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Abstract

We bound the excess risk of interpolating deep linear networks trained using gradient flow.
In a setting previously used to establish risk bounds for the minimum `2-norm interpolant,
we show that randomly initialized deep linear networks can closely approximate or even
match known bounds for the minimum `2-norm interpolant. Our analysis also reveals that
interpolating deep linear models have exactly the same conditional variance as the minimum
`2-norm solution. Since the noise affects the excess risk only through the conditional
variance, this implies that depth does not improve the algorithm’s ability to “hide the
noise”. Our simulations verify that aspects of our bounds reflect typical behavior for
simple data distributions. We also find that similar phenomena are seen in simulations
with ReLU networks, although the situation there is more nuanced.

Keywords: generalization, benign overfitting, implicit bias, interpolation, neural net-
works, regression

1. Introduction

Recent empirical studies (Zhang et al., 2017; Belkin et al., 2019a) have brought to light the
surprising phenomenon that overparameterized neural network models trained with variants
of gradient descent generalize well despite perfectly fitting noisy data. This seemingly
violates the once widely accepted principle that learning algorithms should trade off between
some measure of the regularity of a model, and its fit to the data. To understand this, a
rich line of research has emerged to establish conditions under which extreme overfitting—
fitting the data perfectly—is benign in simple models (see Belkin et al., 2018; Hastie et al.,
2022; Bartlett et al., 2020). Another closely connected thread of research to understand
generalization leverages the recognition that training by gradient descent engenders an
implicit bias (see Neyshabur et al., 2015; Soudry et al., 2018; Ji and Telgarsky, 2019). These
results can be paraphrased as follows: training until the loss is driven to zero will produce
a model that, among models that interpolate the data, minimizes some data-independent
regularity criterion.

Our paper continues this study of benign overfitting but with a more complex model
class, deep linear networks. Deep linear networks are often studied theoretically (see, e.g.,
Saxe et al., 2014; Arora et al., 2018), because some of the relevant characteristics of deep
learning in the presence of nonlinearities are also present in linear networks but in a setting
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that is more amenable to analysis. The analyses of linear networks have included a number
of results on implicit bias (see, e.g., Azulay et al., 2021; Min et al., 2021). Recently, one
of these analyses (Azulay et al., 2021), of two-layer networks trained by gradient flow with
a “balanced” initialization, was leveraged in an analysis of benign overfitting (Chatterji
et al., 2022). (For a mapping x→ xWv parameterized by a hidden layer W ∈ Rd×m and an
output layer v ∈ Rm×1, initial values of v and W are balanced if vv> = W>W .) Min et al.
(2021) analyzed implicit bias in two-layer linear networks under more general conditions
including the unbalanced case.

In this paper, we analyze benign overfitting in deep linear networks of arbitrary depth
trained by gradient flow. Our first main result is a bound on the excess risk. The bound is
in terms of some characteristics of the joint distribution of the training data previously used
to analyze linear regression with the standard parameterization, including notions of the
effective rank of the covariance matrix, and it holds under similar conditions on the data
distribution. Another key quantity used in the bound concerns the linear map Θ computed
by the network after training—it is the norm of the projection of this map onto the subspace
orthogonal to the span of the training examples. This norm can further be bounded in terms
of its value at initialization, and a quantity that reflects how rapidly training converged. In
contrast with previous analyses on two-layer networks (Chatterji et al., 2022), this analysis
holds whether this initialization is balanced or not.

Our second main result is a high-probably risk bound that holds for networks in which
the first and last layers are initialized randomly, and the middle layers are all initialized
to the identity. Our bound holds whenever the scale of the initialization of the first layer
is small enough, and the scale of the initialization of the last layer is large enough. This
includes the extreme case where the first layer is initialized to zero. As the scale of the
initialization of the first layer goes to zero, our bound approaches the known bound for
the minimum `2-norm interpolator with the standard parameterization. Our final main
theoretical result illustrates our bounds using a simple covariance matrix used in previous
work (Bartlett et al., 2020; Chatterji and Long, 2022) which might be viewed as a canonical
case where overfitting is benign for linear regression with the standard parameterization.

These bounds were obtained in the absence of a precise characterization of the implicit
bias of gradient flow for deep linear networks, or a closed-form formula for the model
produced.

A key point of our analysis is that the projection of the linear map Θ computed by the
interpolating network onto the span of the rows of the design matrix X is exactly equal to
minimum `2-norm interpolant Θ`2 . The risk of Θ naturally decomposes into contributions
from this projection and ΘX⊥ = Θ − Θ`2 . We can use previous analyses of Θ`2 to bound
the former.

Figure 1 contains plots from simulation experiments where the excess risk of a deep
linear model increases with the scale of the initialization of the first layer, as in the upper
bounds of our analysis. A similar effect is also seen when the first layer is initialized at a unit
scale, and the scale of the initialization of the last layer varies. In both cases, we also see
that as the function computed by the network at initialization approaches the zero function,
the trained model approaches the minimum `2-norm interpolant. Figure 2 includes plots of
analogous experiments with networks with ReLU nonlinearities. As in the linear case the
excess risk increases with the scale of the initialization of the first layer, but we do not see a
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Figure 1: Three-layer linear networks trained by gradient descent on data generated by an
underlying linear model. The model is trained on n = 100 points drawn from
the generative model y = xΘ? + ω, where x ∼ N(0,Σ) and ω ∼ N(0, 1). The
excess risk is defined as Ex

[
‖xΘ− xΘ?‖2

]
. We empirically find that when the

initialization variance of either the first layer (α2) or the last layer (β2) is close to
zero, the final solution is close to the minimum `2-norm interpolator and suffers
small excess risk. While when the initialization variance is large, that is, when
the network is initialized away from the origin, the excess risk is larger due to the
component of the final solution outside the span of the data. Additional details
in Section 7.

significant increase in excess risk with the scale of the initialization of the last layer. More
details of the experiments are described in Section 7.

Intuitively, the harm from overfitting arises from fitting the noise, and the effect of fitting
the noise is analyzed in the conditional variance of the estimator. In the setting studied
here, as in linear regression with the standard parameterization, the conditional variance
is entirely determined by the projection of Θ onto the span of the rows of the data matrix
X which is equal to Θ`2 . Thus, when learning deep linear networks with quadratic loss,
aspects of training that affect the inductive bias, such as the initialization, architecture,
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Figure 2: Three-layer ReLU networks trained by gradient descent on data generated by an
underlying two-layer ReLU teacher network. The model is trained on n = 500
points drawn from the generative model y = f?(x) + ω, where f? is a two-layer
ReLU network with width 50, x ∼ N(0, I10×10) and ω ∼ N(0, 1). The excess risk
is defined as Ex

[
‖f(x)− f?(x)‖2

]
. In ReLU models we find that the risk scales

differently as we scale the initialization variance of the first layer (α2) and that of
the last layer (β2). When we scale α2, similar to deep linear models we find that
risk is smaller for smaller values of α2. However, this is not the case when we scale
β2. This highlights a surprising asymmetry in the role played by the initialization
scales of the different layers in ReLU networks. For additional details about the
experiment see Section 7.

etc., do not affect this variance term—no matter how they are chosen, the distribution of
the variance term is determined by Θ`2 . To see an effect of implicit bias in deep linear
networks on the consequence of fitting the noise, we must analyze a loss function other than
the quadratic loss.

Our upper bounds reveal no benefit in representing linear transformations by deep net-
works, and, in our simulations, we see no benefit with random initialization. This is because
non-zero random initialization usually contributes additional error to the bias as the ran-
dom initialization is typically a poor guess for the regression function. (In rare cases it
could reduce the bias, though, if by chance it approximates the regression function.)

Our analysis also leverages the effect of imbalanced initialization on implicit bias—our
treatment partially extends the results by Min et al. (2021) from the two-layer case to the
deep case, and then combines them with our general risk bound.

Organization. In Section 2 we describe our problem setting and our assumptions. Then
in Section 3 we present our main results and in Sections 4, 5 and 6 we prove these results.
We provide additional simulations and simulation details in Section 7. We conclude with a
discussion in Section 8. In Appendix A we highlight other related work on benign overfitting,
implicit bias, and on linear networks. Finally, in Appendix B we present omitted technical
details.
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2. Preliminaries

This section includes notational conventions and a description of the setting.

2.1 Notation

Given a vector v, let ‖v‖ denote its Euclidean norm. Given a matrix M , let ‖M‖ denote
its Frobenius norm and let ‖M‖op denote its operator norm. For any j ∈ N, we denote the
set {1, . . . , j} by [j]. We will use c, c′, c1, cx, . . . to denote positive absolute constants, which
may take different values in different contexts.

2.2 Setting

We analyze linear regression with d inputs and q outputs from n examples. Throughout the
paper we assume that d > n. Although we assume throughout that the input dimension d
is finite, it is straightforward to extend our results to infinite d.

Let X ∈ Rn×d be the data matrix, and Y ∈ Rn×q be the response matrix, and let
x1, . . . , xn ∈ R1×d be the rows of X and y1, . . . , yn ∈ R1×q be the rows of Y .

For random (x, y) ∈ R1×d × R1×q, let

Θ? ∈ arg min
Θ∈Rd×q

E(x,y)

[
‖y − xΘ‖2

]
be an arbitrary optimal linear regressor. We let Ω = Y −XΘ? ∈ Rn×q be the noise matrix.

