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Abstract

We study a dynamic traffic assignment model, where agents base their instantaneous rout-
ing decisions on real-time delay predictions. We formulate a mathematically concise model
and define dynamic prediction equilibrium (DPE) in which no agent can at any point dur-
ing their journey improve their predicted travel time by switching to a different route. We
demonstrate the versatility of our framework by showing that it subsumes the well-known
full information and instantaneous information models, in addition to admitting further
realistic predictors as special cases. We then proceed to derive properties of the predictors
that ensure a dynamic prediction equilibrium exists. Additionally, we define ε-approximate
DPE wherein no agent can improve their predicted travel time by more than ε and pro-
vide further conditions of the predictors under which such an approximate equilibrium can
be computed. Finally, we complement our theoretical analysis by an experimental study,
in which we systematically compare the induced average travel times of different predic-
tors, including two machine-learning based models trained on data gained from previously
computed approximate equilibrium flows, both on synthetic and real world road networks.

Keywords: Dynamic Traffic Assignment, Dynamic Flow, Prediction Equilibrium, Machine-
Learning, Regression Predictors

1. Introduction

Modelling and optimizing traffic flows is a significant effort that impacts billions of peo-
ple living in urban areas, with key challenges including managing congestion and carbon
emissions. These phenomena are heavily impacted by individual driver routing decisions,
which are often influenced by ML-based predictions for the delays of road segments (see,
for instance, Jiang and Luo (2021) for an overview of convolutional and graph neural net-
work based approaches). One key aspect that is not well understood, is that these routing
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decisions, in turn, influence the forecasting models by changing the underlying signature of
traffic flows and thus lead to a complex and self-referential system.

In this paper, we address this interplay focusing on the popular dynamic traffic assign-
ment (DTA) framework, on which there has been substantial work over the past decades
(see the book of Ford and Fulkerson, 1962, or the more recent surveys of Friesz and Han,
2019, Peeta and Ziliaskopoulos, 2001, and Skutella, 2008). A fundamental base model de-
scribing the dynamic flow propagation process is the so-called deterministic queuing model
due to Vickrey (1969). Here, a directed graph G = (V,E) is given, where edges e ∈ E are
associated with a queue with a positive rate capacity νe and a physical transit time τe. If
the total inflow into an edge e = vw ∈ E exceeds the rate capacity νe, a queue builds up
and agents need to wait in the queue before they are forwarded along the edge. The total
travel time along e is thus composed of the waiting time spent in the queue plus the physical
transit time τe. The Vickrey model is arguably one of the most important traffic models
(see Li, Huang and Yang Li et al., 2020, for an up to date research overview of the past
50 years), and yet, it is mathematically quite challenging to analyze (see Friesz et al. Han
et al., 2013b, for a discussion of the inherent complexities).

Given a physical flow propagation model, the routing and traffic prediction algorithms
are usually subsumed under a behavioral model of agents in order to solve a DTA model.
The behavior of agents is modelled based on their informational assumption which in turn
defines their respective utility function. Most works in the DTA literature on the Vickrey
model can roughly be classified into two main informational categories: the full information
model and the instantaneous information model. In the full information model, an agent is
able to exactly forecast future travel times along a chosen path effectively anticipating the
whole spatio-temporal flow evolution over the network. This assumption has been justified
by letting travelers learn good routes over several trips and a dynamic equilibrium then
corresponds to an attractor of an underlying learning dynamic. Existence and computation
of dynamic equilibria in the full information model have been studied extensively in the
transportation science literature, see Friesz et al. (1993); Han et al. (2013a,b,c); Meunier
and Wagner (2010); Zhu and Marcotte (2000), whereas the works by Koch and Skutella
(2011); Cominetti et al. (2015) allow a direct combinatorial characterization of dynamic
equilibria leading to existence and uniqueness results in the realm of the Vickrey bottleneck
model. While certainly relevant and key for the entire development of the research in DTA,
this concept may not accurately reflect the behavioral changes caused by the wide-spread
use of navigation devices and resulting real-time decisions by agents.

In the instantaneous route choice model, agents are informed in real-time about the
current traffic situations and, if beneficial, reroute instantaneously no matter how good or
bad that route was in hindsight, see (Ran and Boyce, 1996, § VII-IX), (Boyce et al., 1995;
Ran et al., 1993), Friesz et al. (1989). Indeed it seems more realistic that the information
available to a navigation device is rather instantaneous and certainly not complete, that is,
congestion information is available only as an aggregate (estimated waiting times for road
traversal) but the individual routes and/or source and destination of other travelers are
usually unknown. For the Vickrey model, Graf et al. (2020) established the existence of
instantaneous dynamic equilibria and derived further structural properties. A key difference
between dynamic equilibria (in the full information model) and instantaneous dynamic
equilibria is the possibility of cyclic behavior in the latter. More specifically, Graf et al.
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(2020) describe instances with only two origin-destination pairs and a finite flow volume in
which any instantaneous dynamic equilibrium cycles forever. This can never happen in the
full information model.

1.1 Our Contribution

We propose a new DTA formulation within the Vickrey model that is based on predicted
travel times. Since the physical transit times are known a priori, the only unknown is the
precise evolution of the flow over time. In our model, agents use a queue prediction function
that provides for any future point in time a prediction of queues. This model includes as
special cases the full information model and the instantaneous information model but also
allows the use of predictions based on historical data or the flow evolution learned en route.
The model also includes the case of finitely many classes of agents similar to the concept
described by Dafermos (1972), for which agents of the same class use the same prediction
function, but the prediction function may vary across the different classes. Technically, this
is solved by subdividing the traffic commodities by their different classes and assigning a
prediction function to each (sub-)commodity.

Existence Results. As our main theoretical contribution, we define this model formally
and derive conditions for the queue predictors leading to the existence of dynamic (predic-
tion) equilibria. The main approach is based on an extension property of partial equilibrium
flows, that is, we show that any equilibrium flow up to some time θ ≥ 0 can be extended
to time θ + α for some fixed constant α > 0 which leads to the existence on the whole R
after a countably infinite number of extensions. The extension step itself is based on a
formulation using infinite dimensional variational inequalities in the edge-flow space. If the
predictor satisfies a continuity condition, only depends on past information, and respects
a First-In-First-Out (FIFO) rule, the extension is possible and leads to existence of an
equilibrium.

While this approach is in line with previous existence proofs using variational inequali-
ties as put forth in the seminal papers by Friesz et al. (1993); Han et al. (2013a,b,c), there
are some remarkable differences. The above works rely on the complete spatio-temporal
unfolding of the path-inflows over the network which is known as network loading. As
shown by Graf et al. (2020), already the simple prediction function given by the constant
current queues (which leads to the instantaneous route choice model) leads to dynamic
equilibria with cycling behavior (forever) and thus puts a path-based formulation over the
entire time horizon out of reach. Our approach uses an extension-methodology, which does
not rely on the complete spatio-temporal unfolding of flow. We demonstrate the applica-
bility of our main result by showing that it applies not only to several simple variants of
predictors but also to predictors that implement an arbitrary continuous (machine-learned)
transformation.

Computing Approximate Dynamic Prediction Equilibria. We show that under
mild conditions on the predictors, an approximate version of a dynamic prediction equi-
librium can be computed in finite time by introducing an extension-based algorithm. This
algorithm computes a flow in which agents recompute their predicted shortest path to the
sink with the latest predictions in a periodic interval. If the predictors behave according to
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a Lipschitz condition, we show that these flow instances approximate dynamic prediction
flows.

Computational Study. On the experimental side, we conduct experiments on small
synthetic networks, on the Sioux Falls network from LeBlanc et al. (1975), and on a larger
real road network of Anaheim obtained from Transportation Networks for Research Core
Team (2016). For various predictors, we study how the particles’ choice of the predictor
affects their average travel time. For this purpose, we also train linear regression and simple
neural network models, for use as one of our predictors.

Comparison to Conference Version. An extended abstract of this paper was published
in Graf et al. (2022b). In comparison, this work not only includes fully worked-out proofs of
all theorems, but also generalizes the theoretical model of equilibria by making the predictors
depend on the historical flow instead of its corresponding queue functions. Appropriate and
thus weaker conditions for the existence of equilibria are worked out such that the original
result occurs as a special case. This allows us to embed arbitrary continuous ML methods
as opposed to only simple linear regression models. A detailed description of the algorithm
for computing approximate equilibria, and the proof of its correctness and termination are
added. Finally, we revised the computational study: We implement a new neural network
based predictor and evaluate all predictors in a larger experiment setup based on real world
origin-destination demand pairs.

1.2 Related Work

The idea of using real-time information and traffic predictions en route and subsequently
change the route is not new and has been proposed under varying names such as ATIS (ad-
vanced traveller information systems), see (Chorus et al., 2005; Watling, 1994; Yang, 1998)
for an overview. Ben-Akiva et al. (2002) introduced DynaMIT, a simulation-based approach
designed to predict future traffic conditions. Other works that also rely on simulation-based
models include (Mahmassani, 2001). Peeta and Mahmassani (1995) introduced a rolling
horizon framework addressing the real-time traffic assignment problem. This approach con-
catenates for fixed consecutive time-intervals static flow assignments and thus does not
comply to our definition of dynamic equilibrium in which at any time (also within stages)
equilibrium conditions must hold. Huang and Lam (2003) allow for different user classes
where each class may use a different travel time prediction. Their model is formulated in
discrete time and assumes an acyclic path formulation.

A large body of research has been dedicated to the use of deep learning techniques,
in particular graph neural networks (GNNs), for predicting street segment delays in road
networks. It is impossible to list all relevant work in this section, we instead describe some
key papers and point the reader to Jiang and Luo (2021) for a complete survey. The work
in Li et al. (2018) uses a random walk-based graph diffusion process to create a convolutional
operator that captures spatial relations. Yu et al. (2018) propose a spatio-temporal graph
convolutional network which model the temporal dependency, whereas Wu et al. (2019)
model the spatial dependency through an adaptive learnable dependency matrix and the
temporal dependency with dilated convolution (Oord et al., 2016). Finally, graph attention
networks (GATs), introduced by Velickovic et al. (2018), have also been used in the context
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of traffic predictions by Zheng et al. (2020). We note that our work bridges the above areas
of dynamic route updates based on real time information and of applying ML models for
predicting traffic delay.

