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Abstract

Communities are a common and widely studied structure in networks, typically assum-
ing that the network is fully and correctly observed. In practice, network data are often
collected by querying nodes about their connections. In some settings, all edges of a sam-
pled node will be recorded, and in others, a node may be asked to name its connections.
These sampling mechanisms introduce noise and bias, which can obscure the community
structure and invalidate assumptions underlying standard community detection methods.
We propose a general model for a class of network sampling mechanisms based on recording
edges via querying nodes, designed to improve community detection for network data col-
lected in this fashion. We model edge sampling probabilities as a function of both individual
preferences and community parameters, and show community detection can be performed
by spectral clustering under this general class of models. We also propose, as a special case
of the general framework, a parametric model for directed networks we call the nomination
stochastic block model, which allows for meaningful parameter interpretations and can be
fitted by the method of moments. In this case, spectral clustering and the method of mo-
ments are computationally efficient and come with theoretical guarantees of consistency.
We evaluate the proposed model in simulation studies on unweighted and weighted net-
works and under misspecified models. The method is applied to a faculty hiring dataset,
discovering a meaningful hierarchy of communities among US business schools.

Keywords: Community detection; edge nomination; partial networks; spectral method;
method of moment

1. Introduction

Networks have been widely used to describe relationships between individuals or interac-
tions between units of complex systems in numerous fields (Newman, 2010). Community
detection, the task of clustering nodes into groups with relatively homogeneous connection
patterns, has been intensively studied since communities occur naturally in many real-world
networks (Fortunato, 2010). Many statistical network models with communities have now
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been proposed, from the simple stochastic block model (Holland et al., 1983) to more com-
plex extensions with mixed membership (Airoldi et al., 2008) or temporal evolution (Xu
and Hero, 2013; Matias and Miele, 2017). Such models can provide a rigorous statistical
framework and theoretical performance guarantees (see, for example, Rohe et al. (2011);
Zhao et al. (2012)), as well as lead to improved algorithms, e.g., Joseph and Yu (2016); Gao
et al. (2017).

A practical difficulty in many empirical studies of networks arises from imperfect data
collection. We loosely use the term “edge nomination” for any situation where edge infor-
mation is obtained through a data collection mechanism which may not record the entire
networks. This may occur in observational studies where interactions or connections are
recorded from observations of the experimenters (Hass, 1991), and interactions not observed
would be missing from the data. This can also include traditional surveys, since many so-
cial networks are constructed by asking subjects to name their friends or contacts (Harris,
2009). Sometimes these surveys limit how many friends one can name, and sometimes sub-
jects may choose to name their friends selectively. Another example is internet crawlers
that follow only a subset of the paths (Clauset et al., 2015; Ji and Jin, 2016). In all these
situations, the missing edges may undermine the validity or efficiency of standard network
analysis methods.

One important property that often arises in the aforementioned settings is that which
edges are missing may depend on the properties of the individual node reporting them,
which automatically invalidates all missing completely at random assumptions. We will use
the term nomination network to refer to any situation where the missing edge pattern may
depend on the node from which the edge information is collected.

Missing edges in networks can also be viewed as erroneous observations (a 0 instead
of a 1). There has been a significant amount of work on denoising networks, which often
considers both missing edges and falsely reported edges. Butts (2003) propose a Bayesian
method to evaluate how reliable an observed network is. Following a similar set of model
assumptions, Newman (2018a) propose a link prediction framework to recover underlying
networks without specific structures. Newman (2018b) extends this work to a general
framework to estimate networks under non-informative observational errors. Under the
framework of exponential random graph models, Handcock and Gile (2010) study ways
to handle general ignorable missing mechanisms. Related link prediction problems are
studied in Zhao et al. (2017). However, Zhao et al. (2017) focus on the general model-
free link prediction without specific structural assumptions and are not directly applicable
to community detection problems. For networks with communities, Guimerà and Sales-
Pardo (2009) propose a Bayesian model and inference method to detect both missing and
spurious edges. Martin et al. (2016) take a similar modeling strategy but assume more
flexible nonparametric error distributions. All these models for noisy networks assume
the missing mechanism is independent of any network structure such as communities. In
some situations, this assumption is reasonable, for instance, for recording errors. But for a
network resulting from a survey, such an assumption is hard to justify. For example, in a
high school survey of friendships, there may be individual differences in whether to name
friends from their own“true” community. Here the missing mechanism potentially depends
on both the community structure and individual node characteristics, requiring different
models from those used for network denoising. Recently, Le and Levina (2017) considered a
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scenario where the missing mechanism depends on the community labels of the node pairs
in the context of jointly analyzing multiple networks sampled from the same probability
model, but their method does not apply to a single network. Another challenge of modeling
the missing edge mechanism in community detection problems lies in the computation.
While likelihood-based approaches are widely used to modeling missing data, such methods
are generally computationally infeasible for community detection problems. Variational
inference can be used to approximate the likelihood in these setting, as studied in Tabouy
et al. (2020). However, it is still far from being scalable for large scale networks.

In this paper, we introduce a general framework of modeling communities in networks
collected from the edge nomination and collection procedure where the observed relations
suffer from missingness. The framework can be used for both unweighted and weighted
networks. We also propose a new directed network model we call the nomination stochas-
tic block model (NSBM), a special case of the general framework which has interpretable
model parameters. Under this model, we propose computationally efficient model fitting
algorithms based on spectral clustering and the method of moments and show statistical
consistency for both communities and estimated parameters.

2. Community models for networks with edge nominations

2.1 A general nomination framework based on the directed stochastic block
model

The stochastic block model (SBM) (Holland et al., 1983) is one of the most widely used
and well-understood models for communities in a network. It has been shown to recover
communities in various settings successfully and can serve as a building block for more
complicated models.

A network of n nodes can be represented by an n × n adjacency matrix A such that
each entry Aij = 1(i → j) is 1 if there is an edge from node i to node j and 0 otherwise.
In particular, Aii = 1 indicates a self-loop: i → i. The standard SBM is defined for
undirected networks, where Aij = Aji. While it is not easy to trace the start of its natural
directed extension, the directed SBM is studied by Rohe et al. (2016), which in our context,
reduces to the following model: given n nodes, a positive integer K and a K ×K matrix
of probabilities B, let ci ∈ {1, . . . ,K} be the community label of node i, and c be the
vector of community labels. Here we treat c as fixed. Let Gk = {i : ci = k} be the set
of nodes in community k and nk = |Gk|. The entries of the adjacency matrix A are then
generated independently from the Bernoulli distribution with P (Aij = 1) = Bcicj . The
difference between the undirected and the directed models is that the directed model does
not require B to be symmetric. Throughout the paper, we will call this directed version
SBM by default.

Errors in recording network edges are common and can arise in a variety of ways. We
focus on the situation when some connections are missing but all observed connections are
true edges. This is different from the setting considered in Zhao et al. (2017); Newman
(2018a), where falsely reported edges are also allowed, but it is a reasonable assumption
in many applications (Zachary, 1977; Hass, 1991; Connor et al., 1992; Gleiser and Danon,
2003; Clauset et al., 2015; Ji and Jin, 2016). In particular, this is exactly the setting for
the network of hiring relationships analyzed in Section 5. Let Ã be the adjacency matrix
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we observe, with potentially missing edges, where Ãij = 1 indicates node i reported that
there is an edge from it to node j. The generating process for Ã can be thought of as taking
the original network A generated from the SBM and applying a binary nomination “mask”
matrix R ∈ {0, 1}n×n, so that the observed matrix is given by

Ã = A ◦R,

where ◦ is the element-wise Hadamard matrix product. Here Rij = 1 indicates that node i
revealed its connection to node j. We assume a nominated link is always a true link in A,
while Ãij = 0 may result from either Aij = 0 or Rij = 0.

We base our model for Rij on the following two considerations. By nature of the edge
nomination process, the probability of the edge Aij being reported by node i should depend
on node i. It is natural to assume that it also depends on the closeness between the
communities of i and j, which can be expressed through Bcicj . We therefore propose the
following general model for the observed network:

Aij
indep.∼ Bernoulli(Bcicj ), Rij

indep.∼ Bernoulli(fi(Bcicj )), Ãij = Aij ·Rij (1)

where fi : [0, 1] → [0, 1] is the nomination function of node i. This general form includes
some of the previously studied settings. For example, when fi ≡ ρi for all i ∈ [n], every
node randomly nominates each of its links with a fixed probability ρi, the setting studied
in Butts (2003).

In most situations, we are interested in learning about properties of the network ex-
pressed in c, B, or fi’s rather than predicting the latent status Rij . We can integrate out
Rij and write the distribution of Ã directly as

P(Ãij = 1) = P̃ij = Bcicjfi(Bcicj ) = Fi(Bcicj ) (2)

where Fi(x) = xfi(x). The general model defined by (2) can be specialized to many dif-
ferent forms by specifying fi. Model (2) is explicitly incorporating an informative missing
mechanism through its dependence on the strength of the connection between nodes.

