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Abstract

Different users of machine learning methods require different explanations, depending on their goals.
To make machine learning accountable to society, one important goal is to get actionable options for
recourse, which allow an affected user to change the decision f(x) of a machine learning system by
making limited changes to its input x. We formalize this by providing a general definition of recourse
sensitivity, which needs to be instantiated with a utility function that describes which changes to
the decisions are relevant to the user. This definition applies to local attribution methods, which
attribute an importance weight to each input feature. It is often argued that such local attributions
should be robust, in the sense that a small change in the input x that is being explained, should
not cause a large change in the feature weights. However, we prove formally that it is in general
impossible for any single attribution method to be both recourse sensitive and robust at the same
time. It follows that there must always exist counterexamples to at least one of these properties.
We provide such counterexamples for several popular attribution methods, including LIME, SHAP,
Integrated Gradients and SmoothGrad. Our results also cover counterfactual explanations, which
may be viewed as attributions that describe a perturbation of x. We further discuss possible ways
to work around our impossibility result, for instance by allowing the output to consist of sets with
multiple attributions, and we provide sufficient conditions for specific classes of continuous functions
to be recourse sensitive. Finally, we strengthen our impossibility result for the restricted case where
users are only able to change a single attribute of x, by providing an exact characterization of the
functions f to which impossibility applies.
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1. Introduction

As machine learning (ML) is changing science and society in many ways, its trustworthiness and
interpretability are coming under increasing scrutiny (Varshney, 2022; Molnar, 2022). Since most
ML systems are not inherently interpretable, there have been many proposals to generate explanations
that communicate relevant aspects of their internal workings (Linardatos et al., 2020; Samek et al.,
2019). Which particular aspects are relevant, depends on the target audience and its goals (Arrieta
et al., 2020; Varshney, 2022). We consider here the case that the target audience consists of users with
corresponding feature vectors x ∈ Rd, who are affected by the decisions f(x) of an ML system. It is
assumed that each user has some limited ability to change (a subset of) their features in x, and the
goal of the users is to use this ability to influence the resulting decision of f in a way that increases
their utility by a sufficient amount. In order to achieve this goal, an explanation for a given input x
should provide actionable options for recourse, i.e. changes to x that both provide sufficient utility
and lie within the ability of the user to realize.

Attribution Methods and Counterfactual Explanations We consider explanations that take the
form of local attributions ϕf (x) ∈ Rd, which are vectors that assign a weight to each feature in x
that indicates its importance. Many explanation methods produce such attributions. For instance,
well-known methods like LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee, 2017), Integrated
Gradients (Sundararajan et al., 2017) and SmoothGrad (Smilkov et al., 2017) are attribution methods.
When applied to image classification, where the features are pixels, the attribution vector ϕf (x) is
called a saliency map and can be visualized as a picture that highlights the most important pixels.
An approach closely related to attributions, which is often considered in the context of recourse, is
to provide counterfactual explanations (Karimi et al., 2021; Verma et al., 2020; Keane et al., 2021).
Methods of this type include those by Poyiadzi et al. (2020); Karimi et al. (2020); Wachter et al.
(2017); Mothilal et al. (2020); Dandl et al. (2020); Dhurandhar et al. (2018). These methods generate
an alternative (counterfactual) input xcf that is both similar to x and provides sufficient utility. For
example, if f is a classifier, then f(xcf) might be a more desirable class for the user than f(x). The
differences between xcf and x are then interpreted as the changes needed to flip the class, so that
ϕf (x) = xcf − x can again be regarded as an attribution vector.

Robustness to Changes in the Inputs Developing precise design criteria for explainability meth-
ods has proven to be difficult (Jacovi and Goldberg, 2020; Zhou et al., 2021; Hooker et al., 2019).
In the absence of these, a way forward is to consider desirable criteria that should be satisfied. One
such criterion, which is commonly proposed in the context of recourse, is for explanations to be
robust to changes in the inputs (Karimi et al., 2021; Alvarez-Melis and Jaakkola, 2018): if we reason
that similar users should get similar options for recourse, then small changes in the input x should
not cause large jumps in the explanation ϕf (x). This can either be formalized to mean that ϕf
should be continuous or, more restrictively, that it should be (locally) Lipschitz continuous. We will
adopt the weaker of these two, because that strengthens our main theoretical results: a function that
violates continuity automatically also violates Lipschitz continuity. Thus, we settle on the following
definition of robustness:

Definition 1 An attribution method ϕf : X → Rd is called robust if it is continuous.
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Robustness can be seen as a measure of coherence (Jacovi et al., 2023). It appears to be difficult
to achieve, however, because a sequence of empirical counterexamples have been found in which
several methods like LIME, SHAP and Integrated Gradients are not robust (Ghorbani et al., 2019;
Slack et al., 2020; Dombrowski et al., 2019; Alvarez-Melis and Jaakkola, 2018).1 On the other hand,
it has been established that SmoothGrad and C-LIME (a continuous variant of LIME) are provably
robust, because they produce attributions ϕf that are always Lipschitz continuous (Agarwal et al.,
2021).

Main Contributions We take a more abstract look at why existing attribution methods may fail
at being robust to changes in the inputs. Our explanation is that there is in fact a fundamental
contradiction between robustness and providing recourse. This is established by our main result,
Theorem 4 in Section 3, which shows that:

For any way of measuring utility, there exists a (continuous) machine learning model f for
which no attribution method ϕf can be both recourse sensitive and continuous.

Our result captures many possible variations of how recourse may be defined via a permissive
property we call recourse sensitivity. Recourse sensitivity is introduced in Section 2. In particular, it
allows attributions ϕf (x) to be scaled arbitrarily (which makes it easier for a suitable ϕf to exist),
as long as the vector ϕf (x) points in any direction that would allow the user to obtain sufficient
utility. We also do not restrict to the case where users want to flip the class of a classifier f , but
allow for a general utility function uf that measures the user’s utility. Finally, the contradiction
between recourse sensitivity and continuity of ϕf does not require f to be some obscure function,
but already occurs, for instance, for quadratic functions f (see Section 3.4). This implies that most
model classed used in practice are expressive enough to exhibit the problem. In Section 3, we
further illustrate our main impossibility result with experiments and analytical examples that show
cases in which the well-known attribution methods SmoothGrad (Smilkov et al., 2017), Integrated
Gradients (Sundararajan et al., 2017), LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017) fail to be recourse sensitive. We also provide an analytical example in which counterfactual
explanations fail to be continuous. We then reflect on our impossibility result in Section 4, and
discuss possible ways around it. While the impossibility result implies that some functions f are
problematic, it is still possible that joint recourse sensitivity and continuous attributions are possible
under (necessarily restrictive) conditions on f , for instance if f is linear. We study this in Section 5,
where we provide sufficient conditions on f that do generalize beyond the linear case. Finally, in
Section 6, we strengthen the impossibility result from Theorem 4 and the sufficient conditions from
Section 5 by providing an exact characterization of the set of functions f to which impossibility
applies for two restricted special cases: first we characterize impossibility for dimension d = 1; then
we extend this result to any d ≥ 1 under the assumption that the user is only able to change a single
feature.

1. Integrated Gradients is continuous by design, so in this case we can take the empirical results to mean that it is not
Lipschitz continuous. In practice, the two notions are difficult to distinguish: if we only have sample access to a
function, it is difficult to discern whether a sudden jump between two samples is caused by an actual discontinuity, or
occurs because the function is very steep.
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1.1 Related Work

The Taxonomy of Explanation Methods Interpretability of machine learning methods can be
achieved by training inherently interpretable models f or by providing post-hoc explanations of a
model f that has already been trained. Explanations can be global, explaining aspects of the full
function f , or local, explaining the behavior of f around a given point x (Zhou et al., 2021; Molnar,
2022; Varshney, 2022; Das and Rad, 2020). Recourse fits into this taxonomy as a post-hoc, local
type of explanations (Linardatos et al., 2020; Samek et al., 2019).

Distance Measures The survey by Karimi et al. (2021) provides a unified view on existing algo-
rithms that provide recourse via counterfactual explanations. In the simplest case, such methods
measure the distance between x and xcf by the Euclidean distance, but more refined distance measures
have also been proposed (Wachter et al., 2017; Karimi et al., 2020; Poyiadzi et al., 2020; Joshi et al.,
2019; Arvanitidis et al., 2021). For simplicity, we restrict attention to the Euclidean distance in our
results, but we expect that they can be generalized to many other distance measures as well.

Consequential Recommendations Karimi et al. (2021) further describe a generalization of coun-
terfactual explanations, called consequential recommendations, in which users are not able to change
individual features directly, but can only influence features indirectly via more abstract actions. The
effect of actions on features is described by a causal model, and instead of the change in features
the users are restricted by the cost of taking particular actions. As will be discussed in Section 2,
our definition of recourse sensitivity is sufficiently general that it can also express consequential
recommendations. Since the conditions of our main theorem are very mild, they will then also apply
to many, but not all, causal models.

Other Notions of Robustness As mentioned already, robustness can mean multiple things. So
far, we discussed (local) Lipschitz continuity and ordinary continuity. These notions both consider
robustness with respect to the input variable x. One other notable interpretation of robustness is
robustness of a counterfactual with respect to changes to the model f . For instance, a model may
be periodically retrained (Ferrario and Loi, 2022) or it may be updated when someone wants to be
removed from the training set (Pawelczyk et al., 2022). There have been multiple methods developed
to generate counterfactuals that are still valid under these model shifts (Black et al., 2022; Upadhyay
et al., 2021; Hamman et al., 2023). These types of robustness are orthogonal to the type of robustness
we consider in this work.