Gentile (2016) considered a mathematical approach incorporating traffic predictions in
a DTA model. He derives the existence of equilibria using a variational inequality approach
for the considered DTA model under simplifying assumptions such as an acyclic graph. The
VI approach is arc and node-based and for its correctness, the assumption on acyclic (finite)
paths is necessary as he uses a telescopic sum of edge travel times in order to arrive at a
path-based VI formulation as used in Friesz et al. (1993). Note that this approach fails
in the general setting we consider in this paper. For further references on adaptive route
choice models we refer to Kucharski and Gentile (2019); Marcotte et al. (2004); Hamdouch
et al. (2004); Unnikrishnan and Waller (2009); Watling and Hazelton (2003).

For works analyzing the inefficiency of dynamic equilibria (within the full or instanta-
neous information model), we refer to Bhaskar et al. (2015); Cao et al. (2017); Correa et al.
(2019); Graf and Harks (2020).

2. The Flow Model

In the following, we describe the Vickrey fluid queuing model that we will use throughout
this paper. We consider a finite directed graph G = (V,E) with positive rate capacities
νe ∈ R>0 and positive transit times τe ∈ R>0 for every edge e ∈ E. There is a finite set
of commodities I, each with a commodity-specific source node si ∈ V and a commodity-
specific sink node ti ∈ V \{si}. We assume that there is at least one si-ti path for each i ∈ I
and we denote the set of nodes and edges lying on an si-ti-path as Vi and Ei, respectively.
The infinitesimal agents of every commodity i ∈ I enter the network according to a locally
integrable network inflow rate function ui ∈ R := { g ∈ L1

loc(R,R≥0) | g|(−∞,0)
a.e.
= 0 }.

A flow over time is a tuple f = (f+, f−), where f+, f− ∈ RI×E model the edge inflow
rate f+

i,e(θ) and edge outflow rate f−i,e(θ) of commodity i of an edge e ∈ E at time θ ∈ R.
The queue length of edge e at time θ is given by

qe(θ) :=
∑
i∈I

F+
i,e(θ)−

∑
i∈I

F−i,e(θ + τe), (1)

where F+
i,e(θ) :=

∫ θ
0 f

+
i,e(z) dz and F−i,e(θ) :=

∫ θ
0 f
−
i,e(z) dz denote the cumulative (edge) inflow

and cumulative (edge) outflow. For simplicity, we denote the aggregated in- and outflow
rates for all commodities by f+

e :=
∑

i∈I f
+
i,e and f−e :=

∑
i∈I f

−
i,e, respectively; their cumu-

lative variants are denoted as F+
e and F−e , respectively.

A deterministic flow over time f satisfies the following conditions (2) and (3). We
assume that the queue operates at capacity which can be modeled by requiring

f−e (θ) =

{
νe, if qe(θ − τe) > 0,

min { f+
e (θ − τe), νe } , else,

(2)
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for all e ∈ E, θ ∈ R. Moreover, we want the flow to follow a FIFO principle on the queues,
which can be formalized by

f−i,e(θ) =

f−e (θ) · f
+
i,e(ϑ)

f+e (ϑ)
, if f+

e (ϑ) > 0,

0, else,
(3)

where ϑ := min {ϑ ≤ θ | ϑ+ τe + qe(ϑ)
νe

= θ } is the earliest point in time a particle can enter

edge e and leave at time θ while qe(ϑ)
νe

is the current waiting time to be spent in the queue of
edge e. Consequently, constraint (3) ensures that the share of commodity i of the aggregated
outflow rate at any time equals the share of commodity i of the aggregated inflow rate at
the time the particles entered the edge.

A feasible flow is a deterministic flow that also fulfills the flow conservation constraints
(4) and (5). These are modeled for commodity i and node v 6= ti as∑

e∈δ+v

f+
i,e(θ)−

∑
e∈δ−v

f−i,e(θ) =

{
ui(θ), if v = si,

0, if v 6= si,
(4)

for θ ∈ R≥0 where δ+
v := { vu ∈ E } and δ−v := {uv ∈ E } are the sets of outgoing edges

from v and incoming edges into v, respectively. For ti we require∑
e∈δ+ti

f+
i,e(θ)−

∑
e∈δ−ti

f−i,e(θ) ≤ 0 for all θ ∈ R≥0. (5)

Cominetti et al. (2015) analysed the queue dynamics of deterministic flows f : They

show that the queue length is given by qe(θ) = maxξ≤θ
∫ θ
ξ f

+
e − νe dλ for any θ ∈ R,

e ∈ E. Thus, queues are independent of the edge outflow rates f−e . Moreover, it can be
shown that given a set of inflow rates f+ = (f+

i,e)i,e ∈ RI×E there exists a unique (up to a

Lebesgue-null set) family of outflow rates f− = (f−i,e)i,e ∈ RI×E , such that f := (f+, f−) is

deterministic; we call f the deterministic flow with inflow rates f+. If the inflow rates of
any two deterministic flows f and f ′ into an edge e match almost everywhere up to some
time H, the corresponding queue length qe and exit time Te(θ) := θ + qe(θ)

νe
+ τe of both

flows match up to time H, and the outflow rates out of edge e match almost everywhere up
to time Te(H).

2.1 Instantaneous Dynamic Equilibrium

For an instantaneous dynamic equilibrium (IDE) as defined by Graf et al. (2020) we assume
that, whenever an agent arrives at an intermediate node v ∈ Vi at time θ, she is given the
information about the current queue length qe(θ) and transit time τe of all edges e ∈ E, and,
based on this information, she computes a shortest v-ti-path and enters the first edge on this
path. We define the instantaneous travel time of an edge e at time θ as ce(θ) := qe(θ)

νe
+ τe.

With this we can define commodity-specific node labels `i,v(θ) corresponding to current
earliest arrival times when travelling from v to the sink ti at time θ by

`i,v(θ) :=

{
θ, for v = ti,

mine=vw∈Ei `i,w(θ) + ce(θ), for v ∈ Vi \ {ti}.
(6)
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We say that edge e = vw ∈ Ei is active for i ∈ I at time θ, if `i,v(θ) = `i,w(θ) + ce(θ) and
we denote the set of active edges for commodity i by Ei(θ) ⊆ E.

Definition 1 A feasible flow over time f is an instantaneous dynamic equilibrium (IDE),
if for all i ∈ I, θ ∈ R and e ∈ E it satisfies

f+
i,e(θ) > 0 =⇒ e ∈ Ei(θ). (7)

2.2 Dynamic Nash Equilibrium

In contrast, in the full information model we assume that agents have complete knowledge
of the entire (future) evolution of the flow over time. If an agent enters an edge e = vw

at time θ, the travel time is ce(θ) := τe + qe(θ)
νe

and the exit time of edge e is given by
Te(θ) := θ+ce(θ). In this setting it is common (cf. Cominetti et al., 2015) to define the node
labels in such a way as to denote the earliest possible arrival time at each node (starting from
the commodity’s source node). Here, however, we will instead use an equivalent definition
more in line with the node labels for IDE. So, for any i ∈ I, v ∈ V and θ ∈ R we define a
node label `i,v(θ) denoting the earliest possible arrival time at node ti for a particle starting
at time θ at node v by setting

`i,v(θ) :=

{
θ for v = ti,

mine=vw∈δ+v `i,w(Te(θ)) else.
(8)

We, again, say that an edge e = vw is active for commodity i ∈ I at time θ, if it holds that
`i,v(θ) = `i,w(Te(θ)) and denote by Ei(θ) the set of active edges for commodity i at time θ.

Definition 2 A feasible flow over time f is a dynamic equilibrium (DE), if for all e ∈
E, i ∈ I and θ ∈ R it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Ei(θ). (9)

3. Dynamic Prediction Equilibria

IDE is a short-sighted behavioral concept assuming that agents at time θ̄ predict the future
evolution of queue sizes according to the constant function qe(θ) = qe(θ̄) for all θ ≥ θ̄. In
the following we relax this behavioral assumption by introducing a model wherein every
commodity i ∈ I maintains a predictor q̂i,e for every edge e ∈ E. The value q̂i,e(θ, θ̄, f) is
then the queue length at time θ on edge e as predicted by commodity i at time θ̄ using the
historical flow over time f . Formally, a predictor q̂i,e has the following signature:

q̂i,e : R× R× (R×R)I×E → R≥0

In general, such a predictor can depend in any arbitrary way on the entire input data
including, in particular, the future evolution of the flow after the prediction time θ̄. However,
for our theoretical results we require the predictors to behave in a slightly more restricted
way. The first property we require is that the predictors do not use (and, therefore, do not
need) any information on the future evolution of the queues.
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Notation 3 For a vector of functions g = (gi)i∈[d] with gi : R → R and some H ∈ R, we
write g≤H := (gi|(−∞,H])i∈[d] for the restriction of the functions to (−∞, H].

For two vectors of functions g = (gi)i∈[d], h = (hi)i∈[d] with gi, hi : X → R, X ⊆ R, we

write g
a.e.
=
c.w.

h if gi
a.e.
= hi holds for all i ∈ [d].

Definition 4 A predictor q̂i,e is called causal, if it fulfills the condition

f≤θ̄
a.e.
=
c.w.

f ′≤θ̄ =⇒ q̂i,e( · , θ̄, f) = q̂i,e( · , θ̄, f ′)

for all θ̄ ∈ R and deterministic flows f, f ′ ∈ (R×R)I×E.

The next property ensures that at any point in time there are shortest paths with respect
to the predicted queue lengths that are cycle free. However, before we can formally define
this property, we need some additional notation. If an agent of commodity i ∈ I enters an
edge e = vw at time θ, the predicted travel time estimated at time θ̄ is given by ĉi,e(θ, θ̄, f) :=

τe+
q̂i,e(θ,θ̄,f)

νe
and the predicted exit time of edge e is given by T̂i,e(θ, θ̄, f) := θ+ ĉi,e(θ, θ̄, f).

We call these times θ̄-estimated to emphasize that these values are predictions made at
time θ̄.

