
Journal of Machine Learning Research 24 (2023) 1-55 Submitted 4/22; Revised 5/23; Published 6/23

GFlowNet Foundations

Yoshua Bengio∗ yoshua.bengio@mila.quebec
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Abstract

Generative Flow Networks (GFlowNets) have been introduced as a method to sample a
diverse set of candidates in an active learning context, with a training objective that makes
them approximately sample in proportion to a given reward function. In this paper, we
show a number of additional theoretical properties of GFlowNets, including a new local and
efficient training objective called detailed balance for the analogy with MCMC. GFlowNets
can be used to estimate joint probability distributions and the corresponding marginal dis-
tributions where some variables are unspecified and, of particular interest, can represent
distributions over composite objects like sets and graphs. GFlowNets amortize the work
typically done by computationally expensive MCMC methods in a single but trained gen-
erative pass. They could also be used to estimate partition functions and free energies,
conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as
marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce
variations enabling the estimation of entropy and mutual information, continuous actions
and modular energy functions.

1. Introduction

Building upon the introduction of Generative Flow Networks (GFlowNets) by Bengio et al.
(2021), we provide here an in-depth formal foundation and expansion of the set of theoretical
results in ways that may be of interest for the active learning scenario of Bengio et al. (2021)
but also much more broadly.
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1.1 What is a GFlowNet ?

GFlowNets have properties which make them well-suited to perform amortized probabilistic
inference in general, whether for sampling or for marginalizing. Sampling takes place at
training time while run-time sampling or computations of marginalized quantities can be
done in a single pass through a sequence of constructive stochastic steps. This makes
GFlowNets an interesting alternative to Monte-Carlo Markov chains (MCMC) and related
to amortized variational inference (Malkin et al., 2023).

Because sampling of a compositional object s can be achieved through a sequence of
stochastic steps, very rich multimodal distributions PT (s) over such objects can be repre-
sented, and the offline training objectives make it possible to explore and discover modes of
the distribution of interest. The key property of GFlowNets is that their sampling policy is
trained to make the probability PT (s) of sampling an object s approximately proportional
to the value R(s) of a given reward function applied to that object. We also talk of an en-
ergy function E(s) = − logR(s), i.e., the reward function is non-negative and corresponds
to an unnormalized probability. Whereas one typically trains a generative model from a
dataset of positive examples, a GFlowNet is trained to match the given energy or reward
function and convert it into a sampler. We view that sampler as a generative policy because
the composite object s is constructed through a sequence of smaller stochastic steps (see
Fig. 1), often corresponding to constructively composing different elements of s, like the
edges of a graph.

This conversion of an energy function or unnormalized probability function to a sampler
is similar to what MCMC methods achieve but once trained, GFlowNets will generate a
sample in one shot instead of generating a long sequence of samples whose distribution would
gradually approach the desired one. GFlowNets thus avoid the lengthy stochastic search in
the space of such objects and the associated mode-mixing intractability challenge of MCMC
methods (Jasra et al., 2005; Bengio et al., 2013; Pompe et al., 2020). Multiple iid samples
can be obtained from the GFlowNet by calling the sampler multiple times. GFlowNets
exchange that intractability of sampling with MCMC for the challenge of amortized training
of the generative policy. The latter problem would be equally intractable if the modes of the
reward function did not have a inherent (but not necessarily known) structure over which
the learner could generalize, i.e., the learner had almost no chance to correctly guess where
to find new modes based on (i.e., training on) those it had already visited.

The energy function or reward function (exponential of minus energy) is evaluated only
at the end of the sequential construction process for objects s, in what we call a terminating
state. Every such constructive sequence starts in the single initial state s0 and ends in a
terminal state. As illustrated in Figure 2, we can visualize the set of all trajectories starting
from s0 and ending in a terminal state s. The term ”flow” in ”generative flow networks”
refers to unnormalized probabilities that can be learned by GFlowNet learning procedures.
The flow in an intermediate state s is a weighted sum of the non-negative rewards of the
terminating states reachable from s. Those weights are such as to avoid double-counting:
if we were to inject a fixed flow of liquid in s0 and dispatch that liquid in each child of any
state s proportionally to the GFlowNet policy for choosing a child of s, we would obtain
the flow at each state and the flow at terminating states would match the reward function
at those states. As shown in greater detail here and for the first time in the first GFlowNet
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Figure 1: A diagram of how a GFlowNet iteratively constructs an object. We adopt notation
that is common in the reinforcement learning literature: st represents the state of the
partially constructed object (in this case, a graph) at time t, at represents the action taken
by the GFlowNet at time t to transition to state st+1 = T (st, at). In this diagram, the
GFlowNet takes a 3-node graph as input and determines an action to take. The action,
combined with the environment transition function T (st, at), determines st+1: a four-node
graph. This process repeats until an exit action is sampled and the sample is complete.

paper (Bengio et al., 2021), this can be achieved with a flow constraint at each state: the
sum of incoming flows must match the sum of outgoing flows.

1.2 Contributions of this paper

In this paper, an important contribution is the notion of conditional GFlowNet, which en-
ables estimation of intractable sums corresponding to marginalization over many steps of
object construction, and can thus be used to compute free energies1 over different types
of joint distributions, perhaps most interestingly over sets and graphs. This marginaliza-
tion also enables estimation of entropies, conditional entropies and mutual information.
GFlowNets can thus be generalized to estimate multiple flows corresponding to modeling a
rich outcome (rather than a scalar reward function) .

We refer the reader to Bengio et al. (2021) and Sec. 7 for a discussion of related ap-
proaches and differences with common generative models and reinforcement learning (RL)
methods. In an RL context, two interesting properties of GFlowNets already noted in that
paper are that they (1) can be trained in an offline manner with trajectories sampled from a
distribution different from the one represented by the GFlowNet and (2) they match the re-
ward function in probability rather than try to find a configuration which maximizes rewards
or returns. The latter property is particularly interesting in the context of exploration, to
ensure the configurations sampled from the generative policy are both interesting and di-

1. In machine learning, a free energy is the logarithm of an unnormalized marginal probability, a generally
intractable sum of exponentiated negative energies.
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Figure 2: Illustration of the structure of a Generative Flow Network (GFlowNet), as a
pointed DAG over states s, with particles flowing along edges to represent the flow function.
Any object sampled by the GFlowNet policy can be obtained by starting from initial state
s0 and then at each step choosing a child with probability proportional to the GFlowNet
policy’s transition probability. This process stops when a terminating action is chosen
from a terminating state s (yielding a terminal state sf ), at which point a reward R(s) is
obtained. The figure shows a tiny GFlowNet and the possible trajectories from s0 to any
of the terminal states. It illustrates that in general a state can be reached through several
trajectories. GFlowNet algorithms learn a policy such that the probability of sampling
terminating state s is proportional to R(s). It tries to learn a flow function F (s) and
F (s → s′) over all states (including intermediate states) s and transitions s → s′ with
F (s) = R(s) at terminal states and F (s0) being the sum of rewards over all terminal states.
A sufficient property to achieve this is that at each state the sum of incoming flows equals
the sum of outgoing flows.

verse. It is also interesting to transform GFlowNets into amortized probabilistic inference
machines: if we choose the reward function to be a prior (over some random variable) times
a likelihood (how well some data is fit given that choice of random variable value), then the
GFlowNet policy learns to sample from the corresponding Bayesian posterior (which is pro-
portional to prior times likelihood). The ability of GFlowNets to generate a diverse set of
samples then corresponds to the ability to sample from the modes of the target distribution.

An important source of inspiration for GFlowNets is the way information propagates
in temporal-difference RL methods (Sutton and Barto, 2018). Both rely on a principle of
coherence for credit assignment which may only be achieved asymptotically when training
converges. While exact gradient calculation may be intractable, because the number of
paths in state space to consider is exponentially large, both methods rely on local coherence
between different components and a training objective that states that if all the learned
components are coherent with each other locally, then we obtain a system that estimates
the quantities of interest globally. Examples include estimation of expected discounted
returns in temporal-difference methods and probability measures with GFlowNets.

This paper extends the theory of the original GFlowNet construction (Bengio et al.,
2021) in several directions, including a new local training objective called detailed balance
(for the analogy with the detailed balance condition of Monte-Carlo Markov chains) which
avoids forming explicit sums required by the previously proposed flow matching loss, as
well as formulations enabling the calculation of marginal probabilities (or free energies)
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for subsets of variables, more generally for subsets of larger sets, or subgraphs, and their
application to estimating entropy and mutual information. Finally, whereas the basic for-
mulation of GFlowNets assumes a given reward or energy function, this paper considers
how the energy function could be jointly learned with the GFlowNet, opening the door to
novel energy-based modeling methodologies and a modular structure for both the energy
function and the GFlowNet.

1.3 GFlowNets in other works

In addition to the theory presented in this paper, Malkin et al. (2023) and Zimmermann
et al. (2022) prove some partial equivalences between GFlowNets and hierarchical variational
methods, providing yet more theoretical evidence for the efficacy of GFlowNets in learning
to sample proportionally to a given reward function. These works also provide evidence for
the superiority of GFlowNets in off-policy settings.

GFlowNets have found a wide array of applications due to the associated diversity of
generated samples. In contexts where a cheap proxy for the true reward function exists,
GFlowNets have been used to surface samples under which to query the proxy before more
expensive evaluation under the true reward function. In these settings, the diversity of
samples generated by GFlowNets can be used for robustness to proxy misspecification and
to incorporate epistemic uncertainty. For example, Zhang et al. (2023) use GFlowNets to
produce sample schedules for operations in a computation graph, where evaluating the run-
times of sample schedules via a proxy is fast but evaluating the same schedules on target
hardware is expensive. In active learning problems, Jain et al. (2022, 2023) use GFlowNet
sampling as a subroutine inside an active learning loop as a substitute for Bayesian Op-
timization or RL-based methods. Jain et al. (2022) apply GFlowNets to search for novel
anti-microbial peptides, discover DNA sequences that have high binding activity with hu-
man transcription factors, and to find proteins with high fluorescence. Additionally, Jain
et al. (2023) develops preference-conditional GFlowNets, where a preference weight vector
is used to scalarize multiple objective functions into a single reward. The authors apply
their techniques to various molecule and DNA sequence generation tasks and find that their
methods are able to find different Pareto-optimal samples along the Pareto frontier.

GFlowNets have found applications in several other machine learning problems. For ex-
ample, Zhang et al. (2022) simultaneously train an energy-based model and a GFlowNet; the
energy function is trained with samples from a GFlowNet, which, in turn, uses the energy
function to form its reward. Their method results in a generative model for binary vectors
in high dimensions, e.g., binarized digits. Deleu et al. (2022) use a GFlowNet for structure
learning; the GFlowNet produces samples that approximates the true posterior over causal
graphs given a dataset. Their method works on both observational and interventional data,
and compares favorably to MCMC- and variational inference-based methods. Hu et al.
(2023) find maximum-likelihood estimates of latent variable models with discrete composi-
tional latents by jointly training a GFlowNet to approximately sample from the generally
intractable posterior in the E-step of the expectation-maximization (EM) algorithm.
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2. Flow Networks and Markovian Flows

2.1 Some elements of graph theory

In this section, we recall some basic definitions and properties of graphs, which are the basis
of flow networks and GFlowNets.

Definition 1 A directed graph is a tuple G = (S,A), where S is a finite set of states, and
A a subset of S ×S representing directed edges. Elements of A are denoted s→s′ and called
edges or transitions.
A trajectory in such a graph is a sequence τ = (s1, . . . , sn) of elements of S such that every
transition st→st+1 ∈ A and n > 1. We denote s ∈ τ to mean that s is in the trajectory τ ,
i.e., ∃t ∈ {1, . . . , n} st = s, and similarly s→s′ ∈ τ to mean that ∃t ∈ {1, . . . , n − 1} st =
s, st+1 = s′. For convenience, we also use the notation τ = s1 → · · · → sn. The length of
a trajectory is the number of edges in it (the length of τ = (s1, . . . , sn) is thus n− 1).
A directed acyclic graph (DAG) is a directed graph in which there is no trajectory τ =
(s1, . . . , sn) satisfying sn = s1.

Given a DAG G = (S,A), and two states s, s′ ∈ S, if there exists a trajectory in G
starting in s and ending in s′, then we write s < s′. The binary relationship “<” defines a
strict partial order (i.e. it is irreflexive, asymmetric and transitive). We write s ≤ s′ if
s < s′ or s = s′. The binary relation “≤” is a (non-strict) partial order (i.e. it is reflexive,
antisymmetric and transitive).

If there is no order relation between s and s′, we write s ≶ s′.

Definition 2 Given a DAG G = (S,A), the parent set of a state s ∈ S, which we denote
Par(s), contains all of the direct parents of s in G, i.e., Par(s) = {s′ ∈ S : s′→s ∈
A}; similarly, the child set Child(s) contains all of the direct children of s in G, i.e.,
Child(s) = {s′ ∈ S : s→s′ ∈ A}.

Definition 3 Given a DAG G = (S,A). G is called a pointed DAG if there exist two
states s0, sf ∈ S that satisfy:

∀s ∈ S \ {s0} s0 < s and ∀s ∈ S \ {sf} s < sf .

s0 is called the source state or initial state. sf is called the sink state or final state.
Because “<” is a strict partial order, these two states are unique.

A complete trajectory in such a DAG is any trajectory starting in s0 and ending in
sf . We denote such a trajectory as τ = (s0, s1, . . . , sn, sn+1 = sf ).

We denote by T the set of all complete trajectories in G, and by T partial the set of
(possibly incomplete) trajectories in G.

A state s ∈ S is called a terminating state if it is a parent of the sink state, i.e.
s→ sf ∈ A. The transition s→ sf is called a terminating edge. We denote by:

• A−f = {s→ s′ ∈ A, s′ 6= sf}, the set of non-terminating edges in G,

• Af = {s→ s′ ∈ A, s′ = sf} = A \ A−f , the set of terminating edges in G,

• Sf = {s ∈ S, s→ sf ∈ Af} = Par(sf ), the set of terminating states in G.
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Figure 3: Example of a pointed DAG G illustrating the notions of initial state (s0), final or
sink state (sf ), terminating states in Sf , with a transition to sf called a terminating edge,
in Af . A terminating state may have other children different from the sink state (e.g., the
terminating state s7).

In Fig. 3, we visualize the concepts introduced in the previous definitions.

Note that the constraint of a single source state and single sink state is only a mathemati-
cal convenience since a bijection exists between general DAGs and those with this constraint
(by the addition of a unique source/sink state connected to all the other source/sink states).

Definition 4 Let G be a pointed DAG with source state s0 and sink state sf . A forward
(resp. backward) probability function consistent with G is any non-negative function
P̂F (resp. P̂B) defined on A that satisfies ∀s ∈ S \ {sf},

∑
s′∈Child(s) P̂F (s′ | s) = 1 (resp.

∀s ∈ S \ {s0},
∑

s′∈Par(s) P̂B(s′ | s) = 1).

With pointed DAGs, consistent forward and backward probability functions, that are
probabilities over states, can be used to define probabilities over trajectories, i.e. probability
measures on some subsets of T partial. The following lemma shows how to construct such
factorized probability measures:

Lemma 5 Let G = (S,A) be a pointed DAG, and consider a forward probability function
P̂F , and a backward probability function P̂B both consistent with G. For any state s ∈
S \ {sf}, we denote by Ts,f ⊆ T partial the set of trajectories in G starting in s and ending
in sf ; and for any state s ∈ S \ {s0}, we denote by T0,s ⊆ T partial the set of trajectories in
G starting in s0 and ending in s.