Solidifying the Foundations of Explainability Explainability is an exciting new research area
that is witnessing a flurry of new methods and ideas. But it is clear that no single explanation
method can exist that is good for all purposes (Guidotti et al., 2018). As limitations of existing
explanation methods are being discovered (Adebayo et al., 2018; Kindermans et al., 2019; Rudin,
2019), this has lead to a desire to solidify the foundations and practice of explainability research. For
instance, there is a lively debate on how to measure desirable properties like faithfulness, fidelity,
plausibility, etc. (Jacovi and Goldberg, 2020; Ge et al., 2021; Guidotti et al., 2018). In this context, it
is important to know which desirable properties can coexist in principle, and our work contributes to
this understanding by pointing out that robustness is incompatible with providing recourse.
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A series of recent works find fault with post-hoc attribution methods, either by showing empirical
examples in which they exhibit undesirable behavior or by establishing theoretical results that identify
fundamental limitations. On the empirical side, Rudin (2019) gives multiple arguments why post-hoc
methods should not be used for high-stake decisions, because they are often not faithful or provide
too little detail; Laugel et al. (2019) show that post-hoc counterfactuals have a high risk of being far
away from any ground truth data point; Slack et al. (2020) show that post-hoc methods can be used
to hide biases in a model; and in an adversarial setting it has been shown that post-hoc explanations
can easily be manipulated (Dombrowski et al., 2019; Bordt et al., 2022). On the theoretical side,
subsequent to a pre-print of our work, Bilodeau et al. (2022) derived additional impossibility results,
which apply to hypothesis testing between pairs of model behaviors from the output of attribution
methods. They are able to obtain much more general conclusions than we do, because they restrict
attention to the more narrow class of attribution methods that are complete and linear, whereas our
impossibility results apply to any attribution method in general. A significant limitation of requiring
completeness is that it excludes all counterfactual methods that are commonly used in algorithmic
recourse.

Since many of the problems with attribution methods are related to challenges in describing exactly
when and for what purpose explanation methods can be trusted, one way forward may lie in the calls
for greater rigor by Lipton (2018) and Doshi-Velez and Kim (2017). Leavitt and Morcos (2020)
even go as far as claiming that “interpretability research suffers from an over-reliance on intuition-
based approaches that risk — and in some case have caused — illusory progress and misleading
conclusions”. These works plead for the development of theory that may lead to provably better
interpretability methods, and we view our work as a contribution in that direction.

2. Recourse Sensitivity

In this section we formally introduce recourse sensitivity, and show that, on its own, it can always be
satisfied, for instance by counterfactual explanations.

Setting We assume that x takes values in some domain X ⊆ Rd, and that the machine learning
model f is an element of the set F of all functions from X to R. An attribution method for a given
function f ∈ F is a function ϕf : X → Rd.

Utility Functions To define recourse sensitivity, we describe the user’s preferences for a given
model f ∈ F by a utility function uf : X ×X → R with the interpretation that uf (x, y) is the utility
experienced by the user if they succeed in changing their original features x to new features y, which
implies that the decision of machine learning model f changes from f(x) to f(y). We assume that
the user is satisfied if they achieve utility uf (x, y) ≥ τ , for some threshold τ ∈ R.2 For instance,
if f represents the score of one of the classes in a classification task, with the sign of f indicating
whether the class is chosen by the classifier, then the user may have a preferred class they would
like to be classified in. For example, the preferred class could be the class for which the score is
positive. This objective, which is closely related to finding counterfactual explanations or adversarial

2. Mathematically, it is always possible to reduce to the case that τ = 0 by subtracting τ from the utility function, but for
simplicity we allow general τ .
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examples (Karimi et al., 2021), can be described by

uf (x, y) := f(y) ≥ 0. (1)

Alternatively, if f predicts a credit risk score for the user, they might care about increasing their score
by some amount τ , which can be represented by

uf (x, y) := f(y)− f(x) ≥ τ. (2)

And, as a third example, if f outputs the probability of some event and the user would like to increase
(or decrease) that probability by a certain percentage p × 100%, their goal could be expressed as

uf (x, y) :=
f(y)

f(x)
≥ 1 + p (3)

(or uf (x, y) =
f(x)
f(y) ≥ 1/(1− p)).

In some of our formal results we will restrict attention to utility functions that depend on x and y
only via the decisions f(x) and f(y) of f . This is a very natural restriction, which is satisfied by all
examples (1), (2) and (3) given above.

Recourse Sensitivity Informally, we call an attribution method ϕf recourse sensitive if the user
can always achieve sufficient utility by moving in the direction of the vector ϕf (x). We aim for a
very permissive definition, which covers all methods that can reasonably be said to provide recourse,
so if there are multiple such directions at an input x, then we allow any direction; and if there is no
such direction at x, then ϕf (x) is allowed to be anything.

Formally, we assume the user is able to change their input x to an alternative input y over at most
some distance δ ≥ 0. This can be used to express that a feature like income cannot double in
a reasonable period of time. As discussed in the introduction, we restrict attention to Euclidean
distance for simplicity. We further allow for additional constraints on the alternatives via a constraint
set C(x). Thus, the set of attainable points for a user with original input x is

A(x) = {y ∈ X | ‖x− y‖ ≤ δ, y ∈ C(x)}.

The constraints C(x) may express that the user is unable to change some features in x that they
have no control over, like gender, age group or location (Poyiadzi et al., 2020; Mothilal et al., 2020),
and we assume throughout that x ∈ C(x), which means that the user always has the option of
not changing their features. It could also be the case that the user can only change the features
in a particular way (e.g. age can only increase) or that features can only be changed together, for
instance as described by an underlying causal model as in consequential recommendations (see the
introduction) (Karimi et al., 2021). In most of our results, the possible choices for C(x) that we will
focus on are:

(a) C(x) = X : the unrestricted case;
(b) C(x) = {y ∈ X | ‖x− y‖0 ≤ k} with ‖z‖0 denoting the number of coordinates in z that are

non-zero: the sparse case in which changing each feature requires effort and it is assume that
the user can change at most k features; and
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(c) C(x) = {y ∈ X | y = x+ αz, α ≥ 0, z ∈ D} for some set of directions D ⊆ Rd: the case
that the user is only allowed to move in a restricted set of directions D.

The points around x that are both attainable by the user and provide sufficient utility to reach a given
threshold τ then correspond to

T (x) = {y ∈ A(x) | uf (x, y) ≥ τ}.

Our definition of recourse sensitivity now states that any attribution at x should point in the direction
of some y that is in the set T (x):

Definition 2 (Recourse Sensitivity) Given a threshold τ ∈ R, constraint function C, and model
f ∈ F , an attribution method ϕf : X → Rd is called recourse sensitive if

ϕf (x) = α(y − x) for some α > 0 and y ∈ T (x),

for all x ∈ X for which T (x) is non-empty.

The case that T (x) is empty corresponds to a user who has no options for recourse, so no explanation
could possible help them. In this case we allow ϕf (x) to be arbitrary.

Remark 3 (Satisfying Recourse Sensitivity) It is clear that, in the absence of further requirements
on ϕf , recourse sensitivity can trivially be satisfied by setting ϕf (x) = y − x for some arbitrary
y ∈ T (x) whenever T (x) is non-empty, and setting ϕf (x) = 0 otherwise. It is also satisfied by any
counterfactual explanation xcf that minimizes ‖xcf− x‖ subject to the constraint that uf (x, xcf) ≥ τ
and xcf ∈ C(x). To see this, note that, if ‖xcf − x‖ ≤ δ, then xcf ∈ T (x), so ϕf (x) = xcf − x is a
recourse sensitive choice. And if ‖xcf − x‖ > δ, then T (x) is empty and ϕf (x) = xcf − x is also
allowed.

2.1 Profile Picture Example

We will now illustrate the concept of recourse sensitivity in a more concrete setting. Consider the
following use case: a user has to upload an official profile picture of themselves x to a website to
obtain a personalized card, which grants them access to some service.3 The receiving party performs
an automated check to verify if there is enough contrast between the brightness of the person and the
background of the image, which is implemented by a function f that computes the squared difference
between the average pixel values of the background and the average pixel values of the person. The
picture is then accepted only if f(x) ≥ λthresh for some threshold parameter λthresh. Users whose
picture is rejected want to submit a correct picture that is accepted, which would correspond to the
utility function uf (x, y) = f(y)− λthresh ≥ 0. The amount by which the user is able to increase the
contrast may be described by a suitable choice of δ, and optionally by describing constraints on how
the user can manipulate the image via C(x). Two examples with corresponding saliency maps are
shown in Figure 1. Negative values indicate that a part of the picture should be darker, while positive
values indicate that a part should be lighter. It can be seen that both saliency maps indicate the parts
of the profile picture that have to be adjusted to increase the contrast, which makes them recourse
sensitive: For the rejected picture, increasing the contrast is a direction that points towards sufficient

3. This example was inspired by the third author’s frustrating attempts to obtain a new transport card for the Dutch
railways. In reality he could not figure out why his picture was rejected.
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(a) Accepted profile picture (b) Rejected profile picture

Figure 1: Two examples of profile pictures (left in each subfigure) and their corresponding saliency
maps (right in each subfigure). The red areas with circles indicate positive values, and the blue areas
with lines correspond to negative values. In both cases changing the picture in the direction of the
saliency map will result in a larger contrast between the person and background, which indeed moves
it further into/towards the accepted class.

utility, and is therefore recourse sensitive. For the accepted picture, increasing the contrast would
only strengthen the classification of the preferred class. Further details about Figure 1 are provided
in Appendix A, and this example is continued in Section 3.3.

3. Impossibility of Recourse with Robustness in General

In this section we first present our main impossibility result, which shows that no attribution
method can be both recourse sensitive and robust at the same time. Since no method can have both
properties, it follows that there must exist counterexamples for every existing attribution method
in which it violates at least one of the two. We illustrate our main result by explicitly constructing
such counterexamples, both analytically for SmoothGrad, Integrated Gradients and Counterfactual
Explanations, and empirically for LIME, SHAP, SmoothGrad and Integrated Gradients. At the end
of the section we sketch the idea behind the proof of our impossibility theorem. The full proof is
provided in Appendix B.

3.1 Main Impossibility Result

We restrict our attention to utility functions that only depend on x and y via the decisions of the
machine learning model f , i.e. for which there exists a function ũ such that uf (x, y) = ũ(f(x), f(y)).
This is a very natural restriction that covers all examples from Section 2.

Theorem 4 Let δ > 0 and τ ∈ R be arbitrary, and let the constraint function C(x) be any
of the choices (a), (b) or (c) on p. 6. Furthermore, assume the utility function uf is of the form
uf (x, y) = ũ(f(x), f(y)), and that there exist z1, z2 ∈ R for which ũ(z1, z2) ≥ τ and ũ(z1, z1) < τ .
Finally, assume that X ⊆ Rd contains a line segment ` of length strictly larger than δ and such that
` ⊆ C(x) for all x ∈ `. Then there exists a continuous function f : X → R for which no attribution
method ϕf can be both recourse sensitive and continuous.