Define the excess risk of an estimate Θ ∈ Rd×q to be

Risk(Θ) := Ex,y
[
‖y − xΘ‖2 − ‖y − xΘ?‖2

]
,

where x, y are test samples that are independent of Θ.

Denote the second moment matrix of the covariates by Σ := E[x>x] ∈ Rd×d with
eigenvalues λ1 ≥ . . . ≥ λd ≥ 0. We will use the following definitions of the “effective rank”
that Bartlett et al. (2020) previously used in the analysis of the excess risk of the minimum
`2-norm interpolant.

Definition 1. Given any j ∈ [d], define sj :=
∑

i>j λi and

rj :=
sj
λj+1

and Rj :=
s2
j∑

i>j λ
2
i

.

We define the index k below. The value of k shall help determine what we consider the
“tail” of the covariance matrix.

Definition 2. For a large enough constant b (that will be fixed henceforth), define

k := min{j ≥ 0 : rj ≥ bn},

where the minimum of the empty set is defined as ∞.

We are now ready to introduce the assumptions of our paper.
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Assumptions. Let cx and cy denote absolute constants.

(A.1) The samples (x1, y1), . . . , (xn, yn) are drawn i.i.d.

(A.2) The covariates x and responses y are mean-zero.

(A.3) The covariates x satisfy x = Σ1/2u, where u is isotropic and has components that
are independent cx-sub-Gaussian random variables, that is, for all φ ∈ Rd

E
[
exp

(
φ>u

)]
≤ exp

(
cx‖φ‖2/2

)
.

(A.4) The difference y − xΘ? is cy-sub-Gaussian, conditionally on x; that is, for all
φ ∈ Rq

Ey
[
exp

(
φ>(y − xΘ?)

) ∣∣ x] ≤ exp
(
cy‖φ‖2/2

)
(note that this implies that E [y | x] = xΘ? and E

[
‖y − xΘ?‖2

]
≤ cq).

(A.5) Almost surely, the projection of the data X on the space orthogonal to any eigen-
vector of Σ spans a space of dimension n.

All the constants going forward may depend on the values of cx and cy. The assump-
tions made here are standard in the benign overfitting literature (see Bartlett et al., 2020;
Chatterji et al., 2022). They are satisfied for example in the case where x is a mean-zero
Gaussian whose covariance Σ has full rank, d > n, and the noise y − xΘ? is independent
and Gaussian.

2.3 Deep Linear Models

We analyze linear models represented by deep linear networks with m hidden units at each
layer. We denote the weight matrices by W1, . . . ,WL, where W1 ∈ Rm×d, W2, . . . ,WL−1 ∈
Rm×m, and WL ∈ Rq×m. The standard representation of the network’s linear transforma-
tion, denoted by Θ ∈ Rd×q, is

Θ = (WL · · ·W1)> ∈ Rd×q.

Define PX to be the projection onto the row span of X, that is, PX := X>(XX>)−1X. Let

ΘX := PXΘ and ΘX⊥ := (I − PX)Θ.

For n datapoints (x1, y1), . . . , (xn, yn), where xi ∈ R1×d and yi ∈ R1×q, the training loss
is given by

L(Θ) :=

n∑
i=1

‖yi − xiΘ‖2 = ‖Y −XΘ‖2.

We will analyze the generalization properties of deep linear models trained with gradient
flow, that is, for all j ∈ [L],

dW
(t)
j

dt
= −∇

W
(t)
j

L(Θ(t)).

We study the following random initialization scheme in our paper.
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Definition 3. (Random initialization) Given α, β > 0, the entries of the first layer W
(0)
1

and the last layer W
(0)
L are initialized using i.i.d. draws from N(0, α2) and N(0, β2) respec-

tively. The remaining layers W
(0)
2 , . . . ,W

(0)
L−1 are initialized to the identity Im.

A similar initialization scheme has been studied previously (Zou et al., 2020). Our
analysis will show that starting from random initialization the scale of the network grows
in a controlled manner which is captured by the following definition.

Definition 4. We say that training is perpetually Λ bounded if, for all t ≥ 0 and all
S ⊆ [L], ∏

j∈S

∥∥∥W (t)
j

∥∥∥
op
≤ Λ.

In our subsequent analysis, this notion of perpetually Λ bounded shall allow us to control
the behavior of the network in the null space of the data matrix X.

2.4 The Minimum `2-norm Interpolant

It will be helpful to compare the generalization of the deep linear model with the result of
applying the minimum `2-norm interpolant resulting from the standard parameterization.

Definition 5. For any X ∈ Rn×d and Y ∈ Rn×q, define Θ`2 = X>(XX>)−1Y .

Under Assumption (A.5), the matrix XX> is full rank and therefore Θ`2 is well defined.
As previously noted, the excess risk of this canonical interpolator has been studied in prior
work (see Bartlett et al., 2020; Tsigler and Bartlett, 2020).

3. Main Results

In this section, we present our excess risk bounds. Our first result applies to any deep linear
model trained until interpolation. Second, we shall specialize this result to the case where
the model is randomly initialized. Lastly, we present an excess risk bound for a randomly
initialized network in a setting with a spiked covariance matrix.

3.1 Excess Risk bound for Deep Linear Models

The following theorem is an excess risk bound for any deep linear model trained until it
interpolates in terms of the rate of convergence of its training, along with the effective ranks
of the covariance matrix.

Theorem 6. Under Assumptions (A.1)-(A.5), there is an absolute constant c > 0 such that,
for all δ < 1/2 and all depths L > 1, the following holds. With probability at least 1− cδ, if
Θ = limt→∞Θ(t) for a perpetually Λ-bounded training process for which limt→∞ L(Θ(t)) = 0,
and n ≥ cmax{r0, k, log(1/δ)}, then

Risk(Θ) = Bias(Θ`2) + Variance(Θ`2) + Ξ,
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where

Bias(Θ`2) ≤ csk
n
‖Θ?‖2,

Variance(Θ`2) ≤ cq log(q/δ)

(
k

n
+

n

Rk

)
,

and

Ξ =
csk
n
‖ΘX⊥‖2 ≤

csk
n

[
‖Θ(0)

X⊥
‖+ LΛ2

√
λ1n

∫ ∞
t=0

√
L(Θ(t)) dt

]2

.

This bound shows that the conditional bias of the estimator Θ is upper bounded by
the conditional bias of the minimum `2-norm interpolant Bias(Θ`2) plus Ξ, which is the
additional bias incurred by the component of Θ outside the row span of X. This additional
term Ξ depends not only on the eigenvalues of the covariance matrix but also on the specifics
of the optimization procedure such as the initial linear model (Θ(0)), the size of the weights
throughout training (Λ) and the rate of decay of the loss.

Interestingly, the conditional variance of the interpolator Θ, is in fact identical to the
conditional variance of the minimum `2-norm interpolant. This follows because, as we will
show in the proof, the component of the interpolator Θ in the row span of X is in fact equal
to Θ`2 , and the conditional variance depends only on this component within the row span
of X. The variance captures the effect of perfectly fitting the noise in the data, and our
analysis shows that the harm incurred by fitting the noise is unaffected by parameterizing
a linear model as a deep linear model.

Essentially matching lower bounds (up to constants) on the variance term are known
(Bartlett et al., 2020).

3.2 Excess Risk Bound under Random Initialization

Our next main result establishes a high-probability bound on the excess risk, and in par-
ticular on Ξ, when the network is trained after a random initialization (see Definition 3).

Theorem 7. Under Assumptions (A.1)-(A.5), there is an absolute constant c > 0 such
that, for all δ < 1/2, if

• the initialization scales β and α satisfy β ≥ cmax

{
1,

λ
1/4
1

√
Ln

(√
‖Θ?‖λ1/4+q1/4

)
√
sk

}
and

α ≤ 1;

• the width m ≥ cmax
{
d+ q + log(1/δ), L

2α2λ1s0n2q log(n/δ)
β2s2k

}
;

• the network is trained using random initialization as described in Definition 2.3;

• the number of samples satisfies n ≥ cmax{r0, k, log(1/δ)},

then, with probability at least 1− cδ,

Risk(Θ) ≤ Bias(Θ`2) + Variance(Θ`2) + Ξ,
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where

Bias(Θ`2) ≤
csk
n
‖Θ?‖2,

Variance(Θ`2) ≤ cq log(q/δ)

(
k

n
+

n

Rk

)
,

Ξ ≤ cα2sk
n

[
qβ2 +

L2(α+ 1/L)4λ1n
2

s2
k

(
λ1‖Θ?‖2 + q +

α2β2s0q log(n/δ)

m

)]
.

Note that the bound on Ξ of Theorem 7 can be made arbitrarily small by decreasing α
while keeping the other parameters fixed. When α = 0, our bound shows that the model
has the same risk as the minimum `2-norm interpolant.

Recall from the simulation in Figure 1 that as the initialization of the last layer β
approaches 0, the model produced by gradient descent gets closer to the minimum `2-norm
interpolant. Our bound on Ξ does not approach 0 as β → 0, and we do not know how to
prove that this happens in general with high probability.

Regarding the role of overparameterization, we find that one component of our bound
on Ξ gets smaller as the width m is increased. However, our bound gets larger as we increase
depth L.