Consider the extensions of P̂F and P̂B on T partial defined by:

∀τ = (s1, . . . , sn) ∈ T partial P̂F (τ) :=
n−1∏
t=1

P̂F (st+1 | st) (1)

∀τ = (s1, . . . , sn) ∈ T partial P̂B(τ) :=
n−1∏
t=1

P̂B(st | st+1) (2)
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We have the following:

∀s ∈ S \ {sf}
∑
τ∈Ts,f

P̂F (τ) = 1 (3)

∀s′ ∈ S \ {s0}
∑

τ∈T0,s′

P̂B(τ) = 1 (4)

Proof For convenience, we will use Ts→s′,sf to denote the set of trajectories starting with
s → s′ and ending in sf , and T0,s→s′ to denote the set of trajectories starting in s0 and
ending with s→ s′. This allows to write:

∀s 6= sf Ts,f =
⋃

s′∈Child(s)

Ts→s′,sf , {Ts→s′,sf , s′ ∈ Child(s)} pairwise disjoint,

∀s′ 6= s0 T0,s′ =
⋃

s∈Par(s′)

T0,s→s′ , {T0,s→s′ , s ∈ Par(s′)} pairwise disjoint.

Additionally, for any s 6= sf , we denote by ds,f the maximum trajectory length in Ts,f ; and
for any s′ 6= s0, we denote by d0,s′ the maximum trajectory length in T0,s.

We will prove Eq. (3) by strong induction on ds,f and Eq. (4) by strong induction on
d0,s′ .

Base cases: If ds,f = 1 and d0,s′ = 1, then Ts,f = {(s→ sf )} and T0,s′ = {(s0 → s′)}.
Hence,

∑
τ∈Ts,f P̂F (τ) = P̂F (s → sf ) = P̂F (sf | s) = 1 given that sf is the only child of s

(otherwise ds,f cannot be 1), and
∑

τ∈T0,s′
P̂B(τ) = P̂B(s0 | s′) = 1 given that s0 is the only

parent of s′ (otherwise d0,s′ cannot be 1).

Induction steps: Consider s 6= sf such that ds,f > 1 and s′ 6= s0 such that d0,s′ > 1.
Because of the disjoint unions written above, we have:∑

τ∈Ts,f

P̂F (τ) =
∑

s̃∈Child(s)

∑
τ∈Ts→s̃,f

P̂F (τ) =
∑

s̃∈Child(s)

P̂F (s̃ | s)
∑
τ∈Ts̃,f

P̂F (τ) = 1,

∑
τ∈T0,s′

P̂B(τ) =
∑

s̃′∈Par(s′)

∑
τ∈T0,s̃′→s

P̂B(τ) =
∑

s̃′∈Par(s′)

P̂B(s̃′ | s′)
∑

τ∈T0,s̃′

P̂B(τ) = 1,

where we used the induction hypotheses in the third equality of each line.

2.2 Trajectories and Flows

We augment pointed DAGs it with a function F called a flow. An analogy which helps to
picture flows is a stream of particles flowing through a network where each particle starts at
s0 and flowing through some trajectory terminating in sf . The flow F (τ) associated with
each complete trajectory τ contains the number of particles sharing the same path τ .

Definition 6 Given a pointed DAG, a trajectory flow (or “flow”) is any non-negative
function F : T 7→ R+ defined on the set of complete trajectories T . F induces a measure
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over the σ-algebra Σ = 2T , the power set on the set of complete trajectories T . In particular,
for every subset A ⊆ T , we have

F (A) =
∑
τ∈A

F (τ). (5)

The pair (G,F ) is called a flow network.

This definition ensures that (T , 2T , F ) is a measure space. We abuse the notation here,
using F to denote both a function of complete trajectories, and its corresponding measure
over (T , 2T ). A special case is when the event A is the singleton trajectory {τ}, where we
just write its measure as F (τ). We also abuse the notation to define the flow through either
a particular state s, or through a particular edge s→s′ in the following way.

Definition 7 The flow through a state (or state flow) F : S 7→ R+ corresponds to the
measure of the set of complete trajectories going through a particular state:

F (s) := F ({τ ∈ T : s ∈ τ}) =
∑

τ∈T : s∈τ
F (τ). (6)

Similarly, the flow through an edge (or edge flow) F : A 7→ R+ corresponds to the
measure of the set of complete trajectories going through a particular edge:

F (s→s′) := F ({τ ∈ T : s→s′ ∈ τ}) =
∑

τ∈T : s→s′∈τ
F (τ). (7)

Note that with this definition, we have F (s→s′) = 0 if s→s′ /∈ A is not an edge in the
pointed DAG (since F (∅) = 0). We call the flow of a terminating transition F (s→sf ) a
terminating flow. The following proposition relates the state flows and the edge flows:

Proposition 8 Given a flow network (G,F ). The state flows and edge flows satisfy:

∀s ∈ S \ {sf} F (s) =
∑

s′∈Child(s)

F (s→ s′) (8)

∀s′ ∈ S \ {s0} F (s′) =
∑

s∈Par(s′)

F (s→ s′) (9)

Proof Given s 6= sf , the set of complete trajectories going through s is the (disjoint) union
of the sets of trajectories going through s→ s′, for all s′ ∈ Child(s):

{τ ∈ T : s ∈ τ} =
⋃

s′∈Child(s)

{τ ∈ T : s→ s′ ∈ τ}.

Therefore, it follows that:

F (s) =
∑
τ : s∈τ

F (τ) =
∑

s′∈Child(s)

∑
τ : s→s′∈τ

F (τ) =
∑

s′∈Child(s)

F (s→ s′)

Similarly, Eq. (9) follows by writing the set of complete trajectories going though s′ 6= s0
as the (disjoint) union of the sets of trajectories going through s→ s′ for all s ∈ Par(s′).
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2.3 Flow Induced Probability Measures

Definition 9 Given a flow network (G,F ), the total flow Z is the measure of the whole
set T , corresponding to the sum of the flows of all the complete trajectories:

Z := F (T ) =
∑
τ∈T

F (τ). (10)

Proposition 10 The flow through the initial state equals the flow through the final state
equals the total flow Z.

Proof Since ∀τ ∈ T , s0, sf ∈ τ , applying Eq. (6) to s0 and sf yields

F (s0) =
∑
τ∈T

F (τ) = Z, (11)

F (sf ) =
∑
τ∈T

F (τ) = Z. (12)

Intuitively, Prop. 10 justifies the use of the term “flow”, introduced by Bengio et al. (2021),
by analogy with a stream of particles flowing from the initial state to the final states.

We use the letter Z in Def. 9, often used to denote the partition function in probabilistic
models and statistical mechanics, because it is a normalizing constant which can turn the
measure space (T , 2T , F ) defined above into the probability space (T , 2T , P ):

Definition 11 Given a flow network (G,F ), the flow probability is the probability mea-
sure P over the measurable space (T , 2T ) associated with F :

∀A ⊆ T P (A) :=
F (A)

F (T )
=
F (A)

Z
. (13)

For two events A,B ⊆ T , the conditional probability P (A | B) thus satisfies:

P (A | B) :=
F (A∩B)

F (B)
. (14)

Similar to the flow F , we abuse the notation P to define the probability of going through
a state:

∀s ∈ S P (s) :=
F (s)

Z
, (15)

and similarly for the probability of going through an edge. Note that P (s) does not corre-
spond to a distribution over states, in the sense that

∑
s∈S P (s) 6= 1; in particular, it is easy

to see that P (s0) = 1 (in other words, the probability of a trajectory passing through the
initial state s0 is 1). Additionally, for a trajectory τ ∈ T , we also use the abuse of notation
P (τ) instead of P ({τ}) to denote the probability of going through a specific trajectory τ .

10
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Definition 12 Given a flow network (G,F ), the forward transition probability opera-
tor PF is a function on S × S, that is a special case of the conditional probabilities induced
by F (Eq. (14)):

∀s→ s′ ∈ A PF (s′ | s) := P (s→s′ | s) =
F (s→s′)
F (s)

. (16)

Similarly, the backwards transition probability is the operator defined by:

∀s→ s′ ∈ A PB(s | s′) := P (s→s′ | s′) =
F (s→s′)
F (s′)

. (17)

Note how PF and PB are consistent with G (in the sense of Def. 4), as a consequence of
Prop. 8.

Because flows define probabilities over states and edges, they can be used to define
probability distributions over the terminating states of a graph (denoted by Sf = Par(sf ))
as follows:

Definition 13 Given a flow network (G,F ), the terminating state probability PT is
the probability over terminating states Sf under the flow probability P :

∀s ∈ Sf PT (s) := P (s→ sf ) =
F (s→ sf )

Z
(18)

Contrary to the probability P (s) of going through a state s, the terminating state probability
PT is a well-defined distribution over the terminating states s ∈ Sf , in the following sense:

Proposition 14 The terminating state probability PT is a well-defined distribution over
the terminating states s ∈ Sf , in that PT (s) ≥ 0 for all s ∈ Sf , and∑

s∈Sf
PT (s) = 1.

Proof Since the flow F (s→ sf ) is non-negative, it is easy to see that PT (s) ≥ 0. Moreover,
using the definition of Sf = Par(sf ), Prop. 8 (relating the edge flows and the state flows),
and Prop. 10 (F (sf ) = Z), we have

∑
s∈Sf

PT (s) =
1

Z

∑
s∈Sf

F (s→ sf ) =
1

Z

∑
s∈Par(sf )

F (s→ sf ) =
F (sf )

Z
= 1.

The terminating state probability is particularly important in the context of estimating flow
networks (see Sec. 3), as it shows that a flow network (G,F ) induces a probability distribu-
tion over terminating states which is proportional to the terminating flows F (s→ sf ), the
normalization constant Z being given by initial flow F (s0).

11
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2.4 Markovian Flows

Defining a flow requires the specification of |T | non-negative values (one for every trajectory
τ ∈ T ), which is generally exponential in the number of graph edges. Markovian flows
however have the remarkable property that they can be defined with much fewer “numbers”,
given that trajectory flows factorize according to G.

Definition 15 Let (G,F ) be a flow network, with flow probability measure P . F is called
a Markovian flow (or equivalently (G,F ) a Markovian flow network) if, for any state
s 6= s0, outgoing edge s→s′, and for any trajectory τ = (s0, s1, . . . , sn = s) ∈ T partial
starting in s0 and ending in s:

P (s→s′ | τ) = P (s→s′ | s) = PF (s′ | s). (19)

Note that the Markovian property does not hold for all of the flows as defined in the
previous sections (e.g. Fig. 4). Intuitively, a flow can be considered non-Markovian if a
particle in the “flow stream” can remember its past history; if not, its future behavior can
only depend on its current state and the flow must be Markovian. In this work, we will
primarily be concerned with Markovian flows, though later we will re-introduce a form of
memory via state-conditional flows that allow each flow “particle” to remember parts of its
history. The following proposition shows that Markovian flows have the property that the
flows at (or the probabilities of) complete trajectories factorize according the the graph,
and that it is a sufficient condition for defining Markovian flows.

Proposition 16 Let (G,F ) be a flow network, and P the corresponding flow probability.
The following three statements are equivalent:

1. F is a Markovian flow

2. There exists a unique probability function P̂F consistent with G such that for all com-
plete trajectories τ = (s0, . . . , sn+1 = sf ):

P (τ) =

n+1∏
t=1

P̂F (st | st−1). (20)

Moreover, the probability function P̂F is exactly the forward transition probability as-
sociated with the flow probability P : P̂F = PF .

3. There exists a unique probability function P̂B consistent with G such that for all com-
plete trajectories τ = (s0, . . . , sn+1 = sf ):

P (τ) =

n+1∏
t=1

P̂B(st−1 | st). (21)

Moreover, the probability function P̂B is exactly the backwards transition probability
associated with the flow probability P : P̂B = PB.

12
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Proof Recall from Lemma 5 the notations T0,s to denote the set of partial trajectories
from s0 to s, and Ts′,f to denote the set of partial trajectories from s′ to sf . We will prove
the equivalences 1⇔ 2 and 1⇔ 3.

• 1 ⇒ 2: Suppose that F is a Markovian flow. Then using the laws of probability,
the Markov property in Eq. (19), and P (s0) = 1, for some complete trajectory τ =
(s0, . . . , sn+1 = sf ):

P (τ) = P (s0 → s1 → . . .→ sn+1) = P (s0 → s1)
n∏
t=1

P (st → st+1 | s0 → . . .→ st)

= P (s0 → s1)

n∏
t=1

P (st → st+1 | st)

= P (s0)PF (s1 | s0)
n∏
t=1

PF (st+1 | st)

=
n+1∏
t=1

PF (st | st−1),

where the second line uses to Markov property, and the third line uses the definition
of the forward transition probability PF . PF thus satisfies Eq. (20) for all complete
trajectories.

To show uniqueness of PF , assume Eq. (20) is satisfied by some P̂F for all complete
trajectories. By definition of the forward transition probability:

PF (s′ | s) := P (s→ s′ | s) =
P (s→ s′)

P (s)
.

Any complete trajectory τ going through a state s can be (uniquely) decomposed into
a partial trajectory τ ′ ∈ T0,s from s0 to s, and a partial trajectory τ ′′ ∈ Ts,f from s to
sf . Using the definition of P (s), we have:

P (s) =
∑
τ : s∈τ

P (τ) =
∑
τ : s∈τ

∏
(st→st+1)∈τ

P̂F (st+1 | st)

=

 ∑
τ ′∈T0,s

∏
(st→st+1)∈τ ′

P̂F (st+1 | st)

 ∑
τ ′′∈Ts,f

∏
(st→st+1)∈τ ′′

P̂F (st+1 | st)


︸ ︷︷ ︸

=1 (Lemma 5)

=
∑

τ ′∈T0,s

∏
(st→st+1)∈τ ′

P̂F (st+1 | st).

Similarly, any complete trajectory going through s→ s′ can be (uniquely) decomposed
into a partial trajectory τ ′ ∈ T0,s from s0 to s, and a partial trajectory τ ′′ ∈ Ts′,f from

13
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s′ to sf . Again, using the definition of P (s→ s′):

P (s→ s′) =
∑

τ : (s→s′)∈τ

P (τ) =
∑

τ : (s→s′)∈τ

∏
(st→st+1)∈τ

P̂F (st+1 | st)

=

 ∑
τ ′∈T0,s

∏
(st→st+1)∈τ ′

P̂F (st+1 | st)


︸ ︷︷ ︸

=P (s)

P̂F (s′ | s)

 ∑
τ ′′∈Ts′,f

∏
(st→st+1)∈τ ′′

P̂F (st+1 | st)


︸ ︷︷ ︸

=1 (Lemma 5)

= P (s)P̂F (s′ | s).

Combining the two results above, we get:

PF (s′ | s) =
P (s→ s′)

P (s)
= P̂F (s′ | s).

• 2 ⇒ 1: Suppose that there exists a probability function P̂F consistent with G such
that for some complete trajectory τ = (s0, . . . , sn+1 = sf )

P (τ) =
n+1∏
t=1

P̂F (st | st−1).

For the same reasons as those used to justify the uniqueness in the 1 ⇒ 2 proof, P̂F
is necessarily equal to the forward transition probability PF , associated with P .

We now want to show that the flow F associated with P is Markovian, by showing
the Markov property from Eq. (19). Let τ ′ ∈ T0,s be any partial trajectory from s0 to
s; using the definition of conditional probability:

P (s→ s′ | τ ′) =
P (s0 → . . .→ s→ s′)

P (s0 → . . .→ s)
.

Following the same idea as above, we will now rewrite P (s0 → . . .→ s), as a sum over
complete trajectories that share the same prefix trajectory τ ′. Any such complete
trajectory τ can be (uniquely) decomposed into this common prefix τ ′, and a partial
trajectory τ ′′ ∈ Ts,f from s to sf .

P (s0 → . . .→ s) =
∑

τ : τ ′⊆τ
P (τ) =

∑
τ : τ ′⊆τ

∏
(st→st+1)∈τ

PF (st+1 | st)

=

 ∏
st−1→st∈τ ′

PF (st | st−1)

 ∑
τ ′′∈Ts,f

∏
(st→st+1)∈τ ′′

PF (st+1 | st)


︸ ︷︷ ︸

=1 (Lemma 5)
=

∏
st−1→st∈τ ′

PF (st | st−1).

