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Abstract

This paper develops a new framework, called modular regression, to utilize auxiliary in-
formation – such as variables other than the original features or additional data sets – in
the training process of linear models. At a high level, our method follows the routine:
(i) decomposing the regression task into several sub-tasks, (ii) fitting the sub-task mod-
els, and (iii) using the sub-task models to provide an improved estimate for the original
regression problem. This routine applies to widely-used low-dimensional (generalized) lin-
ear models and high-dimensional regularized linear regression. It also naturally extends
to missing-data settings where only partial observations are available. By incorporating
auxiliary information, our approach improves the estimation efficiency and prediction ac-
curacy upon linear regression or the Lasso under a conditional independence assumption
for predicting the outcome. For high-dimensional settings, we develop an extension of our
procedure that is robust to violations of the conditional independence assumption, in the
sense that it improves efficiency if this assumption holds and coincides with the Lasso
otherwise. We demonstrate the efficacy of our methods with simulated and real data sets.

Keywords: Data fusion, high dimensional statistics, missing data, regression, semipara-
metric efficiency, surrogates

1. Introduction

Suppose for a patient subject to a surgical procedure, we are interested in predicting their
future health outcome Y ∈ R in two years using some features X ∈ Rpx collected at the time
of the surgery. The standard approach is supervised learning: The training data containing
n observations {(Xi, Yi)}ni=1 from previous patients is used to pick a predictor f̂ : Rpx → R
that minimizes the average prediction error 1

n

∑n
i=1 `(f(Xi), Yi) over f ∈ F for some loss

function ` : R× R→ R and some function class F .

However, the long duration of the study can pose various practical challenges to this
paradigm. The number of joint observations of (X,Y ) may be very limited because they take
at least two years to collect. The training data may also contain intermediate measurements
Z, such as the health outcome one year after their surgery. In addition, there may be some
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patients for whom we only observe (X,Z) which are easier to collect. It is also probable
that another data set provides several (Z, Y ) samples from patients who had surgery more
than two years ago, but their features X were missing due to limited technology. In this
case, the standard approach of empirical risk minimization only over (X,Y ) samples falls
short as it cannot make use of auxiliary variables or additional partial observations.

In the missing data literature, intermediate outcomes Z are often utilized to estimate
treatment effects under a conditional independence assumption (i.e., X ⊥⊥ Y |Z in our
setting) when the outcome Y is difficult to measure (Prentice, 1989; Begg and Leung, 2000;
Athey et al., 2016, 2019). Incorporating intermediate outcomes improves the estimation
efficiency when joint observations of (X,Y, Z) are available. It also offers more flexibility
in data usage because it allows to incorporate (X,Z) and (Z, Y ) samples. However, the
conditional independence assumption may not hold in practice, and the existing methods
are highly specialized to estimating causal effects.

In this work, we aim to build a framework for flexibly incorporating auxiliary information
into generic estimation and prediction procedures while maintaining rigorous guarantees.
Such information may come from other variables Z in addition to the original features and
responses in the training process; it may also be additional data sets that only cover a
subset of variables. We will extend the ideas of leveraging independence from the missing
data literature to generalized and high-dimensional linear models, and develop more robust
methods for general dependence patterns. Let us begin with the tasks we consider.

A common algorithmic structure. We focus on statistical learning algorithms that
take the form

θ̂ = argmin
θ∈Rpx

1

n

n∑
i=1

{
h(Xi, θ)− YiX>i θ

}
, (1)

where h : Rpx×Rpx → R is a known function that is convex in θ, and px ∈ N is the dimension
of the prediction features. The simplest example is ordinary least squares (OLS):

θ̂ = argmin
θ∈Rpx

1

n

n∑
i=1

{1

2
θ>XiX

>
i θ − YiX>i θ

}
.

Logistic regression with Y ∈ {0, 1} also satisfies (1):

θ̂ = argmin
θ∈Rpx

1

n

n∑
i=1

{
log(1 + exp(X>i θ))− YiX>i θ

}
.

We will later extend to other generalized linear models as we develop our method. The final
example we consider is the `1-regularized linear regression (Tibshirani, 1996):

θ̂ = argmin
θ∈Rpx

{
− 1

n

∑n
i=1YiX

>
i θ + θ>

(
1

2n

∑n
i=1XiX

>
i

)
θ + λ‖θ‖1

}
. (2)

In the situation we discuss at the beginning, the supervised learning estimators of the
form (1) may not be able to utilize auxiliary data. Instead of minimizing equation (1), we
propose an alternative risk minimization criterion:
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θ̂ = argmin
θ∈Rpx

{
1

n

n∑
i=1

h(Xi, θ)− Ĉ>θ
}
,

where Ĉ is a proxy term for C := E[XY ] computed from the data. We will see that the
performance of θ̂ is closely related to the estimation accuracy of Ĉ. At a high level, our idea
is to replace 1

n

∑n
i=1XiYi by Ĉ with negligible bias and a lower variance, which translates

to the improved performance of θ̂. We achieve this by developing a “modular” estimator Ĉ
– whose meaning will be made precise soon – that naturally allows for flexible incorporation
of auxiliary information to improve the learning performance.

We emphasize that we still aim to minimize the same population risk (e.g., the popu-
lation version of (1)) as when using 1

n

∑n
i=1XiYi. As a result, the estimator still converges

to the same limit θ∗ that minimizes the population risk, that is, θ∗ = arg minE[h(X, θ) −
Y X>θ]. Relatedly, our methods can be used for both estimation and prediction.

1.1 Leveraging the dependence structure

The driving force of our approach is to leverage the conditional independence structure
among variables. Conditional independencies are often used to improve performance over
saturated models. As a classical example, suppose we have i.i.d. copies of a vector (X,Y )
obeying X−S ⊥⊥ Y |XS , that is, X−S is conditionally independent of Y given XS , where
XS denotes a subset S of features, and X−S stores the remaining ones. It is known that
running a regression of Y on XS can have lower mean-squared error than regressing Y on
X, since the latter may have very large variance (see, e.g., Hastie et al. (2009) for more
intuition). However, the former estimate may be biased if the conditional independence
relation is violated. Furthermore, even if the conditional independence holds, the set S is
generally unknown. It is common to use model selection methods such as the best subset
selection, Lasso, AIC, or BIC to navigate the bias-variance tradeoff.

Perhaps less widely known is that structures of the type Y ⊥⊥ XS |Z for auxiliary
variables Z can also be leveraged to improve estimation and prediction. Analogous to
classical model selection strategies, we want to derive a data-driven strategy to learn and
exploit such structures. To fix ideas, let us consider an extreme case where X ⊥⊥ Y |Z.

A naive approach. If X ⊥⊥ Y |Z, we can re-write

E[XY ] = E[E[X |Z]E[Y |Z]]. (3)

Assuming access to i.i.d. copies {(Xi, Yi, Zi)}ni=1, in view of (3), we can (i) estimate E[Y |Z =
z] via µ̂y(z), (ii) estimate E[X|Z = z] via µ̂x(z) and (iii) combine these two estimates to

compute Ĉ = 1
n

∑n
i=1 µ̂y(Zi)µ̂x(Zi) for C = E[XY ]. If µ̂x and µ̂y are accurate, then this

estimate has smaller variance than 1
n

∑n
i=1XiYi, as

Var(µ̂y(Z)µ̂x(Z)) ≈ Var(E[Y |Z]E[X |Z]) = Var(E[XY |Z]) ≤ Var(XY ).

However, this naive approach has a pressing issue that may hinder its performance: even if
(3) holds, there can be considerable bias if the estimation of µ̂y and µ̂x has slow convergence

rates. In this case, Ĉ is not a good estimator for C because the bias E[Ĉ] − C can be
comparable with, or even larger in large samples than, the variance of 1

n

∑n
i=1XiYi.
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Figure 1 illustrates this point via a simple numerical example, where Z ∈ R20, X,Y ∈ R,
and the conditional expectation functions E[Y |Z] and E[X |Z] only involve the first three
entries in Z. The goal is to compute the best linear predictor for Y , and the default choice
is OLS. We apply the above naive approach with µ̂y and µ̂x fitted by random forests in R,
and show the bias and standard deviation scaled by

√
n for various sample sizes n.

method modular naive OLS
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Figure 1: Scaled by
√
n, the bias (on the left) and the standard deviation (on the right)

are shown for plain OLS, the naive approach, and our to-be-introduced modular approach,
across various sample sizes n.

Even in this simple example where random forests should excel, the naive approach
exhibits a significantly larger bias compared to plain OLS. This bias is larger than n−1/2,
and is due to the slow convergence of random forests. In addition, contrary to our prediction,
the standard deviation of the naive approach is close to, instead of smaller than, the OLS,
which is also due to the variability in training the random forests.

A better approach. The performance of our new approach is depicted in red in Figure 1:
It has negligible bias and reduces the standard deviation by more than 40% compared with
OLS at all sample sizes. Our new approach uses the same intuitions as mentioned earlier
but additionally addresses bias using well-known semi-parametric techniques based on the
mixed-bias property (Rotnitzky et al., 2021; Robins et al., 2008). We further rewrite (3) as

E[XY ] = E[XE[Y |Z]] + E[E[X|Z]Y ]− E[E[X |Z]E[Y |Z]].

Again, an estimator can be obtained via three sub-tasks: (i) estimating E[Y |Z = z] via
µ̂y(z), (ii) estimating E[X|Z = z] via µ̂x(z), and (iii) combining these two estimates via

Ĉ =
1

n

n∑
i=1

{
µ̂y(Zi)Xi + Yiµ̂x(Zi)− µ̂y(Zi)µ̂x(Zi)

}
. (4)

We will show that a slight variation of this approach has very favorable properties. Most
importantly, even if µ̂y and µ̂x converge to the ground truth at slow speed, the bias of Ĉ
in (4) can still be negligible, and it has a lower variance than 1

n

∑n
i=1XiYi:

n ·Var(Ĉ) ≈ Var(XY )−Var
(
(X − µx(Z)) · (Y − µy(Z))

)
≤ Var(XY ).
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Indeed, it leads to the most efficient estimator if X ⊥⊥ Y |Z (see Section 2.2 for details).
This approach also opens a door for data fusion: (4) only involve pairwise observations of
(X,Z) or (Z, Y ). Thus, it can flexibly use additional data to improve estimation accuracy,
and works even when no joint observations of (X,Z, Y ) are available.

1.2 A modular regression framework

We propose a modular regression framework that concretize the above ideas by carefully
dealing with the nuances in obtaining estimators µ̂x, µ̂y to eliminate bias, navigating bias-
variance tradeoffs under potential violation of the conditional independence assumption,
and developing principled algorithms for general estimators and data fusion scenarios.

As the name suggests, we decompose the estimation of E[XY ] into smaller modules –
each being a sub-task that involves a subset of variables such as (Y,X), (Y, Z) or (Z,X) –
and then re-assemble the modules to construct Ĉ. This idea is visualized in Figure 2.

Sub-task 1

Sub-task 2
ĈDataset

(a) Conditional independencies can be leveraged
to decompose statistical tasks into subtasks.

Sub-task 1

Sub-task 2
Ĉ

Dataset 1

Dataset 2

(b) Modularity allows combining multiple
datasets.

Figure 2: Decomposing the estimation of C = E[Y X] tackles two settings that may seem dif-
ferent at first sight. In (a), one can leverage conditional independencies to reduce statistical
uncertainty. In (b), one can use additional data to increase effective sample size.

As shown in panel (a), our method adapts to specific structures, such as conditional
independence between variables, so as to ensure a properly chosen decomposition. Such
structure can also be learned from data. The decomposition also allows data fusion; see
panel (b). As long as a data set covers the variables in a sub-task, it can be incorporated
to improve efficiency. We summarize our main results below.

• Modular linear regression. We develop a generic approach for improving the estima-
tion and prediction in (generalized) linear models. This is achieved by rewriting the
estimation equation to utilize auxiliary variables. Leveraging semi-parametric theory,
we show the optimality of our approach under a conditional independence condition.

• High-dimensional modular regression. By adding `1-regularization, our tools extend
to the high-dimensional setting. We develop a proxy empirical risk that has negligible
bias and lower variance compared with the Lasso. We show that it improves the upper
bounds for prediction accuracy.

• Robustness under conditional dependence. Since the conditional independence condi-
tion may be violated in practice, we develop an extension of our method that adapts to
the dependency structures among variables, and we allow such structures to be learned
from data. The proposed procedure interpolates between linear models (non-modular)
and the fully-modular approach (which is efficient under conditional independence).
The proposed procedure, bridging linear (non-modular) and fully-modular models,
enhances robustness while still allowing for efficiency gains.
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• Data fusion. We further extends method to combine multiple data sets. This formula-
tion allows using additional data on sub-tasks to improve overall statistical efficiency.

The rest of the paper is organized as follows. Section 2 develops modular (generalized)
linear regression in the fixed-p setting. Section 3 studies modular regression for penal-
ized linear regression in high dimensions, and develops a robust variant that can adapt to
different dependence structures. Applications to data fusion and partial observations are
discussed in Section 4. Finally, we evaluate our methods on simulated datasets in Section 5
and apply them to real datasets in Section 6.

1.3 Related work

Modular regression combines evidence from sub-tasks, leveraging a “modular structure”
provided by the conditional independence. One related strand is to use surrogates when
the outcome of interest is expensive to measure (Fleming et al., 1994; Post et al., 2010).
In particular, in causal inference, a series of work (Prentice, 1989; Lauritzen et al., 2004;
Chen et al., 2007; VanderWeele, 2013; Athey et al., 2016, 2019; Kallus and Mao, 2020)
have advocated using intermediate (short-term) outcome(s) as “surrogates” for long-term
outcomes, and assumes various surrogate conditions such as conditional independence of
the long-term outcome and the treatment given the surrogates. Similar to our approach,
the surrogate condition allows to decompose treatment effect estimation into sub-tasks of
estimating the effect of the treatment on the intermediate outcome and estimating the
effect of the intermediate outcome on the long-term outcome. We work under a generic
conditional independence condition and mainly focus on regression and prediction tasks. In
addition, we propose a method that is robust to violations of conditional independence.

Our framework is related to missing data and in particular data fusion, which combines
data sets that cover different subsets of variables. The preceding paragraph is also related;
more generally, there has been a surge of interest in combining different data sets, such as
combining experimental and observational data for treatment effect estimation (Rosenman
et al., 2022, 2020; Colnet et al., 2020), generalizing inference to different populations (Da-
habreh et al., 2019; Hartman et al., 2015; Jin and Rothenhäusler, 2021), etc. Many of these
works require identifiability assumptions for the target estimand, which are similar to the
conditional independence condition. Compared to these works, we study general tasks and
enjoy robustness to failure of conditional independence.

In missing data scenarios, some other works study regression problem in settings that
differ from ours. Those for high-dimensional data include Loh and Wainwright (2011) on
penalized regression, Lounici (2014); Cai and Zhang (2016) on the estimation of covariance
matrices, and Elsener and van de Geer (2019); Zhu et al. (2019) on sparse principal com-
ponent analysis, which consider estimation when some covariates are missing at random.
In contrast, we focus more on the data fusion aspect; we draw ideas from semiparamet-
ric statistics, and account for the dependence structure. A recent work of Cannings and
Fan (2022) on U-statistics with low-dimensional data is related, which devises an estimator
with smaller prediction MSE by incorporating a partially missing data set. Instead, our ap-
proach leverages conditional independence structures among variables instead of correlation
between estimators; we focus on regression and consider the high dimensional regime.
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Our estimator is inspired by recent progress in efficient regression adjustment (Henckel
et al., 2019; Rotnitzky and Smucler, 2019) in low-dimensional graphical models. Our frame-
work is more general as it applies to (generalized) linear models, works for high dimensional
settings, does not require the graphical structure, and imposes minimal model assumptions;
it is also more restricted in that we do not consider choosing the optimal covariate sets.

The modular estimator is optimal for linear regression under conditional independence,
in the sense of semiparametric efficiency (Bickel et al., 1993; Tsiatis, 2006). Thus, this work
is also connected to the literature of missing data. Furthermore, the double robustness
of our estimator is similar to the AIPW estimator (Robins et al., 1994) and leverages the
“mixed-bias” property (Rotnitzky et al., 2021; Robins et al., 2008).

