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Abstract
Graph coarsening is a widely used dimensionality reduction technique for approaching
large-scale graph machine-learning problems. Given a large graph, graph coarsening aims to
learn a smaller-tractable graph while preserving the properties of the originally given graph.
Graph data consist of node features and graph matrix (e.g., adjacency and Laplacian). The
existing graph coarsening methods ignore the node features and rely solely on a graph
matrix to simplify graphs. In this paper, we introduce a novel optimization-based framework
for graph dimensionality reduction. The proposed framework lies in the unification of
graph learning and dimensionality reduction. It takes both the graph matrix and the
node features as the input and learns the coarsen graph matrix and the coarsen feature
matrix jointly while ensuring desired properties. The proposed optimization formulation is a
multi-block non-convex optimization problem, which is solved efficiently by leveraging block
majorization-minimization, log determinant, Dirichlet energy, and regularization frameworks.
The proposed algorithms are provably convergent and practically amenable to numerous
tasks. It is also established that the learned coarsened graph is ε ∈ (0, 1) similar to the
original graph. Extensive experiments elucidate the efficacy of the proposed framework for
real-world applications. The code for all the experimental results is available at CODE.
Keywords: graph coarsening, graph learning, optimization, spectral properties , Laplacian
matrix, clustering, graph classification, adjacency matrix, spectral similarity

1. Introduction

Graph-based approaches with big data and machine learning are one of the strongest driving
forces of the current research frontiers, creating new possibilities in a variety of domains from
social networks to drug discovery and from finance to material science studies. Large-scale
graphs are becoming increasingly common, which is exciting since more data implies more
knowledge and more training sets for learning algorithms. However, the graph data size is
the real bottleneck, handling large graph data involves considerable computational hurdles
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to process, extract, and analyze graph data. Therefore, graph dimensionality reduction
techniques are needed.

In classical data analysis over Euclidean space, there exist a variety of data reduction
techniques, e.g., compressive sensing(Yankelevsky and Elad, 2016), low-rank approxima-
tion(Kishore Kumar and Schneider, 2017), metric preserving dimensionality reduction(Celik
et al., 2014), but such techniques for graph data have not been well understood yet. Graph
coarsening or graph summarization is a promising direction for scaling up graph-based ma-
chine learning approaches by simplifying large graphs. Simply, coarsening aims to summarize
a very large graph into a smaller and tractable graph while preserving the properties of
originally given graph. The core idea of coarsening comes from the algebraic multi-grid
literature (Ruge and Stüben, 1987). Coarsening methods have been applied in various
applications like graph partitioning (Hendrickson et al., 1995; Karypis and Kumar, 1998;
Kushnir et al., 2006; Dhillon et al., 2007), machine learning (Lafon and Lee, 2006; Gavish
et al., 2010; Shuman et al., 2015), and scientific computing(Chen et al., 2022; Hackbusch,
2013; Ruge and Stüben, 1987; Briggs et al., 2000). The recent work in (Loukas, 2019)
developed a set of frameworks for graph matrix coarsening preserving spectral and cut
guarantees but they can only consider the graph adjacency matrix.

A graph data consist of node features and node connectivity matrix also known as graph
matrix e.g., adjacency or Laplacian Matrix (Kipf and Welling, 2017; Zügner and Günnemann,
2019; Wang et al., 2019). The caveat of the existing graph coarsening methods is that they
completely ignore the node features and rely solely on the graph matrix of given graph
data (Loukas and Vandergheynst, 2018; Loukas, 2019; Bravo Hermsdorff and Gunderson,
2019; Purohit et al., 2014; Chen et al., 2022). The quality of the graph is the most crucial
aspect of any graph-based machine learning application. Ignoring the node features while
coarsening the graph data would be inappropriate for many applications. For example, many
real-world graph data satisfy certain properties, e.g., homophily assumption and smoothness
(Wang et al., 2021; Kalofolias, 2016), that if two nodes are connected with stronger weights,
then the features corresponding to these nodes should be similar. Implies, if the original
graph satisfies any property, then that property should translate to the coarsen graph data.
Current methods can only preserve spectral properties which indicate the property of the
graph matrix but not the node features (Loukas and Vandergheynst, 2018; Loukas, 2019).
And hence these are not suitable for many downstream real-world applications which require
node features along with graph matrix information. While there are some recent works that
can consider both the graph adjacency matrix and feature matrix jointly, however, they are
deep learning-based methods that lack explainability is not flexible, and are only designed
for specific tasks e.g., (Cai et al., 2021) is a graph neural network (GNN) based method
that relearns the weight of coarsened graph, (Ma and Chen, 2021) is designed for graph
classification, and (Jin et al., 2021, 2022) are GNN based gradient-matching-based methods
mainly suitable for scalable training of GNN.

We introduce a novel optimization-based framework lying at the unification of graph
learning (Kumar et al., 2020, 2019) and dimensionality reduction (Qiu et al., 2017; Zhu et al.,
2017) for coarsening graph data, named as featured graph coarsening (FGC). It takes both
the graph matrix and the node features as the input and learns the coarsen graph matrix
and the coarsen feature matrix jointly while ensuring desired properties. The proposed
optimization formulation is a multi-block non-convex optimization problem, which is solved
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efficiently by leveraging block majorization-minimization, log determinant, Dirichlet energy,
and regularization frameworks. The developed algorithm is provably convergent and enforces
the desired properties, e.g., spectral similarity and ε-similarity in the learned coarsened
graph. Extensive experiments elucidate the efficacy of the proposed framework for real-world
applications.

1.1 Summary and Contribution

In this paper, we have introduced a novel optimization-based framework for graph coarsening,
which considers both the graph matrix and feature matrix jointly. Our major contributions
are summarized below:

(1) We introduce a novel optimization-based framework for graph coarsening by approach-
ing it at the unification of dimensionality reduction and graph learning. We have
proposed three problem formulations:

(a) Featured graph coarsening
This formulation uses both graph topology (graph matrix) and node features
(feature matrix) jointly and learns a coarsened graph and coarsened feature matrix.
The coarsened graph preserves the properties of the original graph.

(b) Graph coarsening without features
This formulation uses only a graph matrix to perform graph coarsening which can
be extended to a two-step optimization formulation for featured graph coarsening.

(c) Featured graph coarsening with feature dimensionality reduction
This formulation jointly performs the graph coarsening and also reduces the
dimension of the coarsened feature matrix.

(2) The first and the third proposed formulations are multi-block non-convex differentiable
optimization problems. The second formulation is a strictly convex differentiable
optimization. To solve the proposed formulations, we developed algorithms based on
the block majorization-minimization (MM) framework, commonly known as block suc-
cessive upper-bound minimization (BSUM). The convergence analyses of the proposed
algorithms are also presented.

(3) The efficacy of the proposed algorithms are thoroughly validated through exhaustive
experiments on both synthetic and real data sets. The results show that the proposed
methods outperform the state-of-the-art methods under various metrics like relative
eigen error, hyperbolic error, spectral similarity, etc. We also prove that the learned
coarsened graph is ε-similar to the original graph, where ε ∈ (0, 1).

(5) The proposed featured graph coarsening framework is also shown to be applicable for
traditional graph-based applications, like graph clustering, graph classification and
stochastic block model identification.

1.2 Outline and Notation

The rest of the paper is organized as follows. In Section 2, we present the related background
of graphs and graph coarsening. All the proposed problem formulations are shown in Section
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3. In Sections 4 and 5, we introduce the development of the algorithms with their associated
convergence results. In Section 6, we discussed how the proposed coarsening is related to
clustering and community detection. Section 7 presents experimental results on both real
and synthetic data sets for all the proposed algorithms.
In terms of notation, lower case (bold) letters denote scalars (vectors) and upper case
letters denote matrices. The dimension of a matrix is omitted whenever it is clear from the
context. The (i, j)-th entry of a matrix X is denoted by Xij . X† and X> denote the pseudo
inverse and transpose of matrix X, respectively. Xi and [XT ]j denote the i-th column and
j-th row of matrix X. The all-zero and all-one vectors or matrices of appropriate sizes are
denoted by 0 and 1, respectively. The ‖X‖1, ‖X‖F , ‖X‖1,2 denote the `1-norm, Frobenius
norm and `1,2-norm of X, respectively. The Euclidean norm of the vector X is denoted as
‖X‖2. det(X) is defined as the generalized determinant of a positive definite matrix X, i.e.,
the product of its non-zero eigenvalues. The inner product of two matrices is defined as
〈X,Y 〉 = tr(X>Y ), where tr(·) is the trace operator. R+ represents positive real numbers.
The inner product of two vectors is defined as 〈Xi, Xj〉 = XT

i Xj where Xi and Xj are the
i-th and j-th column of matrix X.

2. Background

In this Section, we review the basics of the graph and graph coarsening, the spectral similarity
of the graph matrices, the ε-similarity of graph matrices and feature matrices, the hyperbolic
error and the reconstruction error of lifted graph.

2.1 Graph

A graph with features is denoted by G = (V,E,W,X) where V = {v1, v2, ..., vp} is the vertex
set, E ⊆ V ×V is the edge set andW is the adjacency (weight) matrix. We consider a simple
undirected graph without self-loop: Wij > 0, if (i, j) ∈ E and Wij = 0, if (i, j) /∈ E. Finally,
X ∈ Rp×n = [X1, X2, . . . , Xp]> is the feature matrix, where each row vector Xi ∈ Rn is the
feature vector associated with one of p nodes of the graph G. Thus, each of the n columns of
X can be seen as a signal on the same graph. Graphs are conveniently represented by some
matrix, such as Laplacian and adjacency graph matrices, whose positive entries correspond
to edges in the graph.

A matrix Θ ∈ Rp×p is a combinatorial graph Laplacian matrix if it belongs to the
following set:

SΘ =

Θ ∈ Rp×p|Θij = Θji ≤ 0 for i 6= j; Θii = −
∑
j 6=i

Θij

 . (1)

The W and the Θ are related as follows: Wij = −Θij for i 6= j and Wij = 0 for i = j.
Both Θ and W represent the same graph, however, they have very different mathematical
properties. The Laplacian matrix Θ is a symmetric, positive semidefinite matrix with zero
row sum. The non-zero entries of the matrix encode positive edge weights as −Θij and
Θij = 0 implies no connectivity between vertices i and j. The importance of the graph
Laplacian matrix has been well recognized as a tool for embedding, manifold learning,
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spectral sparsification, clustering, and semi-supervised learning. Owing to these properties,
Laplacian matrix representation is more desirable for building graph-based algorithms.

2.2 Graph Coarsening

Given an original graph G = (V,E,W,X) with p nodes, the goal of graph coarsening is to
construct an appropriate "smaller" or coarsened graph Gc = (Ṽ , Ẽ, W̃ , X̃) with k << p nodes,
such that Gc and G are similar in some sense. Every node ṽj ∈ Ṽ , where j = 1, 2, ...k, of the
smaller graph with reference to the nodes of the larger graph is termed as a "super-node".
In coarsening, we define a linear mapping π : V → Ṽ that maps a set of nodes in G having
similar properties to a super-node in Gc i.e. for any super-node ṽ ∈ Ṽ , all nodes π−1(ṽ) ⊂ V
have similar properties. Furthermore, the features of the super-node, ṽ, should be based on
the features of nodes π−1(ṽ) ⊂ V in G, and the edge weights of the coarse graph, W̃ , should
depend on the original graph’s weights as well as the coarsened graph’s features.

Let P ∈ Rk×p+ be the coarsening matrix which is a linear map from π : V → Ṽ such that
X̃ = PX. Each non-zero entry of P i.e. [P ]ij , indicate the j-th node of G is mapped to i-th
super node of Gc. For example, non-zero elements of j-th row, i.e., pj corresponds to the
following nodes set π−1(ṽj) ∈ V . The rows of P will be pairwise orthogonal if any node in V
is mapped to only a single super-node in Ṽc. This means that the grouping via super-node is
disjoint. Let the Laplacian matrices of G and Gc be Θ ∈ Rp×p and Θc ∈ Rk×k, respectively.
The Laplacian matrices Θ, Θc, feature matrices X, X̃ and the coarsening matrix P together
satisfy the following properties(Loukas, 2019):

Θc = CTΘC, X̃ = PX, X = P †X̃ = CX̃ (2)

where C ∈ Rp×k is the tall matrix which is the pseudo inverse of P and is known as the
loading matrix. The non-zero elements of C, i.e., Cij > 0 implies that the i-th node of G is
mapped to the j-th supernode of Gc. The loading matrix C belongs to the following set:

C =
{
C ∈ Rp×k+ |, 〈Ci, Cj〉 = 0 ∀ i 6= j, 〈Cl, Cl〉 = di, ‖Ci‖0 ≥ 1 and

∥∥∥[CT ]i
∥∥∥

0
= 1

}
(3)

where Ci and Cj represent i-th and j-th column of loading matrix C and they are orthogonal
to each other, [CT ]i represents the i-th row of loading matrix C. There are a total of k
columns and p rows in the C matrix. Also, in each row of the loading matrix C, there is
only one non zero entry and that entry is 1 which implies that C · 1k = 1p, where 1k and 1p
are vectors having all entry 1 and having size of k and p respectively. Furthermore, as each
row of loading matrix C has only one non-zero entry, this also implies that CTC = block(d),
where block(d) is the diagonal matrix of size k containing di > 0 ∀ i = 1, 2, . . . , k at it’s
diagonal. Furthermore, di also indicates the number of nodes of the graph G mapped to i-th
super-node of the coarsened graph Gc.

