact.

We conclude this section by noting that if a stronger version of Theorem 7 holds where
every fixed point of the reestimation is a local maximum of Lλ(O), then Theorem 10 can
be extended to the likelihood function converging to a local maximum. In the special case
where either the likelihood or the log likelihood functions are concave, convergence to the
global maximum follows due to the properties of concave functions.
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A.5 Limits for Mixture Distributions

The previous theorems show that the parameter sequence {λi}∞i=1 produced by the Algo-
rithm 1 has a unique limit point when q is a norm. In this section, we show that this
quickly implies the existence of a weak limit point for the sequence of corresponding mea-
sures {µi}∞i=1 where

µi =
∑

s∈ST ω
(i)
s γ(i)(s)

for weights ω
(i)
s ∝

∏T
t=1 α

(i)
t (st)β

(i)
t (st). These µi are finite mixtures of Gaussian measures.

Let λ0 ∈ Λ be the set of initial THMM parameters and γ0 be a centred Gaussian measure
on a locally convex space X. Each iteration of the Baum-Welch algorithm produces updated
parameters λi, i = 1, . . . ,∞, which consist of a p-long vector of initial state probabilities η(i),

a p×p Markov transition matrix A(i), and means m
(i)
j ∈ H(γ0) for j = 1, . . . , p. Conditioned

on a fixed state sequence s ∈ ST = {1, . . . , p}T at iteration i, we have a Gaussian measure

γ(i)(s) =
⊗T

t=1 γ
(i)
t (st) on the product space X⊗T where γ

(i)
t (st) = γ0(· − m

(i)
st ) is the

Gaussian measure γ0 on X shifted by m
(i)
st . Thus, the Baum-Welch algorithm produces a

sequence of measures {µi}∞i=1 on X⊗T , which are mixtures of |ST | = pT Gaussian measures.

Corollary 11 The sequence of measures µi has a weak limit point.

Proof The reestimated means at algorithm iterate i and state j, m
(i)
j , lie in the compact

convex hull K = conv{Ot}Tt=1. It follows that the sequence {m(i)}i∈N lying in Kp has a
limit point m = (m1, . . . ,mp). Similarly, the Markovian parameters η(i) and A(i) lie in a

compact set and thus have a limit point. Let ω
(i)
s be weights corresponding to each state

sequence s ∈ ST where ω
(i)
s ∝

∏T
t=1 α

(i)
t (st)β

(i)
t (st) such that

∑
s∈ST ω

(i)
s = 1. The mapping

λi = (η(i), A(i),m(i))→ µi =
∑

s∈ST ω
(i)
s γ(i)(s)

is continuous when the latter probability space on X⊗T is equipped with the weak topology.
Thus, given a weak limit point λ of {λi}∞i=1, µ, the corresponding image of the point under
the above map, is a weak limit point for µi.

A.6 Identifiability

In this section, the THMM is shown to be identifiable by adapting the theory developed
in Gassiat and Rousseau (2016); Gassiat et al. (2016) to the setting of Gaussian mea-
sures in locally convex spaces (Bogachev, 1998; Rudin, 1987, 1991). For such a model
and a centred Gaussian measure γ0, let the collection of model parameters be denoted as
λ = ({ηj}j∈S , {aij}i,j∈S , {mj}j∈S) with state space S = {1, . . . , p}. Of course, each mj is
assumed to be distinct. Then, the mixture of shifted Gaussian measures associated with
O1, the first observation, is

µλ,γ0,1(B) =

p∑
j=1

ηjγ0(B −mj)
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for a Borel set B ∈ B(X). Similarly, the product measure from the first two observations is

µλ,γ0,1,2(B1 ×B2) =

p∑
j=1

p∑
l=1

ηjaj,lγ0(B1 −mj)γ0(B2 −ml)

for Borel sets B1, B2 ∈ B(X).

Theorem 12 Let γ0 and γ̃0 be two centred Radon Gaussian measures on a locally convex
space X, and let λ = ({ηj}j∈S , {ajl}j,l∈S , {mj}j∈S) and λ̃ = ({η̃j}j∈S̃ , {ãjl}j,l∈S̃ , {m̃j}j∈S̃)
denote two sets of THMM parameters with state spaces of sizes p, p̃ ∈ N, respectively, and
such that det[(a)j,l] 6= 0 and det[(ã)j,l] 6= 0. If the two product measures µλ,γ0,1,2 and µ̃λ̃,γ̃0,1,2
coincide, then γ0 and γ̃0 coincide and p = p̃ and λ = λ̃.