The conditional independence structure has been used in a series of early works (Sargan,
1958; Hansen, 1982) to improve estimation efficiency; also related is Causeur and Dhorne
(2003) on linear regression under conditional independence, which is closely related to our
first modular regression algorithm in low dimensions. However, these works assume strong
parametric models such as a joint Gaussian distribution and independent Gaussian noise,
while our method does not require stringent model assumptions.

Broadly speaking, our variance reduction idea may also apply to other statistical prob-
lems where the ‘modular’ structure and conditional independence are present. For instance,
sufficient dimensional reduction (SDR) (Li, 2018) imposes Y ⊥⊥ X |X>Γ for some unknown
matrix Γ, whose estimation often relies on inverse regression algorithms (Li, 1991; Adragni
and Cook, 2009; Ma and Zhu, 2013) that demonstrate a modular structure. Our idea may
be adapted to enable more efficient inverse regression given an approximate solution for Γ.

Notations. We use the standard OP (·) and oP (·) notation to denote smaller order in
probability. For any two sequences {an} and {bn} of positive numbers, we denote an = Ω(bn)
if limn→∞ an/bn < ∞ and limn→∞ bn/an < ∞; we denote an = O(bn) if an/bn ≤ C for
some constant C > 0. We use PX,Y,Z to denote the joint distribution of (X,Y, Z). For any
functions f, g : Z → Rd, we denote their L2-distance as ‖f −g‖2L2(PZ) = E[‖f(Z)−g(Z))‖22],

where ‖ · ‖2 is the Euclidean norm and the expectation is with respect to the distribution
PZ of Z. For any vector v ∈ Rl and positive definite matrix Σ ∈ Rl×l we set ‖v‖2Σ = v>Σv.

2. Modular linear regression in low dimensions

We first introduce modular regression in low-dimensional linear models, where X ∈ Rpx ,
Z ∈ Rpz , and px, pz do not grow with n asymptotically.

Assumption 1 The joint distribution of (X,Z, Y ) satisfies X ⊥⊥ Y |Z.

In this section, we use this working assumption to show how conditional independencies
can be leveraged to improve estimation accuracy. It will be relaxed later in Section 3.3,
where we develop a method that is robust to violations of Assumption 1.

Intuitively, Assumption 1 ensures that Z contains all the information in Y that is relevant
to X. While this assumption seems strong, it is reasonable in many situations and has been
widely used in a variety of applications. For example, Z could be an intermediate outcome
in the training data that is unavailable for the test samples, while Y is a long-term outcome
of interest. Intermediate outcomes are widely used as a proxy in estimating long-term
treatment effects (Athey et al., 2016, 2019), while we focus on regression problems.

7



Jin and Rothenhäusler

2.1 Modular linear regression

For simplicity of exposition, we start with linear (OLS) regression to show the benefits of
a modular structure. Our goal is to predict Y ∈ R by Ŷ = X>θ for some θ ∈ Rpx , but
we do not necessarily assume a well-posed linear model. In the training process, we have
observations of i.i.d. triples {(Xi, Yi, Zi)}ni=1 for some auxiliary variables Zi ∈ Rpz , and
Xi ∈ Rpx are random vectors (we view all vectors as column vectors throughout). The
training and the target distributions are induced by the same distribution (X,Y, Z) ∼ P.

Modular regression proceeds in three steps to leverage conditional independence.

1. Decompose into sub-tasks. First, the conditional independence structure in Assump-
tion 1 allows us to decompose the estimation of E[XY ] into sub-tasks that only involve
observations of (X,Z) or (Y, Z).

2. Solve the sub-tasks. We then learn the conditional mean functions. We use cross-
fitting (Chernozhukov et al., 2018) to ensure desirable statistical properties: we ran-
domly split I = {1, . . . , n} into two disjoint folds I1, I2. Then for each fold k = 1, 2,

we fit models µ̂
(i)
x : Z → Rpx and µ̂

(k)
y : Z → Rpy for µx(z) = E[X |Z = z] and

µy(z) = E[Y |Z = z] using data in I\Ik. With slight abuse of notation, we write

µ̂y(Zi) = µ̂
(k)
y (Zi) and µ̂x(Zi) = µ̂

(k)
x (Zi), i ∈ Ik.

3. Assemble the sub-tasks. Finally, we solve a modular least squares regression

θ̂mod
n = argmin

θ∈Rpx

{
1

n

n∑
i=1

θ>XiX
>
i θ/2− Ĉ>lmθ

}
, (5)

where we use a proxy cross-term

Ĉlm =
1

n

n∑
i=1

[
Xiµ̂y(Zi) + µ̂x(Zi)Yi − µ̂x(Zi)µ̂y(Zi)

]
. (6)

The procedure is summarized in Algorithm 1. When X contains an intercept, the corre-
sponding entry of Ĉlm can be simply set as 1

n

∑n
i=1 Yi.

Algorithm 1 Modular linear regression

Input: Dataset I = {(Yi, Xi, Zi}ni=1.
1: Randomly split I into equally-sized folds Ik, k = 1, 2.
2: for k = 1, 2 do

3: Fit models µ̂
(k)
x (·) for E[X |Z = ·] using observations (Xi, Zi), i /∈ Ik;

4: Fit models µ̂
(k)
y (·) for E[Y |Z = ·] using observations (Yi, Zi), i /∈ Ik;

5: Compute µ̂x(Zi) = µ̂
(k)
x (Zi) and µ̂y(Zi) = µ̂

(k)
y (Zi) for all i ∈ Ik.

6: end for
7: Compute the proxy cross-term Ĉlm as in (6).

Output: The modular linear regression θ̂mod
n as in (5).
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2.2 Double robustness and semiparametric efficiency

The modular estimator θ̂mod
n is doubly robust with respect to the estimation error of µ̂x and

µ̂y. To be more precise, the estimator converges at n−1/2 rate to θ∗ and is semiparametrically
efficient even when µ̂x and µ̂y are consistent with slow nonparametric rates, that is if

‖µ̂(k)
x − µx‖L2(PZ) = oP (n−1/4) and ‖µ̂(k)

y − µy‖L2(PZ) = oP (n−1/4). The proof of the next
theorem is in Appendix C.1.

Theorem 2 (Double robustness and efficiency) Suppose ‖µ̂(k)
x − µx‖L2(PZ) · ‖µ̂

(k)
y −

µy‖L2(PZ) = oP (1/
√
n) for k = 1, 2, E[XX>] � 0 is finite, and X(Y − X>θ∗) has fi-

nite second moment. Then
√
n(θ̂mod

n − θ∗)
d→ N(0,Σmod) as n → ∞, where Σmod =

Cov(φmod(Xi, Yi, Zi)) for φmod(x, y, z) = E[XX>]−1
(
xµy(z)+µx(z)y−µx(z)µy(z)−xx>θ∗

)
.

Further, suppose the distribution of (X,Y, Z) has density with respect to a base measure µ.
Then φmod is the (semiparametrically) efficient influence function for estimating θ∗.

A short discussion of the implications of Theorem 2 is in order. When µ̂x and µ̂y are
estimated by nonparametric regression which typically comes with slow rates, Assumption 1
(conditional independence) is needed to ensure fast convergence of θ̂mod

n . However, when
they are estimated by parametric regression (such as OLS) and converge at

√
n-rate to any

µ∗x and µ∗y (not necessarily equal µx or µy), our estimator is consistent and asymptotically
normal with

√
n-rate as long as E[(Y −µ∗y(Z))(X−µ∗x(Z))] = 0, i.e., the residuals of Y and

X are uncorrelated. This effect will also be visible in our simulations in Section 5.
Theorem 2 shows that modular regression has the lowest asymptotic variance among

all regular estimators (Bickel et al., 1993). We now compare it with the OLS estimator
θ̂ols
n = argminθ∈Rd

∑n
i=1(Yi−X>i θ)2, which only uses the information in (Xi, Yi) pairs. We

know θ̂ols
n − θ∗ = 1

n

∑n
i=1 φ

ols(Xi, Yi) + oP (1/
√
n) with φols(x, y) = E[XX>]−1(xy − xx>θ∗)

as n→∞. Under Assumption 1, the asymptotic variance of φmod(Xi, Yi, Zi) is dominated
by that of φols(Xi, Yi). Indeed, one can check that

Cov
(
φmod(Xi, Yi, Zi)

)
= Cov

(
φols(Xi, Yi)

)
− Σ−1 Cov

(
(Y − µy(Z))(X − µx(Z)

)
Σ−1,

where Cov(A) denotes the covariance matrix for a random vector A, so that Cov
(
(Y −

µy(Z))(X − µx(Z)
)
� 0. More efficient parameter estimation also translates to more accu-

rate prediction: The prediction mean squared error (MSE) for an independent test sample
(X,Y ) is E[(Y −X>θ̂)2 | θ̂] = E[(Y −X>θ∗)2] +‖θ̂− θ∗‖2Σ, where the second term is smaller

when θ̂ is the modular estimator instead of the OLS estimator. In our numerical experi-
ments, we mostly focus on improving prediction in very noisy settings with low sample size
because the improvement in ‖θ̂ − θ∗‖2Σ is more pronounced in those cases.

Remark 3 (Alternative estimators) There are several natural alternatives to our mod-
ular estimator. The first is outcome regression, i.e., running OLS of µ̂y(Zi) over Xi, where
µ̂y(·) is an estimator for µy(·) = E[Y |Z = ·]. The second is orthogonal regression, i.e.,
extracting the X-coefficients in OLS of Yi over (Xi, Z

resid
i ), where Zresid := Zi − µz(Xi),

and µ̂z(·) is an estimator for µz(·) = E[Z |X = ·]. However, both options can be less
efficient than our proposals. When µ̂y and µ̂z are estimated by flexible nonparametric al-
gorithms, both methods suffer from substantial bias that is comparable to or larger than the
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OLS variance (this is similar to the issue with our naive approach in Section 1); in contrast,
our estimator achieves fast (product) convergence rate, and is the most efficient among all
regular and asymptotically linear estimators. An extended discussion is in Appendix B.2.

Practitioners may be interested in quantifying the uncertainty of modular regression
estimates. Wald-type confidence intervals can be derived using the asymptotic distribution
in Theorem 2. The next corollary formalizes this result for the one-dimensional case; the
multi-dimensional case follows similar ideas.

Corollary 4 (Confidence intervals) When px = 1, set ĈI := θ̂mod
n ± z1−α/2σ̂

mod
n /
√
n,

where (σ̂mod
n )2 = 1

n

∑n
i=1(di − d̄)2 for d̄ = 1

n

∑n
i=1 di, and di := Ê[XX>]−1

(
Xiµ̂y(Zi) +

µ̂x(Zi)Yi− µ̂x(Zi)µ̂y(Zi)−XiX
>
i θ̂

mod
n

)
from Algorithm 1. Here, z1−α/2 denotes the 1−α/2

quantile of a standard Gaussian random variable. Then, under the conditions of Theorem 2,

(σ̂mod
n )2 P→ Var(φmod(X,Y, Z)), and thus P(θ∗ ∈ ĈI)→ 1− α as n→∞.

One may also learn and adapt to the dependence structure from data (see Section 3.3
for a related discussion). In such cases, confidence intervals have to be adjusted to account
for the variation induced by estimation of the structure. In practice, one can deal with
this issue by data-splitting (i.e., use one fold of data for model selection and the second for
estimation) and cross-fitting (Chernozhukov et al., 2018).

Remark 5 (Efficiency gain over OLS) To gain more intuition on the improvement in
parameter estimation, we consider a one-dimensional special case where Z = αX+ εz, Y =
βZ+εy for α, β ∈ R. Here X ∼ N(0, σ2

x), and εz ∼ N(0, σ2
z), εy ∼ N(0, σ2

y) are independent

random noise. The true parameter for OLS regression is θ∗ = αβ. The OLS estimator θ̂olsn
has asymptotic variance σ2

ols = Var(X)−2 Var(Xεy+Xβεz) = Var(X)−1(σ2
y+β2σ2

z), and our

modular estimator θ̂mod
n has asymptotic variance σ2

mod = Var(X)−2 Var(µx(Z)εy +Xβεz) =

Var(X)−1(σ2
y

Var(µx(Z))
Var(X) + β2σ2

z). That is, the absolute improvement in asymptotic variance

is σ2
ols − σ2

mod = σ2
y

Var(X−µx(Z))
σ4
x

; this quantity is large if σ2
y is large or Z explains a small

proportion of the variance in X, i.e., Var(X −µx(Z)) is large compared to σ2
x. The relative

improvement in asymptotic variance is 1− σ2
mod

σ2
ols

= 1
1+α2σ2

x/σ
2
z

1
1+β2σ2

z/σ
2
y

; this quantity is large

if α2 σ
2
x
σ2
z

and β2 σ
2
z
σ2
y

are small, which corresponds to (i) weak signal α, β, or (ii) large noise

σ2
z compared to σ2

x, and σ2
y compared to σ2

z . In the most extreme case where α = β = 0, the
best prediction is 0, and we achieve the asymptotic variance σ2

mod = 0.

Our discussion so far is mainly asymptotic, so that the bias incurred by the estimation
error of µ̂x and µ̂y is negligible compared to the O(1/

√
n) statistical error. Next, we use a

simple example to provide insights on the finite sample behavior of θ̂mod
n and θ̂ols

n .

Remark 6 (Finite-sample efficiency) We assume (X,Y, Z) ∈ R3 are jointly Gaussian,
and µ̂x and µ̂y are estimated by OLS. Given OLS’s OP (1/

√
n) consistency, we forego cross-

fitting to prevent cumbersome calculations. As a result, µ̂x(z) = Ên[Z2]−1Ên[XZ]z, and
µ̂y(z) = Ên[Z2]−1Ên[Y Z]z, where Ên[·] denotes empirical mean over all the data. One can

10
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then check that θ̂mod
n = Ên[X2]−1Ên[Z2]−1Ên[Y Z]Ên[XZ] and θ̂olsn = Ên[X2]−1Ên[Y X]. By

joint Gaussianity, there exists some α, β ∈ R such that X = αZ+εx and Y = βZ+εy, where

εx ∼ N(0, σ2
x) and εy ∼ N(0, σ2

y) conditional on Z. Both θ̂mod
n and θ̂olsn are unbiased for θ∗,

while Var(θ̂olsn )−Var(θ̂mod
n ) = σ2

yE
[ Ên[Z2]·Ên[ε2x]−Ên[Zεx]2

n(Ên[X2])2·Ên[Z2]

]
≥ 0. That is, in finite sample, θ̂mod

n

is always more efficient than θ̂olsn . See detailed calculation and discussion in Appendix B.1.

2.3 Modular regression in generalized linear models

The ideas outlined in the previous section also apply to generalized linear models (GLMs)
as long as the estimation equation has a modular structure.

Following the general setup in Section 1, we suppose the true parameter θ∗ ∈ Θ ⊆ Rpx is
the unique minimizer of E

[
`(Xi, Yi, θ

∗)
]
, where `(x, y, θ) = Y X>θ+h(x, θ) for some function

h : X ×Θ→ Rp that is convex in θ. A default estimator θ̂ml
n is the unique minimizer of the

empirical loss (1). Maximum likelihood estimation for GLMs with log links satisfies this
condition in general, such as logistic regression with `(x, y, θ) = −x>θy+ log(1 + exp(x>θ))
for y ∈ {0, 1}, and Poisson regression with `(x, y, θ) = −x>θy + exp(x>θ) for y ∈ N. More
generally, for exponential regression with `(x, y, θ) = 2 log y · θ>x− (θ>x)2 for y ∈ R+, one
can use the transformed outcome Ỹ := 2 log(Y ) to make it a special case of equation (1).

To obtain a more accurate estimator for C = E[XY ], the first two steps are exactly the
same as in Section 2.1. In the third step, we use Ĉlm defined in (6), and compute

θ̂mod
n = argmin

θ∈Θ

{
1

n

n∑
i=1

h(Xi, θ) + Ĉ>lmθ

}
. (7)

This estimator is again doubly-robust to the error of µ̂x and µ̂y, and has smaller asymp-

totic variance than θ̂ml
n under mild conditions. Its theoretical justification follows similar

ideas as before with slightly more involved technical conditions; we defer all the results to
Appendix A.