2.2 Community detection under the general edge nomination model

A general model like (2) allows for developing a general algorithm for solving problems of
this type. Spectral clustering algorithms are among the most popular methods for estimat-
ing community labels due to their computational efficiency, ease of implementation, and
excellent theoretical properties. Many versions of spectral clustering have been proposed
and studied for community detection, but the general strategy is to use the eigenvectors
of a matrix as input to a standard clustering algorithm, with the matrix chosen so that
the population version of its eigenvectors reflects the true communities. While spectral
clustering was originally proposed for undirected networks, it can be generalized to directed
networks by using appropriate matrices as input (Chung, 2005; Zhou and Burges, 2007;
Li and Zhang, 2010); refer to Malliaros and Vazirgiannis (2013) for a comprehensive re-
view. Our goal in this paper is to show that a simple version of spectral clustering used in
the seminal papers Rohe et al. (2011), Lei and Rinaldo (2014) and Rohe et al. (2016) can
identify the communities, as long as it is applied to the correct spectral space. There may
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be room for improvement on the details of the spectral clustering implementation (such as
normalization, regularization, and so on), which is outside the scope of this work.

For a standard undirected SBM, both the row space and the column space contain
community information. Under model (2), since each node uses an individual function Fi
to nominate links, we would expect the node-specific nomination function to confound the
community information in the row space of Ã. However, the column space of Ã should still
reflect communities since each node i applies the same function to all entries of the column
j. This intuition is rigorously justified in Proposition 7 in Section B.2 in the Appendix.
It suggests that the right singular vectors of Ã can be used to recover communities, as
long as Ã concentrates around P̃ . The column space is equivalent to the subspace of the
right singular vectors. Therefore, the strategy of Lei and Rinaldo (2014) can be applied to
the column space for community recovery. This procedure is fully described in the “Right
singular vectors Spectral Clustering” (Right SC) algorithm below. Note that although we
take the standard approach of applying spectral clustering to the adjacency matrix Ã, one
could replace it with the Laplacian as in Rohe et al. (2011, 2016), or a regularized version
of either matrix as in Amini et al. (2013); Joseph and Yu (2016); Le et al. (2017). We do
not focus on investigating these options here, although we have obtained similar empirical
results in experiments replacing the adjacency matrix with the Laplacian (results not shown
for lack of space).

Algorithm 1 (Right SC) Given an adjacency matrix Ã and the number of communities
K:

1. Compute the rank K truncated SVD Ã, given by Ã = ÛD̂V̂ T .

2. Run the K-means clustering algorithm on rows of V̂ to assign each node to a commu-
nity.

2.3 The nomination stochastic block model (NSBM)

The general model (2) allows for a common algorithm of community detection. However,
in many situations, in addition to community labels, one may also be interested in learning
the nomination pattern Fi. Making the so far unspecified functions Fi both estimable and
interpretable requires further modeling. Next, we introduce a specific nomination model
under the framework of (2), which we believe achieves a good balance between generality
and interpretability. In addition to the previously defined c and B, we introduce two new
node-specific parameters, given by n-dimensional vectors λ = (λi) and θ = (θi). The
proposed nomination stochastic block model (NSBM) assumes

fi(Bcicj ) = θiB
λi−1
cicj , i ∈ [n].

The parameters λ and θ are easily interpretable. We can think of the parameter θi
as measuring the overall propensity of node i to nominate links, and of λi as a measure of
their preference for nominating links from their own or closely connected communities; both
these factors may affect data collection in many applications. For example, suppose that
Bkk > Bkj , k 6= j so that the SBM is assortative. In this case, λi > 1 indicates that the node
i tends to nominate connections from its own community while λi < 1 indicates a preference
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for nominating connections from a different community. The marginal distribution of Ã
under the proposed NSBM is given by

P(Ãij = 1) = θiB
λi
cicj . (3)

In the current context of modeling Bernoulli probabilities, the model needs an implicit
parameter constraint θiB

λi
cicj ≤ 1 for all i, j ∈ [n]. This constraint usually does not explicitly

impact later model estimation, as the key quantities (5)–(7) for the estimation algorithm
automatically satisfy the constraint when the model itself is well-defined. So we will not
focus on it in later discussions. This constraint can be dropped if we use the current model
structure for a weighted network, as discussed in Section 2.5.

As with any model involving products of parameters, we need additional constraints
for identifiability. We require that P̃ has no rows consisting entirely of zeros, and thus
we require θi > 0 for all i and that each row of B contains at least one positive entry. In
addition, if Bkl = 0 for all l 6= k, then community k will not send edges to other communities
and it will be impossible to identify λi’s for nodes in community k. In addition, if Bkl = Bkk
for all l, then community k is not identifiable. We also need scaling constraints on B and
λ to avoid invariance multiplying by a constant. Putting all these together leads to the
following identifiability conditions.

Proposition 1 The parameters of model (3) is identifiable if the following conditions hold:

1. Bkk = 1 for all k = 1, . . . ,K.

2. For each k, there exists at least one l 6= k such that Bkl 6= Bkk and Bkl 6= 0.

3. θi > 0 for all i = 1, . . . , n.

4. 1
nk

∑
i∈Gk

λi = 1 for all k = 1, . . . ,K, where nk = |Gk|.

Compared with the general model (2), the NSBM offers the possibility of fitting an inter-
pretable nomination mechanism model and learning each node’s preference. The price we
pay for interpretability, as usual, is less flexibility, since we now have parametric model
assumptions. For example, the requirement θi > 0 excludes the egocentric sampling mech-
anism (Tabouy et al., 2020; Li et al., 2023; Chan and Li, 2023), whereas the general model
(2) includes it.

2.4 Parameter estimation under the NSBM

Given community labels c, the other parameters in model (3) can be estimated by the
method of moments under the identifiability constraints of Proposition 1. Specifically, if
Bkl > 0, for any arbitrary i ∈ Gk and j ∈ Gl, we have

log(P̃ij) = µil = log(θi) + λi log(Bkl). (4)
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Combining Proposition 1 and (4), we obtain the following identities:

θi = P̃ij for any j ∈ Gk , (5)

Bkl = exp(− 1

nk

∑
i∈Gk

(µik − µil)) , (6)

λi =
µik − µil∑

j∈Gk
(µjk − µjl)/nk

, if Bkk 6= Bkl . (7)

Therefore, we can use the method of moments to estimate µil by exp(µ̂il) = 1
nl

∑
j∈Gl

Ãij
and plug it back to previous identities to estimate other parameters. This is summarized
in the following algorithm.

Algorithm 2 (Parameter estimation for the NSBM by the method of moments)
Given the adjacency matrix Ã and community labels c, for k = 1, 2, · · · ,K (obtained by,
for example, right SC):

1. Set Til =

∑
j∈Gl

Ãij

nl
for each i ∈ Gk and 1 ≤ l ≤ K.

2. Estimate θi for each i ∈ Gk by θ̂i = Tik ∨ 1
nk
.

3. Find the set Ψk = {l : 1 ≤ l ≤ K,Til > 0 ∀i ∈ Gk}. Set B̂kl = 0 for each l /∈ Ψk.

4. (a) Define Yil = log(Til +
1
nl

) for each i ∈ Gk, where the 1
nl

is used to avoid overflow
for the pathological case of Til = 0 for some i ∈ Gk.

(b) Estimate λi for each i ∈ Gk by

λ̂i =

∑
l∈Ψk\{k}(Yik − Yil)∑

l∈Ψk\{k}
∑

j∈Gk
(Yjk − Yjl)/nk

(8)

(c) Estimate Bkl for each l ∈ Ψk \ {k} by

B̂kl = exp(− 1

nk

∑
i∈Gk

(Yik − Yil)). (9)

2.5 Extensions

Our modeling strategy can be extended to handle other community models for the un-
derlying true network, with appropriate modifications. We briefly discuss three possible
extensions: weighted networks, undirected networks, and the degree-corrected SBM.

Networks with weighted edges are frequently encountered in practice. The NSBM can be
applied directly to weighted networks: given community labels c, assume each edge weight
Ãij is independently generated from a probability distribution satisfying

EπÃij = θiB
λi
cicj . (10)

The choice of weight distribution will depend on the problem at hand. For instance, the Pois-
son distribution is a popular choice for non-negative integer weights (Karrer and Newman,
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2011). In this case, we can interpret Aij as the number of interactions with node j coming
from node i, and model it as generated from Poisson(Bcicj ). Then Ãij can be interpreted
as the number of interactions chosen randomly by node i from Binomial(Aij , θiB

λi−1
cicj ) to

report as their relationship with node j. Again, we are assuming that only true interactions
are reported, so that Ãij ≤ Aij . Since the model is specified through the expectation of
Ã, we can still apply the right spectral clustering and method of moments algorithms, and
similar theoretical guarantees can be obtained as long as the generating distributions of the
edge weights are not heavy-tailed. Since model (10) only specifies the mean structure of Ã,
other constraints and modifications may be necessary if the edge distribution depends on
other parameters.

Undirected networks have been the focus on most community detection work to date, and
the standard SBM is a model for undirected network. Replacing the underlying network
model in our setup with a standard SBM would result would not change the moment
assumptions, and both community detection and model estimation can be done exactly the
same way, though some details of the theoretical analysis will be slightly different.