Definition 5 A predictor q̂i,e respects FIFO if for any edge e, deterministic flow f and
prediction time θ̄ the predicted exit time T̂i,e( · , θ̄, f) is non-decreasing.

This now allows us to describe how agents determine routes according to the predicted
queues. At time θ̄ an agent of commodity i ∈ I predicts that if she enters a path P =
(e1, . . . , ek) at time θ she will arrive at the endpoint of P at time

ˆ̀P
i (θ, θ̄, f) :=

(
T̂i,ek( · , θ̄, f) ◦ · · · ◦ T̂i,e1( · , θ̄, f)

)
(θ). (10)

Denoting the (finite) set of all simple v-ti paths by Pi,v, the earliest θ̄-estimated time at
which an agent starting at time θ from node v ∈ Vi can reach ti is given by

ˆ̀
i,v(θ, θ̄, f) := min

P∈Pi,v
ˆ̀P
i (θ, θ̄, f). (11)

If all predictors respect FIFO, the label functions defined in (11) satisfy the equations

ˆ̀
i,v(θ, θ̄, f) =

θ, if v = ti,

min
vw∈δ+v

ˆ̀
i,w(T̂i,vw(θ, θ̄, f), θ̄, f), if v 6= ti.

(12)

Moreover, the predicted delay for taking an edge e = vw ∈ Ei at time θ is then defined as

∆̂i,e(θ, θ̄, f) := ˆ̀
i,w

(
T̂i,e(θ, θ̄, f), θ̄, f

)
− ˆ̀

i,v(θ, θ̄, f).

We say that an edge e = vw ∈ Ei is θ̄-estimated active for commodity i at time θ, if
∆̂i,e(θ, θ̄, f) = 0 holds true. Furthermore, let us denote the set of θ̄-estimated active edges
for commodity i at time θ by Êi(θ, θ̄, f).
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Definition 6 A pair (q̂, f) of a set of predictors q̂ = (q̂i,e)i∈I,e∈E and a feasible flow over
time f is a dynamic prediction equilibrium (DPE), if for all e ∈ E, i ∈ I and θ ≥ 0 it holds

f+
i,e(θ) > 0 =⇒ e ∈ Êi(θ, θ, f). (13)

We then call the flow f a dynamic prediction flow with respect to the predictor q̂.

In other words, in a DPE, particles only follow predicted shortest paths, and particles
predict a shortest path (according to their commodity’s predictor) when they enter the
network and every time they arrive at an intermediate node v 6= ti.

4. Existence of Dynamic Prediction Equilibria

In this section we show that for causal predictors that respect FIFO and a suitable continuity
property there always exists a dynamic prediction equilibrium. We will also give several
examples of such predictors, including one for which any DPE corresponds to an IDE and
vice versa.

4.1 Existence of DPE Using a Variational Inequality

To show the existence of DPE we make use of a result by Brézis (1968, Theorem 24)
guaranteeing the existence of solutions to certain variational inequalities on a reflexive
Banach space X. For this, we call a mapping A : K → Y from K ⊆ X to the normed space
Y sequentially weak-strong continuous if A maps every sequence (ui)i in X that converges
weakly to u ∈ X, i.e., limi→∞〈g, ui〉 = 〈g, u〉 for all g ∈ X ′, to a strongly convergent
sequence, i.e., limi→∞ ‖A(ui)−A(u)‖Y = 0. Here, 〈 · , · 〉 denotes the canonical pairing
between X and its continuous dual space X ′. Cominetti et al. (2015, Section 5) have found
the following useful special case of Brézis’s theorem.

Theorem 7 Let X be a reflexive Banach space and let A : K → X ′ be a sequentially weak-
strong continuous map defined on a non-empty, closed, bounded and convex set K ⊆ X.
Then there exists a solution u ∈ X to the variational inequality

∀v ∈ X : 〈A(u), v − u〉 ≥ 0. (14)

Here, we apply this theorem on the reflexive Banach space X = Lp(S)d with S a
compact set in R2 and 1 < p <∞. Its continuous dual space is isomorphic to X ′ = Lq(S)d,
where q is the conjugate of p with 1/p + 1/q = 1. The canonical pairing is then given by
〈g, f〉 :=

∑
i∈[d]

∫
S gi · fi dλ for f ∈ X and g ∈ X ′.

This theorem can be used to build up a dynamic prediction flow with respect to a given
set of predictors by iteratively extending so-called partial dynamic prediction flows which
fulfill the equilibrium property up to some time horizon. A sufficient regularity condition
on the predictors to apply the theorem is depicted in the following.

Definition 8 A predictor q̂i,e is p-continuous for 1 < p <∞, if q̂i,e( · , · , f) is continuous
for every deterministic flow f with f+ ∈ Lploc(R,R≥0)I×E and

Lp([0,M ],R≥0)I×E → C([0,M ]×D,R≥0), f+ 7→ q̂i,e( · , · , f)
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is sequentially weak-strong continuous for every M > 0 and compact interval D. Here, f
denotes the deterministic flow with inflow rates 1[0,M ] · f+.

Now, we formally introduce the concept of partial dynamic prediction equilibria.

Definition 9 A deterministic flow f is feasible up to time H if f fulfills the flow conser-
vation conditions (4) and (5) for θ ≤ H. We call f a partial dynamic prediction flow with
respect to a set of predictors q̂ up to time H if f is feasible up to time H and f+

i,e(θ) > 0

implies e ∈ Êi(θ, θ, f) for all θ ≤ H, e ∈ E, i ∈ I.

We now show that the time horizon H of any partial dynamic prediction flow can
be extended. We employ a proof-technique similar to the one used in (Graf et al., 2020,
Lemma 5.6) for the extension property of IDE flows. However, the analysis is more involved
as we allow for a more general functional dependence of the predicted queue lengths on the
past flow evolution. This stands in contrast to IDEs where each prediction only depends
on the queue lengths of one edge at a single point in time.

Lemma 10 Let ui be network inflow rates in R∩ Lploc(R,R≥0) and q̂ = (q̂i,e)i,e be a set of
p-continuous and causal predictors that respect FIFO. We can extend any partial dynamic
prediction flow f with respect to q̂ up to time H to a dynamic prediction flow up to time
H + τmin with τmin := mine∈E τe.

The main idea is to first define a set K of all possible extensions of f . We then define
a mapping A : K → Lq(D)I×E associating with each possible extension g a function which
for every commodity i, edge e and time θ returns the predicted delay ∆̂i,e(θ, θ, g). The p-
continuity of the predictors implies that A is sequentially weak-strong continuous such that
Theorem 7 gives a solution to the variational inequality (14). This solution is an extension
of f which satisfies the properties of a partial dynamic prediction flow up to time H + τmin.

In this section, we equip the space of continuous functions C(S) on a compact set S ⊆ Rd
with the topology induced by the uniform norm ‖g‖∞ := maxx∈S g(x).

Lemma 11 If the predictors (q̂i,e)e∈E are p-continuous, the mappings

(i) f+ 7→ T̂i,e( · , · , f) for all e ∈ E,

(ii) f+ 7→ ˆ̀P
i ( · , · , f) for all simple paths P ,

(iii) f+ 7→ ˆ̀
i,v( · , · , f) for all nodes v ∈ Vi, and

(iv) f+ 7→ ∆̂i,e( · , · , f) for all e ∈ Ei.

are sequentially weak-strong continuous from Lp([0,M ],R≥0)I×E to C([0,M ]×D) for M > 0
and compact intervals D. Here, f denotes the deterministic flow with inflow rates 1[0,M ] ·f+.

Proof (i). The sequential weak-strong continuity of f+ 7→ T̂i,e( · , · , f) directly follows
from the p-continuity of q̂i,e.

(ii). For f+ 7→ ˆ̀P
i ( · , · , f) we use induction on the length of the simple path P . In

the base case, P is an empty path such that f+ 7→ ˆ̀P
i ( · , · , f) is a constant (and thus

continuous) map. Assume that P consists of some path P ′ and an additional final edge e

10
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and let (f+,k)k∈N be weakly converging to some f+. Using the triangle inequality, the term
‖ˆ̀Pi ( · , · , fk)− ˆ̀P

i ( · , · , f)‖∞ can be upper bounded by

αk + βk := max
θ∈[0,M ]
θ̄∈D

∣∣∣T̂i,e (ˆ̀P ′
i (θ, θ̄, fk), θ̄, fk

)
− T̂i,e

(
ˆ̀P ′
i (θ, θ̄, fk), θ̄, f

)∣∣∣
+ max
θ∈[0,M ]
θ̄∈D

∣∣∣T̂i,e (ˆ̀P ′
i (θ, θ̄, fk), θ̄, f

)
− T̂i,e

(
ˆ̀P ′
i (θ, θ̄, f), θ̄, f

)∣∣∣ .
By induction there exists an N ∈ N such that

‖ˆ̀P ′i ( · , · , fk)− ˆ̀P ′
i ( · , · , f)‖∞ < 1

holds for all k ≥ N . With M ′ := ‖ˆ̀P ′i ( · , · , f)‖[0,M ]×D + 1, the value ˆ̀P ′
i (θ, θ̄, fk) is

contained in [0,M ′] for all k ≥ N , θ ∈ [0,M ], and θ̄ ∈ D. Moreover, 1[0,M ] · f+,k converges

weakly to 1[0,M ] · f+ in Lp([0,M ′])I×E . Using (i) for M ′ we conclude αk → 0. The term βk

vanishes because of the uniform continuity of T̂i,e( · , · , f) on the compact set [0,M ′]×D.
(iii). Let (f+,k)k∈N weakly converge to f+ in Lp([0,M ],R≥0)I×E . By (ii), the sequence

(ˆ̀P
i ( · , · , fk))k uniformly converges to ˆ̀P

i ( · , · , f) on C([0,M ]×D,R≥0) for any simple
v-ti-path P . The minimum of these functions also converges uniformly.

(iv). This follows with the same techniques applied in (ii).

