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Abstract
The evaluation of explanation methods is a research topic that has not yet been explored
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence,
it is necessary to systematically review and compare explanation methods in order to confirm
their correctness. Until now, no tool with focus on XAI evaluation exists that exhaustively
and speedily allows researchers to evaluate the performance of explanations of neural network
predictions. To increase transparency and reproducibility in the field, we therefore built
Quantus—a comprehensive, evaluation toolkit in Python that includes a growing, well-
organised collection of evaluation metrics and tutorials for evaluating explainable methods.
The toolkit has been thoroughly tested and is available under an open-source license on PyPi
(or on https://github.com/understandable-machine-intelligence-lab/Quantus/).
Keywords: explainability, responsible AI, reproducibility, open source, Python

1. Introduction

Despite much excitement and activity in the field of eXplainable artificial intelligence (XAI)
(Montavon et al., 2018; Arya et al., 2019; Lapuschkin et al., 2019; Samek et al., 2021; Bykov
et al., 2021b), the evaluation of explainable methods still remains an unsolved problem
(Samek et al., 2017; Adebayo et al., 2020; Holzinger et al., 2020; Yona and Greenfeld, 2021;
Arras et al., 2022). Unlike in traditional machine learning (ML), the task of explaining
generally lacks “ground-truth” data. There exists no universally accepted definition of what
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a “correct” explanation is, or what properties an explanation should fulfil (Yang and Kim,
2019). Due to this lack of standardised evaluation procedures in XAI, researchers frequently
conceive new ways to experimentally examine explanation methods (Bach et al., 2015; Samek
et al., 2017; Adebayo et al., 2018; Yang and Kim, 2019; Kindermans et al., 2019), oftentimes
employing different parameterisations and various kinds of preprocessing and normalisations,
each leading to different or even contrasting results, making evaluation outcomes difficult to
interpret and compare. Critically, we note that it is common for XAI papers to base their
conclusions on one-sided, sometimes methodologically questionable evaluation procedures,
which we fear may hinder access to the current State-of-the-art (SOTA) in XAI and potentially
hurt the perceived credibility of the field over time.

For these reasons, researchers often rely on a qualitative evaluation of explanation
methods (e.g., Zeiler and Fergus (2014); Ribeiro et al. (2016); Shrikumar et al. (2017)).
Although qualitative evaluation of XAI methods is an important and complementary type of
evaluation analysis (Hoffman et al., 2018), the assumption that humans are able to recognise
a correct explanation comes with a series of pitfalls: not only does the notion of an “accurate”
explanation often depend on the specifics of the task at hand, humans are also questionable
judges of quality (Wang et al., 2019; Rosenfeld, 2021). In addition, recent studies suggest
that even quantitative evaluation of explainable methods is far from fault-proof (Bansal
et al., 2020; Budding et al., 2021; Yona and Greenfeld, 2021; Hase and Bansal, 2020). In
response to these issues, we developed Quantus, to provide the community with a versatile
and comprehensive toolkit that collects, organises, and explains a wide range of evaluation
metrics proposed for explanation methods. The library is designed to help automate the
process of XAI quantification—by delivering speedy, easily digestible, and at the same time
holistic summaries of the quality of the given explanations. As we see it, Quantus concludes
an important, still missing contribution in today’s XAI research by filling the gap between
what the community produces and what it currently needs: a more quantitative, systematic
and standardised evaluation of explanation methods.

2. Toolkit Overview

Quantus provides its intended users—practitioners and researchers interested in the domains of
ML and XAI—with a steadily expanding list of 30+ reference metrics to evaluate explanations
of ML predictions. Moreover, it offers comprehensive guidance on how to use these metrics,
including information about potential pitfalls in their application.

Table 1: Comparison of four XAI libraries—(AIX360 (Arya et al., 2019), captum (Kokhlikyan et al.,
2020), TorchRay (Fong et al., 2019) and Quantus) in terms of the number of XAI evaluation
methods for six different evaluation categories, as implemented in each library.