The required existence of z1 and z2 rules out the trivial case that the user can never achieve sufficient
utility or will already receive sufficient utility without changing their input x. The existence of the
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line segment ` is used to ensure there is enough room within the domain X and the constraints C(x)
to construct the counterexample. Although already very mild, the conditions of Theorem 4 can
potentially be generalized, as discussed in Section 7. As an example of a setting that is covered by
the theorem, we may for instance consider the classification setting in which the user wants to be
classified in some preferred class, with a full domain and without any constraints. The conditions of
the theorem are then all satisfied, for any z1 < 0 < z2, and the result simplifies to:

Corollary 5 (Unconstrained Classification) Suppose X = Rd, C(x) = Rd, uf (x, y) = f(y),
τ ∈ R and δ > 0. Then there exists a continuous function f : X → R for which no attribution
method ϕf can be both recourse sensitive and continuous.

3.2 Analytical Examples

We proceed to construct explicit analytical counterexamples f and utility functions uf for the
SmoothGrad and Integrated Gradients attribution methods. Since both attribution methods are always
continuous, it follows from Theorem 4 that they cannot always be recourse sensitive, which is what
the counterexamples demonstrate. Both examples are in dimension d = 1 and we will assume that
there are no constraints, i.e. X = C(x) = R.

Example 1 (SmoothGrad) Consider the function f(x) = x2, the utility uf (x, y) = f(y) − f(x)
and τ ∈ R, which expresses that the user wants to increase f by at least τ . The attribution given to
each point by the SmoothGrad procedure will be

ϕSG
f (x) = Ea∼N(0,σ2)

[
f ′(x+ a)

]
= Ea∼N(0,σ2)[2x+ 2a] = 2x.

Here, N(0, σ2) denotes the normal distribution with mean 0 and some specified variance parameter
σ2 > 0. In almost all points x this attribution indeed points in a direction that increases f(x).
However, in the point x = 0 the attribution is 0, which does not provide meaningful recourse, because
it does not tell the user that they can in fact increase f(x) by changing x. Whenever δ ≥

√
τ the

user would be able to achieve a sufficient increase in utility by moving in any direction from x = 0,
and this violates recourse sensitivity.

Example 2 (Integrated Gradients) We examine f(x) = e−x
2

and uf (x, y) =
f(x)
f(y) ≥ τ for some

threshold τ > 1, which means the user wants to decrease f(x) by a factor of at least τ . Also choose
δ such that δ ≥

√
log τ . If the user starts in x = 0, then this is possible by moving far away enough

in both directions. Indeed if you would move to some y ∈ R from x = 0 with δ ≥ |y| ≥
√

log(τ), it
is possible to decrease f by the requested fraction τ within a δ-distance of x = 0, because then

uf (0, y) =
1

e−y2
= ey

2 ≥ elog(τ) = τ. (4)

We can explicitly calculate the attributions of the Integrated Gradients method, which depends on a
baseline point x0:

ϕIG
f (x) = (x− x0)

1∫
0

f ′
(
x0 + α(x− x0)

)
dα = f(x)− f(x0) = f(x)− 1,
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where we have chosen x0 = 0 as the baseline. Note that ϕIG
f (x) < 0 for all x 6= 0 and ϕIG

f (0) = 0.
In this case, recourse is provided for x < 0, as moving towards the negative side is the fastest way to
decrease the output of f . However, recourse is not provided for x = 0, for which ϕIGf (0) = 0, but it
should be non zero because of (4). There are more points which do not get recourse in this example.
The points with x > δ can only decrease their output by moving to the right. To decrease the output
by moving to the left would require moving a distance that is larger than δ. To see this, note that the
function f is symmetric and to decrease f(x) by moving to the left from some x > δ would at least
require that y < −x, which is already a distance of 2δ away from x. As noted before, the attribution
is always negative, so we find that ϕIGf is also not recourse sensitive for the points x > δ.

Let us look at one last example. We will show that in some cases for binary classification, a
counterfactual explanation cannot be continuous.

Example 3 (Counterfactual Explanations) For this example set X = R2, uf (x, y) = f(y), τ =
0, δ > 1 and

f(x) = ‖x‖ − 1.

In this example, the points within the unit circle are classified in the negative class and the points
outside it as the positive class. The utility is such that if you are inside the circle, you want to move
out of it. We can construct a simple counterfactual method by setting

xCF(x) = argmin
‖y‖≥1

‖x− y‖.

This optimization problem is well defined and has a unique solution for every point x 6= 0. There,
the problem is still well-defined, but no unique solution exists. For the points with ‖x‖ ≥ 1, the
minimizer will be the point itself, and for ‖x‖ < 1, it will be x/‖x‖. Using these counterfactuals we
can build a recourse sensitive attribution function by setting

ϕf (x) =

{
0 if ‖x‖ ≥ 1,
x
‖x‖ − x if 0 < ‖x‖ < 1.

For the point x = 0 we now have many options, as the attribution is allowed to point to any point on
the unit circle. However, no choice we make can produce an attribution that is continuous at x = 0,
because the limit of ϕf (x) is different when x approaches 0 along different lines.

3.3 Profile Picture Example (Continued)

In this section we complement our analytical examples from the previous section with empirical
examples in which well-known attribution methods are recourse insensitive. We will demonstrate
this for LIME, SHAP, SmoothGrad and Integrated Gradients, which can all be used to generate
saliency maps. Our setup continues the profile picture example from Section 2.1. Since the gradient
of f is linear in x in this example, both SmoothGrad and Integrated Gradients simplify, and both
coincide with the Vanilla Gradients method ϕf (x) = ∇f(x) (Simonyan et al., 2014). We will refer
to all three together as ‘Gradient Methods’. LIME for images depends on a partition of the image
into superpixels. We consider two variants. One variant is ‘LIME manual’, in which we provide the
indices of the person as one super-pixel, and the indices of the background for a second super-pixel.

10
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Figure 2: Saliency maps by different methods for two profile pictures that are rejected by the model.

The other variant is ‘LIME auto’, which uses the default segmentation algorithm of LIME to obtain
the super-pixels. See Appendix A for further details about the experimental set-up.

Two example profile pictures with their corresponding saliency maps are shown in Figure 2. Both
examples are rejected by the classifier. In both cases the user could change the decision by making
the background darker (provided that δ is large enough). In the top row two of the methods, the
Gradient Methods and LIME auto, do provide recourse. For LIME auto it is difficult to see, but the
region of the person has a positive value and the surrounding region a negative value. Changing
the picture accordingly would result in a darker background compared to the person, and therefore
satisfies the requirement of recourse sensitivity. In the bottom example, the picture is also rejected.
The attributions all show a flat saliency map, for which moving in the direction ϕf (x) has no effect
on the value of f , so none of the attribution methods is recourse sensitive. There is also significant
disagreement between the saliency maps: LIME manual assigns a large positive value to all pixels,
SHAP a very small almost unnoticeable negative value, and the remaining methods attribute 0 to all
pixels.

3.4 Proof Idea for Theorem 4

Having illustrated the implications of Theorem 4 in the previous sections, we now explain the
idea behind its proof. We consider again the setting of Example 1, with f(x) = x2, uf (x, y) =
f(y)− f(x) and δ ≥

√
τ > 0. Let L denote the interval of points x where recourse is possible by

moving to the left, and let R denote the interval of points where recourse is possible by moving to
the right. As illustrated in Figure 3, we then find that neither interval fully contains the other, but
they overlap on L ∩ R =

[
τ−δ2
2δ , δ

2−τ
2δ

]
. Since the attribution has to be negative to the left of this

overlap and positive to the right of the overlap, it has to go through zero somewhere inside the overlap
(by continuity and the intermediate value theorem), but this is not allowed because the attribution
is not allowed to be zero anywhere where recourse is possible. Therefore, no attribution can be
continuous and recourse sensitive simultaneously. In the actual proof of Theorem 4, we follow a
similar argument, but for a different function f , whose existence is guaranteed by the assumptions of

11
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Figure 3: L and R sets for f(x) = x2.

the Theorem. To generalize from one dimension to higher dimensions, we then embed this function
along the line segment `.

4. Discussion

In this section we pause to reflect on the implications of our impossibility result, and suggest possible
ways to circumvent it.

How Common is the Problem? As is clear from the proof sketch in Section 3.4, recourse sensi-
tivity and robustness get into conflict already for simple quadratic functions in 1D. And things are
even worse: the same problem arises for any other function with partially overlapping L and R sets,
so that on one part of the line recourse is provided by pointing to the left and on another part of the
line recourse requires pointing to the right. We should therefore be prepared to run into problematic
instances for most non-trivial learning models used in practice: e.g. linear models in which we add a
quadratic feature, decision trees, neural networks, etc. In Sections 5 and 6 we provide more formal
insights into the class of problematic functions f by providing conditions that are sufficient and/or
necessary to combine recourse sensitivity and robustness.

Should We Prioritize Recourse Sensitivity or Robustness? In the context of algorithmic re-
course, providing recourse is the primary goal and robustness is a secondary consideration. Faced
with a choice between the two, it is therefore clear that we should prioritize recourse. However, it
may be possible to (partially) salvage robustness in special cases, which seems important because it
would be undesirable to have explanations that jump around unnecessarily. We proceed to explore
this for counterfactual explanations.

4.1 Workarounds for Counterfactual Explanations

As pointed out in Remark 3, counterfactual explanations are always recourse sensitive. In Section 5
it will be shown that, under weak conditions, their robustness fails only at points x for which the
counterfactual projection xcf is not unique. This suggests two natural, but ultimately unsatisfactory
ways to work around our impossibility result:

1. Robustness at Most Points If the points of non-uniqueness are sufficiently uncommon, then
we may simply ignore them and accept a lack of robustness in such exceptional cases. It is indeed

12
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tempting to believe that non-uniqueness might be rare enough. For instance, in the binary classifica-
tion setting from (1), the set of points with a non-unique projection has measure 0 (see discussion
below Theorem 6), which means that it is in a sense small compared to the ambient space X . But,
unfortunately, this is not sufficient to conclude that the set of affected users would also be small:
around any point of discontinuity of ϕf there exists a whole neighborhood of users x who can
find a nearby alternative x′ that would result in a very different explanation. In extreme cases it is
even possible that every user x in X would be close to a point of discontinuity of ϕf . We would
therefore need to have a stronger restriction on the set of discontinuities before we can dismiss them
as sufficiently uncommon.

2. Restrict to Very Simple Models A radical way to avoid discontinuities altogether is to restrict
attention to very simple models f and constraint sets C(x) for which the projection xcf is always
unique. For instance, if the user wants to be classified to a preferred class and there are no constraints,
then this would be satisfied by functions f that are linear in the original features. Although effective,
this approach is so restrictive that it seems unworkable, because non-uniqueness will quickly reappear,
for instance if we add a quadratic feature as discussed at the start of the section.