In the toy example, nodes (v1, v2, v3) of G are coarsened into super-node ṽ1 of Gc. The
coarsening matrix P and the loading matrix C are
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(a) Original graph G (b) Coarsened graph Gc

Figure 1: Toy example: graph coarsening.

P =

1
3

1
3

1
3 0 0

0 0 0 1 0
0 0 0 0 1

 and C = P † =


1 0 0
1 0 0
1 0 0
0 1 0
0 0 1



For the toy example, feature matrix of G is X =
[
0.4 0.2 0.5 0.1 0.3
0.7 0.6 0.2 0.3 0.6

]T
. The feature ma-

trix for Gc is calculated using X̃ = PX from (2) and we get X̃ =
[
0.36 0.10 0.30
0.50 0.30 0.60

]T
. Also

weight vector of G is w = [w1 w2 w3 w4 w5]T = [1 2 3 4 5]T . The Laplacian
matrices Θ and Θc for G and Gc using (2) are

Θ =


6 −2 −3 −1 0
−2 6 −4 0 0
−3 −4 12 0 −5
−1 0 0 1 0
0 0 −5 0 5

 and Θc = CTΘC =

 6 −1 −5
−1 1 0
−5 0 5

 .

The weights matrix of Gc is w̃ = [w̃1 w̃2]T = [1 5]T . A motivating example demonstrating
the need of considering features while doing graph coarsening is discussed in the experiment
Section 7.8.

2.3 Lifted Laplacian(Θlift)

From the coarsened dimension of k× k one can go back to the original dimension, i.e., p× p
by computing the lifted Laplacian matrix (Loukas and Vandergheynst, 2018) defined as

Θlift = P TΘcP (4)

where P ∈ Rk×p+ is coarsening matrix and Θc ∈ SΘ is the Laplacian of coarsened graph.
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2.4 Preserving properties of G in Gc
The coarsened graph Gc(Θc, X̃) should be learned such that the properties of G and Gc are
similar. The widely used notions of similarities are (i) spectral similarity (ii) ε-similarity
(Loukas and Vandergheynst, 2018; Loukas, 2019) (iii) hyperbolic error (Bravo Hermsdorff
and Gunderson, 2019) (iv) Reconstruction error .
Definition 1. Spectral similarity The spectral similarity is shown by calculating the
relative eigen error (REE), defined as

REE(Θ,Θc,m) = 1
m

m∑
i=1

|λ̃i − λi|
λi

(5)

where λi and λ̃i are the top m eigenvalues corresponding to the original graph Laplacian
matrix Θ and coarsened graph Laplacian matrix Θc respectively and m is the count of
eigenvalue.

The REE value indicates how well the eigen properties of the original graph G are
preserved in the coarsened graph Gc. A low REE will indicate higher spectral similarity,
which implies that the eigenspace of the original graph matrix and the coarsen graph matrix
are similar.
Definition 2. Hyperbolic error (HE) For the given feature matrix X, the hyperbolic
error between original Laplacian matrix Θ and lifted Laplacian matrix Θlift is defined as

HE = arccosh
(

1 + ‖(Θ−Θlift)X‖2F ‖X‖2F
2tr(XTΘX)tr(XTΘliftX)

)
. (6)

Definition 3. Reconstructional Error (RE) Let Θ be original Laplacian matrix and
Θlift be the lifted Laplacian matrix,then the reconstruction error(RE) (Valle et al., 1999) is
defined as

RE = ‖Θ−Θlift‖2F (7)
For a good coarsening algorithm lower values of these quantities are desired. Note

that the above metrics only take into account the properties of graph matrices but not
the associated features. To quantify how well a graph coarsening approach has performed
for graphs with features, we propose to use the ε-similarity measure, which considers both
the graph matrix and associated features. It is also highlighted that the ε−similarity in
(Loukas and Vandergheynst, 2018; Loukas, 2019) does not consist of features. In (Loukas and
Vandergheynst, 2018; Loukas, 2019) the eigenvector of the Laplacian matrix is considered
while computing the ε similarity, which can only capture the properties of the graph matrix,
not the associated features.
Definition 4. The Dirichlet energy (DE) used for quantifying the smoothness of the graph
signals is defined by using graph Laplacian matrix Θ ∈ SΘ and the feature matrix X as
follows:

DE(Θ, X) = tr(XTΘX) = −
∑
i,j

Θij ‖xi − xj‖2 . (8)

and xj is the feature vector associated with j−th node of the undirected graph.
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In the context of modeling signals or features with graphs, the widely used assumption is
that the signal residing on the graph changes smoothly between connected nodes (Kalofolias,
2016). The lower value of Dirichlet energy indicates a more desirable configuration (Wang
et al., 2021). Smooth graph signal methods are an extremely popular family of approaches
for a variety of applications in machine learning and related domains (Dong et al., 2016).

Definition 5. ε-similarity The coarsened graph data Gc(Θc, X̃) is ε similar to the original
graph data G(Θ, X) if there exists an ε ≥ 0 such that

(1− ε)‖X‖Θ≤ ‖X̃‖Θc≤ (1 + ε)‖X‖Θ (9)

where ‖X‖Θ=
√
tr(XTΘX) and ‖X̃‖Θ=

√
tr(X̃TΘcX̃).

Note that ε- similarity also indicate similarity in the Dirichlet energies of the G(Θ, X) and
Gc(Θc, X̃), as ‖X‖2Θ= tr(XTΘX) and ‖X̃‖2Θc

= tr(X̃TΘcX̃).

3. Problem Formulation

The existing graph coarsening methods are not designed to consider the node features and
solely rely on the graph matrix for learning a simpler graph (Loukas and Vandergheynst,
2018; Loukas, 2019; Bravo Hermsdorff and Gunderson, 2019; Purohit et al., 2014; Chen et al.,
2022), and thus, not suitable for graph machine learning applications. For example, many
real-world graph data satisfy certain properties, e.g., homophily assumption and smoothness
(Wang et al., 2021; Kalofolias, 2016), that if two nodes are connected with stronger weights,
then the features corresponding to these nodes should be similar. Thus, if the original
graph satisfies any property, then that property should translate to the coarsen graph data.
Current methods can only ensure spectral properties which satisfy the property of the graph
matrix but not the features (Loukas and Vandergheynst, 2018; Loukas, 2019; Chen et al.,
2022). This is slightly restrictive for graph-based downstream tasks, where both the nodal
features and edge connectivity information are essential.

The aforementioned discussion suggests that the following graph coarsening method (i)
should consider jointly both the graph matrix Θ and the node feature X of the original
graph and (ii) to ensure the desired specific properties on coarsened graph data, such as
smoothness and homophily, the Θc and X̃ should be learned jointly depending on each other.
This problem is challenging and it is not straightforward to extend the existing methods and
make them suitable for considering both the node features and graph matrix jointly to learn
coarsened graphs. We envision approaching this problem at the unification of dimensionality
reduction (Qiu et al., 2017; Zhu et al., 2017) and graph learning (Kumar et al., 2020, 2019),
where we solve these problems jointly, first we reduce the dimensionality and then learn a
suitable graph on the reduced dimensional data. We propose a unique optimization-based
framework that uses both the features X and Laplacian matrix Θ of the original graph
to learn loading matrix C and coarsened graph’s features X̃, jointly. Thus, firstly in this
Section, we briefly discuss how to learn graphs with features, and then we propose our
formulation.
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3.1 Graph learning from data

When only the feature matrix X = [X1, X2, . . . , Xp]T , associated with an undirected graph
is given, then a suitable graph satisfying the smoothness property can be obtained by solving
the following optimization problem:

minimize
Θ∈SΘ

−γ log(det(Θ + J)) + tr(XTΘX) + αh(Θ) (10)

where Θ ∈ Rp×p denotes the desired graph matrix, SΘ is the set of Laplacian matrix (1),
h(·) is the regularization term, and α > 0 is the regularization parameter, and J = 1

p1p×p is
a constant matrix whose each element is equal to 1

p . The rank of Θ is p− 1 for connected
graph matrix having p nodes(Chung, 1997), adding J to Θ makes Θ + J a full rank matrix
without altering the row and column space of the matrix Θ(Kumar et al., 2020; Kalofolias,
2016).

When the data is Gaussian distributed X ∼ N (0,Θ†), optimization in (10) also corre-
sponds to the penalized maximum likelihood estimation of the inverse covariance (precision)
matrix also known as Gaussian Markov random field (GMRF) for γ = 1 (Ying et al., 2020).
The graph G inferred from Θ and the random vector X follows the Markov property, meaning
Θij 6= 0 ⇐⇒ {i, j} ∈ E ∀i 6= j implies Xi and Xj are conditionally dependent given the
rest. Furthermore, in a more general setting with non-Gaussian distribution, (10) can be
related to the log-determinant Bregman divergence regularized optimization problem, which
ensures nice properties on the learned graph matrix, e.g., connectedness and full rankness.

In the next subsections, we introduce three optimization frameworks for graph coarsening
i) Graph coarsening for nodes with Features, ii) Graph coarsening for nodes without features,
and iii) Graph coarsening for nodes with features and feature dimensionality reduction.

3.2 A General Framework for Graph Coarsening with Features

We introduce a general optimization-based framework for graph coarsening with features as
follows

minimize
Θc,X̃,C

−γ log(det(Θc + J)) + tr(X̃TΘcX̃) + βh(Θc) + λ
2g(C)

subject to C ≥ 0, Θc = CTΘC, X = CX̃, Θc ∈ SΘ, C ∈ C
(11)

where Θ and X are the given Laplacian and feature matrix of a large connected graph,
and X̃ ∈ Rk×n and Θc ∈ Rk×k are the feature matrix and the Laplacian matrix of the
learned coarsened graph, respectively, C ∈ Rp×k is the loading matrix, h(·) and g(·) are
the regularization functions for Θc and the loading matrix C, while β > 0 and λ > 0 are
the regularization parameters. Fundamentally, the proposed formulation (11) aims to learn
the coarsened graph matrix Θc, the loading matrix C, and the feature matrix X̃, jointly.
This constraint X = CX̃ coarsens the feature matrix of larger graph X ∈ Rp×n to a smaller
graph’s feature matrix X̃ ∈ Rk×n. Next, the first two-terms of the objective function are
the graph learning term, where the log det(·) term ensures the coarsened graph is connected
while the second term imposes the smoothness property on the coarsened graph, and finally
third and fourth terms act as regularizers. The regularizer g(C) ensures the mapping such
that one node vi ∈ V does not get mapped to two different super-nodes ṽj , ṽk ∈ Ṽ and
mapping of nodes to super-nodes be balanced such that not all or majority of nodes get
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mapped to the same super-node. This simply implies that only one element of each row of
C be non-zero and the columns of C be sparse. An `1,2-based group penalty is suggested to
enforce such structure (Yuan and Lin, 2006; Ming et al., 2019).

3.3 Graph coarsening without Features

In a variety of network science data set, we are only provided with the adjacency matrix
without any node features (Preis and Diekmann, 1997; Gleich, 2008; Turk and Levoy, 1994).
Ignoring the feature term X in (11), the proposed formulation for graph coarsening without
node features is

minimize
Θc,C

−γlog det(Θc + J) + βh(Θc) + λ
2g(C)

subject to C ≥ 0, Θc = CTΘC, Θc ∈ SΘ, C ∈ C
(12)

where Θ is the given Laplacian of a large connected graph, Θc is the Laplacian matrix of the
learned coarsened graph, C ∈ Rp×k is the loading matrix, h(·) and g(·) are the regularization
functions for Θc and the loading matrix C, while β > 0 and λ > 0 are the regularization
parameters. Fundamentally, the proposed formulation (12) aims to learn the coarsened
graph matrix Θc and the loading matrix C. The first term i.e. log det(·) ensures the coarsen
graph is connected, second term i.e. h(·) is the regularizer on coarsening Laplacian matrix
Θc which imposes sparsity in the resultant coarsen graph and finally the third term i.e. g(C)
is the regularizer on loading matrix C which ensures the mapping of node-supernode should
be balanced such that a node of the original graph does not get mapped to two supernodes
of coarsened graph, also not all majority of nodes of original graph get mapped to the same
supernode. In this formulation also, an `1,2-based group penalty is suggested to enforce such
structure (Yuan and Lin, 2006; Ming et al., 2019).