Finally, a popular generalization of the SBM is the degree-corrected SBM (DCSBM)
(Karrer and Newman, 2011; Rohe et al., 2016), introduced to account for degree hetero-
geneity frequently observed in real networks. If we assume that the underlying unweighted
network follows the DCSBM model. That is,

EAij = ψiψ̄jBcicj .

With the same nomination model, the observed network now has

E(Ãij) = ψiψ̄jBcicjfi(Bcicj ) = θiψiψ̄jB
λi
cicj .

In this case, only the product θiψi is identifiable, so we can reparameterize and combine
them into a new θi, fitting instead the model

E(Ãij) = θiψ̄jB
λi
cicj .

The logic of Section 2.2 still applies, and the right singular vectors contain the community
information. The only difference is that the right singular vectors also reflect degree het-
erogeneity, so they should be normalized before clustering, using one of the normalization
approaches developed for fitting DCSBM by spectral clustering (Jin, 2015; Lei and Rinaldo,
2014). Again, we can also handle weighted networks using the same strategy mentioned
before.

3. Theoretical properties

Here we investigate asymptotic properties of community detection under the general model
(2) and parameter estimation under the NSBM. We always assume that the B matrix is
full-rank, and the number of communities K is known and fixed. In practice, K can be
estimated by many data-driven methods such as the edge cross-validation of Li et al. (2020)
by taking advantage of the property that the rank of P̃ equals the number of communities.
We first introduce an additional assumption we need for theoretical developments, which is
that none of the communities vanish relatively to the size of others as n grows.
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Assumption A1 Assume that nmin := mink nk ≥ κ′n for some constant κ′ > 0. Also
define nmax = maxk nk.

Theorem 2 (Consistency of the Right SC algorithm) Assume the network Ã is gen-
erated from model (2). Let ĉ be the output of the Right SC algorithm with a (1 + ε)-optimal
solution, σK(P̃ ) be the Kth largest singular value of P̃ , and ‖P̃‖∞ = maxij P̃ij. Assume A1
holds, and n‖P̃‖∞ ≥ C0 log n for some constant C0. If there exists a constant C1 depending
on C0, ε and κ′, such that

Kn‖P̃‖∞
σK(P̃ )2

≤ 1

C1
, (11)

then with probability at least 1− n−1, there exists a permutation of labels ĉ, such that

∑
k

|Gk \ Ĝk|
nk

≤ C1
Kn‖P̃‖∞
σK(P̃ )2

.

Theorem 2 states that under the general model (2), the proportion of nodes misclustered

by the RightSC algorithm is bounded above by the quantity Kn‖P̃‖∞
σK(P̃ )2

. Therefore, label esti-

mation consistency is achieved when Kn‖P̃‖∞
σK(P̃ )2

→ 0. However, this bound depends on σK(P̃ ),

a quantity without an obvious interpretation. To help build intuition about this result, we
next present a more interpretable form of this result under a specific parameterization of
the NSBM which satisfies the following two assumptions:

Assumption A2 (Simple scaling) Assume B is a fixed matrix and λmin ≤ λi ≤ λmax, i ∈
[n] for two constants λmin and λmax. Furthermore, there exist a scalar sequence ρn, such
that θi = ρnθ̄i where θ̄min ≤ θ̄i ≤ θ̄max for two positive constants θ̄min and θ̄max.

Assumption A3 (Discretized parametrization) Under A2, further assume θ̄i’s are
independently sampled from a fixed discrete distribution gθ on m1 different positive val-
ues and λi’s are independently sampled from a fixed discrete distribution gλ with mean
value 1 on m2 different values and then rescaled to satisfy the identifiability constraints in
Proposition 1.

Combining A2 and A3 allows us to parameterize the edge density of the network by a
single parameter depending on n, ρn, a widely used strategy in analyzing community de-
tection algorithms (Lei and Rinaldo, 2014; Gao et al., 2017; Abbe, 2018). The discrete
assumption A3, while not the most natural, has also been used for interpretation purposes
in previous work (Zhao et al., 2012), and can be made less restrictive by choosing a large
number of values the discrete distributions can take. It is not needed for the estimation
theory that follow, only for the interpretation provided in Corollary 3.

Corollary 3 Assume the network is generated from the NSBM (3). Let ĉ be the clustering
labels found by the Right SC algorithm with (1 + ε)-optimal solution. If assumptions of
Proposition 1, A1, A2 and A3 hold, and nρn ≥ C0 log n for some constant C0, then for
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sufficiently large n, with probability at least 1− 2n−1, there exists a permutation of labels ĉ,
such that ∑

k

|Gk \ Ĝk|
nk

≤ C ′ 1

nρn
(12)

for some constant C ′ depending on C0, κ
′, ε, η,K and the distributions of θ̄i’s and λi’s.

The Corollary 3 states that as long as the expected average degree of the network nρn
grows at least in the order of log n, the mis-clustered proportion is bounded by the order of
1/nρn.

Next, we show that B,λ and θ can be estimated consistently by Algorithm 2, under the
NSBM (3) with parameterization A2. We assume known community labels for simplicity,
since strong consistency can be established for a similar algorithm more amendable to theory,
analogous to Vu (2018) and Lei and Zhu (2017). This algorithm and the resulting strong
consistency of estimated community labels can be found in the supplementary material
(Section A). In practice, we will always use the more accurate Right SC algorithm.

Theorem 4 Assume the network is generated from the NSBM (3). Let θ̂, λ̂ and B̂ be the
estimators for θ,λ and B, respectively, obtained by Algorithm 2. Assume conditions of
Proposition 1, A1 and A2 hold. Then there exists constants c1, c2, c3, depending on κ′ in

A1, B, θ̄min, θ̄max, λmin, λmax in A2, and K, such that if ρn ≥ c1
log4 n
n for sufficiently large

n, we have

max
i

∣∣∣θ̂i − θi∣∣∣ ≤ c1
log n√
n
, max

i

∣∣∣θ̂i − θi∣∣∣/θi ≤ 1

log n

max
k,l
|B̂kl −Bkl| ≤ c2 max(

log2 n√
n
,

1

nρn
)

max
i
|λ̂i − λi| ≤ c3 max(

log2 n√
n
,
log n

nρn
)

with probability at least 1− n−1.

Theorem 4 shows that the estimators are consistent when the average degree is on the
order of log4 n.

4. Numerical results on synthetic networks

In this section, we demonstrate the proposed methods using simulation examples. We
first show the importance of clustering based on the correct spectral information and that
the NSBM cannot be approximated well by a few standard community models. We will
illustrate this on both unweighted networks and weighted networks with Poisson-distributed
edge weights. In Section 4.2, we evaluate our method under model specification.

4.1 Evaluation on networks from the NSBM

For this set of experiments, networks are generated from the NSBM as follows: n = 1200
nodes are randomly assigned to K = 3 communities with equal probability. The matrix
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B has all diagonal elements equal to 1 and all off-diagonal elements equal to β. The pa-
rameters λi’s are generated independently with log(λ) sampled uniformly from the interval
(−t, t), and then rescaled to satisfy the constraint

∑
ci=k

λi = nk for each k. Each θi is
independently set either to c or 0.05c, with probability 0.5 each, with the value of c chosen
so that the resulting average degree of the network is 50.

We evaluate several spectral clustering algorithms for community detection, showing
importance of correctly identifying the informative part of the eigenstructure. For a directed
network, one alternative to the Right SC algorithm is to cluster the left singular vectors
(“Left SC”). However, under the NSBM Left SC will clearly fail, since it does not account
for node heterogeneity. Therefore we instead consider the left spherical SC (”Left SSC”),
which first normalizes each row of the matrix of left singular vectors before applying K-
means clustering. We also tested the spherical version of Right SC (Right SSC), omitted
here since its results are very similar to Right SC; this is as expected, as there is no need
to normalize the right singular vectors to recover the community structure. The Right and
Left SSC are using the spherical SC of (Lei and Rinaldo, 2014) on the right and left singular
vectors, respectively, and if applied together, are essentially the co-clustering algorithm of
Rohe et al. (2016). Our main purpose in comparing these versions of spectral clustering is
to emphasize the importance of choosing the right singular vectors.

Another common approach to community detection in directed networks is to convert
Ã to a symmetric matrix and then apply an algorithm for an undirected network. This
is typically accomplished by connecting two nodes in the undirected network if there is an
edge in either direction. Applying SC and SSC to the symmetrized network gives two more
options, “Symmetric SC” and “Symmetric SSC”, but they again give similar results, and
thus, we omit the spherical version. This strategy is equivalent to treating the network
as generated from the SBM or the degree-corrected SBM (Karrer and Newman, 2011),
respectively.

Lastly, we investigate other models for edge nomination. Specifically, we include the
Bayesian method from Butts (2003), which includes the model of Newman (2018a) as a
special case, assuming that the nomination process does not depend on the individual or
the connections strength. This model is representative of the current literature on modeling
missing links. The model, however, is not designed for community detection. Therefore,
we take the posterior mean of the probability matrix as input for spectral clustering, which
again results in “Left”, “Symmetric” and ”Right” versions. The posterior inference is imple-
mented in R package sna (Butts, 2020) and we refer to the three versions as “Bayesian-Left”,
“Bayesian-Symmetric”, and “Bayesian-Right”. This method is computationally expensive
and took a very long time to run; it cannot be applied to large networks.