4.2 Work-arounds by Changing the Explainability Task

More appealing options to avoid impossibility become available if we allow ourselves to change the
explanation task. Some preliminary thoughts in this direction are as follows:

1. Linearizing with Abstract Features It may sometimes be an option to provide explanations
not in terms of the original features x but in terms of transformed (typically more abstract) features
z = g(x) for some mapping g. If f is linear in z, then this would allow using a simple model after
all. Appendix E.2 provides a detailed example to illustrate how this might work out.

2. Set-valued Explanations As discussed in Section 3.4, attributions cannot be continuous and
recourse sensitive, because they may have to communicate different options in adjacent regions
and there is no continuous way to transition between the options. A way around this may be to
communicate not one, but many or all possible directions that provide recourse as a set Sf (x). This
is analogous to the definition of the subdifferential of a convex function, which represents the set
of all possible tangents. Set-theoretic notions of continuity such as hemi-continuity or continuity
with respect to the Hausdorff metric (Aubin and Frankowska, 2009) could then be used to rephrase
robustness in terms of continuity of Sf (x) instead of continuity of ϕf (x), making robustness easier
to satisfy.

5. Sufficient Conditions for Recourse with Robustness

The impossibility result in Theorem 4 implies that there exist continuous functions f for which no
attribution method can both provide recourse and be robust. But this may still be possible if we
restrict attention to specific functions f that are somehow nice enough. For instance, as mentioned in
the introduction, linear classifiers do allow robust and recourse sensitive attribution functions when
the goal is to move to a preferred class in binary classification. In this section, we will first formalize
a generalization of this result to a slightly larger class of functions for the binary classification setting.

13
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f(y) > 0f(y) < 0

x
ϕf (x)

Figure 4: Assumptions of Theorem 6 illustrated.

Then we will extend the result to more general utilities. The proofs for this section can be found in
Appendix C.

The following result shows that counterfactual explanations are both recourse sensitive and robust for
binary classification with a preferred class if the counterfactual projections xcf are always uniquely
defined:

Theorem 6 Consider the binary classification setting without constraints with uf (x, y) = f(y), τ =
0 and C(x) = X , let δ > 0 be arbitrary and take f : X → R to be any continuous function. If the
set U = {y ∈ X | f(y) ≥ 0} is convex, then the attribution method

ϕf (x) := argmin
y∈U

‖y − x‖ − x = PU (x)− x

is well defined, and it is both recourse sensitive and continuous.

Theorem 6 covers linear functions f , but applies more broadly. For instance, any concave and
continuous function f will satisfy its requirements. However, these requirements are still very
restrictive, as only very simple classifiers will be concave.

To understand the conditions of Theorem 6, we note that continuity of f is used to ensure that U
is closed, so that projections always exist. In this case the convexity condition on U is equivalent
to the assumption that projections onto U are always unique, provided that X is convex. Thus the
conditions of the theorem may also be understood as requirements to ensure unique projections. In
light of the discussion in Section 4.1, we further remark that, without the convexity assumption on U ,
the set of points x with a non-unique projection onto U still has measure 0, as is shown by Erdös
(1945) for general closed sets and X = Rd.

To extend Theorem 6 to more general utility functions and arbitrary constraints C(x), we need to
look at sets of the form

U(x) := {y ∈ X | uf (x, y) ≥ τ} ∩ C(x)

and consider counterfactual explanations that project onto these sets. Now the set that is projected on
changes with x, so we will need more complicated assumptions to ensure that the projections still

14
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change continuously with respect to x. Intuitively, this will be the case if the sets U(x) themselves
vary continuously with x. It turns out that the right type of set-valued continuity is hemi-continuity,
which ensures that the sets U(x) cannot explode, implode or shift suddenly, when varying x. The
definition and relevant properties of hemi-continuity are reviewed in Appendix C. Compared to
Theorem 6 we are further able to weaken the convexity assumption on U(x) to the requirement that a
unique projection exists for x instead of for all points. This leads to the following result, also proved
in Appendix C:

Theorem 7 Let δ > 0, τ ∈ R, f : X → R be a function, C(x) constraint sets and uf (x, y) a utility
function with the following properties:

1. The set-valued map U(x) is hemi-continuous; and
2. U(x) is a closed set for every x ∈ X .

Then there exists at least one attribution method

ϕf (x) ∈
(
argmin
y∈U(x)

‖y − x‖
)
− x,

and any such method is recourse sensitive. Moreover, ϕf will be continuous on the restriction of X
to points x for which PU(x)(x) := argminy∈U(x) ‖y − x‖ is unique.

To see that Theorem 6 follows from Theorem 7, we note that, if U(x) = U is the same for all x, then
U(x) is always hemi-continuous. In addition, U is the pre-image of a closed set under f , and will
therefore be closed if f is continuous. Finally, uniqueness of all projections (and therefore continuity)
is a consequence of convexity of U .

Theorem 7 also covers other cases of interest. For instance, it is sufficient to require the follow-
ing:

1. The function uf (x, y) is continuous;
2. For each x ∈ X , the function y 7→ uf (x, y) is concave;
3. The domain X is compact.

These conditions imply that all U(x) are convex and compact (i.e. closed and bounded), and
consequently all projections are unique. It can also be checked that they ensure that U is hemi-
continuous. All requirements of Theorem 7 are therefore satisfied and a continuous and recourse
sensitive attribution function exists.

Another example, which is covered by Theorem 7, but not by the previous sufficient conditions, is
the following: suppose the user wants to at least double the outcome of the model, which can be
expressed by taking uf (x, y) =

f(y)
f(x) and τ = 2. Then the following model f satisfies the conditions:

Corollary 8 Let δ > 0, τ = 2, X = Rd \ {0}, C(x) = X , f(x) = eb‖x‖ for some b > 0 and
uf (x, y) = f(y)

f(x) . Then ϕf as defined in Theorem 7 is uniquely defined, recourse sensitive and
continuous.

To prove Corollary 8, it can be shown that U(x) = {y ∈ X | ‖y‖ ≥ ‖x‖+ ln(2)
b } is hemi-continuous.

The sets U(x) are also closed, and the projections onto U(x) are unique for every x, because we
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excluded 0 from our domain. Thus, all the requirements of Theorem 7 hold and a continuous and
recourse sensitive attribution function exists.

6. Single Feature Recourse Sensitivity: Exact Characterization

In this section, we provide an in-depth study of the case that users are only able to change a single
feature, which corresponds to the sparse constraint (b) from Section 2 with k = 1. In this case, we are
able to provide an exact characterization of the functions f for which a continuous, recourse sensitive
attribution function can exist. We first restrict ourselves to the one-dimensional case d = 1, and then
generalize the result to the multi-dimensional case d ≥ 1. All proofs of the results in this section
can be found in Appendix B. To formulate our results, we will need the concept of separated sets,
which corresponds to the intuition that the sets are disjoint and have at least one point in between
them everywhere:

Definition 9 Two sets A,B ⊆ X are called separated if cl(A) ∩B = ∅ and A ∩ cl(B) = ∅.

An equivalent definition is that there exist open sets U, V ⊆ X such that A ⊆ U,B ⊆ V and
U ∩ V = ∅.

6.1 One Dimension

In this subsection we assume that X ⊆ R is one-dimensional. Define the following three sets

L = {x ∈ X | there exists some y ∈ [x− δ, x) ∩ C(x) with uf (x, y) ≥ τ},
R = {x ∈ X | there exists some y ∈ (x, x+ δ] ∩ C(x) with uf (x, y) ≥ τ},
O = {x ∈ X | x ∈ C(x) and uf (x, x) ≥ τ}.

Similarly to Section 3.4, these sets are the feasible points for which recourse is obtainable by moving
to the left, to the right or by doing nothing, respectively. The following result now tells us that a
continuous recourse sensitive attribution function can exist if and only if we can decompose L,R
and O in a particular way:

Theorem 10 Let δ > 0, τ ∈ R, f : X → R and C(x) be arbitrary, then there exists a continuous
recourse sensitive attribution function ϕf for f if and only if there exist L̃ ⊆ L, R̃ ⊆ R and Õ ⊆ O
such that

1. L̃ ∪ R̃ ∪ Õ = L ∪R ∪O;
2. L̃ and R̃ are separated;
3. cl(Õ) ∩ L̃ = ∅ and cl(Õ) ∩ R̃ = ∅.

Sufficient L̃ and R̃ sets Theorem 10 refers to the existence of any L̃, R̃ and Õ that satisfy its
conditions, but we will proceed to show that it sufficient to check separatedness only for a restricted
number of choices for L̃, R̃ and Õ, which may even reduce to a single case. For simplicity, we will
assume that O = ∅, so Condition 3 is automatically satisfied, but the result can be generalized to
general O as well. To describe the choices for L̃ and R̃, it will be helpful to decompose L and R into
the sets L = {Li | i ∈ I} andR = {Rj | j ∈ J } of (maximal) intervals they contain, where these
intervals may be open or closed on either side. Thus L =

⋃
i∈I Li and R =

⋃
j∈J Rj , and every
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two distinct intervals A,B ∈ L (or A,B ∈ R) are separated; otherwise they could be joined into a
single larger interval A ∪B. We further note that in general the number of intervals in L or R may
be uncountable, so the index sets I and J may be uncountable as well. Since splitting an interval in
two will never result in two separated sets, we only need to make decisions about whole intervals.
Moreover, most of these choices are forced, and we can define the remaining possibilities in terms of
the following index sets:

Ĩ = {i ∈ I | ¬∃j ∈ J such that Li ⊆ Rj},

J̃ = {j ∈ J | ¬∃i ∈ I such that Rj ⊆ Li},

K̃ = {i ∈ I | ∃j ∈ J such that Li = Rj}.

Theorem 11 Let δ > 0, τ ∈ R, f : X → R and C(x) be arbitrary, and let uf be any utility function
with uf (x, x) < τ for all x ∈ X . Then there exists a continuous recourse sensitive attribution
function ϕf for f if and only if there exists a partition {K̃1, K̃2} of K̃ such that the sets

L̃ =
(⋃
i∈Ĩ

Li

)
∪
( ⋃
i∈K̃1

Li

)
and R̃ =

( ⋃
j∈J̃

Rj

)
∪
( ⋃
i∈K̃2

Li

)
(5)

are separated.

Thus, the only choice in selecting L̃ and R̃ is how to divide the intervals indexed by K̃, which appear
both in L and R. In particular, if K̃ is empty, then so are K̃1 and K̃2, and we only need to check
separatedness for a single choice of L̃ and R̃.