3.4 Graph Coarsening with Feature Dimensionality Reduction

In the FGC algorithm, the dimension of the feature of each node of the original graph G
and Gc are the same i.e both are in Rn dimension. As we reduce the number of nodes,
it may be desirable to reduce the dimension of the features as well associated with each
supernode. However, the proposed FGC algorithm can be adapted to reduce the dimension
of features of each node, by combining various feature dimensionality techniques. Here, we
propose to integrate the matrix factorization technique on the feature matrix within the
FGC framework, we name it FGC with dimensionality reduction (FGCR). Using matrix
factorization (Fu et al., 2019), the feature dimension of each node of coarsened graph Gc
reduces from Rn to Rd using

X̃ = WH (13)

where W ∈ Rk×d be the feature matrix in reduced dimension, H ∈ Rd×n be the transforma-
tion matrix and always d << n.
In FGC, we learn the coarsened graph with coarsened graph feature matrix X̃ ∈ Rk×n, where
each node has features in Rn dimension. Now using matrix factorization X̃ = WH, we
reduce the feature of each node from Rn to Rd and learn the coarsened graph with reduced
feature matrix W ∈ Rk×d.
The proposed formulation for learning a coarsened graph while reducing the dimension of
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the feature of each node simultaneously is

minimize
W,H,C,Θc,X̃

−γlog det(Θc + J) + tr(W TCTΘCW ) + βh(Θc) + λ
2g(C)

subject to C ≥ 0, Θc = CTΘC, X = CX̃, X̃ = WH, Θc ∈ SΘ, C ∈ C
(14)

where Θ and X are the given Laplacian and feature matrix of a large connected graph, W ∈
Rk×d and Θc are the reduced dimension feature matrix and Laplacian matrix of coarsened
graph, respectively, C ∈ Rp×k be the loading matrix, H ∈ Rd×n be the transformation
matrix, h(·) and g(·) are the regularization function for Θc and the loading matrix C,
while β > 0 and λ > 0 are the regularization parameters. Fundamentally the problem
formulation (14) aims to learn the coarsened graph matrix Θc , reduced feature matrix W ,
and transformation matrix H, jointly. This constraint X = CX̃ coarsens the feature matrix
of the large graph but will not reduce the dimension of the feature of each supernode and
the constraint X̃ = WH reduces the dimension of each supernode of the coarsened graph
from Rn to Rd. Next, the first two-term of the objective function is the graph learning term,
where the log det(·) term ensures the coarsened graph is connected while the second term
imposes the smoothness property on the coarsened graph with reduced feature matrix W ,
and finally the third and fourth act as a regularizer which is same as in the FGC algorithm.

3.5 Some properties of CTΘC matrix

Before we move forward toward algorithm development, some of the properties and interme-
diary Lemmas are presented below.

Lemma 1. If Θ be the Laplacian matrix for a connected graph with p nodes, and C be
the loading matrix such that C ∈ Rp×k+ and C ∈ C as in (3) , then the coarsened matrix
Θc = CTΘC is a connected graph Laplacian matrix with k nodes.

Proof. The matrix Θ ∈ Rp×p is the Laplacian matrix of a connected graph having p nodes.
From (1) it is implied that Θ = ΘT , Θ is positive semi-definite matrix with rank(Θ) = p− 1
and Θ · t1p = 0p, where t ∈ R and 1p and 0p are the all one and zero vectors of size
p. In addition, we also have Θ · up 6= 0p for up 6= t1p, this means that there is only one
zero eigenvalues possible and the corresponding eigenvector is a constant vector. In order
to establish Θc is the connected graph Laplacian matrix of size p, we need to prove that
Θc ∈ (1) and rank(Θc) = k − 1.

We begin by using the Cholesky decomposition of the Laplacian matrix Θ, as Θ = STS.
Next, we can write CTΘC as

Θc = CTΘC = CTSTSC (15)
= ZTZ (16)

where Z = SC and CTΘC = ZTZ imply that Θc is a symmetric positive semidefinite matrix.
Now, using the property of C, i.e, C · t1k = t1p as in (3). In each row of the loading matrix
C, there is only one non zero entry and that entry is 1 which implies that C · 1k = 1p and
CTΘC · 1k = CTΘ · 1p = 0k which imply that the row sum of CTΘC is zero and constant
vector is the eigenvector corresponding to the zero eigenvalue. Thus Θc is the Laplacian
matrix.

11
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Next, we need to prove that Θc is a connected graph Laplacian matrix for that, we need
to prove that rank(Θc) = k− 1. Note that, C ·uk = up if and only if uk = t1k and up = t1p
and C · uk 6= up ∀ uk 6= t1k and up 6= t1p where t ∈ R which implies that C · uk = up holds
only for a constant vector uk. And thus, CTΘC · uk = 0k, for constant vector uk. This
concludes that the constant vector is the only eigenvector spanning the nullspace of Θc

which concludes that the rank of CTΘC is k − 1 which completes the proof.

Lemma 2. If Θ be the Laplacian matrix for a connected graph with p nodes, C be the
loading matrix, and J = 1

k1k×k is a constant matrix whose each element is equal to 1
k .

The function f(C) = −γlog det(CTΘC + J) is a convex function with respect to the loading
matrix C.

Proof. We prove the convexity of −γlog det(CTΘC + J) using restricting function to line
i.e. A function f : Rn → R is convex if g : R→ R is convex where,

g(t) = f(z + tv), {z ∈ dom(f), t ∈ dom(g), v ∈ Rn} (17)

Since Θ is the Laplacian of connected original Graph G and Laplacian of coarsened graph
Gc is Θc = CTΘC which also represents a connected graph and proof is given in Lemma 1.
Using the property of the connected graph Laplacian matrix, Θc is a symmetric positive
semi-definite matrix and has a rank k − 1. Adding J = 1

k1k×k which is a rank 1 matrix in
Θc increases rank by 1. Θc + J becomes symmetric and positive definite matrix and we can
rewrite Θc + J = CTΘC + J = Y TY . Now, we can rewrite −γlog det(CTΘC + J) as

f(Y ) = −γlog det(CTΘC + J) = −γlog det(Y TY ) (18)

Consider Y=Z+tV and put it in (18). However, Z and V are constant so function in Y
becomes function in t i.e. g(t) is

g(t) = −γlog det((Z + tV )T (Z + tV )) (19)
= −γlog det(ZTZ + t(ZTV + V TZ) + t2V TV ) (20)
= −γlog det(ZT (I + t(V Z−1 + (V Z−1)T ) + t2(Z−1)TV TV Z−1)Z) (21)
= −γ(log det(ZTZ) + log det(I + t(P + P T ) + t2P TP )) (22)
= −γ(log det(ZTZ) + log det(QQT + 2tQΛQT + t2QΛ2QT )) (23)
= −γ(log det(ZTZ) + log det(Q(I + 2tΛ + t2Λ2)QT )) (24)

= −γlog det(ZTZ)− γ
n∑
i=1

log(1 + 2tλi + t2λ2
i ) (25)

On putting P = V Z−1 in (21) to get (22). Using eigenvalue decomposition of P matrix i.e.
P = QΛQT and QQT = I and putting the values of P and I in (22) to get (23). The second
derivative of g(t) with respect to t is

g
′′(t) =

n∑
i=1

2λ2
i (1 + tλi)2

(1 + 2tλi + t2λ2
i )2 (26)

12
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It is clearly seen that g′′(t) ≥ 0, ∀t ∈ R so it is a convex function in t. Now, using the
restricting function to line property if g(t) is convex in t then f(Y ) is convex in Y . Consider
Y = Θ 1

2C + 1√
kp
1P×k so,

Y TY = (Θ
1
2C + 1√

kp
1P×k)T (Θ

1
2C + 1√

kp
1P×k) (27)

= CTΘC + 1
kp

(p1k×k) + 1√
kp

1TP×kΘ
1
2C + 1√

kp
CT (Θ

1
2 )T1P×k (28)

= CTΘC + 1
k
1k×k (29)

= CTΘC + J (30)

Θ is a Laplacian matrix so Θ 1
2 is also Laplacian matrix and using the property of Laplacian

matrix i.e. Θ 1
2 .1p×k = 0p×k and 1Tp×k.Θ

1
2 = 0k×p in (28), we get (29). Since Y = Θ 1

2C +
1√
pk
1p×k and f(Y ) is convex in Y and C is a linear function of Y so −γlog det(CTΘC + J)

is a convex function in C.

3.6 The `21,2 norm regularizer for balanced mapping

The choice of regularizer on the loading matrix C is important to ensure that the mapping of
the node to the super node should be balanced, such that any node should not get mapped
to more than one super node and there should be at least one node mapped to a supernode.
This implies that the row of the C matrix should have strictly one non-zero entry and the
columns should not be all zeros. To ensure the desired properties in the C matrix, i.e.,
Cij ≥ 0 and CTC = block(d), where block(d) is the diagonal matrix of size k containing
di > 0 ∀ i = 1, 2, . . . , k, at it’s diagonal, we will use the `21,2 norm regularization for C, i.e.,
‖CT ‖21,2 (Kim and Park, 2007). Below lemma adds more details to the property induced by
this regularization.

Lemma 3. For C ≥ 0, ||CT ||21,2 regularizer is a differentiable function.

Proof. It is easy to establish by the fact that C ≥ 0 and hence each entry of loading matrix
is Cij ≥ 0. Using this, We have ‖CT ‖21,2= ∑p

i=1 (∑k
j=1Cij)

2 = ‖C‖2F+∑i 6=j〈Ci, Cj〉 for
i, j = 1, 2, ...k which is differentiable and it’s differentiation with respect to loading matrix
C is C.1k×k where 1k×k is matrix of size k × k having all entries 1.

3.7 Block Majorization-Minimization Framework

The resulting optimization problems formulated in (11), (12), and (14) are non-convex
problems. Therefore we develop efficient optimization methods based on block MM frame-
work (Razaviyayn et al., 2013; Sun et al., 2016). First, we present a general scheme of the
block MM framework

minimize
x

f(x)
subject to x ∈ X ,

(31)
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where the optimization variable x is partitioned into m blocks as x = (x1,x2, . . . ,xm), with
xi ∈ Xi, X = ∏m

i=1Xi is a closed convex set, and f : X → R is a continuous function. At
the t-th iteration, each block xi is updated in a cyclic order by solving the following:

minimize
xi

gi
(
xi|x(t)

1 , . . . ,x(t)
i−1,x

(t−1)
i+1 , . . . ,x(t−1)

m

)
,

subject to xi ∈ Xi,
(32)

where gi
(
xi|y(t)

i

)
with y(t)

i ,
(
x(t)

1 , . . . ,x(t)
i−1,x

(t−1)
i ,x(t−1)

i+1 , . . . ,x(t−1)
m

)
is a majorization

function of f(x) at y(t)
i satisfying

gi
(
xi|y(t)

i

)
is continuous in

(
xi,y(t)

i

)
, ∀ i, (33a)

gi
(
x(t)
i |y

(t)
i

)
= f

(
x(t)

1 , . . . ,x(t)
i−1,x

(t)
i ,x

(t−1)
i+1 , . . . ,x(t−1)

m

)
, (33b)

gi
(
xi|y(t)

i

)
≥ f

(
x(t)

1 , . . . ,x(t)
i−1,xi,x

(t−1)
i+1 , . . . ,x(t−1)

m

)
, ∀ xi ∈ Xi,∀ yi ∈ X ,∀ i, (33c)

g′i

(
xi; di|y(t)

i

)
|xi=x(t)

i

= f ′
(
x(t)

1 , . . . ,x(t)
i−1,xi,x

(t−1)
i+1 , . . . ,x(t−1)

m ; d
)
,

∀ d = (0, . . . ,di, . . . ,0) such that x(t)
i + di ∈ Xi, ∀ i, (33d)

where f ′(x; d) stands for the directional derivative at x along d (Razaviyayn et al., 2013). In
summary, the framework is based on a sequential inexact block coordinate approach, which
updates the variable in one block keeping the other blocks fixed. If the surrogate functions
gi is properly chosen, then the solution to (32) could be easier to obtain than solving (31)
directly.

3.8 Majorization Function for L-smooth and Differentiable Function

Consider a function f(x) is L-smooth (L > 0) (Paulavivcius and vZilinskas, 2006) on Rn,
meaning that

‖∇f(x)−∇f(y)‖≤ L‖x− y‖ (34)

There are various set of functions which can satisfies properties (33a)-(33c). The first order
Taylor series expansion of f(x) is (Paulavivcius and vZilinskas, 2006):

f(y) ≤ f(x) + 〈∇f(x),y− x〉+ L
2 ‖x− y‖2 (35)

Thus the function

h(y,x) = f(x) + 〈∇f(x),y− x〉+ L
2 ‖x− y‖2 (36)

is the majorized function of f(x) at x.

4. Proposed Featured Graph Coarsening (FGC) Algorithm

In this section, we developed a block MM-based algorithm for featured graph coarsening
(FGC). By using Θc = CTΘC, the three variable optimization problem (11) is equivalent to
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two variable optimization problem as:

minimize
X̃,C

−γlog det(CTΘC + J) + tr(X̃TCTΘCX̃) + λ
2‖C

T ‖21,2
subject to C ≥ 0, X = CX̃, ‖[CT ]i‖22≤ 1 ∀ i = 1, 2, 3, . . . , p

(37)

where ‖CT ‖21,2=
p∑
i=1
‖[CT ]i‖21= ∑p

i=1 (∑k
j=1Cij)

2 is the `1,2 norm of CT which ensures group

sparsity in the resultant C matrix and [CT ]i is the i-th row of matrix C. For a high value of
λ, the loading matrix is observed to be orthogonal, more details are presented in the Section
7. We further relax the problem by introducing the term α

2 ||CX̃ −X||
2
F with α > 0, instead

of solving the constraint X = CX̃. Note that this relaxation can be made tight by choosing
sufficiently large or iteratively increasing α. Now the original problem can be approximated
as:

minimize
X̃,C

−γlog det(CTΘC + J) + tr(X̃TCTΘCX̃) + α
2 ||CX̃ −X||

2
F+λ

2‖C
T ‖21,2

subject to C ≥ 0, ‖[CT ]i‖22≤ 1 ∀ i = 1, 2, 3, . . . , p
(38)

The problem (38) is a multi-block non-convex optimization problem. We develop
an iterative algorithm based on the block successive upper bound minimization (BSUM)
technique (Razaviyayn et al., 2013; Sun et al., 2016). Collecting the variables as (C ∈
Rp×k+ , X̃ ∈ Rk×n), we develop a block MM-based algorithm which updates one variable at a
time while keeping the other fixed.