3. Modular linear regression in high dimensions

Many prediction problems involve a huge number of predictive variables, entering the high-
dimensional regime where px grows with, and can even be large than, the sample size n.
A popular approach to dealing with high-dimensional data is penalized regression such
as the Lasso (Tibshirani, 1996). By assuming a sparse linear regression function, high-
dimensional regression has been shown to be consistent under various well-conditioning
assumptions (Candes and Tao, 2005, 2007; Van de Geer, 2007; Zhang and Huang, 2008).

Our modular regression idea extends naturally to the high-dimensional setting. In this
section, we show that by including an `1 penalty, modular regression improves upon the
Lasso by seeking for a more efficient estimation equation. Throughout this section, we
assume a sparse linear model to ensure the task is tractable.

Assumption 7 There exists some θ∗ ∈ Rpx with ‖θ∗‖0 = s, such that E[Y |X] = X>θ∗.

11
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3.1 Regularized modular regression

We start with cross-fitting, and let µ̂
(k)
x , µ̂

(k)
y be estimators for µx(·) = E[X |Z = ·] and

µy(·) = E[Y |Z = ·] obtained from I\Ik, and define the cross-terms as in (6). The only
distinction from Section 2.1 is that we encourage sparsity by `1-regularization. We left

θ̂mod
n = argmin

θ∈Rpx

{
1

n

n∑
i=1

θ>XiX
>
i θ/2− Ĉ>lmθ + λ‖θ‖1

}
(8)

for some regularization parameter λ > 0, where ‖θ‖1 =
∑px

j=1 |θj |. As (8) is convex in θ,
the optimization can be efficiently solved similarly to the Lasso (e.g. coordinate descent).
In practice, λ can be determined by cross validation.

3.2 Theoretical guarantee

With proper choice of λ, modular regression leads to a sharper upper bound on the esti-
mation error. We assume a µ-RSC property for the design matrix X ∈ Rn×px which is
standard in the literature for the consistency of Lasso-type methods (Bickel et al., 2009;
Negahban et al., 2012). Our theoretical analysis may be generalized to other conditions,
which is beyond the scope of this work.

Assumption 8 X ∈ Rn×px obeys ζ-Restricted Strong Convexity (ζ-RSC), i.e., ‖X∆‖22/n ≥
ζ‖∆‖22 for any ∆ ∈ C3, where C3 :=

{
x ∈ Rp : ‖xSc‖1 ≤ 3‖xS‖1

}
, and S = {j : θ∗j 6= 0}.

We assume entries of X and the response Y are bounded by constants. This condition
is mild since the Lasso is often implemented after normalization.

Assumption 9 |Xj | ≤ 1 and ‖µ̂(k)
x,j(·)‖∞ ≤ 1 almost surely for k = 1, 2 and all 1 ≤ j ≤ p.

Also, |Yi| ≤ c0 and ‖µ̂(k)
y (·)‖∞ ≤ c0 almost surely for k = 1, 2 for some constant c0 > 0.

Finally, we assume µ̂
(k)
y and µ̂

(k)
x are consistent with o(n−1/4) convergence rates.

Assumption 10 Suppose ‖µ̂(k)
y (·) − µy(·)‖L2(PZ) = oP (n−1/4) for k = 1, 2. Also, there

exists a sequence of constants cn → 0 such that for sufficiently large n,

max
1≤j≤px,k=1,2

P
(∥∥µ̂(k)

x,j(·)− µx,j(·)
∥∥
L2(PZ)

≥ cn log(1/δ)

n1/4

)
≤ δ. (9)

Here µ̂
(k)
x,j(·) is the j-th entry of µ̂

(k)
x , an estimator for µx,j(·) := E[Xj |Z = ·].

Assumption 10 slightly differs from the commonly adopted consistency conditions, which

is often of the form ‖µ̂(k)
x,j − µx,j‖L2(PZ) = oP (n−1/4), on the estimation of nuisance compo-

nents. This is because we need an exponential tail bound to control all 2 × px estimated

functions {µ̂(k)
x,j}

px,2
j=1,k=1 simultaneously. Running many regressions may incur considerable

computational cost in high dimensions; we provide a computational shortcut in Section 3.4.
Many estimators in the literature obey Assumption 10. When Z is high-dimensional

(i.e., pz may grow with n or be larger than n), if E[Xj |Z] is an s′-sparse linear function of Z,

12
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then (9) holds for the Lasso estimator with cn �
√
s′ log(pz)/n

1/4 when the regularization
parameter is properly chosen. When Z is low-dimensional (i.e., pz does not grow with n),
under the standard assumption that E[Xj |Z] is sufficiently smooth, the well-established
convergence results of sieve estimation can be turned into such bounds by exponential tail
bounds for the concentration of empirical loss functions (Chen and Shen, 1998; Chen, 2007).

We show an improved bound for the estimation error of θ̂mod
n compared to the Lasso

estimator using (Xi, Yi). The proof of Theorem 11 is in Appendix C.2.

Theorem 11 (Finite-sample bound) Suppose Assumptions 1, 8, 9 and 10 hold. Then
there exists a sequence of constants {c̄n} with c̄n → 0 as n → ∞, such that for any fixed
δ ∈ (0, 1) and any regularization parameter λ obeying

λ ≥ 2

n

∥∥µ>y X + Y >µx − µ>y µx − (Xθ∗)>X
∥∥
∞ +

c̄n(log(3px/δ))
2

√
n

, (10)

it holds with probability at least 1− δ that

‖θ̂mod
n − θ∗‖2 ≤

3λ
√
s

2ζ
.

Here we denote ‖z‖∞ = supj |zj |, Y, µy ∈ Rn are vectors whose i-th entries are Yi and
µy(Zi), and X,µx ∈ Rn×px are matrices whose (i, j)-th entries are Xij and µx,j(Zi).

The second term in (10) arises from the estimation error in µ̂y and µ̂x. It enjoys
a double robustness property that is similar to the low-dimensional case: under the slow
convergence rate in Assumption 10, this error is negligible compared to the first term in (10)
that is typically Ω(

√
(log px)/n) (Vershynin, 2018). The estimation error of θ̂mod

n is then
characterized by the first term in (10).

When n is sufficiently large such that the second term in (10) is negligible, the deviation
of the first term can be decided by the variance of each entry. We define the random vector
εmod := X>θ∗X − µy(Z)X − Y µx(Z) + µy(Z)µx(Z) ∈ Rpx . Then, in Theorem 11, choosing

λ � L
√

maxj Var(εmod
j ) · log(px)/n yields the estimation error

‖θ̂mod
n − θ∗‖2 ≤

L ·
√
s log(px)√
nµ

√
max
j

Var(εmod
j ), (11)

where L > 0 is a universal constant. On the other hand, we let θ̂Lasso
n be the Lasso estima-

tor (2). Under similar conditions like Assumption 8, existing results in the literature (Negah-

ban et al., 2012) show that ‖θ̂Lasso
n − θ∗‖2 ≤ 3λ

√
s

2µ for any regularization parameter obeying

λ ≥
∥∥ 2
n

∑n
i=1(Yi − X>i θ

∗)Xi

∥∥
∞. We define εLasso = X(Y − X>θ∗). Similarly, choosing

λ � L
√

maxj Var(εLasso
j ) · log(px)/n yields

‖θ̂Lasso
n − θ∗‖2 ≤

L ·
√
s log(px)√
nµ

√
max
j

Var(εLasso
j ), (12)
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where L > 0 is the same universal scaling as above. The bounds in (11) and (12) distinguish
our modular estimator from the Lasso, as one can check that Var(εmod

j ) ≤ Var(εLasso
j ) for

all j. That is, modular regression reduces the uncertainty by a constant order.
Though this is only an upper bound analysis, our numerical experiments later on confirm

the improvement in estimation accuracy. In particular, we will see that the regularization
parameter λ chosen by cross-validation is smaller in modular regression. Intuitively, the
reduction in Var(εmod

j ) allows cross-validation to choose a smaller λ than for the Lasso.
Interested readers may wonder whether the modular idea can be leveraged to construct

more efficient confidence intervals following the ‘debiasing’ Lasso ideas (Zhang and Zhang,
2014; Javanmard and Montanari, 2014; Van de Geer et al., 2014). While this may be
feasible1, this problem warrants a careful and rigorous investigation that is beyond the
scope of this work. In addition, structure learning (which we introduce in the next part)
may lead to irregular estimators that deserve extra care. In the current paper, we mainly
focus on the estimation and prediction aspects, and leave this point for future work.

3.3 Robustness to the conditional independence condition

In practice, Assumption 1 may be violated, and the true dependence structure among the
variables may be completely unknown. In this part, we generalize our modular regression
framework to estimate and adapt to the conditional independence structure.

To be precise, Assumption 1 posits that Xj ⊥⊥ Y |Z for every j. That is, Z captures all
the predictive power of every Xj for Y . This condition can be violated in many ways. For
instance, Z may capture all the information for a subset of variables in X, while others in
X still have direct effects for Y . In this subsection, we assume that X ⊥⊥ Y | (Z,XJ ) for
some subset J ⊆ {1, . . . , px}, and XJ is the vector containing Xj for all j ∈ J . The choice
of J can be from prior knowledge, or by estimating (consistently) the dependence structure
among all the variables when joint observations of (X,Z, Y ) are available. Learning the
conditional independence structure is beyond our focus; popular methods in the literature
include constraint-based (Spirtes et al., 2000; Margaritis and Thrun, 1999; Tsamardinos
et al., 2006), score-based (Lam and Bacchus, 1994; Jordan, 1999; Friedman et al., 1999), and
regression-based (Lee et al., 2006; Meinshausen and Bühlmann, 2006; Roth, 2004; Banerjee
et al., 2006) ones assuming a high-dimensional graphical model, to name a few.

Remark 12 (Practical recommendation) For high-dimensional linear regression, a heuris-
tic idea is to use the Lasso for structure learning. For example, one can regress Y on (X,Z)
via the Lasso, and use all features in X with nonzero estimated coefficient as XJ . In our
numerical experiments in Section 5, We find that this heuristic approach works well in
improving estimation accuracy.

In the following, we outline how to use the output from structure learning such as in
Remark 12 in conjunction with modular regression. The condition X ⊥⊥ Y | (Z,XJ ) can be
seen as a special case of Assumption 1 for a different choice of the conditioning set “Z”:

X ⊥⊥ Y |Z full, where Z full = (Z,XJ ). (13)

1. Note the ‘modular’ structure in the debiased estimator β̂debias = β̂ + Θ̂(X>Y −X>Xβ̂)/n, where β̂ is

the Lasso estimator, and Θ̂ is the estimated precision matrix. A natural and heuristic idea is to apply
modular regression to improve the estimation of X>Y and β̂.
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This again allows us to break the problem into sub-tasks. In learning µy, after data splitting,

for each k = 1, 2, we aim µ̂
(k)
y for E[Y |Z full] using data in I\Ik, instead of E[Y |Z]. We

only learn (µx)j for j /∈ J : we let µ̂
(k)
x,j(x) be an estimate for E[Xj |Z full] using the data in

I\Ik for k = 1, 2. Then for each i ∈ Ik, we compute the cross-term Ci via

(Ci)j =

(Xi)jµ̂
(k)
y (Z full

i ) + µ̂
(k)
x,j(Z

full
i )Yi − µ̂(k)

x,j(Z
full
i )µ̂

(k)
y (Z full

i ), if j /∈ J ,

(Xi)jYi, if j ∈ J .
(14)

Finally, we solve the same modular least squares (5) or penalized least squares (8) with
Ĉlm := 1

n

∑n
i=1Ci for the above Ci. When Assumption 1 is violated, the original Ĉlm defined

in (6) might be biased even if the estimators for conditional expectations are correct. In
contrast, the new cross-terms we derive in (14) are unbiased for (Xi)jYi with potentially
smaller variance under the generalized condition (13).

Let Ĵ be the output of the structure learning step, and set Z f̂ull = (X
Ĵ
, Z). We note

that Y ⊥⊥ X |Z f̂ull holds with probability tending to 1 if Ĵ converges in probability to
some superset J̃ ⊇ J , our asymptotic expansion in Theorems 2 and 11 holds on an event
with probability tending to 1, and theoretical guarantees for this approach can be directly
implied in view of (13) and the fact that the definition of Ci in (14) is equivalent to taking

µ̂
(k)
x,j(Z

full
i ) := (Xi)j , which we omit here. The convergence of Ĵ can be obtained under,

e.g., irrepresentability-type conditions (Zhao and Yu, 2006), and is typically compatible
with Assumption 10; see Appendix B.3 for a more detailed discussion.

This variant can be viewed as a data-driven interpolation between the fully modular
regression we introduce in the preceding part and the standard OLS or Lasso. If the
conditional independence condition holds for Xj , then utilizing the information in Z full

reduces the estimation error in [θ̂mod
n ]j ; otherwise, it reduces to [θ̂mod

n ]j = [θ̂ols
n ]j in the low-

dimensional case, and yields a similar bound as θ̂Lasso
n for the high-dimensional regression.

In general, there is a trade-off between the robustness (related to accuracy of Ĵ) and
efficiency gain of θ̂mod

n . When Ĵ = J , θ̂mod
n achieves the most efficiency gain. When

Ĵ = {1, . . . , p}, then θ̂mod
n reduces to θ̂mod

n without any improvement.

Our simulation studies in Section 5 show that this approach robustly improves the esti-
mation and prediction accuracy in cases where Assumption 1 is violated but the conditional
independence structure (13) may be learned from the data.

3.4 Practical implementation via linear transformation

We now discuss a computational shortcut for high-dimensional modular regression. By
using linear transformations for estimating the conditional mean functions, it reduces the
computational costs and is readily compatible with standard implementation of the Lasso
(e.g., glmnet R-package (Friedman et al., 2010)).

First, let us discuss why the estimator as defined in equation (8) is computationally
demanding. Note that the modular estimator (8) minimizes

1

n

{
θ>X>Xθ/2− µ̂>y Xθ − Y >µ̂xθ + µ̂>y µ̂xθ

}
+ λ‖θ‖1 (15)
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where µ̂x ∈ Rn×px is a matrix whose (i, j)-th entry stores an estimator for µx,j(Zi), and µ̂y ∈
Rn is a vector whose i-th entry is an estimator for µy(Zi). In the cross-fitting approach we

outline in Section 3.1, the estimators are specified as [µ̂x]i,j = µ̂
(k)
x,j(Zi) and [µ̂y]i = µ̂

(k)
y (Zi)

for i ∈ Ik. That is, we need to run Ω(px) times of regression to obtain µ̂
(k)
x and µ̂

(k)
y .

Here, we take a different approach to estimating µx and µy:

µ̂x = ΠxX, µ̂y = ΠyY,

where Πx,Πy ∈ Rn×n are symmetric matrices. Examples include OLS regression for Πx =
Πy = Z(Z>Z)−1Z> and ridge regression (with `2-penalty parameter η) for Πx = Z(Z>Z+
ηI)−1Z>, where Z ∈ Rn×pz is the data matrix, I ∈ Rn×n is the identity matrix, and we call
η the ridge penalty for clarity. We then compute the modular estimator by minimizing (15),
or equivalently,

1

n

{
θ>X>Xθ/2− Y >(Πy + Πx −ΠyΠx)Xθ

}
+ λ‖θ‖1. (16)

The objective (16) is equivalent to the Lasso estimator (2) applied to the design matrix
X and the response vector (Πy + Πx −ΠxΠy)Y . Our modular estimator could then be
computed with standard libraries or packages for the Lasso (Friedman et al., 2010). The
parameters in Πx,Πy (such as the ridge penalty) can also be chosen with cross-validation.
In our real data experiments, this computation shortcut using ridge regression and cross-
validated ridge penalty η achieves a prediction accuracy that is comparable to the fully
modular approach (with entry-wise regression) and better than the Lasso.

As this shortcut combines ridge regression and the Lasso, it is related to the LAVA
estimator (Chernozhukov et al., 2017) that is designed for recovering sums of dense and
sparse signals. We develop a different estimator than theirs, which also serves a distinct
goal of improving efficiency by exploiting the conditional independence structure.