14
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Similarly, any complete trajectory τ that share the same prefix trajectory (s0, . . . , s, s
′)

can be (uniquely) decomposed into this common prefix, and a partial trajectory τ ′′ ∈
Ts′,f from s′ to sf , leading to:

P (s0 → . . .→ s→ s′) = P (s0 → . . .→ s)PF (s′ | s)

Combining the two results above, we can conclude that P satisfies the Markov prop-
erty, and therefore that the flow F is Markovian:

P (s′ → s | τ ′) =
P (s0 → . . .→ s→ s′)

P (s0 → . . .→ s)
= PF (s′ | s) = P (s′ → s | s)

• {1, 2} ⇒ 3: Suppose that F is a Markovian flow. We have shown above that this is
equivalent to P being decomposed into a product of forward transition probabilities
PF . For some complete trajectory τ = (s0, . . . , sn+1 = sf ):

P (τ) =
n+1∏
t=1

PF (st | st−1) =
n+1∏
t=1

P (st−1 → st)

P (st−1)
=

n+1∏
t=1

P (st−1 → st)

P (st)
=

n+1∏
t=1

PB(st−1 | st),

where the third equality uses the fact that P (s0) = P (sf ) = 1, and using the definition
of the backwards transition probability PB. The proof of uniqueness of PB is similar
to that of PF in 1⇒ 2, and uses:

P (s→ s′) =
∑

τ : (s→s′)∈τ

P (τ) =
∑

τ : (s→s′)∈τ

∏
(st→st+1)∈τ

P̂B(st | st+1)

=

 ∑
τ ′∈T0,s

∏
(st→st+1)∈τ ′

P̂B(st | st+1)


︸ ︷︷ ︸

=1 (Lemma 5)

P̂B(s | s′)

 ∑
τ ′′∈Ts′,f

∏
(st→st+1)∈τ ′′

P̂B(st | st+1)


︸ ︷︷ ︸

=P (s′)

= P (s′)P̂B(s | s′),

• 3 ⇒ 1: Similar to the proof of 2 ⇒ 1, P̂B is necessarily equal to the backwards
transition probability PB associated with P . Additionally, PB is related to the forward
transition probability PF :

P (s→ s′) = PB(s | s′)P (s′) = PF (s′ | s)P (s).

We can therefore write the decomposition of P in terms of PF , instead of PB. For
some complete trajectory τ = (s0, . . . , sn+1 = sf ):

P (τ) =

n+1∏
t=1

PB(st−1 | st) =

n+1∏
t=1

P (st−1)

P (st)
PF (st+1 | st) =

P (s0)

P (sf )

n+1∏
t=1

PF (st+1 | st)

=

n+1∏
t=1

PF (st+1 | st),

where we used the fact that P (s0) = P (sf ) = 1. Using “2⇒ 1”, we can conclude that
F is a Markovian flow.
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The decomposition of Eq. (20) shows how Markovian flows can be used to draw termi-
nating states from the terminating state probability PT (Eq. (18)). Namely, we have the
following result:

Corollary 17 Let (G,F ) be a Markovian flow network, and PF the corresponding forward
transition probability. Consider the procedure starting from s = s0, and iteratively draw-
ing one sample from PF (. | s) until reaching sf . Then the probability of the procedure
terminating in a state s is PT (s).

Proof First, note that the procedure terminates with probability 1, given that G is acyclic.

For the procedure to terminate in a state s, it means that the trajectory τ ∈ T im-
plicitly constructed during the procedure contains the edge s→ sf . The probability of the
procedure terminating in s is thus:∑

τ∈T :s→sf∈τ

∏
s′→s′′∈τ

PF (s′′ | s′)︸ ︷︷ ︸
P (τ), according to Eq. (20)

= P (s→ sf ) = PT (s)

The following proposition shows that, as a consequence of the Prop. 16, we obtain three
different parametrizations of Markovian flows.

Proposition 18 Given a pointed DAG G = (S,A), a Markovian flow on G is completely
and uniquely specified by one of the following:

1. the combination of the total flow Ẑ and the forward transition probabilities P̂F (s′ | s)
for all edges s→ s′ ∈ A,

2. the combination of the total flow Ẑ and the backward transition probabilities P̂B(s | s′)
for all edges s→ s′ ∈ A.

3. the combination of the terminating flows F̂ (s→sf ) for all terminating edges s→ sf ∈
Af and the backwards transition probabilities P̂B(s | s′) for all non-terminating edges
s→ s′ ∈ A−f ,

Proof In the first two settings, we define a flow function F : T → R+, at a trajectory
τ = (s0, s1, . . . , sn, sn+1 = sf ) as:

1. F (τ) := Ẑ
∏n+1
t=1 P̂F (st | st−1),

2. F (τ) := Ẑ
∏n+1
t=1 P̂B(st−1 | st)

We need to prove that it is the only Markovian flow that can be defined for both settings.
The proof for the third setting will follow from that of the second setting.

First setting:
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First, we need to show that the total flow Z associated with the flow function F
(Eq. (10)) matches Ẑ. This is a consequence of Lemma 5:

Z =
∑
τ∈T

F (τ) = Ẑ
∑

τ=(s0,s1,...,sn+1=sf )∈T

n+1∏
t=1

P̂F (st | st−1)

︸ ︷︷ ︸
=1 , according to Lemma 5

= Ẑ

Then, we need to show that the forward transition probability function PF associated
with F (Eq. (16)) matches P̂F , and that the flow F is Markovian. To this end, note that
the corresponding flow probability P satisfies Eq. (20). Thus, as a consequence of Prop. 16,
F is a Markovian flow, and its forward transition probability function is P̂F .

As a last requirement, we need to show that if a Markovian flow F ′ has a partition
function Z ′ = Ẑ and a forward transition probability function P ′F = P̂F , then it is necessarily
equal to F . This is a direct consequence of Prop. 16, given that for any τ = (s0, . . . , sn+1 =
sf ) ∈ T :

F ′(τ) = Z ′
n+1∏
t=1

P ′F (st | st−1) = Ẑ
n+1∏
t=1

P̂F (st | st−1) = F (τ)

Second setting:
First, we show that as a consequence of Lemma 5, the total flow Z associated with F

matches Ẑ:

Z =
∑
τ∈T

F (τ) = Ẑ
∑

τ=(s0,s1,...,sn+1=sf )∈T

n+1∏
t=1

P̂B(s−1 | st)

︸ ︷︷ ︸
=1 , according to Lemma 5

= Ẑ

Second, we note that the flow probability P associated with F satisfies Eq. (21). Thus,
as a consequence of Prop. 16, F is a Markovian flow, and its backward transition probability
function is P̂B.

Finally, if a Markovian flow F ′ has a partition function Z ′ = Ẑ and a backward transition
probability function P ′B = P̂B, then following Prop. 16, ∀τ ∈ T , F ′(τ) = F (τ).

Third setting:
From the terminating flows F̂ (s→ sf ) and the backwards transition probabilities P̂B(s |

s′) for non-terminating edges, we can uniquely define a total flow Ẑ, and extend P̂B to all
edges as follows:

Ẑ :=
∑

s∈Par(sf )

F̂ (s→ sf )

P̂B(s | s′) :=

{
P̂B(s | s′) if s′ 6= sf
F̂ (s→sf )

Ẑ
otherwise.

This takes us back to the second setting, for which we have already proven that with Ẑ and
P̂B defined for all edges, a Markovian flow is uniquely defined.
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2.5 Flow Matching Conditions

In Prop. 18, we saw how forward and backward probability functions can be used to uniquely
define a Markovian flow. We will show in the next proposition how non-negative functions
of states and edges can be used to define a Markovian flow. Such functions cannot be
unconstrained (as P̂F and Ẑ in Prop. 18 e.g.), as we have seen in Prop. 8.

Proposition 19 Let G = (S,A) be a pointed DAG. Consider a non-negative function F̂
taking as input either a state s ∈ S or a transition s→s′ ∈ A. Then F̂ corresponds to a
flow if and only if the flow matching conditions:

∀s′ > s0, F̂ (s′) =
∑

s∈Par(s′)

F̂ (s→s′)

∀s′ < sf , F̂ (s′) =
∑

s′′∈Child(s′)

F̂ (s′→s′′) (22)

are satisfied. More specifically, F̂ uniquely defines a Markovian flow F matching F̂ on
states and transitions:

∀τ = (s0, . . . , sn+1 = sf ) ∈ T F (τ) =

∏n+1
t=1 F̂ (st−1→st)∏n

t=1 F̂ (st)
. (23)

Proof Necessity is a direct consequence of Prop. 8. Let’s show sufficiency. Let P̂F be the
forward probability function defined by:

∀s→ s′ ∈ A P̂F (s′ | s) :=
F̂ (s→ s′)

F̂ (s)
.

P̂F is consistent with G given that F̂ satisfies the flow matching conditions (Eq. (22)). Let
Ẑ = F̂ (s0). According to Prop. 18, there exists a unique Markovian flow F with forward
transition probability function PF = P̂F and partition function Z = Ẑ, and such that for a
trajectory τ = (s0, . . . , sn+1 = sf ) ∈ T :

∀τ = (s0, . . . , sn+1 = sf ) ∈ T F (τ) = Ẑ
n+1∏
t=1

P̂F (st | st−1) =

∏n+1
t=1 F̂ (st−1→st)∏n

t=1 F̂ (st)
. (24)

Additionally, similar to the proof of Prop. 16, we can write for any state s′ 6= s0:

F (s′) = Ẑ
∑

τ∈T0,s′

∏
(st→st+1)∈τ

P̂F (st+1 | st)

= Ẑ
F̂ (s′)

F̂ (s0)

∑
τ∈T0,s′

∏
(st→st+1)∈τ

P̂B(st | st+1)

︸ ︷︷ ︸
=1 , according to Lemma 5

= F̂ (s′),
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where P̂B(s′ | s) := F̂ (s→s′)
F̂ (s′)

defines a backward probability function consistent with G. And

because ∀s → s′ ∈ A PF (s′ | s) = P̂F (s′ | s), it follows that ∀s → s′ ∈ A F (s → s′) =
F̂ (s→ s′).

To show uniqueness, let’s consider a Markovian flow F ′ that matches F̂ on states and
edges. Following Prop. 16, for any trajectory τ = (s0, . . . , sn+1 = sf ) ∈ T

F ′(τ) = Ẑ
n+1∏
t=1

P̂F (st | st−1) =

∏n+1
t=1 F̂ (st−1→st)∏n

t=1 F̂ (st)
= F (τ).

Note how Eq. (22) can be used to recursively define the flow in all the states if Z is given
and either the forward or the backwards transition probabilities are given. Either way,
we would start from the flow at one of the extreme states s0 or sf and then distribute it
recursively through the directed acyclic graph of the flow network, either going forward or
going backward. A setting of particular interest, that will be central in Sec. 3, is when we
are given all the terminal flows F (s→sf ), and we would like to deduce a state flow function
F (s) and a forward transition probability function PF (s′ | s) for the rest of the flow network.

Next, we will see how to parametrize Markovian flows using forward and backward
probability functions consistent with the DAG. Unlike the condition in Prop. 19, the new
condition does not involve a sum over transitions, which could be problematic if each state
can have a large number of successors or if the state-space is continuous. Interestingly, the
resulting condition is analogous to the detailed balance condition of Monte-Carlo Markov
chains.

Definition 20 Given a pointed DAG G = (S,A), a forward transition probability function
P̂F and a backward transition probability function P̂B consistent with G, P̂F and P̂B are
compatible if there exists an edge flow function F̂ : A→ R+ such that

∀s→ s′ ∈ A P̂F (s′ | s) =
F̂ (s→s′)∑

s′∈Child(s) F̂ (s→s′)
, P̂B(s | s′) =

F̂ (s→s′)∑
s′′∈Par(s′) F̂ (s′′→s′)

(25)

Proposition 21 Let G = (S,A) be a pointed DAG. Consider a non-negative function F̂
over states, a forward transition probability function P̂F and a backwards transition proba-
bility function P̂B consistent with G. Then, F̂ , P̂B, and P̂F jointly correspond to a flow if
and only if the detailed balance conditions holds:

∀s→s′ ∈ A F̂ (s)P̂F (s′ | s) = F̂ (s′)P̂B(s | s′). (26)

More specifically, F̂ , P̂F , and P̂B uniquely define a Markovian flow F matching F̂ on states,
and with transition probabilities matching P̂F and P̂B. Furthermore, when this condition is
satisfied, the forward and backward transition probability functions P̂F and P̂B are compat-
ible.

19



Bengio, Lahlou, Deleu, Hu, Tiwari, Bengio

Proof For necessity, consider a flow F , with state flow function denoted F , and forward
and backward transitions PF and PB. It is clear from the definition of PF and PB (Def. 12)
that Eq. (26) holds. We prove the sufficiency of the condition by first defining the edge flow

∀s→ s′ ∈ A F̂ (s→s′) := F̂ (s)P̂F (s′ | s). (27)

We then sum both sides of Eq. (26) over s, yielding

∀s′ > s0
∑

s∈Par(s′)

F̂ (s)P̂F (s′ | s) = F̂ (s′)
∑

s∈Par(s′)

P̂B(s | s′) = F̂ (s′) (28)

where we used the fact that P̂B is a normalized probability distribution. Combining this
with Eq. (27), we get

∀s′ > s0 F̂ (s′) =
∑

s∈Par(s′)

F̂ (s→s′) (29)

which is the first equality of the flow-matching condition (Eq. (22)) of Prop. 19. We can ob-
tain the second equality by first using the normalization of P̂ , and then using our definition
of the edge flow (Eq. (27)):

∀s′ > s0 F̂ (s′) = F̂ (s′)
∑

s′′∈Child(s′)

P̂F (s′′ | s′)

=
∑

s′′∈Child(s′)

F̂ (s′)P̂F (s′′ | s′)

=
∑

s′′∈Child(s′)

F̂ (s′→s′′). (30)

Following Prop. 19, there exists a unique Markovian flow F with state and edge flows given
by F̂ . Using Eq. (27) and Eq. (26), it follows that F has transition probabilities P̂F and
P̂B as required. The uniqueness is also a consequence of Eq. (27). This proves sufficiency.

To show that P̂F and P̂B are compatible (Def. 20), we first combine Eq. (27) and Eq. (30)
(with relabeling of variables) to obtain

∀s→ s′ ∈ A P̂F (s′ | s) =
F̂ (s→s′)∑

s′∈Child(s) F̂ (s→s′)
,

we then isolate P̂B in Eq. (26), yielding

∀s→ s′ ∈ A P̂B(s | s′) =
F̂ (s)

F̂ (s′)
P̂F (s′ | s) =

F̂ (s→s′)
F̂ (s′)

=
F̂ (s→s′)∑

s′′∈Par(s′) F̂ (s′′ → s′)
,

We thus get Eq. (25) of Def. 20, as desired.

At first glance, it may seem that when P̂B is unconstrained, the detailed balance condi-
tion can trivially be achieved by setting

∀s→ s′ ∈ A P̂B(s | s′) =
P̂F (s′ | s)F̂ (s)

F̂ (s′)
(31)
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However, because we also have the constraint
∑

s∈Par(s′) P̂B(s | s′) = 1, then Eq. (31) can
only be satisfied if the flows are consistent with the forward transition:∑

s∈Par(s′)

P̂F (s′ | s)F̂ (s) = F̂ (s′).

2.6 Backwards Transitions can be Chosen Freely

Consider the setting in which we are given terminating flows to be matched, i.e. where
the goal is to find a flow function with the right terminating flows. This is the setting
introduced in Bengio et al. (2021), and that will be studied in Sec. 3. In this case, Prop. 18
tells us that in order to fully determine the forward transition probabilities and the state
or state-action flows, it is not sufficient in general to specify only the terminating flows; it
is also necessary to specify the backwards transition probabilities on the edges other than
the terminal ones (the latter being given by the terminating flows).

What this means is that the terminating flows do not specify the flow completely, e.g.,
because many different paths can land in the same terminating state. The preference over
such different ways to achieve the same final outcome is specified by the backwards transition
probability PB (except for PB(s | sf ) which is a function of the terminating flows and Z).
For example, we may want to give equal weight to all parents of a node s, or we may prefer
shorter paths, which can be achieved if we keep track in the state s of the length of the
shortest path to the node s, or we may let a learner discover a PB that makes learning PF
or F easier.