Proof Let X∗ be the topological dual of X, and recall that for a Gaussian measure γ
that X∗γ is the closure of {f − aγ(f) : f ∈ X∗} embedded into L2(γ) where aγ ∈ X∗∗ is the
mean. By Theorem 2.7.2 of Bogachev (1998), two Gaussian measures γ and γ̃ on X are
either equivalent or mutually singular. Since γ(·) is equivalent to γ(·−m) for any m ∈ H(γ),
the assumption that µλ,γ0,1,2 and µ̃λ̃,γ̃0,1,2 coincide implies that γ0 and γ̃0 are equivalent
measures. Hence, X∗γ0 and X∗γ̃0 coincide as do H(γ0) and H(γ̃0); see Theorem 2.4.5 and
Proposition 2.7.3 in Bogachev (1998). Hence, we only use the notation X∗γ0 and H(γ0) in
what follows.

A centred Gaussian measure γ0 has characteristic function φγ0 : X∗γ0 → C defined to be

φγ0(f) = exp

(
−1

2
σ2(f)

)
for f ∈ X∗γ0 and σ2(f) = Rγ0(f)(f) where Rγ0 is the covariance operator defined above in
Appendix A.1; see Theorem 2.2.4 of Bogachev (1998) for this characterization of Gaussian
measures. For a discrete random variable mS1 ∈ H(γ) that takes values m1, . . . ,mp with
probabilities η1, . . . , ηp, the characteristic function is

φλ,1(f) =

p∑
j=1

ηj exp (if(mj))

for f ∈ X∗γ0 .
Let φγ0 and φγ̃0 be the characteristic functions of γ0 and γ̃0, respectively. Let φλ,1 and

φλ̃,1 be the characteristic functions of mS1 and m̃S̃1
for discrete state space random variables

S1 ∈ {1, . . . , p} and S̃1 = {1, . . . , p̃}. Similarly, let φλ,2 and φλ̃,2 be characteristic functions
for mS2 and m̃S̃2

, respectively. Lastly, let φλ,1,2 and φλ̃,1,2 be the characteristic functions
for the joint distribution of (mS1 ,mS2) and (m̃S̃1

, m̃S̃2
), respectively.

By assumption, the measures µλ,γ0,1,2 and µ̃λ̃,γ̃0,1,2 coincide. Hence, the laws for obser-
vation O1 coincide under the two models and thus for any f ∈ X∗γ0 ,

φγ0(f)φλ,1(f) = φγ̃0(f)φλ̃,1(f).

Similarly, for O2 and any f ∈ X∗γ0 ,

φγ0(f)φλ,2(f) = φγ̃0(f)φλ̃,2(f).
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And similarly, the joint law of (O1, O2) and any f, g ∈ X∗γ0 ,

φγ0(f)φγ0(g)φλ,1,2(f, g) = φγ̃0(f)φγ̃0(g)φλ̃,1,2(f, g).

For fixed non-zero f, g ∈ X∗γ0 and any t1, t2 ∈ R, the characteristic function of f(mS1)
is ϕf,λ,1(t1) = φλ,1(t1f). We similarly introduce the corresponding characteristic func-
tions ϕf,λ̃,1(t1), ϕg,λ,2(t2), ϕg,λ,2(t2), ϕf,g,λ,1,2(t1, t2), ϕf,g,λ̃,1,2(t1, t2), ϕf,γ0(t1), and ϕf,γ̃0(t1).
There exists U ⊂ R, a neighbourhood of 0, such that ϕf,γ0(t) 6= 0 and ϕf,γ̃0(t) 6= 0 for t ∈ U .
Thus, for (t1, t2) ∈ U × U ,

ϕf,g,λ,1,2(t1, t2)ϕf,λ̃,1(t1)ϕg,λ̃,2(t2) = ϕf,g,λ̃,1,2(t1, t2)ϕf,λ,1(t1)ϕg,λ,2(t2).