With this lemma we can now turn back to the proof of the extension-lemma:
Proof of Lemma 10 Let f be a partial dynamic prediction flow up to time H with
respect to q̂. The outflow rate on an edge e of any deterministic flow h whose inflow rates
coincide with f up to time H are already uniquely determined up to time Te(H) ≥ H + τe.
Therefore, the rates b−i,v(θ) :=

∑
e∈δ−v h

−
i,e(θ) +1v=siui(θ) on the interval D := [H,H + τmin]

are independent of the edge inflow rates h+
i,e|D on D.

We now want to apply Brézis’s theorem in the form of Theorem 7 to find suitable inflow
rates h+

i,e|D. For that, we define the set K ⊆ Lp(D)I×E as follows:

K :=

 g ∈ Lp(D,R≥0)I×E

∣∣∣∣∣∣
∀i ∈ I, v ∈ V \ {ti} :

∑
e∈δ+v gi,e

a.e.
= b−i,v,

∀i ∈ I :
∑

e∈δ+ti
gi,e

a.e.
≤ b−i,ti

 .

The elements of K are the possible inflow rates for the interval D that fulfill the flow con-
servation constraints. More specifically, for any g ∈ K, let ḡ denote the unique deterministic
flow with inflow rates

ḡ+
i,e(θ) :=

{
gi,e(θ), if θ ∈ D,

f+
i,e(θ), otherwise.

Claim 12 For each g ∈ K, ḡ is a partial dynamic prediction flow up to time H and feasible
up to time H + τmin.

Proof As f is feasible up to time H and g ∈ K, it follows that ḡ is feasible up to time
H + τmin. Because all predictors are causal, the equilibrium property (13) is transferred
from f over to g for θ < H.

11
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Claim 13 The set K is nonempty, closed, bounded and convex.

Proof By ui ∈ Lploc(R,R≥0) and f−i,e(θ) ≤ νe, it follows that b−i,v is p-integrable on D for

all v ∈ V . Then, g ∈ K implies ‖gi,e‖Lp(D) ≤ ‖b−i,v‖Lp(D) for all i ∈ I and e = vw ∈ E.

Therefore, K is bounded in Lp(D)I×E . To see that K is nonempty, observe that, in a
partial dynamic prediction flow, particles of commodity i can only arrive at a node v if ti
is reachable from v. Hence, for all v ∈ V \ {ti} with b−i,v(θ) > 0 we select an arbitrary edge

e ∈ δ+
v and set gi,e = b−i,v. For all other edges, we set gi,e = 0. This implies g ∈ K. It can

be easily verified that K is convex and closed.

By Claim 12, ḡ is a dynamic prediction flow up to time H for every g ∈ K. Therefore,
we are looking for some g ∈ K such that ḡ+

i,e(θ) > 0 implies e ∈ Êi(θ, θ, ḡ) for θ ∈ D. For an

edge e = vw ∈ Ei lying on a directed si-ti-path, the statement e ∈ Êi(θ, θ, ḡ) is equivalent
to ∆̂i,e(θ, θ, ḡ) ≤ 0. Using this observation, we define A : K → Lq(D)I×E with 1/p + 1/q = 1
as the predicted delay operator when using an edge e = vw:

A(g)i,e(θ) :=

{
∆̂i,e(θ, θ, ḡ), if e ∈ Ei,
1, otherwise.

We note that for edges e /∈ Ei that are irrelevant to a commodity i, we simply set the
predicted delay to 1; however, any strictly positive constant would work. By the p-continuity
of q̂, the function A(g)i,e is continuous as a function on R. Thus, A(g) is indeed contained
in Lq(D)I×E as a function on D.

Claim 14 The map A is non-negative and sequentially weak-strong continuous.

Proof The non-negativity of A results from the predictors respecting FIFO.
To show that A is sequentially weak-strong continuous, let (gk)k∈N be a sequence in

Lp(D)I×E that converges weakly to g+. Then, ḡk,+|[0,M ] also converges weakly to ḡ+|[0,M ]

in Lp([0,M ])I×E with M := H + τmin. By Lemma 11 and the causality of the predictors,
the sequence ∆̂i,e( · , · , ḡk) converges to ∆̂i,e( · , · , ḡ) with respect to the uniform norm
on C([0,M ] ×D) for any e ∈ Ei. With this we conclude that A(gk) converges to A(g) in
C(D)I×E , and hence also in Lq(D)I×E .

The variational inequality as given in Theorem 7 now admits a solution g ∈ K such that
for all h ∈ K we have 〈A(g), h − g〉 ≥ 0. We assume that the equilibrium property for ḡ
does not hold almost everywhere on D, implying that the union of all sets

Φi,e :=
{
θ ∈ D

∣∣∣ ḡ+
i,e(θ) > 0,A(g)i,e(θ) > 0

}
has positive measure. We now construct flow rates h ∈ K that lead to the contradiction
〈A(g), h − g〉 < 0. To do this, we observe that by the continuity of the maps (θ, θ̄) 7→
ˆ̀
i,w(θ, θ̄, ḡ) and θ 7→ T̂i,e(θ, θ, ḡ) the set of times Θi,e := {θ ∈ R | e ∈ Êi,e(θ, θ, ḡ)}, at which

an edge e is active, is closed and thus measurable. We define

hi,e(θ) :=
b−i,v(θ)

|δ+
v ∩ Êi(θ, θ, ḡ)|

12



Prediction Equilibrium for Dynamic Network Flows

for θ ∈ Θi,e and hi,e(θ) := 0 otherwise. As the set δ+
v ∩ Êi(θ, θ, ḡ) is non-empty for any

θ ∈ D and v ∈ Vi \ {t}, and as b−i,v(θ) can only be positive for nodes in Vi, h is an element
of K.

By definition, hi,e(θ) is only positive if e is active at time θ (w.r.t. ḡ) which implies
A(g)i,e(θ) = 0. Therefore, we conclude

〈A(g), h− g〉 =
∑
i,e

∫
D
A(g)i,e · hi,e dλ− 〈A(g), g〉 = −

∑
i,e

∫
D
A(g)i,e · gi,e dλ.

Let i ∈ I and e ∈ E such that Φi,e has positive measure. Because both gi,e and A(g)i,e
are positive on Φi,e, this implies

∫
Φi,e
A(g)i,e · gi,e dλ > 0. The non-negativity of A(g) and

g now implies

〈A(g), h− g〉 ≤ −
∫

Φi,e

A(g)i,e · gi,e dλ < 0,

a contradiction.

With this, we can show the existence of dynamic prediction flows for causal and p-
continuous predictors respecting FIFO.

Starting with the zero-flow with horizon 0 and iteratively extending it using Lemma 10,
we obtain a dynamic prediction flow, as shown in the following theorem. Note, that this
result allows different commodities to use different sets of predictors.

Theorem 15 For any network with a finite set of commodities, each associated with a
network inflow rate in Lploc(R,R≥0) and causal and p-continuous predictors q̂i,e that respect
FIFO, there exists a dynamic prediction flow with respect to q̂.

Proof Let f0 ∈ (R×R)I×E with f0,+
i,e , f

0,−
i,e := 0 for all i ∈ I, e ∈ E. Then f0 is a partial

dynamic prediction flow up to time 0. Recursively define fn+1 as the dynamic prediction
flow up to time τmin · (n+ 1) given through the extension of fn as per Lemma 10. It follows
that fn≤k·τmin

a.e.
=
c.w.

fk≤k·τmin
whenever n ≥ k.

We define the flow f∞ by f∞,+i,e (θ) := fnθ,+i,e (θ) and f∞,−i,e (θ) := fnθ,−i,e (θ) where nθ :=
dθ/τmine. Then f∞ is a dynamic prediction flow with respect to q̂ up to time ∞: The
feasibility and the equilibrium properties are checked by using f∞≤n·τmin

a.e.
=
c.w.

fn≤n·τmin
, the fact

that fn fulfills the desired properties for all n ∈ N, and the causalilty of the predictors.

Example 1 To see why we require the predictors to be continuous, consider the non-
continuous predictor

q̂e(θ, θ̄, f) :=

{
qfe (θ̄), if qfe (θ̄) < 1

2, otherwise.

Using this predictor in a network consisting of only a single source-sink pair connected by two
parallel edges e1 and e2 (see Figure 1) can already lead to a situation where no equilibrium
flow exists. Let νe1 = 1, τe1 = 1, νe2 = 2, τe2 = 2 and assume a constant inflow rate of 2
at the source. Assume a dynamic prediction flow f exists. Then, clearly, during the time

13
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s t

(1, 1)

(2, 2)

Figure 1: A network where the use of a non-continuous predictor can result in a situation
where no dynamic prediction equilibrium exists. Edges are labeled with (τe, νe).

interval [0, 1) agents using the above predictor may only enter edge e1 (as the predicted travel

time along edge e1 is strictly smaller than 2), and thus qfe1(1) = 1. Let O ⊆ [1,∞] denote the

open set containing all times θ ≥ 1 with qfe1(θ) < 1, and let O =
⋃
j∈J(aj , bj) be a partition

of O into at most countably many disjoint, non-empty, open intervals. For every j ∈ J , we
have aj 6∈ O, and thus qfe1(aj) = 1 holds by the continuity of qfe1. During (aj , bj), e1 is the

only active edge, and thus, for any θ ∈ (aj , bj), it follows 1 > qfe1(θ) = qfe1(aj)+(θ−aj) > 1.
Thus, O is the empty set. This means, starting from time 1 all particles would choose edge
e2, implying qfe1(θ) < 1 for all θ > 1; a contradiction.

4.2 A Sufficient Regularity Condition

To make the previous theorem more accessible, we give a sufficient, less abstract regularity
condition for p-continuity.

Definition 16 A predictor q̂i,e depends continuously on the cumulative inflow, total cu-
mulative outflow and queue lengths, if there exists a continuous map

γi,e : R× R× C(R,R≥0)(I×E)+E+E → R≥0

such that q̂i,e(θ, θ̄, f) = γi,e(θ, θ̄, F
+,f
I×E , F

−,f
E , qf ) for all θ, θ̄ ∈ R and deterministic flows

f . Here, F+,f
I×E := (F+,f

i,e )i∈I,e∈E , F−,fE := (F−,fe )e∈E, and qf := (qfe )e∈E denote the
cumulative edge in- and outflow functions, and queue length functions with respect to f .