2.7 Equivalence Between Flows

In the previous sections, we have seen that Markovian flows have the property that trajec-
tory flows or probabilities factorize according to the DAG, and we have seen different ways
of characterizing Markovian flows. In Sec. 3, we show how to approximate Markovian flows
in order to define probability measures over terminating states. In this section, through
an equivalence relation between trajectory flows, we justify the focus on Markovian flows.
Given a pointed DAG G = (S,A), we denote by:

• F(G): the set of flows on G, i.e. the set of functions from T , the set of complete
trajectories in G, to R+,

• FMarkov(G): the set of flows in F(G) that are Markovian.

Definition 22 Let G = (S,A) be a pointed DAG, and F1, F2 ∈ F(G) two trajectory flow
functions. We say that F1 and F2 are equivalent if they coincide on edge-flows, i.e.:

∀s→ s′ ∈ A F1(s→ s′) = F2(s→ s′)

Fig. 4 shows four flow functions in a simple pointed DAG that are pairwise equivalent.
This defines an equivalence relation (i.e., a relation that is reflexive, symmetric, and

transitive). Hence, each flow F belongs to an equivalence class, and the set of flows F(G)
can be partitioned into equivalence classes. Note that if two flows are equivalent, then the
corresponding state flow functions also coincide (as a direct consequence of Prop. 8).
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s0

s1

s2

s3

sf

τ F1(τ) F2(τ) F3(τ) F4(τ)

s0, s2, sf 1 4/5 1 6/5
s0, s1, s2, sf 1 6/5 1 4/5
s0, s2, s3, sf 1 6/5 2 9/5

s0, s1, s2, s3, sf 2 9/5 1 6/5

Figure 4: Equivalent flows and Markovian flows. Flows F1 and F2 are equivalent. F3 and
F4 are equivalent, but not equivalent to F1 and F2. F2 and F4 are Markovian. F1 and F3

are not Markovian. F1, F2, F3 and F4 coincide on the terminating flows i.e. at s2 → sf and
s3 → sf .

Proposition 23 Given a pointed DAG G. If two flow function F1, F2 ∈ FMarkov(G) are
equivalent, then they are equal. Additionally, for any flow function F ′ ∈ F(G), there exists
a unique Markovian flow function F ∈ FMarkov(G) such that F and F ′ are equivalent.

Proof Because F1 and F2 are Markovian, then for any trajectory τ = (s0, . . . , sn+1 = sf ):

F1(τ) =

∏n+1
t=1 F1(st−1 → st)∏n

t=1 F1(st)

=

∏n+1
t=1 F2(st−1 → st)∏n

t=1 F2(st)

= F2(τ),

where we combined the definition of equivalent flows and Prop. 16.
Given a flow function F ′, because its state and edge flow functions satisfy the flow

matching conditions (as a consequence of Prop. 8), then according to Prop. 19, the flow F
defined by:

∀τ := (s0, . . . , sn+1 = sf ) ∈ T F (τ) =

∏n+1
t=1 F

′(st−1 → st)∏n
t=1 F

′(st)

is Markovian, and coincides with F ′ on state and edge flows. Combining this with the
statement above, we conclude that F is the unique Markovian flow that is equivalent to F ′.

The previous proposition shows that in each equivalence class stands out a particular flow
function, that has a property the other flows in the same equivalence class don’t have: it is
Markovian.

A consequence of this is that, if we care essentially about state and edge flows, instead
of dealing with the full set of flows F(G), it suffices to restrict any flow learning problem to
the set of Markovian flows FMarkov(G). The advantage of this restriction is that defining
a flow requires the specification of F (τ) for all trajectories τ ∈ T , whereas defining a
Markovian flow requires the specification of F (s → s′) for all edges s → s′ ∈ A, which
is generally exponentially smaller than T (note that the edge flows still need to satisfy
the flow-matching conditions in Prop. 19). Thus, in order to approximate or learn a flow
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function that satisfies some conditions on its edge or state values, it suffices to approximate
or learn a Markovian flow, by learning the edge flow function, which is a much smaller
object than the actual flow function.

3. GFlowNets: Learning a Flow

With the theoretical preliminaries established in Sec. 1 and Sec. 2, we now consider the
general class of problems introduced by Bengio et al. (2021) where some constraints or
preferences over flows are given. Our goal is to find functions such as the state flow function
F (s) or the transition probability function P (s→s′ | s) that best match these desiderata
using corresponding estimators F̂ (s) and P̂ (s→s′ | s) which may not correspond to a proper
flow. Such learning machines are called Generative Flow Networks (or GFlowNets for short).
We focus on scenarios where we are given a target reward function R : Sf → R+, and aim
at estimating flows F that satisfy:

∀s ∈ Sf F (s→ sf ) = R(s) (32)

Because of the equivalences that exist in the set of flows, then without loss of generality,
we choose GFlowNets to approximate Markovian flows only. We are thus interested in the
following set of flows:

FMarkov(G,R) = {F ∈ FMarkov(G), ∀s ∈ Sf F (s→ sf ) = R(s)} (33)

For now, we informally define a GFlowNet as an estimator of a Markovian flow
function F ∈ FMarkov(G,R). We provide a more formal definition later-on.

With an estimator F̂ of such a Markovian flow F , we can define an approximate forward
transition probability function P̂F , as in Prop. 16, in order to draw trajectories τ ∈ T (the
set of complete trajectories in G) by iteratively sampling each state given the previous one,
starting at s0 and then with st+1 ∼ P̂F (. | st) until we reach the sink state sn+1 = sf for
some n.

Next, we will clarify how such an estimator can be obtained.

3.1 GFlowNets as an Alternative to MCMC Sampling

The main established methods to approximately sample from the distribution associated
with an energy function E are Monte-Carlo Markov chain (MCMC) methods, which require
significant computation (running a potentially very long Markov chain) to obtain samples.
Instead, the GFlowNet approach amortizes upfront computation to train a generator that
yields very efficient computation (a single configuration is constructed, no chain needed)
for each new sample. For example, Bengio et al. (2021) build a GFlowNet that constructs
a molecule via a small sequence of actions, each of which adds an atom or a molecular
substructure to an existing molecule represented by a graph, starting from an empty graph.
Only one such configuration needs to be considered, in contrast with MCMC methods, which
require potentially very long chains of such configurations, and suffer from the challenge of
mode-mixing (Jasra et al., 2005; Bengio et al., 2013; Pompe et al., 2020), which can take
time exponentially long in the distance between modes. In GFlowNets, this computational
challenge is avoided but the computational demand is converted to that of training the
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GFlowNet. To see how this can be extremely beneficial, consider having already constructed
some configurations x and obtained their unnormalized probability or reward R(x). With
these pairs (x,R(x)), a machine learning system could potentially generalize about the value
of R elsewhere, and if it is a generative model, sample new x’s in places of large R(x). Hence,
if there is an underlying statistical structure in how the modes of R are related to each other,
a generative learner that generalizes could guess the presence of modes it has not visited
yet, taking advantage of the patterns it has already uncovered from the (x,R(x)) pairs it
has seen. On the other hand, if there is no structure (the modes are randomly placed), then
we should not expect GFlowNets to do significantly better than MCMC because training
becomes intractable in high-dimensional spaces (since it requires visiting every area of the
configuration space to ascertain its reward).

3.2 GFlowNets and flow-matching losses

We have seen in Sec. 2.4 and Sec. 2.5 different ways of parametrizing a flow. For ex-
ample, with a partition function and forward transition probabilities, or with edge flows
that satisfy the flow matching conditions. Because there are many ways to parametrize
GFlowNets, we start with an abstract formulation for them, where o ∈ O represents a pa-
rameter configuration (e.g., resulting from or while training of a GFlowNet), Π(o) gives the
corresponding probability measure over trajectories τ ∈ T , and H maps a Markovian flow
F to its parametrization o. In the following definition, we show what conditions should be
satisfied in order for such a parametrization to be valid.

Definition 24 Given a pointed DAG G = (S,A), with an initial and sink states s0 and sf
respectively, and a target reward function R : Sf → R+, we say that the triplet (O,Π,H) is
a flow parametrization of (G,R) if:

1. O is a non-empty set,

2. Π is a function mapping each object o ∈ O to an element Π(o) ∈ ∆(T ), the set of
probability distributions on T ,

3. H is an injective functional from FMarkov(G,R) to O,

4. For any F ∈ FMarkov(G,R), Π(H(F )) is the probability measure associated with the
flow F (Def. 11).

To each object o ∈ O, the distribution Π(o) implicitly defines a terminating state prob-
ability measure:

∀s ∈ Sf PT (s) :=
∑

τ∈T :s→sf∈τ
Π(o)(τ), (34)

where the dependence on o in PT is omitted for clarity.

The intuition behind the introduction of (O,Π,H) is that we can define a probability
measure over T for each object o ∈ O, but only some of these objects correspond to a
Markovian flow with the right terminating flows. For such objects o (i.e. those that can
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be written as o = H(F ) for some flow F ∈ FMarkov(G,R)), the probability measure PT
corresponds to the distribution of interest, according to Def. 13, i.e.:

∀s ∈ Sf PT (s) ∝ R(s)

GFlowNets thus provide a solution to the generally intractable problem of sampling from a
target reward function R, or its associated energy function:

∀s ∈ Sf E(s) := − logR(s) (35)

Directly approximating flows F ∈ FMarkov(G,R) is a hard problem, whereas with some sets
O, searching for an object o ∈ H(FMarkov(G,R)) ⊆ O is a simpler problem that can be
tackled with function approximation techniques.

Note that not the set O cannot be arbitrary, as there needs to be a way to define an
injective function from FMarkov(G,R) to O. Below, for a given DAG G, we show three
examples clarifying the abstract concept of parametrization:

Example 1 Edge-flow parametrization: Consider Oedge = F(A−f ,R+), the set of func-
tions from A−f to R+, and the functionals Hedge : FMarkov(G,R) → Oedge and Πedge :
Oedge → ∆(T ) defined by:

Hedge(F ) : (s→ s′) ∈ A−f 7→ F (s→ s′),

∀τ = (s0, . . . , sn = sf ) ∈ T Πedge(F̂ )(τ) ∝
n∏
t=1

PF̂ (st | st−1),

where

PF̂ (s′ | s) =


F̂ (s→s′)∑

s′′ 6=sf F̂ (s→s′′)+R(s)
if s′ 6= sf

R(s)∑
s′′ 6=sf F̂ (s→s′′)+R(s)

if s′ = sf
(36)

The injectivity of Hedge follows directly from Prop. 23 (two Markovian flows that coin-
cide on both their terminating and non-terminating edge flow values are equal). And for
any Markovian flow F ∈ FMarkov(G,R), Πedge(Hedge(F )) equals the probability measure
associated with F , as is shown in Prop. 16.

(Oedge,Πedge,Hedge) is thus a valid flow parametrization of (G,R).

Example 2 Forward transition probability parametrization: Consider the set OPF =
O1 × O2, where O1 = F(S \ {sf},R+) is the set of function from S \ {sf} to R+ and

O2 is the set of forward probability functions P̂F consistent with G , and the functionals
HPF : FMarkov(G,R)→ OPF and ΠPF : OPF → ∆(T ) defined by:

HPF (F ) =
(
s ∈ S \ {sf} 7→ F (s), (s→ s′) ∈ A 7→ PF (s′ | s)

)
,

∀τ = (s0, . . . , sn = sf ) ∈ T ΠPF (F̂ , P̂F )(τ) ∝
n∏
t=1

P̂F (st | st−1),
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where PF is the forward transition probability function associated with F (Eq. (16)). To ver-
ify that HPF is injective, consider F1, F2 ∈ FMarkov(G,R) such that HPF (F1) = HPF (F2).

It means that ∀s ∈ Sf , F1(s) = F2(s), and ∀s → s′ ∈ A, F1(s→s′)
F1(s)

= F2(s→s′)
F2(s)

. It fol-

lows that ∀s → s′ ∈ A, F1(s → s′) = F2(s → s′). Which, according to Prop. 23, means
that F1 = F2. And for any Markovian flow F ∈ FMarkov(G,R), ΠPF (HPF (F )) equals the
probability measure associated with F , as is shown in Prop. 16.

(OPF ,ΠPF ,HPF ) is thus a valid flow parametrization of (G,R).

Example 3 Transition probabilities parametrization: Similar to Ex. 2, we can parametrize
a Markovian flow using the state-flow function and both its forward and backward transition
probabilities, i.e. with OPFB = OPF ×O3, HPFB, and ΠPFB defined as:

HPFB(F ) =
(
HPF (F ), (s→ s′) ∈ A−f 7→ PB(s | s′),

)
,

∀τ = (s0, . . . , sn = sf ) ∈ T ΠPFB(F̂ , P̂F , P̂B)(τ) ∝
n∏
t=1

P̂F (st | st−1),

where PB is the function defined by Eq. (17). and O3 is the set of backward probability
functions P̂B consistent with G. The injectivity of HPFB is a direct consequence of that
of HPF . And for any Markovian flow F , ΠPFB(HPFB(F )) equals the probability measure
associated with F , as is shown in Prop.3.

(OPFB,ΠPFB,HPFB) is thus a valid flow parametrization of (G,R).

We now have all the ingredients to formally define a GFlowNet:

Definition 25 A GFlowNet is a tuple (G,R,O,Π,H), where:

• G = (S,A) is a pointed DAG with initial state s0 and sink state sf ,

• R : Sf → R+ a target reward function,

• (O,Π,H) a flow parametrization of (G,R).

Each object o ∈ O is called a GFlowNet configuration. When it is clear from context, we
will use the term GFlowNet to refer to both (G,R,O,Π,H) and a particular configuration
o; similar to how the term “Neural Network” refers to both the class of functions that can be
represented with a particular architecture, and to a particular element of that class / weight
configuration.

If o ∈ H(FMarkov(G,R)), then the corresponding terminating state probability measure
(Eq. (34)) is proportional to the target reward R.

Once we have a GFlowNet (G,R,O,Π,H), we still need a way to find objects o ∈
H(FMarkov(G,R)) ⊆ O. To this end, it suffices to design a loss function L on O that
equals zero on objects o ∈ H(FMarkov(G,R)) and only on those objects. If our loss function
L is chosen to be non-negative, then an approximation of the target distribution (on Sf )
is obtained by approximating the minimum of the function L. This provides a recipe for
casting the search problem of interest to a minimization problem, as we typically do in ma-
chine learning. Such loss functions can be easily designed for the natural parametrizations
we considered in Ex. 1, Ex. 2, and Ex. 3, as we will illustrate below.
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Definition 26 Let (G,R,O,Π,H) be a GFlowNet. A flow-matching loss is any function
L : O → R+ such that:

∀o ∈ O L(o) = 0 ⇔ ∃F ∈ FMarkov(G,R) o = H(F ) (37)

We say that L is edge-decomposable, if there exists a function L : O×A→ R+ such that:

∀o ∈ O L(o) =
∑

s→s′∈A
L(o, s→ s′),

We say that L is state-decomposable, f there exists a function L : O×S → R+ such that:

∀o ∈ O L(o) =
∑
s∈S

L(o, s),

We say that L is trajectory-decomposable if there exists a function L : O × T → R+

such that:
∀o ∈ O L(o) =

∑
τ∈T

L(o, τ)

As mentioned above, with a such a loss function, our search problems can be written as
minimization problems of the form

min
o∈O
L(o), (38)

which can be tackled with gradient-based learning if the function L is differentiable. Note
that with an edge-decomposable flow-matching loss, the minimization problem in Eq. (38)
is equivalent to:

min
o∈O

E(s→s′)∼πT [L(o, s→ s′)], (39)

where πT is any full support probability distribution on A, i.e. a probability distribution
such that ∀s → s′ ∈ A πT (s → s′) > 0. A similar statement can be made for state-
decomposable or trajectory-decomposable flow-matching losses.