4.1 Update of C

Treating C as a variable while fixing X̃, and ignoring the term independent of C, we obtain
the following sub-problem for C:

minimize
C

f(C)=−γlog det(CTΘC+J)+ α
2 ‖CX̃−X‖

2
F+tr(X̃TCTΘCX̃)+ λ

2‖C
T ‖21,2

subject to C ≥ 0, ‖[CT ]i‖22≤ 1 ∀ i = 1, 2, 3, . . . , p
(39)

To rewrite the problem (39) simply, we have defined a set Sc as:

SC =
{
C ∈ Rp×k| C ≥ 0, ‖[CT ]i‖22≤ 1 ∀ i = 1, 2, 3, . . . , p

}
(40)

where [CT ]i is the i-th row of loading matrix C. Note that the set SC is a closed and convex
set. Using the set Sc, problem (39) can be rewritten as:

minimize
C∈Sc

f(C)=−γlog det(CTΘC + J)+α

2 ‖CX̃−X‖
2
F+tr(X̃TCTΘCX̃)+λ

2 ‖C
T ‖21,2 (41)

Lemma 4. tr(X̃TCTΘCX̃) is a convex function in loading matrix C.

Proof. Since Θ is a positive semi-definite matrix and using Cholesky decomposition, we can
write Θ = MTM . Now, consider the term:

tr(X̃TCTΘCX̃) = tr(Y TΘY ) = tr(Y TMTMY ) = ‖MY ‖2F (42)
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Frobenius norm is a convex function so, ‖MY ‖2F is convex function in Y and Y = CX̃ which
is a linear function of C so it is a convex function in C also.

Lemma 5. The function f(C) in (41) is strictly convex.

Proof. log det(·) and trace(·) are convex functions and proof are in Lemma 2 and 4
respectively, also Frobenius and `21,2 norm are convex functions. Consider the term

‖CT ‖21,2=
p∑
i=1
‖[CT ]i‖21 > 0 which implies that f(C) in (41) is strictly convex function.

Lemma 6. The function f(C) is L-Lipschitz continuous gradient function where L =
max(L1, L2, L3, L4) with L1, L2, L3, L4 the Lipschitz constants of −γlog det(CTΘC + J),
tr(X̃TCTΘCX̃), ‖CX̃ −X‖2F , λ

2‖C
T ‖21,2 respectively.

Proof. The detailed proof is deferred to Appendix 9.1.

The function f(C) in (41) is L-smooth, strictly convex and differentiable function. Also,
the constraint C ∈ Sc together makes the problem (41) a convex optimization problem. By
using (36), the majorised function for f(C) at C(t) is:

g(C|C(t)) = f(C(t)) + (C − C(t))∇f(C(t)) + L

2 ||C − C
(t)||2 (43)

After ignoring the constant term, the majorized problem of (41) is

minimize
C∈Sc

1
2C

TC − CTA (44)

where A = C(t)− 1
L∇f(C(t)) and ∇f(C(t)) = −2γΘCt(C(t)T ΘC(t) + J)−1 +α

(
C(t)X̃ −X

)
X̃T + 2ΘC(t)X̃X̃T + λC(t)111k×k where 111k×k is all ones matrix of dimension k × k.

Lemma 7. By using the KKT optimality condition we can obtain the optimal solution of
(44) as

C(t+1) =
(
C(t) − 1

L
∇f

(
C(t)

))+
(45)

where (Xij)+ = max( Xij

‖[XT ]i‖2 , 0) and [XT ]i is the i-th row of matrix X.

Proof. The detailed proof is deferred to Appendix 9.2 .

4.2 Update of X̃̃X̃X

By fixing C, we obtain the following sub-problem for X̃:

minimize
X̃

f(X̃) = tr(X̃TCTΘCX̃) + α

2 ‖CX̃ −X‖
2
F (46)

Lemma 8. Problem (46) ia a convex optimization problem.

Proof. The first term in objective function of (46) trace(·) is convex function in X̃ and proof
is similar to proof of Lemma 4. Also, Frobenius norm is convex function so overall objective
function of (46) is convex function and overall problem is convex optimization problem.
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Problem (46) is a convex optimization problem, we get the closed form solution by setting
the gradient to zero

2CTΘCX̃ + αCT (CX̃ −X) = 0, (47)
we get

X̃t+1 =
( 2
α
CTΘC + CTC

)−1
CTX (48)

Remark 1. In the update of X̃, if taking the inverse is demanding, one can use gradient
descent type update for finding C. Using gradient descent, the update rule of X̃ is

X̃t+1 = X̃t − η∇f(X̃) (49)

where, η is the learning rate and ∇f(X̃) = 2CTΘCX̃ + αCT (CX̃ −X)

Algorithm 1: FGC Algorithm
Input: G(X,Θ), α, γ, λ

1 Set t← 0;
2 while stopping criteria not met do

• Update Ct+1 and X̃t+1 as in (45) and (48) respectively.

• Set t← t+ 1;

Output C, Θc, and X̃
Algorithm 1 summarizes the implementation of feature graph coarsening (FGC) method.

The worst case computational complexity is O(p2k) which is due to the matrix multiplication
in the gradient of f(C) in (45).

Theorem 1. The sequence {C(t), X̃(t)} generated by Algorithm 1 converges to the set of
Karush–Kuhn–Tucker (KKT) points of Problem (38).

Proof. The detailed proof is deferred to Appendix 9.3.

Theorem 2. The coarsened graph data Gc(Θc, X̃) learned from the FGC algorithm is ε
similar to the original graph data G(Θ, X), i.e., there exist an 0 ≤ ε ≤ 1 such that

(1− ε)‖X‖Θ≤ ‖X̃‖Θc≤ (1 + ε)‖X‖Θ (50)

Proof. The detailed proofs of Theorem (2) are deferred to the Appendix 9.4.

4.3 Interpretation of the proposed formulation and the FGC Algorithm

The proposed FGC algorithm 1 summarizes a larger graph G into a smaller graph Gc. The
loading matrix variable is simply a mapping of nodes from the set of nodes in G to nodes
in Gc, i.e., π : V → Ṽ . In order to have a balanced mapping the loading matrix C should
satisfy the following properties:

1. Each node of original graph G must be mapped to a supernode of coarsened graph Gc
implying that the cardinality of rows should not be zero, ‖[CT ]i‖0 6= 0;∀ i = 1, 2, . . . , p
where [CT ]i is the i-th row of loading matrix C.
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2. In each supernode, there should be at least one node of the original graph G should
be mapped to a super-node of the coarsened graph, also known as a supernode of
Gc. Which requires the cardinality of columns of C be greater than equal to 1, i.e.,
‖Ci‖0≥ 1 where Ci;∀ i = 1, 2, . . . , k is the i-th column of loading matrix C.

3. A node of the original graph should not be mapped to more than one supernode implying
the columns of C be orthogonal, i.e., 〈Ci, Cj〉 = 0. Furthermore, the orthogonality
of columns 〈Ci, Cj〉 = 0 clubbed with positivity of elements of C, implies that the
rows [CT ]i ∀ i = 1, 2, . . . , p should have only one nonzero entry, i.e., ‖[CT ]i‖0= 1. And
in order to make sure that the CTΘC is a Laplacian matrix, we need the nonzero
elements of C to be 1.

The proposed formulation and the FGC algorithm manage to learn a balanced mapping, i.e.,
the loading matrix C satisfies the aforementioned properties. Let us have a re-look at the
proposed optimization formulation C:

minimize
C

λ
2‖C

T ‖21,2−γ log det(CTΘC + J) + α
2 ||CX̃ −X||

2
F

subject to C ∈ Sc
(51)

Using ‖CT ‖21,2= ∑p
i=1 (∑k

j=1Cij)
2 = ‖C‖2F+∑i 6=j〈Ci, Cj〉 for i, j = 1, 2, ...k, we can rewrite

problem (51) as

minimize
C

λ
2 (‖C‖2F+∑i 6=j〈Ci, Cj〉)− γ log det(CTΘC + J) + α

2 ||CX̃ −X||
2
F

subject to C ∈ Sc
(52)

Note that Θ ∈ SΘ is the Laplacian of a connected graph with rank p− 1. We aim here to
learn C ∈ Rp×k+ which maps a set of p nodes to k nodes, such that CTΘC is a Laplacian
matrix of a connected graph with k nodes, which implies that rank(CTΘC + Jk×k) = k.
The log det(·) requires that the matrix CTΘC + J ∈ Rk×k is always be a full rank matrix,
i.e., k. Now, we will investigate the importance of each term in the optimization problem
(52) below:

1. The trivial solution of all zero C = 0p×k will make the term (CTΘC+J) rank deficient
and the log det(·) term become infeasible and thus ruled out and in toy example, C1
is ruled out, for example, C1 in Fig 2.

2. Next, any C with zero column vector i.e. Ci = 0 ∀i = 1, 2, . . . p will lead to a coarsened
graph of size less than k, and thus again (CTΘC + J) will be rank deficient, so this
solution is also ruled out, for example, C2 in Fig 2.

3. The minimization of ‖CX̃ − X‖2F= ∑p
i=1([CT ]iX̃ − Xi)2 ensures that no row of C

matrix will be zero, for example C3 in Fig 2 is ruled out.

4. Next, as C ≥ 0, C 6= 0p×k, and from the property of Frobenius norm it implies
that ‖C‖2F 6= 0, thus the only possibility to minimize (52) is to get C ≥ 0 such that∑
i 6=j〈Ci, Cj〉 = 0. This implies that columns of loading matrix C are orthogonal

to each other, and CTC = block(d) is a block diagonal matrix which implies that
〈Ci, Cj〉 = 0, for example C4 in Fig 2 is ruled out.
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C1 =


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 , C2 =


0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

 , C3 =


0 0 0
1 0 0
1 0 0
0 1 0
0 0 1

 , C4 =


1 0 1
1 0 0
1 0 0
0 1 0
0 0 1

 , C5 =


1 0 0
1 0 0
1 0 0
0 1 0
0 0 1



Figure 2: Some possible realisations of the loading matrix for the toy example: C1, C2, C3,
and C4 are not balanced mapping, while C5 is an example of balanced mapping.

5. The orthogonality of columns combined with C ≥ 0 implies that in each row there
is only one non-zero entry and the rest entries are zero which finally implies that
‖[CT ]i‖0= 1.

Summarizing, the solution of (52) is C ∈ Rp×k+ of rank k with orthogonal columns, and rows
and columns are having maximum and minimum cardinality 1, respectively, i.e., ||Ci||0≥ 1
and ||[CT ]i||0= 1 which satisfies all the properties for a balanced mapping. Finally, each
row of the loading matrix has cardinality 1, and ‖[CT ]i‖2≤ 1 ensures that each row of the
loading matrix has only one non-zero entry and, i.e., 1 and the rest of entries in each row is
zero.

4.4 Graph Coarsening without Features

Many real-world graph data sets do not have features associated with the nodes like Airfoil,
Bunny, Yeast, Minnesota, Polblogs, etc (Loukas and Vandergheynst, 2018; Loukas, 2019),
which means it only contains the connectivity information as Laplacian matrix or adjacency
matrix. The coarsening approach is needed here as well to approximate the large graph
matrix with a smaller coarsened graph matrix. Interestingly, the proposed FGC approach
can be used here as well. By removing the terms associated with the feature matrix, the
FGC can be used to coarse a non-featured graph. It can be understood as a special case of
the FGC algorithm.

Given the Laplacian matrix Θ corresponding to the large graph, we aim to estimate the
coarsened graph Θc and the mapping C such that, Θc = CTΘC holds. By only considering C
as the optimization variable in (12), we get the following optimization problem for coarsening
graph without features:

minimize
C

f(C) = −γlog det(CTΘC + J) + λ
2‖C

T ‖21,2
subject to C ∈ Sc

(53)

where the set Sc is defined in (40).

Lemma 9. The function f(C) in (53) is a strictly convex function.

Proof. The proof is similar to the proof of lemma 5.
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Lemma 10. The function f(C) is L-Lipschitz continuous gradient function where L =
max(L1, L2) with L1, L2 the Lipschitz constants of −γlog det(CTΘC + J),

p∑
i=1
‖[CT ]i‖21 re-

spectively.

Proof. The proof is similar to the proof of lemma 6.

We solve this problem using the BSUM framework. The function f(C) is strictly convex,
differentiable and L-smooth. By using (36), the majorised function for f(C) at C(t)

g(C|C(t)) = f(C(t)) + (C − C(t))∇f(C(t)) + L

2 ||C − C
(t)||2 (54)

After ignoring the constant term, the majorized problem of (53) is

minimize
C∈Sc

1
2C

TC − CTA (55)

where A = C(t) − 1
L∇f(C(t)) and ∇f(C(t)) = −2γΘC(t)(C(t)TΘC(t) + J)−1 + λC(t)111k×k

where 111k×k is all ones matrix of dimension k × k.

Lemma 11. By using the KKT optimality condition we can obtain the optimal solution of
(55) as

C(t+1) =
(
C(t) − 1

L
∇f

(
C(t)

))+
(56)

where (Xij)+ = max( Xij

‖[XT ]i‖2 , 0) and [XT ]i is the i-th row of matrix X.

Proof. The proof is similar to that of Lemma 7.