4. Extension to missing data

Modular regression allows for flexible combination of data sets in various missing data
settings. In this part, we discuss a general scenario where we may have access to a collection
of pairwise observations (Xi, Zi) or (Zi, Yi) and/or some tuples (Xi, Zi, Yi).

While our work finds deep connections to the missing data literature (see Section 1.3
for more discussion), a major distinction is that we mainly focus on linear models and their
extensions. We leverage specific algorithmic structure (the product structure of expecta-
tion) and general independence patterns among variables, which differs from the missing
data literature that usually draws upon independence between variables and the missing
indicator. Furthermore, the modular algorithmic structure allows us to deal with various
scenarios of data availability with a unified approach.

Throughout, we assume a ‘completely-missing-at-random’ (MCAR) mechanism, such
that the probability of missing any variable is independent of (X,Y, Z). Formally, sup-
pose we have access to data sets Ixyz = {(Yi, Xi, Zi}

nxyz
i=1 , Ixz = {(Xi, Zi)}nxzi=1, Iyz =

{(Yi, Zi)}
nyz
i=1. For our exposition, it suffices to impose the following as a consequence of

MCAR.
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Assumption 13 There exists a super-population PX,Y,Z , such that the joint observations

obey {(Xi, Yi, Zi}
nxyz
i=1

i.i.d.∼ PX,Y,Z , and the pairwise observations obey {(Xi, Zi)}nxzi=1
i.i.d.∼ PXZ

and {(Yi, Zi)}
nyz
i=1

i.i.d.∼ PY Z , i.e., the marginal distributions are consistent with PX,Y,Z .

We will see that the decomposition of the regression task allows us to flexibly modify
our methods in Sections 2 and 3 according to the availability of data. We provide a general
procedure in Algorithm 2 for low-dimensional linear regression. Extension to GLMs and
high-dimensional setting can be similarly obtained by replacing θ>XiX

>
i θ by h(Xi, θ) as in

Section 2.3 or adding an `1-regularizer to the estimation equation as in Section 3.

Algorithm 2 Modular linear regression with missing data

Input: Datasets Ixyz = {(Yi, Xi, Zi}
nxyz
i=1 , Ixz = {(Xi, Zi)}nxzi=1, Iyz = {(Yi, Zi)}

nyz
i=1.

1: Randomly split Ixyz, Ixz and Iyz into two equal-sized folds Ixyzk , Ixzk , Iyzk , k = 1, 2.
2: for k = 1, 2 do

3: Fit models µ̂
(k)
x (·) for E[X |Z = ·] using {(Xi, Zi) : i ∈ (Ixyz\Ixyzk ) ∪ (Ixz\Ixzk )};

4: Fit models µ̂
(k)
y (·) for E[Y |Z = ·] using {(Yi, Zi) : i ∈ (Ixyz\Ixyzk ) ∪ (Iyz\Iyzk )};

5: Compute µ̂x(Zi) = µ̂
(k)
x (Zi) and µ̂y(Zi) = µ̂

(k)
y (Zi) for all i ∈ Ik.

6: end for
7: Compute Ĉzzmiss = 1

nxz+nyz+nxyz

∑
i∈Ixz∪Iyz∪Ixyz µ̂y(Zi)µ̂x(Zi),

Ĉxzmiss = 1
nxz+nxyz

∑
i∈Ixz∪Ixyz Xiµ̂y(Zi), and Ĉyzmiss = 1

nyz+nxyz

∑
i∈Iyz∪Ixyz Yiµ̂x(Zi).

8: Compute Ĉmiss = Ĉxzmiss + Ĉyzmiss − Ĉzzmiss, Σ̂miss = 1
nxz+nxyz

∑
i∈Ixz+Ixyz XiX

>
i .

Output: The modular estimator θ̂miss
n = argminθ∈Rpx

{
θ>Σ̂missθ/2− Ĉ>missθ

}
.

Algorithm 2 is operable even when no joint observations of (X,Z, Y ) are available, i.e.,
Ixyz = ∅ and nxyz = 0. This is inspired by the crucial fact that (6) only involves pairwise
observations of (X,Z) and (Z, Y ), and the same for learning µx(z) and µy(z). When
nxz = nyz = 0, it reduces to Algorithm 1 that uses joint observations of (X,Y, Z).

The next proposition generalizes Theorem 2, whose proof is in Appendix C.3. Similar
results can be derived for GLMs and the high-dimensional case, which we omit for brevity.

Proposition 14 Suppose Assumptions 1 and 13 hold. Suppose nxz/(nxz + nyz + nxyz) →
ρxz, and nyz/(nxz + nyz + nxyz)→ ρyz for some ρxz, ρyz ∈ (0, 1). Denote Nxz = nxz + nxyz

and Nyz = nyz + nxyz. Assume ‖µ̂(k)
x − µx‖L2(PZ) · ‖µ̂

(k)
y − µy‖L2(PZ) = oP (1/

√
Nxz) +

oP (1/
√
Nyz) for k = 1, 2, E[XX>] � 0 is finite, and X(Y − X>θ∗) has finite second

moments. Then θ̂mod
n − θ∗ = E[XX>]−1

{
1
nxz

∑
i∈Ixz φxz(Xi, Zi) + 1

nyz

∑
i∈Iyz φyz(Yi, Zi) +

1
nxyz

∑
i∈Ixyz φxyz(Xi, Yi, Zi)

}
+oP (1/

√
Nxz+1/

√
Nyz), where φxz(X,Z) = ρxz

1−ρyzXµy(Z)−
ρxzµy(Z)µx(Z)− ρxz

1−ρyzXX
>θ∗, φyz(Y,Z) =

ρyz
1−ρxz Y µx(Z)−ρyzµy(Z)µx(Z), and φxyz(Y, Z) =

Xµy(Z)
1−ρyz + 1

1−ρxz Y µx(Z)−µy(Z)µx(Z)− 1
1−ρyzXX

>θ∗. When nxyz = 0, in the formulas above

one should interpret 0/0 as 0.

4.1 Pairwise observations
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We discuss a few consequences when only pairwise observations of (X,Z) and (Y, Z) are
available. In general, predicting Y with X is impossible without identification assumptions
(Assumption 1). Also, the structure learning approach in Section 3.3 is no longer feasible.

Since nxyz = 0 and Ixyz = ∅, we know ρxz + ρyz = 1. The asymptotic linear expansion

in Proposition 14 reduces to θ̂mod
n − θ∗ = 1

nxz

∑
i∈Ixz φxz(Xi, Zi) + 1

nyz

∑
i∈Iyz φyz(Yi, Zi) +

oP (1/
√
nxz) + 1/

√
nyz), where φxz(X,Z) = Xµy(Z) − ρxzµy(Z)µx(Z) − XX>θ∗, and

φyz(Y, Z) = Y µx(Z) − ρyzµy(Z)µx(Z). The modular estimator gets more efficient as nxz
and nyz increases, while plain OLS is no longer feasible.

4.2 Partially pairwise observations

Modular prediction can also be adapted to settings where a limited number of triple obser-
vations are available in addition to (X,Z) and (Y,Z) pairs, i.e., nxyz > 0.

In this case, one can run OLS on Ixyz, whose asymptotic expansion is θ̂ols
n − θ∗ =

1
nxyz

∑
i∈Ixyz E[XX>]−1(Yi − X>i θ∗) + oP (1/

√
nxyz). The estimation error is of the scale

OP (1/
√
nxyz). In contrast, by utilizing additional pairwise observations, Algorithm 2

achieves the rate of OP (1/
√
nxz + nxyz) + OP (1/

√
nyz + nxyz); this is a substantial im-

provement upon OLS if nxz and nyz are much larger than nxyz, which may happen in the
example at the beginning of this paper. Even if nxz and nyz are of the same order as nxyz,
i.e., ρxz + ρyz < 1, Algorithm 2 may still achieve a smaller asymptotic variance than OLS.

With a few (X,Z, Y ) observations, one may leverage them to learn the conditional
independence structure. Following the notations in Section 3.3, Z will then be replaced
by Z full which consist of both the original features in Z and some other features in X.
Thus, in Line 7 of Algorithm 2, Ĉyzmiss has to be computed with data in Ixyz, and Ĉzzmiss

has to be computed with data in Ixz ∪ Ixyz. That said, we do note that in our real data
application (see Section 6.2), modular regression performs well without structure learning.
Theoretically, the above procedure without structure learning may induce substantial bias
in cases where conditional independence does not hold. However, in settings where we have
recorded a rich set of intermediate covariates in Z (as often assumed in surrogate methods),
the conditional independence assumption is often plausible or the bias is sufficiently small
compared with the reduced variance.

5. Simulation studies

We evaluate our methods on simulated datasets to compare the bias, variance and overall
estimation error of our methods to non-modular counterparts in both low and high dimen-
sional settings. We also investigate the robustness to approximate conditional independence
in the high dimensional setting.

5.1 Low-dimensional setting

We focus on parameter estimation in the low-dimensional setting. We are interested in
estimating θ∗ = argminθ∈Rpx E[(Y − X>θ)2], where Y ∈ R is the response, and X ∈ Rpx
are the covariates. We suppose in the training data we have access to Z ∈ Rpz such that
X ⊥⊥ Y |Z. We fix px = 4, pz = 6, and a relatively small sample size at n = 500.
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We design 2× 2 data generating processes depending on (i) whether the true relation is
linear and (ii) whether the data generating process follows the graphical model X → Z → Y
or X ← Z → Y . The details are summarized in Table 1. The linear regression model is not
necessarily well-specified for all settings, while the OLS parameter θ∗ is always well-defined.

Setting Data generating process Comment

1 Z ∼ Unif[−1, 1], X = BZ + εz, Y = Z>γ + εy linear, X ← Z → Y

2 X ∼ Unif[−1, 1], Z = BX + εz, Y = Z>γ + εy linear, X → Z → Y

3 Z ∼ Unif[−1, 1], X = f(Z) + εz, Y = g(Z) + εy nonlinear, X ← Z → Y

4 X ∼ Unif[−1, 1], Z = f(X) + εz, Y = g(Z) + εy nonlinear, X → Z → Y

Table 1: Data generating processes in all settings, where εz ∼ N(0, σ2
z) and εy ∼ N(0, σ2

y)
are independent noise, and f , g are nonlinear functions defined in the text.

In settings 1 and 2, we set γ = (0.531,−0.126, 0.312, 0, 0, 0)> ∈ Rpz , and B ∈ Rpx×pz
or B ∈ Rpz×px is a constant matrix where 8 out of 24 entries are randomly set to 0.5
then fixed for all configurations, while the other entries are zero. The f and g functions
in Settings 3 and 4 are defined as follows. In setting 3, we set X4 = [BZ]4 with the
same B as setting 1, and X1 = 0.5X1 + 1{Z1 > 0}, X2 = −0.5Z3 + 1{Z4 > 0} and
X3 = 1{Z4 > 0}. In setting 4, we set Z4:6 = [BX]4:6 with the same B as setting 2, and
Z1 = 0.5X1 + 1{X1 > 0}, Z2 = −0.5X3 + 1{X4 > 0} and Z3 = 1{X4 > 0}. In all settings,
εz ∼ N(0, σ2

z) and εy ∼ N(0, σ2
y) are independent noise, where we vary the noise strengths

σz, σy ∈ {0.1, 0.5, 1, 2}, and X ∼ Unif[−1, 1] means all entries in X are i.i.d from Unif[−1, 1].

We compute the OLS parameter θ̂ols
n and our modular estimator with µ̂

(k)
y and µ̂

(k)
x

estimated with (i) cross-validated Lasso (Friedman et al., 2010), (ii) cross-validated ridge
regression (Friedman et al., 2010), (iii) regression random forest from grf R-package, and
(iv) linear regression. All procedures are repeated for N = 1000 independent runs. For
comprehensive illustration here, we aggregate all coefficients and evaluate the rooted mean
square error (RMSE) E[‖θ̂−θ∗‖22]1/2 (summation of) standard deviation (SD)

∑px
j=1 sd(θ̂j−

θ∗j ) and bias
∑px

j=1 |E[θ̂j − θ∗j ]| for the five estimators. We plot the aggregated RMSE in
settings 2 and 3 in Figure 3. Bias, SD and RMSE in all settings (either aggregated or for
each entry) are in Appendix E which convey similar messages.

Modular regression – no matter which machine learning regressor is used for µ̂x and µ̂y –
achieves smaller RMSE than the plain OLS in almost all configurations. Modular regression
has a larger bias than OLS due to the additional regression (Figure 14, Appendix E), yet
much more substantial reduction in standard deviation (Figure 15, Appendix E) in all
settings. Also, results from setting 1 confirms Remark 5, where the asymptotic variance
reduction grows with both σz and σy.

A noteworthy exception is σz = 0.1 in setting 3, where the RMSE of modular regression
with random forests is worse than that of the OLS estimator. This is because with small
sample size (n = 200) and low noise (hence the uncertainty in θ̂ols

n is very small), the bias
introduced by the random forest regression is large compared to the reduction in variance.
However, when σz becomes larger, the bias (Figure 14) has a smaller magnitude; this
may be because we enter a signal-to-noise ratio regime that favors tree-based approaches.
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Figure 3: RMSE averaged over N = 1000 runs with n = 200. Each column corresponds to
a value of σz. In each subplot, the x-axis (noise strength) equals σy, the standard deviation
of noise in Y . Modular regression achieves smaller estimation error in almost all settings.

The impact of bias is also less substantial when we increase the sample size. Figure 16
in Appendix E plots the RMSE for estimating θ∗1 when n = 2000, where we see a much
better performance of modular regression with random forests. Thus, we recommend using
machine learning regressors for larger sample sizes.

We also note that modular regression with linear regression (green) performs better
than the plain OLS in all settings (even when the true relation is nonlinear), although it is
sometimes outperformed by other modular methods. This phenomenon is universal in our
simulation (see Appendix E for RMSE for all entries in all settings), and verifies the relaxed
consistency condition we observe after Theorem 2. Although this is not a general rule, we
still recommend linear regression in practice especially for small sample size. One can also
add a few transformed regressors into the linear regression to further adapt to nonlinearity.

Finally, to show the asymptotic behavior of modular regression, in Figure 4 we plot
the aggregated RMSE for varying sample sizes n ∈ {200, 500, 1000, 2000} with σz = 0.5
and σy = 1 in all settings. Modular regression outperforms OLS in nearly all settings,
and linear models (lm, Lasso and Ridge) as base estimators show robust performance. The
performance of random forest is less stable for small sample size (n = 200) in setting 3,
hence we recommend using flexible machine learning models with larger sample sizes.

5.2 High-dimensional setting

We now consider two data generating processes in the high-dimensional setting, where the
conditional independence structure holds only in one of them. We show that our methods
outperform the Lasso in Setting 1 (with conditional independence), and is robust against
the violation of conditional independence in Setting 2. Following the preceding notations,
X ∈ Rpx is the covariates available in the prediction phase, while Z ∈ Rpz is only available
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Setting 1 Setting 2 Setting 3 Setting 4
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Figure 4: RMSE averaged over N = 1000 runs for various sample size, and σz = 0.5, σy=1.
Modular regression outperforms OLS in all settings, and its performance improves with n.

for training data, and Y ∈ R is the outcome. The data generating processes are visualized
in Figure 5.

Z

X Y

(a) Setting 1: conditional independence

Z

Y

X

(b) Setting 2: approximate conditional inde-
pendence

Figure 5: Illustration of the two data generating processes.

In settting 1, we generate X ∈ Rpx where each entry is i.i.d. from N(0, 1); then we
generate Z = BX + εz ∈ Rpx with i.i.d. noise εz ∼ N(0, 1) given a parameter matrix
B ∈ Rpz×px . Finally, we generate Y = Z>γ + εy for i.i.d. random noise εy ∼ N(0, 4) and
some γ ∈ Rpz . To ensure sparsity, we let Bij = 0 for all j > s, such that Xj ’s for j > s are
irrelevant for the prediction. Then for each j ≤ s, we randomly select 2s entries in the j-th
column of B with Bij = 0.25, the remainings with Bij = 0. We set γi = 0.5 for 1 ≤ i ≤ s,
and γi = 0 for i > s. In this way, Y = X>θ∗+(γ>εz+εy) where θ∗ = B>γ, and X ⊥⊥ Y |Z.