As mentioned earlier, the bound on the conditional variance, which captures the effect
of fitting the noise, is sharp up to constants, however we do not know whether the upper
bound on the conditional bias, and specifically Ξ in Theorem 7, can be improved. It is also
unclear whether conditions on β and m can be relaxed.

Next, to facilitate the interpretation of our bounds, we apply Theorem 7 in a canonical
setting where benign overfitting occurs for the minimum `2-norm interpolant.

Definition 8 ((k, ε)-spike model). For 0 < ε < 1 and k ∈ N, a (k, ε)-spike model is a
setting where the eigenvalues of Σ are λ1 = . . . = λk = 1 and λk+1 = . . . = λd = ε.

The (k, ε)-spike model is a setting where there are k high variance directions, and many
(d − k) low variance directions that can be used to “hide” the energy of the noise. Note
that, in this model, if d ≥ cn and n ≥ ck for a large enough constant c, then k satisfies the
requirement of Definition 2, since rk = ε(d−k)/ε = d−k ≥ bn. Since this covariance matrix
has full rank, it may be used in one of the concrete settings where all of our assumptions
are satisfied described at the end of Section 2.2.

Corollary 9. Under Assumptions (A.1)-(A.5), there is an absolute constant c > 0, such
that, for any 0 < ε < 1 and k ∈ N, if Σ is an instance of the (k, ε)-spike model, for any
input dimension d, output dimension q, depth L > 1, and number of samples n, there are
initialization scales α > 0 and β > 0 such that the following holds. For all δ < 1/2, if

• the width m ≥ c(d+ q + log(1/δ));

• the network is trained as described in Section 2.3;

• the input dimension d ≥ cn;

• the number of samples n ≥ cmax {k + εd, log(1/δ)},
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then, with probability at least 1− cδ,

Risk(Θ) ≤ c

(
εd‖Θ?‖2 + qk log(q/δ)

n
+
nq log(q/δ)

d

)
. (1)

Corollary 9 gives the simple bound obtained by a choice of parameters that includes a
sufficiently small value of α. For larger values of α the bound of Theorem 7 may behave
differently in the case of the (k, ε)-spike model. We find that if we regard ‖Θ?‖2 as a
constant then, the excess risk approaches zero if

εd

n
→ 0,

qk log(q/δ)

n
→ 0 and

nq

d
→ 0,

which recovers the known sufficient conditions for the minimum `2-norm interpolant to
benignly overfit in this setting. One example is where

q = 5, k = 5, δ = 1/100, d = n2, ε = 1/n2,

and n→∞.

4. Proof of Theorem 6

The proof of Theorem 6 needs some lemmas, which we prove first. Throughout this section
the assumptions of Theorem 6 are in force.

A key point is that the projection of any interpolator onto the row span of X, including
the model output by training a deep linear network, is the minimum `2-norm interpolant.

Lemma 10. For any interpolator Θ, ΘX = PXΘ = Θ`2.

Proof. Since Θ interpolates the data

Y = XΘ = X (ΘX + ΘX⊥) = XΘX . (2)

Recall that ΘX = X>(XX>)−1XΘ = PXΘ, where PX projects onto the row span of X.
Continuing, we get that

Θ`2 = X>(XX>)−1Y

= X>(XX>)−1XΘX

= PXΘX = PXPXΘ = PXΘ = ΘX .

�

Using the formula for the minimum `2-norm interpolant, we can now write down an
expression for the excess risk.

Lemma 11. The excess risk of any interpolator Θ of the data satisfies

Risk(Θ) ≤ cTr
(

(Θ? −ΘX⊥)>B(Θ? −ΘX⊥)
)

+ cq log(q/δ)Tr(C)
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with probability at least 1− δ over the noise matrix Ω = Y −XΘ?, where

B :=
(
I −X>(XX>)−1X

)
Σ
(
I −X>(XX>)−1X

)
and

C := (XX>)−1XΣX>(XX>)−1.

Proof. We have y − xΘ? is conditionally mean-zero given x, thus

Risk(Θ) = Ex,y
[
‖y − xΘ‖2

]
− Ex,y

[
‖y − xΘ?‖2

]
= Ex,y

[
‖y − xΘ? + x(Θ? −Θ)‖2

]
− Ex,y

[
‖y − xΘ?‖2

]
= Ex

[
‖x(Θ? −Θ)‖2

]
. (3)

Since Θ interpolates the data, by Lemma 10 we know that

Θ = Θ`2 + ΘX⊥ = X>(XX>)−1Y + ΘX⊥ .

Now because Y = XΘ? + Ω we find that

Risk(Θ)

= Ex
[∥∥∥x(I −X>(XX>)−1X

)
(Θ? −ΘX⊥)− xX>(XX>)−1Ω

∥∥∥2
]

≤ 2Ex
[∥∥∥x(I −X>(XX>)−1X

)
(Θ? −ΘX⊥)

∥∥∥2
]

+ 2Ex
[∥∥∥xX>(XX>)−1Ω

∥∥∥2
]

≤ 2Ex
[
x
(
I −X>(XX>)−1X

)
(Θ? −ΘX⊥)(Θ? −ΘX⊥)>

(
I −X>(XX>)−1X

)
x>
]

+ 2Ex
[
xX>(XX>)−1ΩΩ>(XX>)−1Xx>

]
(i)
= 2Tr

(
(Θ?−ΘX⊥)>

(
I −X>(XX>)−1X

)
Ex
[
x>x

] (
I −X>(XX>)−1X

)
(Θ?−ΘX⊥)

)
+ 2Tr

(
Ω>(XX>)−1XEx[x>x]X>(XX>)−1Ω

)
(ii)
= 2Tr

(
(Θ? −ΘX⊥)>B(Θ? −ΘX⊥)

)
+ 2Tr

(
Ω>CΩ

)
.

where (i) follows by using the cyclic property of the trace, and (ii) follows by the definition
of the matrices B and C.

Let ω1, . . . , ωq denote the columns of the error matrix Ω. Then

Tr(Ω>CΩ) =

q∑
i=1

ω>i Cωi.

Invoking (Bartlett et al., 2020, Lemma S.2) bounds each term in the sum by cq log(q/δ)Tr(C)
with probability at least 1− δ/q. A union bound completes the proof. �

To work on the first term in the upper bound of the excess risk, we would like an upper

bound on ‖Θ(t)

X⊥
‖. Toward this end, we first establish a high-probability bound on ‖X‖op.
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Lemma 12. There is a constant c > 0 such that for any δ ∈ (0, 1), if n≥cmax{r0, log
(

1
δ

)
},

with probability at least 1− δ, ‖X‖op ≤ c
√
λ1n.

Proof. By (Koltchinskii and Lounici, 2017, Lemma 9), with probability at least 1− δ

‖X‖op =
√
‖X>X‖op

≤

√√√√n

(
‖Σ‖op +

∥∥∥∥ 1

n
X>X − Σ

∥∥∥∥
op

)

≤

√√√√n

(
‖Σ‖op + ‖Σ‖op max

{√
r0

n
,

√
log(1/δ)

n
,
r0

n
,
log(1/δ)

n

})
.

Recalling that n ≥ cmax{r0, log(1/δ)}, this implies that, with probability at least 1 − δ,
‖X‖op ≤ c

√
n‖Σ‖op. �

Next, we will calculate a formula for the time derivative of Θ(t). Its definition will make
use of products of matrices before and after a given layer.

Definition 13. For j ∈ [L] define Aj =
∏j+1
k=LW

(t)
k and Bj =

∏1
k=j−1W

(t)
k .

Now we are ready for our lemma giving the time derivative of Θ(t).

Lemma 14. At any time t ≥ 0,

dΘ(t)

dt
= −

L∑
j=1

B>j BjX
>(XΘ(t) − Y )AjA

>
j .

Proof. Let us suppress the superscript (t) to ease notation. The gradient flow dynamics is
defined as

dWj

dt
= −∇WjL(Θ),

where

∇WjL(Θ) = (WL · · ·Wj+1)>(XΘ− Y )>
(
Wj−1 · · ·W1X

>
)>

. (4)

12
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So by the chain rule of differentiation,

dΘ

dt
=

d
(
W>1 · · ·W>L

)
dt

=

L∑
j=1

(
W>1 · · ·W>j−1

) dW>j
dt

(
W>j+1 · · ·W>L

)

=
L∑
j=1

(
W>1 · · ·W>j−1

) (
−∇WjL(Θ)

)> (
W>j+1 · · ·W>L

)

= −
L∑
j=1

(
W>1 · · ·W>j−1

)(
Wj−1 · · ·W1X

>
)

(XΘ− Y )(WL · · ·Wj+1)
(
W>j+1 · · ·W>L

)

= −
L∑
j=1

B>j BjX
>(XΘ− Y )AjA

>
j .

�

Toward the goal of proving a high-probability bound on ‖Θ(t)

X⊥
‖, we next bound its rate

of growth.

Lemma 15. There is a constant c > 0 such that, if n ≥ cmax{r0, log(1/δ)}, with probability
at least 1− δ, if training is perpetually Λ bounded, then, for all t ≥ 0,

1

2

d‖Θ(t)

X⊥
‖2

dt
≤

L∑
j=2

Tr
(

Θ(t)>PX⊥B
>
j BjX

>(XΘ(t) − Y )AjA
>
j

)
.

Proof. Given matrices A and B, we let A ·B = Tr(A>B) denote the matrix inner product.