6.2 Higher Dimensions

It is possible to extend Theorem 10 to higher dimensions, i.e. X ⊆ Rd, whenever the user
has control over only one feature at the same time. The constraint set in this case becomes
C(x) = {y ∈ X | ‖x− y‖0 ≤ 1}. Analogously with the one dimensional case, we first define
sets on which the attribution is allowed to be positive or negative in the i’th feature. These sets
are

Li = {x ∈ X | there exists some X 3 y = x− αei, α ∈ (0, δ], such that uf (x, y) ≥ τ},
Ri = {x ∈ X | there exists some X 3 y = x+ αei, α ∈ (0, δ], such that uf (x, y) ≥ τ},
O = {x ∈ X | uf (x, x) ≥ τ}.

Where ei denotes the i’th basis vector of the standard basis. If the sets Li, Ri and O can be
decomposed in a way similar to the decomposition in Theorem 10, then a continuous recourse
sensitive attribution function exists in the higher dimensional case.

Theorem 12 Let δ > 0, τ ∈ R, C(x) = {y ∈ X | ‖x − y‖0 ≤ 1} and f : X → R be arbitrary.
Then there exists a continuous recourse sensitive attribution function ϕf for f if and only if there
exist L̃i ⊆ Li and R̃i ⊆ Ri for all i = 1, . . . , d and Õ ⊆ O such that

1. Õ ∪
⋃d
i=1(L̃

i ∪ R̃i) = O ∪
⋃d
i=1(L

i ∪Ri);
2. All sets in {L̃1, R̃1, . . . , L̃d, R̃d} are pairwise separated;
3. cl(Õ) ∩ L̃i = ∅ and cl(Õ) ∩ R̃i = ∅ for all i = 1, . . . , d.
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7. Conclusion

We showed that there are machine learning models for which it is impossible for any attribution
method to be both recourse sensitive and continuous (i.e. robust). This was illustrated by examples
exhibiting the problem for specific attribution methods, and we gave an exact characterization of
the set of problematic models for the case where the user is only able to make sparse changes that
affect a single feature. It was further shown how, by making restrictive assumptions on f that satisfy
certain sufficient conditions, it is possible to circumvent our impossibility result.

We view our work as a contribution to establishing solid foundational definitions for explainable
machine learning. To obtain these in the context of providing recourse, it would be of particular
interest to follow up on possible solutions to work around our impossibility result, for instance
along the lines discussed in Section 4. Another direction for future work would be to extend the
characterizations from Section 6 to the case where the user can change multiple features. This would
pose significant new technical challenges, because, in contrast to the single-feature case, there are
then an infinite number of directions that an attribution can point to. In addition, the very general
definition of the utility function results in very unstructured spaces of possible directions. It may
therefore be needed to specialize to particular utility functions to make progress. Finally, we remark
that we defined recourse sensitivity using the Euclidean distance, but our proofs hardly use any of
its special properties. It should therefore be possible to extend our result to other distances, such
as (weighted) combinations of `p norms or weighted Manhattan distance (Karimi et al., 2021), or
to a setting where the norm is replaced by a (possibly asymmetrical) cost mechanism or causal
mechanism.
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Appendix A. Details of Experimental Set-up

All the code to reproduce the experiments and figures in this paper can be found in a GitHub
repository4. All experiments were run locally on an Apple MacBook Pro M1 13", 2020 with 8GB of
RAM.

A.1 Profile Picture Toy Dataset

A total of 53 gray scale figures were created from the User Icon picture, found on www.iconarch
ive.com. 5 Each figure consists of two components, the person and a background. The figures
have varying contrasts between these two components. We labeled each figure by hand according to

4. github.com/HiddeFok/recourse-robust-explanations-impossible
5. The icon is provided for free for non-commercial use.
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this contrast. A figure with high enough contrast is labeled as “Accepted”, while low contrast results
in a “Rejected” label. The labeling was done in such a way that a perfect classifier exists, which is
based on the quadratic difference between the mean pixel value of the person and the background.
In the following expressions, x ∈ RN denotes the vectorized version of a picture of size N = wh,
where w and h are the width and height of the picture. The classification function is given by

f(x) =

 1

|Iper|
∑
i∈Iper

xi −
1

|Jback|
∑
j∈Jback

xj

2

.

Where, Iper denotes the indices of the pixels belonging to the person, and Jback contains the indices
of the background. A figure is accepted if f(x) ≥ λthresh for some threshold parameter λthresh. By
increasing the threshold from the minimum value of all quadratic differences to the maximum value,
the parameter with the highest accuracy was chosen. This lead to the choice λthres = 5961.34, which
achieved perfect accuracy across both classes.

Several attribution methods were applied to each figure with this f . The methods used were
Vanilla Gradients (Simonyan et al., 2014), SmoothGrad (Smilkov et al., 2017), Integrated Gradients
(Sundararajan et al., 2017), LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017). In
Figure 5 six example pictures with their attributions are displayed. The attribution methods based on
gradients were calculated analytically. The attributions for the Vanilla Gradients, SmoothGrad and
Integrated Gradients are given by

ϕVG
f (x)k =


2
|Iper|

(
1
|Iper|

∑
i∈Iper

xi − 1
|Jback|

∑
j∈Jback

xj

)
if k ∈ Iper,

−2
|Jback|

(
1
|Iper|

∑
i∈Iper

xi − 1
|Jback|

∑
j∈Jback

xj

)
if k ∈ Jback,

ϕSG
f (x)k = Ea∼N(x,σ2Id) [∇f(a)k] = ϕVG

f (x)k,

ϕIG
f (x)k = (xk − x0k)

∫ 1

0
∇f

(
x0 + t(x− x0)

)
k

dt = ϕVG
f (

1

2
(x+ x0))k,

where x0 is some baseline picture. We choose x0 to be the picture with all pixel values set to 0.

For LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017), the libraries provided by
their respective authors were used6. The LIME package is provided under the BSD 2-Clause
License and SHAP is provided under the MIT License. For LIME we used version 0.2.0.1 and for
SHAP version 0.40.0. The default parameters were used, unless specified otherwise. For the LIME
method, superpixels are needed to create the attribution. We used two different methods to find
these superpixels. In the ‘LIME manual’ method we manually supplied two superpixels: the first
superpixel consists of the person and the second superpixel is the background. In the ‘LIME auto’
method we used the default segmentation algorithm. Finally, for some of the picture manipulation
we used the scikit-image (van der Walt et al., 2011) package, version 1.0, under the BSD 3-Clause
License7.

6. Library for LIME: https://github.com/marcotcr/lime, library for SHAP: https://github.com/s
lundberg/shap

7. Scikit-image package: https://github.com/scikit-image/scikit-image
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Original Gradient Methods LIME manual LIME auto SHAP

Figure 5: Additional examples of pictures and their attributions. From top to bottom the labels were:
Accepted, Rejected, Accepted, Accepted, Rejected, Rejected.
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Figure 6: The constructed function f(x). The dotted lines indicate that those values could be part of
L or R, but do not have to be part of either set necessarily.

All proofs of the results in the main text can be found in the following sections. For clarity we will
repeat the statements.

Appendix B. Proof of Theorem 4

Theorem 4 Let δ > 0 and τ ∈ R be arbitrary, and let the constraint function C(x) be any
of the choices (a), (b) or (c) on p. 6. Furthermore, assume the utility function uf is of the form
uf (x, y) = ũ(f(x), f(y)), and that there exist z1, z2 ∈ R for which ũ(z1, z2) ≥ τ and ũ(z1, z1) < τ .
Finally, assume that X ⊆ Rd contains a line segment ` of length strictly larger than δ and such that
` ⊆ C(x) for all x ∈ `. Then there exists a continuous function f : X → R for which no attribution
method ϕf can be both recourse sensitive and continuous.

Proof We will split this proof into three parts. First, we consider the one-dimensional case, X = R.
Then, we will show how to deal with X = Rd. Finally, we will discuss the result in its most general
form, meaning X ⊆ Rd. Consider the case when X = R and C(x) = X . By assumption, there are
two points z1, z2 ∈ R such that ũ(z1, z2) ≥ τ . We can construct a continuous function f explicitly
(see Figure 6):

f(x) =


z1 |x| < 3

4δ,
8(z2−z1)

δ |x|+ (7z1 − 6z2)
3δ
4 ≤ |x| ≤

7δ
8 ,

z2 |x| > 7δ
8 .

We will apply Theorem 10 to show that no attribution method ϕf can be both recourse sensitive and
continuous on this function f . To this end, we first note that, for x ∈ [−3δ

4 ,
δ
8 ] and y = x − δ we

have that uf (x, y) = ũ(f(x), f(y)) = ũ(z1, z2) ≥ τ . Which means that the attribution ϕ is allowed
to point to the left on [−3δ

4 ,
δ
8 ]. By a similar argument, we find that ϕf is allowed to point to the

right on [− δ
8 ,

3δ
4 ]. Furthermore, we also see that ϕf is not allowed to point towards the left on [ δ4 ,

3δ
4 ],

because f does not change on [x− δ, x] if x ∈ [ δ4 ,
3δ
4 ]. Analogously, it can be shown that ϕf cannot

point towards the right on [−3δ
4 ,−

δ
4 ]. With regard to Theorem 10, this means that [ δ4 ,

3δ
4 ] ⊆ R̃ and

[−3δ
4 ,−

δ
4 ] ⊆ L̃ for any decomposition L̃, R̃ with L̃∪ R̃ = L∪R. Now, it is not possible to separate

[−3δ
4 ,−

δ
4 ] from the interval [−3δ

4 ,
δ
8 ], which means that we would need [−3δ

4 ,
δ
8 ] ⊆ L̃. Similarly,

we would need [− δ
8 ,

3δ
4 ] ⊆ R̃. It follows that L̃ and R̃ are not disjoint and in particular can never

be separated. We conclude that for this continuous f no continuous recourse sensitive ϕf can exist.
Note that this argument implies that no ϕf could exist on the interval [−δ, δ]. So, failing to provide
recourse or be robust is a local issue.
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We will now generalize the above argument to the setting where X = Rd and the constraint is given
by C(x) = {y ∈ Rd | ‖x− y‖0 ≤ k} or C(x) = {y ∈ Rd | y = x+ αz, α ≥ 0, z ∈ D}. Actually,
these two versions of constraints can be dealt with simultaneously, by rotating the input space in the
latter case in such a way that one of the vectors z ∈ D lies alongside one axis. The argument for the
one dimensional result can now be embedded in these cases. Namely, for x = 0, find the component
that is allowed to change by the constraints. Call this the i’th component. We can define a similar
function as the function above,

f(x) =


z1 |xi| < 3

4δ,
8(z2−z1)

δ |xi|+ (7z1 − 6z2)
3δ
4 ≤ |xi| ≤

7δ
8 ,

z2 |xi| > 7δ
8 .