Lemma 17 A predictor q̂i,e that depends continuously on the cumulative inflow, total cu-
mulative outflow and queue lengths, is p-continuous for any p with 1 < p <∞.

Proof We show that f+ 7→ q̂i,e( · , · , f) is sequentially weak-strong continuous from
Lp([0,M ]×D,R≥0)I×E to C([0,M ]×D) for all M and compact intervals D.

Cominetti et al. (2015, Lemma 16) showed that the maps f+
i,e 7→ F+,f

i,e and f+
e 7→ qfe are

sequentially weak-strong continuous from Lp([0,M ],R≥0) to C([0,M ],R≥0) for any M > 0.

Thus, the same holds for f+
e 7→ (θ 7→ F+,f

e (θ − τe)− qfe (θ − τe)) = F−,fe .
Let (f+,k)k∈N be a sequence converging weakly to f+ in Lp([0,M ])I×E . Then, the

sequence (f+,k
e )k∈N converges weakly to f+

e and (f+,k
i,e )k∈N converges weakly to f+

i,e for every

e ∈ E and i ∈ I. By Cominetti et al. (2015), the sequences (F+,k
i,e )k∈N, (F−,ke )k∈N and

(qke )k∈N converge strongly to F+
i,e, F

−
e and qe, respectively, in C([0,M ]) for all e ∈ E and

i ∈ I. This implies that these sequences also converge in C(R,R≥0).

14
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We write gk := (F+,k
I×E , F

−,k
E , qkE) for k ∈ N and g := (F+

I×E , F
−
E , qE). The sequence gk

converges to g in G := C(R,R≥0)(I×E)+E+E . Let ε > 0 be arbitrary. By the compactness
of [0,M ]×D and the continuity of γi,e, there exists some δ such that for all (θ, θ̄), (θ′, θ̄′) ∈
[0,M ]×D and g′ ∈ G, the condition ‖g−g′‖∞ < δ implies |γi,e(θ, θ̄, g)−γi,e(θ′, θ̄′, g′)| < ε/2.
There is N ∈ N with ‖gk − g‖∞ < δ for all k ≥ N . For arbitrary θ ∈ [0,M ], θ̄ ∈ D and
k ≥ N we infer

|γi,e(θ, θ̄, gk)− γi,e(θ, θ̄, g)| < ε/2,

which implies the desired result ‖γi,e( · , · , gk)− γi,e( · , · , g)‖C([0,M ]×D) < ε.

4.3 Application Predictors

We now discuss several predictors and analyze whether the theorem above can be applied.
We begin with simple predictors and make them more sophisticated step-by-step.

The Zero-Predictor predicts no queues for all times, i.e.,

q̂Z
i,e(θ, θ̄, f) = 0.

This predictor is trivially continuous, causal, and respects FIFO. In the resulting dynamic
prediction flow, particles just always follow physically shortest paths.

The constant predictor predicts that all queues will stay constant:

q̂C
i,e(θ, θ̄, f) = qfe (θ̄).

This leads to the mentioned special case of IDE flows. Since the constant predictor clearly
is causal, depends continuously on the queue lengths and respects FIFO, we can apply
Theorem 15 and, thus, reprove the existence of IDE flows shown in Graf et al. (2020).

The linear predictor takes the derivative of the queues and extends them linearly up to
some fixed time horizon H ∈ R≥0 ∪ {∞}. Formally it is defined as

q̂L
i,e(θ, θ̄, f) :=

(
qfe (θ̄) + ∂−q

f
e (θ̄) ·min{θ − θ̄, H}

)+
,

where (x)+ := max{x, 0} denotes the positive part of x ∈ R. The linear predictor is not in
general continuous since the partial derivative ∂−qe(θ̄) might be discontinuous.

The regularized linear predictor solves this by taking a rolling average of the past gradient
with rolling horizon δ > 0 and extending the prediction according to this:

q̂RL
i,e (θ, θ̄, f) :=

(
qfe (θ̄) +

qfe (θ̄)− qfe (θ̄ − δ)
δ

·min{θ − θ̄, H}
)+

Using Lemma 17 it is easy to show that q̂RL respects FIFO, is causal and p-continuous
for any p > 0. It, thus, induces the existence of a DPE.

The regularized linear predictor takes two samples of the past queue lengths (at times
θ̄ and θ̄− δ) and uses this information to predict future queue lengths up to the prediction
horizon by a pw. linear function. We generalize this idea by taking a fixed, finite set of
observations of the past flow and employ a continuous transformation on these values to
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predict the future queues: Let kp be the number of past samples, kf the number of future
samples, and δ > 0 be some step size. The arguments of the function γi,e from Definition 16
are mapped to Rd using an observation map σ. This map returns kp samples of the queue

length qfe′ and the edge load Lfe′ := F+,f
e′ − F

−,f
e′ at the past times θ̄ − (i − 1)δ for every

i ∈ [kp] and e′ ∈ E. Then, a continuous (machine-learned) transformation φi,e is applied

resulting in interpolation points q̂ML,raw
i,e (θ̄ + jδ, θ̄, f) ≥ 0 for j ∈ [kf ]. These two maps are

depicted in the following:

θ, θ̄,

F+,f
I×E , F

−,f
E , qf

θ̄,(
qfe′(θ̄ − (j − 1)δ)

)
e′∈E
j∈[kp]

,(
Lfe′(θ̄ − (j − 1)δ)

)
e′∈E
j∈[kp]

(
q̂ML,raw
i,e (θ̄ + jδ, θ̄, f)

)
j∈[kf ]

σ φi,e

Finally, these points are linearly interpolated (in the first argument) to determine the value
q̂ML,raw
i,e (θ, θ̄, f). This results in a causal, and p-continuous predictor. However, q̂ML,raw

could violate FIFO. To prevent that, we apply the following post-processing: We derive
new interpolation points with q̂ML

i,e (θ̄, θ̄, f) = qfe (θ̄) and

q̂ML
i,e

(
θ̄ + jδ, θ̄, f

)
:= max

{
q̂ML,raw
i,e

(
θ̄ + jδ, θ̄, f

)
,

q̂ML
i,e

(
θ̄ + (j − 1)δ, θ̄, f

)
− νeδ

}
for all j ∈ [kf ]. We extend the predictor constantly outside the interpolation points. We
call the resulting predictor q̂ML

i,e the machine-learned predictor.

Proposition 18 If all maps φi,e are continuous and non-negative, the predictor q̂ML is
causal, respects FIFO, and depends continuously on the queue length functions. It, thus,
induces the existence of a dynamic prediction equilibrium.

This leaves the question of how to choose the transformation maps in order to retrieve
a good predictor. In our experimental study, we use both a linear regression model and a
simple neural network and train these models on previously computed flows. We provide
more details in Section 6.3.

Finally, the perfect predictor predicts the queues exactly as they will evolve, i.e.

q̂P
i,e(θ, θ̄, f) := qfe (θ).

This predictor clearly is not causal and, thus, we can not apply our existence result here.
However, dynamic predicted flows with respect to this predictor do exist as those are just
dynamic Nash equilibria for which existence has been proven in Cominetti et al. (2015).

5. Approximate Dynamic Prediction Equilibria

We augment the introduction of DPE by an analysis of the computation of an approximate
variant of DPE. We recall that in a DPE, flow is only sent along predicted shortest paths.
More specifically, flow enters an edge only if the predicted delay ∆̂i,e(θ, θ, f) vanishes. This
inspires the following definition of approximate DPE, in which agents enter an edge only if
the predicted delay is small enough.
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Definition 19 A pair (q̂, f) of predictors q̂ and a flow over time f is called an ε-approximate
DPE up to time H ∈ R>0 ∪{∞}, if f is feasible up to time H and for all i ∈ I, e ∈ E, and
θ < H it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Ei ∧ ∆̂i,e(θ, θ, f) ≤ ε.

The goal of this section is to develop an algorithm for computing ε-approximate DPE
provided that all predictors are causal, respect FIFO, fulfill a regularity condition, and are
computable as piecewise linear functions. We start off with an algorithm that computes
so-called δ-routed DPE in which route updates happen only at discrete time steps of size
δ > 0. After an outline of the algorithm in Section 5.1, Section 5.2 points out how to compute
outflow rates and queue lengths given piecewise constant inflow rates. In Section 5.3 we
prove the correctness and termination of the algorithm. Finally, Section 5.4 shows that by
imposing a Lipschitz-condition on the predictors, any δ-routed equilibrium flow is also an
ε-approximate DPE.

5.1 Extension-Based Approximation Algorithm

As agents in a DPE behave like infinitesimal particles in a continuous flow, the routes
chosen may change indefinitely often. For computational analyses it is infeasible to calculate
shortest paths this often. Hence, we discretize the points in time at which routes are
updated.

More specifically, shortest paths are recalculated every δ time units for some δ > 0. This
means that particles arriving at an intermediate node v at some time θ will use a predicted
shortest path computed at time

ϑδ(θ) :=

⌊
θ

δ

⌋
· δ,

leading to the following variant of DPE whose computation we will focus on for the moment.

Definition 20 Let f be a dynamic flow, q̂ = (q̂i,e)i,e a set of predictors and δ > 0. The
pair (f, q̂) is called a δ-routed DPE up to time H ∈ R ∪ {∞} if f is feasible up to time H
and for all e ∈ E, i ∈ I and almost all θ < H it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Êi (ϑδ(θ), ϑδ(θ), f) .

We require that network inflow rates are piecewise (pw.) constant with finitely many
jumps. This enables us to find a δ-routed DPE with pw. constant edge inflow and outflow
rates. As a result, cumulative edge inflow and outflow functions, queue length and exit time
functions of edges and paths, as well as earliest arrival time functions are pw. linear. Conse-
quently, we assume that the predicted queue length functions q̂i,e( · , θ̄, f) of all predictors
are pw. linear.

The predictors in our simulation must be causal and respect FIFO. The first requirement
is necessary, as we build our flow in an extension based approach. The second allows us to
use shortest path algorithms for FIFO cost functions.