By the chain rule,

1

2

d‖Θ(t)

X⊥
‖2

dt
= Θ

(t)

X⊥
·

dΘ
(t)

X⊥

dt

= Θ
(t)

X⊥
· PX⊥

dΘ(t)

dt

(i)
= Θ

(t)

X⊥
· PX⊥

(
−

L∑
j=1

B>j BjX
>(XΘ(t) − Y )AjA

>
j

)

= −
L∑
j=1

Θ
(t)

X⊥
· PX⊥

(
B>j BjX

>(XΘ(t) − Y )AjA
>
j

)
, (5)

where (i) follows by the formula derived in Lemma 14.

13
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Let us consider a particular term in the sum above,

Θ
(t)

X⊥
· PX⊥

(
B>j BjX

>(XΘ(t) − Y )AjA
>
j

)
= Tr

(
Θ

(t)>
X⊥

PX⊥B
>
j BjX

>(XΘ(t) − Y )AjA
>
j

)

= Tr

(
Θ(t)>P>X⊥PX⊥B

>
j BjX

>(XΘ(t) − Y )AjA
>
j

)

= Tr

(
Θ(t)>PX⊥B

>
j BjX

>(XΘ(t) − Y )AjA
>
j

)
. (6)

In the case where j = 1, the RHS is equal to

Tr

Θ(t)>PX⊥X
>(XΘ(t) − Y )

(
2∏

k=L

W
(t)
k

)(
2∏

k=L

W
(t)
k

)> = 0,

since PX⊥X
> = 0.

In the case j > 1, we have

Θ
(t)

X⊥
· PX⊥

(
B>j BjX

>(XΘ(t) − Y )AjA
>
j

)
= Tr

(
Θ(t)>PX⊥B

>
j BjX

>(XΘ(t) − Y )AjA
>
j

)
completing the proof. �

Lemma 16. There is a constant c > 0 such that, if n ≥ cmax{r0, log(1/δ)}, with probability
at least 1− δ, if training is perpetually Λ bounded, then, for all t ≥ 0,

‖Θ(t)

X⊥
‖ ≤ ‖Θ(0)

X⊥
‖+ c(L− 1)Λ2

√
λ1n

∫ t

s=0

√
L(Θ(s)) ds.

Proof. Let us consider one of the terms in the RHS of Lemma 15. We have

Tr
(

Θ(t)>PX⊥B
>
j BjX

>(XΘ(t) − Y )AjA
>
j

)
= Tr

(
Θ

(t)>
X⊥

B>j BjX
>(XΘ(t) − Y )AjA

>
j

)
≤ ‖Θ(t)

X⊥
‖
∥∥∥B>j BjX>(XΘ(t) − Y )AjA

>
j

∥∥∥
(i)

≤ ‖Θ(t)

X⊥
‖
∥∥∥B>j Bj∥∥∥

op

∥∥∥AjA>j ∥∥∥
op
‖X‖op

∥∥∥XΘ(t) − Y
∥∥∥

≤ ‖Θ(t)

X⊥
‖

(
j−1∏
k=1

‖W (t)
k ‖

2
op

) L∏
k=j+1

‖W (t)
k ‖

2
op

 ‖X‖op ∥∥∥XΘ(t) − Y
∥∥∥

= ‖Θ(t)

X⊥
‖

∏
k 6=j
‖W (t)

k ‖op

2

‖X‖op
∥∥∥XΘ(t) − Y

∥∥∥
(ii)

≤ ‖Θ(t)

X⊥
‖ ‖X‖op Λ2

√
L(Θ(t)),

14
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where (i) follows since for any matrices ‖AB‖ ≤ ‖A‖op‖B‖, and (ii) follows since training
is perpetually Λ bounded.

Summing over layers j = 2, . . . , L, we get that,

1

2

d‖Θ(t)

X⊥
‖2

dt
≤ (L− 1)‖Θ(t)

X⊥
‖ ‖X‖op Λ2

√
L(Θ(t)).

Now note that,

1

2

d‖Θ(t)

X⊥
‖2

dt
=
‖Θ(t)

X⊥
‖d‖Θ(t)

X⊥
‖

dt
≤ (L− 1)‖Θ(t)

X⊥
‖ ‖X‖op Λ2

√
L(Θ(t)),

which in turn implies that, when ‖Θ(t)

X⊥
‖ > 0, we have

d‖Θ(t)

X⊥
‖

dt
≤ (L− 1) ‖X‖op Λ2

√
L(Θ(t)).

If, for all s ∈ [0, t], we have ‖Θ(t)

X⊥
‖ 6= 0, then by integrating this differential inequality we

conclude that

‖Θ(t)

X⊥
‖ − ‖Θ(0)

X⊥
‖ ≤ (L− 1) ‖X‖op Λ2

∫ t

s=0

√
L(Θ(s)) ds. (7)

Otherwise, if T = sup{s : ‖Θ(s)

X⊥
‖ = 0},

‖Θ(t)

X⊥
‖ ≤ (L− 1) ‖X‖op Λ2

∫ t

s=T

√
L(Θ(s)) ds,

which implies (7).

Applying Lemma 12 which is a high probability upper bound on ‖X‖op completes the
proof. �

Armed with these lemmas, we are now ready to prove the first of our main results.

Proof of Theorem 6. Combining Lemma 11 with Lemmas 6 and 11 by Bartlett et al.
(2020) to bound Tr(C) we get, with probability at least 1− cδ,

Risk(Θ) ≤ Tr
(

(Θ? −ΘX⊥)>B(Θ? −ΘX⊥)
)

+ cq log(q/δ)

(
k

n
+

n

Rk

)
︸ ︷︷ ︸

=:Variance(Θ`2
)

.

We begin by bounding the first term in the RHS above. Let θ?1, . . . , θ
?
q be the columns of

Θ? and θX⊥,1, . . . , θX⊥,q be the columns of ΘX⊥ . By invoking (Chatterji et al., 2022, Eq. 54)
for each of the q outputs, and applying a union bound, we find that with probability at
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least 1− cq(δ/q) = 1− cδ,

Tr
(

(Θ? −ΘX⊥)>B(Θ? −ΘX⊥)
)

=

q∑
i=1

(θ?i − θX⊥,i)>B(θ?i − θX⊥,i)

≤ csk
n

q∑
i=1

‖θ?i − θX⊥,i‖2

=
csk
n
‖Θ? −ΘX⊥‖2

≤ 2csk
n

(
‖Θ?‖2 + ‖ΘX⊥‖2

)
.

Define Bias(Θ`2) := 2csk
n ‖Θ

?‖2 and let Ξ := 2csk
n ‖ΘX⊥‖2. The bound on Ξ follows by

invoking Lemma 16. �

5. Proof of Theorem 7

The assumptions of Theorem 7 are in force throughout this section. Before starting its
proof, we establish some lemmas.

Definition 17. For a large enough absolute constant c, we say that the network enjoys a
δ-good initialization if

α/c < σmin(W
(0)
1 ) ≤ σmax(W

(0)
1 ) < cα,

β/c < σmin(W
(0)
L ) ≤ σmax(W

(0)
L ) < cβ,

and

L(Θ(0)) < c

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
.

The following proposition is proved in Appendix B. It guarantees that for wide networks,
optimization is successful starting from random initialization.

Proposition 18. There is a constant c such that, given any δ ∈ (0, 1), if the initialization
scales α and β, along with the network width m, satisfy

m ≥ cmax

{
d+ q + log(1/δ),

L2α2‖X‖2op‖X‖2q log(n/δ)

β2σ4
min(X)

}
,

β ≥ cmax

{
1,

√
L‖X‖op‖Y ‖
σ2

min(X)

}
,

α ≤ 1,

then with probability at least 1− δ:

1. the initialization is δ-good;

2. training is perpetually c(α+ 1/L)β bounded;
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3. for all t > 0, we have that

L(Θ(t)) < L(Θ(0)) exp

(
−β

2σ2
min(X)

4e
· t
)

≤ c
(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
exp

(
−β

2σ2
min(X)

4e
· t
)
.

The reader may notice that the roles of α and β in Proposition 18 are asymmetric. We
focused on that case that α is small because the updates of W1 are in the span of the rows
of X, which is not necessarily the case for the other layers, including WL. This means that
the scale of W1 in the null space of X remains the same as it was at initialization, so that
a small scale at initialization pays dividends throughout training.

The next lemma shows that the projection of the model computed by the network onto
the null space of X is the same as the model obtained by projecting the first layer weights,
and combining them with the other layers.

Lemma 19. For all t ≥ 0,

Θ
(t)

X⊥
=
(
W

(t)
L · · ·W

(t)
2 W

(t)

1,X⊥

)>
,

where
W

(t)

1,X⊥
:= W

(t)
1 (I − PX).

Proof. By definition

Θ(t) = (W
(t)
L · · ·W

(t)
1 )> =

(
W

(t)
1

)>
· · ·
(
W

(t)
L

)>
∈ Rd×q.

Therefore,

Θ
(t)

X⊥
= (I − PX)Θ(t) = (I − PX)(W

(t)
1 )> · · · (W (t)

L )> = (W
(t)

1,X⊥
)> · · · (W (t)

L )>.

�

The subsequent lemma shows that the projection of the first layer onto the null space
of X does not change during training.

Lemma 20. For all t ≥ 0, W
(t)

1,X⊥
= W

(0)

1,X⊥
.

