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Abstract

Nuclear-norm-based matrix completion was originally developed for imputing missing en-
tries in low rank, or approximately low rank matrices. However, it has proven widely effec-
tive in many problems where there is no reason to assume low-dimensional linear structure
in the underlying matrix, as would be imposed by rank constraints. In this manuscript we
show that nuclear-norm-based matrix completion attains within a log factor of the minimax
rate for estimating the mean structure of matrices that are not necessarily low-rank, but
lie in a low-dimensional non-linear manifold, when observations are missing completely at
random. In particular, we give upper bounds on the rate of convergence as a function of
the number of rows, columns, and observed entries in the matrix, as well as the smooth-
ness and dimension of the non-linear embedding. We additionally give a minimax lower
bound: This lower bound agrees with our upper bound (up to a logarithmic factor), which
shows that nuclear-norm penalization is (up to log terms) minimax rate optimal for these
problems.
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1. Introduction

Matrix completion is a framework that has gained popularity in a wide range of machine
learning applications, including recommender systems (Koren et al., 2009), system iden-
tification (Liu and Vandenberghe, 2010), global positioning (Singer and Cucuringu, 2010)
and natural language processing (Wijaya et al., 2017). It is a useful framework for complex
prediction problems, where each observation comes with a heterogeneous collection of ob-
served features. In particular, matrix completion is applied to problems where the object
of inference or prediction is a matrix whose rows correspond to observation and columns
to variables/features. In many applications, only a subset of entries in this matrix are ob-
served (often with noise), and the goal is to “complete” the matrix, filling in estimates of
the unobserved entries. This “completion” is done by leveraging the known structure in
the matrix. The most famous example, which brought matrix completion to prominence,
is the Netflix Challenge (Koren et al., 2009), where a small sample of observed ratings for
each customer was used to successfully predict future/unobserved movie ratings for Netflix
customers.

More formally, suppose we have an underlying unobserved matrix M ∈ Rn×p: We then
observe a subset of the entries from the noise-contaminated matrix Y = M + E, where E
is a matrix of i.i.d. mean zero, finite variance noise variables. Our goal is to recover matrix
M from this partially observed, noisy Y . This is known as matrix completion. Without
any structure on the matrix M , recovering the values of M corresponding to unobserved
entries is impossible (Laurent, 2001). Matrix completion becomes possible if one imposes
some constraints on the structure of the underlying matrix: It is most common to assume
that M is low rank. Directly employing this assumption by e.g., finding the minimum rank
completion of Y (or corresponding rank-constrained regression) is unfortunately NP-hard
and becomes computationally infeasible for problems involving large matrices (Candes and
Tao, 2010; Chistov and Grigoriev, 1984). Over the last decades, computationally efficient
methods using convex optimization have been developed for recovering a low rank matrix
from a small number of observations with near-optimal statistical guarantees in primarily
noiseless problems (Srebro et al., 2004; Recht, 2011; Candes and Tao, 2010; Recht et al.,
2010), and when the observed entries are contaminated with noise (Candes and Plan, 2010a;
Koltchinskii et al., 2011). These methods rely on using the nuclear norm of the matrix
(Fazel, 2002; Jaggi and Sulovskỳ, 2010), that is, sum of its singular values, as a convex
surrogate for the matrix rank. The low-rank structure leveraged in matrix completion can
be thought of as learning a linear embedding of the data in a low-dimensional space.

In practice, the underlying matrix M may not be low rank. However, we often believe it
may still have useful low-dimensional structure. It has thus become popular to learn a low-
dimensional non-linear embedding of the data. This idea is used both in matrix completion
and more generally for low-dimensional summaries of data. It has been applied in motion
recovery (Xia et al., 2018), epigenomics (Schreiber et al., 2018), and health data analytics
(Wang et al., 2015) among other areas. To recover these embeddings, Reproducing Kernel
Hilbert Space (RKHS) methods (Fan and Chow, 2018), nearest neighbor methods (Li et al.,
2019), and deep learning methods like autoencoders and neural-network-based variational
frameworks (Fan and Cheng, 2018; Yu et al., 2013; Jiang et al., 2016) have been used.
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A related literature has also discussed so-called nonlinear latent variable models. These
models are often considered as the estimation targets of neural network autoencoders (Fan
and Chow, 2017), and are an alternative way to frame non-linear low dimensional embedding
structure. They are becoming particularly popular in biological/biomedical applications,
as they allow for non-linearity and interactions between dimensions of the latent features:
This is known to be a common feature of biological systems (Srinivasan, 2022; McKinney
et al., 2006). Autoencoder neural networks are usually associated with two mappings (the
encoder and decoder) between the higher dimension observable space (the µi ∈ Rp) and
the much lower dimension latent feature space (the θi ∈ RK). In practice, the networks
are structured to estimate highly non-linear mappings. In Fan et al. (2021), the authors
construct autoencoders to impute missing histological data in the context of breast cancer
prognosis; in Wang et al. (2021), autoencoders are applied to various tasks in single-cell
RNA sequencing analysis, including imputation of missing gene expression values. A recent
work, Linderman et al. (2022), proposes a low-rank matrix factorization method for single
cell RNA sequencing data imputation. The authors empirically show that their method can
better improve the cluster separation of different cell types, compared with other seemingly
more intricate methods (which is in-line with our theory).

Such latent variable models—large p, small K—have also gained substantial attention
in biomedical research beyond missing data imputation / matrix completion. In Wang
et al. (2016), non-linear latent models are applied to DNA methylation level prediction. In
Greener et al. (2018) they are used for protein structure design (Curiously, the dimension
of latent variable layer are set to be as low as 16 or 2). In Zhou et al. (2022), the authors
consider the influence of CRISPR perturbation on gene-expression profile. They make
the assumption that the perturbation would first influence a few hidden factors, which
in turn spread the impact over the much larger collection of genes of interest. In fact, the
increasingly popular t-distributed stochastic neighbor embedding (t-SNE) method (Van der
Maaten and Hinton, 2008) for visualization directly assumes this non-linear latent variable
model. In that original manuscript, the authors show that K = 2 or 3 latent dimensions can
be sufficient for summarizing the most impactful structure in high dimensional data. For a
more extensive review, see the Table 1 of Kopf and Claassen (2021) for over 60 applications
of (non-linear) latent models that have mostly been published within the past 5 years.

In parallel to the realization that many important problems have low dimensional non-
linear structure, there has been growing empirical evidence that matrix completion methods
based on nuclear norm penalization perform well even in such scenarios where any low
dimensional structure is likely non-linear (Linderman et al., 2022; Jin et al., 2022). In Fan
et al. (2021), the authors applied various methods to impute missing data for breast cancer
prediction. They showed neural network based latent models can achieve better prediction
accuracy (AUC = 0.793), but methods applying matrix factorization can still explain a
significant proportion (AUC = 0.756). And in certain settings matrix factorization methods
can actually have better performance (as reported in their Section 3.1). As these methods
were developed for linear low rank structure, this is, at first glance, a bit surprising. There
has been some work giving theoretical justification for these empirical results (Chatterjee
et al., 2015; Udell and Townsend, 2019). In particular, they note that in the presence
of some types of non-linear low-dimensional structure in M , nuclear norm-based matrix
completion methods can still consistently estimate M . These work additionally gives some
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non-stochastic approximation error results. However, optimality of the statistical perform
of nuclear-norm-based matrix completion is not considered to the best of our knowledge.

In this manuscript, we delve further into the performance of matrix completion for M
with low-dimensional, non-linear structure. In particular, we consider M with rows that
can be embedded in a low-dimensional smooth manifold (which directly engages with non-
linear latent variable models). We then (i) show that nuclear norm-based matrix completion
can consistently estimate M ; (ii) characterize the rate at which the reconstruction error
converges to 0 as a function of the size of the matrix, number of observed entries, and
smoothness and dimension of the underlying manifold; and (iii) prove that, up to a log term,
this rate cannot by improved upon by any method; that is, our upper bound is actually the
minimax rate [up to a log factor] for reconstruction error in this problem. Furthermore,
our error bounds (and our techniques) also relate the matrix completion problem to more
classical non-parametric estimation: Our reconstruction error bounds parallel the minimax
rate for mean squared error (MSE) in the nonparametric regression setting. Results (ii)
and (iii), we believe, are novel.

Our experiments on synthetic data corroborate our theoretical findings. In particular,
they suggest that the finite sample empirical performance of matrix completion in non-linear
low rank embeddings is consistent with the asymptotic theoretical error bounds. These
empirical results also corroborate the claim that better performance is achieved when the
embedding of the underlying matrix M lies in a smoother manifold.

2. Methods

2.1 Problem setup

We start by giving some notation. We use upper case letters to represent matrices and
lower case letters to represent scalars. The trace inner product of any two matrices, M,B ∈
Rn×p, n, p ∈ Z+, is 〈M,B〉 = tr(MTB). The element-wise infinity norm of M ∈ Rn×p is
defined by ‖M‖∞ = max1≤i≤n,1≤j≤p |mij | where mij denotes the (i, j)-th entry of M . We

also denote the Frobenius norm of matrix M as ‖M‖F =
√∑n

i=1

∑p
j=1m

2
ij .

In the general matrix completion problem, we randomly observe some of the entries
from a matrix M ∈ Rn×p; the observed entries may also be contaminated with error. To
support our later theoretical derivations, we will describe this process in terms of a set of
mask matrices Xt ∈ Rn×p and observed values yt ∈ R. Each Xt is a matrix with a single 1
whose position is indexed by t and all other entries are equal to 0 as follows:

Xt =


0 0 · · · 0 · · · 0
...

...
...

0 0 · · · 1 · · · 0
...

...
...

0 0 · · · 0 · · · 0


n×p

. (1)

The collection of matrices Xt fall in the set X = {en(i)ep(j)
T , for all i = 1, . . . , n and j =

1, . . . , p}, where en(i) ∈ Rn is the basis vector consisting of all zeros except for a single 1
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at ith entry. In this formulation, Xt indicates the location in M where yt is drawn from.
That is, for Xt = en(i)ep(j)

T ∈ X , 〈Xt,M〉 = mij .

Now, we can frame the matrix completion problem as follows: Suppose we have N pairs
of observations (Xt, yt), t = 1, . . . , N , that satisfy

yt = 〈Xt,M〉+ ξt, (2)

where ξt are i.i.d random errors distributed N(0, σ2), M ∈ Rn×p is the underlying true
matrix to be recovered, and yt ∈ R are observed values. The observed matrix can be
written as Y =

∑N
t=1 ytXt where N is the number of observed entries. We assume that Xt

is uniformly sampled at random from X (Koltchinskii et al., 2011), that is, Xt ∼ Π, and
the probability that the (i, j)th entry of Xt equals to 1 is πij = P(Xt = ei(n)ej(p)

T ) = 1
np

for 1 ≤ i ≤ n, 1 ≤ j ≤ p. This is essentially a missing completely at random (MCAR)
assumption.