Library Faithfulness Robustness Localisation Complexity Axiomatic Randomisation

Captum (2) 1 1 0 0 0 0
AIX360 (2) 2 0 0 0 0 0
TorchRay (1) 0 0 1 0 0 0
Quantus (27) 9 4 6 3 3 2
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Figure 1: a) Simple qualitative comparison of XAI methods is often not sufficient to distinguish
which gradient-based method—Saliency (Mørch et al., 1995; Baehrens et al., 2010),
Integrated Gradients (Sundararajan et al., 2017), GradientShap (Lundberg and Lee, 2017)
or FusionGrad (Bykov et al., 2021a) is preferred. With Quantus, we can obtain richer
insights on how the methods compare b) by holistic quantification on several evaluation
criteria and c) by providing sensitivity analysis of how a single parameter, e.g., pixel
replacement strategy of a faithfulness test influences the ranking of explanation methods.

The library is thoroughly documented and includes tutorials covering multiple use-cases,
data domains and tasks—from comparative analysis of XAI methods and attributions, to
quantifying the extent evaluation outcomes are dependent on metrics’ parameterisations. In
Figure 1, we demonstrate some example analysis using ImageNet dataset (Russakovsky et al.,
2015) that can be produced with Quantus1. The library provides an abstract layer between
APIs of deep learning frameworks, e.g., PyTorch (Paszke et al., 2019) and tensorflow (Abadi
et al., 2016) and can be employed iteratively both during and after model training. Code
quality is ensured by thorough testing, using pytest and continuous integration (CI), where
every new contribution is automatically checked for sufficient test coverage. We employ
syntax formatting with flake8, mypy and black under various Python versions.

Unlike other XAI-related libraries2, Quantus has its primary focus on evaluation and as
such, supports a breadth of metrics, spanning various evaluation categories (see Table 1). A
detailed description of the different evaluation categories can be found in the Appendix. The
first iterations of the library mainly focus on attribution-based explanation techniques3 for

1. The full experiment can be reproduced (and obtained) at the repository, under the \tutorials folder.
2. Related libraries were selected with respect to the XAI evaluation capabilities. Packages including no

metrics for evaluation of explanation methods, e.g., Alibi (Klaise et al., 2021), iNNvestigate (Alber
et al., 2019), dalex (Baniecki et al., 2021) and zennit (Anders et al., 2021) were excluded.

3. This category of explainable methods aims to assign an importance value to the model features and
arguably, is the most studied group of explanations.
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(but not limited to) image classification. In planned future releases, we are working towards
extending the applicability of the library further, e.g., by developing additional metrics and
functionality that will enable users to perform checks, verifications and sensitivity analyses
on top of the metrics.

3. Library Design

The user-facing API of Quantus is designed with the aim of replacing an oftentimes lengthy
and open-ended evaluation procedure with structure and speed—with a single line of code,
the user can gain quantitative insights of how their explanations are behaving under various
criteria. In the following code snippet, we demonstrate one way for how Quantus can be
used to evaluate pre-computed explanations via a PixelFlipping experiment (Bach et al.,
2015). In this example, we assume to have a pre-trained model (model), a batch of input
and output pairs (x_batch, y_batch) and a set of attributions (a_batch).

import quantus
pixelflipping = quantus.PixelFlipping(perturb_baseline="black", abs=True)
scores = pixelflipping(model , x_batch , y_batch , a_batch , ** params)
pixelflipping.plot(y_batch=y_batch , scores=scores)

Needless to say, XAI evaluation is intrinsically difficult and there is no one-size-fits-all
metric for all tasks. Evaluation of explanations must, therefore, be understood and calibrated
from its context: the application, data, model, and intended stakeholders (Chander and
Srinivasan, 2018; Arras et al., 2022). To this end, we designed Quantus to be highly
customisable and easily extendable—API documentation and examples on how to create
new metrics as well as how to customise existing ones are included. Thanks to the API, any
supporting functions of the evaluation procedure, e.g., perturb_baseline that determines the
value that the input features should be iteratively masked with, can flexibly be replaced by a
user-specified function to ensure that the evaluation procedure is appropriately contextualised.