In setting 2, we ensure a small subset of covariates in X to have direct impact on Y
(the link from X to Y in Figure 5(b)). To be specific, we generate X and Z = BX + εz,
where {Bij : j ≤ s} and εz are the same as setting 1, and generate Y = Z>γ + X>γ̃ + εy
for i.i.d. random noise εy ∼ N(0, 4); the direct coefficient γ̃ satisfies γ̃i = 0 for i ≤ s and∑px

i=1 1{γ̃i ≥ 0} = 5. In this setting, the high dimensional model Y = X>θ∗ + (γ>εz + εy)
holds with θ∗ = B>γ + γ̃, but X ⊥⊥ Y |Z does not hold exactly.

We compare our method in Section 3.1 to the Lasso; to ensure fair comparison, we run
the Lasso using our modular method while setting f̂y(Zi) := Yi and f̂x(Zi) := Xi for all i,
so that (8) reduces to the Lasso. We also evaluate an oracle modular regression algorith,
that is, we set µ̂y := E[Y |Z] and µ̂x := E[Xj |Z] as the ground truth. The regularization
parameter λ for `1-penalty is chosen by 5-fold cross validation on the training data for
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all methods. In our modular regression algorithm, we fit µ̂x and µ̂y by ridge regression
using the cv.glmnet function from the glmnet R-package (Friedman et al., 2010). The
procedures are evaluated for px = pz = 100 and s = 10. The training sample is n = 500 and
we evaluate the prediction on ntest = 1000 test samples for a relatively accurate estimate.

5.2.1 Performance under conditional independence

In setting 1 with a well-specified high-dimensional linear model and exact conditional inde-
pendence X ⊥⊥ Y |Z, we evaluate (i) the parameter estimation error ‖θ̂j − θ∗j‖2 where θ̂ is
the output of modular regression or the Lasso, as well as (ii) prediction performance: excess
risk 1

ntest

∑ntest
i=1 (X>i θ̂ −X>i θ∗)2 and mean squared error (MSE) 1

ntest

∑ntest
i=1 (X>i θ̂ − Yi)2 on

the test samples.

Parameter estimation. For each j ∈ [px], we evaluate the rooted mean squared error
(RMSE) (θ̂j − θ∗j )2 and bias |E[θ̂j ] − θ∗j | over N = 100 replicates, and visualize the RMSE
(left) and bias (right) via boxplots in Figure 12.
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Figure 6: Boxplot of RMSE (left) and bias (right) of {θ̂j : j ∈ [px]}, averaged over all
replicates in setting 1, separately for θ∗j 6= 0 (nonzero entry) and θ∗j = 0 (zero entry). The

x-axis indicates the method to obtain θ̂j . Modular regression achieves smaller RMSE and
smaller bias than the Lasso due to a different bias-variance trade-off.

For nonzero entries (the blue boxplots), we observe a significant reduction in RMSE
compared to the Lasso under various sample sizes; despite the estimation error in fitting the
conditional mean, our method is comparable to its oracle counterpart, even with a smaller
overall RMSE (though less stable across entries). This might be due to the instability
in cross-fitting with ridge regression or achieving a better bias-variance tradeoff by cross-
validation. Also, as n increases, modular regression gets more and more stable. For zero
entries, the RMSE are similar across three methods: while the oracle yields lower RMSE
than the Lasso, the slight inflation of RMSE in modular prediction might be due to the
estimation error of µ̂x and µ̂y.

We find that the reduction in RMSE for nonzero entries mainly comes from the reduction
in bias, as illustrated by the right panel of Figure 12. This is consistent with our theory
in Theorem 11: The reduced variance of the proxy Ĉlm allows the cross-validation step to
choose a model with smaller bias. Due to limited space, we defer the corresponding plot of
standard deviations to Figure 21 in Appendix E.
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Prediction. We plot the N = 1000 excess risks averaged on the test samples for various
training sample size n in Figure 7. It shows significant improvement in prediction accuracy
of our method compared to plain Lasso; modular regression is slightly inferior to the oracle
counterpart but the difference is relatively moderate. The error of modular regression also
gets smaller as the sample size increases.
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Figure 7: Boxplot of N = 1000 empirical excess risks E[(X>i θ̂−X>i θ∗)2] and MSEs E[(X>i θ̂−
Yi)

2] in all replicates for setting 1. Modular regression achieves smaller excess risk than the
Lasso. The improvement in prediction MSE is less visible due to the irreducible error.

5.2.2 Robustness to approximate conditional independence

In the following, we test the robustness of our method against potential violation of the
conditional independence assumption. In setting 2 where the conditional independence only
approximately holds, we additionally conduct a structure learning step using Lasso.

We first run a cross-validated Lasso of Y on (X,Z) using the cv.glmnet function (Fried-
man et al., 2010) for model selection; all Xj that are selected by this Lasso step is then
merged into Z. For any selected Xj , we will skip the regression of E[Xj |Z] and directly

set f̂x,j(Zi) = Xi,j for all training samples. We also evaluate an oracle counterpart which
uses the ground truth of the structure and the true conditional expectations for those
Xj ⊥⊥ Y |Z; we skip the regression for those Xj with a direct impact on Y , as outlined in
Section 3.3.

Figure 8 plots the RMSE (left) and bias (right) of all coefficients θ̂j with various sample

sizes, averaged over N = 1000 replicates. The plot for standard deviations of θ̂j is in
Figure 21 in Appendix E. We again see an improved RMSE especially for nonzero entries
(blue). While the RMSE is less stable across different entries, perhaps because of the
additional uncertainty introduced in the structure learning step, it is in general better than
plain Lasso and comparable to the oracle. Similar to the previous setting, this reduction
of RMSE mainly comes from a reduced bias as shown in the right panel of Figure 8. In
general, our method is able to adapt to approximate conditional independence and maintain
certain efficiency gain.

We summarize the prediction performance in Figure 9. The excess risk of modular
prediction lies between that of the oracle counterpart and the Lasso. Still, the relative
improvement in terms of prediction MSE is present yet smaller due to the irreducible noise.
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Figure 8: Boxplot of RMSE (left) and bias (right) of θ̂j , j ∈ [px], averaged over all replicates,
for θ∗j 6= 0 (nonzero entry) and θ∗j = 0 (zero entry) separately. Modular regression achieves
smaller estimation RMSE and bias than the Lasso, due to a different bias-variance trade-off.
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Figure 9: Boxplot of N = 100 empirical excess risks (X>i θ̂ − X>i θ
∗)2 (left) and MSEs

(X>i θ̂−Yi)2 (right) in all replicates for setting 2. Modular regression with structure learning
achieves smaller prediction excess risk than the Lasso.

6. Real data analysis

6.1 Dataset overview

We apply our method to the English Longitudinal Study of Ageing dataset (Oldfield et al.,
2021). The waves of data consistently measure several modules of features such as health
trajectories, disability and healthy life expectancy, the economic and financial situations,
cognition and mental health, etc. We use the Wave 7 and Wave 9 data, collected in 2014
and 2018, respectively, restricted to people who are present in both waves.

We consider predicting the future health outcomes of people based on their current
available features. The Wave 7 data is used as covariates. We divide all variables into two
categories: health (both mental and physical) and social conditions (including household
demographics, financial, work and social situations). After pre-processing through one-hot
encoding for categorial and string-valued variables and filtering out some highly imbalanced
variables, the health and social categories contain 184 and 888 features, respectively. We
take the hehelf variable from Wave 9 data as the response Y : the reported overall health
situation ranging from 1 (excellent) to 5 (poor). We treat the outcome as continuous.
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6.2 Real data application

We take the covariates in the social category as X ∈ Rpx for px = 888, and those in the
health category as Z ∈ Rpz for pz = 184. Our procedure is geared towards settings with high
noise. To simulate such a setting, we smooth the discrete response Y by adding i.i.d. noise
drawn from N(0, 4). The task is to predict Y using X, while Z may be available during the
training process. This is practical setting where health conditions (Z) may be more costly
or difficult to evaluate, hence only available in pre-collected data.

We consider a scenario where one only has access to a limited number n of (X,Y, Z)
triples as well as nxz observations for (X,Z) and nyz observation for (Z, Y ) pairs in the
training phase. This mimics a realistic scenario where it is difficult to obtain full observations
simultaneously but modular data are more easily accessible. When nxz = nyz = 0, it reduces
to the standard full-observation setting. While it is more difficult to test for conditional
independence and the modeling assumptions with limited joint observations, we could still
use our framework to merge the individual datasets and improve out-of-sample prediction.
We focus on the prediction MSE on the test sample because no ground truth is available.
We consider two scenarios:

(i) Fixed n and varying nxz and nyz. We fix n = 200, and the number of pair observations
varies as nxz = nyz = n · ρ for ρ ∈ {0.5, 1, 5, 10}.

(ii) Fixed n+nxz+nyz and varying proportion. We fix the total sample size n+nxz+nyz =
1000, while varying the proportion of joint observations by n = 1000 ·ρ, nxz = nyz for
ρ ∈ {0.05, 0.1, 0.2, 0.5, 0.8, 1}.

We evaluate our modular regression approach outlined in Section 4 that utilizes the
partial observations, where we use 2-fold cross-fitting to obtain µ̂x and µ̂y from 1) the Lasso
using cv.glmnet (10-fold cross-validation), 2) ridge regression using cv.glmnet (10-fold
cross-validation), and 3) random forests using grf R-package. The parameter λ for `1-
regularization is chosen by 10-fold cross-validation with the 1se criterion, implemented in
the same way as that in the cv.glmnet R function, i.e., we selects the largest λ within one
se of CV error from the smallest CV error. We use the modular regression without structure
learning. These implementations are compared to the default Lasso using cv.glmnet fitted
over the (X,Y ) joint observations, also using 1se criterion for 10-fold validation. Here we
omit the results for our methods and the Lasso using the min option (selecting minimum
CV error) for cross-validation because the Lasso performs far less stable in this case. The
average prediction MSEs over N = 100 independent runs are in Figure 10.

The left panel in Figure 10 shows the results for setting (i), where Lasso uses a fixed
number of joint observations. As the number of auxiliary observations increases, our modu-
lar regression achieves smaller prediction error, showing quite substantial improvement due
to incorporating auxiliary observations.

The right panel presents those for setting (ii). Naturally, the performance of the Lasso
(blue, dashed line) improves as ρ, the proportion of joint observations, increases. Our
modular regression, with all of the three regressors, outperforms the Lasso by utilizing
auxiliary observations, including ρ = 1 without missing data. Surprisingly, keeping the total
sample size fixed, we do not see much variation in the performance of modular regression
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Figure 10: Average prediction MSEs on the test data in settings (i) left and (ii) right.
All methods are 1se cross-validated. The x-axis represents the value of ρ in both plots.
Modular regression with all three base learners substantially reduce the prediction MSE.

(all solid lines) as ρ varies: the performance with only 5% joint observations is comparable
to that with more than 50% joint observations. Our method achieves very similar effective
sample size as full observations on this dataset. On the other hand, this phenomenon also
indicates that we are in a regime where the irreducible error in Y is large compared to
the learnable part. In the next part, we are to utilize semi-synthetic data to evaluate the
performance of our method in a setting with slighly stronger signal.

6.3 Semi-synthetic data

As discussed in Section 3.4, a naive implementation of our procedure is computationally
prohibitive in high-dimensional settings. Thus, in the following, we evaluate the shortcut
described in Section 3.4 and compare it with the standard cross-fitting implementation. We
keep the choice of X and Z as before, and randomly subsample without replacement the
training and test folds, where we observe (X,Z, Y ) for n = 1000 training data, but only X
for ntest = 1794 test sample. This is a scenario where only those easier-to-measure social-
related covariates are available at the time of prediction, while the pre-collected training
data contain both health and social covariates.

Data generating process. As the signal-to-noise ratio in the original data (for both
(X,Y ) and (Z, Y ) regression) is extremely low, we enhance the signal with the following
synthetic data generating process to draw a more informative comparison. We standardize
all features using the original dataset, from which we subsample a set of observations aside
from the training and test data. On this set, we run the Lasso for Y given Z which finds 13
nonzero regression coefficients, and for Y given X which finds 12 nonzero coefficients; we
then reorder the features so that Z1:13 and X1:12 have with nonzero coefficients. For each
j ∈ {1, . . . , 12}, we run a Lasso for Xj over Z1:13 on this fold, and store all coefficients in

the j-th column of a matrix B̂ ∈ R13×12.

We generate the training and testing data by Zi = Zorg
i + εzi , where Zorg

i is the original
observation, and εzi ∼ N(0, σ2

z) is independent noise. We then compute µx(Zi) = 2.5 ·
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B̂>Zi,1:13, and generate Xi,1:12 = µx(Zi) + εxi , where εxi ∈ R12 is i.i.d. noise from N(0, 0.25 ·
112) to match the standardized variance in X, and X13:px are obtained by permuting each
columns in the (standardized) original data matrices. Finally, we generate Yi = µy(Zi)+ εyi ,
where µy(Zi) = Z>i γ where the first 12 entires in γ ∈ Rpz equals 0.5 while the others equal
to zero, and εyi ∼ N(0, 4) is the i.i.d. random noise. This setup ensures X ⊥⊥ Y |Z, but the
sparse linear model E[Y |X] = X>θ∗ does not necessarily hold, and the true parameters θ∗

are not available. We thus focus on the prediction performance. We vary the signal-to-noise
ratio by setting σz ∈ {1, 2}.

Methods. We evaluate two implementations of the modular regression:

(i) Cross fitting in Section 3.1. We use two-fold cross-fitting with cross-validated Lasso
and ridge regression to form µ̂x and µ̂y, and then use 10-fold cross-validation to decide
the penalty parameter λ in (8) by either (a) min: minimal CV error or (b) 1se: the
same as the default implementation in cv.glmnet R function which selects the largest
λ within one se of CV error for stable performance.

(ii) Projection shortcut in Section 3.4. We use ridge projection with regularization pa-
rameters (ηx, ηy) for Πx,Πy, and then run cv.glmnet (with both (a) min and (b) 1se
choice of cross-validation) for X and (Πy + Πx −ΠxΠy)Y , where (ηx, ηy) are chosen
by 10-fold cross-validation to minimize CV error.

The above two implementations are compared to two baselines:

(iii) Oracle modular regression. Set µ̂x and µ̂y as ground truth, and then the same as (i).

(iv) Lasso: Run cv.glmnet on (X,Y ) with both (a) min and (b) 1se cross-validation.

Results. The boxplots for all methods with N = 100 independent runs are in Figure 11,
where we compare the performance under different cross-validation options.

The patterns across different values of σz are similar. Among the baselines, the Lasso
with minimal CV error is more accurate than 1se (see the blue boxplots in the last two
columns versus in the first two columns), while the oracle modular regression always achieves
smaller prediction MSE than the Lasso with the corresponding CV option (grey).

Our modular regression method performs reasonably well when the conditional mean
functions µx(·) and µy(·) are estimated. When they are estimation by (i) ridge projection
shortcut, modular regression with both min (see the last column) and 1se (see the second
column) improves upon the Lasso, although it is sometimes less accurate than the oracle.
This shows the projection shortcut in Section 3.4 is a reliable alternative to the more
computationally intensive cross-fitting approach. When they are estimated by (ii) cross
fitting (see the first and third columns), our method improves upon the original Lasso with
both Lasso (green) and ridge regression (yellow) as the regressor, and the performance
is comparable to the oracle. The Lasso as the regressor is slightly better than the ridge
regression; this may be due to the true sparse linear data generating process. In general,
for the (ii) implementation, cross-validation with min CV error achieves smaller test MSE
than 1se, while the latter sees larger improvement upon the Lasso.
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Figure 11: Boxplots of prediction MSEs on the test data. Each subplot summarizes methods
with one cross validation option (1se or min) under one value of σz. Method stands for the
projection shortcut (mod), and cross-fitting with Lasso (cfmod.Lasso) and ridge regression
(cfmod.ridge). The Lasso (Lasso) and oracle modular regression (orc) with the same
cv option are plotted for comparison. The oracle modular regression substantially reduces
MSE; the cross-fitting implementation with Lasso and ridge regression is comparable to the
oracle; the projection shortcut is slightly inferior but still improves upon the Lasso.