In the following we give an overview on the computation of a δ-routed DPE. Initially,
we begin with a “zero”-flow f with f+, f− :≡ 0 as our δ-routed DPE flow up to time
H = 0. We call H the flow horizon of f . We aim to compute a δ-routed DPE flow up to
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some Hcomp ∈ R. The algorithm consists of two different phases that need to be repeated
multiple times: A routing phase and a distribution phase.

A routing phase is run when the δ-routed DPE flow f has been calculated up to some
multiple H = k · δ of δ. All routes that have been calculated up to time H are invalidated,
and new routes are determined. This is done in the following two steps:

(R1) Gather predictions q̂i,e( · , H, f) as pw. linear functions for all commodities i ∈ I and
edges e ∈ E.

(R2) Compute the set of active outgoing edges δ+
v ∩ Êi(H,H, f) for all nodes v ∈ Vi and

commodities i ∈ I.

In the distribution phase the dynamic flow gets extended. Assume we have computed a
δ-routed DPE flow f up to flow horizon H and want to extend H up to some time H ′ > H.
To ensure flow conservation, we distribute the node inflow rate b−i,v(θ) of v ∈ Vi to outgoing
edges. A distribution phase consists of the following steps.

(D1) Update f with the deterministic flow with respect to the updated inflow rates

f+
i,e|[H,∞) :≡


b−i,v(H)

|δ+v ∩Êi(ϑδ(H),ϑδ(H),f)| , if e ∈ Êi(ϑδ(H), ϑδ(H), f),

0, otherwise,

for all commodities i ∈ I and edges e = vw ∈ E.

(D2) Determine the maximal H ′ ≤ ϑδ(H)+δ such that b−i,v is constant on [H,H ′) (according
to the updated deterministic flow) for every node v and commodity i ∈ I, and set
H := H ′.

The distribution phase is executed multiple times until the flow horizon H reaches the
next multiple of δ; then a new routing phase is initiated. Once the flow horizon H reaches
the computation target Hcomp we terminate the process and return the computed flow f .
A schematic overview of this algorithm is depicted in Figure 2.

Remarks on the Implementation

There are three major aspects to consider when implementing the algorithm. Firstly, while
it is cheap to compute the predicted queue length functions q̂i,e( · , H, f) for the different
causal predictors introduced in Section 4.3, it is computationally expensive to compute
the set of active edges Êi(H,H, f). Secondly, a difficulty in the distribution phase lies in
computing the outflow rates when extending the inflow rates with a new constant as in
Step (D1). Thirdly, it is unclear how to find the maximal time H ′ such that b−i,v is constant
on [H,H ′) quickly. It is a good idea to solve the latter two problems in combination, as any
change to an edge outflow rate f−i,vw (induced by changing edge inflow rates) results in a

change of the target node’s inflow rate b−i,w. The solution to these two problems is discussed
in Sections 5.2 and 5.3.

Computing the active edges Êi(H,H, f) can be solved by a dynamic variant of the
Bellman-Ford algorithm covered by Ding et al. (2008). However, because of its poor running
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Initial flow f ≡ 0
with horizon H = 0

Routing Phase
(R1) Gather (q̂i,e( · , H, f))i,e
(R2) Compute (Êi(H,H, f))i

Distribution Phase
(D1) Distribute b−i,v(H) uniformly to

δ+v ∩ Êi(ϑδ(H), ϑδ(H), f) on [H,∞)
(D2) Determine maximal H ′ ≤ ϑδ(H) + δ such that

(b−i,v)i,v is constant on [H,H ′), and set H := H ′

H ≥ Hcomp

H = ϑε(H)

Return f

No

Yes

No

Yes

Figure 2: A schematic overview of the computation of a δ-routed DPE.

time, it is beneficial to use a Dijkstra-based algorithm. With this approach we have to
calculate the active outgoing edges for each node and commodity with a separate run of the
algorithm. Therefore, we defer this calculation until we notice a node v in the distribution
phase with positive inflow rate b−i,v and only calculate the active outgoing edges of v on
demand. In most cases, only a small subset of nodes will experience inflow of any given
commodity; in our experiments this proved to be much faster than the Dynamic Bellman-
Ford algorithm.

Nevertheless, for predictors q̂i that are constant in the first argument, i.e. if q̂i,e( · , θ̄, f)
is constant for all e ∈ E, θ̄ ∈ R and deterministic flows f , a single run of a simple static
version of Dijkstra’s algorithm suffices to compute the set of all active edges. For predic-
tors of this type, e.g., the Zero-predictor and the constant predictor, this approach is the
preferred method to compute Êi(H,H, f).

An implementation of this algorithm using Python is publicly available in Graf et al.
(2022a).

5.2 Outflow Rates of Piecewise Constant Inflow Rates

The idea of the introduced algorithm is to utilize the simple structure of flows over time
generated by pw. constant inflow rates. This is demonstrated by the following theorem.

Theorem 21 Let f be a deterministic flow, let (gi,e)i∈I ∈ RI≥0 be a set of new constant
inflow rates into an edge e beginning from time H ∈ R, and let ge :=

∑
i∈I gi,e. Let

h = (h−, h+) denote the deterministic flow with inflow rates

h+
i,e(θ) :=

{
f+
i,e(θ), for θ < H,

gi,e, for θ ≥ H,

Then h−i,e is given by h−i,e|(−∞,T fe (H))

a.e.
= f−i,e|(−∞,T fe (H))

and by the following cases:

(C1): ge = 0. Then h−i,e|[T fe (H),∞)

a.e.≡ 0.

(C2): ge > 0 ∧
(
qfe (H) = 0 ∨ ge ≥ νe

)
. Then h−i,e|[T fe (H),∞)

a.e.≡ min{νe, ge} · gi,ege .
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(C3): ge ∈ (0, νe) ∧ qfe (H) > 0. Then, with Tdepl := H + qfe (H)
νe−ge ,

h−i,e|[T fe (H),Tdepl+τe)

a.e.≡ νe ·
gi,e
ge

and h−i,e|[Tdepl+τe,∞)
a.e.≡ gi,e.

Proof As the inflow rates of f and h into edge e match up to time H, the queue and
exit time functions of edge e coincide up to time H, and the outflow rate functions match
up to time Te(H). For θ > Te(H), we handle all three cases individually and utilize the
observation

qhe (θ − τe) = qe(H) + ge · (θ − τe −H)−
∫ θ

H+τe

h−e dλ.

(C1). From ge = 0 and (2) it follows qhe (θ − τe) ≤ qe(H) −
∫ Te(H)
H+τe

h−e dλ = 0 for all

θ > Te(H). Applying (2) again yields h−i,e(θ) = 0 for θ > Te(H).

(C2). We show h−e (θ) = min{νe, ge} for almost all θ > Te(H). Then, since any ξ fulfilling
T he (ξ) = θ is greater than H, property (3) leads to the conclusion h−i,e(θ) = min{νe, ge} · gi,ege
for almost all θ > Te(θ).

In the case ge > νe, for any θ > Te(H), the queue length fulfills qhe (θ−τe) > 0. Therefore
h−e (θ) = νe holds for almost all θ > Te(H). For ge = νe and qe(H) > 0, the same reasoning
applies. Now assume ge ∈ (0, νe) and qe(H) = 0. For any θ > Te(H), we have

qhe (θ − τe) = max
ξ∈[H,θ−τe]

∫ θ−τe

ξ
h+
e − νe dλ = 0.

Constraint (2) yields h−e (θ) = ge for almost all θ > Te(H).

(C3). It suffices to prove h−e |(Te(H),Tdepl+τe)
a.e.≡ νe and h−e |(Tdepl+τe,∞)

a.e.≡ ge. For θ ∈
(Te(H), Tdepl + τe) we have

qhe (θ − τe) ≥ qe(H)− (νe − ge) · (θ − τe −H) > 0,

implying h−e (θ) = νe for almost all of these θ. Therefore, Tdepl fulfills qhe (Tdepl) = qhe (H) −
(νe − ge) · (Tdepl −H) = 0. For θ > Tdepl + τe, we compute

qhe (θ − τe) = max
ξ∈[Tdepl,θ−τe]

∫ θ−τe

ξ
h+
e − νe dλ = 0,

implying h−e (θ) = ge.

Remark 22 The proof also describes the evolution of the queue length starting at time H.
In the cases (C1) and (C3) we have

qhe (θ) =

{
qfe (H)− (θ −H) · (νe − ge), for θ ∈ [H,Tdepl],

0, for θ ≥ Tdepl,

where Tdepl := H + qfe (H)
νe−ge denotes the depletion time. For (C2), no queue depletion occurs

and for θ ≥ H we have

qe(θ) = qe(H) + (θ −H) ·max{ge − νe, 0}.
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5.3 Correctness and Termination

The previous section allows us to calculate the deterministic outflow rates for the case that
new constant inflow rates are assigned to an edge as in Step (D1): In the implementation,
we maintain pw. constant functions f+

i,e and f−i,e for all i ∈ I and e ∈ E, as well as pw.
linear functions qe for all e ∈ E. Before and after each distribution phase, these functions
represent a deterministic flow that is feasible up to time H. In Step (D1) the inflow rates
are then updated starting from time H and the outflow rates as well as the queue length
functions are updated according to Theorem 21 and Remark 22 starting from times Te(H)
and H, respectively, while preserving the deterministic property of f .

To detect the maximum H ′ such that b−i,v stays constant on [H,H ′) for all i ∈ I, v ∈ V
in Step (D2), we employ a priority queue that contains all events of the form

(E1) “The outflow rate f−i,e changes at time θ” for all i ∈ I, e ∈ E and θ > H, and

(E2) “The network inflow rate ui changes at time θ” for all i ∈ I and θ > H.

To achieve this, whenever we update an edge’s outflow rate f−i,e in Step (D1), we generate
corresponding events of type (E1) and possibly remove existing events, that are rendered
invalid by the update. As we require τe > 0, the added events happen after H. The events
of type (E2) are enqueued in the initialization of the algorithm.