Algorithm 2: Graph Coarsening (GC) Algorithm
Input: G(Θ), γ, λ

1 Set t← 0;
2 while stopping criteria not met do

• Update Ct+1 as in (56)

• Set t← t+ 1;

Output C and Θc

Algorithm 2 summarizes the implementation of the graph coarsening (GC) method. The
worst case computational complexity is O(p2k) which is due to the matrix multiplication in
the gradient of f(C) in (56).

4.4.1 Featured Graph Coarsening via Two-stage Approach

In this subsection, we will discuss a two-stage approach which is an approximate method for
doing featured graph coarsening. Firstly learn the coarsened graph matrix Θc using the GC
algorithm and next learn the coarsened feature matrix Xc satisfying the smoothness property
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with respect to the coarsened graph matrix. The coarsened feature matrix is obtained by
solving the following optimization problem:

minimize
Xc

f(Xc) = ‖Xc − X̃‖2F+tr(XT
c ΘcXc) (57)

where, Xc is new learned smooth feature of coarsened graph and tr(XT
c ΘcXc) is smoothness

of resulting coarsened graph.
Problem (57) is a convex and differentiable function. We get the closed-form solution by
setting the gradient w.r.t Xc to zero.

2ΘcXc + 2(Xc − X̃) = 0, (58)

we get,
Xc = (Θc + I)−1X̃ (59)

Now, we can extend GC (proposed) to a two-stage optimization problem where we first
compute C and Θc, then use it to compute Xc, the feature matrix of a coarsened graph.
Algorithm 3: Two-Stage Optimization Algorithm
Input: G(X,Θ), γ, λ

1 Set C ← GC(G(Θ), γ, λ);
2 Set Xc ← (Θc + I)−1X̃;
3 Output C and Xc

5. Proposed Featured Graph Coarsening with Feature Dimensionality
Reduction(FGCR)

In this section, we develop a block MM-based algorithm for graph coarsening with feature
reduction. In particular, we propose to solve (14) by introducing the quadratic penalty for
X = CX̃ and X̃ = WH, we aim to solve the following optimization problem:

minimize
W,H,C

−γlog det(CTΘC+J)+tr(W TCTΘCW ) + α
2 ||CWH−X||

2
F+λ

2‖C
T ‖21,2

subject to C ∈ Sc
(60)

where the set Sc is defined in (40). The problem (60) is a multi-block non-convex
optimization problem. We develop an iterative algorithm based on the block successive
upper bound minimization (BSUM) technique (Razaviyayn et al., 2013; Sun et al., 2016).
Collecting the variables as (C ∈ Rp×k+ ,W ∈ Rk×d, H ∈ Rd×n), we develop a block MM-based
algorithm which updates one variable at a time while keeping the other fixed.

5.1 Update of C

Treating C as a variable and fixing W and H, we obtain the following sub-problem for C:

minimize
C∈Sc

f(C) = −γlog det(CTΘC + J) + tr(W TCTΘCW )

+α

2 ||CWH −X||2F+λ

2 ‖C
T ‖21,2 (61)
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Lemma 12. The function f(C) in (61) is strictly convex function.

Proof. The proof is similar to the proof of lemma 5.

Lemma 13. The function f(C) is L-Lipschitz continuous gradient function where L =
max(L1, L2, L3, L4) with L1, L2, L3, L4 the Lipschitz constants of −γlog det(CTΘC + J),
tr(W TCTΘCW ) , ‖CWH −X‖2F ,

p∑
i=1
‖[CT ]i‖21 respectively.

Proof. The proof is similar to the proof of Lemma 6.

The function f(C) in (61) is convex, differentiable and L-smooth. Also, the constraint
C ∈ Sc together makes the problem (61) a convex optimization problem. By using (36), the
majorised function for f(C) at C(t) is

g(C|C(t)) = f(C(t)) + (C − C(t))∇f(C(t)) + L

2 ||C − C
(t)||2 (62)

After ignoring the constant term, the majorised problem of (61) is

minimize
C≥0

1
2C

TC − CTA (63)

where A = C(t)− 1
L∇f(C(t)) and ∇f(C(t)) = −2γΘC(C(t)T ΘC(t) +J)−1 +α

(
C(t)WH −X

)
HTW T + 2ΘC(t)WW T + λC(t)111k×k where 111k×k is all ones matrix of dimension k × k.

Lemma 14. By using KKT optimality condition we can obtain the optimal solution of (63)
as

C(t+1) =
(
C(t) − 1

L
∇f

(
C(t)

))+
(64)

where (Xij)+ = max( Xij

‖[XT ]i‖2 , 0) and [XT ]i is the i-th row of matrix X.

Proof. The proof is similar to the proof of Lemma 7.

5.2 Update of WWW

By fixing C and H, we obtain the following sub-problem for W :

minimize
W

f(W ) = tr(W TCTΘCW ) + α

2 ||CWH −X||2F (65)

Lemma 15. The function f(W ) in (65) is L-Lipschitz continuous gradient function where
L = max(L1, L2) with L1, L2 the Lipschitz constants of tr(W TCTΘCW ) , ‖CWH −X‖2F
respectively.

Proof. The proof is similar to the proof of Lemma 6.

The function f(W ) is convex, differentiable and L-smooth. By using (36), the majorised
function for f(W ) at W (t) is

g(W |W (t)) = f(W (t)) + (W −W (t))∇f(W (t)) + L

2 ||W −W
(t)||2 (66)
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After ignoring the constant term, the majorised problem of (65) is

minimize
W

1
2W

TW −W TA (67)

whereA = W (t)− 1
L∇f(W (t)) and∇f(W (t)) = 2CTΘCW (t)HHT+αCT

(
CW (t)H −X

)
HT .

Lemma 16. By using the KKT optimality condition we can obtain the optimal solution of
(67) as

W (t+1) =
(
W (t) − 1

L
∇f

(
W (t)

))
(68)

5.3 Update of HHH

By fixing C and H, we obtain the following sub-problem for W :

minimize
H

f(H) = α

2 ||CWH −X||2F (69)

Lemma 17. The function f(H) is L-Lipschitz continuous gradient function where L is the
Lipschitz constants of ‖CWH −X‖2F .

Proof. The proof is similar to the proof of Lemma 6.

The function f(H) is convex, differentiable and L-smooth. By using (36), the majorised
function for f(H) at H(t) is

g(H|H(t)) = f(H(t)) + (H −H(t))∇f(H(t)) + L

2 ||H −H
(t)||2 (70)

After ignoring the constant term, the majorised problem of (69) is

minimize
H

1
2H

TH −HTA (71)

where A = H(t) − 1
L∇f(H(t)) and ∇f(H(t)) = αW TCT

(
CWH(t) −X

)
.

Lemma 18. By using the KKT optimality condition we can obtain the optimal solution of
(71) as

H(t+1) =
(
H(t) − 1

L
∇f

(
H(t)

))
(72)

Proof. The proof is similar to the proof of Lemma 7
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Algorithm 4: Featured Graph Coarsening with Reduction (FGCR) Algorithm
Input: G(X,Θ), α, γ, λ

1 Set t← 0;
2 while stopping criteria not met do

• Update Ct+1 as in (64)

• Update W t+1 as in (68)

• Update Ht+1 as in (72)

• Set t← t+ 1;

Output C, W , and H
Algorithm 4 summarizes the implementation of featured graph coarsening with the

feature dimensionality reduction(FGCR) method. The worst case computational complexity
is O(p2k) which is due to the matrix multiplication in the gradient of f(C) in (64).

Theorem 3. The sequence {C(t),W (t), H(t)} generated by Algorithm 4 converges to the set
of Karush–Kuhn–Tucker (KKT) points of Problem (60).

Proof. The proof is similar to the proof of Theorem 1.

Remark 2. Comparison between FGC, GC, and FGCR algorithms
The FGC, GC, and FGCR algorithms are graph coarsening algorithms with the following
differences:

• The coarsened graph obtained by FGC has a lesser number of nodes but the feature
dimension associated with each node remains unchanged. Given a graph G(X ∈
Rp×n,Θ ∈ Rp×p) the FGC aims to learn a coarsened graph Gc(X̃ ∈ Rk×n,Θc ∈ Rk×k)
where k < p and p, k, n are the number of nodes of the original graph, number of
nodes of the coarsened graph, and the feature dimension of each node, respectively.
The optimization formulation for the FGC is bi-convex, for which we developed a
theoretically convergent and efficient iterative algorithm.

• GC algorithm is suitable for non-attributed graphs where only an adjacency matrix is
available. Given a graph G(Θ ∈ Rp×p) the GC algorithm learns a coarsened graph with
a reduced number of nodes i.e., Gc(Θc ∈ Rk×k), where k < p. The problem formulation
for GC is a strongly convex optimization problem and the developed algorithm is
provably convergent.

• The FGCR algorithm learns a coarsened graph with a reduced number of nodes and
reduced feature dimension. Given graph G(X ∈ Rp×n,Θ ∈ Rp×p) FGCR aims to
learn a coarsened graph Gc(W ∈ Rk×d,Θc ∈ Rk×k) where k < p and d < n. The
feature dimension of each super-node of the coarsened graph also gets reduced by
using the matrix factorization approach as X̃ = WH. The FGCR algorithm is also a
multi-convex optimization problem and the developed algorithm is provably convergent.
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6. Connection of graph coarsening with clustering and community
detection

It is important here to highlight the distinction between (i) Clustering (Ng et al., 2001;
Dhillon et al., 2007) (ii) Community detection (Fortunato, 2010), and (iii) graph coarsening
approaches. Given a set of data points, the clustering and community detection algorithm
aim to segregate groups with similar traits and assign them into clusters. For community
detection, the data points are nodes of a given network. But these methods do not answer
how these groups are related to each other. On the other hand coarsening segregates groups
with similar traits and assigns them into supernodes, in addition, it also establishes how
these supernodes are related to each other. It learns the graph of the supernodes, the edge
weights, and finally the effective feature of each supernode. Thus, the scope of the coarsening
method is wider than the aforementioned methods.

The proposed coarsening algorithm can be used for graph clustering and community
detection problems. For grouping p nodes into c clusters, we need to perform coarsening
from p nodes to c supernodes. For the FGC algorithm, it implies learning a loading matrix of
size p× c and the node supernode mapping reveals the clustering and community structure
present in the graph.

Furthermore, we also believe that the overarching purpose of coarsening method goes
beyond the clustering and partitioning types of algorithms. Given a large graph with nodes,
the FGC method can learn a coarse graph with nodes. A good coarsening algorithm will be a
significant step in addressing the computational bottleneck of graph-based machine learning
applications. Instead of solving the original problem, solve a coarse problem of reduced
size at a lower cost; then lift (and possibly refine) the solution. The proposed algorithms
archive this goal by approximating a large graph with a smaller graph while preserving the
properties of the original graph. In the experiment section, we have shown the performance
of the FGC method by evaluating it with different metrics indicating how well the coarsened
graph has preserved the properties of the original graph. The FGC framework is also tested
for clustering tasks on real data sets, e.g., Zachary’s karate club and the Polblogs data set. In
all the experiments the superior performance of the FGC algorithm against the benchmarks
indicates the wider applicability and usefulness of the proposed coarsening framework.

7. Experiments

In this section, we demonstrate the effectiveness of the proposed algorithms by a comprehen-
sive set of experiments conducted on both real and synthetic graph data sets. We compare the
proposed algorithms by benchmarking against the state-of-the-art methods, Local Variation
Edges (LVE) and Local Variation Neighbourhood (LVN), proposed in (Loukas, 2019) along
with some other pre-existing famous graph coarsening methods like Kron reduction (Kron)
(Dorfler and Bullo, 2012) and heavy edge matching (HEM) (Karypis and Kumar, 1998). The
baseline method only uses adjacency matrix information for performing coarsening. Once
the coarsening matrix is learned, which is the node supernode mapping. It is further used
for coarsening the feature matrix as well. The main difference is that the baseline methods
do not consider the graph feature matrix to learn coarsening matrix, while the proposed
FGC algorithm considers both the graph matrix and the graph feature matrix jointly for
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it. Throughout all the experiments the proposed algorithms have shown outstanding and
superior performance. We have randomly initialized the loading matrix C from C ∈ {0, 1}p×k
and X̃ as X̃ = C†X.
Data sets: The graph data sets (p,m,n) where p is the number of nodes, m is the number
of edges and n is the number of features, used in the following experiments are mentioned
below. (i) The details of real data sets are as follows:

• Cora. This data set consists of p=2708, m=5278, and n=1433. Hyperparameters
(λ=500, α=500, γ=716.5) used in FGC algorithm. DE of G is 160963.

• Citeseer. This data set consists of p=3312, m=4536, and n=3703. Hyperparameters
(λ=500, α=500, γ=1851.5) used in FGC algorithms. DE of G is 238074.

• Polblogs. This data set consists of p=1490, m=16715, and n=5000. Hyperparameters
(λ=500, α=500, γ=2500) used in FGC algorithms. DE of G is 6113760.

• ACM. This data set consists of p=3025, m=13128, and n=1870. Hyperparameters
(λ=500, α=500, γ=935) used in FGC algorithms. DE of G is 1654444.

• Bunny. This data set consists of p=2503, m=78292, and n=5000. Hyperparameters
(λ=450, α=500, γ=2500) used in FGC algorithm. DE of G is 12512526.

• Minnesota. This data set consists of p=2642, m=3304, and n=5000. Hyperparameters
(λ=500, α=550, γ=2500) used in FGC algorithms. DE of G is 13207844.

• Airfoil. This data set consists of p=4253, m=12289, and n=5000. Hyperparameters
(λ=2000, α=600, γ=2500) used in FGC algorithms. DE of G is 21269451.