This function is again continuous and only changes in the i’th coordinate. Repeating the argument of
the one-dimensional case, we see that an attribution is allowed to be negative in the i ’th component
on Li = Ri−1 × [−3δ

4 ,
δ
8 ] × Rd−i−1 and negative on Ri = Ri−1 × [− δ

8 ,
3δ
4 ] × Rd−i−1. Just as

before, we also see that ϕif (x) is necessarily negative on the set Ri−1 × [−3δ
4 ,−

δ
4 ]× Rd−i−1, but

this set cannot be separated from Li, which ensures that ϕf (x)i has to be negative on the whole of
Li. Alternatively, ϕf (x)i has to be positive on Ri−1 × [ δ4 ,

3δ
4 ]× Rd−i−1. Hence, also on the whole

of Ri by the inability of separating Ri from this set. However, as Li and Ri are not disjoint, this is a
contradiction. Thus, no continuous attribution function can exist for f in higher dimensions.

Finally, we need to handle the multidimensional case that X ⊆ Rd. By assumption we have a line
segment ` ⊆ X with the property that ` ⊆ C(x) for all x ∈ `. We can apply a suitable transformation
to the input space, so that we can fall back on our previous argument. This transformation is to first
translate the line segment such that its middle point becomes the origin. Next, we apply a rotation
such that the line segment lies along side the i’th axis. Call this translation and rotation M and ρ,
respectively. The desired function now becomes

g(x) = f ◦ ρ ◦M(x),

where f is the function of the precious case. The function g does not allow any continuous recourse
sensitive attribution function, as f did not allow this on the line segment [−δ, δ] in the i ’t component
and g(`) = f ◦ ρ ◦M(`) ⊇ f([−δ, δ]). Now, if a continuous and recourse sensitive attribution
function ϕg would exist for g, we could construct one for f as well. This is done by setting

ϕf (x) = ϕg ◦M−1 ◦ ρ−1(x).

The inverses exist and as translations and rotations do not change distances, this will be a continuous
recourse sensitive attribution function for f , which was not possible. So, no continuous recourse
sensitive attribution method can exist for g on X ⊆ Rd.

Appendix C. Proofs of Section 5

Theorem 6 Consider the binary classification setting without constraints with uf (x, y) = f(y), τ =
0 and C(x) = X , let δ > 0 be arbitrary and take f : X → R to be any continuous function. If the
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set U = {y ∈ X | f(y) ≥ 0} is convex, then the attribution method

ϕf (x) := argmin
y∈U

‖y − x‖ − x = PU (x)− x

is well defined, and it is both recourse sensitive and continuous.

Proof The function PU is well defined by the fact that U is closed and convex. The set U is closed
as it is the pre-image of a closed set under a continuous function and this ensures that the projection
exists. Convexity of U guarantees uniqueness of the projection. Additionally, it is known that the
projection is a continuous function if the projection exists and is unique. It follows that ϕf is also
continuous. This leaves us to check that the map is recourse sensitive. If x is such that f(x) ≥ 0,
then ϕf (x) = 0, which is a valid attribution, since uf (x, x) = f(x) ≥ 0. So, assume f(x) < 0
and take α = 1 in the definition of recourse sensitivity. Then either ‖PU (x) − x‖ > δ, in which
case T (x) = ∅ and recourse sensitivity holds trivially, or ‖PU (x)− x‖ ≤ δ so that PU (x) ∈ T (x)
because PU (x) ∈ U by definition, so ϕf is again recourse sensitive. We conclude that ϕf is both
continuous and recourse sensitive.

As stated in the main text, we will need some additional tools from the field of multi-valued
analysis to prove the general result. First, we will need a definition of continuity for set-valued
expressions.

Definition 13 (Hemi-continuity) For topological spaces X and Y , a set-valued function U : X →
2Y is called upper hemi-continuous (UHC) at x0 ∈ X if, for any open B ⊆ Y with U(x0) ⊆ B,
there exists an open neighbourhood A of x0 such that for all x ∈ A, U(x) is a subset of B.

A set-valued function U : X → 2Y is called lower hemi-continuous (LHC) at x0 ∈ X , if for any
open set B ⊆ Y intersecting U(x0) there exists an open neighbourhood A of x0 such that U(x)
intersects B for all x ∈ A

If U is UHC and LHC at x0, then U is called hemi-continuous at x0. If U is hemi-continuous at
every x0 ∈ X , then U is called hemi-continuous.

We will also need the following two Lemmas. The first relates UHC and LHC to normal continuity,
when U is single-valued. The second tells us when the graph of U is a closed set.

Lemma 14 If U is UHC or LHC at x0 ∈ X and single-valued in some neighbourhood N around
x0 , then the function f : N → Y such that U(x) = {f(x)} is a continuous function at x0.

Proof Take some sequence {xn}∞n=1 that converges to x0. Recall that convergence is equivalent with
the following. For any open neighbourhood B of x0, there exists an N ∈ N such that n ≥ N implies
that xn ∈ B.

Start by assuming that U is UHC and single-valued. Take any open neighbourhood B of f(x0).
By U being UHC, we can find an open neighbourhood A of x0 such that U(y) ⊆ B for all y ∈ A.
Using the above characterisation of convergence, we can find an N ∈ N such that xn ∈ A, whenever
n ≥ N . This also means that B{f(xn)} = U(xn) ⊆ B. In particular, f(xn) ∈ B. As B was
arbitrary, it follows that lim

n→∞
f(xn) = f(x0) and that f is continuous at x0.
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Next, we assume that U is LHC and single-valued. Again, take any any open set B such that
U(x0) ∩ B 6= ∅. By the fact that U(x0) is single-valued, this actually means that {f(x0)} =
U(x0) ⊆ B. By an analogous argument we again find that f is continuous at x0.

Lemma 15 If U is UHC and U(x) is a closed set for all x ∈ X , then the set

Gr(U) = {(x, y) ∈ X × Y | y ∈ U(x)}

is closed.

Proof See Proposition 1.4.8 in Aubin and Frankowska (2009).

Theorem 16 (Berge’s Maximum Theorem) Let X ,Y ⊆ Rd, assume that:

1. The function v : X × Y → R is a continuous function;
2. The set-valued function U : X → 2Y is hemi-continuous, never empty, and assumes compact

sets.

Then, the parametrized optimization problem v∗(x) := infy∈U(x) v(x, y) is continuous and the
set-valued solution function U∗(x) = {y ∈ U(x) | v∗(x) = v(x, y)} is UHC and compact-valued.

Proof See Chapter 6 in Berge (1997).

Now, Theorem 7 follows almost immediately from Theorem 16. The only issue is that the set U(x)
needs to be compact to apply Theorem 16. However, we do not want to impose this. Luckily, there
exists a relaxation of Berge’s Maximum Theorem, where we do not need compact-valued sets. This
will require an additional property of the optimization problem, but this will be satisfied by the
Euclidean norm.

Theorem 17 (Berge’s Maximum Theorem for Non-Compact Image Sets) Let X ,Y ⊆ Rd, as-
sume that:

1. The function v : X × Y → R is continuous and that for every compact K ⊆ X the set

Dv(λ;K) = {(x, y) ∈ K × Y | y ∈ U(x), v(x, y) ≤ λ}

is compact for all λ ∈ R;
2. The set-valued U : X → 2Y is LHC and never empty.

Then, the parametrized optimization problem v∗(x) = infy∈U(x) v(x, y) is continuous and the
solution set-valued function U∗(x) = {y ∈ U(x) | v∗(x) = v(x, y)} is UHC and compact-valued.

At this point, we have all the tools required to prove Theorem 7. Let us repeat the statement.

Theorem 7 Let δ > 0, τ ∈ R, f : X → R be a function, C(x) constraint sets and uf (x, y) a utility
function with the following properties:

1. The set-valued map U(x) is hemi-continuous; and
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2. U(x) is a closed set for every x ∈ X .

Then there exists at least one attribution method

ϕf (x) ∈
(
argmin
y∈U(x)

‖y − x‖
)
− x,

and any such method is recourse sensitive. Moreover, ϕf will be continuous on the restriction of X
to points x for which PU(x)(x) := argminy∈U(x) ‖y − x‖ is unique.

Proof We will split the proof into two parts. First, we will consider the case where the projection
onto the sets U(x) is actually unique for all x ∈ X . Afterwards, we will discuss the case where the
projection is not unique for every point.

We want to apply Theorem 17, where v(x, y) is given by v(x, y) = ‖y − x‖ and X = Y ⊆ Rd. The
set-valued U is given by all feasible points that achieve sufficient utility,

U(x) = {y ∈ X | uf (x, y) ≥ τ} ∩ C(x).

The parametrized optimization problem will be given by v∗(x) = infy∈U(x) ‖y−x‖. By assumption,
this infimum is attained, because U(x) is closed, and it is unique. It rests to check that the sets
Dv(λ;K) are compact for all compact K and λ ∈ R.

Let us decompose Dv(λ;K) by setting

Dv(λ;K) = {(x, y) ∈ K × Y | y ∈ U(x), ‖x− y‖ ≤ λ}
= {(x, y) ∈ K × Y | y ∈ U(x)} ∩ {(x, y) ∈ K ×X | ‖x− y‖ ≤ λ}.

The first of these sets can be further decomposed by intersecting K × Y and Gr(U), for Gr(U) as
defined in Lemma 15. The setK×Y is closed, because it is the product of two closed sets, and the set
Gr(U) is closed by Lemma 15, so their intersection must be closed as well. Similarly, it can be seen
that the set {(x, y) ∈ K×Y | ‖x−y‖ ≤ λ} is closed, by writing it as the intersection betweenK×Y
and {(x, y) ∈ X × Y | ‖x− y‖ ≤ λ}. The latter set is seen to be closed as it is the inverse image of
closed set under a continuous function. Furthermore, the set {(x, y) ∈ K × Y | ‖x− y‖ ≤ λ} is a
bounded set as it can be seen as the set K with a strip around it of size λ. It follows that Dv(λ;K)
closed and bounded, hence compact. As λ and K were arbitrary we see that v(x, y) = ‖x− y‖ has
the desired property.

As noted in the Theorem statement, the attribution function will be given by

ϕf (x) = argmin
y∈U(x)

‖x− y‖ − x = PU(x)(x)− x.