Example 4 Consider the edge-flow parametrization (Oedge,Πedge,Hedge), and the function

LFM : Oedge × S → R+ defined for each F̂ ∈ Oedge and s′ ∈ S as

LFM (F̂ , s′) =


(

log

(
δ+

∑
s∈Par(s′) F̂ (s→s′)

δ+R(s′)+
∑
s′′∈Child(s′)\{sf } F̂ (s′→s′′)

))2

if s′ 6= sf ,

0 otherwise

where δ ≥ 0 is a hyper-parameter. The function LFM mapping each F̂ ∈ Oedge to

LFM (F̂ ) =
∑
s∈S

LFM (F̂ , s) (40)

is a flow-matching loss, that is (by definition) state-decomposable.
To see this, let F̂ ∈ Oedge such that LFM (F̂ ) = 0, and extend it to terminating edge:

∀s ∈ Sf F̂ (s→ sf ) := R(s)
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Now that F̂ is defined for all edges in G, we can write that

∀s′ ∈ S
∑

s∈Par(s′)

F̂ (s→ s′) =
∑

s′′∈Child(s)

F̂ (s′ → s′′).

Which, according to Prop. 19, means that there exists a Markovian flow F ∈ FMarkov(G,R)
such that Hedge(F ) = F̂ . The converse

∀F ∈ FMarkov(G,R) LFM (Hedge(F )) = 0

is a trivial consequence of Prop. 19.

This is the loss function proposed in Bengio et al. (2021). δ allows to reduce the im-
portance given to small flows (those smaller than δ), and the usage of the square of the
log-ratio is justified as a way to ensure that states with large flows do not contribute to the
gradients of LFM much more than states with small flows.

Example 5 Detailed-balance loss: Consider the transition probabilities parametrization
(OPFB,ΠPFB,HPFB), and the function LDB : OPFB×A→ R+ defined for each (F̂ , P̂F , P̂B) ∈
OPFB and s→ s′ ∈ A as

LDB(F̂ , P̂F , P̂B, s→ s′) =


(

log
(
δ+F̂ (s)P̂F (s

′|s)
δ+F̂ (s′)P̂B(s|s′)

))2
if s′ 6= sf ,(

log
(
δ+F̂ (s)P̂F (s

′|s)
δ+R(s)

))2
otherwise,

where δ ≥ 0 is a hyper-parameter. The function LDB mapping each (F̂ , P̂F , P̂B) ∈ OPFB
to

LDB(F̂ , P̂ , P̂B)) =
∑

s→s′∈A
LDB(F̂ , P̂ , P̂B, s→ s′)

is a flow-matching loss that is (by definition) edge-decomposable. The proof of this statement
is similar to the one of the example above, using Prop. 21.

According to Sec. 2.6, the reward function does not completely specify the flow. Thus,
the detailed-balance loss of Ex. 5 can be used with the (OPF ,ΠPF ,HPF ) parametrization,
using any function P̂B ∈ O3 as input to the detailed-balance loss.

Example 6 Trajectory-balance loss: This loss has been introduced in Malkin et al. (2022)
for the parametrization (OTB,ΠTB,HTB), where OTB = O1 × O2 × O3, with O1 = R+

parametrizes the partition function Ẑ, and O2 and O3 introduced in Ex. 2 and Ex. 3 (the
set of forward and backward probabilities consistent with G). HTB maps a Markovian flow
in FMarkov(G,R) to the corresponding triplet (Z,PF , PB), and ΠTB maps a parametrization
(Ẑ, P̂F , P̂B) to a probability over trajectories defined by P̂F as in Ex. 2. Prop. 18 justifies
the validity of this parametrization. The loss LTB maps each (Ẑ, P̂F , P̂B) ∈ OTB to:

LTB(Ẑ, P̂F , P̂B) =
∑
τ∈T

LTB(Ẑ, P̂F , P̂B, τ),
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where

∀τ = (s0, . . . , sn+1 = sf ) ∈ T LTB(Ẑ, P̂F , P̂B, τ) =

(
log

Ẑ
∏n+1
t=1 P̂F (st | st−1)

R(sn)
∏n
t=1 P̂B(st−1 | st)

)2

.

(41)
Malkin et al. (2022) prove that LTB is a flow-matching loss and call it trajectory balance.
It is trajectory-decomposable by definition.

Training by stochastic gradient descent: In the examples of the previous section,
given a GFlowNet (G,R,O,Π,H) and a flow-matching loss L, objects o ∈ O are themselves
functions or combinations of functions, and we can thus parametrize O with function ap-
proximators such as Neural Networks. However, most of the times, the evaluation (let alone
the minimization) of L(o) is intractable, given that even with a full support distribution,
only a subset of edges (or states or trajectories) can be visited in finite time. In practice,
with an edge-decomposable loss e.g., we resort to a stochastic gradient, such as

∇oL(o, s→ s′), s→ s′ ∼ πo (42)

for edge-decomposable losses, or

∇oL(o, τ), τ ∼ πo (43)

for trajectory-decomposable losses, where πo, called the training distribution, is a dis-
tribution over edges or trajectories that can be associated with Π(o), corresponding to the
online setting in RL, or defined in other ways, corresponding to the behavior policy in offline
RL, see Sec. 3.3.3 below.

3.3 Extensions

In this section, we discuss possible relaxations to the GFlowNet training paradigm intro-
duced thus far.

3.3.1 Introducing Time Stamps to Allow Cycles

Note that the state-space of a GFlowNet can easily be modified to accommodate an un-
derlying state space for which the transitions do not form a DAG, e.g., to allow cycles.
Let S be such an underlying state-space. Define the augmented state space S ′ = S × N,
where N = {0, 1, 2, . . .} is the set of natural numbers, and s′t = (st, t) is the augmented
state, where t is the position of the state st in the trajectory. With this augmented state
space, we automatically avoid cycles. Furthermore, we may design or train the backwards
transition probabilities PB(s′t | s′t+1 = (st+1, t+ 1)) to create a preference for shorter paths
towards st+1, as discussed in Sec. 2.6. Note that we can further generalize this setup by
replacing N with any totally ordered indexing set; the augmented state space will still have
an associated DAG. The ordering “<” in the original state-space is lifted to the augmented
state-space: (st, t) < (s′t′ , t

′) if and only if t < t′ and st < s′t.
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3.3.2 Stochastic Rewards

We also consider the setting in which the given reward is stochastic rather than being a
deterministic function of the state, yielding training procedures based on stochastic gradient
descent. For example, with the trajectory balance loss of Eq. (41), if R(s) is stochastic
(even when given s), we can think of what is being really optimized is the squared loss
with logR(s) replaced by its expectation (given s). This is a straightforward consequence
of minimizing the expected value of a squared error loss (as for example in neural networks
trained with a squared error loss and a stochastic target output, where the neural network
effectively tries to estimate the expected value of that target).

3.3.3 GFlowNets can be trained offline

As discussed in Sec. 3.2, we do not need to train a GFlowNet using samples from its
own trajectory distribution P̂ = Π(o). Those training trajectories can be drawn from any
training distribution πT with full support, as already shown by Bengio et al. (2021). It
means that a GFlowNet can be trained offline, as in offline reinforcement learning (Ernst
et al., 2005; Riedmiller, 2005; Lange et al., 2012).

It should also be noted that with a proper adaptive choice of πT , and assuming that
computing R is cheaper or comparable in cost to running the GFlowNet on a trajectory, it
should be more efficient to continuously draw new training samples from πT than to rehearse
the same trajectories multiple times. An exception would be rehearsing the trajectories
leading to high rewards if these are rare.

How should one choose the training distribution πT ? It needs to cover the support
of R but if it were uniform it would be very wasteful and if it were equal to the current
GFlowNet policy π it might not have sufficient effective support and thus miss modes of
R, i.e., regions where R(x) is substantially greater than 0 but R(x) � PT (x). Hence the
training distribution should be sampled from an exploratory policy that visits places that
have not been visited yet and may have a high reward. High epistemic uncertainty around
the current policy would make sense and the literature on acquisition functions for Bayesian
optimization (Srinivas et al., 2010) may be a good guide. More generally, this means the
training distribution should be adaptive. For example, πT could be the policy of a second
GFlowNet trained mostly to match a different reward function that is high when the losses
observed by the main GFlowNet are large. It would also be good to regularly visit those
trajectories corresponding to known large R, i.e., according to samples from π, to make
sure those are not forgotten, even temporarily.

3.4 Exploiting Data as Known Terminating States

In some applications we may have access to a dataset of (s,R(s)) pairs and we would like to
use them in a purely offline way to train a GFlowNet, or we may want to combine such data
with queries of the reward function R to train the GFlowNet. For example, the dataset may
contain examples of some of the high-reward terminating states s which would be difficult to
obtain by sampling from a randomly initialized GFlowNet. How can we compute a gradient
update for the GFlowNet parameters using such (s,R(s)) pairs?

If we choose to parametrize the backwards transition probabilities PB (which is nec-
essary for implementing the detailed balance loss), then we can just sample a trajectory
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τ leading to s using PB and use these trajectories to update the flows and forward tran-
sition probabilities along the traversed transitions. However, this alone is not guaranteed
to produce the correct GFlowNet sampling distribution because the empirical distribution
over training trajectories τ defined as above does not have full support. Suppose for ex-
ample that the dataset only contains high-reward terminating states with R(s) = 1. The
GFlowNet could then just sample trajectories uniformly (which would be wrong, we would
like the probability of most states not in the training set to be very small). On the other
hand, if we combine the distribution of trajectories leading to terminal transitions in the
dataset with a training distribution whose support covers all possible trajectories, then the
offline property of GFlowNet guarantees that we can recover a flow-matching model.

4. Conditional Flows and Free energies

A remarkable property of flow networks is that we can recover the normalizing constant Z
from the initial state flow F (s0) (Prop. 10). Z also gives us the partition function associated
with a given terminal reward function R specifying the terminating flows.

What about internal states s with s0 < s < sf? If we had something like a normalizing
constant for only the terminating flows achievable from s, we would be able to obtain a form
of marginalization given state s, i.e., a conditional probability for terminating states s′ ≥ s,
given s. Naturally, one could ask: does the flow F (s) through state s give us that kind of
marginalization over only the downstream terminating flows? Unfortunately in general, the
answer to this question is no, as illustrated in Fig. 5: in this example F (s2) = 4, whereas the
sum of terminating flows achievable from s2 is 6 (the terminating states reachable from s2
are {s5, s6, s7}). The discrepancy is caused by the flow through (s0, s1, s5) that contributes
to the terminating flow F (s5→sf ), but not to F (s2) since there is no order relation between
s1 and s2.
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Figure 5: Example of a state-conditional flow network. (a) The original (Markovian) flow
network. (b) The subgraph of states reachable from s2; there is a flow through (s0, s1, s5)
that contributed to F (s5→sf ), but not to F (s2), showing that F (s2) does not marginalize
the rewards of its descendant. (c) State-conditional flow network Fs2 , which differs from
the original flow F on the subgraph, but satisfies the desired marginalization property.
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In Sec. 5.3, we show how GFlowNets applied to sampling sets of random variables can be
used to estimate the marginal probability for the values given to a subset of the variables. It
requires computing the kind of intractable sum discussed above (over the rewards associated
with all the descendants of a state s, with s corresponding to such a subset of variables
and a descendant to a full specification of all the variables). That motivates the following
definition:

Definition 27 Given a pointed DAG G = (S,A), the corresponding partial order denoted
by ≥, and a function E : S → R, called the energy function, we define the free energy
F(s) of a state s as:

e−F(s) :=
∑
s′:s′≥s

e−E(s
′). (44)

Free energies are generic formulations for the marginalization operation (i.e. summing over
a large number of terms) associated with energy functions, and we find their estimation to
open the door to interesting applications where expensive MCMC methods would typically
be the main approach otherwise.

4.1 Conditional flow networks

In Sec. 2.2, we defined a flow network as a DAG, augmented with some function F over the
set of complete trajectories T . We can extend this notion of flow networks by conditioning
each component on some information x. In general, this conditioning variable can represent
any conditioning information, either external to the flow network (but influencing the ter-
minating flows), or internal (e.g., x can be a property of complete trajectories over another
flow network, like passing through a particular state).

Definition 28 Let X be a set of conditioning variables. We consider a family of DAGs
Gx = (Sx,Ax) indexed by x ∈ X , along with a family of initial and terminal states denoted
by (s0 | x) ∈ Sx and (sf | x) ∈ Sx respectively. For each DAG Gx, we denote by Tx the set
of complete trajectories in Gx, and we denote by T their union:

T =
⋃
x∈X
Tx.

A conditional flow network is the specification of X , the family {Gx, x ∈ X}, along
with a conditional flow function F , i.e. a function F : X × T → R+ such that F (x, τ) = 0
if τ /∈ Tx. For clarity, we will denote, for each x ∈ X , by Fx the function mapping each
τ ∈ Tx to F (x, τ). Similar to Sec. 2.2, Fx induces a measure of the σ-algebra 2Tx for each
x.

Conditional flow networks effectively represent a family of flow networks, indexed by
the value of x. Since conditional flow networks are defined using the same components
as an unconditional flow network, they inherit from all the properties of flow networks for
all DAGs Gx and flow functions Fx. In particular, we can directly extend the notion of
probability distribution over flows, state and edge flows, forward and backward transition
probabilities (Sec. 2.3), of Markovian flows (Sec. 2.4), and any flow matching condition
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(Sec. 2.5) to conditional flows; the only difference is that now every term explicitly depends
of the conditioning variable x.

In Sec. 4.2 and Sec. 4.3, we will elaborate two important examples of conditional flow
networks: flow networks conditioned on external information that changes the reward R(s |
x), and state-conditional flow networks that depend on internal information, i.e., previously
visited states.

4.2 Reward-conditional flow networks

Definition 29 Let X be a set of conditioning variables. Consider a flow network given by
a pointed DAG G = (S,A) and a flow function F . Consider a family R of non-negative
functions of S: {Rx : Sf → R+, x ∈ X}. A reward-conditional flow network com-
patible with the family R is a conditional flow network (Def. 28), with Gx = G for every
x ∈ X , such that the edge-flow functions induced by the conditional flow function F satisfy:

∀x ∈ X ∀s ∈ Sf Fx(s→ sf ) = Rx(s).

We will use the notations Rx(s) and R(s | x) interchangeably.

Note that the definition above implies that all the DAGs of a reward-conditional flow
network are identical, and only the terminating flows differ amongst the members of the
family.

Example 7 We will see in Sec. 4.4 that we can estimate a conditional flow network using
a GFlowNet (Sec. 3), given a reward function R(s | x). In an Energy-Based Model, the
model Pθ(s) is associated with a given energy function Eθ(s), parametrized by θ, with

Pθ(s) =
exp(−Eθ(s))

Z(θ)
.

This model can be parametrized using a reward-conditional flow network, conditioned on θ
with the reward function R(s | θ) = exp(−Eθ(s)). We show in Sec. 4.5 how to use such a
conditional flow-network to learn an Energy-Based Model.

4.3 State-conditional flow networks

Definition 30 Consider a flow network given by a DAG G = (S,A) and a flow function
F . For each state s ∈ S, let Gs be the subgraph of G containing all the states s′ such that
s′ ≥ s. A state-conditional flow network is given by the family {Gs, s ∈ S}, along
with a conditional flow function F : S × T → R+, where T =

⋃
s∈S Ts, and Ts the set of

complete trajectories in Gs, that satisfies:

Fs(s
′ → sf ) = F (s′ → sf ). (45)

Note that in the definition above, we abused the notation F to refer to both flow
functions and edge flow functions, but also used Fs to refer to the conditional flow function
(or the corresponding edge flow function) τ 7→ F (s, τ). Unlike the reward-conditional flow
networks defined in Sec. 4.2, the structure of the DAG in a state-conditional flow network
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depends on the anchor state s. In particular, this means that the initial state (s0 | s) = s
changes, but the final state (sf | s) = sf remains unchanged, for any state s.

Since the definition of a state-conditional flow network depends on an original flow
network, we must ensure that this definition is indeed correct, i.e. that such a state-
conditional flow network that satisfies the conditions in Eq. (45) exists.