The goal is to recover M given pairs (Xt, yt), t = 1, 2, ..., N , and we are generally
interested in the setting where N � np. To solve this problem, existing methods often
assume that M has low rank (or approximately low rank), that is, M ' UV T with U ∈ Rn×r
and V ∈ Rp×r for some integer r � min(n, p). In contrast to this low rank assumption,
this paper studies the problem where M is not necessarily low-rank but generated from a
low-dimensional non-linear manifold. This notion is formalized in the next section.

2.2 Non-linearly Embeddable Matrices

In this section, we will formalize the previously mentioned “low-dimensional non-linear
structure”. We will briefly start with the classical linear low-rank matrix completion setting
and motivate ours by switching from a class of linear functions to nonlinear functions. Let
M ∈ Rn×p denote the true matrix. In the low-rank matrix completion setting we may
assume the rank of it r = rank(M) is much smaller than the size min(n, p). In this case, we
can factor the true matrix M into a product of two matrices (of smaller sizes). Formally,
with some Θ ∈ Rn×r, B ∈ Rr×p, we have M = ΘB. Equivalently, for each entry of M we
have:

mij = θi,·β·,j i = 1, ..., n, j = 1, ..., p (3)

where mij is the (i, j) entry of M , θi,· is the i-th row of Θ and β·,j is the j-th column of B.
This means each entry in the i-th row of M can be written as a linear function of the i-th
row of Θ. In addition, there are only p linear functions involved, each one of them is related
to one column of B. So we say Θ is a linear embedding of M into a lower-dimensional
space.

If we replace the linear functions in (3) by non-linear functions, we will formally arrive
at the concept of non-linear embeddable matrix. This generalization strongly resembles
the transition from linear regression to non-linear (non-parametric) regression. Consider
a matrix M , a positive integer K, and a function class F ⊂ L2

(
RK
)
. We say M is

F-embeddable if there exist functions fj ∈ F : RK → R, j = 1, . . . , p, and a matrix
Θ ∈ Rn×K such that

mij = fj (θi,·) , i = 1, . . . , n, j = 1, . . . , p, (4)
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where mij is the (i, j) entry of M and Θ ∈ Rn×K is a matrix (with θi,· indicating its ith
row vector). Here, Θ gives a non-linear embedding of our observations from its original
p-dimensional space into a K-dimensional space (K ≤ p). The set of functions {fj}pj=1 ⊂ F
identifies how to map our embedding in RK back to Rp. From the perspective of latent
variable models, the column dimension of Θ can be interpreted as the number of latent
variables, and that of M is the number of manifest variables. The non-linearly embeddable
assumption is saying that the (systematic) variability of the much higher-dimension manifest
variables can be described well by the much lower-dimension latent variables. As we will see
later (Theorem 5), the number of latent variables and proper smoothness of the fj mappings
ensures the possibility of estimating the matrix M under such a setting. This is curiously
related to the low-dimensional bottleneck layer of neural network autoencoders (Fan and
Chow, 2017; Jin et al., 2022), which is also often interpreted as the limited dimension of
the latent variables.

2.3 Nuclear-norm Penalized Estimators

In classical matrix completion setting, where we assume M is low-rank, nuclear norm pe-
nalized empirical risk minimization is often used to estimate M (Argyriou et al., 2008;
Candes and Plan, 2010b; Negahban and Wainwright, 2011); more specifically, the estimator
is obtained by,

arg min
M

{
N−1

N∑
t=1

(yt − 〈Xt,M〉)2 + λ‖M‖∗

}
, (5)

where λ is a regularization parameter which is used to balance the trade-off between fitting
the unknown matrix using least squares and minimizing the nuclear norm ‖M‖∗. This
“matrix lasso” is known to have strong theoretical properties when M is low rank (Argyriou
et al., 2008; Candes and Plan, 2010b; Negahban and Wainwright, 2011). However, in our
scenario, M likely does not have low rank and previous work does not fully explain the
effectiveness of the estimate from (5) in this setting.

While the estimator in (5) is simple and quite well known, it fails to exploit knowledge
of the sampling scheme (which is often known or at least assumed to be known). To use
the assumption that the mask matrices {Xt}Nt=1 are i.i.d. uniformly sampled from X , we
study a slight modification to (5) described in Koltchinskii et al. (2011):

M̂ ← arg min
M

{
1

np
‖M‖2F −

〈
2

N

N∑
t=1

ytXt,M

〉
+ λ‖M‖∗

}
(6)

After some simple manipulation, (6) can be further reduced to minimizing

1

np
‖M −R‖2F + λ‖M‖∗.

where R = np
N

∑N
t=1 ytXt = np

N Y . Thus, M̂ , the solution to (6), is merely a singular-value
soft-thresholding estimator:

M̂ =

rank(R)∑
j=1

(Λj(R)− λnp/2)+uj(R)vj(R)T , (7)
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where Λj(R) are the singular values and uj(R), vj(R) are the left and right singular vectors

of R such that R =
∑rank(R)

j=1 Λj(R)uj(R)vj(R)T . Koltchinskii et al. (2011) established the
rate optimality of this estimator with respect to Frobenius-norm loss when M is low rank.
In this paper, we aim to ultimately claim that M̂ in (6) is a rate optimal estimator of M
in the case that M is non-linearly embeddable, as long as K is fixed and the function class
F is sufficiently smooth.

2.4 Approximation of Embeddable Matrices

Our goal is to characterize the convergence rate of estimator obtained by (6) for the estimat-
ing true underlying matrix M with respect to Frobenius-norm loss, when M is non-linearly
embeddable. To this end, we first show that M can be well approximated by a series of ma-
trices with low (and only slowly growing) rank as long as the function class F is sufficiently
smooth. More specifically, we will need the following condition for the function class F .

Condition 1 Given a function class F , let C0 denote a fixed positive number. Suppose
that for any ε > 0, there exists a finite set of measurable functions Fε =

{
ψ1, ψ2, . . . , ψJ(ε)

}
,

such that
‖ψ‖∞ ≤ C0, for all ψ ∈ Fε, (8)

and

max
f∈F

min
‖β‖∞≤C0

∥∥∥∥∥∥f −
J(ε)∑
l=1

βlψl

∥∥∥∥∥∥
∞

≤ ε. (9)

For each ε, we denote by F∗ε a set of minimal cardinality such that (8) and (9) hold. We
let J∗(ε) denote the cardinality of F∗ε .

For a function class F , Condition 1 characterizes the minimal number of basis functions
needed to uniformly approximate functions in F up to precision ε. In Section 3, we shall
apply this condition to K-dimensional, L-th order differentiable functions, and show how
this number scales as a function of ε.

Based on the above condition, we can establish the existence of an approximation matrix
which is sufficiently close to the true matrix M and has a bounded nuclear norm.

Lemma 1 Suppose matrix M ∈ Rn×p is F-embeddable, and F satisfies Condition 1. Then,
for any ε > 0, there exists a matrix M ε satisfying rank(M ε) = J∗(ε) ≤ min(n, p) such that

‖M ε −M‖∞ ≤ ε. (10)

Furthermore, the nuclear norm of M ε is bounded: There exists C1 > 0 (independent of
ε) such that

1
√
np
‖M ε‖∗ ≤ C1J

∗(ε). (11)

The proof is given in Appendix A. Note, for the F we consider later (restricted to
smooth functions) we will show that J∗(ε) << min(n, p). This parallels results in classical
non-parametric regression where many function-spaces considered can be approximated uni-
formly with small error by linear combinations of relatively few basis functions (Tsybakov,
2009).
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3. Convergence Rate

Using Lemma 1, it is relatively straightforward to evaluate the performance of our estimator

M̂ in (6). The performance metric simplest to theoretically analyze isN−1
∑N

i=1

〈
Xi, M̂ −M

〉2
.

However, this criterion only evaluates the prediction error on the observed entries. This is
unsatisfying as our ultimate goal is to recover the entire matrix. Thus, we instead aim to
evaluate the performance of M̂ based on the metric 1

np‖M̂ −M‖
2
F . The following result

gives an upper bound for the performance of our estimator M̂ in this metric.

Theorem 2 Suppose we observe N pairs {(yt, Xt)}Nt=1 satisfying data generating model (2)
where Xt are i.i.d. uniformly sampled from X . Assume the true matrix M ∈ Rn×p is F-
embeddable where F satisfies Condition 1. Further suppose that N ≥ (n ∧ p) log2(n + p).
Then there exists a constant C2 > 0 (that only depends on σ and ‖M‖∞) such that if we
define the regularization parameter λ by

λ = C2

√
log(n+ p)

N(n ∧ p)
,

then, with probability at least 1− 2(n + p)−1, the completion error of M̂ in (7) is bounded
by

1

np

∥∥∥M̂ −M∥∥∥2

F
≤ C2

2

(
1 +
√

2

2

)2
(n ∨ p) log(n+ p)

N
J∗(ε) + ε2, (12)

for any ε > 0. Here, J∗(ε) is the rank of the approximation matrix M ε with ‖M−M ε‖∞ ≤ ε,
which corresponds to the minimal cardinality of F∗ satisfying Condition 1.

After establishing Lemma 1, the upper bounds in Theorem 2 would follow directly
using existing arguments (Koltchinskii et al., 2011). For completeness we give full details
of the proof in the Appendix B. The two terms on the right-hand-side of (12) clarify the
trade-off between the approximation error, ε, and the cardinality of the minimal linear
approximation set F∗, J∗(ε). As in the results of Koltchinskii et al. (2011), the error in
our bound is decomposed into a misspecification error (ε2) and a prediction error. Usually,
when there is no misspecification, that is, the true matrix M is low rank, the prediction
error is linearly related to the rank of M (Candes and Plan, 2011; Klopp et al., 2014). In our
scenario, where the low-rank assumption is violated, the prediction error in (12) is linearly
related to the rank of the approximation matrix.

Ideas similar to this occur in more traditional non-parametric estimation problems. For
example, when using projection estimators in Hölder and Sobolev spaces, one of the main
rate-optimal estimation approaches requires a truncated basis to be selected for projection
that will grow with the sample size N (Tsybakov, 2008). However, in those examples, the
number of basis vectors is a tuning parameter in the algorithm, and the set of basis functions
must be selected in advance. Here, both the set of basis functions and the truncation level
are rather just theoretical tools for analyzing the algorithm performance. In employing
matrix completion, the analyst only needs to select λ.