We can now apply Theorem 17 and see that the solution PU(x)(x) is UHC and compact-valued.
Furthermore, the projection does exist and is unique. Invoking Lemma 14 then tells us that PU(x)(x)
is a continuous function. We see that ϕf (x) is continuous and recourse sensitive by design.

Now, we will drop the assumption that every point x ∈ X has a unique projection onto U(x).
Consider the subset X ⊆ X for which each point does have projection onto U(x). Now, we can
repeat the proof shown above using Berge’s Maximum theorem with the sets X = X and Y = X , as
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the sets U(x) will not be subsets of X in general. This will result in a continuous projection from X
onto the sets U(x) for all points in X and the function

ϕf (x) := argmin
y∈U(x)

‖x− y‖ = PU(x) − x

will be well defined, continuous and a recourse sensitive attribution function on the restricted setX .

Appendix D. Proofs of Section 6

Theorem 10 Let δ > 0, τ ∈ R, f : X → R and C(x) be arbitrary, then there exists a continuous
recourse sensitive attribution function ϕf for f if and only if there exist L̃ ⊆ L, R̃ ⊆ R and Õ ⊆ O
such that

1. L̃ ∪ R̃ ∪ Õ = L ∪R ∪O;
2. L̃ and R̃ are separated;
3. cl(Õ) ∩ L̃ = ∅ and cl(Õ) ∩ R̃ = ∅.

Proof If : Assume that L̃ ⊆ L, R̃ ⊆ R and Õ ⊆ O exist with properties (1)− (3). We will construct
ϕf explicitly. To this end, we define the distance to a set A as

d(x,A) = inf
y∈A
|x− y|. (6)

It is known that d(x,A) is continuous for any set, see for example Chapter 2.5 in Mendelson (1990).
By separatedness of L̃ and R̃ we can find open neighborhoods U1, V1 ⊆ R of L̃ and R̃ respectively,
such that U1 ∩ V1 = ∅. Furthermore, by property (3) we can also find other open neighbourhoods
of U2, V2 ⊆ R of L̃ and R̃ such that Õ ∩ U2 = ∅ and Õ ∩ V2 = ∅. The sets U = U1 ∩ U2 and
V = V1 ∩ V2 are still open neighbourhoods of L̃ and R̃ and they are disjoint from each other and Õ.
Now define

ϕ−f (x) =
d(x,R \ U)

1 + d(x,R \ U)
,

ϕ+
f (x) =

d(x,R \ V )

1 + d(x,R \ V )
.

Using these functions, we can construct ϕ by setting

ϕf (x) = ϕ+
f (x)− ϕ

−
f (x).

We have to check that ϕf is negative on L \ (R ∪O), positive on R \ (L ∪O), 0 on O \ (R ∪ L),
and non-zero on (L ∪R) \O, and . First, we will show that ϕf is negative on L̃, positive on R̃, and
0 on Õ actually. Let x ∈ L̃, then it is not part of R \ U . Furthermore, the set R \ U is closed and
for closed sets A the set distance function has the property that d(x,A) = 0 if and only if x ∈ A.
This shows that d(x,R \ U) > 0. By separatedness of L̃ and R̃ we also know that x cannot be an
element of V , because U and V are necessarily disjoint. It follows that d(x,R \ V ) = 0. From this
we conclude that ϕf (x) < 0 for x ∈ L̃. Analogously, it can be shown that ϕf (x) > 0 for x ∈ R̃.
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If x ∈ Õ, then x 6∈ U ∪ V , which implies that d(x,R \ U) = d(x,R \ V ) = 0. Precisely what is
needed

Remark that L \ (R ∪ O) ⊆ L̃ and R \ (L ∪ O) ⊆ R̃, which tells us that ϕf is negative on
L \ (R ∪ O) and positive on R \ (L ∪ O). Next, if x ∈ L ∪ R \ O it must be in either L̃ or R̃, as
L ∪R ∪O = L̃ ∪ R̃ ∪ Õ and x cannot be in Õ From this we see that ϕf is non-zero on L ∪R. We
conclude that this constructed ϕf is a continuous recourse sensitive attribution function.

Only if : We assume that we have a continuous recourse sensitive attribution function ϕf for f . Using
this ϕf we can construct the required decomposition explicitly. Define

L̃ = {x ∈ X | ϕ(x) < 0, x ∈ L},

R̃ = {x ∈ X | ϕ(x) > 0, x ∈ R},

Õ = {x ∈ X | ϕ(x) = 0, x ∈ O}.

We see that L̃ ∪ R̃ ∪ Õ = {ϕf ∈ R} ∩ (L ∪R ∪O) = L ∪R ∪O. We know that ϕf is continuous.
This means that ϕf (x) ≤ 0 on the closure of L̃. It follows that cl(L̃) ∩ R̃ = ∅, as ϕf (x) is strictly
positive on R̃. Analoguesly , it can be argued that L̃ ∩ cl(R̃) = ∅. Finally, ϕf (x) = 0 for all x ∈ Õ.
So, again ϕ(x) = 0 on the closure of Õ. This guarantees that cl(Õ) ∩ L̃ = cl(Õ) ∩ R̃ = ∅, which
verifies property 3

Theorem 11 Let δ > 0, τ ∈ R, f : X → R and C(x) be arbitrary, and let uf be any utility function
with uf (x, x) < τ for all x ∈ X . Then there exists a continuous recourse sensitive attribution
function ϕf for f if and only if there exists a partition {K̃1, K̃2} of K̃ such that the sets

L̃ =
(⋃
i∈Ĩ

Li

)
∪
( ⋃
i∈K̃1

Li

)
and R̃ =

( ⋃
j∈J̃

Rj

)
∪
( ⋃
i∈K̃2

Li

)
(5)

are separated.

Proof If: Suppose there exists a partition {K̃1, K̃2} such that L̃ and R̃ are separated. Then existence
of ϕf follows from Theorem 10: it is immediate that L̃ ⊆ L and R̃ ⊆ R; and L̃ ∪ R̃ = L ∪R can
be verified as follows: for any interval Li that is contained both in L and inR, we have i ∈ K̃, so
the interval is contained either in L̃ or in R̃. Any interval Li ∈ L that is not inR is either contained
in L̃ or there exists Rj ∈ R such that Li ⊂ Rj . In the latter case Rj must be contained in R̃,
because there cannot exist any i∗ ∈ I such that Rj ⊆ Li∗ . If there were such an i∗, then we would
have Li ⊂ Rj ⊆ Li∗ , which would contradict the fact that all intervals in L are separated. By an
analogous argument, any interval Rj ∈ R that is not in L is either contained in R̃ or there exists
Li ∈ L that is contained in L̃.

Only if: Suppose that L̃ and R̃ satisfy the conditions of Theorem 10. Then we will show that
they must be of the form (5) for some partition {K̃1, K̃2}. To this end, we first observe that each
interval Li ∈ L must either be fully included in L̃ or not included at all. Otherwise, the fact that
L̃ ∪ R̃ = L ∪R would imply that part of the interval was included in L̃ and the other part in R̃, but
then L̃ and R̃ would not be separated. Similarly, each interval Rj ∈ R must either be fully included
in R̃ or not included at all.
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We can further restrict the intervals Li ∈ L that can possibly be included in L̃: if there exists some
Rj ∈ R such that Li ⊂ Rj , then Rj \ L 6= ∅ (otherwise Li would not be a maximal interval), so Rj
must be included in R̃ to ensure that L̃ ∪ R̃ = L ∪R. But then Li cannot be included in L̃, because
otherwise L̃ and R̃ would not be separated. Similarly, noRj ∈ R for which there exists some Li ∈ L
such that Rj ⊂ Li, can be included in R̃. This restricts attention to the intervals indexed by Ĩ , J̃
and K̃.

We proceed to show that all intervals indexed by Ĩ and J̃ must be included in L̃ and R̃, respectively.
By symmetry, it is sufficient to show this for intervals Li with i ∈ Ĩ . For these, we have that
Li \R 6= ∅ (otherwise R would contain an interval containing Li), so that Li must be included in L̃
because L̃ ∪ R̃ = L ∪R.

Finally, each interval indexed by K̃ must be included either in L̃ or in R̃, but not in both, if we are to
end up with separated sets L̃ and R̃ that satisfy L̃ ∪ R̃ = L ∪R. Consequently, the intervals indexed
by K̃ should be partitioned among L̃ and R̃, as specified by the theorem.

Theorem 12 Let δ > 0, τ ∈ R, C(x) = {y ∈ X | ‖x − y‖0 ≤ 1} and f : X → R be arbitrary.
Then there exists a continuous recourse sensitive attribution function ϕf for f if and only if there
exist L̃i ⊆ Li and R̃i ⊆ Ri for all i = 1, . . . , d and Õ ⊆ O such that

1. Õ ∪
⋃d
i=1(L̃

i ∪ R̃i) = O ∪
⋃d
i=1(L

i ∪Ri);
2. All sets in {L̃1, R̃1, . . . , L̃d, R̃d} are pairwise separated;
3. cl(Õ) ∩ L̃i = ∅ and cl(Õ) ∩ R̃i = ∅ for all i = 1, . . . , d.

Proof Before we start proving both implications, we make the following observation. That is, the
attribution ϕf is only allowed to be non-zero in the i’th component on the sets L̃i and R̃i. Indeed,
recourse sensitivity of ϕf tells us that ϕf (x) = γ(y− x) for some γ > 0 and ‖x− y‖ ≤ δ, but most
importantly y has to be of the form y = x ± αei by the constraining set C(x). The attribution is
seen to be ϕf (x) = ±γαei and ϕf (x) is only allowed to be non-zero in the i ’th component. By
continuity of ϕf the above argument also extends to the closures of L̃i and R̃i.

If : Just as in the one-dimensional case, we are able to construct a recourse sensitive function
explicitly, using the set distance function d(x,A) defined in (6). For each L̃i and R̃i find an open
neighborhood L̃i ⊆ U i and R̃i ⊂ V i that is disjoint from all the other neighborhoods and Õ. This is
possible because of the pairwise separatedness. To see this, take one L̃i and enumerate all the other
L̃j and R̃j from k = 1 to k = 2d − 1 and denote them by W̃k. By the pairwise separatedness we
can find open neighborhoods U ik for L̃i and Vk for W̃k that are disjoint. We can also find an open
neighbourhood U i2d of L̃i that is disjoint of Õ, Then, take U i = ∩2dk=1U

i
k. This is still an open set, as

it is the finite intersection of open sets, and L̃i ⊆ U i, because L̃i is a subset of each of the U ik. The
set U i is also smaller than any of its components in the intersection, meaning that U i is disjoint of
all the other open neighborhoods. Repeat this procedure for every L̃i and R̃i to get our required op
neighborhoods.
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We are now ready to define ϕf . For each component set

ϕ−f (x)i =
d(x,Rd \ U i)

1 + d(x,Rd \ U i)
,

ϕ+
f (x)i =

d(x,Rd \ V i)

1 + d(x,Rd \ V i)
,

ϕf (x)i = ϕ+
f (x)i − ϕ

−
f (x)i.