We evaluate the community detection performance by using the cluster accuracy, defined
to be mis-clustered proportion, under the best permutation within the K labels of the
estimated clusters. In addition to community detection accuracy, we also evaluated the
estimation error of P̃ . Though using the NSBM is expected to give the best results, we are
interested in how closely they can be approximated by using simpler models. Therefore, we
compared results of Algorithm 2 to three other computationally feasible network models
with communities: the directed SBM and its degree-corrected version, and the stochastic
co-clustering block model (SCBM) of Rohe et al. (2016). Lastly, the Bayesian method of
Butts (2003) also gives full posterior network distribution, and we take the posterior mean of
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P together with the edge flipping probability to construct an estimate of P̃ . The estimation
accuracy is measured by the relative error ‖P̃ − P̂‖2F /‖P̃‖2F averaged over 100 replications,

where P̂ is the estimated probability matrix.
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(d) Estimation error of P̃ (log scale).

Figure 1: Community detection accuracy and probability matrix estimation error when the network
is generated from the unweighted NSBM with β = 0.2 and varying t (Figure 1a-1b), and with t = 1.5
and varying β (Figure 1c-1d). The results are average values over 100 replications.

We start from varying t from 0.2 to 2 while keeping β = 0.2 fixed. The results are
shown in Figure 1 (a-b). For community detection, all methods based on the right singular
vectors are better than their counterparts using the other types of spectral structures. In
particular, when t is small, the probability of nomination does not depend on the connection
strength that much, and thus spectral clustering based on the standard SBM (or DCSBM)
still works. As t increases and the nomination mechanism becomes more heterogeneous
across the nodes, symmetric clustering methods fail. The Left SSC is even worse since
it relies entirely on the senders’ information, where the community structure is masked
by heterogeneity of nominations. The Bayesian method is not effective in removing the
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impact of the edge nomination effects. For estimating the probability matrix, the NSBM
unsurprisingly works the best because it uses the correct model. More importantly, even for
small values of t where symmetric methods perform ok on community detection, none of the
other methods come close on estimating the probability matrix. Moreover, the estimation
algorithm for the NSBM remains stable for most of the t in the range, only beginning to
degrade when the clustering accuracy drops.

Next, we compare different methods while varying the signal-to-noise ratio, to see
whether the effects of edge nomination become negligible when communities are well sep-
arated. Specifically, we vary β from 0.1 to 0.9 and fix t = 1.5. The corresponding results
are shown in Figure 1 (c-d). The Right SC retains a consistent advantage over the entire
range of β, though all methods fail to give informative clustering for β ≥ 0.7. For model
estimation, our method is better than the other for β ≤ 0.6. For even larger β, because of
the fading performance of clustering and the higher model complexity, the model estimation
error becomes higher than the simpler SBM and SCBM. Notably, the directed SBM and
SCBM slightly improve on estimation as β increases. This is because the two methods, while
the two methods give poor community detection results, the model estimation is mainly
based on averaging edges within detected blocks. As β grows, the probabilities of the true
underlying model become more homogeneous, thus the estimation errors of the SCBM and
the directed SBM becomes smaller.

We proceed to generate networks from a Poisson distribution with the same NSBM
structure. The Bayesian method from the previous section is no longer applicable, but
the other methods can still be used. We use the same two performance metrics and show
that our method can be applied to weighted networks without any changes and has similar
advantages over its competitors to what we observed in the previous section.

The only difference from the settings described above is that the value of c is set so that
the average row sum of Ã is 250, which roughly gives an average of 50 nonzero entries in
each row of Ã, matching the degree of the unweighted networks. The results are shown in
Figures 2. Our method retains the advantages it had on unweighted networks. Community
detection becomes easier in this case, because Poisson distribution is more informative
compared with Bernoulli. The Right SC remains accurate for the range of t from 0 to 2.
The method is also very stable for most values of β, only deteriorating around β > 0.8.

4.2 Evaluation under model misspecification

In practice, we never know the true model and may reasonably assume it is more complex
than what we assume; however, we can also hope that our method will have some robust-
ness to model misspecification. To investigate the degree of this robustness, we consider
alternatives for both main components of our model: (1) the underlying network model,
and (2) the edge nomination mechanism.

Alternative true network model. Instead of the SBM, we generate the true network
from the random dot product graph model (Young and Scheinerman, 2007) with n = 1200.
We first generate latent vectors xi ∈ R4, i = 1, · · · , n from a Gaussian mixture model with
K = 3 components N(µk, σ

2I), and a uniform prior on components. The centers µk’s are
chosen so that µTk µk′/µ

T
k µk ≈ 0.3 for k′ 6= k, to match the previous SBM setting. This

gives the average distance between the K centroids mµ ≈ 1. We use σ/mµ as an intuitive
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measure of separation between components and therefore of the difficulty of the problem.
To guarantee positive edge probabilities, we truncate all xi’s to the positive quadrant. The
probability matrix P is then given by Pij = xTi xj , rescaled so that the expected average
degree is equal to 40.
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Figure 2: Community detection accuracy and probability matrix estimation error when the network
is generated from NSBM with Poisson edge weights, with β = 0.2 and varying t (Figure 2a-2b), and
with t = 1.5 and varying β (Figure 2c-2d). The results are average values over 100 replications.

Alternative edge nomination process. Here we consider a common survey scenario
of limiting nominations per node. Specifically, we assume each node is allowed to nominate
at most 15 connections. If the node has no more than 15 connections, all of them are
nominated. If the node has more than 15, it will randomly choose which connections to
nominate according to three types of preferences. Type 1: nominate as many nodes from
its own community if possible. If there are no more than 15 in its own community, a Type 1
node will nominate all of them and fill in any remaining slots with nodes randomly chosen
from the rest of the network; and if there are more than 15 in its own community, it will
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randomly choose 15 of them to nominate. Type 2 is the opposite of Type 1: it always
nominates connections to other communities if possible, choosing randomly among them if
there are more than 15, and filling in the remaining spots with randomly chosen connections
within its own community. Finally, Type 3 node nominates 15 randomly chosen connections
without regard to communities. The three nomination types are randomly assigned to the
1200 nodes in equal proportions, independently of the community memberships.
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Figure 3: Results under misspecified model as a function of community overlap parameter σ/mµ,
averaged across 100 replications. Standard deviations over these 100 replications (not shown) are
less than 1% of the mean values. 3a: Accuracy of community detection. 3b: Boxplots of average
estimated λ̂i’s (centered at 1) for nodes of three different nomination types.

The estimated λ̂i’s are intuitively interpretable, especially when communities are well
separated. Recall that, under the NSBM, λi > 1 indicates that node i tends to nominate
edges from its own community (under assortativity) and λi < 1 indicates that the node
tends to nominate edges from other communities. Since the model is misspecified, we
cannot interpret the exact values of these parameters, but qualitatively we would expect
that Type 1 nodes will have estimated λ̂ s greater than 1, Type 2 less than 1, and Type 3 will
be close to 1. Figure 3b shows boxplots of λ̂i’s for each of the three nomination node types,
averaged over 100 replications. These values correctly distinguish between three different
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types, although as the overlap between communities grows, the separation between types
becomes less clear. The variance of estimated λ̂i’s also grows for larger overlaps, since
we increase overlap by increasing σ2 in the Gaussian mixture model, resulting in more
heterogeneous connection probabilities.
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Figure 4: Community detection accuracy on networks generated from the mis-specified model with
only Type 1 and Type 2 nominations, with varying proportion of Type 1 nodes.

When the overlap parameter σ/mµ = 0, the random dot product graph model reduces to
the SBM; the larger σ/mµ, the more blurred are the community boundaries. Further, the
edge nomination process induces a complicated dependency structure between the edges
in the observed network. We are not aware of any method that would fit such a model
directly, but we expect that our model still provides a reasonable approximation, and the λ
parameters NSBM fits may reflect the three types of nomination preferences. Community
detection accuracy for σ/mµ ranging from 0 to 0.9 under the alternative edge nomination
procedure for all methods previously considered is shown in Figure 3a. The Right SC
remains effective even if both the underlying network model and the nomination mechanism
change, and community detection remains nearly perfect up to around σ/mµ ≈ 0.3. More
importantly, the relative ranking of different methods remains the same: while community
detection accuracy drops as the overlap between mixture components increases, the Right
SC remains the most accurate method available.

To investigate the impact of edge nomination types, we consider the special case of Type
1 and Type 2 nominations only, since the random nominations of Type 3 do not really offer
much insight into the effect of the nomination mechanism. In this experiment, we vary the
proportion of Type 1 nominations from 0 to 1, set σ = 0 to focus on the effect of type, and
report community detection accuracy for all methods in Figure 4. In this setting, the Right
SC delivers accurate community detection for any mixture of Types 1 and 2, whereas both
Left SC and symmetric SC are effective if only one nomination type is present, but quickly
lose power when there is more than one nomination type. Intuitively, this is expected
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because if there is only one nomination type, the model is still approximately an SBM
for which the left singular vectors are informative. With different nomination types, the
left singular vectors no longer capture the community information correctly. The Bayesian
clustering methods work poorly in this special case as well.