We note that N ≥ (n∧ p) log2(n+ p) in the above Theorem 2 is a quite weak condition
on the number of observations: N could satisfy this and still be far less than np. In
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comparison, Chatterjee et al. (2015) considers a related latent space model. Their method
needs to observe at least Θ

(
n2(K+1)/(K+2)

)
entries to guarantee the consistent recovery of

an n × n matrix. This implies that one needs to observe Θ
(
nK/(K+2)

)
entries out of n in

each row, as compared to our much weaker requirement of Θ
(
log2(n)

)
per row.

We now specialize our results to matrices that are F-embeddable for F containing
functions with bounded derivatives. This is a natural class of functions to work with (though
one could alternatively work in a multivariate Sobolev or Hölder space).

Condition 2 M is F-embeddable, where F contains functions with uniformly bounded L-th
order mixed partials (for some fixed L > 0). More formally, define F(L, γ,K), for L,K ≥ 1
as the set of L-th order differentiable functions from RK[0,1] to R satisfying

f(x0) +

∣∣∣∣∣ ∂L

∂xL1
1 · · ·x

LK
K

f(x)

∣∣∣∣
x=x0

∣∣∣∣∣ ≤ γ, (13)

for all x0 = (x0
1, . . . , x

0
K) ∈ RK[0,1] ⊂ RK and all integers L1, . . . , LK satisfying L1+· · ·+LK =

L. Now, additionally define the set

M(L, γ,K) = {M ∈ Rn×p | mij = fj(θi,·),

with fj ∈ F(L, γ,K), j ≤ p, and θi,· ∈ RK[0,1], i ≤ n}
(14)

This is the set of F (L, γ,K) embeddable matrices, where the embedding lives in a com-
pact space (for convenience we use the `∞ ball). Our formal condition here is that M ∈
M(L, γ,K).

Remark. In the above condition, we will often suppress the dependence on γ, and
write M(L,K) and F(L,K). This is because γ does not affect the convergence rate of our
estimator. Additionally, here we specify the domain of the embeddings to be [0, 1]K for
ease of exposition. This is actually general as we could rescale any compactly supported
embedding to live in this interval.

Condition 2 imposes an additional constraint on our embedding: The underlying man-
ifold on which our matrix lives should be smooth. Here smoothness is characterized by a
number of bounded derivatives. As we will see, this function class engages well with Con-
dition 1 in the sense that we are able to characterize J∗(ε) for the function class F(L,K).
This is essentially a multivariate Hölder class, which has been widely used in the area of
non-parametric estimation (Tsybakov, 2008). One could alternatively look at this as a
multivariate Sobolev class under the sup-norm, WL,∞(RK).

The following lemma gives the number of basis elements needed to linearly approximate
a matrix satisfying the above condition, with bounded approximation error ε.

Lemma 3 For the function class F(L,K) described in Condition 2, we have that Condi-
tion 1 is satisfied with

J∗(ε) ≤ (K + L)!

K!L!

(
L!

γKL

)−K/L
ε−K/L = O

(
ε−K/L

)
.

9



Xiang, Zhang, Wang, Shojaie and Simon

The proof of this lemma is given in Appendix C. Now, we can establish the final con-
vergence result for smoothly embeddable matrices.

Theorem 4 Under the same scenario and assumptions as in Theorem 2, assume further
the F(K,L)-embeddable matrix M satisfies Condition 2 for given L and K. Then, the upper

bound (12) is optimized at ε =
(
N−1(n ∨ p) log(n+ p)

)L/(2L+K)
, resulting in

1

np

∥∥∥M̂ −M∥∥∥2

F
= OP

([
(n ∨ p) log(n+ p)

N

] 2L
2L+K

)
. (15)

In the asymptotic statement (15), we assume that L and K are fixed (there is a constant
prefactor in Op(·) that depends only on L and K, which we omit).

The proof is given in Appendix D (as well as a precise, non-asymptotic result). This

upper bound of the convergence rate of the MSE of M̂ is only based on the dimensions n and
p of matrix M , the total number of observations N , as well as the degree of smoothness L
and dimension of the embedding K. Previous work that assumed M was low-rank generally
gave a rate of the form N−1(n∨p) rank(M) log(n+p) (Bach, 2008; Klopp et al., 2014; van de
Geer, 2016). In contrast, our upper bound does not rely on the rank of M . Instead, the role
of rank(M) is replaced by L, and K. At the same time, the dependence on N shifts from
the finite rank N−1 rate to our nonparametric rate N−2L/(2L+K). This result reaffirms that
the standard matrix completion estimator based on nuclear norm minimization is consistent
for matrices with low-dimensional non-linear structure. Perhaps more importantly, it also
shows how the convergence rate depends on the degree of smoothness, and dimension of the
manifold. This can be seen in the exponent on the RHS of (15): 2L/(2L+K). Increasing
the degree of smoothness moves this exponent towards 1; increasing the dimension moves
the exponent towards 0. This is analogous to more standard non-parametric regression
problems in smooth hypothesis spaces where the minimax convergence rate for MSE looks
analagous (Tsybakov, 2008).

4. Minimax Lower Bound

In this section, we use information-theoretical methods to establish a lower bound on the
estimation error for completing non-linearly embeddable matrices with uniformly sampled
at random entries when the latent embedding Θ is K-dimensional and satisfies Condition 2.
The rate we find in the lower bound matches the rate obtained by nuclear norm penalization
in Theorem 4 up to a log-term. Thus our upper bound is sharp (up to a logarithmic factor),
and, the nuclear-norm penalization based estimator given in (6) is rate-optimal (up to
polylog) for this problem.

To derive the lower bound, we consider the underlying matrices M ∈ M(L, γ,K) as
defined in (14), that is, matrices that live in L-th order smooth, K dimensional manifolds.
Let PM denote the probability distribution of the observations {(yt, Xt)}Nt=1 generated by
model (2) with E(yt|Xt) = 〈Xt,M〉. We give a minimax lower bound of the ‖ · ‖2F -risk for
estimating M in the following result.
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Theorem 5 For any given L ≥ 1, γ > 0 and K ≥ 1, let κ := n/p. Then, for some constant
A > 0 that depends on K,L, γ, σ2 and κ, the minimax risk for estimating M satisfies

inf
M̂

sup
M∈M(L,γ,K)

PM

(
1

np

∥∥∥M̂ −M∥∥∥2

F
> A

(n ∨ p
N

) 2L
2L+K

)
≥ 1/2, (16)

when c
− 2L+K

K
0 (n ∨ p) ≤ N ≤ c

− 2L+K
K

0 0.482L+K(n ∨ p)n
2L+K
K for some constant c0 which

depends on K,L, γ, σ2 and κ.

The proof is given in the Appendix E—it extends the lower bound argument of Koltchin-
skii et al. (2011) from linear low rank matrices to non-linearly embeddable matrices. Com-
paring Theorem 5 to Theorem 4, we see that the lower bound matches the upper bound
(15) up to a logarithmic factor. This shows that the estimator given by (6) is actually an
optimal estimator (up to a log term) for this non-linear low-dimensional matrix completion
regime.

We note that the requirement N = O
(
(n ∨ p)n(2L+K)/K

)
in Theorem 5 is a bit unusal.

It comes from a technical constraint in our proof, required to construct a suitably large
packing set. This may just be an artifact of our proof technique, and not innate to the
problem. Recall that the upper bound holds as long as N ≥ (n ∨ p) log2(n+ p), so there is
a large regime where the assumption required for our upper and lower bounds overlap.

Comparison with existing results
Matrix completion with a true underlying mean that is low rank has been widely studied
(Bach, 2008; Candes and Plan, 2010b; Negahban and Wainwright, 2011; Koltchinskii et al.,
2011; Klopp et al., 2014; van de Geer, 2016) in the literature and nuclear-norm penalized
estimators are known to have clear theoretical guarantees in this linear setting. The rescaled
Frobenius-norm of the error decreases linearly with respect to the number of observed en-
tries N and is proportional to the rank of true matrix M .
Matrix completion without direct rank assumptions has also studied in the literature (though
to a much lesser degree). In Negahban and Wainwright (2011), the authors consider both
low-rank truth and near low-rank truth (formalized using the Schatten q-norms). The con-
vergence rate under this type assumption depends on the parameter q and is no faster than
the low-rank model. In Cai et al. (2016), the authors engage with some “max-norm” based
estimator and allow a highly non-uniform sampling scheme, which can also be treated as
some form of near low-rank structure; they showed their proposed estimator is minimax
optimal with a square-root dependence N−1/2. See Section 3.5 of Cai et al. (2016) for
a discussion about the relation between max-norm and “effective rank” of Negahban and
Wainwright (2011). In Chatterjee et al. (2015), the author proposed a singular-value thresh-
olding estimator and applied to a variety of statistically interpretable settings (e.g. low rank
matrix completion, block models, latent space models). Their framework is general and the
author presented some theoretical guarantees for each setting—but their results do not fully
recover the optimal N−1 rate under the finite rank assumption. The latent space model
discussed in Chatterjee et al. (2015) is of a similar nature to our non-linearly embeddable
matrix assumption, but they show consistency of the proposed estimator. In this paper,
we detail the finite-sample convergence rate with an emphasize on how it varies with the
assumed level of smoothness L and latent factor dimension K. Moreover, we showed that
our theoretical rate guarantee N−2L/(2L+K) essentially matches the minimax lower bound.
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5. Simulation Study

In this section, we empirically evaluate the effectiveness of matrix completion using the soft-
thresholding estimator M̂ in (7) for noisy incomplete matrices which are generated from
low-dimensional non-linear embeddings. (These matrices are full rank, even though they
are generated from low-dimensional non-linear embeddings). Here, we only show the case
of univariate embedding (K = 1) and aim to empirically evaluate how the Frobenius error

1
np

∥∥∥M̂ −M∥∥∥2

F
changes with the dimension (n) when n = p. We examine scenarios where

the non-linear embeddings are of different orders of smoothness.
The underlying matrices are generated as described in (4): mij = fj(θi,·) for i = 1, . . . , n

and j = i, . . . , p. In particular, to make sure that Conditions 1 and 2 are satisfied, we
generate fj as

fj(x) =

∞∑
b=1

βbψb(x),

where ψb(x) are orthonormal bases in L2[0, 1] defined by:

ψ1(x) = 1,

ψ2b(x) =
√

2 cos(2πbx),

ψ2b+1(x) =
√

2 sin(2πbx).

Meanwhile, to set up the order of smoothness L and make sure that βbψb(x) vanishes with
b, we sample the coefficients βb from a uniform distribution:

βb ∼i.i.d U
[
−b−(L+1), b−(L+1)

]
, b = 1, 2, . . . .

In this way, we can guarantee that
∑∞

b=1 b
2Lβ2

j < ∞. Thus, fj is a function whose Lth
order derivative is Op(1).