For a fixed t1 ∈ R, the functions of t2 ∈ R above have analytic continuations for all z2 ∈
C. Hence, ϕf,g,λ,1,2(t1, z2), ϕg,λ̃,2(z2), ϕf,g,λ̃,1,2(t1, z2), and ϕg,λ,2(z2) are entire functions.
Similarly, for a fixed z2 ∈ C, the above functions of t1 have analytic continuations for all
z1 ∈ C. Hence, the above equality extends to

ϕf,g,λ,1,2(z1, z2)ϕf,λ̃,1(z1)ϕg,λ̃,2(z2) = ϕf,g,λ̃,1,2(z1, z2)ϕf,λ,1(z1)ϕg,λ,2(z2).

Next, let Z ⊂ C be the zero set for ϕf,λ,1(z1), and let Z̃ ⊂ C be the zero set for
ϕf,λ̃,1(z1). The aim of what follows is to show that Z and Z̃ coincide. For z1 ∈ Z, the
previous equality becomes

ϕf,g,λ,1,2(z1, z2)ϕf,λ̃,1(z1)ϕg,λ̃,2(z2) = 0

for all z2 ∈ C. Thus, the function z → ϕf,g,λ,1,2(z1, z) is

ϕf,g,λ,1,2(z1, z) =

p∑
l=1

 p∑
j=1

ηjaj,l exp(iz1f(mj))

 exp(izg(ml)).

We have that ϕf,g,λ,1,2(z1, z) = 0 for all z ∈ C if and only if
∑p

j=1 ηjaj,l exp(iz1f(mj)) = 0
for all l = 1, . . . , p. But the latter only occurs if det[(a)j,l] = 0, which contradicts our
assumption. Thus, both ϕf,g,λ,1,2(z1, ·) and ϕg,λ̃,2(·) are entire functions with isolated zeros.

This and the above necessitates that ϕf,λ̃,1(z1) = 0, and thus Z ⊆ Z̃. Applying this same

argument for some z1 ∈ Z̃ results in the reverse inclusion, and hence Z = Z̃. By Hadamard’s
/ Weierstrass’s factorization theorem (Rudin, 1987, Theorem 15.10), these two functions
must coincide up to a factor of eq(z) for some polynomial q of degree 0 or 1 given that
ϕf,λ,1(z) and ϕf,λ̃,1(z) have growth order 1. That is, ϕf,λ,1(z) = eq(z)ϕf,λ̃,1(z) for all z ∈ C.
As ϕf,λ,1(0) = ϕf,λ̃,1(0) = 1, q(z) = ωz for some ω ∈ C. Furthermore, for z restricted to R,
ϕ̄f,λ,1(z) = ϕf,λ,1(−z), which in turn implies that ω̄ = −ω. Thus, ω = ir for some r ∈ R,
and p = p̃.

As a consequence of Lemma 13 via the Hahn-Banach theorem on locally convex spaces
(Rudin, 1991, Chapter 3), we can pick a linear functional f? such that f?(mj1) 6= f?(mj2)
for all j1 6= j2. Hence, after some relabelling, let f?(m1) < f?(m2) < . . . < f?(mp) and
f?(m̃1) < f?(m̃2) < . . . < f?(m̃p). By subtracting m1 and m̃1 from each mi and m̃i,
respectively, without loss of generality, let f?(m1) = 0 < f?(mj) < f?(mj+1) and f?(m̃1) =
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0 < f?(m̃j) < f?(m̃j+1) for all 1 < j < p. Therefore, since ϕf?,λ,1(z) = eirϕf?,λ̃,1(z),
we necessarily have that f?(mj) = f?(m̃j) + r, and setting j = 1 results in r = 0. And
thus, ϕf?,λ,1(z) = ϕf?,λ̃,1(z). The same argument can show that there is a g? such that
ϕg?,λ,2(z) = ϕg?,λ̃,2(z) and in turn that ϕf?,g?,λ,1,2(z1, z2) = ϕf?,g?,λ̃,1,2(z1, z2) and that
({ηj}j∈S , {ajl}j,l∈S , {f?(mj)}j∈S) = ({η̃j}j∈S̃ , {ãjl}j,l∈S̃ , {f

?(m̃j)}j∈S̃). Lastly, ϕf?,γ0(t) =
ϕf?,γ̃0(t) when ϕf?,λ,1 is not zero. However, since the zeros are isolated, ϕf?,γ0(t) = ϕf?,γ̃0(t)
for all t by continuity. Ergo, the one dimensional image of the THMM under application of
the functional f? is identifiable.