A change in a node inflow rate b−i,v requires that either the network inflow rate has
changed (and v = si) or that an outflow rate of an incoming edge has changed. Thus, the
minimum time θ of all events in the priority queue is a lower bound to the maximum time
H ′ such that b−i,v|[H,H′) is constant for all i ∈ I and v ∈ V . If there is only a single event

in the queue at time θ, then b−i,v changes at time θ, and we have H ′ = θ. If multiple events

occur at time θ and their changes to b−i,v balance out for all i ∈ I and v ∈ V , we can simply
ignore these events. Once H ′ is determined, we remove all events with time θ ≤ H ′ from
the priority queue.

We now show the correctness and termination of the proposed algorithm.

Theorem 23 If all predictors are causal, computable as pw. linear functions and respect
FIFO, then the algorithm described in Section 5.1 returns a δ-routed DPE up to time
Hcomp ∈ R in finite time.

Proof If the algorithm terminates, the returned flow is feasible up to time Hcomp. The
fact that at any time θ we extend the flow along edges in Êi(ϑδ(θ), ϑδ(θ), f) implies that
(q̂, f) is a δ-routed DPE up to time Hcomp.

To ensure that the algorithm terminates, we note that a single change in the node in-
flow rate b−i,v at some time θ can cause finitely many events of type (E1) that all happen no
earlier than at time θ + τmin > θ. Assume, we have computed a flow up to time H. Then,
all events that occur up to time H + τmin/2 have already been enqueued. After processing
these finitely many events, we will have computed a flow up to time H+ τmin/2. This suffices
to assess that the algorithm terminates.

Remark 24 A simple analysis on the number of events shows that the number of distribu-
tion phases is in O(P · (1 + 2d+

max · |I|)
Hcomp/τmin+2) where P is the total number of jumps

of any network inflow rate ui, and d+
max := maxv∈V |δ+

v | denotes the maximum out-degree.
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5.4 Computing Approximate Dynamic Prediction Equilibria

Finally, we show that if the predictors fulfill a Lipschitz condition, any δ-routed DPE is also
an ε-approximate DPE. The exact notion of the Lipschitz condition is the following.

Definition 25 A predictor q̂i,e is called L-Lipschitz with L ∈ [0,∞) if for every feasible
flow f it holds

∀ (θ, θ̄), (θ′, θ̄′) ∈ R2 :
∣∣q̂i,e(θ, θ̄, f)− q̂i,e(θ′, θ̄′, f)

∣∣ ≤ L · ∥∥(θ, θ̄)− (θ′, θ̄′)
∥∥
∞ .

Theorem 26 If (q̂, f) is a δ-routed DPE and all predictors are L-Lipschitz, then (q̂, f) is
an ε-approximated DPE with ε := (L/νmin + 2) · (L/νmin + 1)|V |−1 · δ and νmin := mine∈E νe.

Proof Using the triangle inequality and the Lipschitz-property of q̂i,e, we deduce that the
function T̂i,e( · , · , f) is (L/νe + 1)-Lipschitz. Hence, for any simple path P = e1 · · · ek,
the function T̂i,P ( · , · , f) is Lipschitz-continuous with constant (L/νmin + 1)k ≤ (L/νmin +

1)|V |−1. The pointwise minimum ˆ̀
i,v( · , · , f) of finitely many such functions is (L/νmin +

1)|V |−1-Lipschitz. By applying the triangle inequality once more, we see that ∆̂i,e( · , · , f)
is Lipschitz-continuous with constant (L/νmin + 2) · (L/νmin + 1)|V |−1. Now, the equality
∆̂i,e (bθ/δc · δ, bθ/δc · δ, f) = 0 implies ∆̂i,e(θ, θ, f) ≤ (L/νmin + 2) · (L/νmin + 1)|V |−1 · δ = ε.

Remark 27 Note, that the approximation guarantee of Theorem 26 degrades exponentially
with the number of nodes in a network. There exist networks in which also the achieved
approximation quality ε degrades exponentially: Assume that the network consists of a
chain P of edges from node s to node t and the predictor for each edge e of the chain is
given by q̂i,e(θ, θ̄, f) := θ · L, and let τe = 0 and νe = 1. Then, the predicted exit time of
this chain P is T̂i,P (θ, θ̄, f) = θ · (L + 1)|V |−1. We add an additional edge e∗ from s to t
with q̂i,e∗(θ, θ̄, f) := 0 and τe∗ := 0. Now assume a network inflow rate of u := 1[0,1). A
flow f which sends all particles along the chain is a δ-routed DPE with δ = 1. However,
the minimal ε such that f is an ε-approximated DPE is ε = (L+ 1)|V |−1.

Note, that this does not imply that other methods of finding ε-approximated DPE must
also suffer from this lower bound.

We shortly discuss whether the introduced predictors are Lipschitz. Clearly, the Zero-
Predictor q̂Z

i,e is 0-Lipschitz. However, the linear predictor with any H > 0 and the
regularized linear predictor with H = ∞ are not Lipschitz. On the positive side, the
Lipschitz-condition holds for several predictors if all network inflow rates are bounded with
‖ui‖∞ <∞. Then, the queue length function qfe of a feasible flow f is Lqe-Lipschitz with

Lqe := max{νe,
∑
i∈I

1v=si ‖ui‖∞ +
∑
e′∈δ−v

νe′},

where v is the tail of edge e. This directly implies that the constant predictor q̂C
i,e and the

perfect predictor q̂P
i,e are Lqe-Lipschitz as well. For H <∞, the regularized linear predictor

q̂RL
i,e is L-Lipschitz with L = 2Lqe(2 + H/δ) where δ is the size of the regularization window.

The ML predictors also fulfill a Lipschitz-condition under an additional Lipschitz-constraint
on the map φi,e.
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6. Computational Study

In the following we compare the different predictors introduced in Section 4.3 by measuring
their performance in synthetic and real-world road networks. As ML-based predictors we
introduce both a linear regression based predictor q̂LR and a more advanced neural network
based predictor q̂NN.

6.1 Experiment Setup

We run an experiment for each considered network. The experiment consists of three
phases: In the first phase, we generate training data by computing δr-routed DPE in which
all commodities use the constant predictor. Secondly, this data is used to train both the
linear regression and the neural network based predictors. In the third step, we evaluate
the performance of all predictors by computing δr-routed DPE in which all predictors are
used side-by-side.

More specifically, we are given a network in which all commodities i ∈ I use the constant
predictor q̂C. Each commodity has a positive constant network inflow rate up to some
common time h, after which all network inflow vanishes. We sample this constant network
inflow rate according to a normal distribution ūi ∼ N (µi, σ

2
i ) and set ui(θ) := ūi for

θ ∈ [0, h] and ui(θ) = 0 otherwise. We compute several of these δr-routed DPE according
to Section 5.1 with a fixed reroute-interval δr and randomly chosen network inflow rates,
and use the resulting flows as training data.

For the evaluation step, we randomly pick one commodity j ∈ I as the so-called fo-
cused commodity. For each introduced, causal predictor, we add an additional commodity
i ∈ {q̂Z, q̂C, q̂L, q̂RL, q̂LR, q̂NN} using the corresponding predictor. These extra commodities
allow us to measure the predictors’ performance: They have the same source and sink as the
focused commodity, and a very small constant inflow rate ūi up to time h. This minimizes
their influence on the flow of the original commodities.

With this setup, we compute a δr-routed DPE. To assess the performance, we monitor
the average travel time of particles of the additional commodities: The network outflow
rate of a commodity i is given by oi(θ) :=

∑
e∈δ−t

f−i,e(θ)−
∑

e∈δ+t
f+
i,e(θ). Taking the integral

of ui(ψ)− oi(ψ) over [0, φ] yields the flow of commodity i inside the network at time φ. If
we integrate this quantity over φ ∈ [0, H] with H ≥ h, we obtain the total travel time of
particles of commodity i up to time H:

T total
i :=

∫ H

0

∫ φ

0
ui(ψ)− oi(ψ) dψ dφ

Now, T avg
i := T total

i /(h · ūi) denotes the average travel time. We compare these values

against their optimum T avg
i,OPT :=

∫ h
0 min{H, li,s(θ)} − θ dθ/h. The slowdown is defined as

T avg
i /T avg

i,OPT − 1.
We also monitor the accuracy of the predictor in hindsight: Let δs denote the fixed step

size of two consecutive interpolation points of the machine-learned predictor. The mean
absolute error of predictor q̂i is defined as

MAEi :=

∑
θ̄∈Θ̄

∑
j∈[kf ]

∑
e∈E

∣∣q̂i,e(θ̄ + jδs, θ̄, f)− qe(θ̄ + jδs)
∣∣∣∣Θ̄∣∣ · kf · |E| ,
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Figure 3: A network with source s and sink t. Edges are labeled with (τe, νe).

where Θ̄ := { jδr | j ∈ N0, jδr ≤ H } is the set of times at which routes were computed.

We compute a total ofN δr-routed DPE with randomly chosen commodities and network
inflow rates, and aggregate the results to obtain reliable performance metrics.

6.2 Data

We conduct our experiment on several networks. The first is a warm-up synthetic graph
with 4 nodes and 5 edges as presented in Figure 3; it has a single commodity with a manually
chosen demand µi. The second network called the Nguyen network was taken from Nguyen
(1984) augmented with capacities and edge transit times by Han et al. (2019). Appropriate
demand values were generated by hand. The other graphs are real world road networks
collected in (Transportation Networks for Research Core Team, 2016). Thereof, we use the
networks of the cities Sioux Falls and Anaheim. These datasets come with edge attributes
travel time τe and capacity νe. Moreover, they include static origin-destination demand
values µi. We add versions of these networks with a single manually chosen commodity and
a corresponding demand µi. All manually chosen parameters can be found in Graf et al.
(2022a). Details of each network are depicted in Table 1.