The attribution ϕf now becomes

ϕf (x) =


ϕf (x)1

ϕf (x)2
...

ϕf (x)d

 .

All the components of ϕf consist of continuous functions. So, ϕf is itself continuous. Next, note
that if x ∈ L̃i or x ∈ R̃i for some i, it is also contained in U i or V i respectively. Because all U i and
V i are mutually disjoint, we see that only d(x,Rd \ U i) or d(x,Rd \ V i) is non-zero. This ensure
that only the i ’th component is non-zero, which is required be the remark at the start of this proof.
Finally, if x ∈ L̃i, then x 6∈ R̃i and ϕf (x)i < 0, because x ∈ U i and Rd \U i is closed. Alternatively,
if x ∈ R̃i, then x 6∈ L̃i and ϕf (x)i > 0, as is required.

For notational sake denote L =
⋃d
j=1 L

jand R =
⋃d
j=1R

j . To conclude, we note that

Li \

 d⋃
j=1
j 6=i

Lj ∪R ∪O

 ⊆ L̃i,

Ri \

L ∪ d⋃
j=1
j 6=i

Rj ∪O

 ⊆ R̃i.
and

O \ (L ∪R) ⊆ Õ.

Combining this with the argument above, we see that ϕf points in the correct directions on these sets.
Furthermore, ϕf is also never zero on (L ∪R) \O. By a similar reason as in the one dimensional
case we see that x ∈ (L ∪ R) \ O, implies that x ∈ L̃i or R̃i for some i = 1, . . . , d. This implies
ϕf (x) 6= 0. Finally, if x ∈ Õ, then x 6∈ U i ∪ V i for all i. This immediately gives that ϕf (x) = 0,
which shows that ϕf is 0 on O \ (L∪R). All together, we conclude that ϕf is a continuous recourse
sensitive attribution function for f .
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Only if : Assuming that ϕf is a recourse sensitive and continuous attribution function for f , define
for all i = 1, . . . , d the sets

L̃i = {x ∈ X | ϕif (x) < 0, x ∈ Li},

R̃i = {x ∈ X | ϕif (x) > 0, x ∈ Ri},

Õ = {x ∈ X | ϕf (x) = 0, x ∈ O}.

These sets form the required partition, because

Õ ∪
d⋃
i=1

L̃i ∪ R̃i =
d⋃
i=1

{ϕif ∈ R} ∩ (Li ∪Ri ∪O) = O ∪
d⋃
i=1

Li ∪Ri,

We can now verify properties (2) and (3) by using the continuity of ϕf . Note that ϕif (x) < 0, implies

that only the i’th component can be non-zero and that x ∈ L̃i, by the remark at the start of the proof.
By continuity of ϕf it follows that ϕif (x) ≤ 0 and ϕjf (x) = 0 for all x ∈ cl(L̃i). On all the other L̃j

or R̃j it must be that ϕjf (x) is strictly non-zero, or positive for ϕif (x) and R̃i. We see that cl(L̃i) is

disjoint from all other L̃j or R̃j . This argument holds for all i and we can proof it analogously for
R̃i. This verifies property (2).

Finally, ϕf (x) = 0 for all x ∈ Õ. So, again ϕf (x) = 0 on cl(Õ). The function ϕf will be non-zero
on each of the sets L̃i and R̃i. Thus, cl(Õ)∩ L̃i = cl(Õ)∩ R̃i = ∅ for all i = 1, . . . , d. This verifies
property (3).

Appendix E. Additional Details for Section 4

In Section 4, it is mentioned that recourse can be provided when the model is very simply, for
example when using a linear classifier. This is also noted by Ustun et al. (2019). In this section we
will expand on this statement. We will also give an example of a classifier f that is non-linear, but
does allow a linear representation f(x) = β>g(x) using higher order or more abstract features. In
this example, the features g(x) are still interpretable and providing a continuous recourse sensitive
attribution function in terms of the features g(x) is possible.

E.1 Linear Classifiers Admit Recourse

Consider the binary classification task using f(x) = β>x for some vector β. Recall that the utility
function is given by uf (x, y) = f(y) ≥ 0. A point is classified as the negative class if f(x) < 0 and
as the preferred class if f(x) ≥ 0. In light of Theorem 6 we see that U is given by

U = {x ∈ Rd | β>x ≥ 0},

which is a convex and closed set. Using Theorem 6 we conclude that a recourse sensitive and robust
attribution function exists.
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E.2 Attribution for Abstract Features

Consider the non-linear classifier f(x) = ‖x‖2 − 1, which classifies if a point is inside the circle
or outside the circle. To show that there are no continuous and recourse sensitive functions for this
classifier we consider the following two cases:

1. δ > 0 and C(x) = {y ∈ R2 | ‖x− y‖0 ≤ 1};
2. 1 ≤ δ < 2 and C(x) = R2.

First, we will show the single feature case, because it follows from Theorem 12. The second case
requires special arguments and will follow afterwards.

E.2.1 δ > 0 AND C(x) = {y ∈ R2 | ‖x− y‖0 ≤ 1}

To apply Theorem 12 we first find all 4 sets L1, R1, L2 and R2. If we know L1, then we can find all
the other sets as well by the symmetry of f . The set L1 consists of all points such that you cross
the decision boundary when you subtract [δ, 0]> from the input point. This is the strip to right of
the circle with width δ and all the points within the circle that also do not lie in the translated circle
D1(0) + [δ, 0]>, where D1(0) = {y ∈ R2 | ‖y‖ < δ}. In set notation

L1 =

{[
cos(θ)
sin(θ)

]
+

[
α
0

]
| θ ∈

(
−π
2
,
π

2

)
, α ∈ (0, δ)

}
∪
(
D1(0) \

(
D1(0) +

[
δ
0

]))
=: L1

out ∪ L1
in.

Note that L1
out and L1

in are two disjoint connected components. The set R1 can be given in a similar
form, with the α replaced by −α and the vector [δ, 0]> with [−δ, 0]>. The sets L2 and R2 can be
obtained by rotating the sets L1 and R1 with π

2 .

Take any α ∈ (0, δ) and consider the point x = [1 + α, 0]>. This point is only an element of L1

and not of any of the other sets. As x is contained in L1
out and L1

out is connected, we know that it
must be that L1

out ⊆ L̃1 for any decomposition. Similarly, we see that L2
out ⊆ L̃2. However, L1

out and
L2

out are not disjoint, because
√
α[1/

√
2, 1/

√
2] is an element of both sets for α ∈ (1,min (2, 2δ)). It

follows that L̃1 and L̃2 cannot be separated and Theorem 12 tells us that no continuous single feature
attribution function can exist.

E.2.2 1 ≤ δ < 2 AND C(x) = R2

Note that in all cases that follow an attribution can be given for the region outside of the circle
by

ϕf (x) =

[
−x1f(x)
−x2f(x)

]
.

So, we only have to focus on the region inside the circle. If 0 < δ < 1, then we cannot cross the
decision boundary for any x ∈ D1−δ(0). In that region any value for the attribution is allowed and
extending the above ϕf to the whole plane gives us a valid continuous recourse sensitive attribution
function.

When δ > 2, we can cross the decision boundary for any x ∈ D1(0) by moving in any direction
with length δ. So, inside the circle we could set ϕf (x) to any direction. A full continuous recourse
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sensitive attribution function would be given by

ϕf (x) =



[
−x1f(x)
−x2f(x)

]
‖x‖ ≥ 1[

f(x)

0

]
‖x‖ < 1

.

Now, we can discuss the case when 1 ≤ δ < 2. Again, the attribution outside of the circle does
not pose a problem. Inside the circle we can identify two regions. Within Dδ−1(0) we can move in
any direction of length δ to cross the decision boundary. Indeed, take an x ∈ Dδ−1(0) and note that
the worst direction to cross the decision boundary is −x. We can scale this vector with δ

‖x‖ to get
a vector of length δ. Using ‖x‖ < δ − 1, we see that moving in that direction crosses the decision
boundary, as

‖x− δ

‖x‖
x‖ =

∣∣∣∣1− δ

‖x‖

∣∣∣∣ ‖x‖ = |δ − ‖x‖| > 1.

In the strip with δ − 1 ≤ ‖x‖ < 1, the set of feasible direction is more complicated. However, the
important observation is that −x is not contained in it. So, for any attribution ϕf it cannot be that
ϕf (x) = −αx for any α > 0. To conclude that ϕf has a zero we will use the following Lemma,
which can be seen as a generalization of the intermediate value theorem.

Lemma 18 (Poincaré-Bohl) Assume that U is an open bounded neighborhood of Rd, with 0 ∈ U ,
and that f : cl(U)→ Rd is a continuous function such that

f(x) 6∈ {αx : α > 0}, for every x ∈ cl(U) \ U.

Then, there is an x0 ∈ cl(U) such that f(x0) = 0.

Proof See Theorem 2 in Fonda and Gidoni (2016).

Applying Lemma 18 to the function −ϕf (x) immediately gives that there is some x ∈ D1 (0) such
that −ϕf (x) = 0 ⇐⇒ ϕf (x) = 0, which is not allowed if ϕ by recourse sensitivity.

However, if we write this function as a linear function of a feature map consisting of linear and
quadratic terms. The feature map g and coefficients are given by

g(x) =


x1
x2
x21
x22
1

 , β =


0
0
1
1
−1

 .

The function f is then represented by

f(x) = β>g(x),
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and we could provide recourse by communicating

ϕf (x) =


−x1f(x)
−x2f(x)
−f(x)
−f(x)

0

 .
This attribution will only be 0 on the decision boundary, which is allowed, and in almost all other
cases the first two components will point towards the decision boundary. The first two components
are only zero when x = 0. In that case the first two components do not point towards the decision
boundary, but the final two components do provide information on which (higher-level) action has
to be taken to change the class. Namely, it tells the user to increase the norm, in whatever way
possible.

The above argument shows that, if it is possible to write the function f as some linear function
f(x) = β>g(x), it will be possible to provide recourse in terms of the higher level features of
g(x).
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