In this simulation, for computational reasons, we actually use only the first 100 basis
vectors fj(x) =

∑100
b=1 βbψb(x). The underlying embeddings θi,· ∈ R are also i.i.d. sampled

from a uniform distribution U(0, 1) for i = 1, . . . , n. We set the missingness rate to ν = 0.3:
The total number of observed entries is N = (1 − ν)np. The observed entries are yt =
〈Xt,M〉+ξt, where Xt are uniformly sampled from X and the error terms are independently
Gaussian distributed ξt ∼i.i.d. N(0, 1). We generate random data sets {(yt, Xt)}Nt=1 of size
n ∈ {500, 1000, 2000, 3000, 5000} and estimate M . We run 100 simulations for each size. To
select λ, instead of using cross-validation, here we consider an oracle procedure: For each
simulation, we estimate the MSE for a set of λ values and select the λ that minimizes the
MSE. We report this MSE of the estimated matrix M̂ and the corresponding λ.

Figure 1 shows the results of estimating M generated by non-linear embeddings with
different orders of smoothness, L. Since N = (1 − ν)np, the convergence rate in (15)

reduces to OP

(
[log(2n)/n]

2L
2L+K

)
. The log term inside is negligible as n increases. Hence,

if we regress log(MSE) on log(n), the absolute value of slope should be roughly about
2L/(2L + 1) (K = 1 in this simulation). We increase the order of smoothness of f from
L = 1 to L = 5. For these values of L, the expected absolute value of the slope should be
0.67, 0.80, 0.86, 0.89, and 0.91. The rates from our simulations are respectively 0.67, 0.78,

12
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L=4 (0.89 vs 0.88)
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Figure 1: Theoretical rate vs. empirical rate (in log scale) of the mean squared errors as
a function of sample size. The underlying matrices M are generated by f with
different orders (L) of smoothness. The low-rank embedding is one-dimensional
(K = 1). We regress log(MSE) on log(n), and compare the theoretical slopes
(left) with the empirical slopes (right). For each smoothness level, L, we also
obtain the 95% confidence regions using bootstrap (dash lines).

0.80, 0.88, and 0.91. There is generally strong agreement between theoretical and empirical
results except for the setting of L = 3. We hypothesize that this is due to finite sample
issues.

6. Discussion

Nuclear-norm based matrix completion methods were originally developed for scenarios
where the underlying mean matrix has low rank. In this manuscript, we present theoretical
results to explain the effectiveness of matrix completion in applications where the underlying
mean matrix is not low rank, but instead lives in a low-dimensional smooth manifold.

Our results show that, in such scenarios, nuclear-norm regularization can still result in
a procedure that is minimax rate optimal (up to a log factor) for recovering the underlying
mean matrix. In particular, we give upper bounds on the rate of convergence as a function of
the number of rows, columns, and observed entries in the matrix, as well as the smoothness,
and dimension of the embeddings. We additionally give matching minimax lower bounds (up
to a logarithmic factor) for this problem. These bounds appear analogous to the minimax
rate in the case of standard non-parametric regression.

13
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Our theoretical results relate the error bounds to the smoothness and dimension of the
non-linear embedding; however, the technical proof does not provide a way to figure out
the explicit form of the hidden embeddings, which may be interesting in practice, e.g., for
dimension reduction. Modifying the original matrix completion method in order to estimate
the hidden embeddings may be an important direction of future research.
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Appendix A. Proof of Lemma 1

We begin with a proof of Lemma 1:

Proof

Recall that M is F-embeddable and F satisfies Condition 1. Thus, the entries of M are
generated by mij = fj(θi,·). Consider arbitrary ε > 0. Then there is some fixed C0 > 0,

and a collection of functions F∗ε =
{
ψ̃1, ψ̃2, . . . , ψ̃J∗(ε)

}
that give the finite set of minimal

cardinality J∗(ε), with the property that

maxf∈F min‖β‖∞≤C0

∥∥∥∥∥∥f −
J∗(ε)∑
l=1

βlψ̃l

∥∥∥∥∥∥
∞

≤ ε. (17)

and ‖ψ̃l‖∞ ≤ C0. For any given f ∈ F , let

βε(f) = argminβ

∥∥∥∥∥∥f −
∑
ψ̃l∈F∗ε

βlψ̃l

∥∥∥∥∥∥
∞

. (18)

This implies that we can approximate M with a low rank matrix M ε, with entries given
by

mε
ij ←

∑
ψ̃l∈F∗ε

ψ̃l (θi,·) · βεl (fj), (19)

such that |mij −mε
ij | ≤ ε for i = 1, . . . , n, j = 1, . . . , p. Now, let Ψ denote the matrix with

Ψil = ψ̃l (θi,·) and B denote the matrix with entries Blj = βεl (fj). Then, the approximation
matrix can be compactly written as

M ε = ΨB,

with Ψ ∈ Rn×J∗(ε) and B ∈ RJ∗(ε)×p. Thus, rank(M ε) = J∗(ε) ≤ min(n, p) and

‖M ε −M‖∞ ≤ ε.

Finally, using a variational form of the nuclear norm (Srebro and Shraibman, 2005), we
have

1
√
np
‖M ε‖∗ =

1

2
min

UV >=Mε

(
1

n
‖U‖2F +

1

p
‖V ‖2F

)
.

From the statement above (18), we know that ‖Ψ‖∞ and ‖B‖∞ are both bounded by C0.
Thus we have that

1
√
np
‖M ε‖∗ ≤

1

2

(
1

n
‖Ψ‖2F +

1

p
‖B‖2F

)
≤ C2

0J
∗(ε).

Noting that C2
0 is a constant independent of ε gives us our result.
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Appendix B. Upper Bound

In this section, we derive the upper bound on the convergence rate of our estimator M̂ .
Recall that {(yt, Xt)}Nt=1 are generated by

yt = 〈Xt,M〉+ ξt, (20)

where ξt are i.i.d random errors distributed N(0, σ2), and M is a n×p matrix. The estimator
we consider is defined by

M̂ ← argminM∈Rn×p

{
1

np
‖M‖2F −

〈
2

N

N∑
t=1

ytXt,M

〉
+ λ‖M‖∗

}
≡ argminM∈Rn×p LN (M)

(21)

Before we begin, we note that much of the proof of Theorem 2 follows very directly
from the work of Koltchinskii et al. (2011). In particular, we use Lemmas A1, and A2
from that work. We include the full proof here both for completeness, and because we need
to be careful with constants—in Koltchinskii et al. (2011) certain variables were assumed
constant (eg. the rank and norm of the oracle matrix) that we would like to allow to
grow. The novelty in this manuscript (regarding the upper bound) comes from combining
those arguments with a sharp characterization of misspecification error (to get our sharp
upper-bound)

Now, to prove Theorem 2, we first introduce two technical lemmas, which will play a key
role. Proving these lemmas will entail most of the work required for proving this theorem.
In Lemma A1, we derive a deterministic upper bound for the estimation error (under a
stochastic condition) as a function of the regularization parameter λ, when λ is sufficiently
large (in this Lemma, “sufficiently large” is left as a stochastic constraint). In particular,
we show that the risk can be decomposed into a misspecification error and a prediction
error. Then, in Lemma A2, we identify a deterministic value for λ such that, with high
probability, the condition in Lemma A1 will hold. More specifically we give probabilistic
bounds for the operator norm of the stochastic error term in our generative model. We can
then combine these to obtain the general oracle inequality in Theorem 2.

Before continuing, we give some additional notation: For any matrix Z, we denote
‖Z‖op = Λmax(Z), where Λ2

max(Z) = Λmax(ZTZ) is the largest singular value of ZTZ, also
known as the operator-norm.

Lemma A1 Suppose we observe {(yt, Xt)}Nt=1 generated by (20), where Xt are i.i.d uni-
formly sampled from X . Further, assume the underlying true matrix M ∈ Rn×p is F-
embeddable with Condition 1 satisfied. Let ∆ = N−1

∑N
t=1[ytXt−E(ytXt)]. If λ ≥ 2‖∆‖op,

then

1

np
‖M̂ −M‖2F ≤ ε2 +

(
1 +
√

2

2

)2

J∗(ε)λ2np (22)

holds for any ε > 0. Recall that J∗(ε) is the minimal rank of an approximation matrix M ε

with ‖M ε −M‖∞ < ε.
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Proof

The proof of this lemma is based on the strong convexity of the loss function LN (M).

Consider the the subdifferential of LN (M), which is the set of matrices of the following
form:

∂LN (M) =

{
2

np
M − 2

N

N∑
t=1

ytXt + λB, B ∈ ∂‖M‖∗

}
. (23)

Thus, the following representation holds for Â ∈ ∂LN (M̂)

Â =
2

np
M̂ − 2

N

N∑
t=1

ytXt + λB̂,

for some B̂ ∈ ∂‖M̂‖∗. Since M 7→ LN (M) is strictly convex, M̂ defined in (21) is the

unique minimizer of LN (M). This implies, 0 ∈ ∂LN (M̂). Hence, there exists B̂ ∈ ∂‖M̂‖∗
such that Â = 0, and thus

〈Â, M̂ −M ε〉 = 〈0, M̂ −M ε〉 = 0. (24)

It further follows that

〈Â, M̂ −M ε〉

=
2

np
〈M̂, M̂ −M ε〉 − 2

N

N∑
t=1

〈ytXt, M̂ −M ε〉+ λ〈B̂, M̂ −M ε〉 = 0.
(25)

M ε ∈ Rn×p is the approximation matrix with rank(M ε) = J∗(ε). So, it has spectral

representation M ε =
∑J∗(ε)

j=1 σjujv
T
j where uj ∈ Rn and vj ∈ Rp, j = 1, ..., J∗(ε), are

orthonormal vectors, and σj are the singular values of M ε. Let U and V denote the linear
span of {u1, ..., uJ∗(ε)} and {v1, ..., vJ∗(ε)} respectively. Then, the subdifferential of ‖M ε‖∗
can be represented by the following set of matrices (Watson, 1992):

∂‖M ε‖∗ =


J∗(ε)∑
j=1

ujv
T
j + PU⊥WPV ⊥ : ‖W‖op ≤ 1

 ,

where U⊥ denotes the orthogonal complements of U and PU⊥ denotes the projection on the
linear vector subspace U⊥. The same argument applies to V and PV ⊥ . Thus, Bε ∈ ∂‖M ε‖∗
can be represented as

Bε =

J∗(ε)∑
j=1

ujv
T
j + PU⊥WPV ⊥ (26)

for arbitrary matrix W having ‖W‖op ≤ 1. Due to the trace duality, there exists W with
‖W‖op ≤ 1 such that

〈PU⊥WPV ⊥ , M̂ −M ε〉 = 〈PU⊥WPV ⊥ , M̂〉 = 〈W,PU⊥M̂PV ⊥〉 = ‖PU⊥M̂PV ⊥‖∗ (27)
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So, it follows from (25) that

2

np
〈M̂ −M,M̂ −M ε〉+

2

np
〈M,M̂ −M ε〉+ λ〈B̂ −Bε, M̂ −M ε〉

=
2

N

N∑
t=1

〈E(ytXt), M̂ −M ε〉 − λ〈Bε, M̂ −M ε〉+
2

N

N∑
t=1

〈ytXt − E(ytXt), M̂ −M ε〉
(28)

Due to the monotonicity of subdifferentials of convex functions M 7→ ‖M‖∗, 〈B̂ −
Bε, M̂ −M ε〉 ≥ 0. So, (28) can be further simplified:

2

np
〈M̂ −M, M̂ −M ε〉 ≤ −λ〈Bε, M̂ −M ε〉+ 2〈∆, M̂ −M ε〉

(26)
−−→

= −λ〈
J∗(ε)∑
j=1

ujv
T
j + PU⊥WPV ⊥ , M̂ −M ε〉+ 2〈∆, M̂ −M ε〉

(27)
−−→

= −λ〈
J∗(ε)∑
j=1

ujv
T
j , M̂ −M ε〉+ 2〈∆, M̂ −M ε〉 − λ‖PU⊥M̂PV ⊥‖∗

(29)
where ∆ = N−1

∑N
t=1[ytXt − E(ytXt)].