Furthermore, we have for any arbitrary f ∈ X∗γ that there exists an rf ∈ R and permu-
tation πf on {1, . . . , p} possibly depending on choice of f such that f(mj) = f(m̃πf (j))+rf .
Thus, we claim that for some fixed π and m0 ∈ H(γ) that mj = m̃π(j)+m0. Indeed, without
loss of generality, we take π to be the identity, and assume this is not the case. Then, there
are at least two indices j 6= l such that mj = m̃j +m0,j and ml = m̃l +m0,l for m0,j 6= m0,l.
However, by Lemma 13 and Hahn-Banach again, there exists a linear functional f0 ∈ X∗γ
such that f0(m0,j) 6= f0(m0,l). This contradicts f0(mj) = f0(m̃j) + rf for rf independent
of j. Thus, mj = m̃π(j) +m0 for all j = 1, . . . , p, Furthermore, m0 = 0 as a result of f? and

m1 = m̃1 = 0 from the previous paragraph. Thus, parameters sets must be equal: λ = λ̃.
In conclusion, we have that φλ,1(f) = φλ̃,1(f) and φλ,2(g) = φλ̃,2(g) and φλ,1,2(f, g) =

φλ̃,1,2(f, g) and, consequently, that φγ0(f) = φγ̃0(f) for any f, g ∈ X∗γ . Thus, γ0 and γ̃0

coincide on the cylindrical σ-field. As they are both Radon measures, they necessarily also
coincide on the Borel sets.

Lemma 13 Let X be a normed space with m1, . . . ,mp ∈ X such that mi 6= mj for all
i 6= j. Then, there exists a linear functional f ∈ X∗ such that f(mi) 6= f(mj) for all i 6= j.

Proof First, let p = 2. Let M = {c1m1 + c2m2 : c1, c2 ∈ R} be a (one or two dimensional)
linear subspace of X, and we assume without loss of generality that m1 6= 0. If there
exists a c0 ∈ R, c0 6= 1, such that m2 = c0m1 (note that c0 could equal 0 in the case
that m2 = 0), then let f ∈ M∗ be the linear functional such that f(m1) = ‖m1‖ and
f(m2) = c0‖m1‖. Thus, by Hahn-Banach (Rudin, 1991, Theorem 3.3), we extend f to an
element of X∗ that separates m1 and m2. Otherwise, if m1 and m2 are linearly independent,
let f(c1m1 + c2m2) = c1d1 + c2d2 for any choice of distinct nonzero d1 6= d2 ∈ R, which is a
linear functional on the two dimensional subspace M . Furthermore, let q(x) be a seminorm
on X such that q(c1m1 + c2m2) = |c1||d1| + |c2||d2|. As |f(x)| ≤ q(x) for x ∈ M , we can
extend f to a linear functional on X once again by Hahn-Banach (Rudin, 1991, Theorem
3.3).

To proceed via induction, we next assume for distinct m1, . . . ,mp−1 ∈ X that there
exists an f0 ∈ X∗ such that f0(mi) 6= f0(mj) for all i, j = 1, . . . , p − 1, i 6= j. Let

M0 = {
∑p−1

i=1 cimi : c1, . . . , cp−1 ∈ R} be a linear subspace of X. Let mp ∈ X be dis-
tinct from the other m1, . . . ,mp−1. We once again consider two cases. If mp ∈ M0, then

there exist b1, . . . , bp−1 ∈ R such that mp =
∑p−1

i=1 bimi. Thus, we can pick an f ∈ M∗0
such that f(mi) = di ∈ R for i = 1, . . . , p − 1 by the induction hypothesis where the
{d1, . . . , dp−1} are a distinct set of real numbers. Furthermore, we can choose f such that

these di satisfy dp := f(mp) =
∑p−1

i=1 bidi 6= dj for any j = 1, . . . , p − 1. If mp /∈ M0, then
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let M1 = {cpmp : cp ∈ R} be the one dimensional subspace of X spanned by mp, and let
M = {

∑p
i=1 cimi : c1, . . . , cp−1 ∈ R} be the subspace spanned by all of the m1, . . . ,mp. Let

f0 ∈M∗ be such that f0(mi) = di for i = 1, . . . , p−1 and f0(mp) = 0. Let f1 ∈M∗ be such
that f1(mp) = dp /∈ {d1, . . . , dp−1} and f1(m) = 0 for all m ∈M0. Defining f := f0 + f1 on
M∗ and extending to X∗ via Hahn-Banach completes the proof.
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