(ii) The details of synthetic data sets are as follows:

• Erdos Renyi (ER). It is represented as G(n, p), where n = 1000 is the number of nodes
and p = 0.1 is probability of edge creation. Hyperparameters (λ=500, α=500, γ=10)
used in FGC algorithms. DE of G is 4995707.

• Barabasi Albert (BA). It is represented as G(n,m), where n = 1000 is the number
of nodes and m = 20 edges are preferentially linked to existing nodes with a higher
degree. Hyperparameters(λ=500, α=500, γ=1000) used in FGC algorithms . DE of G
is 4989862.

• Watts Strogatz (WS). It is represented as G(n, k, p), where n = 1000 is the number of
nodes, k = 20 is nearest neighbors in ring topology connected to each node, p = 0.1 is
probability of rewiring edges. Hyperparameters(λ=500, α=500, γ=1000) used in FGC
algorithm. DE of G is 4997509.

• Random Geometric Graph (RGG). It is represented as G(n, radius), where n = 1000
is number of nodes and radius = 0.1 is the distance threshold value for an edge
creation. Hyperparameters(λ=500, α=500, γ=1000) used in FGC algorithm. DE of G
is 4989722.
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Data set r=k
p

REE(Θ,Θc, 100) DE in 104

FGC LVN/LVE Kron HEM FGC LVN/LVE Kron HEM

Cora
0.7
0.5
0.3

0.040
0.051
0.058

0.33/0.29
0.51/0.53
0.65/0.71

0.38
0.57
0.74

0.38
0.58
0.77

0.75
0.69
0.66

10.0/9.9
6.10/5.81
3.2/2.8

9.1
5.5
2.7

9.1
5.4
2.4

Citeseer
0.7
0.5
0.3

0.012
0.04
0.05

0.32/0.29
0.54/0.55
0.72/0.76

0.31
0.54
0.77

0.31
0.54
0.80

0.71
0.69
0.59

13.0/14.0
7.50/7.10
3.1/2.9

12.9
7.0
2.7

12.9
7.0
2.5

Polblogs
0.7
0.5
0.3

0.001
0.007
0.01

0.50/0.35
0.73/0.67
0.86/0.96

0.42
0.67
0.96

0.44
0.70
0.92

3.2
3.0
2.6

607/656
506/468
302/115

752
513
132

761
373
183

ACM
0.7
0.5
0.3

0.002
0.034
0.036

0.38/0.14
0.66/0.42
0.92/0.88

0.15
0.40
0.85

0.15
0.41
0.93

1.7
1.5
0.5

72.0/93.4
30.0/43.0
5.7/7.5

94.5
49.0
8.9

94.5
46.1
5.4

Table 1: This table summarizes the REE and DE values obtained by FGC (proposed), LVN,
LVE, Kron and HEM on different coarsening ratios (r) for standard real graph data sets. It
is evident that FGC (proposed) outperforms state-of-the-art methods significantly.

The features of Polblogs, Bunny, Minnesota, Airfoil, Erdos Renyi (ER), Watts Strogatz
(WS), Barabasi Albert (BA) and Random Geometric Graph (RGG) are generated using
X ∼ N (0,Θ†) (10), where Θ is the Laplacian matrix of the given graph as these graphs has
no features. Weights for synthetic data sets are generated randomly and uniformly from a
range of (1,10).

7.1 Performance Evaluation for the FGC algorithm

REE, DE, HE and RE analysis: We use relative eigen error (REE) defined in (5), Dirich-
let energy (DE) of Gc defined in (8), hyperbolic error(HE) defined in (6) and reconstruction
error(RE) defined in (7) as the evaluation metrics to measure spectral similarity, smoothness
and ε similarity of coarsened graph Gc. The baseline method only uses adjacency matrix
information for performing coarsening. Once the coarsening matrix P = C† is learned, which
establishes the linear mapping of the nodes to the super-nodes. The matrix P is used further
for the coarsening of the feature matrix as X̃ = PX. It is evident in Table 1 and 2 that the
FGC outperforms state-of-the-art algorithms.
Comparison with Deep Learning based Graph Carsening method (GOREN)(Cai
et al., 2021): We have compared FGC (proposed) against the GOREN, a deep learning-
based graph coarsening approach, on real data sets. Due to the unavailability of their code,
we compared only REE because it is the only metric they have computed in their paper
among REE, DE, RE, and HE. Their results of REE are taken directly from their paper. It
is evident in Table 3 that FGC outperforms GOREN.
Spectral similarity: Here we evaluate the FGC algorithm for spectral similarity. The
plots are obtained for three coarsening methods FGC (proposed), LVE, and LVN and the
coarsening ratio is chosen as r = 0.3. It is evident in Figure 3 that the top 100 eigenvalues
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Data set r=k
p

HE RE in log(·)
FGC LVN LVE FGC LVN LVE

Cora
0.7
0.5
0.3

0.72
1.18
1.71

1.39
2.29
2.94

1.42
2.37
3.08

1.91
2.78
3.28

2.92
3.63
3.77

2.95
3.67
3.79

Citeseer
0.7
0.5
0.3

0.85
1.05
1.80

1.68
2.43
3.25

1.63
2.40
3.41

1.32
1.61
2.41

2.56
2.87
3.04

2.51
2.90
3.04

Polblogs
0.7
0.5
0.3

1.73
2.70
2.89

2.33
2.73
3.07

2.39
2.58
3.69

5.1
6.2
6.3

7.27
7.42
7.50

7.11
7.42
7.51

ACM
0.7
0.5
0.3

0.45
0.98
1.86

2.13
3.10
4.867

1.63
2.55
4.43

2.42
3.78
4.77

5.05
5.35
5.44

4.66
5.18
5.42

Table 2: This table summarizes the HE and RE values obtained by FGC (proposed), LVN
and LVE on different coarsening ratios (r) for standard real graph data sets. It is evident
that FGC (proposed) outperforms state-of-the-art methods significantly.

Data set r=k
p

REE(Θ,Θc, 100)
FGC G.HEM G.LVN G.LVE

Bunny
0.7
0.5
0.3

0.0167
0.0392
0.0777

0.258
0.420
0.533

0.082
0.169
0.283

0.007
0.057
0.094

Airfoil
0.7
0.5
0.3

0.103
0.105
0.117

0.279
0.568
1.979

0.184
0.364
0.876

0.102
0.336
0.782

Yeast
0.7
0.5
0.3

0.007
0.011
0.03

0.291
1.080
3.482

0.024
0.133
0.458

0.113
0.398
2.073

Minnesota
0.7
0.5
0.3

0.0577
0.0838
0.0958

0.357
0.996
3.423

0.114
0.382
1.572

0.118
0.457
2.073

Table 3: This table summarizes the REE values obtained by FGC (proposed), GOREN(HEM),
GOREN(LVN), and GOREN(LVE) on different coarsening ratios (r) for real graph data
sets. It is evident that FGC (proposed) outperforms state-of-the-art methods significantly.

plot of the original graph and coarsened graph learned from the proposed FGC algorithm
are similar as compared to other state-of-the-art algorithms.

Moreover, (Loukas, 2019) has already shown that the local variation methods outperform
other pre-existing graph coarsening methods. So, we have compared FGC (proposed) only
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Figure 3: This figure plots the top-100 eigenvalues of the coarsened Laplacian matrix against
the original Laplacian matrix for the Cora, Citeseer, Polblogs, and ACM data sets with
coarsening ratio r=0.3. The eigenvalues for the coarsened matrix obtained by the FGC
algorithm are almost similar to the original graph Laplacian matrix, highlighting that FGC
is superior in preserving the spectral properties in the coarsened graph matrix in comparison
to the existing state-of-the-art.

with the local variation methods (Loukas, 2019) in our experiments.

ε-Similarity: Here we evaluate the FGC algorithm for ε−similarity as discussed in (9).
Note that the similarity definition (9) considers the properties of both the graph matrix and
its associated features, while in (Loukas and Vandergheynst, 2018) it is restricted to just the
graph matrix property. It is evident in Figure 4 that the range of ε is (0, 1) which implies
that original graph G and coarsened graph Gc are ε similar.
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Coarsening Ratio
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Figure 4: This figure plots the ε values for a variety of real and synthetic data sets. The ε
values lying between (0, 1) indicate that the coarsened graph Gc learned by the proposed
FGC method and G are similar.

29



kumar, Sharma, and Kumar

Heat Maps of CTC: Here we aim to show the grouping and structural properties ensured
by the FGC algorithm. We aim to evaluate the properties of loading C as discussed in
(3) which is important for ensuring that the mapping of nodes to super-node should be
balanced. It is evident in Figure 5 that the loading matrix C learned from the proposed
FGC algorithm satisfies all the properties of set Sc in (3).
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Figure 5: This figure plots the heat maps of the loading matrices CTC obtained by FGC
algorithm for Cora, Citeseer, Polblogs and ACM data sets for the coarsening ratio r = 0.01.
Even for the extreme coarsening, where the size of the graph is reduced by 100, the CTC is
almost diagonal, which indicates that the C matrix is also almost orthogonal. For moderate
coarsening (r = 0.3, 0.5) we are observing C to be perfectly orthogonal. The strength of
the values of the diagonal entries signifies the number of nodes from the set V mapped to a
super-node. As indicated from the vertical color bar the mapping is balanced, such that
not all or the majority of nodes are mapped to one single supernode in the coarsened graph.
These observations also validate that the ‖CT ‖21,2 norm penalty is effective in enforcing
desired grouped sparsity structure. Finally, the good results for the experiments with extreme
coarsening also suggest that the proposed method can be utilized for doing clustering and
stochastic block model identification.

Loss Curves: Here we plot the loss curves for proposed FGC on 10 iterations for different
coarsening ratios r = 0.3, 0.5, and 0.7 respectively where in each iteration, C is updated 100
times having a learning rate 1

k on real data sets. The plots in Figure 6 show the convergence
properties of the FGC algorithm.
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Figure 6: This figure shows the loss curves of FGC for (a) Cora, (b) Citeseer, (c) Polblogs
and (d) ACM on different coarsening ratios.
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7.2 Performance Evaluation for the GC Algorithm

REE, HE and RE Analysis: We present REE, HE, and RE on Bunny, Minnesota, and
Airfoil data sets validating that GC (proposed) performs better than the state-of-the-art
methods, i.e., local variation methods. The aforementioned are popularly used graph data
sets that only consist of graph matrices. The HE values for graph data having no feature
matrix can be obtained using (Bravo Hermsdorff and Gunderson, 2019),

HE = arccosh
(

1 + ‖(Θ−Θlift)x‖2F ‖x‖2F
2(xTΘx)(xTΘliftx)

)
. (73)

where x is the eigenvector corresponding to the smallest non-zero eigenvalue of the original
Laplacian matrix. It is evident from Table 4 and 5 that the proposed GC algorithms have
the lowest value of HE and DE on both real and synthetic data sets as compared to another
state of the art algorithms which indicate that Θlift learned from coarsened graph matrix Θc

is closer to original graph matrix Θ.

Data set r=k
p

REE HE RE in log(·)
FGC LVN LVE FGC LVN LVE FGC LVN LVE

Minnesota
0.7
0.5
0.3

0.013
0.015
0.026

0.05
0.16
0.47

0.09
0.28
0.51

0.85
1.300
1.808

0.70
1.53
2.40

1.12
1.77
2.39

1.16
1.64
1.95

1.37
1.88
2.14

1.51
1.97
2.15

Airfoil
0.7
0.5
0.3

0.013
0.014
0.032

0.03
0.09
0.19

0.02
0.09
0.18

0.742
1.073
1.520

0.78
1.22
1.93

0.80
1.26
1.91

1.17
1.66
1.98

2.65
3.15
3.50

2.68
3.22
3.51

Bunny
0.7
0.5
0.3

0.024
0.015
0.020

0.09
0.20
0.28

0.04
0.05
0.13

0.703
0.923
1.482

0.82
1.24
1.67

0.70
1.04
1.54

7.14
7.65
7.99

7.36
7.85
8.11

7.27
7.65
8.01

Table 4: This table summarizes the REE, HE and RE values obtained by GC (proposed),
LVN, and LVE on different coarsening ratios (r) for standard real graph data sets. The
proposed GC algorithm outperforms the state-of-the-art methods significantly.

Spectral Similarity: We compare the spectral similarity of the GC (proposed) framework
against LVN, and LVE. We plot the top 100 eigenvalues of original and coarsened graph
Laplacian matrices with the following coarsening ratiosr= 0.3, 0.5, and 0.7. It is evident
from Figure 7 that eigenvalues of coarsened graph matrix learn from the proposed GC
algorithm are almost similar to the original graph Laplacian matrix as compared to other
state-of-the-art algorithms.
Heat Maps of CTC: Figure 8 shows the heat maps for CTC of real data sets that lack
feature matrices. It is apparent from the Figure 8 that the proposed GC algorithm produces
a balanced mapping in the loading matrix C.