7. Discussion

In this work, we propose the modular regression framework and show that conditional
independence structures between variables can be used to decompose statistical tasks into
sub-tasks. We develop decomposition techniques for linear models in both low and high
dimensional settings. We show that such decomposition can improve efficiency and allow to
combine different datasets for a single estimation or prediction task with rigorous statistical
guarantees. In practice, the conditional independence conditions for decomposition may be
violated, leading to a bias-variance trade-off. We also develop a robust implementation of
our method to adapt to potentially more complicated dependence structures.

Looking ahead, statistical tasks that allow for decomposition may go well beyond the
cases studied in this work, and the assumptions for decomposition may vary with the
nature of the tasks. For instance, in high dimensional graphical models, the edges between
variables that indicate independence may be sparse, and conditional independence may
not hold exactly for two disjoint sets (e.g., our X ∈ Rpx and Z ∈ Rpz). In biological
applications, there may exist several paths from X to Y rather than being fully mediated by
Z. The dependence among the features and the response may still be sparse, but additional
efforts are needed in order to leverage potential independence structures. In addition,
the data fusion technique may be further extended: In practice, one may have access to
many auxiliary datasets that cover different sets of features. Developing a framework to
systematically combine multiple datasets may also be an interesting direction. Finally, our
theoretical results in high dimensions only cover the sparse setting (p � n � log p with
s ≤
√
n). In this regime, both the LASSO and the modular estimator are consistent, and

the role of conditional independence is to lower the variance of residuals. Its role in modern
asymptotic regimes such as p/n→ ρ for some fixed ρ > 0 remains an interesting question.
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Appendix A. Deferred theoretical results

This section presents the omitted theorem and proof for modular generalized linear regres-
sion in Section 2.3.

Assumption 15 θ∗ ∈ Θ for a compact set Θ. Also, `(x, y, θ) is three-times-differentiable
and convex in θ ∈ Θ. Let ∇θh(x, θ) ∈ Rpx denote the first-order derivative of h(x, θ)
in θ, and similarly ∇2

θh(x, θ) ∈ Rpx×px the second-order, and ∇3
θh(x, θ) ∈ Rpx×px×px the

third-order ones. There exists some L : X → R such that E[L(X)] < ∞, and ‖∇θh(x, θ) −
∇θh(x, θ′)‖ ≤ L(x) · ‖θ− θ′‖ for any θ, θ′ ∈ Θ. Also, there exists some m : X ×Θ→ R such
that E[m(X)] <∞ and ‖∇3

θh(x, θ)−∇3
θh(x, θ′)‖Fro ≤ m(x) · ‖θ − θ′‖ for any θ, θ′ ∈ Θ.

Theorem 16 Suppose Assumptions 1 and 15 hold, and ‖µ̂(k)
x −µx‖L2(PZ)‖µ̂

(k)
y −µy‖L2(PZ) =

oP (1/
√
n) for k = 1, 2. Let θ̂mod

n be the unique minimizer of (7), and θ∗ be the unique
minimizer of E

[
`(Xi, Yi, θ

∗)
]
. Let µx(·) = E[f(Xi) |Zi = ·] and µy(·) = E[Yi |Zi = ·]. Define

the influence function φ(x, y, z) = µx(z)g(y) + f(x)µy(z)− µx(z)µy(z) +∇θh(x, θ∗). Then
√
n(θ̂mod

n − θ∗) d→ N(0,Cov(φ(Xi, Yi, Zi))) and
√
n(θ̂mod

n − θ∗) = 1√
n

∑n
i=1 φ(Xi, Yi, Zi) +

oP (1/
√
n) as n → ∞. Furthermore, φ(Xi, Yi, Zi) is the efficient influence function for

estimating θ∗ under the model space obeying Assumption 1.

Proof [Proof of Theorem 16] The proof idea is similar to that of Jin and Rothenhäusler
(2021, Proposition E.2 and Theorem 3.11). Write ̂̀(Xi, Yi, Zi, θ) =

[
µ̂x(Zi)g(Yi)+f(Xi)µ̂y(Zi)−

µ̂x(Zi)µ̂y(Zi)
]>
θ+h(Xi, θ). We first show that θ̂mod

n
P→ θ∗ as n→∞. Since the score func-

tion s is differentiable and convex in θ, equivalently, θ̂mod
n ∈ Θ is the unique solution to

L̂mod
n (θ) :=

1

n

n∑
i=1

[
µ̂x(Zi)g(Yi) + f(Xi)µ̂y(Zi)− µ̂x(Zi)µ̂y(Zi) +∇θh(Xi, θ)

]
= 0,

while the population parameter θ∗ is the unique solution to

L(θ) := E
[
∇θ`(Xi, Yi, θ)

]
= E

[
g(Yi)f(Xi) +∇θh(Xi, θ)

]
= 0.

We also define the empirical score at any θ ∈ Θ as

L̂n(θ) =
1

n

n∑
i=1

[
g(Yi)f(Xi) +∇θh(Xi, θ)

]
.

Then for any fixed θ ∈ Θ, we note that

L̂mod
n (θ)− L̂n(θ) =

1

n

n∑
i=1

[
µ̂x(Zi)g(Yi) + f(Xi)µ̂y(Zi)− µ̂x(Zi)µ̂y(Zi)− g(Yi)f(Xi)

]
=

1

n

2∑
k=1

∑
i∈Ik

[
µ̂(k)
x (Zi)g(Yi) + f(Xi)µ̂

(k)
y (Zi)− µ̂(k)

x (Zi)µ̂
(k)
y (Zi)− g(Yi)f(Xi)

]
.

Similar to the proof of Theorem 2 (see equation (19)), under the given consistency condition

for µ̂
(k)
x and µ̂

(k)
y , we know supθ∈Θ

∣∣L̂mod
n (θ) − L̂n(θ)

∣∣ = oP (1). Furthermore, the law of
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large numbers implies 1
n

∑n
i=1 |L̂n(θ) − L(θ)| = oP (1) for any fixed θ ∈ Θ. Therefore,∣∣L̂mod

n (θ)− L(θ)
∣∣ = oP (1) for any fixed θ ∈ Θ.

Since Θ is compact and ∇θh(x, θ) is L(x)-Lipschitz in θ ∈ Θ for any x ∈ X , we know
that for any θ, θ′ ∈ Θ, by the triangular inequality,

∣∣L̂n(θ)− L̂n(θ′)
∣∣ ≤ 1

n

n∑
i=1

L(Xi) · ‖θ − θ′‖,

where 1
n

∑n
i=1 L(Xi) = OP (1) since E[L(X)] < ∞. Thus, for any fixed ε > 0, there exists

a finite subset {θ1, . . . , θNε} of Θ such that supθ inf1≤i≤Nε |L̂n(θ) − L̂n(θi)| ≤ ε. Similar

arguments applied to L(θ), together with the convergence, implies supθ∈Θ |L̂n(θ)−L(θ)| =
oP (1). Thus we have supθ∈Θ |L̂mod

n (θ)−L(θ)| = oP (1). On the other hand, the compactness
of Θ and the uniqueness of θ∗ as a solution to L(θ) = 0 implies the well-separatedness
condition (c.f. Van der Vaart (2000, Theorem 5.9)): for any ε > 0, one could find some δ > 0
such that infθ : ‖θ−θ∗‖≥δ

∣∣L(θ)
∣∣ > 2ε. Since supθ∈Θ |L̂mod

n (θ)−L(θ)| = oP (1), for any fixed ε >

0, one could find some δ > 0 such that for n sufficiently large, P
(

infθ : ‖θ−θ∗‖≥δ
1
n |L̂

mod
n (θ)| >

ε
)
≥ 1− ε, i.e., P(‖θ̂mod

n − θ∗‖ ≤ δ) ≥ 1− ε. This proves θ̂mod
n − θ∗ = oP (1).

We now proceed to show the asymptotic normality of θ̂mod
n . Recall that L̂mod

n (θ̂mod
n ) = 0.

Taylor expansion around θ∗ then gives

0 = L̂mod
n (θ∗) +∇θL̂mod

n (θ∗)(θ̂mod
n − θ∗) + 1/2 · (θ̂mod

n − θ∗)∇2
θL̂

mod
n (θ̃n)(θ̂mod

n − θ∗) (17)

for some θ̃n that lies on the segment between θ̂mod
n and θ∗, which implies θ̃n = θ∗ + oP (1).

Here ∇θL̂mod
n ∈ Rpx×px and ∇2

θL̂
mod
n ∈ Rpx×px×px are second and third order derivative of∑n

i=1
̂̀(Xi, Yi, Zi, θ). By definition

∇θL̂mod
n (θ) =

1

n

n∑
i=1

∇2
θh(Xi, θ), ∇2

θL̂
mod
n (θ) =

1

n

n∑
i=1

∇3
θh(Xi, θ).

The law of large numbers imply ∇θL̂mod
n (θ∗) = E[∇2

θh(Xi, θ
∗)] + oP (1) where oP (1) means

a matrix whose every entry is oP (1), hence ∇θL̂mod
n (θ∗) is invertible for sufficiently large n.

Also, by the Lipschitz condition of ∇3
θh(x, θ) and the triangular inequality, we have

∣∣∇2
θL̂

mod
n (θ∗)−∇2

θL̂
mod
n (θ̃n)

∣∣ ≤ 1

n

n∑
i=1

m(Xi)‖θ∗ − θ̃n‖ = oP (1)

since E[m(Xi)] <∞. Hence ∇2
θL̂

mod
n (θ̃n) = OP (1). Returning to (17), we have

0 = L̂mod
n (θ∗) +

{
E[∇2

θh(Xi, θ
∗)] + oP (1)

}
(θ̂mod
n − θ∗) +OP

(
‖θ̂mod
n − θ∗‖2

)
= L̂mod

n (θ∗) +
{
E[∇2

θh(Xi, θ
∗)] + oP (1)

}
(θ̂mod
n − θ∗),

and thus

θ̂mod
n − θ∗ = E

[
∇2
θh(Xi, θ

∗)
]−1

L̂mod
n (θ∗) + oP

(
L̂mod
n (θ∗)

)
. (18)
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Finally, we note that under the consitency condition of µ̂
(k)
x and µ̂

(k)
y , similar to the proof

of Theorem 2, one could show that

L̂mod
n (θ∗) =

1

n

n∑
i=1

[
µx(Zi)g(Yi) + f(Xi)µy(Zi)− µx(Zi)µy(Zi) +∇θh(Xi, θ

∗)
]

+ oP (1/
√
n).

Because X ⊥⊥ Y |Z, we have E
[
µx(Zi)g(Yi)+f(Xi)µy(Zi)−µx(Zi)µy(Zi)+∇θh(Xi, θ

∗)
]

=

E[∇θs(Xi, Yi, θ
∗)] = 0, hence L̂mod

n (θ∗) = OP (1/
√
n), which, combined with (18), implies

θ̂mod
n − θ∗ = E

[
∇2
θh(Xi, θ

∗)
]−1

L̂mod
n (θ∗) + oP (1/

√
n)

=
1

n

n∑
i=1

E
[
∇2
θh(Xi, θ

∗)
]−1[

µx(Zi)g(Yi) + f(Xi)µy(Zi)− µx(Zi)µy(Zi) +∇θh(Xi, θ
∗)
]

+ oP (1/
√
n).

We thus complete the proof of the asymptotic expansion of θ̂mod
n in Theorem 16.

Finally, the efficient influence function for estimating θ∗ among all models obeying X ⊥⊥
Y |Z can be obtained by, similar to Theorem 2, projecting the influence function of θ̂ml

n onto
the tangent space T = T1 ⊕ T2 ⊕ T3 where Tj is defined as in (20). Standard M-estimator

theory (Van der Vaart, 2000) gives θ̂ml
n − θ∗ = 1

n

∑n
i=1 φ

ml(Xi, Yi) + oP (1/
√
n) where

φml(x, y) = E
[
∇2
θh(Xi, θ

∗)
]−1[

g(Yi)f(Xi) +∇θh(Xi, θ
∗)
]
.

The projection follows exactly the same idea as Theorem 16 and one could see φ is the
efficient influence function. We thus complete the proof of Theorem 16.

Appendix B. Deferred discussion

B.1 Deferred discussion for Remark 6

Below, we provide a (simplified) finite-sample analysis of the two methods: (i) OLS, and
(ii) modular OLS, where Y |Z and X |Z are estimated using OLS, under a joint Gaussian
distribution. This discussion elaborates on the computation details for Remark 6.

To be more specific, the cross-term C = E[XY ] is estimated via Ĉols := 1
n

∑n
i=1XiYi or

Ĉmod = 1
n

∑n
i=1 Yiµ̂x(Zi) + Xiµ̂y(Zi) − µ̂x(Zi)µ̂y(Zi). Hereafter, we override the notations

and use X,Y, Z to denote data vectors in Rn. With OLS regression, we have µ̂x(z) = θ̂>x z,
where θ̂x = (Z>Z)−1Z>X is the fitted OLS coefficient ofX on Z, and similarly µ̂y(z) = θ̂>y z,

where θ̂y = (Z>Z)−1Z>Y . Then, our modular estimator for the cross-term Ĉlm is

Ĉmod =
1

n

n∑
i=1

YiZ
>
i θ̂x +XiZ

>
i θ̂y − Z>i θ̂xZ>i θ̂y

=
1

n

(
Y >Zθ̂x +X>Zθ̂y − θ̂>x Z>Zθ̂y

)
=

1

n

(
Y >Z(Z>Z)−1Z>X +X>Z(Z>Z)−1Z>Y −X>Z(Z>Z)−1Z>Z(Z>Z)−1Z>Y

)
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=
1

n

(
Y >Z(Z>Z)−1Z>X +X>Z(Z>Z)−1Z>Y −X>Z(Z>Z)−1Z>Y

)
=

1

n
Y >Z(Z>Z)−1Z>X,

where the third row plugs in the definition of θ̂x and θ̂y, and the last line uses the fact that

Y >Z(Z>Z)−1Z>X = X>Z(Z>Z)−1Z>Y . The two estimators are θ̂ols
n = (X>X/n)−1Ĉols,

and θ̂mod
n = (X>X/n)−1Ĉmod, respectively.

Suppose X,Y, Z are all one-dimensional and jointly Gaussian. Then, there exists a
decomposition X = αZ+εx and Y = βZ+εy, where conditional on Z, εx and εy are normal
with mean zero and mutually independent under the assumption X ⊥⊥ Y |Z. We further
assume εx |Z ∼ N(0, σ2

x) and εy |Z ∼ N(0, σ2
y). Then, the population OLS parameter is

θ∗ = αβ/(α2 + σ2
x). Also,

E[θ̂mod
n ] = E

[
E
[
Y >Z · Z>X
X>X · Z>Z

∣∣∣∣X,Z]] = βE
[
Z>Z · Z>X
X>X · Z>Z

]
= βE

[
E
[
Z>X

X>X

∣∣∣∣X]],
where we repeatedly used the tower property. Using the joint Gaussianity of (X,Z), we
know that E[Z |X] = α

α2+σ2
x
X, which gives E[θ̂mod

n ] = θ∗, hence θ̂mod
n is unbiased. Similarly

one can show θ̂ols
n is unbiased.

We now study the variances of the two estimators. By the decomposition of variance,

Var(θ̂mod
n ) = E[Var(θ̂mod

n |X,Z)] + Var(E[θ̂mod
n |X,Z])

= E
[

(Z>X)2
∑n

i=1 Z
2
i σ

2
y

(X>X · Z>Z)2

]
+ Var

(
βZ>X

X>X

)
= σ2

yE
[

(Z>X)2

(X>X)2 · Z>Z

]
+ β2 Var

(
Z>X

X>X

)
.

Similarly, using the fact that Y ⊥⊥ X |Z,

Var(θ̂ols
n ) = E[Var(θ̂ols

n |X,Z)] + Var(E[θ̂ols
n |X,Z])

= E
[∑n

i=1X
2
i σ

2
y

(X>X)2

]
+ Var

(
βZ>X

X>X

)
= σ2

yE
[

1

X>X

]
+ β2 Var

(
Z>X

X>X

)
.