Proposition 31 For any flow network given by a DAG G = (S,A) and a flow F, we can
define a state-conditional flow network as per Def. 30.

Proof Let s ∈ S be a state. Since the structure of the DAG Gs is clearly well-defined, we
just need to show that there exists a flow function Fs : Ts → R+ that satisfies Eq. (45). If
such a function exists for every s ∈ S, then it would suffice to define the conditional flow
function F : S × T → R+ as:

F (s, τ) =

{
Fs(τ) if τ ∈ Ts
0 otherwise.

Let As′|s be the set of complete trajectories in Ts terminating in s′ ≥ s; the condition in
Eq. (45) then reads:

Fs(s
′→sf ) = Fs(As′|s) =

∑
τ∈As′|s

Fs(τ) = F (s′→sf ). (46)

Note that in Eq. (46), F (s′→sf ) is a given quantity because the flow F is known. Since
the sets of trajectories {As′|s, , s′ ≥ s} form a partition of all the complete trajectories Ts,
Eq. (46) is a system of linear equations, whose unknowns are Fs(τ) for all τ ∈ Ts, where
each equation involves separate sets of unknowns. Therefore there exists at least a solution
Fs(τ) of this system.

We can construct such a solution in the following way. For some τ ∈ Ts, we can first
start by selecting the complete trajectories τ̄ ∈ T that contain τ :

Cτ = {τ̄ ∈ T : τ ⊆ τ̄}.

The key difference between the DAG G and the subgraph Gs though is that G may contain
trajectories that terminate in some s′ ≥ s but do not pass through s, and those are therefore
not covered by the trajectories of Gs. Let Us′|s be the set of complete trajectories of G
defined as

Us′|s = {τ̄ ∈ T : ∃s′′ > s, s′′ ∈ τ̄ , s′ ∈ τ̄ , s /∈ τ̄}.
For all τ ∈ Ts such that τ terminates in some s′ ≥ s, we can therefore construct the flow
Fs(τ) as

Fs(τ) := F (Cτ ) +
1

n
F (Us′|s),

where n = |As′|s| is the number of trajectories τ ′ ∈ Ts that terminate in s′. It is easy to
verify that Fs(τ) is a solution of Eq. (46).
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While we saw in Prop. 10 that the initial flow F (s0) was equal to the partition function,
the initial state-conditional flow also benefit from a marginalizing property, and is now
related to the free energy at s.

Proposition 32 Given a state-conditional flow network (G,F ) as in Def. 30, for any state
s, the initial flow of the state-conditional flow network corresponds to marginalizing the
terminating flows F (s′ → sf ) for s′ ≥ s:

Fs(s0 | s) = Fs(s) =
∑

s′ : s′≥s
F (s′ → sf ) = exp(−F(s)),

where F(s) is the free energy associated to the energy function E(s′) = − logF (s′→sf ).

Proof This is a direct consequence of Prop. 10, applied to the state-conditional flow
function Fs, along with Def. 27.

Fs(s0 | s) =
∑
τ∈Ts

Fs(τ) =
∑

s′ : s′≥s
Fs(s

′→sf )

=
∑

s′ : s′≥s
F (s′→sf ) =

∑
s′ : s′≥s

e−E(s
′)

Note that the definition of state-conditional flow networks is consistent with our original
definition of (unconditional) flow networks in Section 2.1, in the sense that the original flow
network is a valid state-conditional flow networks anchored at the initial state.

Another quantity of interest that state-conditional flow networks allow us to evaluate,
is the probability of terminating a trajectory in a state s′ if all terminating edge flows were
diverted towards an earlier state s < s′:

Corollary 33 Consider a flow network given by a DAG G = (S,A) and a flow F , from
which we define any state-conditional flow network, as per Def. 30. Given a state s, the
flow function Fs induces a probability distribution over {s′′ ∈ Sf : s′′ ≥ s} ⊆ Sf , that we
denote by PT (. | s).

Under this measure, the probability of terminating a trajectory in Gs in a state s′ (i.e.
the last edge of the trajectory is s′ → sf ) is:

PT (s′ | s) = 1s′≥se
−E(s′)+F(s), (47)

where E is the energy function mapping each state s′ that is parent of sf to − logF (s′ → s),
and F is the corresponding free energy function.

Proof Because Fs is a flow function, Def. 11 and Prop. 10 tell us that:

PT (s′ | s) =


Fs(s

′ → sf )

Fs(s)
if s′ ≥ s

0 otherwise
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Combining this with Prop. 32, and Eq. (45), we obtain for s′ ≥ s:

PT (s′ | s) = 1s′≥s
F (s′ → sf )

e−F(s)

= 1s′≥s
e−E(s

′)

e−F(s)

4.4 Conditional GFlowNets

Similar to the way we used a GFlowNet to estimate the flow of a flow network, we can also
use a (conditional) GFlowNet in order to estimate a conditional flow network, with given
target reward functions. A conditional GFlowNet follows the construction presented in Sec-
tion 3, with the exception that all quantities to be learned now depend on the conditioning
variable x ∈ X (e.g., x is an additional input of the neural network).

All parametrizations and losses presented in Sec. 3.2 could in principle be used to train
a conditional GFlowNet, regardless of the conditioning set. Below we discuss yet another
loss, first presented in Deleu et al. (2022), that could be used to train both GFlowNets and
conditional GFlowNets.

Example 8 Given a family of DAGs Gx and reward functions Rx indexed by x ∈ X , where
each state s ∈ Gx is terminating (i.e. is a parent of sf ), and following Exs. 2 and 3,
we consider a parametrization given by the forward and backward transition probabilities
OxP = Ox2 × Ox3 , where Ox2 (resp. Ox3) is the set of forward (resp. backward) probability

functions P̂F (resp. P̂B) consistent with Gx for every x ∈ X , and (Πx
P ,HxP ) defined as in

Ex. 3. Each (OxP ,Πx
P ,HxP ) is a flow parametrization of (Gx, Rx), which can be trained with

an edge-decomposable flow-matching loss, as proved in Deleu et al. (2022), and defined for
every s→ s′ ∈ A−f :

LDB(P̂F , P̂B, s→ s′, x) =

(
log

Rx(s′)PB(s | s′, x)PF (sf | s, x)

Rx(s)PF (s′ | s, x)PF (sf | s′, x)

)2

4.5 Training Energy-Based Models with a GFlowNet

A GFlowNet can be trained to convert an energy function into an approximate correspond-
ing sampler. Thus, it can be used as an alternative to MCMC sampling (Sec. 3.1). Consider
the model Pθ(s) associated with a given parametrized energy function Eθ(s) with param-

eters θ: Pθ(s) = e−Eθ(s)
Z . Sampling from Pθ(s) could be approximated by sampling from

the terminating probability distribution PT (s) of a GFlowNet trained with target terminal
reward R(s) = e−Eθ(s) (see Eq. (34)). In practice, P̂T would be an estimator for the true Pθ
because the GFlowNet training objective is not zeroed (insufficient capacity or finite train-
ing time). The GFlowNet samples drawn according to P̂T could then be used to obtain a
stochastic gradient estimator for the negative log-likelihood of observed data x with respect
to parameters θ of an energy function Eθ:

∂ − logPθ(x)

∂θ
=
∂Eθ(x)

∂θ
−
∑
s

Pθ(s)
∂Eθ(s)
∂θ

. (48)
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An approximate stochastic estimator of the second term could thus be obtained by sampling
one or more terminating states s ∼ P̂T (s), i.e., from the trained GFlowNet’s sampler.
Furthermore, if the GFlowNet’s loss is 0, i.e. P̂T = Pθ, the gradient estimator would be
unbiased.

One could thus potentially jointly train an energy function Eθ and a corresponding
GFlowNet by alternating updates of θ using the above equation (with sampling from Pθ
replaced by sampling from P̂T ) and updates of the GFlowNet using the updated energy
function for the target terminal reward.

If we fix F̂ (s→sf ) = R(s) by construction (which we can do if the reward function
is deterministic), then we can parametrize the energy function with the same neural net-
work that computes the flow, since E(s) = − logR(s) = − log F̂ (s→sf ). Hence the same
parameters are used for the energy function and for the GFlowNet, which is appealing.

The above strategy for learning jointly an energy function and how to sample from it
could be generalized to learning conditional distributions by using a conditional
GFlowNet instead. Let x be an observed random variable and h be a hidden variable,
with the GFlowNet generating the pair (x, h) in two sub-trajectories: either first generate
x and then generate h given x, or first generate h and then generate x given h. This can
be achieved by introducing a 6-valued component u in the state to make sure that both h
and x are generated before exiting into sf , with the following values and constraints:

s = s0 ⇒ u = 0 (49)

s = sf ⇒ u = 5 (50)

(ut→ut+1) ∈ {0→1, 0→2, 1→1, 2→2, 1→3, 2→4, 3→3, 4→4, 3→5, 4→5} (51)

where u = 1 indicates that x is being generated (before h), u = 2 indicates that h is
being generated (before x), u = 3 indicates that h is being generated (conditioned on x),
and u = 4 indicates that x is being generated (given h). The GFlowNet cannot reach
the final state sf until both x and h have been generated. The conditional GFlowNet can
thus approximately sample PT (x), PT (h | x), PT (h), PT (x | h) as well as PT (x, h). If we
only want to sample x (or only h), we allow exiting as soon as it is generated (resp. h is
generated). See Sec. 5.3 for a more general discussion on how to represent, estimate and
sample marginal distributions.

Let us denote by Pθ(x, h) ∝ e−Eθ(x,h) the joint distribution over (x, h) associated with
the energy function, i.e., with F (s→ sf ). When x is observed but h is not, θ could thus be
updated by approximating the marginal log-likelihood gradient

∂ − logPθ(x)

∂θ
=
∑
h

PT (h | x)
∂Eθ(x, h)

∂θ
−
∑
x′,h

PT (x′, h)
∂Eθ(x′, h)

∂θ
(52)

using samples from the estimated terminal sampling probabilities P̂T of a trained GFlowNet
to approximate in a stochastic gradient way the above sums (using one or a batch of
samples).

Note how we now have outer loop updates (of the energy function, i.e., the reward
function) from actual data, and an inner loop updates (of the GFlowNet) using the energy
function as a driving target for the GFlowNet. How many inner loop updates are necessary
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for such a scheme to work is an interesting open question but most likely depends on the
form of the underlying data generating distribution. If the work on GANs (Goodfellow et al.,
2014) is a good analogy, a good strategy may be to interleave updates of the energy function
(as minus the log-terminal flow of a GFlowNet) based on a batch of data, and updates of the
GFlowNet as a sampler based on both these samples (trajectories can be sampled backwards
from a terminating state s using PB) and forward samples from the tempered training policy
πT defined by the forward transition probabilities of the GFlowNet.

4.6 Active Learning with a GFlowNet

An interesting variant on the above scheme is one where the GFlowNet sampler is used not
just to produce negative examples for the energy function but also to actively explore the
environment. Jain et al. (2022) use an active learning scheme where the GFlowNet is used
to sample candidates x for which we expect the reward R(x) to be generally large (since the
GFlowNet approximately samples proportionally to R(x)). The challenge is that evaluating
the true reward R for any x is computationally expensive and can potentially be noisy (for
example, a biological assay to measure the binding energy of a drug to a given target
protein). Thus, instead of using the true reward directly, the authors introduce a proxy f̂
(which approximates the true reward function f), which is used to train the GFlowNet. This
would lead to a setup similar to Sec. 4.5, with an inner loop where a GFlowNet is trained to
match the proxy f̂ , and an outer-loop where the proxy f̂ is learned in a supervised fashion
using (x, y) pairs, where x is proposed by the GFlowNet, and y is the corresponding true
reward from the environment (for example, outcome of a biological of chemical assay). It
is important to note here that the GFlowNet and the proxy are intricately linked since the
coverage of proxy f̂ over the domain of x relies on diverse candidates from the GFlowNet.
And similarly, since the GFlowNet matches a reward distribution defined by the proxy
reward function f̂ , it also depends on the quality of the true reward function f .

This setup can be further extended by incorporating information about how novel a
given candidate is, or how much epistemic uncertainty, u(x, f), there is in the prediction
of f̂ . We can use the acquisition function heuristics (like Upper Confidence Bound (UCB)
or Expected Improvement (EI)) from Bayesian optimization (Močkus, 1975; Srinivas et al.,
2010) to combine the predicted usefulness f̂(x) of configuration x with an estimate of
the epistemic uncertainty around that prediction. Using this as the reward can allow the
GFlowNet to explore areas where the predicted usefulness is high (f̂(x) is large) and at the
same time explore areas where there is more information to be gathered about useful con-
figurations of x. The uncertainty over the predictions of f̂ with the appropriate acquisition
function can provide more control over the exploratory behaviour of GFlowNets.

As discussed by Bengio et al. (2021) when comparing GFlowNets with return-maximizing
reinforcement learning methods, an interesting property of sufficiently trained GFlowNets
is that they will sample from all the modes of the reward function, which is particularly
desirable in a setting where exploration is required, as in active learning. The experiments
in the paper also demonstrate this advantage experimentally in terms of the diversity of the
solutions sampled by the GFlowNet compared with PPO, an RL method that had previ-
ously been used for generating molecular graphs and that tends to focus on a single mode
of the reward function.
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4.7 Estimating Entropies, Conditional Entropies and Mutual Information

Definition 34 Given a reward function R with 0 ≤ R(s) < 1 ∀s, we define the entropic
reward function R′ associated with R as:

R′(s) = −R(s) logR(s). (53)

In brief, in this section, we show that we can estimate entropies by training two GFlowNets:
one that estimates flows as usual for a target terminal reward function R(s), and one that
estimates flows for the corresponding entropic reward function. We show below that we
obtain an estimator of entropy by looking up the flow in the initial state, and if we do this
exercise with conditional flows, we get conditional entropy. Once we have the conditional
entropy, we can also estimate the mutual information.

Proposition 35 Consider a flow network (G,F ) such that the terminating flows match
a given reward function R, i.e. ∀s ∈ Sf , F (s → sf ) = R(s), with R(s) < 1 for all s,
and a second flow network (G,F ′) with the same pointed DAG, but with a flow function
for which the terminating flows match the entropic reward function R′ (Eq. (53)), then the
entropy H[S] associated with the terminating state random variable S ∈ Sf with distribution

PT (S = s) = R(s)
Z (Eq. (18)) is

H[S] := −
∑
s

PT (s) logPT (s) =
F ′(s0)

F (s0)
+ logF (s0). (54)

Proof First apply the definition of PT (s), then Eq. (11) on both flows:

−
∑
s

PT (s) logPT (s) = −
∑
s

R(s)

F (s0)
(logR(s)− logF (s0))

=

(
−∑sR(s) logR(s)

)
+
(

logF (s0)
∑

sR(s)
)

F (s0)

=
F ′(s0)

F (s0)
+ logF (s0).

Note that we need R(s) < 1 to make sure that the rewards R′(s) (and thus the flows) are
positive.

Proposition 36 Given a set X of conditioning variables, consider a conditional flow net-
work defined by a conditional flow function F , for which the terminating flows match a
target reward R family (conditioned on x ∈ X ) that satisfies Rx(s) < 1 for all s, and a
second conditional flow network defined by a conditional flow function F ′, for which the
terminating flows match the entropic reward functions R′x (Eq. (53)), then the conditional
entropy H[S | x] of random terminating states S ∈ Sf consistent with condition x is given
by

H[S | x] =
F ′(s0 | x)

F (s0 | x)
+ logF (s0 | x). (55)
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In particular, for a state-conditional GFlowNet (X = S is the state space of the DAG), we
obtain

H[S | s] =
F ′(s | s)
F (s | s) + logF (s | s). (56)

More generally, the mutual information MI(S;X) between the random draw of a terminating
state S = s according to PT (s | x) and the conditioning random variable X is

MI(S;X) = H[S]− EX [H[S | X]] =
F ′(s0)

F (s0)
+ logF (s0)− EX

[
F ′(s0 | X)

F (s0 | X)
+ logF (s0 | X)

]
(57)

where F (s) and F ′(s) indicate the unconditional flows (trained with no condition x given)
while F (s | x) and F ′(s | x) are their conditioned counterparts.