By arithmetic, we see that the left-hand side of (29) is equal to:

2〈M̂ −M, M̂ −M ε〉 = 〈M̂ −M,M̂ −M +M −M ε〉+ 〈M̂ −M ε +M ε −M, M̂ −M ε〉

= ‖M̂ −M‖2F − ‖M ε −M‖2F + ‖M̂ −M ε‖2F .
(30)

As for the right side of (29), we use the following facts:

‖
J∗(ε)∑
j=1

ujv
T
j ‖op = 1 and 〈

J∗(ε)∑
j=1

ujv
T
j , M̂ −M ε〉 = 〈

J∗(ε)∑
j=1

ujv
T
j , PU (M̂ −M ε)PV 〉. (31)

Given (30)-(31), (29) becomes

1

np
‖M̂ −M‖2F +

1

np
‖M̂ −M ε‖2F + λ‖PU⊥M̂PV ⊥‖∗

≤ −λ〈
J∗(ε)∑
j=1

ujv
T
j , M̂ −M ε〉+

1

np
‖M ε −M‖2F + 2〈∆, M̂ −M ε〉

≤ λ‖PU (M ε − M̂)PV ‖∗ +
1

np
‖M ε −M‖2F + 2〈∆, M̂ −M ε〉,

(32)

where the last inequality is due to |〈M1,M2〉| ≤ ‖M1‖op × ‖M2‖∗.
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In (32), the stochastic error term 〈∆, M̂ −M ε〉 can be decomposed:

〈∆, M̂ −M ε〉 = 〈PMε(∆), M̂ −M ε〉+ 〈PU⊥∆PV ⊥ , M̂ −M ε〉

= 〈PMε(∆),PMε(M̂ −M ε)〉+ 〈PMε(∆),PU⊥(M̂ −M ε)PV ⊥〉

+ 〈PU⊥∆PV ⊥ ,PMε(M̂)〉+ 〈PU⊥∆PV ⊥ , PU⊥M̂PV ⊥〉 − 〈PU⊥∆PV ⊥ ,M
ε〉

= 〈PMε(∆),PMε(M̂ −M ε)〉+ 〈PU⊥∆PV ⊥ , PU⊥M̂PV ⊥〉
(33)

where PMε(∆) = ∆− PU⊥∆PV ⊥ . So it can be upper bounded by:

|〈∆, M̂ −M ε〉| ≤ ‖PMε(∆)‖F ‖PMε(M̂ −M ε)‖F + ‖PU⊥∆PV ⊥‖op‖PU⊥M̂PV ⊥‖∗
≤ ‖PMε(∆)‖F ‖M̂ −M ε‖F + ‖PU⊥∆PV ⊥‖op‖PU⊥M̂PV ⊥‖∗
≤
√

2J∗(ε)‖∆‖op‖M̂ −M ε‖F + ‖∆‖op‖PU⊥M̂PV ⊥‖∗.

(34)

The last inequality is due to the facts that

‖PMε(∆)‖F ≤
√

rank(PMε(∆))‖∆‖op =
√

rank(PU⊥∆PV + PU∆)‖∆‖op
≤
√

2 rank(M ε)‖∆‖op =
√

2J∗(ε)‖∆‖op

and ‖PU⊥∆PV ⊥‖op ≤ ‖∆‖op.
Meanwhile, the first term in the right-hand side of (32) can also be bounded:

‖PU (M ε − M̂)PV ‖∗ ≤
√

rank(M ε)‖PU (M ε − M̂)PV ‖F ≤
√
J∗(ε)‖M ε − M̂‖F . (35)

Combining (34) - (35), (32) becomes

1

np
‖M̂ −M‖2F+

1

np
‖M̂ −M ε‖2F + (λ− 2‖∆‖op)‖PU⊥M̂PV ⊥‖∗

≤ λ
√
J∗(ε)‖M ε − M̂‖F + ε2 + 2

√
2J∗(ε)‖∆‖op‖M̂ −M ε‖F .

(36)

If λ ≥ 2‖∆‖op, then

1

np
‖M̂ −M‖2F +

1

np
‖M̂ −M ε‖2F ≤ ε2 + (1 +

√
2)λ
√
J∗(ε)‖M̂ −M ε‖F (37)

which implies

1

np
‖M̂ −M‖2F ≤ ε2 + (1 +

√
2)λ
√
J∗(ε)‖M̂ −M ε‖F −

1

np
‖M̂ −M ε‖2F

≤ ε2 +

(
1 +
√

2

2

)2

J∗(ε)λ2np

(38)

as claimed.

The result in Lemma A1 still contains regularization parameter λ. When λ is selected
too large, then entries of M̂ will be overly shrunk toward zero and give poor reconstruction
error. If λ is too small, then our constraint, λ ≥ 2‖∆‖op, will not be satisfied. Thus, it is
important to identify a minimal value for λ such that λ ≥ 2‖∆‖op with high probability.
Here, we introduce the second lemma, which gives an upper bound for ‖∆‖op.
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Lemma A2 Consider the same data generating mechanism as in Lemma A1, with Xt are
i.i.d uniformly sampled from X . Then, there exists constant c1 (dependent on σ and ‖M‖∞)
such that

‖∆‖op ≤ c1

[√
log(n+ p)

N(n ∧ p)
+

√
log

(
8(n ∧ p)

3σ2

)
log(n+ p)

N

]
(39)

with probability at least 1− 2(n+ p)−1.

Furthermore, when N ≥ (n ∧ p) log2(n+ p), we have ‖∆‖op ≤ 2c1

√
log(n+p)
N(n∧p) with proba-

bility at least 1− 2(n+ p)−1.

To derive the bound of the stochastic error ∆, we shall use the matrix version of Bern-
stein’s inequality. We now use 2 propositions from van de Geer (2016). For completeness
we include statements of the propositions here below.

Proposition A3 Let {Zt}Nt=1 be i.i.d n× p matrices that satisfy for some α ≥ 1 and all t

EZt = 0, K := ‖‖Zt‖op‖Ψ(α) <∞,

where ‖ · ‖Ψ(α) is the Ψ(α)-Orlicz norm defined as ‖z‖Ψ(α) := inf
{
c > 0 : E exp

(
|zα|
cα

)
≤ 2
}

for a random variable z ∈ R. Define

R2 := max


∥∥∥∥∥ 1

N

N∑
t=1

EZtZ
T
t

∥∥∥∥∥
op

,

∥∥∥∥∥ 1

N

N∑
t=1

EZTt Zt

∥∥∥∥∥
op

 .

Then for a constant c̃ and for all h > 0,

P

∥∥∥∥∥ 1

N

N∑
t=1

Zt

∥∥∥∥∥
op

≥ c̃R
√
h+ log(n+ p)

N
+ c̃ log1/α

(
K

R

)(
h+ log(n+ p)

N

) ≤ exp(−h).

Proposition A4 Let {Zt}Nt=1 be n× p matrices that satisfy for a constant K1

EZt = 0, max
1≤t≤N

‖Zt‖op ≤ K1.

With the same definition for R as in Proposition A3 Then for all h > 0,

P

∥∥∥∥∥ 1

N

N∑
t=1

Zt

∥∥∥∥∥
op

≥
√

2R

√
h+ log(n+ p)

N
+
K1[h+ log(n+ p)]

3N

 ≤ exp(−h).

Given the above results, we now prove Lemma A2.
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Proof [Proof of Lemma A2] ‖∆‖op can be decomposed into two parts as below and we shall
bound each part respectively.

‖∆‖op =

∥∥∥∥∥ 1

N

N∑
t=1

[ytXt − E(ytXt)]

∥∥∥∥∥
op

=

∥∥∥∥∥ 1

N

N∑
t=1

[ξtXt − E(ξtXt) + tr[MTXt]Xt − E(tr(MTXt)Xt)

∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

N

N∑
t=1

ξtXt

∥∥∥∥∥
op

+

∥∥∥∥∥ 1

N

N∑
t=1

(
tr(MTXt)Xt − E(tr(MTXt)Xt)

)∥∥∥∥∥
op

= I1 + I2.

(40)

We use Proposition A3 to bound I1. Let Z1,t = ξtXt. Since ξt ∼i.i.d N(0, σ2) and Xt

are i.i.d uniformly sampled from X with ξt |= Xt, {Z1,t}Nt=1 are i.i.d n× p matrices having

EZ1,t = 0, K := ‖‖Z1,t‖op‖Ψ(α) = ‖ξt‖Ψ(α).

For a normal variable z ∼ N(0, 1), we have E exp(z2/c2) = c/
√
c2 − 2 when c >

√
2.

Thus, E exp(z2/c2) ≤ 2⇒ c ≥
√

8/3. So, K = ‖ξt‖Ψ(2) =
√

8/3. Let

R2 := max


∥∥∥∥∥ 1

N

N∑
t=1

EZ1,tZ
T
1,t

∥∥∥∥∥
op

,

∥∥∥∥∥ 1

N

N∑
t=1

EZT1,tZ1,t

∥∥∥∥∥
op


= σ2 max


∥∥∥∥∥ 1

N

N∑
t=1

E(XtX
T
t )

∥∥∥∥∥
op

,

∥∥∥∥∥ 1

N

N∑
t=1

E(XT
t Xt)

∥∥∥∥∥
op


=

σ2

n ∧ p
.