This gives (using X = αZ + εx)

Var(θ̂ols
n )−Var(θ̂mod

n ) = σ2
yE
[
Z>Z ·X>X − (Z>X)2

(X>X)2 · Z>Z

]
= σ2

yE
[
Z>Z · ε>x εx − (Z>εx)2

(X>X)2 · Z>Z

]
≥ 0

by the Cauchy-Schwarz inequality (it is a strict inequality as long as εx is not determin-
istic given Z). That is, in finite sample, both estimators are unbiased, while the modular
estimator is non-inferior to OLS in terms of variance.
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B.2 Deferred discussion on alternative estimators

In this part, we elaborate our discussion on the alternative estimators in Remark 3. In
the following, we consider using powerful machine learning algorithms (black-boxes) to
estimate the nuisance components µx and µy. They may achieve a smaller MSE than
the OLS estimator, potentially at the cost of some bias. The semiparametric efficiency in
Theorem 2 of our manuscript does not account for such cases. In the following, we conduct
additional experiments to explore this regime.

Surprisingly, we found that (a) outcome regression can achieve a smaller MSE than the
OLS, and that (b) orthogonal regression is often less accurate. Nonetheless, our modular
estimator often achieves the smallest (or nearly smallest) MSE.

In Figure 12, we show results for OR (standing for outcome regression), PS (standing for
orthogonal regression), OLS, and modular regression under several simple data-generating
processes, where the true regression functions only involve ≤ 4 entries. We vary the signal-
to-noise ratio and the smoothness of the underlying regression functions across settings. We
label the first row as (a-c), and the second as (d-f). Settings (a) and (b) has Z ∈ Rp20 ,
and the true regression functions are a combination of indicator functions and smooth
exponential functions. Setting (c) involves a larger number of combinations of polynomial
and exponential functions for Z ∈ R20. Settings (d) and (e) adds a term

√
nZ3Z4 to fixed

regression functions that only involve the first 4 variables in Z ∈ R100. Setting (f) uses a
similar model as (a-c) but kept Z ∈ R100. (d-f) has larger noise level. We omit details on
the regression functions for brevity.
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Figure 12: Root-mean-squared error scaled by
√
n, for all methods under different sample

sizes.

We see that OR often performs better in terms of MSE; we conjecture that this is
because the tuned ML regressor achieves a good bias-variance tradeoff. The PS approach is
usually not very accurate, but surprisingly comparable to OLS. A potential explanation is
that we are in the regime of “undersmoothing”, i.e., the ML estimator has extremely small
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bias but larger variance, so that it is still possible to achieve good performance for both
OR and PS approaches. Finally, however, the modular estimator always performs the best
across all settings; we conjecture that this is because it takes the best of the two worlds,
powerful prediction machines and rigorous debiasing ideas from semiparametric statistics.

B.3 Discussion on the estimation of Ĵ

Here, we discuss the conditions for estimating Ĵ and its compatibility with Assumption 10.
Consistent estimation of J require strong conditions such as the beta-min conditions

or the irrepresentable conditions Zhao and Yu (2006). However, it is also known that
Lasso selects a superset of “relevant” features, i.e., entries whose coefficient is sufficently
bounded away from zero (roughly, these are coefficients with absolute values larger than
O(
√
s0/n · log p, where s0 is the number of nonzero coefficients) under less restrictive

eigenvalue conditions of the covariates X (see, e.g., Van De Geer and Bühlmann (2009);
Bühlmann and Van De Geer (2011); Bühlmann (2010)). When the entries in J are suffi-
ciently large, then a superset of J can be recovered with high probability. Otherwise, entries
with small coefficients would not incur too much bias in this process.

On the other hand, consistency estimation of J typically asks for log pz/
√
n→ 0, while

Assumption 10 asks for ‖µ̂(k)
x,z(·) − µ

(k)
x,z(·)‖L2(PZ) � n−1/4. When the regression function

µ̂x,z is obtained from high-dimensional regression such as the Lasso, the convergence rate
is typically

√
sx,z log pz/n, where sx,z is the sparsity level for an entry in X over Z. These

conditions on pz are typically compatible for the two parts (as they are both satisfied for
relatively small pz). For example, if the sparsity sx,z is bounded, and log pz = o(n1/4), then
both conditions are satisfied.

Appendix C. Technical proofs

C.1 Proof of Theorem 2

Proof [Proof of Theorem 2] Recall that θ∗ is the least-squares estimator θ∗ = argminθ∈Rpx E[(Y−
X>θ)2]. The estimation equation gives

θ̂ols
n − θ∗ =

( n∑
i=1

XiX
>
i

)−1
n∑
i=1

XiYi − θ∗ =
( 1

n

n∑
i=1

XiX
>
i

)−1 1

n

n∑
i=1

Xi(Yi −X>i θ∗).

Since Xi(Yi −X>i θ∗) has finite second moment and we know E[X(Y −X>θ∗)] = 0 by the
optimality of θ∗, we have 1

n

∑n
i=1Xi(Yi − X>i θ

∗) = OP (1/
√
n), where OP (1/

√
n) repre-

sents a random vector whose each entry is OP (1/
√
n). Since XiX

>
i has finite expectation

E[XX>] � 0, we have( 1

n

n∑
i=1

XiX
>
i

)−1
=
(
E[XX>] + oP (1)

)−1
=
(
E[XX>]

)−1
+ oP (1),

where oP (1) stands for a random matrix whose all entries converge in probability to zero.
We thus have

θ̂ols
n − θ∗ =

((
E[XX>]

)−1
+ oP (1)

) 1

n

n∑
i=1

Xi(Yi −X>i θ∗)
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=
1

n

n∑
i=1

(
E[XX>]

)−1
Xi(Yi −X>i θ∗) + oP (1)×OP (1/

√
n)

=
1

n

n∑
i=1

φols(Xi, Yi) + oP (1/
√
n),

where φols(x, y) = E[XX>]−1x(y − x>θ∗). For our modular estimator, we first note the
closed form solution

θ̂mod
n − θ∗ =

( n∑
i=1

XiX
>
i

)−1
n∑
i=1

Ci − θ∗ =
( n∑
i=1

XiX
>
i

)−1
n∑
i=1

(
Ci −XiX

>
i θ
∗).

We now show that under the conditions in Theorem 2, one has

1

n

n∑
i=1

(
Ci −XiX

>
i θ
∗) =

1

n

n∑
i=1

(
C∗i −XiX

>
i θ
∗)+ oP (1/

√
n), (19)

where C∗i = Xiµy(Zi) +µx(Zi)Yi−µx(Zi)µy(Zi). To see this, by rearranging the terms, we
have 1

n

∑n
i=1(Ci − C∗i ) = (i) + (ii) + (iii), where we define

(i) =
1

n

2∑
k=1

∑
i∈Ik

{Xi − µx(Zi)}{µ̂(k)
y (Zi)− µy(Zi)},

(ii) =
1

n

2∑
k=1

∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}{Yi − µy(Zi)},

(iii) =
1

n

2∑
k=1

∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}{µ̂(k)

y (Zi)− µy(Zi)}.

We first bound the summation in (i). For each k, because µ̂
(k)
y is obtained from the inde-

pendent fold I\Ik, for any i ∈ Ik, by the tower property,

E
[
{Xi − µx(Zi)}{µ̂(k)

y (Zi)− µy(Zi)}
∣∣ I\Ik] = E

[
E[Xi − µx(Zi) |Zi]{µ̂(k)

y (Zi)− µy(Zi)}
∣∣ I\Ik] = 0,

and they are i.i.d. copies conditional on I\Ik with conditional variance

E
[
{Xi − µx(Zi)}2{µ̂(k)

y (Zi)− µy(Zi)}2
∣∣ I\Ik] = oP (1).

The Markov’s inequality thus implies

1

n

∑
i∈Ik

{Xi − µx(Zi)}{µ̂(k)
y (Zi)− µy(Zi)} = oP (1/

√
n),

hence (i) = oP (1/
√
n). Similar arguments also apply to (ii) and yield (ii) = oP (1/

√
n).

Finally, conditional on I\Ik, for any i ∈ Ik, by the Cauchy-Schwarz inequality,∣∣∣∣∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}{µ̂(k)

y (Zi)− µy(Zi)}
∣∣∣∣
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≤
[∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}2

]1/2

·
[∑
i∈Ik

{µ̂(k)
y (Zi)− µy(Zi)}2

]1/2

.

By the Markov’s inequality, we have∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}2 = OP

(
|Ik| · E

[
{µ̂(k)

x (Zi)− µx(Zi)}2
∣∣ I\Ik])

= OP
(
n · ‖µ̂(k)

x − µx‖2L2(PZ)

)
.

With similar arguments applied to the second summation, we arrive at∣∣∣∣∑
i∈Ik

{µ̂(k)
x (Zi)− µx(Zi)}{µ̂(k)

y (Zi)− µy(Zi)}
∣∣∣∣ ≤ OP (n · ‖µ̂(k)

x − µx‖L2(PZ)‖µ̂(k)
y − µy‖L2(PZ)

)
.

Combining k = 1, 2, we have

(iii) = OP
(
‖µ̂(k)

x − µx‖L2(PZ)‖µ̂(k)
y − µy‖L2(PZ)

)
= oP (1/

√
n)

by the conditions in Theorem 2. Putting together our bounds on the three terms, we
prove the claim in (19). Note that E[C∗i −XiX

>
i θ
∗] = 0, hence 1

n

∑n
i=1(C∗i −XiX

>
i θ
∗) =

OP (1/
√
n), thus

θ̂mod
n − θ∗ =

[ 1

n

n∑
i=1

XiX
>
i

]−1
· 1

n

n∑
i=1

(
Ci −XiX

>
i θ
∗)

=
[
E[XX>]−1 + oP (1)

]
·
[

1

n

n∑
i=1

(
C∗i −XiX

>
i θ
∗)+ oP (1/

√
n)

]

=
1

n

n∑
i=1

E[XX>]−1
(
C∗i −XiX

>
i θ
∗)+ oP (1/

√
n).

That is, we obtain the asymptotic linear expansion θ̂mod
n − θ∗ = 1

n

∑n
i=1 φ

mod(Xi, Yi, Zi) +
oP (1/

√
n), where the influence function is given by

φmod(x, y, z) = E[XX>]−1
(
xµy(z) + µx(z)y − µx(z)µy(z)− xx>θ∗

)
.

The Central Limit Theorem thus gives the asymptotic distribution
√
n(θ̂mod

n − θ∗)
d→

N(0,Σmod) where Σmod = Cov(φmod(Xi, Yi, Zi)).
We now proceed to show that φmod(Xi, Yi, Zi) is the efficient influence function for esti-

mating θ∗ under the current distribution P. Our argument is similar to that of (Rotnitzky
and Smucler, 2019, Lemma 9) and (Tsiatis, 2006, Theorem 4.5). We let P denote the col-
lection of all distributions obeying Assumption 1, so P ∈ P. For any P ∈ P, let p denote the
density of P with respect to the base measure µ. Then the joint density p(x, y, z) decom-
poses as p(x, y, z) = p(z)p(x | z)p(y | z), where p(z) is the marginal density of Z, p(x | z) is
the conditional density of PX |Z , and p(y | z) is the conditional density of PY |Z . By (Van der
Laan and Robins, 2003, Lemma 1.6), the tangent space of P at P is given by T = T1⊕T2⊕T3,
where {Tj}3j=1 are orthogonal spaces. More specifically, T1 is the closed linear span of socres
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of one-dimensional regular parametric submodel γ 7→ p(z; γ)p(x | z)p(y | z), T2 is that of the
parametric submodel γ 7→ p(x | z; γ)p(z)p(y | z), and T3 is that of the parametric submodel
γ 7→ p(y | z; γ)p(z)p(x | z). Similar to (Tsiatis, 2006, Theorem 4.5), these subspaces can be
equivalently represented as

T1 =
{
f(Z) 7→ Rpx : E[f(Z)] = 0

}
,

T2 =
{
f(X,Z) 7→ Rpx : E[f(X,Z) |Z] = 0

}
T3 =

{
f(Y,Z) 7→ Rpx : E[f(Y,Z) |Z] = 0

}
, (20)

where all the functions in them are additionally square integrable.

By standard semiparametric theory (Tsiatis, 2006), the efficient influence function, de-
noted as φ∗, can be obtained by the projection of φols onto the tangent space T . That is,
φ∗(x, y, z) = φ∗1(z) + φ∗2(x, z) + φ∗3(y, z), where φ∗j is the projection of φols onto Tj defined
in (20). Hence

φ∗(X,Y, Z) = E
[
φols(X,Y )

∣∣Z]− E
[
φols(X,Y )

]
+ E

[
φols(X,Y )

∣∣Y, Z]
− E

[
φols(X,Y )

∣∣Z]+ E
[
φols(X,Y )

∣∣X,Z]− E
[
φols(X,Y )

∣∣Z]
= E[XX>]−1

{
E[X(Y −X>θ∗) |X,Z] + E[X(Y −X>θ∗) |Y,Z]

− E[X(Y −X>θ∗) |Z]− E[X(Y −X>θ∗)]
}

= E[XX>]−1
{
XE[Y |Z]−XX>θ∗ + E[X |Z]Y

− E[XX>θ∗ |Z]− E[XY |Z] + E[XX>θ∗ |Z]
}

= E[XX>]−1
{
XE[Y |Z]−XX>θ∗ + E[X |Z]Y − E[X |Z]E[Y |Z]

}
= φmod(X,Y, Z),

where the first and second equalities are from the projection onto subsapces, the third
equality uses the fact that E[X(Y − X>θ∗)] = 0 and the tower property, and the fourth
equality uses the conditional independence in Assumption 1. We thus conclude the proof
of Theorem 2.

C.2 Proof of Theorem 11

Proof [Proof of Theorem 11] For notational simplicity, throughout the proof we write θ̂mod
n

as θ̂. Denote ∆ = θ̂ − θ∗, and let X ∈ Rn×px be the design matrix. We define the vector
G =

∑n
i=1Ci ∈ Rpx , where we recall the definition of Ci in (6). Since θ̂ is the minimizer

of (8), we have

1

2n
θ̂>X>Xθ̂ − 1

n
G>θ̂ + λ‖θ̂‖1 ≤

1

2n
(θ∗)>X>Xθ∗ − 1

n
G>θ∗ + λ‖θ∗‖1,

which implies

1

2n
∆>X>X∆ ≤ 1

n

〈
(θ∗)>X>X −G,∆

〉
+ λ‖θ∗‖1 − λ‖θ̂‖1.
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Let S be the set of indices for nonzero entries of θ∗, and θS be the subvector containing all
entries with indices in S. Then

‖θ∗‖1 − ‖θ̂‖1 = ‖θ∗S‖1 − ‖θ̂S‖1 − ‖θ̂Sc‖1 ≤ ‖∆S‖1 − ‖∆Sc‖1,

where the last inequality uses triangular inequality and the fact that θ∗Sc ≡ 0. We thus have

1

2n
∆>X>X∆ ≤ 1

n

〈
(θ∗)>X>X −G,∆

〉
+ λ‖∆S‖1 − λ‖∆Sc‖1

≤ 1

n
‖∆‖1

∥∥(θ∗)>X>X −G
∥∥
∞ + λ‖∆S‖1 − λ‖∆Sc‖1. (21)

The first implication is that, as the left-handed side is non-negative, once λ ≥ 2
n‖(θ

∗)>X>X−
G‖∞, we have 0 ≤ λ

2‖∆‖1 + λ‖∆S‖1 − λ‖∆Sc‖1, hence ∆ ∈ C3 =
{
x ∈ Rp : ‖xSc‖1 ≤

3‖xS‖1
}
. By Assumption 8, (21) further implies

ζ‖∆‖22 ≤
λ

2
‖∆‖1 + λ‖∆S‖1 − λ‖∆Sc‖1 ≤

3λ

2
‖∆S‖1 ≤

3λ

2

√
k‖∆‖2,

where k = |S| = ‖θ∗‖0 is the sparsity level. To summarize, under Assumption 8, the solution
θ̂ satisfies

‖θ̂ − θ∗‖2 ≤
3λ
√
k

2ζ
(22)

for any regularization parameter λ ≥ 2
n‖(θ

∗)>X>X − G‖∞. We now write µ̂y ∈ Rn as

the vector whose i-th entry is µ̂
(k)
y (Zi) for i ∈ Ik, and µ̂x ∈ Rn×px whose (i, j)-th entry is

µ̂
(k)
x,j(Zi) for i ∈ Ik. Similarly, µy ∈ Rn and µx ∈ Rn×px record the ground truth of these

regression functions. The error term is then

(θ∗)>X>X −G = (θ∗)>X>X − µ̂>y X − Y >µ̂x + µ̂>y µ̂x

= (Y − µy)>(X − µx) + (Xθ∗ − Y )>X

+ (µy − µ̂y)>(X − µx) + (Y − µy)>(µx − µ̂x) + (µy − µ̂y)>(µx − µ̂x).
(23)

For any constant δ ∈ (0, 1), we define the event

En,δest =

{∥∥µ̂(k)
x,j − µx,j

∥∥
L2(PZ)

,
∥∥µ̂(k)

y − µy
∥∥
L2(PZ)

≤ 4cn log(3px/δ)

n1/4
, ∀1 ≤ j ≤ px, ∀k = 1, 2

}
.