Proof. We have

dW
(t)

1,X⊥

dt
=

dW
(t)
1 (I − PX)

dt

=

(
dW

(t)
1

dt

)
(I − PX)

= −
(

(WL · · ·W2)>(XΘ− Y )>X
)

(I − PX) (by using Eq. (4))

= −
(

(WL · · ·W2)>(XΘ− Y )>
)

(X(I − PX))

= −
(

(WL · · ·W2)>(XΘ− Y )>
)

(0)

= 0.

�
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By using the previous two lemmas regarding the first layer weights W1 we can now

prove an alternate bound on ‖Θ(t)

X⊥
‖. In contrast to the previous bound that we derived in

Lemma 16, here the initial scale of W1 plays a role in controlling the growth in ‖Θ(t)

X⊥
‖.

Lemma 21. There is constant c > 0 such that, if training is perpetually Λ bounded, then,
for all t ≥ 0,

‖Θ(t)

X⊥
‖ ≤ ‖Θ(0)

X⊥
‖+ cL‖W (0)

1 ‖op‖X‖opΛ
2

∫ t

s=0

√
L(Θ(s)) ds.

Proof. Let us once again consider one of the terms in the RHS of Lemma 15. We have

Tr
(

Θ
(t)>
X⊥

PX⊥B
>
j BjX

>(XΘ(t) − Y )AjA
>
j

)
= Tr

Θ(t)>PX⊥(W
(t)
1 )>

 2∏
k=j−1

W
(t)
k

>BjX>(XΘ(t) − Y )AjA
>
j


= Tr

Θ
(t)>
X⊥

W
>(t)

1,X⊥

 2∏
k=j−1

W
(t)
k

>BjX>(XΘ(t) − Y )AjA
>
j

 .

Continuing by using the fact that for any matrices ‖AB‖ ≤ ‖A‖op‖B‖, we get that

Θ
(t)

X⊥
· PX⊥

(
B>j BjX

>(XΘ(t) − Y )AjA
>
j

)
≤ ‖Θ(t)

X⊥
‖‖W (t)

1,X⊥
‖op

∥∥∥∥∥∥∥
 2∏
k=j−1

W
(t)
k

>Bj
∥∥∥∥∥∥∥
op

∥∥∥AjA>j ∥∥∥
op
‖X‖op

∥∥∥XΘ(t) − Y
∥∥∥

(i)

≤ ‖Θ(t)

X⊥
‖‖W (t)

1,X⊥
‖op ‖X‖op Λ2

√
L(Θ(t))

(ii)

≤ ‖Θ(t)

X⊥
‖‖W (0)

1,X⊥
‖op ‖X‖op Λ2

√
L(Θ(t))

≤ ‖Θ(t)

X⊥
‖‖W (0)

1 ‖op‖X‖opΛ
2
√
L(Θ(t)),

since ‖W (0)

1,X⊥
‖op ≤ ‖W (0)

1 ‖op, where (i) follows since training is Λ perpetually bounded and
so ∥∥∥∥∥∥∥

 2∏
k=j−1

W
(t)
k

>Bj
∥∥∥∥∥∥∥
op

∥∥∥AjA>j ∥∥∥
op
≤

 ∏
k 6={1,j}

‖W (t)
k ‖op

 ∏
k 6={j}

‖W (t)
k ‖op

 ≤ Λ2

and (ii) follows since by Lemma 20, W
(t)

1,X⊥
= W

(0)

1,X⊥
.

Summing over layers j = 2, . . . , L, we get that,

1

2

d‖Θ(t)

X⊥
‖2

dt
≤ (L− 1)‖Θ(t)

X⊥
‖‖W (0)

1 ‖op ‖X‖op Λ2
√
L(Θ(t)).
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Thus, we have that

1

2

d‖Θ(t)

X⊥
‖2

dt
=
‖Θ(t)

X⊥
‖d‖Θ(t)

X⊥
‖

dt
≤ (L− 1)‖Θ(t)

X⊥
‖‖W (0)

1 ‖op ‖X‖op Λ2
√
L(Θ(t))

which in turn implies that, when ‖Θ(t)

X⊥
‖ 6= 0, we have

d‖Θ(t)

X⊥
‖

dt
≤ (L− 1)‖W (0)

1 ‖op ‖X‖op Λ2
√
L(Θ(t)).

Therefore, by integrating this differential inequality as in the proof of Lemma 16, we con-
clude that

‖Θ(t)

X⊥
‖ − ‖Θ(0)

X⊥
‖ ≤ (L− 1)‖W (0)

1 ‖op ‖X‖op Λ2

∫ t

s=0

√
L(Θ(s)) ds.

�

We also need a lemma that bounds the Frobenius norm of the data matrix X.

Lemma 22. There is a constant c > 0 such that for any δ ∈ (0, 1), if n ≥ c log(1/δ), then
with probability at least 1− δ, ‖X‖ ≤ c√ns0.

Proof. The rows of X are n i.i.d. draws from a distribution, where each sample can be
written as xi = Σ1/2ui, where ui has components that are independent cx-sub-Gaussian
random variables. Define ustacked := (u1, u2, . . . , un) ∈ Rdn to be concatenation of the

vectors u1, . . . , un and define Σ
1/2
stacked ∈ Rdn×dn to be a block diagonal matrix with Σ1/2 ∈

Rd×d repeated n times along its diagonal. Then,

‖X‖2 =
n∑
i=1

‖xi‖2 =
n∑
i=1

‖Σ1/2ui‖2 =
∥∥∥Σ

1/2
stackedustacked

∥∥∥2
.

Now, ustacked is an isotropic, cx-sub-Gaussian random vector. Therefore, by applying (Ver-
shynin, 2018, Theorem 6.3.2) we know that the sub-Gaussian norm (Vershynin, 2018, Def-

inition 2.5.3) of ‖X‖ = ‖Σ1/2
stackedustacked‖ is∥∥∥‖Σ1/2

stackedustacked‖ − c1

√
nTr(Σ)

∥∥∥
ψ2

= ‖‖X‖ − c1
√
ns0‖ψ2

≤ c2

√
λ1.

Therefore, by Hoeffding’s bound (Vershynin, 2018, Proposition 2.5.2) we get that

P [‖X‖ − c1
√
ns0 ≥ η] ≤ 2 exp(−c3η

2/λ1).

Setting η2 = ns0/λ1 = nr0 and noting that n ≥ log(1/δ) ≥ log(1/δ)/r0 completes the
proof. �

Finally, we have a simple lemma that bounds the Frobenius norm of the responses Y .

Lemma 23. There is a constant c > 0 such that for any δ ∈ (0, 1), if n ≥ c log(1/δ), then
with probability at least 1− δ, ‖Y ‖ ≤ c(‖X‖op‖Θ?‖+

√
qn).
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Proof. Note that Y = XΘ? + Ω, and therefore

‖Y ‖ ≤ ‖XΘ?‖+ ‖Ω‖ ≤ ‖X‖op‖Θ?‖+ ‖Ω‖, (8)

where the last inequality follows since for any matrices ‖AB‖ ≤ ‖A‖op‖B‖. Now each entry
in Ω ∈ Rn×q is a zero-mean and cy-sub-Gaussian. Therefore, by Bernstein’s bound (Ver-
shynin, 2018, Theorem 2.8.1),

P
[
‖Ω‖2 − E

[
‖Ω‖2

]
≥ qn

]
≤ 2 exp(−c1qn).

Now E
[
‖Ω‖2

]
= nE

[
‖y − xΘ?‖2

]
≤ c2qn, by Assumption (A.4), and 2 exp(−qn) ≤ δ since

n ≥ c log(1/δ) ≥ c log(1/δ)/q. Thus, with probability at least 1− δ

‖Ω‖2 ≤ c3qn.

Combining this with Eq. (8) completes the proof. �

With all of the pieces in place we are now ready to prove the theorem.

Proof of Theorem 7. Define a “good event” E as the intersection of the following events:

• E1, the excess risk bound stated in Theorem 6 holds.

• E2, the bounds stated in Proposition 18 hold.

• E3, ‖X‖op ≤ c
√
λ1n.

• E4, ‖X‖ ≤ c√s0n.

• E5, σmin(X) ≥
√
sk
c .

• E6, ‖Y ‖ ≤ c
(
‖X‖op‖Θ?‖+

√
qn
)
.

Now, Theorem 6 and Proposition 18 each hold with probability at least 1− cδ. Lemma 12
implies that the event E3 holds with probability at least 1− δ. By Lemma 22, the event E4

holds with probability at least 1− δ. For E5, notice that

σmin(X) =
√
σmin(XX>) =

√
σmin(X:kX

>
:k +Xk:X

>
k:) ≥

√
σmin(Xk:X

>
k:) = σmin(Xk:),

where X:k are the first k columns of X and Xk: are the last d − k columns of X. Since
n ≥ c log(1/δ), by (Bartlett et al., 2020, Lemma 9) we know that with probability at least
1− δ

σmin(X) ≥ σmin(Xk:) ≥

√
sk
c1

(
1− c1n

rk

)
≥
√
sk
c

(since rk ≥ bn by Definition 2).