Due to Proposition A3, for some c̃ and for all h > 0, we have

P

(
I1 ≥ c̃σ

√
h+ log(n+ p)

N(n ∧ p)
+ c̃

√
1

2
log

(
8(n ∧ p)

3σ2

)(
h+ log(n+ p)

N

))
≤ exp(−h). (41)

Similarly, we use Proposition A4 to bound I2. Let Z2,t = tr(MTXt)Xt−E
(
tr(MTXt)Xt

)
,

where E
(
tr(MTXt)Xt

)
= 1

npM . So, E(Z2,t) = 0, and

‖Z2,t‖op ≤
∥∥tr(MTXt)Xt

∥∥
op

+
∥∥E(tr(MTXt)Xt)

∥∥
op
≤ 2‖M‖∞.

Let K1 = 2‖M‖∞. Then max1≤t≤N ‖Z2,t‖op ≤ K1. Consider,

E(Z2,tZ
T
2,t) = E

[
tr(MTX)2XXT

]
−
(

1

np

)2

MMT ,

E(ZT2,tZ2,t) = E
[
tr(MTX)2XTX

]
−
(

1

np

)2

MTM.
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Then,

∥∥E(Z2,tZ
T
2,t)
∥∥
op
≤
∥∥E
[
tr(MTX)2XXT

]∥∥
op

+

∥∥∥∥∥
(

1

np

)2

MMT

∥∥∥∥∥
op

≤ ‖M‖2∞/n+
‖M‖2∞
np

≤ 2‖M‖2∞/n,

and similarly
∥∥E(ZT2,tZ2,t)

∥∥
op
≤ 2‖M‖2∞/p. Let

R2
1 := max


∥∥∥∥∥ 1

N

N∑
t=1

E(Z2,tZ
T
2,t)

∥∥∥∥∥
op

,

∥∥∥∥∥ 1

N

N∑
t=1

E(ZT2,tZ2,t)

∥∥∥∥∥
op

 ≤ 2‖M‖2∞
n ∧ p

.

Then, applying Proposition A4, we have

P

(
I2 ≥ 2‖M‖∞

√
h+ log(n+ p)

N(n ∧ p)
+

2‖M‖∞[h+ log(n+ p)]

3N

)
≤ exp(−h). (42)

Combining the results of (41) and (42), for all h > 0

P

(
‖∆‖op ≥ (c̃σ + 2‖M‖∞)

[√
h+ log(n+ p)

N(n ∧ p)
+

√
1

2
log

(
8(n ∧ p)

3σ2

)(
h+ log(n+ p)

N

)])
≤ 2 exp(−h).

(43)

Select h = log(n+ p) and let c1 =
√

2(c̃σ + 2‖M‖∞), then

P

(
‖∆‖op ≥ c1

[√
log(n+ p)

N(n ∧ p)
+

√
log

(
8(n ∧ p)

3σ2

)
log(n+ p)

N

])
≤ 2(n+ p)−1. (44)

In particular, if N ≥ (n ∧ p) log2(n+ p), we have

P

(
‖∆‖op ≥ 2c1

√
log(n+ p)

N(n ∧ p)

)
≤ 2(n+ p)−1,

as desired.

Based on Lemma A1 and A2, it is straightforward to prove Theorem 2.

Proof [Proof of Theorem 2] When N ≥ (n ∧ p) log2(n + p), we choose λ of the following
form

λ = C2

√
log(n+ p)

N(n ∧ p)
(45)
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where C2 > 0 is a constant with C2 ≥ 4c1, where c1 is defined in Lemma A2 that only
depends on σ and ‖M‖∞. Following from (22), then

1

np
‖M̂ −M‖2F ≤ C2

2

(
1 +
√

2

2

)2
(n ∨ p) log(n+ p)

N
J∗(ε) + ε2. (46)

holds with probability 1− 2(n+ p)−1.
This completes the proof.

Appendix C. Proof of Lemma 3

We begin with an outline of the proof. To form our set of basis functions, we will tessellate
our domain XK with ∞-norm balls, and use a Taylor series centered at an arbitrary point
within each ball to get a uniform approximation for functions in that ball. For a fixed center
point, the Taylor series is a linear combination of fixed basis functions. To obtain our full
set of basis functions, we will collect all of the terms in all of those Taylor series. We now
formalize this:
Proof For functions satisfying Condition (2), we consider a Taylor series approximation
to f ∈ F(L, γ,K) of order L at a point x0 ∈ RK[0,1].Let l = (l1, ..., lk) be a k-dimensional
multi-index, we have the Taylor expansion:

Tx0f(x) = f(x0) +
∑
|l|≤L−1

1

l!
∇lf(x0)(x− x0)l, (47)

where |l| = l1 + l2 + · · · + lk, l! = l1! . . . lk!, ∇lf(x) = ∂lf

∂x
l1
1 ···∂x

lk
k

and xl = xl11 · · ·x
lk
k . There

exists x′ = (x′1, ..., x
′
K)T ∈ RK[0,1] in a neighborhood of radius ‖x− x0‖2 centered at x0 such

that the approximation error obeys

|f(x)− Tx0f(x)| ≤

∣∣∣∣∣∣
∑

L1+···+LK=L

1

L1! . . . Lk!
× ∂Lf(x′)

∂x′1
L1 · · · ∂x′K

LK
|x1 − x0

1|L1 · · · |xK − x0
K |LK

∣∣∣∣∣∣
Condition 2−−−−−−−−→ ≤ γ

∣∣∣∣∣∣
∑

L1+···+LK=L

|x1 − x0
1|L1 · · · |xK − x0

K |LK
L1! . . . Lk!

∣∣∣∣∣∣
Multinomial Theorem−−−−−−−−−−−−−−−−→ =

γ

L!

(
|x1 − x0

1|+ ...+ |xK − x0
K |
)L

(48)
If we consider the approximation error within an ∞-norm ball of radius d (and choose

any point in that ball as x0), then |xk − x0
k| ≤ d for k = 1, ...,K. (48) has

|f(x)− Tx0f(x)| ≤ γ

L!
KLdL. (49)

Thus, to get an approximation error of ε, let γ
L!K

LdL = ε, we need to divide the space
into balls of radius

d = L

√
L!

γKL
× ε1/L. (50)

23



Xiang, Zhang, Wang, Shojaie and Simon

As the support RK[0,1] is bounded by 1, we need (1/d)K balls with radius d (in ∞-norm)

to cover the entirety of XK , resulting in
(
K+L
L

)
(1/d)K total terms to get an approximation

error ε (the above Taylor series approximation contains
(
K+L
L

)
terms). If we select balls of

radius d in (50), this gives us a total number of terms in our linear expansion

J∗(ε) ≤
(
K + L

L

)(
L!

γKL

)−K/L
ε−K/L.

That is, J∗(ε) = O
(
ε−K/L

)
.

To complete the proof, we just need to confirm that the basis functions and their coeffi-
cients satisfy the boundedness conditions (8) and (9). Formally, the basis functions we are
using are the (local) monomials in the Taylor expansion

ψl(x) =
K∏
j=1

(xj − x0
j )
lj · Icell containing x0(x), (51)

where I is the set indicator function. It is direct to see that they satisfy (8).

Now we need to show that the coefficients βl = ∇lf(x0)/l! satisfy the condition ‖β‖∞ ≤
C0. It is known that for univariate functions, the intermediate derivative can be bounded
by a higher order derivative. A general statement can be found in (DeVore and Lorentz,
1993), Theorem 5.6. For our purpose we just need the following special case:∥∥∥f (k)

∥∥∥
L∞([0,1])

≤ C(L)

(
‖f‖L∞([0,1]) +

∥∥∥f (L)
∥∥∥
L∞([0,1])

)
for 0 ≤ k ≤ L, (52)

where C(L) is a constant independent of f .

We first apply the above inequality to bound all the derivatives only involving one
variable, that is, ∂m

∂xmj
f , j = 1, 2, ...,K, m ≤ L − 1. And then use them as intermediate

quantities to bound derivatives involving two variables. We iterate this process until we
have a uniform bound for every derivative that shows up in (47).

Appendix D. Proof of Theorem 4

The proof of this theorem is quite straightforward by connecting a few pieces we have
already built.

Proof Given Condition 2 and Lemma 3, we have J∗(ε) = C3ε
−K
L for some constant C3

relying on γ,K, and L. Plugging in this to the upper bound in Theorem 2, the upper
bound (46) then becomes

C2
2C3

(
1 +
√

2

2

)2
(n ∨ p) log(n+ p)

N
ε−

K
L + ε2, (53)
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which is optimized at
(n ∨ p) log(n+ p)

N
ε−

K
L = ε2

⇒ ε =

(
(n ∨ p) log(n+ p)

N

) L
2L+K

.

(54)

So, we have

1

np
‖M̂ −M‖2F ≤ C∗

(
(n ∨ p) log(n+ p)

N

) 2L
2L+K

(55)

with probability at least 1− 2(n+ p)−1 with C∗ = C2
2C3

(
1+
√

2
2

)2
+ 1. Equivalently, we can

say

1

np
‖M̂ −M‖2F = OP

([
(n ∨ p) log(n+ p)

N

] 2L
2L+K

)
,

as claimed.

Appendix E. Deriving the Minimax Lower Bound

In this section, we derive the minimax lower bound for estimation within M(L, γ,K): We
show that the convergence rate in Theorem 4 is optimal (up to log terms).

Recall that we assume the true M belongs to the following class of matrices:

M(L, γ,K) := {M ∈ Rn×p : mij = fj(θi,·), θi,· ∈ RK[0,1], fj ∈ F(L, γ,K),∀j ≤ p}, (56)

where F(L, γ,K) is a class of functions with bounded derivatives:

F(L, γ,K) :=

{
f :

∣∣∣∣∣ ∂L

∂xL1
1 · · ·x

LK
K

f(x)

∣∣∣∣
x=x0

∣∣∣∣∣ ≤ γ, ∀x0 ∈ RK[0,1],

K∑
k=1

Lk = L

}
. (57)

For simplicity of notation, let θi := θi,· ∈ RK[0,1] denote the i-th row vector of the

embeddings Θ ∈ Rn×K in this section.

We shall obtain the lower bound based on information theory. The bound is with respect
to ‖·‖2F -risk. We pose things in terms of the error in a multi-way hypothesis testing problem,
where the set of testing hypotheses should be a suitably large packing set for M(L, γ,K).
In this section, we first show the existence of such a suitably large packing set. Then, we
apply Yang’s method (Yang and Barron, 1999) to prove the main results in Theorem 5.

E.1 Constructing the 2δN,n,p-packing Set

For M ∈M(L, γ,K), the risk of the estimator can be written as

1

np
‖M̂ −M‖2F =

1

np

n∑
i=1

p∑
j=1

[m̂ij − fj(θi)]2 .
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This is to say, bounding 1
np‖M̂ − M‖2F can be viewed as a classical nonparametric

regression problem. So, we follow the construction of many hypotheses as in Section 2.6
of Tsybakov (2009). However, here we are working in a multi-dimensional setting, that is,
θi ∈ RK , K ≥ 1.