Table 1: Attributes of the considered networks
Network |E| |V | |I| νavg τavg µavg σavg

Synthetic 5 4 1 1.4 1.4 4 0.5

Nguyen 19 13 4 50 2.2 100 50

Sioux Falls I 75 24 1 10,247 4.13 8,000 2,412

Sioux Falls II 75 24 528 10,247 4.13 682.95 603

Anaheim I 914 416 1 6,030 0.88 8,000 900

Anaheim II 914 416 1.406 6,030 0.88 74.5 900

Furthermore, we use the following parameters for computing the δr-DPE in all networks:
The network inflow rates vanish at time h = 12 and the computation horizon is set to
Hcomp = 60 which is large enough for all particles to reach the sink. We set the reroute
interval to δr = 1/8. The predictors q̂L and q̂RL use a prediction horizon of H = 20, and
q̂RL has a regularization window of δ = 1. The ML predictors q̂ML have a step size of δ = 1
with kp = 20 past and kf = 20 future samples.
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6.3 Machine-Learned Predictors

To assess the impact of different ML-based models in our setting, we train simple linear
regression predictors as well as more advanced neural network predictors. To obtain training
data, we compute a number of δr-routed DPE flows. In these flows, all commodities use
the constant predictor introduced in Section 4.3. This allows the model to estimate queues
when agents follow instantaneously shortest paths. Moreover, the predictors are trained
separately for each network so that they can take local congestion effects into account.

The features for our models are the prediction time θ̄, kp = 20 observations of the
past queue length and of the past edge load on a subset Ein = {ein

1 , . . . , e
in
n } of edges.

The output of the model are kf = 20 samples of the predicted queue length of edges
in Eout = {eout

1 , . . . , eout
m } ⊆ E. We implemented the following two variants: For the

first, a single model taking observations of all edges of the network as input is trained,
i.e. Ein = Eout = E. In the second, a model for each edge e is trained that only uses
observations of surrounding edges, i.e. Ein = N(e), Eout = {e}, where N(e) consists of
edges that are no further than 3 jumps away from e on the undirected graph.

The Linear Regression Predictor As a first machine-learning method we employ a
linear regression predictor q̂LR. This method learns a weights matrix W and a bias vector
b minimizing the error between WXi + b and Yi. We found that the Ridge regressor offered
by the scikit-learn library (Pedregosa et al., 2011) works well for our uses. This regressor
minimizes the linear squared error together with an L2 regularization term.

The Neural Network Predictor To compare the capabilities of different machine-
learning methods with different levels of complexity, we also develop a neural network
based predictor q̂NN. The neural network consists of 4 densely connected layers. The first
three layers have the same size as the input. The LeakyReLU function acts as the activa-
tion function between the dense layers reducing the vanishing gradient problem. An Adam
optimizer minimizes the mean absolute error as the loss function. Moreover, we apply an L2

regularization term to the weights and biases of each layer; this helps to reduce over-fitting.

6.4 Comparison of Predictors

We first take a closer look at the synthetic network shown in Figure 3. Here, a typical
DPE, in which the single commodity with source s and sink t uses the constant predictor,
shows the following behavior: Initially, the paths st and svwt are the predicted shortest
s-t-paths both with a predicted traversal time of 3. While there is a network inflow rate
higher than 3, queues at the edges st, sv and wt build up in such a way that both paths
st and svwt have roughly the same predicted traversal time. Moreover, during that time,
particles arriving at w never leave their original path by taking edge ws.

However, once the network inflow ends, the queues of sv and st start to decrease imme-
diately. As soon as the queue of st is small enough, particles arriving at w start using both
the path wst and the direct connection wt. Eventually, all remaining particles arrive at t
without changing their route again.

The return of some particles to s from w indicates that a more advanced predictor
could anticipate the situation better and send these particles along edge st in the first
place. Figure 4 shows the slowdown and the MAE in N = 20 evaluation runs in the
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Figure 4: The experiment results of the synthetic network.
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Figure 5: The experiment results of the Anaheim II network.

experiment setup declared above, aggregated in two box plots. Here, we used the machine-
learning variants with full-network observations for both the linear regression and the neural
network predictors.

The figure shows that the constant predictor actually has the highest slowdown in this
scenario. Even the Zero-Predictor, which always sends particles at equal rates along both
st and svwt, has a slightly lower slowdown. While the linear and the regularized linear
predictor already show a large improvement compared to the constant predictor and the
Zero-Predictor, the two machine learned predictors win against those by another order of
magnitude.

In larger networks, these results are less pronounced: While the machine-learned pre-
dictors still clearly dominate the others, the difference between the other four predictors
is less significant. In most experiments, q̂L performs the best out of these four. Figure 5
shows the same box plots for the real-world network of Anaheim II.
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Table 2: Results of the experiment in the considered networks.

Average Slowdown in % CPU Time

Network q̂Z q̂C q̂L q̂RL q̂LR q̂NN Train q̂LR Train q̂NN Evaluate

Synthetic 16.07 17.36 3.01 1.91 0.03 0.00 6s 7m 6m

Nguyen 2.02 1.21 2.56 1.36 0.27 0.35 14s 10m 10m

Sioux Falls I 7.78 7.16 4.12 4.61 0.73 0.06 9s 5m 46m

Sioux Falls II 5.81 6.18 4.25 4.99 0.26 0.09 1m 1h45m 47m

Anaheim I 22.00 22.11 14.67 16.22 0.50 0.23 6m 1h35m 6h31m

Anaheim II 13.36 6.68 5.11 6.48 1.67 1.25 33m 18h35m 41h49m

The results of the experiment are summarized in Table 2. In the Anaheim II experi-
ment, a total of 163 flows for training were computed to provide a total of 51,019 training
samples for the machine-learned predictors. In all other experiments, 500 training flows
were computed yielding 198,500 training samples. A training/validation split of 90%/10%
was used. Moreover, only for Anaheim I and Anaheim II the machine-learning variants with
observations of only neighboring edges (at most three jumps away in the undirected graph)
as inputs were used. On average, this corresponds to 1.0% of all edges. For all experiments,
N = 20 evaluation runs were carried out. The CPU times listed were measured on an
Intel R© CoreTM i7-1165G7 @ 2.80GHz while using all four cores.

Table 3: The approximation quality εq̂i of each predictor.

Approximation quality εq̂i

Network q̂Z q̂C q̂L q̂RL q̂LR q̂NN

Synthetic 0.00 0.67 2.94 0.83 0.00 0.50

Nguyen 0.00 0.74 25.52 5.47 0.68 0.63

Sioux Falls I 0.00 0.36 9.52 1.44 0.15 0.17

Sioux Falls II 0.00 0.61 24.23 8.06 0.20 0.41

Anaheim I 0.00 0.58 11.83 6.09 0.51 0.54

Anaheim II 0.00 0.65 6.57 11.25 0.52 0.46

Table 3 shows numerically obtained approximation qualities εq̂ for each predictor q̂ in
each network where εq̂ is the minimal value such that

f+
i,e(θ) > 0 =⇒ ∆̂i,e(θ, θ, f) ≤ εq̂i

holds for all computed δ-routed DPE flows f of a particular network instance. As the Zero-
predictor never changes its predicted shortest routes, its approximation quality is perfect.
On the negative side, the linear and regularized linear predictors have worse approximation
qualities. This aligns with our theoretical findings as the linear predictor is not Lipschitz
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at all and the Lipschitz constant of the regularized linear predictor is quite high with
L = 2Lqe(2 + H/δ). Furthermore, we can see that for the constant predictor and the
machine-learned predictors, a DPE can be approximated well with our method.

7. List of Notations

Symbol Description

R, R≥0, R>0 the set of all, non-negative and positive real numbers, respectively
Lploc(I, J) the set of locally p-integrable functions g : I → J with I, J ⊆ R
C(A,B) the set of continuous functions g : A→ B

R the set of g ∈ L1
loc(R,R≥0) with g|(−∞,0)

a.e.
= 0

G = (V,E) a directed graph with nodes V and edges E
δ−v , δ

+
v the incoming and outgoing edges of node v

νe ∈ R>0 the capacity of an edge e
τe ∈ R>0 the (free-flow) transit time of an edge e
I the set of commodities
si, ti ∈ V the source and sink node of commodity i
Vi ⊆ V , Ei ⊆ E the nodes, edges lying on a si-ti-path
ui ∈ R the network inflow rate of commodity i
f = (f+, f−) a flow over time with f+, f− ∈ RI×E
f+
i,e(θ) the inflow rate of particles of commodity i into edge e at time θ

f−i,e(θ) the outflow rate of particles of commodity i out of edge e at time θ

F+
i,e(θ), F

−
i,e(θ) the cumulative in- and outflow until time θ

qe(θ) the queue length of edge e at time θ
f+
e , f−e the aggregate in- and outflow rates f+

e :=
∑

i∈I f
+
i,e, f

−
e :=

∑
i∈I f

−
i,e

b−i,v(θ) the inflow rate of particles of commodity i into node v

Te(θ) the exit time when entering edge e at time θ, Te(θ) := θ + qe(θ)/νe + τe
H ∈ R a time horizon
q̂i,e(θ, θ̄, f) the predicted queue length of edge e at time θ as predicted by commodity

i at time θ̄ given the (historical) flow f

T̂i,e(θ, θ̄, f) the predicted exit time of edge e when entering at time θ
ˆ̀P
i (θ, θ̄, f) the predicted exit time of path P when entering at time θ

ˆ̀
i,v(θ, θ̄, f) the predicted earliest arrival time at ti when departing at time θ in v

∆̂i,e(θ, θ̄, f) the predicted delay for taking edge e at time θ

Êi(θ, θ̄, f) ⊆ Ei the set of θ̄-estimated active edges at time θ

Funding. The research of the authors was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - HA 8041/1-1 and HA 8041/4-1.

Acknowledgements. We would like to thank the three anonymous reviewers for their
constructive feedback during the reviewing process.

28



Prediction Equilibrium for Dynamic Network Flows

References

Moshe Ben-Akiva, Michel Bierlaire, Haris N. Koutsopoulos, and Rabi Mishalani. Real
Time Simulation of Traffic Demand-Supply Interactions within DynaMIT, pages 19–36.
Springer US, Boston, MA, 2002.

Umang Bhaskar, Lisa Fleischer, and Elliot Anshelevich. A Stackelberg strategy for routing
flow over time. Games and Economic Behavior, 92:232–247, 2015.

David E. Boyce, Bin Ran, and Larry J. LeBlanc. Solving an instantaneous dynamic user-
optimal route choice model. Transportation Science, 29(2):128–142, 1995.

Häım Brézis. équations et inéquations non linéaires dans les espaces vectoriels en dualité.
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