Finally, by Lemma 23 event E6 holds with probability at least 1− δ. Therefore, by a union
bound the good event E holds with probability at least 1 − c′δ. Let us assume that this
event occurs going forward in the proof.
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Proposition 18 guarantees that the training process is c2(α+1/L)β-perpetually bounded
and the loss converges to zero. Therefore, by applying Theorem 6, the risk is bounded by

Risk(Θ) ≤ Bias(Θ`2) + Variance(Θ`2) + Ξ,

where

Bias(Θ`2) ≤
csk
n
‖Θ?‖2,

Variance(Θ`2) ≤ cq log(q/δ)

(
k

n
+

n

Rk

)
,

Ξ ≤ csk
n

[
‖Θ(0)

X⊥
‖+ Lα(α+ 1/L)2β

√
λ1n

∫ ∞
t=0

√
L(Θ(t)) dt

]2

. (9)

In the rest of the proof we shall bound the term Ξ.

For this, we would like to apply Proposition 18, which we can, since α ≤ 1,

β ≥ c3 max

1,
λ

1/4
1

√
Ln
(√
‖Θ?‖λ1/4 + q1/4

)
√
sk


≥ c4 max

{
1,

√
L‖X‖op‖Y ‖
σ2

min(X)

}
(by events E3, E5 and E6),

and

m ≥ c5 max

{
d+ q + log(1/δ),

L2α2λ1s0n
2q log(n/δ)

β2s2
k

}
≥ c6 max

{
d+ q + log(1/δ),

L2α2‖X‖2op‖X‖2q log(n/δ)

β2σ4
min(X)

}
(by events E3 and E4).

Thus, by Proposition 18 we know that for all t > 0,

L(Θ(t)) < c7

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
exp

(
−β

2σ2
min(X)

4e
· t
)

< c8

(
λ1n‖Θ?‖2 + qn+

α2β2qs0n log(n/δ)

m

)
exp

(
−c9β

2sk · t
)

(by events E3-E6).

Integrating the RHS above we get that

∫ ∞
t=0

√
L(Θ(t)) dt ≤ c10

√
(λ1‖Θ?‖2 + q)n+ αβ

√
s0qn log(n/δ)

m

β2sk
. (10)
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Proposition 18 also guarantees that the initialization is δ-good. That is, ‖W (0)
1 ‖op ≤ c11α

and ‖W (0)
L ‖ ≤ c11β. So,

‖Θ(0)

X⊥
‖ = ‖(I − PX)Θ(0)‖ ≤ ‖(I − PX)‖op‖Θ(0)‖

≤ ‖Θ(0)‖

= ‖W (0)
L W

(0)
L−1 · · ·W

(0)
1 ‖

= ‖W (0)
L W

(0)
1 ‖ (since W

(0)
2 = . . . = W

(0)
L−1 = I)

≤ min
{
‖W (0)

1 ‖op‖W
(0)
L ‖, ‖W

(0)
1 ‖‖W

(0)
L ‖op

}
(i)

≤ c12

√
min {q, d}αβ

≤ c12
√
qαβ, (11)

where (i) follows since the initialization was good, and the ranks of W
(0)
1 and W

(0)
L are

bounded by d and q respectively.
Plugging the bounds obtained in Eqs. (10) and (11) into Eq. (9) we have that

Ξ ≤ c13sk
n

√qαβ + Lα(α+ 1/L)2β2
√
λ1n

√(λ1‖Θ?‖2 + q)n+ αβ

√
s0qn log(n/δ)

m

β2sk

2

≤ c13sk
n

√qαβ +

Lα(α+ 1/L)2
√
λ1n

(√
(λ1‖Θ?‖2 + q)n+ αβ

√
s0qn log(n/δ)

m

)
sk


2

≤ c14α
2sk
n

qβ2 +
L2(α+ 1/L)4λ1n

(
(λ1‖Θ?‖2 + q)n+ α2β2s0qn log(n/δ)

m

)
s2
k


≤ c14α

2sk
n

[
qβ2 +

L2(α+ 1/L)4λ1n
2

s2
k

(
λ1‖Θ?‖2 + q +

α2β2s0q log(n/δ)

m

)]
.

This completes our proof. �

6. Proof of Corollary 9

When Σ is an instance of the (k, ε)-spike model we find that

r0 = s0/λ1 = k + ε(d− k), sk = ε(d− k) and Rk = (d− k). (12)

First, for a large enough c1, we set

β = c1 max

1,

λ
1/4
1

√
Ln

(√
‖Θ?‖λ1/4

1 + q1/4

)
√
sk

 = c1 max

1,

√
Ln
(√
‖Θ?‖+ q1/4

)
√
ε(d− k)

 .
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Given this choice of β, for any q, n, k, d, L, if α > 0 is chosen to be small enough then,

m ≥ c1(d+ q + log(1/δ)) = c1 max

{
d+ q + log(1/δ),

L2α2λ1s0n
2q log(n/δ)

β2s2
k

}
.

Also by the assumption on the number of samples,

n ≥ c2 max {k + εd, log(1/δ)} ≥ c2 max {r0, k, log(1/δ)} .

We are now in position to invoke Theorem 7. By this theorem we get that,

Risk(Θ) ≤ c3ε(d− k)

n
‖Θ?‖2 + c3q log(q/δ)

(
k

n
+

n

d− k

)
+ Ξ

≤ cεd

n
‖Θ?‖2 + cq log(q/δ)

(
k

n
+
n

d

)
+ Ξ (since d ≥ c4k).

Recall from above that the upper bound on Ξ scales with α2. Thus, for small enough α it
is a lower order term.

7. Additional Simulations and Details

Figure 3: Excess risk and distance from the minimum `2-norm interpolator of three-layer
linear networks trained by gradient descent on data generated by an underlying
linear model as the input dimension varies. The model is trained on n = 100
points drawn from the generative model y = xΘ? + ω, where x ∼ N(0,Σ) and
ω ∼ N(0, 1). The excess risk is defined as Ex

[
‖xΘ− xΘ?‖2

]
. In line with our

theory, we find that when the initialization scale is small, final solution is close
to the minimum `2-norm interpolator and the resulting excess risk is small.

Inspired by our theory, we ran simulations to study the excess risk of several linear networks
and ReLU networks as a function of both the initialization scale and dimension.1 In line

1. Code at https://github.com/niladri-chatterji/Benign-Deep-Linear
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with our theoretical upper bounds, we find that for deep linear networks as the initialization
scale of either the first layer (α) or the last layer (β) is large, the excess risk of the model is
larger (see Figure 1). In deep ReLU networks (see Figure 2), we find an asymmetry in the
roles of α and β. The excess risk increases when we increase α, but is largely unaffected by
the scale of the initialization of the final layer β.

In all of our figures we report the average over 20 runs. We also report the 95% confidence
interval assuming that the statistic of interest follows a Gaussian distribution.

Setup for deep linear models. For Figures 1 and 3 the generative model for the un-
derlying data was y = xΘ? + ω, where

1. Θ? ∈ Rd×3 is drawn uniformly over the set of matrices with unit Frobenius norm. The
output dimension q = 3;

2. the covariates x ∼ N(0,Σ), where the eigenvalues of Σ are as follows: λ1 = . . . =
λ10 = 1 and λ11 = . . . = λd = 0.01;

3. the noise ω is drawn independently from N(0, 1).

For these figures the number of samples n = 100 across all experiments. All of the models
are trained on the squared loss with full-batch gradient descent with step-size 10−4, until
the training loss is smaller than 10−7.

We train models that have 2 hidden layers (L = 3). The width of the middle layers m
is set to be 10(d+ q), where d is the input dimension and q is the output dimension.

For the top half of Figure 1 and Figure 3 when we vary the initialization scale of the
first layer α, we initialize all of the middle layers to the identity, and initialize entries of the
last layer with i.i.d. draws from N(0, 1).

For the bottom half of Figure 1 when we vary the initialization scale of the last layer α,
we initialize all of the middle layers to the identity, and initialize entries of the first layer
with i.i.d. draws from N(0, 1).

Setup for deep ReLU models. For Figure 2 the generative model for the underlying
data was y = f?(x) + ω, where

1. f?(x) is a two-layer feedforward ReLU network with width 10 and output dimension
3 which was randomly initialized according to LeCun initialization;

2. the covariates x ∼ N(0, I10×10);

3. the noise ω is drawn independently from N(0, 1).

The networks are trained on n = 500 samples. Again, all of the models are trained on the
squared loss with full-batch gradient descent with step-size 10−4, until the training loss is
smaller than 10−7.

We train models that have L = 3 layers. The width of the middle layers (m) is set to
be 50.

For left half of Figure 2 when we vary the initialization scale of the first layer α, we
initialize all of the middle layers to the identity, and initialize entries of the last layer with
i.i.d. draws from N(0, 1).
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For the right half of Figure 2 when we vary the initialization scale of the last layer α,
we initialize all of the middle layers to the identity, and initialize entries of the first layer
with i.i.d. draws from N(0, 1).

8. Discussion

We have provided upper bounds on the excess risk for deep linear networks that interpolate
the data with respect to the quadratic loss, and presented simulation studies that verify
that the some aspects of our bounds reflect typical behavior.

As mentioned in the introduction, our analysis describes a variety of conditions under
which the generalization behavior of interpolating deep linear networks is similar, or the
same, as the behavior of the minimum `2-norm interpolant with the standard parameteri-
zation. Among other things, this motivates study of loss functions other than the quadratic
loss used in this work. The softmax loss would be a natural choice.