In summary, even when the nomination mechanism assumed by the NSBM is not cor-
rect, the estimated λi’s still offer meaningful information. The results in Figure 3 and
Figure 4 demonstrate the potential of our method as an approximation to more complex
edge nomination models.

5. Business school faculty hiring network analysis

Here we apply the proposed NSBM to a faculty hiring network between US business schools.
The data were collected by Clauset et al. (2015) via web crawling and contains data on 7856
faculty members from 112 business schools, recording the total number of PhDs from one
institution hired by another institution. This gives us a weighted, directed hiring network.
To reduce noise from very small schools, we removed institutions with either receiver or
sender degree of 3 or less, resulting in 87 institutions remaining. The edge weights have a
heavy-tailed distribution, as shown in Figure 6 of the supplementary material Section C:
weight values of 0, 1, and 2 account for 90% of all edges, while the maximum weight is 60.
As discussed in Section 2.5, our method can handle weighted edges but given we use the
method of moments, but heavy tails present a problem. Given that most edge weights are
2 or less, we simply truncate all edge weights greater than 2 down to 2. The supplementary
material in Section C shows the result is similar if we truncate at 3 instead of 2.

Table 1: Communities of business schools found by NSBM, their average and median rankings from
US News 2012 and π-ranking of Clauset et al. (2015). Top 12 institutions according to π-ranking
are listed for each community (sorted according to decreasing π-ranking).

size USNews
(avg./med.)

π-ranking
(avg./med.)

Top 12 Institutions

1 12 7.7/8 8.3/8 Stanford, MIT, Harvard, UC Berkeley, U Chicago, Cornell,
U Michigan, Columbia, Yale, U Penn., NYU, Duke

2 12 29.8/32.5 17.7/17.5 U Rochester, Northwestern, Carnegie Mellon, U Wisconsin
Madison, UCLA, U Minnesota-Twin Cities, UIUC, Purdue,
U Florida, UT Austin, U Washington

3 19 53.1/54 45/45 Ohio State, UNC Chapel Hill, U Pittsburgh, Penn. State,
Indiana U., Michigan State, Georgia Tech, U Arizona,
SUNY Buffalo, Texas A&M, U Georgia, Arizona State

4 44 63.7/63 61.4/61.5 Washington U St. Louis, U Maryland College Park, U Col-
orado Boulder, UC Irvine, U Utah, U Oregon, U South-
ern California, UT Dallas, U Virginia, Boston U., UMass
Amherst, Emory

Our goal is to investigate communities of institutions and patterns of hiring between
these communities. We can think of the true unobserved edges as job offers extended, while
the observed edges are offers accepted. In this context, it is safe to assume we do not
observe any false edges. Additional missing edges are possible, however, even with accepted
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offers – for example, PhD information not listed on the webpage of the faculty member,
or faculty who have moved since first hired. Under the NSBM model, all these causes
of missingness are reflected in the individual parameters λi, which is much more flexible
than assuming edges are missing uniformly at random. The NSBM framework also assumes
the true edge weight (number of offers extended) only depends on the communities of the
institutions involved. This is clearly not true for individual offers, and a simplification for
aggregate hires as well, but as the results below show, it provides a reasonable fit to this
data and leads to a natural and meaningful interpretation. To determine the number of
communities, we applied the edge cross-validation method with average stability selection
proposed by Li et al. (2020), which selected K = 4. We then fit the NSBM to the network
with K = 4 communities. Table 1 shows the four communities and their average rankings
from two sources (which are also used to order communities). The rankings are the US
NEWS graduate school rankings from 2012 (included in the data set) and the π-ranking
proposed by Clauset et al. (2015), which is designed to measure hiring advantage, with a
higher-ranked institution expected to be more successful in competing for top candidates.
We list up to 12 institutions (the first two communities only have 12 each, whereas the other
two have 19 and 44) with the highest π-ranking in each community in Table 1. Overall, the
communities show a clear ordering which matches both rankings well.

The community-level parameters of NSBM can be directly interpreted in terms of a
hiring “hierarchy”, which was reported by Clauset et al. (2015). Based on the weighted
NSBM in Section 2.5, we define connection strength from community k to community
l as the expectation of average edge weights from nodes i ∈ Gk to nodes j ∈ Gl, Mkl =

1
nknl

∑
i∈Gk,j∈Gl

θiB
λi
ij . Table 2 shows estimated connection strengths for the business schools

hiring network. It shows that Group 1 institutions tend to hire the most from their own
group, and about half as many from Group 2. They are not very likely to hire from
Groups 3 and 4. Group 2 institutions hire roughly equally from Groups 1 and 2, and a
fraction from Group 3, but very few from Group 4. Group 3 institutions hire the most
from Group 2, not Group 1. Group 4 hire more from Group 1 and Group 2 than Group
3. The estimated model parameters thus indicate a strong hierarchy in hiring relationships
between the groups, which aligns closely with the rankings in Table 1.

Table 2: Estimated strengths of connections between business school communities.

Group 1 Group 2 Group 3 Group 4

Group 1 1.94 0.98 0.24 0.09
Group 2 1.64 1.39 0.47 0.15
Group 3 0.96 1.40 1.03 0.39
Group 4 1.01 0.94 0.63 0.24

The NSBM also allows us to estimate hiring preferences of individual institutions, rep-
resented by parameters λi. Taking Group 1 as an example, Yale and Columbia show the
strongest preference (λ̂i = 1.35 and 1.22, respectively) for hiring within their own group,
while the University of Michigan and the University of Pennsylvania are the least strin-
gent (λ̂i = 0.75 and 0.71, respectively). More details on the fitted λ̂i’s are available in the
supplementary materials Section C.
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Overall, the NSBM reveals a clear hierarchical structure in the hiring relationships
between US business schools in this network, which matches both our expectations and the
observations of Clauset et al. (2015).

6. Discussion

We have proposed a general framework to model a directed network with communities,
with network data collected by asking nodes to report or nominate their connections, a
common scenario in practice. A particular parametric form of the general model, the NSBM,
allows for meaningful interpretation of the parameters and computationally efficient fitting
algorithms. Other parameterizations can be set up within the general framework, perhaps
for specific data collection procedures and/or applications. We show that the right singular
vectors of the adjacency matrix can be used for community detection even under this general
nomination mechanism, whereas the parameter estimation algorithm would naturally need
to be derived for every parametric model separately. In all cases, the critical point is that
when we do not observe the whole network, pretending that we do tends to lead to a drop
in accuracy and loss of efficiency. We saw this empirically in both simulated networks
and the business school faculty hiring network. We also demonstrate that even with a
more complicated nomination procedure that introduces dependence edges, our clustering
method can still effectively find the communities and the NSBM can still deliver insights
about the nomination mechanism. One potentially fruitful direction for future work is
modeling network structures other than communities and investigating how incomplete and
heterogeneous link nominations can affect our estimation of different types of structures
and what models can be used to account for and correct the nomination process.
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Appendix A. Spectral minimum spanning tree clustering for the
nomination model

In this section, we introduce another spectral method, Spectral Minimum Spanning Tree
Clustering (Right SMST), which also uses the right singular vectors. The clusters are
obtained by cutting the minimum spanning tree between embedded nodes; an algorithm
studied in Vu (2018) and Lei and Zhu (2017). This algorithm is much easier to analyze
than K-means, and we show in Section 3 that it can achieve the exact recovery of com-
munity labels for all nodes. However, in practice, the Right SC is always faster, and more
importantly, much better on sparse networks. Therefore, the SMST algorithm is primarily
of theoretical interest.

Algorithm 3 (Right SMST) Given an adjacency matrix Ã and the number of commu-
nities K:

1. Compute the rank-K truncated singular value decomposition Ã = ÛD̂V̂ T .

2. Run minimum spanning tree algorithm of Vu (2018) on V̂ :

(a) Construct the undirected distance graph between n nodes based on the distance
matrix, where the edge weight between i and j is the distance between V̂i· and V̂j·,

the i-th and j-th rows of the matrix V̂ .

(b) Find the minimum spanning tree of the distance graph.

(c) Remove the K − 1 edges with the highest weights from the minimum spanning
tree .

(d) Return the resulting connected components as clusters.

Intuitively, it is not hard to see why the Right SMST may be inferior to Algorithm 1 in
practice. Algorithm 3 is designed with the expectation that the between-cluster distances
are always larger than within-cluster distances. This works when the signal is strong enough,
but with weaker signal the minimum between-cluster distance and the maximum within-
cluster distance can be unstable. In contrast, K-means looks at the average behavior of
observations within the same cluster and thus can be a lot more stable.

Next, we introduce the consistency of the Right SMST (Algorithm 3). The strong
consistency can be obtained by using the recently `∞ perturbation theory from Lei (2019).