(24)

Then under Assumption 10, for any constant δ ∈ (0, 1), taking a union bound over 2px+2 ≤
3px estimated functions for 1 ≤ j ≤ px and k = 1, 2, we know that P(En,δest ) ≥ 1− δ.

We now proceed to analyze each entry j ∈ {1, . . . , px} of the above error term. First,

1

n

[
(µy − µ̂y)>(X − µx)

]
j

=
1

n

2∑
k=1

∑
i∈Ik

(
µy(Zi)− µ̂(k)

y (Zi)
)(
Xi,j − µx,j(Zi)

)
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For each k = 1, 2, conditional on I\Ik, the terms in the summation (µy(Zi)−µ̂(k)
y (Zi))(Xi,j−

µx,j(Zi)), i ∈ Ik are mutually independent with mean zero, since

E
[(
µy(Zi)− µ̂(k)

y (Zi)
)(
Xi,j − µx,j(Zi)

) ∣∣∣ I\Ik]
= E

[(
µy(Zi)− µ̂(k)

y (Zi)
)
· E
[
Xi,j − µx,j(Zi)

∣∣Zi, I\Ik] ∣∣∣ I\Ik] = 0

by the tower property. Also, the absolute value of each term is bounded below 4c0 by the
boundedness in Assumption 9. We now define the event

E1,k
cr (δ) =

{∣∣∣∑
i∈Ik

(
µy(Zi)− µ̂(k)

y (Zi)
)(
Xi,j − µx,j(Zi)

)∣∣∣ ≤ max
{

16c0 log(2/δ)/3, 2ε̂1
√
|Ik| log(2/δ)

}}
,

where we define

ε̂21 = 4 sup
k=1,2

∥∥µy − µ̂(k)
y

∥∥2

L2(PZ)
≥ E

[(
µy(Zi)− µ̂(k)

y (Zi)
)2(

Xi,j − µx,j(Zi)
)2 ∣∣∣ I\Ik].

The Bernstein’s inequality in Lemma 17, implies P
(
E1,k

cr

∣∣ I\Ik) ≤ δ. Marginalizing out the
conditional probability and taking a union bound over k = 1, 2, we know that P(E1

cr(δ)) ≥
1 − δ for any constant δ, where we define E1

cr(δ) = E1,1
cr (δ/2) ∪ E1,2

cr (δ/2). That is, with
probability at least 1− δ,∣∣∣ 1

n

[
(µy − µ̂y)>(X − µx)

]
j

∣∣∣ ≤ max

{
16c0 log(4/δ)

3n
, ε̂1

√
2 log(4/δ)

n

}
. (25)

For each fixed j, applying exactly the same arguments to

1

n

[
(Y − µy)>(µx − µ̂x)

]
j

=
1

n

2∑
k=1

∑
i∈Ik

(
Yi − µy(Zi)

)(
µx,j(Zi)− µ̂(k)

x,j(Zi)
)
,

with probability at least 1− δ,∣∣∣∣ 1n[(Y − µy)>(µx − µ̂x)
]
j

∣∣∣∣ ≤ max

{
16c0 log(4/δ)

3n
, c0ε̂2,j

√
2 log(4/δ)

n

}
, (26)

where we define ε̂2,j = 2 supk=1,2

∥∥µx,j − µ̂(k)
x,j

∥∥
L2(PZ)

. The third term is

1

n

[
(µy − µ̂y)>(µx − µ̂x)

]
j

=
1

n

2∑
k=1

∑
i∈Ik

(
µy(Zi)− µ̂(k)

y (Zi)
)(
µx,j(Zi)− µ̂(k)

x,j(Zi)
)
.

Here for each k = 1, 2, conditional on I\Ik, each term (µy(Zi) − µ̂
(k)
y (Zi))(µx,j(Zi) −

µ̂
(k)
x,j(Zi)), i ∈ Ik in the above summation is i.i.d. whose expectation is bounded as∣∣∣∣E[(µy(Zi)− µ̂(k)

y (Zi)
)(
µx,j(Zi)− µ̂(k)

x,j(Zi)
) ∣∣∣ I\Ik]∣∣∣∣
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≤
∥∥µy − µ̂(k)

y

∥∥
L2(PZ)

∥∥µx,j − µ̂(k)
x,j

∥∥
L2(PZ)

≤ ε̂1 · ε̂2,j/4.

Meanwhile, their second moments are bounded as

E
[(
µy(Zi)− µ̂(k)

y (Zi)
)2(

µx,j(Zi)− µ̂(k)
x,j(Zi)

)2 ∣∣∣ I\Ik] ≤ 4
∥∥µy − µ̂(k)

y

∥∥2

L2(PZ)
≤ ε̂21

according to the bounededness in Assumption 9. Combining the above bounds and invoking
the Bernstein’s inequality in Lemma 17, it holds with probability at least 1− δ that∣∣∣∑

i∈Ik

(
µy(Zi)− µ̂(k)

y (Zi)
)(
µx,j(Zi)− µ̂(k)

x,j(Zi)
)∣∣∣

≤ |Ik|ε̂1ε̂2,j/4 + max
{

16c0 log(2/δ)/3, 2ε̂1
√
|Ik| log(2/δ)

}
.

Taking a union bound for k = 1, 2 implies that with probability at least 1− δ,∣∣∣ 1
n

[
(µy − µ̂y)>(µx − µ̂x)

]
j

∣∣∣ ≤ ε̂1ε̂2,j
4

+ max

{
16c0 log(4/δ)

3n
, ε̂1

√
2 log(4/δ)

n

}
. (27)

Putting together (25), (26) and (27), we know that with probability at least 1− δ/2,∥∥(µy − µ̂y)>(X − µx) + (Y − µy)>(µx − µ̂x) + (µy − µ̂y)>(µx − µ̂x)
∥∥
∞

≤ ε̂1ε̂2,j
4

+ 2 max

{
16c0 log(24/δ)

3n
, ε̂1

√
2 log(24/δ)

n

}
+ max

{
16c0 log(24/δ)

3n
, c0ε̂2,j

√
2 log(24/δ)

n

}
.

Further taking a union bound over the above event and (24) for En,δ/2est , and using the fact
that max{a, b} ≤ a+ b for a, b ≥ 0, we know it holds with probability at least 1− δ that∥∥(µy − µ̂y)>(X − µx) + (Y − µy)>(µx − µ̂x) + (µy − µ̂y)>(µx − µ̂x)

∥∥
∞

≤ 4c2
n(log(3px/δ))

2

√
n

+
16c0 log(24/δ)

n
+

(2 + c0) log(3px/δ)
√

2 log(24/δ)

n3/4
.

Recalling (23) and letting

c̄n = 4c2
n + 16c0/

√
n+ (2 + c0)/n1/4,

we have c̄n → 0 as n→∞ and with probability at least 1− δ,
1

n

∥∥(θ∗)>X>X −G
∥∥
∞ ≤

1

n

∥∥(Y − µy)>(X − µx) + (Xθ∗ − Y )>X
∥∥
∞ +

c̄n(log(3px/δ))
2

√
n

.

Combining this bound with (22) and writing D := (Y − µy)>(X − µx) + (Xθ∗ − Y )>X,

P
(
‖θ̂ − θ∗‖2 ≤

3λ
√
k

2ζ
, ∀ λ ≥ 2‖D‖∞

n
+

2c̄n(log(3px/δ))
2

√
n

)
≥ P

(
‖(θ∗)>X>X −G‖∞

n
≤ ‖D‖∞

n
+
c̄n(log(3px/δ))

2

√
n

)
≥ 1− δ,

which proves (10).
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C.3 Proof of Proposition 14

Proof [Proof of Proposition 14] Similar to the proof of Theorem 2, we are to show that
Ĉmiss = Cmiss+oP (1/

√
nxz + nxyz)+oP (1/

√
nyz + nxyz), where Cmiss = Cxzmiss+C

yz
miss−Czzmiss,

Cxzmiss =
1

nxz + nxyz

∑
i∈Ixz∪Ixyz

Xiµy(Zi),

Cyzmiss =
1

nyz + nxyz

∑
i∈Iyz∪Ixyz

Yiµx(Zi),

Czzmiss =
1

nxz + nyz + nxyz

∑
i∈Ixz∪Iyz∪Ixyz

µy(Zi)µx(Zi).

To see this, we note that Ĉmiss − Cmiss = (i) + (ii) + (iii), where

(i) =
1

nxz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

xyz
k

{Xi − µx(Zi)}{µ̂(k)
y (Zi)− µy(Zi)},

(ii) =
1

nyz + nxyz

2∑
k=1

∑
i∈Iyzk ∪I

xyz
k

{Yi − µy(Zi)}{µ̂(k)
x (Zi)− µx(Zi)},

(iii) = − 1

nxz + nyz + nxyz

∑
i∈Ixz∪Iyz∪Ixyz

{µ̂(k)
x (Zi)− µx(Zi)}{µ̂(k)

y (Zi)− µy(Zi)},

(iv) =
1

nxz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

xyz
k

µx(Zi){µ̂(k)
y (Zi)− µy(Zi)}

− 1

nxz + nyz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

yz
k ∪I

xyz
k

µx(Zi){µ̂(k)
y (Zi)− µy(Zi)},

(v) =
1

nyz + nxyz

2∑
k=1

∑
i∈Iyzk ∪I

xyz
k

µy(Zi){µ̂(k)
x (Zi)− µx(Zi)}

− 1

nxz + nyz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

yz
k ∪I

xyz
k

µy(Zi){µ̂(k)
x (Zi)− µx(Zi)}.

Note that each data in the k-th fold is independent of the fitted functions applied to them.
Thus, each summation term for i ∈ Ixzk ∪ I

xyz
k in (i) is i.i.d. and mean zero conditional

on µ̂
(k)
y , whose conditional variance is E[(µ̂

(k)
y (Z) − µy(Z))2(X − µx(Z))2 | µ̂(k)

y ] = oP (1).
The Markov’s inequality thus implies (i) = oP (1/

√
nxz + nxyz). Similarly, we know (ii) =

oP (1/
√
nyz + nxyz). Also, since ‖µ̂(k)

x − µx‖L2(PZ) · ‖µ̂
(k)
y − µy‖L2(PZ) = oP (1/

√
n), we have

(iii) = oP (1/
√
nxz + nxyz + 1/

√
nyz + nxyz). In addition, let Di := µx(Zi){µ̂(k)

y (Zi) −
µy(Zi)} − E

[
µx(Zi){µ̂(k)

y (Zi)− µy(Zi)}
]

for i ∈ Ixzk ∪ I
xyz
k , where the expectation is condi-
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tional on data out of the k-th fold. Note that

(iv) =
1

nxz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

xyz
k

Di −
1

nxz + nyz + nxyz

2∑
k=1

∑
i∈Ixzk ∪I

yz
k ∪I

xyz
k

Di.

For each k, conditional on {(Yi, Zi) : i ∈ (Ixyz\Ixyzk ) ∪ (Iyz\Iyzk )}, we know that {Di} are
i.i.d. with mean zero. This implies∣∣(iv)

∣∣ ≤ OP (‖Di‖L2(P)/
√
nxz + nxyz) +OP (‖Di‖L2(P)/

√
nxz + nyz + nxyz)

≤ oP (1/
√
nxz + nxyz) + oP (1/

√
nxz + nyz + nxyz).

The same bounds hold for (v). Putting them together, we obtain

Ĉmiss = Cmiss + oP (1/
√
nxz + nxyz + 1/

√
nyz + nxyz).

Recall that nxz/(nxz + nyz + nxyz)→ ρxz, and nyz/(nxz + nyz + nxyz)→ ρyz. Rearranging
the terms in Cmiss gives Cmiss = C∗miss + oP (1/

√
nxz + nxyz + 1/

√
nyz + nxyz), where

C∗miss =
∑
i∈Ixz

Xiµy(Zi)

nxz + nxyz
− µy(Zi)µx(Zi)

nxz + nyz + nxyz
+
∑
i∈Iyz

Yiµx(Zi)

nyz + nxyz
− µy(Zi)µx(Zi)

nxz + nyz + nxyz

+
∑
i∈Ixyz

Xiµy(Zi)

nxz + nxyz
+

Yiµx(Zi)

nyz + nxyz
− µy(Zi)µx(Zi)

nxz + nyz + nxyz

=
1

nxz

∑
i∈Ixz

( ρxz
1− ρyz

Xiµy(Zi)− ρxzµy(Zi)µx(Zi)
)

+
1

nyz

∑
i∈Iyz

( ρyz
1− ρxz

Yiµx(Zi)− ρyzµy(Zi)µx(Zi)
)

+
1

nxyz

∑
i∈Ixyz

(Xiµy(Zi)

1− ρyz
+

1

1− ρxz
Yiµx(Zi)− µy(Zi)µx(Zi)

)
.

Furthermore, we note that C∗miss = E[XY ] +OP (1/
√
nxz + nxyz + 1/

√
nyz + nxyz). Similar

to the arguments in the proof of Theorem 2, we have

θ̂mod
n − θ∗ = E[XX>]−1(C∗miss − Σ̂missθ

∗).

This concludes the proof of Proposition 14.

Appendix D. Supporting lemmas

Lemma 17 (Bernstein’s inequality) Suppose X1, . . . , Xn are independent zero-mean ran-
dom variables such that |Xi| ≤ M almost surely for some constant M > 0. Then for any
constant t > 0,

P
(∣∣∣ n∑

i=1

Xi

∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 E[X2
i ] + 2Mt/3

)
.

That is, for any δ ∈ (0, 1), with probability at least 1 − δ, it holds that
∣∣∑n

i=1Xi

∣∣ ≤
max

{
2
√∑n

i=1E[X2
i ] log(2/δ), 4M log(2/δ)/3

}
.
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Appendix E. Deferred simulation results

E.1 Low-dimensional simulation
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Figure 13: Aggregate RMSE in settings 1 and 4. Details are otherwise the same as Figure 3.
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Figure 14: Bias summed over all entries in all settings. Details are otherwise the same as
Figure 3. Modular regression incurs a slightly larger bias than OLS when the sub-tasks are
learned by flexible machine learning algorithms.
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Figure 15: Aggregated SD in all settings. Details are otherwise the same as Figure 3.

Z noise = 0.1 Z noise = 0.5 Z noise = 1 Z noise = 2

S
etting 1

S
etting 2

S
etting 3

S
etting 4

0.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.1
0.2
0.3
0.4
0.5

0.05

0.10

0.15

0.20

Standard deviation of noise in Y

R
M

S
E

Method OLS. modular.Lasso modular.lm modular.RF modular.Ridge

Figure 16: Aggregated RMSE when n = 2000. Details are otherwise the same as Figure 3.
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Z noise = 0.1 Z noise = 0.5 Z noise = 1 Z noise = 2
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Figure 17: RMSE for estimating θ∗1 in all settings. Details are the same as Figure 3.
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Figure 18: RMSE for estimating θ∗2 in all settings. Details are the same as Figure 3.
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Figure 19: RMSE for estimating θ∗3 in all settings. Details are the same as Figure 3.
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Figure 20: RMSE for estimating θ∗4 in all settings. Details are the same as Figure 3.
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E.2 High-dimensional simulation
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Figure 21: Boxplot of standard deviations for {θ̂j : j ∈ [px]}, averaged over N = 1000
replicates in setting 1 (left) and setting 2 (right). Other details are the same as Figure 12.
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