7.2.1 Two Stage Featured Graph Coarsening

Two-stage featured graph coarsening method is an extension of the GC (proposed) algorithm.
In the first step, we obtain C matrix using GC (proposed), and then in the second step,

31



kumar, Sharma, and Kumar

Data set r=k
p

REE HE RE in log(·)
GC LVN LVE GC LVN LVE GC LVN LVE

BA
0.7
0.5
0.3

0.038
0.055
0.068

0.164
0.445
0.644

0.290
0.427
0.504

0.73
1.03
1.44

0.81
1.17
1.67

0.95
1.09
1.60

6.50
7.13
7.50

6.65
7.40
7.67

7.07
7.39
7.53

WS
0.7
0.5
0.3

0.026
0.053
0.091

0.038
0.070
0.120

0.025
0.063
0.107

0.62
1.03
1.48

0.75
1.13
1.59

0.68
1.03
1.52

4.87
5.37
5.70

4.92
5.43
5.76

4.92
5.42
5.75

ER
0.7
0.5
0.3

0.053
0.078
0.101

0.035
0.059
0.109

0.055
0.066
0.113

0.71
1.05
1.40

0.77
1.06
1.49

0.65
0.97
1.45

8.02
8.53
8.86

8.07
8.56
8.89

8.15
8.55
8.89

RGG
0.7
0.5
0.3

0.024
0.050
0.086

0.069
0.160
0.234

0.033
0.052
0.127

0.58
0.93
1.50

0.68
1.20
2.07

0.76
1.02
1.57

5.64
6.16
6.50

5.88
6.38
6.63

5.82
6.20
6.54

Table 5: REE, HE, and RE in log(·) values on Barabasi Albert (BA), Watts Strogatz (WS),
Erdos Renyi (ER), and Random Geometric Graph (RGG) data sets. The GC (proposed)
algorithm shows superior performance over competing benchmarks.
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Figure 7: This figure shows the top-100 eigen value plots for original graph and coarsened
graphs obtained by GC (proposed), LVN and LVE for real data sets.

we learn the smooth feature matrix of coarsened graph Xc using (59). The computational
complexity of GC algorithm is less as compared to the FGC algorithm. Two stage Featured
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(a) Minnesota (b) Bunny (c) Airfoil

Figure 8: This figure presents the heat maps of CTC for real data sets which do not have
the feature matrix. It is evident that the loading matrix C obtained by the proposed GC
algorithm results in a balanced mapping

graph coarsening algorithm can be used for large data sets. The performance comparison of
FGC and two stage graph coarsening algorithm is in Table 6.

Data set r=k
p

HE
FGC Two stage GC

Cora
0.7
0.5
0.3

1.71
1.18
0.72

1.84
1.40
0.85

Citeseer
0.7
0.5
0.3

1.80
1.05
0.85

2.08
1.09
0.902

Polblogs
0.7
0.5
0.3

2.89
2.70
1.73

2.64
2.38
2.14

ACM
0.7
0.5
0.3

1.86
0.98
0.45

2.21
1.84
1.095

Table 6: This table summarizes the HE value obtained by FGC (proposed) and two stage
GC (proposed) on different coarsening ratios (r) for standard real graph data sets.

7.3 Performance Evaluation for the FGCR Algorithm

REE, HE and RE analysis: To show the experimental correctness of the FGCR algorithm,
we computed REE, HE, and RE on coarsening ratio r =0.7 for different reduction ratios
(rr) = 0.3, 0.5, and 0.7 respectively, which is defined by rr = d

n , where n is the feature
dimension corresponding to each node in the original graph data and d is the feature
dimension corresponding to each super-node in the coarsened graph. It is evident from Table
7 that the FGCR algorithm has a similar performance to the FGC algorithm in ensuring the
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properties of the original graph in the coarsened graph while reducing the feature dimension
of each super-node of the coarsened graph.

Data set r=k
p rr REE HE RE

Cora
0.7
0.7
0.7

0.3
0.5
0.7

0.02
0.02
0.02

0.98
0.92
0.77

2.2
2.17
1.84

Citeseer
0.7
0.7
0.7

0.3
0.5
0.7

0.023
0.02
0.02

1.27
1.09
1.04

2.140
1.79
1.78

Polblogs
0.7
0.7
0.7

0.3
0.5
0.7

0.09
0.07
0.03

2.195
2.187
2.067

6.30
6.26
6.095

ACM
0.7
0.7
0.7

0.3
0.5
0.7

0.081
0.069
0.051

0.85
0.78
0.69

4.30
4.120
3.95

Table 7: REE, HE, and RE values for FGCR (proposed) algorithm on Cora, Citeseer,
Polblogs, and ACM.

Spectral Similarity: In Figure (9), we have shown the spectral similarity of the original
graph and coarsened graph learned by FGCR. It is evident that the eigenvalue plot for
coarsening ratio r=0.7 and the reduction ratio rr =0.7 is close to the original graph
eigenvalues.

(a) Cora (b) Citeseer (c) Polblogs (d) ACM

Figure 9: This figure plots the top-100 eigenvalues of the coarsened graph obtained by FGCR
against the original graph for Cora, Citeseer, Polblogs, and ACM data sets.

7.4 Graph Coarsening under Adversarial Attack

Graph Coarsening techniques rely on the edge connectivity of the graph network while
reducing its data size. But in the real world, we may come across adversarial attacked graph
data with poisoned edges or node features creating noise to it and therefore can mislead to
poor graph coarsening of our graph data. Most of the adversarial attacks on the graph data
are done by adding, removing, or re-wiring its edges (Runwal et al., 2022; Dai et al., 2018)
As the state-of-the-art graph coarsening methods takes only the graph matrix as input to
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learning the coarsened graph. However, the FGC (proposed) method will use node features
along with a graph matrix to learn the coarsened graph. Now, in adversarial attacked graph
data, consider a poisoned edge Eij between the nodes i and j with features Xi and Xj

respectively. Poisoned edge Eij wants to map i-th and j-th node into the same super-node
as having an edge between them. But, actually, there is no edge between i-th and j-th node
in the original graph (without any noise). However, if in the original graph(without noise)
Xi and Xj are not having similar features, then the FGC algorithm reduces the probability
of mapping i-th and j-th node into the same super-node, due to the smoothness property i.e.,
if two nodes are having similar features then there must be an edge between them. Finally,
the smoothness or Dirichlet energy term in (37) opposes the effect of an extra edge due to
an adversarial attack while doing the coarsening. Furthermore, we performed experiments
on Cora, Citeseer, and ACM data sets by adding noise (extra edges) to their original graph
structures. The results shown in Table 8 show that FGC (proposed) performs well even on
noisy graph data sets as compared to other state-of-the-art algorithms of graph coarsening.

REE and DE analysis We have attacked the real data sets by perturbation rate (pr) of
10% and 5%, i.e., the number of extra edges added to perturb the real data sets are 10% or
5% of the total number of edges in original graphs. We have compared the FGC (proposed),
LVN, and LVE for REE and DE values. It is evident that FGC outperforms the existing
state-of-the-art algorithm.

Data set r=k
p

REE(Θ,Θc, 100) DE
pr(%) FGC LVN LVE FGC LVN LVE

Cora

0.3
0.3
0.5
0.5

10
5
10
5

0.084
0.069
0.048
0.047

0.615
0.614
0.483
0.482

0.668
0.693
0.470
0.498

6724
6310
7734
7336

39575
36686
70348
66447

35719
32137
69263
65606

Citeseer

0.3
0.3
0.5
0.5

10
5
10
5

0.084
0.063
0.088
0.072

0.715
0.718
0.539
0.520

0.710
0.728
0.493
0.507

6759
5895
6239
6565

41730
36611
90022
84303

41300
34897
92593
84476

ACM

0.3
0.3
0.5
0.5

10
5
10
5

0.027
0.029
0.017
0.011

0.812
0.872
0.643
0.594

0.650
0.720
0.367
0.357

12741
11822
15563
16239

180816
110788
418559
442640

244215
177451
580695
557645

Table 8: REE and DE results for Cora, Citeseer, and ACM for 10% and 5% perturbation by
FGC (proposed), LVN, and LVE.

Spectral Similarity: In this section, we have shown in Figure 10 the spectral similarity
of the coarsened graph obtained by FGC and the original graph using eigenvalues plots on
different data sets for coarsening ratio r=0.3 and perturbation rate pr = 10% and 5%.
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Figure 10: Top-100 eigenvalues plots of original graph and coarsened graph obtained by
FGC(proposed) algorithm and it is evident that FGC outperforms state of the art algorithm
on 10% and 5% perturbation attack.

7.5 Application on Graph Classification

We have demonstrated the utility of FGC for scaling up the graph neural network (GNN)
for the graph classification task and compared it against a deep learning-based method
known as OTCOARSENING (Ma and Chen, 2021) for the standard data sets in Table
9. As the original graphs are sparse, we learned a sparse coarsened graph by adding the
following regularizer h(Θc) = ‖CTΘC‖2F in the objective function (38). The regularizer is
differentiable and convex in C. The update rule of loading matrix C is modified by adding
2ΘC(t)(C(t)TΘC(t)) in ∇f(C(t)), while update rule of X̃ remains the same.

The integration of the FGC method with the GNN outperforms OTCOARSENING
for the graph classification task both in terms of accuracy and run time complexity. The
comparison of FGC against OTCOARSENING is performed by comparing relative eigenerror
and graph classification performance by measuring graph classification accuracy (ACC)
and the total time (τ) in seconds on r = 0.5 coarsening ratio. Total runtime is the time
required for coarsening and classification. We use a 2-layer multi-layer perceptron (MLP)
as in OTCOARSENING. After obtaining a coarsened graph using FGC, we further feed
it through 2-layer MLP for graph classification. We believe the theoretical guarantees and
efficient update rules of the FGC are the key features enabling it to have better accuracy
and better time complexity. This implies that FGC can be seamlessly integrated with deep
learning frameworks.

Data sets: The experiments of graph classification are performed on the following four
data sets as described in Table 9:
Experimentation Details: The training of GNN is performed using adam optimizer with
hyperparameter tuned using grid search, i.e., learning rate 0.001 for 10 to 50 epochs on
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Data set MUTAG PROTEIN NCI109 IMDB-B
No. of graphs 188 1113 4227 1000
No. of classes 2 2 2 2
Avg. no. of nodes 17.93 39.06 29.68 19.77
Avg. node degree 2.21 3.73 2.17 9.76

Table 9: Data sets for graph classification task.

80% of the graph data, and the model is tested on the remaining 20% of graph data for
classification accuracy. The results for both FGC and OTCOARSENING are evaluated
using 10-fold cross-validation. For experiments with OTCOARSENING, we have used the
open source code provided by (Ma and Chen, 2021). The coarsening ratio is set to 0.5 for
both methods.

Data set REE(FGC) REE(OT) ACC(FGC) ACC(OT) τ(FGC) τ(OT)
MUTAG 0.18 0.46 86.2 85.6 30 65
PROTEIN 0.48 0.73 76.5 74.9 272 1080
NCI109 0.12 0.36 69.2 68.5 920 12080
IMDB-B 0.41 0.75 75.5 74.6 192 878

Table 10: The table summarizes the Relative eigenerror (REE), graph classification ac-
curacy(ACC), and total run time(coarsening+classification) τ(in seconds) results for the
FGC and OTCOARSENING (OT) algorithms. It is evident that the FGC outperforms
OTCOARSENING.

7.6 Application of FGC in Classification

In this section, we present one of the many applications where FGC can be used which
is node-based classification. Zachary’s karate club is a social network that consists of
friendships among members of a university-based karate club. This data set consists of 34
nodes, 156 edges, and 2 classes. We aim to classify these nodes into two groups. Its graph
is shown in Figure 11(a) with two classes where class-1 is colored in pink and class-2 is
colored in yellow. We performed experiments on FGC, graph clustering techniques, and
state-of-the-art graph coarsening method, i.e., LVN, to classify these 34 nodes into 2 classes
or two super-node. FGC (proposed) classification performance also validates the importance
of features of graph data during graph coarsening and till now none of the pre-existing
coarsening or clustering methods have been taken into account. For the FGC algorithm
feature matrix, X of size 34× n is generated by sampling from X ∼ N (0,Θ†), where Θ is
the Laplacian matrix of the given network. Below, we have shown the node classification
results of multiple techniques by coloring members of each group, i.e., super-node, with the
same color i.e. members of super-node 1 or group 1 are colored in pink and members of
super-node 2 or group 2 are colored in yellow. Moreover, the nodes sent to the wrong groups
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are colored in orange which means they are misclassified. The results of FGC below are
shown for n = 600, however, an n of the order of 5 ∗ 34 has been observed to perform well.

Figure 11: This figure evaluates the classification performance of the FGC algorithm on the
classic Zachary’s karate club data set (Zachary, 1977) into 2 classes: (a) Ground truth, (b)
Graclus(Dhillon et al., 2007), (c) spectral clustering ratio cut (Ng et al., 2001) (d) spectral
clustering normalized cut (Ng et al., 2001) (e) LVN (Loukas, 2019) and (f) FGC (Proposed).
Orange nodes indicate misclassified points, FGC demonstrates a better performance, it
resulted in only 1 misclassified point, while the number of misclassified points for (b), (c),
(d), and (e) are 11, 7, 2 and 5, respectively.

We have also performed classification of these 34 nodes of Karate club data set into 4
groups or 4 supernode using spectral clustering ratio cut, spectral clustering normalized
cut, LVN and FGC (proposed) and it is evident in Figure 12 that classification accuracy
of FGC(proposed) is highest as compared to other state of the art algorithms. Similarly,
we have performed a classification of polblogs data set into 2 classes. Here, the input is a
political blog consisting of 1490 nodes, the goal is to classify the nodes into two groups. For
the FGC algorithm, the feature matrix X of size 1490× 5000 is generated by sampling from
X ∼ N (0,Θ†), where Θ is the Laplacian matrix of the given network. The FGC algorithm
and Graclus correctly classify 1250 and 829 nodes respectively. However, the performance of
LVN and spectral clustering are not competent. The FGC result also demonstrates that
the features may help in improving the graph-based task, and for some cases like the one
presented here the features can also be artificially generated governed by the smoothness
and homophily properties.