Theorem 5 (Consistency of the Right SMST algorithm) Assume the network Ã is
generated from the general model (2). Let ĉ be the output of Algorithm 3, and ‖P̃‖∞ =
maxij P̃ij. Assume A1 holds, n‖P̃‖∞ ≥ C0 log n, and

σK(P̃ ) ≥ C1n‖P̃‖∞ (13)

for some constants C0, C1 > 0. If the following condition (14) is true√
log n

n‖P̃‖∞
max

(√
n‖U‖2,∞,

√
n‖V ‖2,∞

)
= o(1), (14)
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for sufficiently large n, then there exists a permutation Ψ : [K] → [K] of community labels
such that

Ψ(ĉ) = c

with probability at least 1− n−1.

Compared to Theorem 2 for the Right SC, Theorem 5 requires one additional condition
(14) to achieve strong consistency. Condition (14) reduces to (13) only when max (‖U‖2,∞, ‖V ‖2,∞) =
O( 1√

n
), which also means that P̃ has perfect incoherence (Candès and Recht, 2009; Candès

and Tao, 2010). Again, we give a simplified form of Theorem 5 in the special case of the
NSBM with the parameterization assumed in A2.

Corollary 6 (Consistency of the Right SMST algorithm under NSBM) Assume the
network Ã is generated from the NSBM (3). Let ĉ be the output of Algorithm 3. If assump-
tions of Proposition 1, A1, and A2 hold, and

nρn/ log n→∞,

then for sufficiently large n, with probability at least 1 − n−1, there exists a permutation
π : [K]→ [K] of labels ĉ such that

π(ĉ) = c.
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Appendix B. Proofs

B.1 Model identifiability

Proof [Proof of Proposition 1] We need to show that given the probability matrix P̃ =
(P̃ij) = (θiB

λi
cicj ) and the community labels c, all parameters are uniquely determined under

the current constraints. Without loss of generality, we focus on identifying the parameter
for one arbitrary community k. For any i ∈ Gk, we have

µil = log(θiB
λi
kl ) = log(θi) + λi log(Bkl) (15)

where we treat log(0) as −∞. It can be seen that log(θi) = µik by setting l = k under the
constraint Bkk = 1.

Write b = (log(Bk1), · · · , log(Bk,K)). Notice that for any 1 ≤ l ≤ K such that Bkl 6= 0,
we have

µik − µil = λi(bk − bl). (16)

The constraint on λi indicates that there exists at least one node i with non-zero λi. Since
there exists at least one l such that 0 < Bkl 6= Bkk, bk− bl 6= 0, we can locate one such node
(denoted by i0) and community (denoted by l0) by identifying i and l corresponding to a
non-zero µik − µil. Given this l0, we can uniquely determine the ratio between all non-zero
λi’s. The nodes with λi = 0 can be directly identified from µik − µil0 = 0. Therefore, with
the constraint

∑
i∈Gk

λk = nk, the identification of λi’s is guaranteed.

Fixing the node i0, b can be determined by (16) up to a shift. Since we constrain
bk = Bkk = 1, all the other entries of Bk· are also identifiable.

B.2 Community detection

Proposition 7 Let P̃ = ŨD̃Ṽ T be the SVD of P̃ . There exists a matrix X ∈ RK×K such
that

Ṽ = ZX (17)

where Z is the n × K community membership matrix, defined by Zik = 1(ci = k). In

addition, ‖Xk· −Xl·‖2 =
√
n−1
k + n−1

l for any 1 ≤ k 6= l ≤ K.

Proof [ Proof of Proposition 7] It is easy to check that P̃ = FZT where F is the matrix
obtained by applying function Fi to each element of the ith row of the matrix ZB. Write
∆ = diag(

√
n1, · · · ,

√
nK). Assume that the SVD of F∆ is given by

F∆ = UDV T .

We have

P̃ = UDV T (Z∆−1)T = UD(Z∆−1V )T .

Notice that Z∆−1 is an orthonormal matrix and so is Z∆−1V . Taking X = ∆−1V gives
the SVD of P̃ , up to the standard invariances (sign-flipping and rotation within subspaces
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corresponding to equal singular values).Note that for a full rank B, V is a K×K orthonor-
mal matrix. The distance claim follows directly from the orthogonality of rows of V .

We will use the following three known results on spectral clustering.

Lemma 8 (Lemma 7 of Chen and Lei (2018)) Let M,M̂ be two matrices of size n×n
and V, V̂ be the n × K orthogonal matrices of top K right singular vectors of M and M̂ .
Then there exists a K ×K orthogonal matrix Q such that

‖V̂ Q− V ‖F ≤
2
√

2K‖M̂ −M‖
σK(M)

.

The orthogonal matrix Q makes no difference for subsequent developments and will be
omitted.

Lemma 9 (Lemma 5.3 of Lei and Rinaldo (2014)) Let V, V̂ be two n × K matrices
with V having only K distinct rows, corresponding to K communities denoted by c. Let ĉ be
the output of a K-means clustering algorithm on V̂ , with objective value no larger than 1+ε
of the global optimum (Kumar et al., 2004). Denote the community indices corresponding
to c and ĉ by {Gk} and {Ĝk}. Define Sk = {i : i ∈ Gk, ĉi 6= k}. For any δ smaller than the
minimum distance between any two distinct rows of V , if

8(2 + ε)‖V̂ − V ‖2F ≤ nminδ
2

where nmin = mink |Gk|, then there exists a permutation of the K community labels in ĉ,
such that

K∑
k=1

|Sk| ≤ 8(2 + ε)
‖V̂ − V ‖2F

δ2
.

Another result we need is the concentration of a random (directed) graph adjacency
matrix from Le et al. (2017). A similar result was also obtained by Lei and Rinaldo (2014).

Lemma 10 Let A be the adjacency matrix of a random graph on n nodes with independent
edges. Set E(A) = P = [pij ]n×n and assume that nmaxij pij ≤ d for d ≥ C0 log n and
C0 > 0. Then there exists a constant C depending on C0 such that

‖A− P‖ ≤ C
√
d

with probability at least 1− n−1.

With these three lemmas, we are ready to prove Theorem 2.
Proof [ Proof of Theorem 2]

Let Ṽ ∗ be the matrix of right singular vectors for P̃ and let Ṽ be the right singular
vectors of Ã. The assumption n‖P̃‖∞ ≥ C0 log n implies the condition for concentration of
Lemma 10. From Lemma 10, we have

‖Ṽ − Ṽ ∗‖F ≤
2
√

2K

σK(P̃ )
‖Ã− P̃‖ ≤ 2C

√
2K

σK(P̃ )

√
n‖P̃‖∞
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with probability at least 1− n−1.
To apply Lemma 9, note that from Proposition 7, the minimum distance between distinct

rows in Ṽ ∗ is at least
√

2
nmax

. Therefore, according to Lemma 9,

∑
k

|Sk|
nk
≤ 1

nmin

K∑
k=1

|Sk| ≤
1

nmin
8(2 + ε)

‖Ṽ − Ṽ ∗‖2F
2

nmax

≤ 32C2(2 + ε)
nmaxKn‖P̃‖∞
nminσK(P̃ )2

≤ 32C2(2 + ε)

κ′
Kn‖P̃‖∞
σK(P̃ )2

as long as the condition of Lemma 9 holds,

32C2(2 + ε)

κ′
Kn‖P̃‖∞
σK(P̃ )2

≤ 1 ,

which can be guaranteed by the assumptions of Theorem 2 when setting C1 = 32C2(2+ε)
κ′ .

This completes the proof.

Proof [ Proof of Corollary 3] Let gθ and gλ be the distributions of θ̄i and λi, respectively.
We have ‖P̃‖∞ ≤ ρnγ1‖B‖∞ from A2, where both γ1 and ‖B‖∞ are constants. We now
need a bound on σK(P̃ ).

From Proposition 7, it follows that σK(P̃ ) is the K-th singular value of F = ρnM where

M =


θ̄1B

λ1
c1,1

θ̄1B
λ1
c1,2

· · · θ̄1B
λ1
c1,K

θ̄2B
λ2
c2,1

θ̄2B
λ2
c2,2

· · · θ̄2B
λ2
c2,K

...
...

. . .
...

θ̄nB
λn
cn,1

θ̄nB
λn
cn,2

· · · θ̄nB
λn
cn,K


and ∆ = diag(

√
n1, · · · ,

√
nK). Under A2, there are at most m1m2K distinct rows of M .

Denote the matrix with these m1m2K rows by M̃ ∈ R(m1m2K)×K , and write

F = ρnZ̃M̃ , (18)

where F is the same quantity in the proof of Proposition 7, Z̃ ∈ Rn×(m1m2K) with exactly
one 1 in each row and zeros in the other positions. Z̃ gives the correspondence from each
row of M to the rows of M̃ . Let ñk be the number of times that the kth row of M̃ appears
in rows in M , and define ∆̃ = diag(

√
ñ1, · · · ,

√
ñm1m2K). It is easy to check Z̃∆̃−1 is an

orthogonal matrix. Therefore,

σK(P̃ ) = σK(ρn∆̃M̃∆) ≥ λρn min
i,j,k

√
ñijk min

k

√
nk , (19)

where λ = σK(M̃).
By A1, A2, and Hoeffding’s inequality, we have

min
i,j,k

ñijk ≥ C2n
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with probability at least 1− exp(−γ2n) for some constants γ2, C2 > 0 depending on κ′,K
and gθ, gλ. Under this event, we have

σK(P̃ ) ≥
√
C2κ′nρn.