In giving our packing set, we will work with combinations of “bump functions”. To
define these, we need an archetypal ingredient—the bump functions that we will use:

ϕ(u) = cLe× exp

(
− 1

1− 4u2

)
, u ∈ (−1/2, 1/2), (58)

which is infinitely differentiable and vanishes outside of (−1/2, 1/2); cL > 0 is a tiny
constant that only depends on L such that |∂lϕ(u)/∂ul| ≤ 1, ∀l = 0, 1, ..., L. Mean-

while, since
∫ 1/2
−1/2 e

2 exp2
(
− 1

1−4u2

)
du > 0.49, (it is actually very close to 0.5), we have

‖ϕ‖22 :=
∫ 1/2
−1/2 ϕ

2(u)du > 0.49c2
L. In addition, the maximum value of this function is

supu |ϕ(u)| = ϕ(0) = cL.

Now, we shall work under the multidimensional setting. We use bold letters to refer
to multivariate indices and regular letters to refer to the indices of each coordinate. Let

i = (i1, ..., iK) ∈ {1, 2, ..., K
√
n}K having

∑
i=(i1,...,iK) 1 =

∑ K√n
i1=1 ...

∑ K√n
iK=1 1 = n, where

K
√
n is assumed to be an integer. Suppose that the observed embeddings follows a fixed

equispaced design, that is, θi = θ(i1,...,iK) = (θi1 , ..., θiK )T = ( i1
K√n , ...,

iK
K√n)T . Consider a

multivariate function Φd : RK → R,

Φd(θi) = γb−L/K
K∏
k=1

ϕdk(θik)

:= γb−L/K
K∏
k=1

ϕ(
K
√
bθik − dk + 1/2),

(59)

where d = (d1, ..., dK) ∈ {1, 2, ..., K
√
b}K . Here b ≥ 1 is an integer that depends on N,n, p

and some constant c0, and will be specified later. ϕ(u) is defined in (58). Then, we have
the following technical lemma for Φd, which will later be used for constructing the packing
set.

Lemma A5 Suppose ϕ(·) are given by (58). Then, Φd has the following properties:

(i) Φd(x) ∈ F(L, γ,K).

(ii) Φd have disjoint support for different d.

(iii) There exist C1,L,K > 0 and C2,L,K > 0 only dependent on L and K, for any given d,
Φd has

γ2C2,L,Kb
− 2L+K

K ≤ 1

n

∑
i=(i1,...,iK)

Φ2
d(θi) ≤ γ2C1,L,Kb

− 2L+K
K

when integer b satisfies 1 ≤ b ≤ 0.48Kn.
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Proof For ϕ(·) in (58), we have | ∂l
∂ul
ϕ(u)| ≤ 1, ∀l = 0, 1, ..., L such that

∣∣∣∣ ∂L

∂x
L1
1 ···x

LK
K

Φd(x)

∣∣∣∣ ≤
γ holds for any L1 + ...+ LK = L for x ∈ RK[0,1]. Thus, Φd(x) ∈ F(L, γ,K).

Given that ϕ(u) > 0 if and only if u ∈ (−1/2, 1/2), we have ϕdk(x) ≡ ϕ( K
√
bx − dk +

1/2) > 0 if and only if x ∈
(
dk−1
K√
b
, dk
K√
b

)
for dk ∈ {1, ..., K

√
b}. So, for each, we can divide the

space [0, 1] into K
√
b intervals, that is,

∆1 =

[
0,

1
K
√
b

]
, ∆dk =

(
dk − 1
K
√
b
,
dk
K
√
b

]
, dk = 2, ...,

K
√
b,

such that ∆dk ∩ ∆d′k
= ∅ for dk 6= d′k and ∪dk∆dk = [0, 1]. Thus, ϕdk(x) have disjoint

support and their support union is the unit interval.

Because Φd is the product of ϕdk , they also have disjoint supports. That is, for each d,
Φd(x) > 0 only when x ∈ ∆d where

∆d=(1,1,...,1) =

[
0,

1
K
√
b

]
× ...×

[
0,

1
K
√
b

]
,

∆d=(d1,...dK) =

(
d1 − 1
K
√
b
,
d1
K
√
b

]
× ...×

(
dK − 1

K
√
b
,
dK
K
√
b

]
,

dk = 2, ..., K
√
b for k = 1, ...,K, such that ∆d ∩∆d′ = ∅ if d 6= d′ and ∪d∆d = [0, 1]K . So,

the space [0, 1]K is divided into b disjoint cubes.
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As for (iii), we know there exists a constant cL that only depends on L such that
supu |ϕ(u)| = ϕ(0) = cL, and ‖ϕ‖22 > 0.49c2

L. Then

1

n

∑
i=(i1,...,iK)

Φ2
d(θi) =

1

n
γ2b−2L/K

K√
b∑

i1=1

· · ·
K√
b∑

iK=1

K∏
k=1

ϕ2

(
K

√
b

n
ik − dk + 1/2

)

=
1

n
γ2b−2L/K

K√
b∑

i2=1

· · ·
K√
b∑

iK=1

K∏
k=2

ϕ2

(
K

√
b

n
ik − dk + 1/2

)

×

 K√
b∑

i1=1

ϕ2

(
K

√
b

n
i1 − d1 + 1/2

)
=

1

n
γ2b−2L/K

K√
b∑

i3=1

· · ·
K√
b∑

iK=1

K∏
k=3

ϕ2

(
K

√
b

n
ik − dk + 1/2

)

×

 K√
b∑

i1=1

ϕ2

(
K

√
b

n
i1 − d1 + 1/2

)×
 K√

b∑
i2=1

ϕ2

(
K

√
b

n
i2 − d2 + 1/2

)
· · ·

=
1

n
γ2b−2L/K

K∏
k=1


K√n∑
ik=1

ϕ2

(
K

√
b

n
ik − dk + 1/2

)
=

1

n
γ2b−2L/K

K∏
k=1


∑

K
√

n
b

(dk−1)<ik≤ K
√

n
b
dk

ϕ2

(
K

√
b

n
ik − dk + 1/2

)
≤ 1

n
γ2b−2L/K

K∏
k=1

{
K

√
n

b
× ϕ2(0)

}
= γ2b−

2L+K
K c2K

L .
(60)

Therefore, 1
n

∑
i=(i1,...,iK) Φ2

d(θi) ≤ c2K
L γ2b−

2L+K
K and c2K

L is the constant we find for C1,L,K .
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On the other hand, we use the fact that the upper Riemann sum is greater than the
integral of the function. Thus, for each coordinate,

K

√
b

n

K√n∑
ik=1

ϕ2

(
K

√
b

n
ik − dk + 1/2

)
=

K

√
b

n

∑
K
√

n
b

(dk−1)<ik≤ K
√

n
b
dk

ϕ2

[
K

√
b

n

(
ik −

K
√
n(dk − 1/2)

K
√
b

)]

=
K

√
b

n

∑
− K
√
n

2
K√
b
<t≤

K√n
2
K√
b

ϕ2
(
K
√
b/n× t

)

[ϕ(−u) = ϕ(u)]
−−−−−−−−−−−→

=
K

√
b

n

2
∑

0≤t≤
K√n

2
K√
b

ϕ2( K
√
b/n× t)− ϕ2(0)


[ϕ(u) decreases for u ≥ 0]
−−−−−−−−−−−−−−−−−−−→

≥ 2
K

√
b

n

∫ K√n
2
K√
b

0
ϕ2( K

√
b/n× t)dt− K

√
b

n
ϕ2(0)

= 2

∫ 1/2

0
ϕ2(u)du− K

√
b

n
c2
L

= ‖ϕ‖22 −
K

√
b

n
c2
L

> c2
L

(
0.49− K

√
b/n
)

[
1 ≤ b ≤ 0.49Kn

]
−−−−−−−−−−−−→

≥ 0,

Thus, the empirical sum can also be lower bounded by

1

n

∑
i=(i1,...,iK)

Φ2
d(θi) = γ2b−

2L+K
K

K∏
k=1

 K

√
b

n

K√n∑
ik=1

ϕ2

(
K

√
b

n
ik − dk + 1/2

)
≥ γ2b−

2L+K
K c2K

L

(
0.49− K

√
b/n
)K (61)

When 1 ≤ b ≤ 0.48Kn,

1

n

∑
i=(i1,...,iK)

Φ2
d(θi) ≥ γ2(0.1cL)2Kb−

2L+K
K , (62)

and thus (0.1cL)2K is the constant we find for C2,L,K . Combining (60) and (62), we have

γ2C2,L,Kb
− 2L+K

K ≤ 1

n

∑
i=(i1,...,iK)

Φ2
d(θi) ≤ γ2C1,L,Kb

− 2L+K
K

as claimed.
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In proving the lower bound, we shall use Fano’s method (see Section 15.3.2 in Wain-
wright (2019)). To do so, we first establish the connection between minimax risks and error
probabilities in testing problems (for completeness), and then apply Fano’s inequality to
lower bound the error probabilities. To this end, we first provide the following lemma,
which shows that there exists a packing set of hypotheses with suitably large cardinality,
for which the mutual information (stated in terms of Kullback-Leibler divergence) can be
upper bounded. We can then use Fano’s inequality with this set.

Lemma A6 Consider an arbitrary fixed L, γ and K. For some constant C1,L,K and C2,L,K

that only depends on L and K, and for some other constant c0 > 0, there exists a subset
B0 ⊆M(L, γ,K) with cardinality

|B0| ≥ 2dc0(
n∨p
N )

−K
2L+K e×p/8 + 1,

when p ≥ 8, that has the following properties:

(i) B0 is a 2δN,n,p-packing set, that is, for any Ms 6= Ms′ ∈ B0,

1

np
‖Ms −Ms′‖2F ≥ 2δN,n,p =

C2,L,Kγ
2

8
(2c0)−2L/K

(n ∨ p
N

) 2L
2L+K

when c
− 2L+K

K
0 (n ∨ p) ≤ N ≤ c−

2L+K
K

0 0.482L+K(n ∨ p)n
2L+K
K .

(ii) For any Ms,Ms′ ∈ B0,

K(Ps||Ps′) ≤
C1,L,Kγ

2

2σ2
c
− 2L
K

0 N
(n ∨ p

N

) 2L
2L+K

where K(Ps||Ps′) denotes the Kullback-Leibler divergence between probability distribu-
tions of observations {(yt, Xt)}Nt=1 satisfying model (20), given Ms and Ms′ respec-
tively.

Proof

We will consider a positive integer b which depends on N,n, p and a constant c0. The
precise specification of b will come later. Consider the multivariate function Φd(θ) in (59).

We will define a set Ω that is used to construct packing matrices where each element ω in
Ω is a sequence (of length b) of diagonal matrices. We index the set in a somewhat curious
way: We use a multi-index of dimension K where each index has elements in {1, ..., K

√
b}.