Proof The proof of Eq. (55) follows from the fact that each (Gx, Fx) is a flow network,
to which we can apply Prop. 35. Eq. (57) is a direct consequence of the definition of the
Mutual Information, Eq. (54) and Eq. (55).

If we have a sampling mechanism for P (X), we can thus approximate the expectation
in Eq. (57) by a Monte-Carlo average with draws from P (X).

5. GFlowNets on Sets, Graphs, and to Marginalize Joint Distributions

5.1 Set GFlowNets

We first define an action space for constructing sets and we view the GFlowNet as a means
to generate a random set S and to estimate quantities like probabilities, conditional prob-
abilities or marginal probabilities for realizations of this random variable. The elements of
those sets are taken from a larger “universe” set U .

Definition 37 Given a “universe” set U , consider the pointed DAG G = (S,A), where
S := 2U ∪{sf} is the set of all subsets of U with an additional state sf , s0 = {} is the empty
set, and for any two subsets s, s′ of U , s→ s′ ∈ A⇔ ∃a ∈ U \s, s′ = s∪{a}; meaning that
each transition in the DAG corresponds to adding one element of U to the current subset.
Additionally all subsets are connected to sf , i.e. ∀s ∈ S, s→ sf ∈ A. A set flow network
is a flow network on this graph G, and a set GFlowNet is an estimator of such a flow
network, as defined in Sec. 3. The target terminal reward function R : s 7→ F (s → sf )
satisfies:

Z =
∑
s∈2U

R(s) <∞. (58)

A set flow network defines a terminating probability distribution PT on states (see Def. 13
and Eq. (44)), with

PT (s) = e−E(s)+F(s0) =
F (s→sf )

F (s0)
(59)

where E represents the energy − logR. Similarly, Cor. 33 provides us with a formula for
conditional probabilities of a given superset s′ of a given set s under PT ,

PT (s′ | s′ ⊇ s) := e−E(s
′)+F(s) =

F (s′→sf )

F (s | s) (60)
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where F indicates free energy (see Def. 27).
Remember that with a GFlowNet with state and edge flow estimator F̂ , it is not guar-

anteed that F̂ (s) = R(s) for all states s ∈ S \ {sf}, so we could estimate probabilities
with

P̂T (s) =
F̂ (s→sf )

F̂ (s0)
(61)

or alternatively

P̂T (s) =
R(s)

F̂ (s0)
. (62)

Similarly, we can estimate conditional superset probabilities with Eq. (60) or with

P̂T (s′ | s′ ⊇ s) =
R(s′)

F̂ (s | s)
, (63)

none of which are guaranteed to exactly sum to 1.
We can also compute the marginal probability over all supersets of a given set s, as

shown below.

Proposition 38 Following the notations of Def. 37, let S(s) = {s′ ⊇ s} be the set of all
supersets of a set s. The probability of drawing any element from S(s) given a set flow
network is

PT (S(s)) =
∑
s′⊇s

PT (s′) =
e−F(s)

Z
=
F (s | s)
F (s0)

. (64)

Proof We can rewrite the sum as follows, first applying the definition of PT (Eq. (18)),
and Prop. 32: ∑

s′⊇s
PT (s′) =

∑
s′≥s

F (s′→sf )

F (s0)

=
F (s | s)
F (s0)

=
e−F(s)

Z

where we notice that for states that are sets, the order relationship s ≤ s′ is equivalent to
the subset relationship s ⊆ s′.

To summarize, a GFlowNet which is trained to match a given energy function (i.e.
derived rewards) over sets can be used to represent that distribution, sample from it, esti-
mate the probability of a set under it, estimate the partition function, search for the lowest
energy set, sample a conditional distribution over supersets of a given set, estimate that
conditional distribution for a given pair of set and superset, compute the marginal proba-
bility of a subset (i.e., summing over the probabilities of the supersets), and compute the
entropy of the set distribution or of the conditional distribution of supersets of a set. For
example, using a GFlowNet to model distributions over sets has been successfully used in
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Malik et al. (2023), where the goal is to iteratively select an informative batch of points
for efficient active learning. The authors additionally show that the distribution over sets
defined by a mutual information-based reward (Sec. 4.7) can be approximated to satisfying
levels using a neural network as a function approximator for the GFlowNet policy.

5.2 GFlowNet on Graphs

A graph is a special kind of set in which there are two kinds of elements: nodes and edges,
with edges being pairs of node indices. Graphs may also have content attached to nodes
and/or edges. The set operations described in the previous section can thus be specialized
accordingly. Some actions (i.e. edges in the GFlowNet DAG) could insert a node while
other actions could insert an edge. The set of allowable actions can be limited, for example
to make sure the graph has a single connected component, or to ensure acyclicity. Like for
sets in general, one cannot have an action which adds a node or edge which is already in the
set. Deleu et al. (2022) used a GFlowNet over DAGs in order to learn an approximation
of the posterior distribution over the graphical structure of a Bayesian Network. While the
GFlowNet was learned by minimizing some loss derived from flow-matching conditions as
in Sec. 3.2, they showed that the resulting distribution is an accurate approximation of the
target posterior. Since graphs are sets, all the GFlowNet operations on sets can be applied
on graphs.

5.3 Marginalizing over Missing Variables

The ability of GFlowNets to capture probability distributions over sets can be applied to
modeling the joint distribution over random variables, to calculating marginal probabilities
over given subsets of variable values, and to sampling or computing probabilities for any
conditional (e.g., for a subset of variables given another subset of variables).

Let X = (X1, X2, . . . , Xn) be a composite random variable with n element random
variables Xi, 1 ≤ i ≤ n, each with possible values xi ∈ Xi (not necessarily numbers). If
we are given an energy function or a terminal reward function R(x) to score any instance
X = x, we can train a particular kind of set GFlowNet for which the set elements are
pairs (i, xi) and at most one element in the set with index i, for all i. The only allowed
terminating transitions are when the set has exactly size n and every size-n set s terminates
on the next transition.

Note how that GFlowNet can sample an X in any possible order, if PB allows that
order. Given an existing set of (i, xi) pairs (represented by a state s = {(i, xi)}i), we can
estimate the marginal probability of that subset of variables (implicitly summing over all the
missing ones, see Eq. (64)). We can sample the other variables by setting the state at s and
continuing to sample from the GFlowNet’s policy (the learned forward transition probability
function). We can sample from a chosen subset S′ of the other variables by constraining
that policy to only add elements which are in S′. In addition, we can do all the other things
that are feasible on set GFlowNets, such as estimating the partition function, sampling
in an order which prefers the early subsequences with the largest marginal probability,
searching for the most probable configuration of variables, or estimating the entropy of the
distribution.

42



GFlowNet Foundations

5.4 Modular Energy Function Decomposition

Let us see how we can apply the graph GFlowNet framework to a special kind of graph: a
factor graph (Kschischang et al., 2001) with reusable factors. This will yield a distribution
PT (g) over graphs g, each of which is associated with an energy function value E(g) (and
associated reward R(g)). Energy-based models are convenient because they can decom-
pose a joint probability into independent pieces (possibly corresponding to independent
mechanisms, Schölkopf et al., 2012; Goyal et al., 2019; Goyal and Bengio, 2020), each cor-
responding to a factor of a factor graph. In our case, we would like a shared set of factors
F to be reusable across many factor graphs g. The factor graph will provide an energy and
a probability over a set of random variables V. Let the graph g = {(F i, vi)}i be written
as a set of pieces (F i, vi), where F i ∈ F is the index of a factor with energy function term
EF i , selected from the pool F of possible factors, and where vi = (v1, v2, . . .) is a list of
realizations of the random variables Vj ← vj , where Vj ∈ V is a node of the factor graph.
That list defines the edges of the factor graph connecting variable Vj with the j-th argument
of EF i . Let us denote EF i(vi) the value of this energy function term EF i applied to those
values vi, i.e.,

EF i(vi) = EF i(v1, v2, . . .). (65)

The total energy function of such a graph can then be decomposed as follows

E(g) =
∑
i

EF i(vi). (66)

What is interesting with this construction is that the graph GFlowNet can now sample a
graph g, possibly given some conditioning observations x: see Sec. 4.5 on how GFlowNets
can be trained jointly with an energy function, including the case where only some ran-
dom variables are observed. Hence, given some observed variables (not necessarily always
the same), the graph GFlowNet can sample a latent factor graph containing and connect-
ing (with energy function terms) both observed and latent random variables, and whose
structure defines an energy function over values of the joint observed and latent variables.

Not only can we use the compositional nature of the objects generated by a GFlowNet to
decompose the total energy into reusable energy terms corresponding to ideally independent
mechanisms, but we can also decompose the GFlowNet itself into modules associated with
each mechanism. The action space of this graph GFlowNet is fairly complex, with each
action corresponding with the addition of a latent variable Vk or the addition of a graph
piece (F i, vi). Such an action is taken in the context of the state of the GFlowNet, which
is a partially constructed graph (arising from the previous actions). The GFlowNet and
its associated energy function parameters are thus decomposed into modules. Each module
knows how to compute an energy function EFi and how to score and sample competitively
(against the other modules) a new graph piece (to insert the corresponding factor in the
graph).

Consider some observed variables (a subset of the Vj ’s with their values vj), collectively
denoted x. Consider a graph g among those compatible with x (i.e. with some nodes
corresponding to Vj = vj for the observed variables) and denote h the specification of the
part of g not already provided by x. We can think about latent variable h as the explanation
for the observed x. Note how marginalizing over all the possible h, we can compute the
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free energy of x. The principles of Sec. 4.5 can be applied to train such an energy-based
GFlowNet. It also makes sense to represent a prior over graph structures in the energy
function. For example, we may prefer sparse factors (with few arguments), and we may
introduce soft or hard constraints having to do with a notion of type that is commonly used
in computer programming and in natural language. Each random variable in the graph
can have as one of its attributes a type, and each factor energy function argument can
expect a type. Energy function terms can be added to construct this prior by favouring
graph pieces (Fi, v

i = (vk)k) in which the type of variable Vk (of which vk is a realization)
matches the type expected of the k-th argument of Fi. This is very similar to attention
mechanisms (Bahdanau et al., 2014; Vaswani et al., 2017), which can be seen to match a
query (an expected type) with a key (the type associated with an element). For instance,
Pan et al. (2023) propose the Forward-Looking GFlowNet framework that exploits the
modularity of the energy function, as in Eq. (66) and obtain a better approximation of the
target distribution than those resulting from regular losses.

6. Continuous or Hybrid Actions and States

All of the mathematical developments above have used sums over states or actions, with
the idea that these would be elements of a discrete space. However, for the most part one
can replace these sums by integrals in case the states or actions are either continuous or
hybrid (with some discrete components and some continuous components). Beyond this,
we discuss below what the presence of continuous-valued actions and states changes to the
GFlowNet framework.

Although there are explicit sums respectively over successors and predecessors which
come up in Eq. (40), such sums are also hiding in the detailed balance constraint of Eq. (26).
Indeed, these sums are implicit as part of the normalizing constant in the conditional density
of the next state or previous state in PF (st+1 | st) and PB(st | st+1). We consider below
ideas to deal with this challenge.

6.1 Integrable Normalization Constants

We first note that if we can handle a continuous state, we can also handle a hybrid state,
as follows. Let the state be decomposed into

s = (si, sx) (67)

where si is discrete and sx is continuous. Then we can decompose any of the transition
conditionals as follows:

PF (st+1 | st) = P (sxt+1 | sit+1, st)P (sit+1 | st). (68)

We note that this is formally equivalent to decomposing the transition into two transitions,
first to perform the discrete choice into the next state, and second to perform the continuous
choice into the next state (given the discrete choice). Having continuous-valued inputs to a
neural net is no problem. The challenge is to represent continuous densities on the output,
with the need to both being able to compute the density of a particular value (say P (sxt+1 |
sit+1, st)) and to be able to sample from it. Computing categorical probabilities and sampling
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from a conditional categorical is standard fare, so we only discuss the continuous conditional.
One possibility is to parametrize sxt+1 | sit+1, st with a density for which the normalization
constant is a known tractable integral, like the Gaussian. However, that may limit capacity
too much, and may prevent a good minimization of the detailed balance or flow-matching
loss. One workaround is to augment the discrete part of the state si with extra dimensions
corresponding to “cluster IDs”, i.e., partition the continuous density into a mixture. We
know that with enough mixture components, we can arbitrarily well approximate densities
from a very large family. Other approaches include modeling the conditional density with
an autogressive or normalizing flow model (Rezende and Mohamed, 2015, with a different
meaning of the word flow), or, like in denoising diffusion models (Sohl-Dickstein et al., 2015),
decomposing sampling of sx into several resampling steps, transforming its ditribution from
a simple one to complex one.

To guarantee that the detailed balance constraint can be exactly satisfied, we could go
further and think about parametrizing the edge flow F ((si, sx)→(s′i, s

′
x)), and note that this

is the natural parametrization if we use the node-based flow-matching loss. For example,
keeping with the Gaussian example, we would now have a joint Gaussian energy in the vector
(sx, s

′
x) for each feasible discrete component indexed by (si, s

′
i). Note that in practical

applications of GFlowNets, not all the transitions that satisfy the order relationship are
generally allowed in the GFlowNet’s underlying DAG. For example, with set GFlowNets, the
only allowed actions add one element to the set (not an arbitrary number of elements). These
constraints on the action space mean that the number of legal (si, s

′
i) pairs is manageable

and correspond to the number of discrete actions. The overall action is therefore seen as
having a discrete part (choosing s′i given si) and a continuous part (choosing s′x given s′i, si
and sx). With such a joint flow formulation, the forward and backward conditional densities
can be computed exactly and be compatible with each other.

6.2 GFlowNets in GFlowNets

Another way to implement an edge flow involving continuous variables is to use a lower-level
〈GFlowNet, energy function〉 pair to represent its flow, conditional probabilities and sample
from them. Remember that such a pair can be trained following the approach discussed
in Sec. 4.5. Instead of a joint Gaussian for (sx, s

′
x) given (si, s

′
i) we could have a smaller-scale

GFlowNet and energy function (representing an edge flow in the outer GFlowNet) to handle
a whole family of transitions of a particular type in a larger-scale outer GFlowNet. Imagine
that we have a fairly arbitrary energy function for such a transition, with parameters that
we will learn. Then we can also train a GFlowNet to sample in either direction (either from
st to st+1 or from st+1 to st) and to evaluate the corresponding normalizing constants (and
hence, the corresponding conditional probabilities). The discrete aspect of the state and
of its transition may correspond to a family of transitions (e.g., insert a particular type of
node in a graph GFlowNet), and a separate 〈GFlowNet, energy function〉 module may be
specialized and trained to handle such transitions.

While this paper was under review, Lahlou et al. (2023) extended the theory of GFlowNets
to more general state spaces, including continuous ones, and experimentally validated that
the usual losses can be used to effectively perform inference in continuous domains.
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7. Related Work

There are several classes of related literature that concern the problem of generating a
diversity of samples, given some energy or reward signal, in particular:

• generative models (in particular deep learning ones),

• RL methods that maximize reward with some form of exploratory behavior or smooth-
ness prior,

• MCMC methods that solve the problem of sampling from p(x) ∝ f(x) in principle,

• evolutionary methods, that can leverage group diversity through iterations over a
population of solutions.

In what follows we discuss these and offer insights into similarities and differences be-
tween GFlowNets and these approaches. Note that the literature related to this problem is
much larger than we can reference here, and extends to many other subfields of ML, such
as GANs (Kumar et al., 2019), VAEs (Kingma and Welling, 2013; Kusner et al., 2017),
and normalizing flows (Dinh et al., 2014, 2016; Rezende and Mohamed, 2015). Yet another
related type of approach are the Bayesian optimization methods (Močkus, 1975; Srinivas
et al., 2010), which have also been used for searching in the space of molecules (Griffiths
and Hernández-Lobato, 2017). The main relation with Bayesian optimization methods is
that GFlowNets are generative and can thus complement Bayesian optimization methods
which scan a tractable list of candidates. When the search space is too large to be able to
separately compute a Bayesian optimization acquisition function score on every candidate,
using a generative model is appealing. In addition, GFlowNets are used to explore the
modes of the distribution rather than to search for the single most dominant mode. This
difference is similar to that with classical RL methods, discussed further below.