Looking at our proofs, it appears that the only way that a deep linear parameterization
can promote benign overfitting is for the function computed by the network at initialization
to approximate the regression function. (Formalizing this with a lower bound, possibly in
the case of random initialization, or with an arbitrary initialization and a randomly chosen
regression function Θ?, is a potential topic for further research.) The benefits of a good
approximation to the regression function at initialization has been explored in the case of
two-layer linear networks (Chatterji et al., 2022). Extending this analysis to deep networks
is a potential subject for further study.

We focused on a particular random initialization scheme in this paper, it is possible
to study other initialization schemes as well. For example, we believe that, if the width
m of the network is somewhat larger, a similar analysis should go through without our
simplifying assumption that W2, . . . ,WL−1 are initialized exactly to the identity, and instead
are initialized randomly.

Recently, Mallinar et al. (2022) established conditions under which interpolation with
the minimum `2-norm intepolator is “tempered”, achieving risk within a constant factor of
the Bayes risk. Here we show that the risk of interpolating deep linear networks is (nearly)
equal to the risk of the minimum `2-norm interpolator, this implies that when the minimum
`2-norm interpolator is tempered, so is the output of the deep linear model. We hope that
our techniques lay the groundwork for other results about tempered overfitting.

While here we analyzed the network obtained by the continuous-time gradient flow it
is straightforward to use our techniques to obtain similar results for gradient descent with
small enough step-size at the expense of a more involved analysis.

As mentioned after the statement of Theorem 7, its bounds could potentially be im-
proved. (We have not attempted to prove any lower bounds in this work.)

In Figure 1 we found that when the scale of the random initialization of either the first
(α) or the last layer (β) goes to zero the trained model approach the minimum `2-norm
interpolator. Understanding why and when this happens is an avenue for future research.

Finally, examining the extent to which the effects described here carry over when non-
linearities are present is a natural next step.
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Appendix A. Additional Related Work

In this appendix, we describe a wider variety of related work.

A.1 Benign Overfitting and Double Descent

This subsection includes descriptions of some of the most closely related work that we know.
For a wider sample, we point the interested reader to a couple of surveys (Bartlett et al.,
2021; Belkin, 2021).

Papers have studied the excess risk of the minimum `2-norm interpolant (Bartlett et al.,
2020; Hastie et al., 2022; Muthukumar et al., 2020; Bartlett and Long, 2021), which is
obtained as a result of minimizing the squared loss using gradient descent with no explicit
regularization. While these previous papers directly analyzed the closed form expression of
the minimum `2-norm interpolant, followup work (Negrea et al., 2020; Koehler et al., 2021;
Chinot and Lerasle, 2020; Chinot et al., 2022) employed tools from uniform convergence
to analyze its excess risk. Prior work (Kobak et al., 2020; Wu and Xu, 2020; Tsigler and
Bartlett, 2020) analyzed ridge regression with small or even negative regularization, and
identified settings where using zero or even negative regularization can be optimal.

Techniques have also been developed to upper bound the excess risk of the sparsity-
inducing minimum `1-norm interpolant (Koehler et al., 2021; Li and Wei, 2021; Wang
et al., 2022; Donhauser et al., 2022). Furthermore, lower bounds on the excess risk that
show that sparsity can be incompatible with benign overfitting, and that the excess risk of
sparse interpolators maybe exponentially larger than that of dense interpolators have also
been derived (Chatterji and Long, 2022).

Kernel ridgeless regression has been actively studied (Liang and Rakhlin, 2020; Mei and
Montanari, 2019). Careful theoretical analysis and simulations have revealed that kernel
“ridgeless” regression can lead to multiple descent curves (Liang et al., 2020). A handful
of papers have analyzed the risk of random features models (Mei and Montanari, 2019; Li
et al., 2021b).

Several papers have also studied benign overfitting in linear classification of the canonical
maximum `2-margin classifier (Montanari et al., 2019; Deng et al., 2022; Chatterji and Long,
2021; Hsu et al., 2021; Muthukumar et al., 2021; Wang and Thrampoulidis, 2021; Cao et al.,
2021), the maximum `1-margin classifier (Liang and Sur, 2022), and classifiers obtained by
minimizing polynomially-tailed classification losses (Wang et al., 2021b). Results have also
been obtained on data that is linearly separable with two-layer leaky ReLU networks (Frei
et al., 2022), and with two-layer convolutional networks with smooth nonlinearities (Cao
et al., 2022).

Furthermore, this phenomenon has been studied in nearest neighbor models (Belkin
et al., 2018), latent factor models (Bunea et al., 2022) and the Nadaraya-Watson estima-
tor (Belkin et al., 2019b) with a singular kernel.

Shamir (2022) highlighted the importance of the choice of the loss function, since an
interpolator that benignly overfits with respect one loss function may not with respect to
another one.
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A.2 Implicit Bias

In the closely related problem of matrix factorization, several papers (Gunasekar et al., 2017;
Arora et al., 2019) established conditions under which the solution of gradient flow converges
to the minimum nuclear norm solution. This rank minimization behavior of gradient flow
was also shown to approximately hold for ReLU networks (Timor et al., 2023).

Papers have also studied the implicit bias of gradient descent for diagonal linear networks
and found that it depends on the scale of the initialization and step-size (Woodworth et al.,
2020; Yun et al., 2021; Nacson et al., 2022). They found that depending on the scale of
the initialization and step-size the network converges to the minimum `2-norm solution
(kernel regime), or to the minimum `1-norm solution (rich regime) or to a solution that
interpolates between these two norms. Gunasekar et al. (2018b); Jagadeesan et al. (2022)
studied linear convolutional networks and found that under this parameterization of a linear
model, gradient descent implicitly minimizes norms of the Fourier transform of the predictor.
Techniques have also been developed to study the implicit bias of mirror descent (Gunasekar
et al., 2018a; Li et al., 2022).

For linear classifiers, minimizing exponentially-tailed losses including the logistic loss
leads to the maximum `2-margin classifier (Soudry et al., 2018; Ji and Telgarsky, 2019;
Nacson et al., 2019). Ji and Telgarsky (2018) found that this is also the case when the
linear classifier is parameterized as a deep linear classifier.

As a counterpoint to this line of research, Arora et al. (2019) and Razin and Cohen
(2020) raised the possibility that the implicit bias of deep networks may be unexplainable
by a simple function such as a norm. Li et al. (2021a) showed that under certain conditions
gradient flow with infinitesimal initialization is equivalent to a simple heuristic rank mini-
mization algorithm. Vardi and Shamir (2021) showed that it might be impossible altogether
to capture the implicit bias of even two-layer ReLU networks using any functional form.

A.3 Optimization of Deep Linear Networks

Several papers have studied deep linear networks as a means to understand the benefit
of overparameterization while optimizing nonlinear networks. Arora et al. (2018) argued
that depth promotes a form of implicit acceleration when performing gradient descent on
deep linear networks. While other papers (Du and Hu, 2019) showed that for wide enough
networks that are randomly initialized by Gaussians the loss converges at a linear rate.
Other papers have analyzed the convergence rate under other initialization schemes such
as orthogonal initialization (Hu et al., 2020) and near-identity initialization (Bartlett et al.,
2019; Zou et al., 2020). Rates of convergence for accelerated methods such as Polyak’s
heavy ball method have also been established (Wang et al., 2021a).

Saxe et al. (2014) analyzed the effect of initialization and step-size in training deep linear
networks. Kawaguchi (2016) identified a number of properties of the loss landscape of deep
linear networks, including the absence of suboptimal local minima; Achour et al. (2021)
characterized global minima, strict saddles, and non-strict saddles for these landscapes.
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Appendix B. Proof of Proposition 18

In this appendix, we prove Proposition 18. Its proof uses some technical lemmas, which we
derive first.

It is useful to recall the definition of a δ-good initialization from above.

Definition 17. For a large enough absolute constant c, we say that the network enjoys a
δ-good initialization if

α/c < σmin(W
(0)
1 ) ≤ σmax(W

(0)
1 ) < cα,

β/c < σmin(W
(0)
L ) ≤ σmax(W

(0)
L ) < cβ,

and

L(Θ(0)) < c

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
.

The next two lemmas shall be useful in showing that our initialization scheme leads
to a δ-good initialization. First, to bound the singular values of the weight matrices at
initialization we apply the following result from Vershynin (2010).

Lemma 24. There exists a constant c such that given any δ ∈ (0, 1) if m ≥ c(d + q +
log(1/δ)), then with probability at least 1− δ/2

α/2 < σmin(W
(0)
1 ) ≤ σmax(W

(0)
1 ) < 2α and

β/2 < σmin(W
(0)
L ) ≤ σmax(W

(0)
L ) < 2β.

Proof. By (Vershynin, 2010, Corollary 5.35) we have that with probability at least 1 −
4e−η

2/2

α√
m

(√
m−

√
d− η

)
≤ σmin(W

(0)
1 ) ≤ σmax(W

(0)
1 ) ≤ α√

m

(√
m+

√
d+ η

)
and

β√
m

(√
m−√q − η

)
≤ σmin(W

(0)
L ) ≤ σmax(W

(0)
L ) ≤ β√

m

(√
m+

√
q + η

)
.

So since m ≥ c(d+ q+ log(1/δ)), where c is a large enough constant, by picking η =
√
m/8

we get that with probability at least 1− δ/2
α

2
< σmin(W

(0)
1 ) ≤ σmax(W

(0)
1 ) < 2α

β

2
< σmin(W

(0)
L ) ≤ σmax(W

(0)
L ) < 2β,

completing the proof. �

The next lemma shows that the loss is controlled at initialization.