This will ease exposition later.

Ω =
{
w = (wd)

d∈{1,..., K
√
b}K : for each d, wd = diag(wd,1, ..., wd,p), wd,j ∈ {0, 1}

}
. (63)
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From this we define the following collection of matrices,

B =

Mw =

K√
b∑

d1=1

. . .

K√
b∑

dK=1


Φd(θ1)wd,1 Φd(θ1)wd,2 . . . Φd(θ1)wd,p

Φd(θ2)wd,1 Φd(θ2)wd,2 . . . Φd(θ2)wd,p
...

...
. . .

...
Φd(θn)wd,1 Φd(θn)wd,2 . . . Φd(θn)wd,p


n×p

, wd,j ∈ {0, 1}


=:

Mw =
∑

d1,...,dK

Φd(Θ)wd, for w = (wd) ∈ Ω

 .

(64)
We see that we can compactly write each matrix in our set as the product of Φd(Θ) and
wd, where Φd(Θ) is a n × p matrix whose elements in the i-th row are all Φd(θi). It is
direct to check that the cardinality of Ω is given by |Ω| = |B| = 2bp.

Thus, entries of Mw ∈ B can be written as mij =
∑

d1,...,dK
Φd(θi)wd,j = gj(θi), where

gj has bounded derivatives,∣∣∣∣∣ ∂Lgj(x)

∂xL1
1 · · ·x

LK
K

∣∣∣∣∣ ≤ ∑
d1,...,dK

∣∣∣∣∣ ∂LΦd(x)

∂xL1
1 · · ·x

LK
K

∣∣∣∣∣ =

∣∣∣∣∣ ∂LΦd(x)

∂xL1
1 · · ·x

LK
K

∣∣∣∣∣1{x ∈ ∆d} ≤ γ

for ∀x ∈ RK[0,1]. Hence, B ⊆M(L, γ,K).
Consider a set of testing hypotheses from B,

B0 = {Mw(0) , ...,Mw(S)} ⊆ B, w(s) ∈ Ω, s = 0, 1, ..., S, (65)

where w(s) 6= w(s′) for 0 ≤ s 6= s′ ≤ S.
For any 0 ≤ s 6= s′ ≤ S, and constant C2,L,K only dependent on L,

1

np
‖Mw(s) −Mw(s′)‖2F =

1

np

∑
i=(i1,...,iK)

p∑
j=1

 K√
b∑

d1=1

. . .

K√
b∑

dK=1

(w
(s)
d,j − w

(s′)
d,j )Φd(θi)

2

the support of Φd’s are disjoint
−−−−−−−−−−−−−−−−−−−−−−−→

=
1

p

p∑
j=1

K√
b∑

d1=1

. . .

K√
b∑

dK=1

(w
(s)
d,j − w

(s′)
d,j )2

 1

n

∑
i=(i1,...,iK)

Φ2
d(θi)


Lemma A5-(i)
−−−−−−−−−−→

≥ γ2C2,L,Kb
− 2L+K

K p−1ρ(w(s),w(s′))

(66)

where ρ(w(s),w(s′)) =
∑p

j=1

∑ K√
b

d1=1 . . .
∑ K√

b
dK=1(w

(s)
d,j − w

(s′)
d,j )2 is the hamming distance be-

tween w(s) and w(s′).
Due to the Varshamov–Gilbert bound (Lemma 2.9 in Tsybakov (2009)), when bp ≥ 8,

there exists a subset Ω0 = (w(0), ...,w(S)) ⊆ Ω such that S ≥ 2bp/8 and ρ(w(s),w(s′)) ≥ bp/8
for 0 ≤ s 6= s′ ≤ S. Since b ≥ 1, p ≥ 8 is a sufficient condition to guarantee bp ≥ 8.

Now, in particular, we choose our testing set based on Ω0: That is, we place Mw(s) ∈ B0

if and only if w(s) ∈ Ω0. In particular this gives us that ρ(w(s),w(s′)) ≥ bp/8. for all
w(s), w(s′) ∈ B0 with s 6= s′. Then, following (66), we have that

1

np
‖Mw(s) −Mw(s′)‖2F ≥

γ2C2,L,K

8
b−

2L
K . (67)
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Now, we finally give the value that we use for b: Select b =

⌈
c0

(n∨p
N

) −K
2L+K

⌉
for some

constant c0 > 0. We note that (66)-(67) hold only when b ≤ 0.48Kn as stated in Lemma A5.
So, we need

N ≤ c−
2L+K
K

0 0.482L+K(n ∨ p)n
2L+K
K . (68)

Furthermore, we also need

N ≥ c−
2L+K
K

0 (n ∨ p) (69)

such that

b =

⌈
c0

(n ∨ p
N

) −K
2L+K

⌉
≤ 2c0

(n ∨ p
N

) −K
2L+K

. (70)

This, finally gives us

1

np
‖Mw(s) −Mw(s′)‖2F ≥

C2,L,Kγ
2

8
(2c0)−2L/K

(n ∨ p
N

) 2L
2L+K

=: 2δN,n,p. (71)

Then B0 is a 2δN,n,p-packing set of M(L, γ,K) and the cardinality |B0| = S + 1 ≥

2bp/8 + 1 = 2dc0(
n∨p
N )

−K
2L+K e×p/8 + 1 when p ≥ 8.

We now show the second property (related to the KL distance) of B0. For any matrices

Mw(s) ,Mw(s′) ∈ B0, with the selected b = dc0

(n∨p
N

) −K
2L+K e, we have

K(Ps||Ps′) =

∫
log

dPs
dPs′

dPs

=

∫ ∫
log

∏N
t=1 p(yt, Xt|Mw(s))∏N
t=1 p(yt, Xt|Mw(s′))

[
N∏
t=1

p(yt, Xt|Mw(s))dytdXt

]

−→ = EX∼Π

N∑
t=1

∫ [
log p(yt|Xt,Mw(s))− log p(yt|Xt,Mw(s′))

]
p(yt|Xt,Mw(s))dyt

(yt|Xt,M) ∼i.i.d N(〈Xt,M〉, σ2)
−−−−−−−−−−−−−−−−−−−−−−−−→

= EX∼Π

N∑
t=1

〈
Xt,Mw(s) −Mw(s′)

〉2

2σ2[
EX∼Π〈Xt,M〉2 =

1

np
‖M‖2F

]
−−−−−−−−−−−−−−−−−−−−−−→

=
N

2σ2np
‖Mw(s) −Mw(s′)‖2F

≤ N

2σ2

K√
b∑

d1=1

. . .

K√
b∑

dK=1

 1

n

∑
i=(i1,...,iK)

Φ2
d(θi)


≤ Nγ2

2σ2
b−

2L
K C1,L,K

≤
C1,L,Kγ

2

2σ2
c
− 2L
K

0 N
(n ∨ p

N

) 2L
2L+K

.

(72)
Thus, Lemma A6 is proved.
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E.2 Information-theoretic lower bounds

Given Lemma A6, we now apply the argument in Yang and Barron (1999) to yield a lower
bound for error in our estimation problem with respect to Frobenius norm.

Proof [Proof of Theorem 5]

For a given δN,n,p, let B0 be the 2δN,n,p-packing set ofM(L, γ,K) indicated by Lemma A6.
We know that for any Ms 6= Ms′ ∈ B0,

1

np
‖Ms −Ms′‖2F ≥ 2δN,n,p

with δN,n,p =
C2,L,Kγ

2

16 (2c0)−2L/K
(n∨p
N

) 2L
2L+K , when c

− 2L+K
K

0 (n∨p) ≤ N ≤ c−
2L+K
K

0 0.482L+K(n∨
p)n

2L+K
K for some constant c0 > 0.

Let d(M1,M2) = 1
np‖M1 −M2‖2F and define

M̃ = arg min
M ′∈B0

d(M ′, M̂) ∈ B0.

LetM be any matrix in the packing set B0. If d(M,M̂) < δN,n,p, then max
{
d(M, M̂), d(M̃, M̂)

}
=

d(M,M̂) < δN,n,p ≤ δ0 ≡ C2,L,Kγ
24−(L+2K)/K . Then, by the triangle inequality, we have

d(M,M̂) + d(M̃, M̂) ≥ d(M,M̃) ≥ 2δN,n,p when M 6= M̃ . This implies that d(M,M̂) ≥
δN,n,p, which contradicts d(M, M̂) < δN,n,p. Therefore, if M 6= M̃ , we must have d(M, M̂) ≥
δN,n,p. So, it follows that

inf
M̂

sup
M∈M(L,γ,K)

P
{
d(M,M̂) ≥ δN,n,p

}
≥ inf

M̂
sup
M∈B0

P
{
d(M,M̂) ≥ δN,n,p

}
= inf

M̂
sup
M∈B0

P
{
M 6= M̃

}
≥ inf

M̂
P(M 6= M̃)

(73)

whereM is uniformly distributed over the 2δN,n,p-packing set B0 with |B0| ≥ 2dc0(
n∨p
N )

−K
2L+K e×p/8+

1 as in Lemma A6. this has reduced our problem essentially to a testing problem.

We now use this to obtain a lower bound, by considering KL-divergence here. By
Lemma A6(iii), Fano’s inequality (Cover and Thomas, 2012), or (Wainwright, 2019, Propo-
sition 15.12), and the convexity of the Kullback–Leibler divergence (Wainwright, 2019,
(15.34)),

P(M 6= M̃) ≥ 1−
1
|B0|2

∑
Ms,Ms′∈B0

K(Ps||Ps′) + log 2

log |B0|

[Lemma A6]
−−−−−−−−→

≥ 1−
C1,L,Kγ

2

2σ2 c
− 2L
K

0 N
(n∨p
N

) 2L
2L+K + log 2

dc0

(n∨p
N

) −K
2L+K ep log 2

[bp ≥ 8]
−−−−−→

≥ 7

8
−
C1,L,Kγ

2c
− 2L+K

K
0 (n ∨ p)

2(log 2)σ2p
.

(74)
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Consider n = κp for some κ > 0. Let

c0 =

(
4 max(κ, 1)γ2C1,L,K

3 log 2σ2

) K
2L+K

. (75)

Then,

.P(M 6= M̃) ≥ 7/8−
γ2C1,L,K max(κ, 1)c

− 2L+K
K

0

2(log 2)σ2
= 7/8− 3/8 = 1/2 (76)

Thus, it follows from (73) and (76) that

inf
M̂

sup
M∈M(L,γ,K)

P

{
1

np
‖M̂ −M‖2F ≥ A

(n ∨ p
N

) 2L
2L+K

}
≥ 1/2. (77)

where A =
C2,L,Kγ

2

16 (2c0)−2L/K . With the selection of c0 in (75), A depends on L,K, γ, κ, σ2.

Thus, Theorem 5 is proved.
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