7.1 Contrast with Generative Models

The main difference between GFlowNets and established deep generative models like VAEs
or GANs is that whereas the latter are trained by being provided a finite set of examples
sampled from the distribution of interest, a GFlowNet is normally trained by being provided
an energy function or a reward function.

This reward function tells us not just about the samples that are likely under the dis-
tribution of interest (which we can think of as positive examples) but also about those that
are unlikely (which we can think of as negative examples) and also about those in-between
(whose reward is not large but is not zero either). If we think of the maximum likelihood
training objective in those terms, it is like a reward function that gives a high reward to
every training example (seen as a positive example, where the probability should be high)
and a zero reward everywhere else. However, other reward functions are possible, as seen
in the application of GFlowNets to the discovery of new molecules (Bengio et al., 2021),
where the reward is not binary and increases monotonically as a function of the value of a
desirable property of the candidate molecule.

Note however that the difference with other generative modeling approaches blurs when
we include the learning of the energy function along with the learning of the GFlowNet sam-
pler, as outlined in Sec. 4.5. In that case, the pair comprising the trainable GFlowNet sam-
pler and the trainable energy function achieves a similar objective as a trainable generative
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model. Note that GFlowNets have been designed for generating discrete variable-size com-
positional structures (like sets or graphs), for both latent and observed variables, whereas
GANs, VAEs or normalizing flows start from the point of view of modeling real-valued
fixed-size vectors using real-valued fixed-size latent variables.

An interesting difference between GFlowNets and most generative model training frame-
works (typically some variation on maximum likelihood) is in the very nature of the train-
ing objective for GFlowNets, which came about in the context of active learning scenarios.
Whereas the GFlowNet training pairs (s,R(s)) can come from any distribution over s (any
full-support training policy πT ), which does not have to be stationary (and indeed will
generally not be, in an active learning setting), the maximum likelihood framework is very
sensitive to changes in the distribution of the data it sees. This is connected to the “offline
learning” property of the flow matching objective (Sec. 3.3.3, among others).

7.2 Contrast with Regularized Reinforcement Learning

The flow-matching loss of GFlowNets (Bengio et al., 2021) arose from the inspiration of the
temporal-difference training (Sutton and Barto, 2018) objectives associated with the Bell-
man equation. The flow-matching equations are analogous to the Bellman equation in the
sense that the training objective is local (in time and states), credit assignment propagates
through a bootstrap process and tries to fix the parametrization so that these equations
are satisfied, knowing that if they were (everywhere), we would obtain the desired proper-
ties. However, these desired properties are different, as elaborated in the next paragraph.
The context in which GFlowNets were developed is also different from the typical way of
thinking about agents learning in some environment: we can think of the deterministic en-
vironments of GFlowNets as involving internal actions typically needed by a cognitive agent
that needs to perform some kind of inference through a sequence of steps (predict or sample
some things given other things), i.e., through actions internal to the agent and controlling
its computation. This is in contrast with the origins of RL, focused on the actions of an
agent in an external and unknown stochastic environment. GFlowNets were introduced
as a tool for learning an internal policy, similar to the use of attention in modern deep
learning, where we know the effect of actions, and the composition of these actions defines
an inference machinery for that agent.

Classical RL (Sutton and Barto, 2018) control methods work by maximizing return in
Markov Decision Processes (MDPs); their focus is on finding the policy π∗ ∈ argmaxπV

π(s) ∀s
maximizing the expected return V π(s), which happens to provably be achieved with a de-
terministic policy (Sutton and Barto, 2018), even in stochastic MDPs. In a deterministic
MDP, of interest here, this means that training an RL agent is a search for the most re-
warding trajectory, or in the case of terminal-reward-only MDPs (again of interest here),
the most rewarding terminating state.

Another perspective, that emerged out of both the probabilistic inference literature (Tou-
ssaint and Storkey, 2006) and the bandits literature (Auer et al., 2002), is concerned with
finding policies of the form π(a|s) ∝ f(s, a). It turns out that maximizing both return and
entropy (Ziebart et al., 2008) of policies in a control setting yield policies such that

p(τ) =

[
p(s0)

T−1∏
t=0

P (st+1|st, at)
]

exp

(
η

T−1∑
t=0

R(st, at)

)
(69)
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where τ = (s0, a0, s1, a1, . . . , sT ) and η can be seen as a temperature parameter. This result
can also be found under the control-as-inference framework (Haarnoja et al., 2017; Levine,
2018). In deterministic MDPs with terminal rewards and no discounting of future rewards,
this simplifies to p(τ) ∝ exp(ηρ(τ)), where ρ is the return.

In recent literature, this entropy maximization (MaxEnt) is often interpreted as a reg-
ularization scheme (Nachum et al., 2017), entropy being used either as an intrinsic reward
signal or as an explicit regularization objective to be maximized. Another way to under-
stand this scheme is to imagine ourselves in an adversarial bandit setting (Auer et al., 2002)
where each arm corresponds to a unique trajectory, drawn with probability ∝ exp(ρ(τ)).

An important distinction to make between MaxEnt RL and GFlowNets is that, in the
general case they do not find the same result. A GFlowNet learns a policy such that PT (s) ∝
R(s), whereas MaxEnt RL (with appropriately chosen temperature and R) learns a policy
such that PT (s) ∝ n(s)R(s), where n(s) is the number of paths in the DAG of all trajectories
that lead to s (a proof is provided in Bengio et al., 2021). An equivalence only exists if the
DAG minus sf is a tree rooted at s0, which has been found to be useful (Buesing et al., 2019).
What this overweighting by a factor n(s) means practically is that states corresponding to
longer sequences (which typically will have exponentially more paths to them) will tend to
be sampled much more often (typically exponentially more often) than states corresponding
to shorter sequences. Clearly, this breaks the objective of sampling terminating states in
proportion to their reward and provides a strong motivation for considering GFlowNets
instead.

Another perspective on maximizing entropy in RL is that one can also maximize entropy
on the states’ stationary distribution dπ (Ziebart et al., 2008), rather than the policy. In
fact, one can show that the objective of training a policy such that PT (s) ∝ R(s) is equiv-
alent to training a policy that maximizes r(s, a) = logR(s, a)− log dπ(s, a). Unfortunately,
computing stationary distributions, although possible (Nachum et al., 2019; Wen et al.,
2020), is not always tractable nor precise enough for purposes of reward regularization.

7.3 Contrast with Monte-Carlo Markov Chain methods

MCMC has a long and rich history (Metropolis et al., 1953; Hastings, 1970; Andrieu et al.,
2003), and is particularly relevant to the present work, since it is also a principled class of
methods towards sampling from PT (s) ∝ R(s). MCMC-based methods have already found
some amount of success with learned deep neural networks used to drive sampling (Grath-
wohl et al., 2021; Dai et al., 2020; Xie et al., 2021; Nash and Durkan, 2019; Seff et al.,
2019).

An important drawback of MCMC is its reliance on iterative sampling (forming the
Markov chain, one configuration at a time, each of which is like a terminating state of a
GFlowNet): a new state configuration is obtained at each step of the chain by making a
small stochastic change to the configuration in the previous step. Although these methods
guarantee that asymptotically (in the length of the chain) we obtain samples drawn from
the correct distribution, there is an important set of distributions for which finite chains
are unlikely to provide enough diversity of the modes of the distribution.

This is known as the mode-mixing problem (Jasra et al., 2005; Bengio et al., 2013;
Pompe et al., 2020): the chances of going from one mode to a neighboring one may become

48



GFlowNet Foundations

exponentially small (and thus require exponentially long chains) if the modes are separated
by a long sequence of low-probability configurations. This can be alleviated by burning
more computation (sampling longer chains) but becomes exponentially unsustainable with
increased mode separation. The issue can also be reduced by introducing random sampling
(e.g., drawing multiple chains) and simulated annealing (Andrieu et al., 2003) to facilitate
jumping between modes. However, this becomes less effective in high dimensions and when
the modes occupy a tiny volume (which can become an exponentially small fraction of the
total space as its dimension increases) since random sampling is unlikely to land in the
neighborhood of a mode.

In contrast, GFlowNets belong to the family of amortized sampling methods (which
includes VAEs, Kingma and Welling, 2013), where we train a machine learning system to
produce samples: we have exchanged the complexity of sampling through long chains for
the complexity of training the sampler. The potential advantage of such amortized samplers
is when the distribution of interest has generalizable structure: when it is possible to guess
reasonably well where high-probability samples can be found, based on the knowledge of a
set of known high-probability samples (the training set). This is what makes deep generative
models work in the first place and thus suggests that in such high-dimensional settings where
modes occupy tiny volumes (as per the manifold hypothesis, Cayton, 2005; Narayanan and
Mitter, 2010; Rifai et al., 2011), one can capitalize on the already observed (x,R(x)) pairs
(where x is an already visited configuration and R(x) its reward) to “jump” from known
modes to yet unvisited ones, even if these are far from the ones already visited.

How well this will work then depends on the ability to generalize of the learner, i.e.,
on the strength and appropriateness of its inductive biases, as usual in machine learning.
In the case where there is no structure at all (and thus no possibility to generalize when
learning about the distribution), there is no reason to expect that amortized ML methods
will fare better than MCMC. But if there is structure, then the exponential cost of mixing
between modes could go away. There is plenty of evidence that ML methods can do a good
job in such high-dimensional spaces (like the space of natural images) and this suggests
that GFlowNets and other amortized sampling methods would be worth considering where
ML generally works well. Molecular graph generation experiments (Bengio et al., 2021)
comparing GFlowNets and MCMC methods appear to confirm this.

Another factor to consider (independent of the mode mixing issue) is the amortization
of the computational costs: GFlowNets pay a large price upfront to train the network and
then a small price (sampling once from PT ) to generate each new sample. Instead, MCMC
has no upfront cost but pays a lot for each independent sample. Hence, if we want to only
sample once, MCMC may be more efficient, whereas if we want to generate a lot of samples,
amortized methods may be advantageous. One can imagine settings where GFlowNets and
MCMC could be combined to achieve some of the advantages of both approaches.

Evolutionary Methods Evolutionary methods work similarly to MCMC methods, via
an iterative process of stochastic local search, and populations of candidates are found
that maximize one or many objectives (Brown et al., 2004; Salimans et al., 2017; Jensen,
2019; Swersky et al., 2020). From such a perspective, they have similar advantages and
disadvantages. One practical advantage of these methods is that natural diversity is easily
obtainable via group metrics and subpopulation selection (Mouret and Doncieux, 2012).
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This is not something that is explicitly tackled by GFlowNet, which instead relies on i.i.d.
sampling and giving non-zero probability to suboptimal samples as a diversity mechanism.

Sequential Monte-Carlo Sequential Monte Carlo (SMC, Naesseth et al., 2019; Aru-
lampalam et al., 2002) methods are a class of methods aimed at solving inference prob-
lems. Similar to GFlowNets, SMC samplers are trained to sample from a distribution given
by its unnormalized probability density, and require forward and backward kernels, as in
GFlowNets. Unlike GFlowNets though, they require specifying intermediate targets γt(zt).
In addition, with GFlowNets, the reward normally only comes at the end of the sequence,
unlike the per-time-step likelihoods used to reweight particles in SMC. GFlowNets can be
applied in settings which do not fit the typical particle filter setting, such as those whose in-
termediate states do not correspond to valid elements of the sample space. The trajectories
do not necessarily represent a sequence of latent variables associated with corresponding
observations, as in filtering tasks. The GFlowNet trajectory distributions are only defined
by the terminal state reward function.

8. Conclusions and Open Questions

This paper extends and deepens the mathematical framework and mathematical properties
of GFlowNets (Bengio et al., 2021). It connects the notion of flow in GFlowNets with that
of measure over trajectories and introduces a novel training objective (the detailed balance
loss) which makes it possible to choose a parametrization separating the backward policy
PB which controls preferences over the order in which things are done from the constraints
imposed by the target reward function.

An important contribution of this paper is the mathematical framework for marginaliza-
tion or free energy estimation using GFlowNets. It relies on the simple idea of conditioning
the GFlowNet so as to push the ability to estimate a partition function already introduced
by Bengio et al. (2021) to a much more general setting. This makes it possible in principle
to estimate intractable sums of rewards over the terminating states reachable by an arbi-
trary state, opening the door to marginalization over supergraphs of graphs, supersets of
sets, and supersets of (variable,value) pairs. In turn, this provides formulae for estimating
entropies, conditional entropies and mutual information.

Many open questions obviously remain, from the extension to continuous actions and
states to hierarchical versions of GFlowNets with abstract actions and integrating the energy
function in the GFlowNet parametrization itself, enabling an interesting form of modular-
ization and knowledge decomposition. Importantly, many of the mathematical formulations
presented in this paper will require empirical validation to ascertain their usefulness, im-
prove these ideas, turn them into impactful algorithms and explore a potentially very broad
range of interesting applications, from replacing MCMC or being combined with MCMC
in some settings, to probabilistic reasoning to further applications in active learning for
scientific discovery.
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T. Deleu, A. Góis, C. Emezue, M. Rankawat, S. Lacoste-Julien, S. Bauer, and Y. Bengio.
Bayesian structure learning with generative flow networks. In Uncertainty in Artificial
Intelligence, pages 518–528. PMLR, 2022.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation.
ICLR’2015 Workshop, arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. ICLR’2017,
arXiv:1605.08803, 2016.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

A. Goyal and Y. Bengio. Inductive biases for deep learning of higher-level cognition. arXiv,
abs/2011.15091, 2020. https://arxiv.org/abs/2011.15091.

A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, and B. Schölkopf.
Recurrent independent mechanisms. ICLR’2021, arXiv:1909.10893, 2019.

W. Grathwohl, K. Swersky, M. Hashemi, D. Duvenaud, and C. J. Maddison. Oops i took
a gradient: Scalable sampling for discrete distributions, 2021.

R.-R. Griffiths and J. M. Hernández-Lobato. Constrained bayesian optimization for auto-
matic chemical design. arXiv preprint arXiv:1709.05501, 2017.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In International Conference on Machine Learning, pages 1352–1361.
PMLR, 2017.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 1970.

E. Hu, N. Malkin, M. Jain, K. Everett, A. Graikos, and Y. Bengio. Gflownet-em for learning
compositional latent variable models. arvix, 2023.

M. Jain, E. Bengio, A. Hernandez-Garcia, J. Rector-Brooks, B. F. P. Dossou, C. Ekbote,
J. Fu, T. Zhang, M. Kilgour, D. Zhang, L. Simine, P. Das, and Y. Bengio. Biological
sequence design with gflownets. International Conference on Machine Learning (ICML),
2022.

M. Jain, S. C. Raparthy, A. Hernandez-Garcia, J. Rector-Brooks, Y. Bengio, S. Miret, and
E. Bengio. Multi-objective gflownets. arXiv preprint arXiv:2210.12765, 2023.

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain monte carlo methods and the
label switching problem in bayesian mixture modeling. Statistical Science, pages 50–67,
2005.

52

https://arxiv.org/abs/2011.15091


GFlowNet Foundations

J. H. Jensen. A graph-based genetic algorithm and generative model/monte carlo tree
search for the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on information theory, 47(2):498–519, 2001.

R. Kumar, S. Ozair, A. Goyal, A. Courville, and Y. Bengio. Maximum entropy generators
for energy-based models, 2019.

M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder.
In International Conference on Machine Learning, pages 1945–1954. PMLR, 2017.

S. Lahlou, T. Deleu, P. Lemos, D. Zhang, A. Volokhova, A. Hernández-Garćıa, L. N. Ezzine,
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