It is practically well-known but not yet publicly recognised that evaluation outcomes
of explanations can be highly sensitive to the parameterisation of metrics (Bansal et al.,
2020; Agarwal and Nguyen, 2020) and other confounding factors introduced in the evaluation
procedure (Hase et al., 2021; Yona and Greenfeld, 2021). Therefore, to encourage a thoughtful
and responsible selection and parameterisation of metrics, we added mechanisms such as
warnings, checks and user guidelines, cautioning users to reflect upon their choices.

4. Broader Impact

We built Quantus to raise the bar of XAI quantification—to substitute an ad-hoc and
sometimes ineffective evaluation procedure with reproducibility, simplicity and transparency.
From our perspective, Quantus contributes to the XAI development by helping researchers
to speed up the development and application of explanation methods, dissolve existing
ambiguities and enable more comparability. As we see it, steering efforts towards increasing
objectiveness of evaluations and reproducibility in the field will prove rewarding for the
community as a whole. We are convinced that a holistic, multidimensional take on XAI
quantification will be imperative to the general success of (X)AI over time.
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Appendix

In most explainability contexts, ground-truth explanations are not available (Samek et al.,
2017; Adebayo et al., 2020; Holzinger et al., 2020; Yona and Greenfeld, 2021; Arras et al.,
2022), which makes the task of evaluating explanations non-trivial. Efforts on evaluating
explanations have therefore been invested diversely. For better organisation, in the source
code of Quantus, we therefore grouped the metrics into six categories based on their logical
similarity—(a) faithfulness, (b) robustness, (c) localisation, (d) complexity, (e) randomisation
and (f) axiomatic metrics.

In the following, we describe each of the categories briefly. A more in-depth description
of each category, including an account of the underlying metrics, is documented in the
repository. The direction of the arrow indicates whether higher or lower values are considered
better (exceptions within each category exist, so please carefully read the docstrings of each
individual metric prior to usage and/or interpretation).

(a) Faithfulness (↑) quantifies to what extent explanations follow the predictive behaviour of
the model, asserting that more important features affect model decisions more strongly
(Bhatt et al., 2020; Alvarez-Melis and Jaakkola, 2018; Arya et al., 2019; Nguyen and
Martínez, 2020; Bach et al., 2015; Samek et al., 2017; Montavon et al., 2018; Ancona
et al., 2018; Rieger and Hansen, 2020; Yeh et al., 2019; Rong et al., 2022; Dasgupta
et al., 2022)

(b) Robustness (↓) measures to what extent explanations are stable when subject to slight
perturbations in the input, assuming that the model output approximately stayed
the same (Yeh et al., 2019; Montavon et al., 2018; Alvarez-Melis and Jaakkola, 2018;
Dasgupta et al., 2022)

(c) Localisation (↑) tests if the explainable evidence is centred around a region of interest,
which may be defined around an object by a bounding box, a segmentation mask or a
cell within a grid (Zhang et al., 2018; Theiner et al., 2022; Kohlbrenner et al., 2020;
Arras et al., 2022; Rong et al., 2022; Arias-Duart et al., 2021)

(d) Complexity (↓) captures to what extent explanations are concise, i.e., that few features
are used to explain a model prediction (Chalasani et al., 2020; Bhatt et al., 2020;
Nguyen and Martínez, 2020)

(e) Randomisation (↑) tests to what extent explanations deteriorate as the data labels or
the model, e.g., its parameters are increasingly randomised (Adebayo et al., 2018; Sixt
et al., 2020)
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(f) Axiomatic (↑) measures if explanations fulfill certain axiomatic properties (Kindermans
et al., 2019; Sundararajan et al., 2017; Nguyen and Martínez, 2020)
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