Finally, applying Theorem 2 directly gives∑
k

|Sk|
nk
≤ C1

Kn‖P̃‖∞
σK(P̃ )2

≤ C1

C2κ′
K

nρn

with probability at least 1−n−1− e−γ1n− e−γ2n ≥ 1− 2n−1 for sufficiently large n. Setting
C ′ = C1K

C2κ′
completes the proof.

Lemma 11 (Directed version of Corollary 3.6 in Lei (2019)) Let Ã ∈ {0, 1}n×n be
an adjacency matrix of a directed network with independent Bernoulli entries and the ex-
pectation P̃ ∈ [0, 1]n×n. Assume the rank of P̃ is K and K is fixed. Let Ã = Û Σ̂V̂ T and
UΣV T be the rank K SVD of Ã and P̃ , respectively. If

ΣKK ≥ C0n‖P̃‖∞,

and n‖P‖∞ ≥ C0 log n for some constant C0 > 0, then with probability at least 1− n−1, we
have

max(‖Û − U‖2,∞, ‖V̂ − V ‖2,∞) ≤ C

√
log n

n‖P̃‖∞
max (‖U‖2,∞, ‖V ‖2,∞) .

Proof [ of Lemma 11] Let

P̃ s =

[
0 P̃

P̃ T 0

]
and Ãs =

[
0 Ã

ÃT 0

]
.

Then Ãs is a symmetric matrix with independent Bernoulli entries in the upper triangular
positions, drawn with probabilities P̃ s. The eigenvectors of P̃ s are [UT , V T ]T . The result
follows directly by applying Corollary 3.6 of Lei (2019) with the additional constraint on
ΣKK , which corresponds to formula (200) of Lei (2019).

Proof [ of Theorem 5] By Proposition 7 and Assumption A1, the minimum spanning tree
algorithm will perfectly recover communities if

max
i
‖V̂i· − Vi·‖ <

√
2

4
√

(1− (K − 1)κ′)n
≤

√
2

4
√
nmax

≤ 1

4
min
ci 6=cj

‖Vi· − Vj·‖. (20)

This is because (20) ensures that any between-community edge would have a higher weight
than any within-community edge. In the minimum spanning tree, between any two com-
munities, there is at most one edge connecting them, and in total there would be exactly
K−1 between-community edges. Therefore, removing the K−1 edges with largest weights
results in the correct community partition.
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It remains to show (20). Lemma 11 gives

max
i
‖V̂i· − Vi·‖ = ‖V̂ − V ‖2,∞ ≤ C

√
log n

n‖P̃‖∞
max (‖U‖2,∞, ‖V ‖2,∞)

with probability at least 1− n−1, which implies (20).

Proof [ of Corollary 6] To apply Theorem 5, we just need to show the two conditions (13)
and (14) hold. Equation (19) in the proof of Corollary 3 implies (13). As discussed after
Corollary 6, to show (14) when nρn/ log n→∞, it is sufficient to show that P̃ is perfectly
incoherent, that is

‖U‖2,∞ = O(1/
√
n) and ‖V ‖2,∞ = O(1/

√
n).

From Proposition 7, we know that V has only K distinct rows and each unique row
appears at least nmin times, from A1. Therefore, ‖V ‖2,∞ = O(1/

√
n).

The proof of Proposition 7 indicates that U consists of the left singular vectors of F ,
which is given by (18). Using the same notation, we have

F = Z̃∆̃−1∆M̃ ,

where ∆M̃ is an m1m2K ×K matrix. Again, Z̃∆̃−1 is an orthonormal matrix. Therefore,
U = Z̃∆̃−1Ũ where Ũ is the left singular vector of ∆M̃ . Hence U only has m1m2K distinct
rows. Since we assume m1, m2, and K to be fixed, we also know ‖U‖2,∞ = O(1/

√
n).

B.3 Proofs for parameter estimation under the NSBM

Proof [ of Theorem 4] Without loss of generality, let us assume the first n1 nodes are from
community 1 and focus on estimating parameters in community 1. The same argument
can be repeated for the other K − 1 communities. Note that consistency trivially holds for
B1l = 0, so for this proof we focus on the case B1l > 0. For each l ∈ [K] such that B1l > 0,
define

P̃il = θiB
λi
1l .

By Bernstein inequality, we have

P

(∣∣∣∣∣
∑

j∈Gl
Ãij

nl
− P̃il

∣∣∣∣∣ > t

)
≤ 2 exp

(
− nlt

2/2

P̃il + t/3

)
. (21)

To make the concentration nontrivial, we need to require at least t ≤ P̃il. Hence we have
P̃il ≥ t/3, leading to

P

(∣∣∣∣∣
∑

j∈Gl
Ãij

nl
− P̃il

∣∣∣∣∣ > t

)
≤ 2 exp

(
−nlt

2

4P̃il

)
≤ 2 exp

(
−κ
′nt2

4P̃il

)
. (22)
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When l = 1, we have P̃i1 = θi and letting t = log n/
√
n in (22) gives

P
(∣∣∣θ̂i − θi∣∣∣ > log n√

n

)
≤ 2 exp

(
−κ
′ log2 n

4

)
.

The first claimed result is obtained by taking the union of all i.
A useful special case is t = δnP̃il, for which (22) gives

P(|Til − P̃il| > δnP̃il) ≤ 2 exp

(
−κ
′

4
nδ2

nP̃il

)
. (23)

When l = 1, we have P̃i1 = θi. If θi ≥ 8
κ′

log4 n
n , setting t = θi/ log n in (23) gives

P
(
|θ̂i − θi|/θi >

1

log n

)
≤ 2 exp

(
− κ′nθi

4 log2 n

)
≤ 2 exp(−2 log2 n). (24)

Therefore, when mini θi ≥ 8
κ′

log4 n
n , taking the union over all i ∈ [n] gives

P(max
i
|θ̂i − θi|/θi > 1/ log n) ≤ 2n exp(−2 log2 n) ≤ exp(− log2 n) ≤ n−1.

for sufficiently large n.
Recall that we only need to consider l such that B1l>0. To control the estimation error

of B̂1l, define

Zil :=

(
log(Ti1 +

1

n1
)− log(Til +

1

nl
)

)
and Z̄il = 1

n1

∑
i∈G1

Zil. We have

|Z̄1l − (− logB1l)| = |Z̄1l −
1

n1

∑
i∈G1

(µi1 − µil)|

≤ |Z̄1l − EZ̄1l|

+
1

n1

∑
i∈G1

|E log(Ti1 +
1

n1
)− log(ETi1 +

1

n1
)|

+
1

n1

∑
i∈G1

|E log(Til +
1

nl
)− log(ETil +

1

nl
)|

+
1

n1

∑
i∈G1

| log(P̃i1 +
1

n1
)− log(P̃i1)|+ 1

n1

∑
i∈G1

| log(P̃il +
1

nl
)− log(P̃il)|

≤ |Z̄1l − EZ̄1l|

+
1

n1

∑
i∈G1

|E log(
∑
j∈G1

Aij + 1)− log(E
∑
j∈G1

Aij + 1)|

+
1

n1

∑
i∈G1

|E log(
∑
j∈Gl

Aij + 1)− log(E
∑
j∈Gl

Aij + 1)|

+
1

n1

∑
i∈G1

| log(n1P̃i1 + 1)− log(n1P̃i1)|+ 1

n1

∑
i∈G1

| log(nlP̃il + 1)− log(nlP̃il)|.

(25)
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To control the first term in (25), note that Zil’s are independent across different i’s, and

−2 log n ≤ −2 log n1 ≤ Zil ≤ 2 log 2.

By Hoeffding’s inequality and A2, we have

P
(
|Z̄1l − EZ̄1l| >

log2 n√
n

)
≤ 2 exp(−κ log2 n

16
) (26)

For the 2nd term in (25), because of the fact that
∑

j∈G1
Aij follows binomial distribution

and Taylor expansion, we have

1

n1

∑
i∈G1

|E log(
∑
j∈G1

Aij + 1)− log(E
∑
j∈G1

Aij + 1)| ≤ c′ 1

nρn
.

The similar bound holds for the 3rd term. Finally, by Taylor expansion again, we have

1

n1

∑
i∈G1

| log(n1P̃i1 + 1)− log(n1P̃i1)|+ 1

n1

∑
i∈G1

| log(nlP̃il + 1)− log(nlP̃il)| ≤
c′′

nρn
.

Combining the above results, we have

P
(
| log B̂1l − logB1l| > c̃max(

log2 n√
n
,

1

nρn
)

)

= P

| 1

n1

∑
i∈G1

(Yi1 − Yil)−
1

n1

∑
i∈G1

(µi1 − µil) | > c̃max(
log2 n√

n
,

1

nρn
)

 ≤ 2 exp(−κ log2 n

16
).