7.7 Effect of Hyperparameters

The FGC algorithm has 3 hyperparameters:(i) γ for ensuring the coarsened graph is connected,
(ii) α to learn X̃ correctly, (iii) λ to enforce sparsity and orthogonality on loading matrix
C. From figures 13, 14, and 15, it is observed that the algorithm is not sensitive to the
hyperparameters (λ, γ, α) any moderate value of can be used for the FGC algorithm.
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(a) Ground truth (b) Spectral clustering ratio cut

(c) Spectral clustering normalized cut (d) LVN

(e) FGC(proposed)

Figure 12: This figure evaluates the classification performance of the FGC algorithm on
the classic Zachary’s karate club data set (Zachary, 1977) into 4 classes: (a) Ground truth,
(b) spectral clustering ratio cut (Ng et al., 2001) (c) spectral clustering normalized cut (Ng
et al., 2001) (d) LVN (Loukas, 2019) and (e) FGC (Proposed). It is evident that FGC
demonstrates a better performance, it resulted in 4 misclassified point, while the number of
misclassified points for (b), (c) and (d) are 7, 11, and 24 respectively.
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Figure 13: Fig.(a-e) shows the eigenvalue plot of original graph and coarsened graph obtained
by FGC using hyperparameters α = 500, λ = 1000 and varying γ in between (200-5000). It
is evident that for a moderate γ, i.e., between 200 to 2000, the REE is almost similar, and
our algorithm is consistent.
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Figure 14: Fig.(a-e) shows the eigen value plot of original graph and coarsened graph
obtained by FGC using hyperparameters λ = 1000, γ = 500 and varying α in between
200-5000). It is evident that for a moderate α, i.e., between 200 to 2000, the REE is almost
similar, and our algorithm is consistent.
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Figure 15: Fig.(a-e) shows the eigenvalue plot of original graph and coarsened graph obtained
by FGC using hyperparameters α = 500, γ = 1000 and varying λ in between (200-5000). It
is evident that for a moderate λ, i.e., between 200 to 2000, the REE is almost similar, and
our algorithm is consistent.

7.8 Affect of features on Coarsening: Toy Example

Here we demonstrate that the feature plays an important role in obtaining a coarsened
graph matrix. Consider two given graph data G(Θ, X1) and G(Θ, X2) have the same graph
matrices but with different associated features. The coarsened graph matrices obtained with
the FGC algorithm for these two data sets will be different, while the methods like LVN
and LVE which do not consider the features while doing coarsening will provide the same
coarsening graph matrix for these two different data sets. See the Figures 16 and 17 for the
demonstration.
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(a) Original graph G(Θ, X1) (b) Coarsened graph Gc(Θc, X̃1)

C =


0 1 0
1 0 0
0 1 0
0 1 0
0 0 1

 , Θc =

 6 −6 0
−6 11 −5
0 −5 5

 , Wc =

0 6 0
6 0 5
0 5 0

 , X̃ =

0.23 0.97
0.26 0.96
0.31 0.94



Figure 16: FGC on toy example having feature matrix X1

(a) Original graph G(Θ, X2) (b) Coarsened graph Gc(Θc, X̃2)

C =


1 0 0
0 1 0
0 1 0
1 0 0
0 0 1

 , Θc =

 5 −5 0
−5 10 −5
0 −5 5

 , Wc =

0 5 0
5 0 5
0 5 0

 , X̃ =

0.27 0.96
0.25 0.96
0.28 0.95



Figure 17: FGC on toy example having feature matrix X2.

8. Conclusion

We introduced a novel and general framework for coarsening graph data named as Featured
Graph Coarsening (FGC) which considers both the graph matrix and feature matrix jointly.
In addition, for the graph data which do not have a feature matrix, we introduced the
graph coarsening(GC) algorithm. Furthermore, as the graph size is reducing, it is desirable
to reduce the dimension of features as well, hence we introduced FGCR algorithm. We
posed FGC as a multi-block non-convex optimization problem which is an efficient algorithm
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developed by bringing in techniques from alternate minimization, majorization-minimization,
and log determinant frameworks. The developed algorithm is provably convergent and
ensures the necessary properties in the coarsen graph data like ε-similarity and spectral
similarity. Extensive experiments with both real and synthetic data sets demonstrate the
superiority of the proposed FGC framework over existing state-of-the-art methods. The
proposed approach for graph coarsening will be of significant interest to the graph machine
learning community.
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9. Appendix

9.1 Proof of Lemma 6

Consider the function −γlog det(CTΘC + J). The Lipschitz constant L1 of the function
−γlog det(CTΘC + J) is related to the smallest non zero eigenvalue of coarsened Laplacian
matrix CTΘC = Θc, which is bounded away from δ

(k−1)2 (Rajawat and Kumar, 2017), where
δ is the minimum non zero weight of coarsened graph. However, for practical purposes, the
edges with very small weights can be ignored and set to be zero, and we can assume that
the non-zero weights of the coarsened graph Gc are bounded by some constant δ ≥ 0. On
the other hand, we do not need a tight Lipschitz constant L1. In fact, any L′

1 ≥ L1 makes
the function g(C|C(t)) satisfy (43).

Now, consider the tr(·) term:∣∣∣tr(X̃TC1TΘC1X̃)−tr(X̃TC2TΘC2X̃)
∣∣∣ =

∣∣∣tr(X̃TC1TΘC1X̃)− tr(X̃TC2TΘC1X̃)

+ tr(X̃TC2TΘC1X̃)− tr(X̃TC2TΘC2X̃)
∣∣∣ (74)

≤
∣∣∣tr(X̃T (C1− C2)TΘC1X̃)

∣∣∣+ ∣∣∣tr(X̃TC2TΘ(C1− C2)X̃
∣∣∣ (75)

≤ ‖tr‖‖X̃T (C1−C2)TΘC1X̃‖F+‖tr‖‖X̃TC2TΘ(C1−C2)X̃‖F (76)
≤ ||tr||||X̃||2F ||Θ||||C1− C2||F (||C1||F+||C2||F ) (77)
≤ L2||C1− C2||F (78)

We applied the triangle inequality after adding and subtracting tr(X̃TC2TΘC1X̃) in
(74) to get (75). Using the property of the norm of the trace operator i.e. ‖tr‖= sup

A 6=0

|tr(A)|
||A||F

from Rn×n to R in (75) to get (76). Applying the Frobenius norm property i.e. ‖AB‖F≤
‖A‖F ‖B‖F in (76) to get (77). Since, in each row of C is having only one non zero entry i.e.
1 and rest entries are zero so, ‖C1‖F= ‖C2‖F= √p and putting this in (77), we get (78)
where, L2 = 2√p‖tr‖‖X̃‖2F ||Θ||F .

Next, consider the function α
2 ‖CX̃ −X‖

2
F :

α

2 ‖CX̃ −X‖
2
F = α

2 tr((CX̃ −X)T (CX̃ −X)) (79)

= α

2 tr(X̃
TCTCX̃ −XTCX̃ +XTX − X̃TCTX) (80)

= α

2 (tr(X̃TCTCX̃)− tr(X̃TCTX)− tr(XTCX̃) + tr(XTX)) (81)

With respect to C, tr(XTX) is a constant and tr(X̃TCTCX̃), tr(X̃TCTX), tr(XTCX̃) are
Lipschitz continous function and proof is very similar to the proof of tr(·) as in (74)-(78),
and sum of Lipschitz continuous function is Lipschitz continuous so α

2 ‖CX̃ − X‖
2
F is L3

Lipschitz continuous.

Finally, consider the function λ
2‖C

T ‖21,2. Note that we have C ≥ 0 means all the elements
of C are non-negative, |C|ij= Cij ≥ 0. With this the `1-norm becomes summation, and we
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obtain the following:

‖CT ‖21,2 =
p∑
i=1

(
k∑
j=1

Cij)2 (82)

=
p∑
i=1

([CT ]i1)2 (83)

= ‖C1‖2F (84)
= tr(1TCTC1) (85)

where 1 is a vector having all entry 1, [CT ]i is i-th row of loading matrix C and since each
entry of C is Cij ≥ 0. tr(1TCTC1) is Lipschitz continuous function and proof is similar to
proof of tr(·) as in (74)-(78) so ‖CT ‖21,2 is L-4 Lipschitz continuous function.
Addition of Lipschitz continuous functions is Lipschitz continuous so we can say that f(C)
in (39) is L- Lipschitz continuous function where L = max(L1, L2, L3, L4).

9.2 Proof of Lemma 7

The Lagrangian function of (45) is:

L(C,µ1,µ2) =1
2C

TC − CTA− µ>1 C + µT
2
[
‖CT1 ‖22−1 ‖CT2 ‖22−1 . . . ‖CTp ‖22−1

]T
(86)

where µ1 and µ2 are the dual variable. The KKT conditions of (45) is

C −A− µ1 + 2
[
µ21C

T
1 , . . . µ2pC

T
p ]T = 0, (87)

µT
2
[
‖CT1 ‖22−1 ‖CT2 ‖22−1 . . . ‖CTp ‖22−1

]T
= 0, (88)

µ>1 C = 0, (89)
C ≥ 0, (90)
µ1 ≥ 0 (91)

‖[CT ]i‖22≤ 1 (92)
µ2 ≥ 0 (93)

The optimal solution of C that satisfies all KKT conditions (87)-(93) is

Ct+1 = (A)+

‖[AT ]i‖2
(94)

where A =
(
C(t) − 1

L∇f
(
C(t)

))+
and ‖[AT ]i‖ is the i-th row of matrix A. This concludes

the proof.

9.3 Proof of Theorem 1

We show that each limit point (Ct, X̃t) satisfies KKT condition for (38). Let (C∞, X̃∞) be
a limit point of the generated sequence.
The Lagrangian function of (38) is
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L(C, X̃,µ1,µ2) = −γlog det(CTΘC + J) + tr(X̃TCTΘCX̃) + α

2 ||X − CX̃||
2
F

+λ

2

p∑
i=1
‖[CT ]i‖21−µ>1 C + µT

2
[
‖CT1 ‖22−1 ‖CT2 ‖22−1 . . . ‖CTp ‖22−1

]T
(95)

where µ1 and µ2 are the dual variables.
(1) The KKT condition with respect to C is

−2γΘCZ−1+α
(
CX̃−X

)
X̃ᵀ+2ΘCX̃X̃T+λC111k×k−µ1+2

[
µ21C

T
1 , . . . µ2pC

T
p ]T =0, (96)

µT
2
[
‖CT1 ‖22−1 ‖CT2 ‖22−1 . . . ‖CTp ‖22−1

]T
= 0, (97)

µ>1 C = 0, (98)
µ1 ≥ 0, (99)
C ≥ 0, (100)

µ2 ≥ 0, (101)
‖[CT ]i‖22≤ 1 (102)

where 1k×k is a k × k matrix whose all entry is one and Z = CTΘC + J . C is derived by
using KKT condition from (45):

C∞ − C∞ + 1
L

(
− 2γΘC∞((C∞)TΘC∞ + J)−1 + α(C∞X̃∞ −X)(X̃∞)T

+2ΘC∞X̃∞(X̃∞)T + λC∞111k×k
)

= 0 (103)

For µ1 = 0 and µ2i[CT ]∞i = 0 ∀ i = 1, 2, . . . p, we observe that C∞ satisfies the KKT
condition.
(2) The KKT condition with respect to X̃ is

2CTΘCX̃ + αCT (CX̃ −X) = 0

This concludes the proof.

9.4 Proof of Theorem 2

We have ‖X‖Θ=
√
tr(XTΘX) and ‖X̃‖Θ=

√
tr(X̃TΘcX̃). Taking the absolute difference

between ‖X‖Θ and ‖X̃‖Θc , we get:

∣∣∣‖X‖Θ−‖X̃‖Θc

∣∣∣ =
∣∣∣√tr(XTΘX)−

√
tr(X̃TΘcX̃)

∣∣∣ (104)

45



kumar, Sharma, and Kumar

As Θ is a positive semi-definite matrix using Cholesky’s decomposition Θ = STS in
(104), we get the following inequality:

∣∣∣‖X‖Θ−‖X̃‖Θc

∣∣∣ =
∣∣∣√tr (XTΘX)−

√
tr
(
X̃TΘcX̃

) ∣∣∣ (105)

=
∣∣∣√tr (XTSTSX)−

√
tr
(
X̃TCTSTSCX̃

)∣∣∣ (106)

=
∣∣∣‖SX‖F−‖SP †PX‖F ∣∣∣ (107)

≤ ‖SX − SP †PX‖F (108)
≤ ε‖X‖Θ (109)

From the optimality condition of the optimization problem and the update of X̃ in (46)
we have the following inequality

‖X̃‖Θc≤ ‖X‖Θ,

holds. Using this in (109) we get ∣∣∣‖X‖Θ−‖X̃‖Θc

∣∣∣
‖X‖Θ

≤ 1 (110)

The equation (109) and (110) implies that the range of ε ∈ (0, 1). Next, by applying the
property of the modulus function in (109), we obtain the following inequality for all the n
samples:

(1− ε)‖X‖Θ≤ ‖X̃‖Θc≤ (1 + ε)‖X‖Θ (111)

where ε ∈ (0, 1) and this concludes the proof.
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