Lemma 25. There is a positive constant c such that, for any δ ∈ (0, 1), provided that
m ≥ c (d+ q + log(1/δ)), with probability at least 1− δ/2

L(Θ(0)) < c

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
.
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Proof. The lemma directly follows by invoking (Zou et al., 2020, Proposition 3.3). �

The next lemma shows that if the weights remain close to their initial values then the
loss decreases at a certain rate.

Lemma 26. If β ≥ 2 and there was a good initialization (see Definition 17), at any time
t > 0 if, for all j ∈ [L]

‖W (t)
j −W

(0)
j ‖op <

1

2L

then

dL(Θ(t))

dt
< −β

2σ2
min(X)

4e
L(Θ(t)).

Proof. By the chain rule, we have that

dL(Θ(t))

dt
= ∇ΘL(Θ(t)) · dΘ

dt
= −∇ΘL(Θ(t)) · ∇ΘL(Θ(t)) = −‖∇ΘL(Θ(t))‖2.

Further, observe that∥∥∥∇ΘL(Θ(t))
∥∥∥2

=
L∑
j=1

∥∥∥∇WjL(Θ(t))
∥∥∥2

≥
∥∥∥∇W1L(Θ(t))

∥∥∥2

=
∥∥∥(W

(t)
L · · ·W

(t)
2 )>(XΘ− Y )>X

∥∥∥2
.

Continuing by applying (Zou et al., 2020, Lemma B.3) to the RHS of the inequality above
we get that,∥∥∥∇ΘL(Θ(t))

∥∥∥2
≥ σ2

min(X) ‖XΘ− Y ‖2
∏
k 6=1

σ2
min(W

(t)
k )


= σ2

min(X)L(Θ(t))

∏
k 6=1

σ2
min(W

(t)
k )


(i)

≥ σ2
min(X)L(Θ(t))

∏
k 6=1

(
σmin(W

(0)
k )− ‖W (t)

k −W
(0)
k ‖op

)2


(ii)
> σ2

min(X)L(Θ(t))

(
β

2
− 1

2L

)2(
1− 1

2L

)2(L−2)

=
β2

4
σ2

min(X)L(Θ(t))

(
1− 1

βL

)2(
1− 1

2L

)2(L−2)

≥ β2

4
σ2

min(X)L(Θ(t))

(
1− 1

2L

)2L−2

≥ β2σ2
min(X)

4e
L(Θ(t)),
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where (i) follows since on a good initialization for all j ∈ [L], σmin(W
(0)
j ) ≥ min{β/2, 1} ≥ 1

and by assumption ‖W (t)
j −W

(0)
j ‖op < 1/(2L). Inequality (ii) follows since β ≥ 2, and there

was a good initialization (which implies that the event in Lemma 24 occurs). �

The next lemma shows that if the weight matrices remain close throughout the path of
gradient flow then the loss decreases.

Lemma 27. If β ≥ 2 and there was a good initialization (see Definition 17), given any
t > 0 if for all 0 ≤ s < t and for all j ∈ [L]

‖W (s)
j −W

(0)
j ‖op <

1

2L

then,

L(Θ(t)) < L(Θ(0)) exp

(
−β

2σ2
min(X)

4e
· t
)
.

Proof. By assumption ‖W (s)
j −W (0)

j ‖op < 1/(2L) for all 0 ≤ s < t. Thus, by invoking
Lemma 26 we know that for all 0 ≤ s < t,

dL(θ(s))

ds
< −β

2σ2
min(X)

4e
L(Θ(s)).

which implies ∫ t

0

1

L(Θ(s))

dL(θ(s))

ds
ds < −

∫ t

0

β2σ2
min(X)

4e
ds.

Integrating both sides we get that

L(Θ(t)) < L(Θ(0)) exp

(
−β

2σ2
min(X)

4e
· t
)
.

�

We also need the lemma that controls the growth of the operator norm of W
(t)
j .

Lemma 28. There is a positive absolute constant c such that if

• β ≥ cmax

{
1,

√
L‖X‖op‖Y ‖
σ2
min(X)

}
and

• m ≥ cL
2α2‖X‖2op‖X‖2q log(n/δ)

β2σ4
min(X)

,

then on a good initialization, given any t > 0 if for all 0 ≤ s < t

‖W (s)
j −W

(0)
j ‖op <

1

2L

then

‖W (t)
j −W

(0)
j ‖op <

1

2L
.
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Proof. Applying (Zou et al., 2020, Lemma A.1) with A = B = I we have, for all s ≥ 0,∥∥∥∇WjL(Θ(s))
∥∥∥2
≤ 2e‖X‖2opL(Θ(s)).

By the definition of gradient flow,

W
(t)
j −W

(0)
j = −

∫ t

0
∇LWj (Θ

(s)) ds,

which implies that,

‖W (t)
j −W

(0)
j ‖op ≤

∫ t

0
‖∇LWj (Θ

(s))‖op ds

≤
∫ t

0

√
2e‖X‖op

√
L(Θ(s)) ds

(i)
<
√

2e‖X‖op
∫ t

0

√
L(Θ(0)) exp

(
−β

2σ2
min(X)

4e
· s
)

ds

=
√

2e‖X‖op
√
L(Θ(0))

∫ t

0
exp

(
−β

2σ2
min(X)

4e
· s
)

ds

=
4e
√

2e‖X‖op
√
L(Θ(0))

β2σ2
min(X)

[
1− exp

(
−β

2σ2
min(X)t

4e

)]
<

30‖X‖op
√
L(Θ(0))

β2σ2
min(X)

,

where (i) follows by applying Lemma 27.
On a good initialization we have that

L(Θ(0)) < c1

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
.

Plugging this into the previous inequality we find that

‖W (t)
j −W

(0)
j ‖op <

30‖X‖op
β2σ2

min(X)

√
c1

(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)

≤ c2

(
‖X‖op‖Y ‖
β2σ2

min(X)
+
α‖X‖op‖X‖
βσ2

min(X)

√
q log(n/δ)

m

)
.

So for our lemma to be satisfied it suffices if

c2
α‖X‖op‖X‖
βσ2

min(X)

√
q log(n/δ)

m
<

1

4L
⇔ m > c3

L2α2‖X‖2op‖X‖2q log(n/δ)

β2σ4
min(X)

and

c2
‖X‖op‖Y ‖
β2σ2

min(X)
<

1

4L
⇔ β > c4

√
L‖X‖op‖Y ‖
σ2

min(X)

�
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Armed with these lemmas, we are now ready to prove the main result of this appendix.
Recall its statement from above.

Proposition 18. There is a constant c such that, given any δ ∈ (0, 1), if the initialization
scales α and β, along with the network width m, satisfy

m ≥ cmax

{
d+ q + log(1/δ),

L2α2‖X‖2op‖X‖2q log(n/δ)

β2σ4
min(X)

}
,

β ≥ cmax

{
1,

√
L‖X‖op‖Y ‖
σ2

min(X)

}
,

α ≤ 1,

then with probability at least 1− δ:

1. the initialization is δ-good;

2. training is perpetually c(α+ 1/L)β bounded;

3. for all t > 0, we have that

L(Θ(t)) < L(Θ(0)) exp

(
−β

2σ2
min(X)

4e
· t
)

≤ c
(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
exp

(
−β

2σ2
min(X)

4e
· t
)
.

Proof. We will first prove that Part 1 of the proposition holds with probability 1− δ and
then prove the other two parts assuming that the initialization was good.

Proof of Part 1. By invoking Lemmas 24 and 25 we have that a good initialization holds
with probability at least 1− δ.

Proof of Parts 2 and 3. Assume that the initialization was good. We claim that, for all
t > 0,

• for all j ∈ [L], ‖W (t)
j −W

(0)
j ‖op <

1
2L and

• L(Θ(t)) < L(Θ(0)) exp
(
−β2σ2

min(X)
4e · t

)
.

Assume for contradiction that this does not hold. Since ‖W (t)
j −W

(0)
j ‖op−

1
2L and L(Θ(t))−

L(Θ(0)) exp
(
−β2σ2

min(X)
4e · t

)
are continuous functions of t, by the Intermediate Value The-

orem there is a least value t0 > 0 such that one of these quantities equals zero. But
Lemmas 27 and 28 contradict this. This proves the first bound on the loss in Part 3. For
the second bound on the loss, we note that on a good initialization

L(Θ(0)) < c′
(
‖Y ‖2 +

α2β2q‖X‖2 log(n/δ)

m

)
.
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Finally, we show that the training is perpetually c(α+ 1/L)β bounded. Recall that this
means that, for all t ≥ 0, for all S ⊆ [L],∏

k∈S

∥∥∥W (t)
k

∥∥∥
op
≤ c(α+ 1/L)β.

This follows since on a good initialization, ‖W (0)
1 ‖op ≤ 2α, ‖W (0)

L ‖op ≤ 2β and for all

j ∈ {2, . . . , L − 1}, ‖W (0)
j ‖op = 1. Further, by Lemma 28 we know that for all t ≥ 0,

‖W (t)
j − W

(0)
j ‖op ≤ 1/(2L). Putting these two facts together, proves that the process is

perpetually c(α+ 1/L)β bounded.

�
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