(27)

Because the function exp(x) is convex, for any x, y > 0 we have

| exp(x)− exp(y)| ≤ |x− y| exp(max(x, y)).

For sufficiently large n, under the event of (27),

|B̂kl −Bkl| ≤ c̃′max(
log2 n√

n
,

1

nρn
).

Part 2 of the theorem comes directly from (27) after taking the union of at most K2

events for community pairs with nonzero Bkl.
For Part 3, first note that because of the previous discussion, we only consider the

settings when Til > 0 for B1l > 0. Therefore, we treat Ψ1 as known. Let µil = log(P̃il). For
any l ∈ Ψ1, define bl = log(B1l) for B1l > 0. We have

µil − µi1 = log P̃il − log P̃i1 = λi(bl − b1), i ∈ G1.

Summing up across ψ1, ∑
l∈Ψ1

(µil − µi1) = λi
∑
l∈Ψ1

(bl − b1).
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Under the identifiability constraint, we also have

1

n1

∑
i∈G1

∑
l∈Ψ1

(µil − µi1) =
∑
l∈Ψ1

(bl − b1).

The two identities give ∑
l∈Ψ1

(µil − µi1)
1
n1

∑
i∈G1

∑
l∈Ψ1

(µil − µi1)
= λi.

To obtain an error bound for estimated parameters, we will separately bound the nu-
merator and the denominator above. We now proceed to bound Yil−µil. A useful inequality
is, for x, y ≥ 0,

| log(1 + x)− log(1 + y)| ≤ |x− y|
1 + min(x, y)

.

Note that

| log(

∑
j∈Gl

Ãij

nl
+

1

nl
)−log(P̃il+

1

nl
)| = | log(

∑
j∈Gl

Ãij+1)−log(nlP̃il+1)| ≤
|
∑

j∈Gl
Ãij − nlP̃il|

1 + min(
∑

j∈Gl
Ãij , nlP̃il)

.

In particular, under A2, there is a constant φ ≤ minij θ̄iB
λi
cicj . Now let η = 2 maxij Bij ,

t = 1
η logn . Using (21), we have

P

|∑
j∈Gl

Ãij − nlP̃il| ≥
√
nlP̃il log n

 ≤ 2 exp

(
− log2 n

4

)
.

Suppose

√
nlP̃il log n < nlP̃il/2, which holds for sufficiently large n under A2, as long as

nρn � log n. So when n is sufficiently large, we have

P
(
|Yil − log(P̃il +

1

nl
)| ≤ 2

log n√
κnρnφ

)
≤ 2 exp

(
− log2 n

8

)
. (28)

From (25), we also know that | log(P̃il + 1
nl

)− µil| ≤ c 1
nρn

. Therefore, we get

P(|(Yi1 − Yil)− (µi1 − µil)| ≤ 5
log n√
κnρnφ

) ≥ 1− 4 exp

(
− log2 n

8

)
(29)

for sufficiently large n. Applying (29) for all l ∈ Ψ1 leads to

P(|
∑
l∈Ψ1

(Yi1 − Yil)−
∑
l∈Ψ1

(µi1 − µil)| ≤ 5K
log n√
κnρnφ

) ≤ 1− 20 exp

(
− log2 n

8

)
(30)

for sufficiently large n.

For the denominator, apply (27) across l ∈ Ψ1, we have

P
(∣∣∣∣
∑

i∈G1

∑
l∈Ψ1

(Yi1 − Yil)
n1

−
∑

i∈G1

∑
l∈Ψ1

(µi1 − µil)
n1

)

∣∣∣∣ > c̃′′max(
log2 n√

n
,

1

nρn
)

)
≤ 2K exp(−κ log2 n

16
).

(31)
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Another useful inequality we need is, for any x, y, x0, y0 such that x · x0 > 0, y · y0 > 0,∣∣∣∣xy − x0

y0

∣∣∣∣ ≤
√

1

min(|y|, |y0|)2
+

max(|x|, |x0|)2

min(|y|, |y0|)4
(|x− x0|+ |y − y0|) . (32)

By A2, there are constants α, β > 0 such that

|λi| < α and 1/β < min
k

∑
l∈Ψk

(bl − b1) ≤ max
k

∑
l∈Ψk

(bl − b1) < β.

Under the complement event of the union of (30) and (31) and assuming c̃′′max( log2 n√
n
, 1
nρn

) <

β/2, we apply (32) with

x0 =
∑
l∈Ψ1

(µi1 − µil), y0 =

∑
i∈G1

∑
l∈Ψ1

(µi1 − µil)
n1

,

x =
∑
l∈Ψ1

(Yi1 − Yil), y =

∑
i∈G1

∑
l∈Ψ1

(Yi1 − Yil)
n1

.

This gives

|λ̂i − λi| ≤

√√√√ 1

(|y0|/2)2
+

(|x0|+ 5K logn√
κnρnφ

)2

(|y0|/2)4
(c̃′′max(

log2 n√
n
,

1

nρn
) + 5K

log n√
κnρnφ

)

≤ c̃′′′max(
log2 n√

n
,
log n

nρn
)

with probability at least 1− 2K exp(−κ log2 n
16 )− 4 exp

(
− log2 n

8

)
. This completes the proof

of Part 3.
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Appendix C. Additional results about hiring network analysis

The network we use is shown in Figure 5, where the node size is proportional to the receiver
degree, i.e., the number of institutions to which institution i has sent its graduates.
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Figure 5: The hiring network between 87 U.S. business schools. An edge from i to j indicates that
institution i has hired Ph.D. graduates from institution j. The node size is proportional to the
number of incoming edges.

The edge weights in the hiring network have heavy tails, as shown in Figure 6. Our
fitting strategy, the method of moments, relies on well-concentrated observations, and we
truncated the edge weights at 2 for the main analysis in the paper, which affects 10% of
edges. Table 4 compares those communities to the results obtained if we truncate the edge
weights at 3 instead, changing the weights of 6% of edges. Only 7 out of 87 schools change
communities as a result, and all but one of them change to an adjacent group. Overall,
the results are stable relative to the choice of threshold, as one would expect from the
proportions in Table 3.
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Figure 6: The boxplot of edge weights in the original hiring data.

Table 3: The distribution of edge weights in the original hiring data

edge weights 0 1 2 3 4 5 or more

proportion 64% 18% 8% 4% 3% 3%

Table 4: Confusion matrix of the community labels based on edge weights truncated at 2 and at 3.

Truncated at 3

1 2 3 4

1 12 0 0 0
Truncated at 2 2 3 8 0 1

3 0 0 16 3
4 0 0 0 44

Table 5 shows the estimated λi values for Group 1 schools.

For comparison, we briefly discuss community detection results on this network obtained
by spectral clustering applied to the undirected version. The four communities are shown
in Table 6, with their average and median ranking by US News and π-ranking, and 15 insti-
tutions with the highest π-ranking in each community. The first group is still higher-ranked
even though it no longer includes universities like Yale, Columbia and Cornell. The other
three groups, however, all have similar average rankings and no discernible interpretation
that we could think of that might result in such groupings. The striking difference between
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Table 5: Estimated λi’s for Group 1 institutions.

Institution λ̂i USN ranking π-ranking

Yale 1.35 10 11
Columbia 1.22 9 10
Cornell 1.18 16 7
Harvard 1.12 2 3
MIT 1.11 3 2
UC Berkeley 0.99 7 4
U of Chicago 0.91 5 6
Stanford 0.90 1 1
New York U 0.86 10 16
Duke 0.85 12 19
U Michigan 0.75 14 9
U Pennsylvania 0.71 3 12

the average rankings of groups from these two clustering results confirms the importance of
accounting for the nomination mechanism and using the correct spectral information.

Table 6: Communities of business schools found by symmetric spectral clustering, their average and
median rankings from US News 2012 and π-ranking of Clauset et al. (2015). Up to 15 institutions
with the highest π-ranking are listed for each community.

size USN
(avg./med.)

π-ranking
(avg./med.)

Institutions

1 19 19.2/14 17.8/13 Stanford, MIT, Harvard, UC Berkeley, U Rochester, U
Chicago, Northwestern, U Michigan, U Penn., Carnegie
Mellon, NYU, U Minnesota Twin Cities, Duke, UNC
Chapel Hill, U Washington St. Louis

2 20 55.1/56.5 44.6/42 Cornell, Columbia, U Wisconsin-Madison, UIUC, Ohio
State, U Florida, U Pittsburgh, Penn State, Michigan
State, SUNY Buffalo, U Mass Amherst, Syracuse, Tulane,
U Connecticut, U Cincinnati

3 24 52.7/40 54/49 Yale, UCLA, U Washington, U Colorado Boulder, UC
Irvine, U Utah, U Oregon, UT Dallas, U Virginia, Boston
U, UC Davis, Vanderbilt, Claremont Graduate U, U Hous-
ton, Rice U

4 24 63.8/63 56/56.5 Purdue, U Iowa, UT Austin, Indiana U, Georgia Tech, U
Arizona, Texas A&M, U Georgia, Arizona State, U South
Carolina, Virginia Tech, Florida State, U Oklahoma, U
Kansas, Louisiana State
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